WO1998027874A1 - Methods and devices for joining transmission components - Google Patents

Methods and devices for joining transmission components Download PDF

Info

Publication number
WO1998027874A1
WO1998027874A1 PCT/US1997/023020 US9723020W WO9827874A1 WO 1998027874 A1 WO1998027874 A1 WO 1998027874A1 US 9723020 W US9723020 W US 9723020W WO 9827874 A1 WO9827874 A1 WO 9827874A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transmission member
threaded
ultrasonic
mounting device
Prior art date
Application number
PCT/US1997/023020
Other languages
French (fr)
Inventor
Stephen Dimatteo
Brian Estabrook
Original Assignee
Ethicon Endo-Surgery, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Endo-Surgery, Inc. filed Critical Ethicon Endo-Surgery, Inc.
Priority to CA002247149A priority Critical patent/CA2247149C/en
Priority to DE69728758T priority patent/DE69728758T2/en
Priority to AU56040/98A priority patent/AU731135B2/en
Priority to EP97952437A priority patent/EP0893971B1/en
Priority to JP10528871A priority patent/JP2000506431A/en
Publication of WO1998027874A1 publication Critical patent/WO1998027874A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/24Methods or devices for transmitting, conducting or directing sound for conducting sound through solid bodies, e.g. wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00305Constructional details of the flexible means
    • A61B2017/00314Separate linked members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00318Steering mechanisms
    • A61B2017/00323Cables or rods
    • A61B2017/00327Cables or rods with actuating members moving in opposite directions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2908Multiple segments connected by articulations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320088Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with acoustic insulation, e.g. elements for damping vibrations between horn and surrounding sheath

Definitions

  • the present invention generally relates to ultrasonic devices. More particularly, it relates to methods and devices for joining a plurality of ultrasonic transmission components by the use of one or more non-vibratory members which carry the ultrasonic transmission components.
  • Ultrasonic transmission devices are frequently used in a variety of applications, such as surgical operations and procedures.
  • these transmission devices usually include a transducer that converts electrical energy into vibrational motion at ultrasonic frequencies.
  • the vibrational motion is usually transmitted through a transmission component, such as a mounting device, to vibrate a distal end of another transmission component, such as a working member .
  • the working member is usually attached to the mounting device by a threaded joint.
  • the proximal end of the working member typically includes a threaded stud that is threaded into a threaded bore of the distal end of the mounting device.
  • the tension between the threaded stud of the working member and the threaded bore of the mounting device provides an axial compression force to prevent the working member and mounting device from separating.
  • the threaded bore and the threaded stud are usually costly to fabricate and are typically required to be manufactured within specific tolerance ranges.
  • the working member is usually tightened to the mounting device by using a tool, such a wrench.
  • the use of a wrench may cause the working member to be inadvertently over-tightened, which may tend to strip or damage the threads of the working member and mounting device.
  • the working member When the working member is over-tightened, the working member may be difficult to detach from the mounting device.
  • insufficient tightening of the working member to the mounting device may cause undesired heat build-up of the threaded joints, decrease the transfer of energy across the junction, and cause unwanted transverse motion.
  • a torque limiting device may also be used to tighten the working member to the mounting device.
  • the torque limiting device is used to assure that a predetermined minimum torque is reached and that a maximum torque is not exceeded when tightening the working member to the mounting device.
  • a separate torque wrench W as illustrated in FIG. 1 may be placed over a working member WM to tighten and untighten the working member WM from a mounting device M of a surgical device.
  • the working member WM is attached to the mounting device M by a threaded connection. Once the working member WM is threaded onto the mounting device M, the torque wrench W is then slipped over the working member WM to tighten the working member WM to the mounting device M.
  • a nose cone is then threaded onto the distal end of the handpiece assembly H.
  • devices and methods for attaching ultrasonic transmission components together in an operable arrangement without using a separate torque limiting device.
  • the device allows the transmission components to be coupled together through a relatively small contact region and with relatively low coupling forces .
  • the devices further allow transmission components having relatively small diameters to be coupled together.
  • the present invention contemplates use of one or more non- vibratory members for coupling ultrasonic transmission components carried by the non-vibratory members .
  • An ultrasonic device in accordance with the present invention includes a first transmission member and a second transmission member.
  • a non-vibrating structure provides a preload force to hold an end of the first transmission member in contact with an end of the second member.
  • a method embodying the principles of the present invention includes the steps of providing a first non-vibratory structure carrying a first transmission member having a first end and a second end, and providing a second non-vibratory structure carrying a second transmission member having a first end and a second end.
  • the method also includes the steps of attaching the first non-vibratory structure to the second non-vibratory structure to provide a preload force to hold one end of the " first transmission rod in contact with an end of the second transmission rod without the use of a threaded connection between the first and second transmission members.
  • FIG. 1 is a side elevational view of a prior art handpiece assembly of an ultrasonic device
  • FIG. 2 is a fragmentary view and in partial cross-section of a first embodiment of a surgical system according to the present invention
  • FIG. 3 is a fragmentary cross-sectional view of an interface between transmission components of the surgical system illustrated in FIG. 2;
  • FIG. 4 is a fragmentary cross-sectional view of a second embodiment of a coupling arrangement between two ultrasonic transmission components
  • FIG. 5 is a fragmentary cross-sectional view of another coupling arrangement between two ultrasonic transmission components.
  • FIG. 6 is a cross-sectional view of an articulated ultrasonic waveguide.
  • FIG. 1 shows a side elevational view of a prior art handpiece assembly H.
  • the working member WM is threaded onto the mounting device M.
  • a torque wrench W is slipped over the working member WM to tighten the working member WM to a desired torque to the mounting device M.
  • the surgical system 10 generally includes a generator 30, a handpiece assembly 50, an acoustic or transmission assembly 80, and a surgical tool or instrument 120.
  • the generator 30 sends an electrical signal through a cable 32 at a selected amplitude, frequency, and phase determined by a control system of the generator 30.
  • the signal causes one or more piezoelectric elements of the acoustic assembly 80 to expand and contract, thereby converting the electrical energy into mechanical motion.
  • the mechanical motion results in longitudinal waves of ultrasonic energy that propagate through the acoustic assembly 80 in an acoustic standing wave to vibrate the acoustic assembly 80 at a selected frequency and amplitude.
  • An end effector 88 at the distal end of the acoustic assembly 80 is placed in contact with tissue of the patient to transfer the ultrasonic energy to the tissue.
  • the cells of the tissue in contact with the end effector 88 of the acoustic assembly 80 will move with the end effector 88 and vibrate.
  • the end effector 88 couples with the tissue, thermal energy or heat is generated as a result of internal cellular friction within the tissue.
  • the heat is sufficient to break protein hydrogen bonds, causing the highly structured protein (i.e., collagen and muscle protein) to denature (i.e., become less organized).
  • the proteins are denatured, a sticky coagulum forms to seal or coagulate small blood vessels when coagulum is below 100°C. Deep coagulation of larger blood vessels results when the effect is prolonged.
  • the transfer of the ultrasonic energy to the tissue causes other effects including mechanical tearing, cutting, cavitation cell disruption, and emulsification.
  • the amount of cutting as well as the degree of coagulation obtained varies with the vibrational amplitude of the end effector 88, the amount of pressure applied by the user, and the sharpness of the end effector 88.
  • the end effector 88 of the acoustic assembly 80 in the surgical system 10 tends to focus the vibrational energy of the system 10 onto tissue in contact with the end effector 88, intensifying and localizing thermal and mechanical energy delivery.
  • the generator 30 includes a control system integral to the generator 30, a power switch 34, and a triggering mechanism 36.
  • the power switch 34 controls the electrical power to the generator 30, and when activated by the triggering mechanism 36, the generator 30 provides energy to drive the acoustic assembly 80 of the surgical system 10 at a predetermined frequency and to drive the end effector 88 at a predetermined vibrational amplitude level.
  • the generator 30 may drive or excite the acoustic assembly 80 at any suitable resonant frequency of the acoustic assembly 80.
  • a phase lock loop in the control system of the generator 30 monitors feedback from the acoustic assembly 80.
  • the phase lock loop adjusts the frequency of the electrical energy sent by the generator 30 to match a preselected harmonic frequency of the acoustic assembly 80.
  • a second feedback loop in the control system maintains the electrical current supplied to the acoustic assembly 80 at a preselected constant level in order to achieve substantially constant vibrational amplitude at the end effector 88 of the acoustic assembly 80.
  • the electrical signal supplied to the acoustic assembly 80 will cause the distal end to vibrate longitudinally in the range of, for example, approximately 20 kHz to 100 kHz, and preferably in the range of about 54 kHz to 56 kHz, and most preferably at about 55.5 kHz.
  • the amplitude of the acoustic vibrations at the end effector 88 may be controlled by, for example, controlling the amplitude of the electrical signal applied to the transduction portion 90 of the acoustic assembly 80 by the generator 30.
  • the triggering mechanism 36 of the generator 30 allows a user to activate the generator 30 so that electrical energy may be continuously supplied to the acoustic assembly 80.
  • the triggering mechanism 36 preferably comprises a foot activating switch that is detachably coupled or attached to the generator 30 by a cable or cord.
  • a hand switch may be incorporated in the handpiece assembly 50 to allow the generator 30 to be activated by a user.
  • the generator 30 also has a power line 38 for insertion in an electrosurgical unit or conventional electrical outlet. It is contemplated that the generator 30 may also be powered by a direct current (DC) source, such as a battery.
  • the generator 30 may be any suitable generator, such as Model No. GENO1 available from Ethicon Endo-Surgery, Inc.
  • the handpiece assembly 50 includes a multi-piece housing or outer casing 52 adapted to isolate the operator from the vibrations of the acoustic assembly 80.
  • the housing 52 is preferably cylindrically shaped and is adapted to be held by a user in a conventional manner, but may be any suitable shape and size which allows it to be grasped by the user. While a multi-piece housing 52 is illustrated, the housing 52 may comprise a single or unitary component.
  • the housing 52 of the handpiece assembly 50 is preferably constructed from a durable plastic, such as Ultem ® . It is also contemplated that the housing 52 may be made from a variety of materials including other plastics (i.e. high impact polystyrene or polypropylene).
  • a suitable handpiece assembly 50 is Model No. HP050, available from Ethicon Endo-Surgery, Inc. Referring still to FIG. 2, the handpiece assembly 50 generally includes a proximal end 54, a distal end 56, and centrally disposed axial opening or cavity 58 extending longitudinally therein.
  • the distal end 56 of the handpiece assembly 50 is coupled to the surgical instrument 120 and includes an opening 60 configured to allow the acoustic assembly 80 of the surgical system 10 to extend therethrough.
  • the proximal end 54 of the handpiece assembly 50 is coupled to the generator 30 by a cable 32.
  • the cable 32 may include ducts or vents 62 to allow air to be introduced into the handpiece assembly 50 to cool the transducer assembly 82 of the acoustic assembly 80.
  • the surgical instrument 120 of the surgical system 10 is preferably couplable to the distal end 56 of the handpiece assembly 50.
  • the surgical instrument 120 generally includes a housing or adapter 122, a compliant support 124, and a sheath or tubular member 128.
  • the proximal end 121 of the housing 122 of the surgical instrument 120 is threaded onto the distal end 56 of the handpiece assembly 50.
  • the surgical instrument 120 may be coupled to the handpiece assembly 50 by any suitable means, such as a snap-on connection or the like, without departing from the spirit and scope of the present invention.
  • the housing 122 of the surgical instrument 120 is preferably cylindrically shaped and has an opening 123 at its distal end 126 to allow the acoustic assembly 80 to extend therethrough.
  • the housing 122 may be fabricated from Ultem ® . It is contemplated that the housing 122 may be made from any suitable material without departing from the spirit and scope of the invention.
  • the sheath 128 of the surgical instrument 120 is attached to the distal end 126 of the housing 122.
  • the sheath 128 has an opening extending longitudinally therethrough.
  • the sheath 128 may be fabricated from stainless steel or any other suitable material. Alternatively, polymeric material may surround the transmission rod 86 to isolate it from outside contact.
  • the acoustic assembly 80 generally includes a transducer stack or assembly 82, a mounting device 84, a transmission rod or waveguide 86, and an end effector or applicator 88.
  • the transducer assembly 82, mounting device 84, a transmission rod 86, and the end effector 88 may be acoustically tuned such that the length of each component is an integral number of one-half system wavelengths (N ⁇ /2) where the system wavelength ⁇ is the wavelength of a preselected or operating longitudinal vibration frequency f of the acoustic assembly 80. It is also contemplated that the acoustic assembly 80 may incorporate any suitable arrangement of acoustic elements.
  • the acoustic assembly 80 may comprise a transducer assembly and an end effector (i.e. , the acoustic assembly 80 may be configured without a mounting device and a transmission rod).
  • the transducer 82 and mounting device 84 are carried by the handpiece assembly
  • the transducer assembly 82 of the acoustic assembly 80 converts the electrical signal from the generator 30 into mechanical energy that results in longitudinal vibrating motion of the end effector 88 at ultrasonic frequencies.
  • a vibratory motion standing wave is generated through the acoustic assembly 80.
  • the amplitude of the vibratory motion at any point along the acoustic assembly 80 depends on the location along the acoustic assembly 80 at which the vibratory motion is measured.
  • a minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (i.e. , where axial motion is usually minimal and radial motion is usually small)
  • an absolute value maximum or peak in the standing wave is generally referred to as an antinode.
  • the distance between an antinode and its nearest node is one-quarter wavelength ( ⁇ /4) .
  • the transducer assembly 82 of the acoustic assembly 80 which is known as a "Langevin stack" generally includes a transduction portion 90, a first resonator 92, and a second resonator 94.
  • the transducer assembly 82 is preferably an integral number of one-half wavelengths system (N ⁇ /2) in length. It is to be understood that the present invention may be alternatively configured to include a transducer assembly comprising a magnetostrictive, electromagnetic or electrostatic transducer.
  • the distal end the first resonator 92 is connected to the proximal end of the transduction section 90, and the proximal end of the second resonator 94 is connected to the distal end of the transduction portion 90.
  • the first and second resonators 92 and 94 are preferably fabricated from titanium, aluminum, steel, or any other suitable material.
  • the first and second resonators 92 and 94 have a length determined by a number of variables, including the thickness of the transduction section 90, the density and modulus of elasticity of material used in the resonators 92 and 94, and the fundamental frequency of the transducer assembly 82.
  • the second resonator 94 may be tapered inwardly from its proximal end to its distal end to amplify the ultrasonic vibration amplitude.
  • the transduction portion 90 of the transducer assembly 82 preferably comprises a piezoelectric section of alternating positive electrodes 96 and negative electrodes 98, with piezoelectric elements 100 alternating between the electrodes 96 and 98.
  • the piezoelectric elements 100 may be fabricated from any suitable material, such as lead zirconate, lead titanate, or ceramic crystal material.
  • Each of the piezoelectric elements 100, negative electrodes 98, and positive electrodes 96 may have a bore extending through the center.
  • the positive and negative electrodes 96 and 98 are electrically coupled to a wires
  • the wires 102 and 104 transmit the electrical signal from the generator 30 to electrodes 96 and 98.
  • the piezoelectric elements 100 are held in compression between the first and second resonators 92 and 94 by a bolt 106.
  • the bolt 106 preferably has a head, a shank, and a threaded distal end.
  • the bolt 106 is inserted from the proximal end of the first resonator 92 through the bores of the first resonator 92, the electrodes 96 and 98, and piezoelectric elements 100.
  • the threaded distal end of the bolt 106 is screwed into a threaded bore in the proximal end of second resonator 94.
  • the piezoelectric elements 100 are energized in response to the electrical signal supplied from the generator 30 to produce an acoustic standing wave in the acoustic assembly 80.
  • the electrical signal causes disturbances in the piezoelectric elements 100 in the form of repeated small displacements resulting in large compression forces within the material.
  • the repeated small displacements cause the piezoelectric elements 100 to expand and contract in a continuous manner along the axis of the voltage gradient, producing high frequency longitudinal waves of ultrasonic energy.
  • the ultrasonic energy is transmitted through the acoustic assembly 80 to the end effector 88.
  • the mounting device 84 of the acoustic assembly 80 has a proximal end, a distal end, and may have a length substantially equal to an integral number of one-half system wavelengths.
  • the proximal end of the mounting device 84 is preferably axially aligned and coupled to the distal end of the second resonator 94 by an internal threaded connection near an antinode. It is also contemplated that the mounting device 84 may be attached to the second resonator 94 by any suitable means, and that the second resonator 94 and mounting device 84 may be formed as a single or unitary component.
  • the mounting device 84 is coupled to the housing 52 of the handpiece assembly 50 near a node. (For purposes of this disclosure, the term
  • the mounting device 84 may also include an integral ring 108 disposed about its periphery.
  • the integral ring 108 is preferably disposed in an annular groove 110 formed in the housing 52 of the handpiece assembly 50 to couple the mounting device 84 to the housing 58.
  • a compliant member or material 112 such as a pair of silicon O-rings attached by standoffs, may be placed between the annular groove 110 of the housing 52 and the integral ring 108 of the mounting device 84 to reduce or prevent ultrasonic vibration from being transmitted from the mounting device 84 to the housing 52.
  • the mounting device 84 may be secured in a predetermined axial position by a plurality of pins 114, preferably four.
  • the pins 114 are disposed in a longitudinal direction 90 degrees apart from each other around the outer periphery of the mounting device 84.
  • the pins 114 are coupled to the housing 52 of the handpiece assembly 50 and are disposed through notches in the integral ring 108 of the mounting device 84.
  • the pins 114 are preferably fabricated from stainless steel.
  • the mounting device 84 is preferably configured to amplify the ultrasonic vibration amplitude that is transmitted through the acoustic assembly
  • the mounting device 84 comprises a solid, tapered horn. As ultrasonic energy is transmitted through the mounting device 84, the velocity of the acoustic wave transmitted through the mounting device 84 is amplified. It is contemplated that the mounting device 84 may be any suitable shape, such as a stepped horn, a conical horn, an exponential horn, or the like.
  • the distal end of the mounting device 84 is configured to interface or engage with the proximal end of the transmission rod 86. As shown in FIG. 3, the distal end of the mounting device 84 preferably has a mating or coupling surface 93 that is axially aligned with a mating or coupling surface 95 of the proximal end of the transmission rod 86.
  • the mating surface 93 of the mounting device 84 has a non-threaded cavity or bore that is substantially conically or wedge shaped. It is also contemplated that the mating surface 93 of the mounting device 84 be formed as a convex or partially curved surface.
  • the mating surface 95 of the transmission rod 86 has a non- threaded axially extending member or projection.
  • the mating surface 95 is preferably substantially spherically shaped. It is contemplated that the surfaces 93,95 could be interchanged.
  • the mounting device 84 may have a non- threaded projection at its distal end and the transmission rod 86 may have a non-threaded cavity at its proximal end.
  • Other suitable mating surfaces having different non-threaded surfaces could be used without departing from the spirit and scope of the present invention.
  • the mating surfaces 93,95 of the mounting device 84 and transmission rod 86 may also be coated with titanium nitride (TiN) to improve wear life.
  • TiN titanium nitride
  • the mating surface 93 of the mounting device 84 and the mating surface 95 of the transmission rod 86 are forced together axially so that the junction or point of contact is preferably near an antinode.
  • a minimal contact area exists between the mating surfaces 93,95.
  • a coupling force between the mating surfaces 93,95 is created when the handpiece assembly 50 is coupled to the surgical instrument 120.
  • the handpiece assembly 50 and the surgical instrument 120 are preferably coupled near a vibrational antinode because it is the point of minimum stress and therefore requires the least preload force.
  • the mating surfaces 93,95 of the transmission rod 86 and the mounting device 84 provide a socket arrangement which is self-aligning and self-centering.
  • the socket arrangement also allows slight non-axial alignment of the transmission rod 86 and the mounting device 84.
  • the contact region or area between the mating surfaces 93,95 efficiently transfers mechanical or ultrasonic vibration across the junction between them.
  • the contact region between the mating surfaces 93,95 has a relatively small area.
  • a moderate or relatively low preload force can hold the transmission rod 86 and the mounting device 84 together.
  • an axial pre-load force between 5-25 pounds may be sufficient to hold the mounting device 84 and transmission rod 86 together. This is a lower force than is often required to reliably couple together threaded ultrasonic elements.
  • the transmission rod 86 includes a support or retention member.
  • the retention member preferably includes an integral ring or flange 130 disposed around its periphery. It is also contemplated that the retention member may include a number of suitable configurations, such as an O-ring fixedly attached to a groove or the periphery of the transmission rod 88.
  • a compliant member 124 is preferably positioned between the integral ring 130 of the transmission rod 86 and the distal end 126 of the housing 122 of the surgical tool 120.
  • the compliant member 124 preferably isolates the housing 122 of the surgical instrument 120 from the ultrasonic vibrations of the transmission rod 86.
  • the compliant member 124 is preferably an O-ring fabricated from silicone or polyterafluroethylene (PTFE) and having a low spring rate (i.e., k rate (k)).
  • k rate k
  • the compliant member 124 preferably consists of a thin layer of compliant material with a high or low k rate on a conventional metal or plastic coil or disk spring.
  • the compliant member 124 preferably contacts the transmission rod 86 at a plane perpendicular to the axis of the transmission rod 86 to provide a compression force perpendicular to the radial motion near or at the node to minimize the loss of ultrasonic power caused by the vibration of the compliant member 124.
  • This configuration also allows the transmission rod 86 to be rotated relative to the handpiece assembly 50 without removing it or loosening the connection between the handpiece assembly 50 and the surgical instrument
  • the surgical instrument 120 is preferably threaded onto the distal end 56 of the handpiece assembly 50 bringing the mounting surface 95 of the transmission rod 86 into communication or contact with the mounting surface 93 of the mounting device 84.
  • Alternate arrangements, such as a twist-lock fitting, are also within the spirit and scope of the present invention.
  • the compliant member 124 When the surgical instrument 120 is attached to the handpiece assembly 50, the compliant member 124 is compressed to create an attachment force or preload force.
  • the compliant member 124 preferably has a low spring rate (k) to provide a preload force of contact between the mounting device 84 and the transmission rod 86 that is substantially the same regardless of the tolerances of the components or the manner that the surgical instrument 120 is attached to the handpiece assembly 50. It is contemplated that the surgical instrument 120 may be attached to the handpiece assembly 50 by any suitable means, such as, for example, a threaded or snap-on connection, to compress the compliant member, such as, for example, springs, O-rings and the like, to create the preload force. Referring again to FIG.
  • the transmission rod 86 of the acoustic assembly 80 may have a length substantially equal to an integer number of one- half system wavelengths (N ⁇ /2) .
  • the transmission rod 86 is preferably fabricated from a solid core shaft constructed out of material which propagates ultrasonic energy efficiently, such as titanium alloy (i.e. , T.-6A1-4V) or an aluminum alloy. As those skilled in the art will recognize, the transmission rod 86 may be fabricated from other suitable materials.
  • the transmission rod 86 may also amplify the mechanical vibrations transmitted through the transmission rod 86 to the end effector 88 as is well known in the art.
  • the transmission rod 86 includes stabilizing silicone rings or compliant supports 116 (one being shown) positioned at a plurality of nodes. The silicone rings 116 dampen undesirable vibration and isolate the ultrasonic energy from a sheath 128 of the surgical instrument 120 assuring the flow of ultrasonic energy in a longitudinal direction to the distal end of the end effector 88 with maximum efficiency.
  • the distal end of the transmission rod 86 is coupled to the proximal end of the end effector 88 by an internal threaded connection, preferably near an antinode. It is contemplated that the end effector 88 may be attached to the transmission rod 86 by any suitable means, such as a welded joint or the like. Although the end effector 88 may be detachable from the transmission rod 86, it is also contemplated that the end effector 88 and transmission rod 86 may be formed as a single unit.
  • the end effector 88 may have a distal region 88b having a smaller cross-section area than a proximal region 88a thereof, thereby forming a vibrational amplitude step-up junction.
  • the step-up junction acts as velocity transformer as known in the art, increasing the magnitude of the ultrasonic vibration transmitted from the proximal region 88a to the distal region 88b of the end effector 88.
  • the end effector 88 may have a length substantially equal to an integral multiple of one-half system wavelengths (N ⁇ /2).
  • the distal tip of the end effector 88 is disposed at an antinode where the maximum longitudinal deflection occurs.
  • the distal end of the end effector 88 is configured to move longitudinally in the range of 10 to 500 microns peak-to-peak, and preferably in the range of 30 to 100 microns at a predetermined vibrational frequency, and most preferably at about 90 microns.
  • the end effector 88 is preferably made from a solid core shaft constructed of material which propagates ultrasonic energy, such as a titanium alloy (i.e., Ti-6A1-4V) or an aluminum alloy.
  • the end effector 88 may be fabricated from other suitable materials.
  • the distal end of the end effector 88 may be any suitable shape to transfer the ultrasonic energy to the tissue of a patient.
  • the end effector 88 may have a surface treatment to improve the delivery of energy and desired tissue effect.
  • the end effector 88 may be micro-finished, coated, plated, etched, grit-blasted, roughened or scored to enhance coagulation in tissue.
  • the end effector may be shaped to enhance its energy transmission characteristics.
  • the end effector 88 may be blade shaped, hook shaped, or ball shaped.
  • the first ultrasonic device 200 generally includes a housing or sheath 202, a transmission component or member 204, and an elastomeric or compliant material 206.
  • the housing 202 of the first ultrasonic device 200 preferably includes an inwardly projecting ring 208 and coupling members 210.
  • the housing 202 preferably surrounds the transmission member 204 to isolate the transmission component 204 from contact by a user.
  • the housing 202 of the first ultrasonic device 200 is preferably cylindrically shaped. It is contemplated that the housing 202 may be any suitable configuration without departing from the spirit and scope of the invention.
  • the housing 202 may be constructed from any suitable material, preferably Ultem ® .
  • the second ultrasonic device 220 generally includes a housing or sheath 222, a transmission component or member 224, a release mechanism 226, and a elastomeric or compliant material 228.
  • the housing 222 of the second ultrasonic device 220 preferably includes an inwardly projecting ring 230 and coupling members 232.
  • the housing 222 preferably surrounds the transmission component 224 to isolate the transmission member 224 from contact by a user.
  • the housing 222 of the second ultrasonic device 220 is preferably cylindrically shaped. It is contemplated that the housing 222 may be any suitable configuration.
  • the housing may also be fabricated from any suitable material, preferably Ultem ® .
  • the coupling members 210,232 preferably comprise interlocking members to secure the housings 202,222 together.
  • the coupling members 210,232 snap together when the housings 202,222 are slid together axially.
  • the housings 202,222 may be attached by any suitable releasable latching or locking mechanism.
  • the housings 202,222 may be disconnected by pressing the release mechanism 226 while pulling the housings 202,222 apart. When the release mechanism 222 is pressed in the direction of arrows 221a, the release mechanism 222 disconnects the coupling members 202,222.
  • the transmission members 204,224 of the first and second ultrasonic devices 200,220 preferably have mating surfaces or regions 231,233 that are adapted to be brought into communication or contact with each other, preferably near or at an antinode.
  • the mating surfaces or regions 231,233 are substantially similar to the mating surfaces of the transmission rod 86 and the mounting device 84 as described above. As such, further description of the mating surfaces 231,233 of the transmission members 204,224 are unnecessary for a complete understanding of this embodiment.
  • the compliant members 206,228 each comprise an O-ring that is located in grooves 212 and 241 disposed about the periphery of each transmission member 204,224.
  • the complaint members 206,228 are attached to the grooves 212,241 by mechanical interference or an adhesive.
  • the compliant members 206,228 are secured to the transmission components 206,228 by the adhesion of silicone created by a molding process as is known in the art.
  • the compliant members 206,228 position and support the transmission members 204,241 within the housings 202,232 to reduce the conduction of vibration into the housings 202,232 and minimize energy loss due to heating or noise.
  • a preload force is created between the transmission members 204,224 by the compliant members 206,228 which are compressed or stretched elastically. It is also contemplated that although the support structure is illustrated as an external element, it could be located within a lumen within the transmission members
  • the transmission member 204 may be inserted into a lumen of the transmission member 224 and held together by a press fit or floating pin.
  • FIG. 5 another embodiment of a coupling arrangement 250 for joining ultrasonic transmission components is illustrated.
  • the coupling arrangement 250 generally includes a non-vibrating structure support (generally indicated at 251), a first transmission component or member 256, and a second transmission component or member 258.
  • the non-vibrating structure 251 preferably includes a first portion 252, a second portion 253, and a coupling mechanism 254 for generating a preload force.
  • the first portion 252 of the non-vibrating structure is preferably resiliently coupled to the first transmission component 256 near a node, and the second portion 253 of the non-vibrating structure is resiliently coupled to the second transmission component 258 near a node.
  • the first portion 252 and second portion 253 are isolated from the transmission components 256,258 by compliant support material.
  • the first and second transmission components 256,258 are joined to or held together near an antinode to minimize the preload force required to hold them together.
  • the coupling mechamsm 254 generates sufficient preload force to couple the transmission components 256,258 together.
  • the coupling mechanism 254 may be provided by any suitable mechamsm, such as springs, living snaps, pneumatics, magnetic, suction/ vacuum from an operating room, mechamcal over center toggle, 1/4 turn threaded fitting, and the like.
  • the waveguide assembly 270 includes a plurality of transmission components or members 272, tension wires 274, a spring or adjustable tensioner 275, a tube-like sheath or tension wire guide 276 that surrounds the transmission components 274, and elastomeric attachments 277.
  • the adjacent ones of the transmission components 272 are joined or held together near an antinode of vibration.
  • the transmission components 272 each have a mating surface or region 278a and 278b that is substantially similar to the mating surfaces of the transmission members 204,224 described above. As such, further description of the mating surface 278 of the transmission components 272 is unnecessary for a complete understanding of this embodiment.
  • the tension wire 275 of the waveguide assembly 270 extends through the tension wire guide.
  • the tension wire 275 provides a force to create a substantially uniform contact force between the mating surfaces 278a and 278b of the transmission components 272 when tightened.
  • the tension wires 275 may be tightened or loosened through the adjustable tensioner 275 in order to change the angles between the transmission components 274, allowing the waveguide assembly 270 to be configured in a desired shape.
  • the transmission component 272 may be positioned in a wide range of connected angles with respect to each other.
  • the waveguide assembly 270 may be attached or coupled to another transmission component 280.
  • the methods and devices of present invention allow transmission components to be joined without using an external torque limiting device. Adjacent ones of the transmission components are joined together near or at an antinode. The transmission components are maintained in contact by a preloaded force created by a non-vibrating structure. The area of contact between the transmission components may be relatively small and the transmission components may also have relatively small diameters.

Abstract

A coupling structure releasably attaches a plurality of transmission members to each other. Non-vibratory structures hold a second end of the first transmission member (84, 204, 256, 272) in contact with a first end of the second member (86, 224, 258, 272). A method including the steps of providing a first non-vibratory structure (52, 202, 252) carrying the first transmission member (84, 204, 256), and providing a second non-vibratory structure (122, 222, 253) carrying the second transmission member (86, 224, 258). The method also includes the steps of attaching the first non-vibratory structure (52, 202, 252) to the second non-vibratory structure (122, 222, 253) to hold a coupling end of the first transmission member (84, 204, 256) in contact with a coupling end of the second transmission member (86, 224, 258) without the use of a threaded connection between the first and second components.

Description

METHODS AND DEVICES FOR JOINING TRANSMISSION COMPONENTS
FIELD OF THE INVENTION The present invention generally relates to ultrasonic devices. More particularly, it relates to methods and devices for joining a plurality of ultrasonic transmission components by the use of one or more non-vibratory members which carry the ultrasonic transmission components.
BACKGROUND OF THE INVENTION
Ultrasonic transmission devices are frequently used in a variety of applications, such as surgical operations and procedures. Typically, these transmission devices usually include a transducer that converts electrical energy into vibrational motion at ultrasonic frequencies. The vibrational motion is usually transmitted through a transmission component, such as a mounting device, to vibrate a distal end of another transmission component, such as a working member .
The working member is usually attached to the mounting device by a threaded joint. In particular, the proximal end of the working member typically includes a threaded stud that is threaded into a threaded bore of the distal end of the mounting device. The tension between the threaded stud of the working member and the threaded bore of the mounting device provides an axial compression force to prevent the working member and mounting device from separating. However, the threaded bore and the threaded stud are usually costly to fabricate and are typically required to be manufactured within specific tolerance ranges. In addition, it can be difficult to manufacture threaded bores and threaded studs with small diameters. The working member is usually tightened to the mounting device by using a tool, such a wrench. However, the use of a wrench may cause the working member to be inadvertently over-tightened, which may tend to strip or damage the threads of the working member and mounting device. When the working member is over-tightened, the working member may be difficult to detach from the mounting device. On the other hand, insufficient tightening of the working member to the mounting device may cause undesired heat build-up of the threaded joints, decrease the transfer of energy across the junction, and cause unwanted transverse motion.
A torque limiting device may also be used to tighten the working member to the mounting device. The torque limiting device is used to assure that a predetermined minimum torque is reached and that a maximum torque is not exceeded when tightening the working member to the mounting device. In one known technique, a separate torque wrench W as illustrated in FIG. 1 may be placed over a working member WM to tighten and untighten the working member WM from a mounting device M of a surgical device. In this technique, the working member WM is attached to the mounting device M by a threaded connection. Once the working member WM is threaded onto the mounting device M, the torque wrench W is then slipped over the working member WM to tighten the working member WM to the mounting device M. A nose cone is then threaded onto the distal end of the handpiece assembly H.
However, it is quite difficult for a user to connect and disconnect the working member from the mounting device in a sterile field when using a separate torque wrench. Further, it may be cumbersome and time consuming to use a torque wrench when changing the working member during an operation or for tightening certain working members to the mounting device. Additionally, the torque wrench can be mislaid or lost and may require calibration or replacement at frequent intervals to ensure accuracy.
Accordingly, there is a need for improved devices and methods to join ultrasonic transmission components. Such devices would further benefit if the transmission components could be readily attached and detached without the use of a separate torque limiting device .
SUMMARY OF THE INVENTION In view of the above, devices and methods are provided for attaching ultrasonic transmission components together in an operable arrangement without using a separate torque limiting device. The device allows the transmission components to be coupled together through a relatively small contact region and with relatively low coupling forces . The devices further allow transmission components having relatively small diameters to be coupled together. In general, the present invention contemplates use of one or more non- vibratory members for coupling ultrasonic transmission components carried by the non-vibratory members .
An ultrasonic device in accordance with the present invention includes a first transmission member and a second transmission member. A non-vibrating structure provides a preload force to hold an end of the first transmission member in contact with an end of the second member.
A method embodying the principles of the present invention includes the steps of providing a first non-vibratory structure carrying a first transmission member having a first end and a second end, and providing a second non-vibratory structure carrying a second transmission member having a first end and a second end. The method also includes the steps of attaching the first non-vibratory structure to the second non-vibratory structure to provide a preload force to hold one end of the" first transmission rod in contact with an end of the second transmission rod without the use of a threaded connection between the first and second transmission members. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. The invention, together with attendant advantages, will best be understood by reference to the following detailed description of the preferred embodiments of the invention, taken in conjunction with the accompanying drawings .
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a side elevational view of a prior art handpiece assembly of an ultrasonic device;
FIG. 2 is a fragmentary view and in partial cross-section of a first embodiment of a surgical system according to the present invention; FIG. 3 is a fragmentary cross-sectional view of an interface between transmission components of the surgical system illustrated in FIG. 2;
FIG. 4 is a fragmentary cross-sectional view of a second embodiment of a coupling arrangement between two ultrasonic transmission components;
FIG. 5 is a fragmentary cross-sectional view of another coupling arrangement between two ultrasonic transmission components; and
FIG. 6 is a cross-sectional view of an articulated ultrasonic waveguide.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Before explaining the present invention in detail, it should be noted that the invention is not limited in its application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description, because the illustrative embodiments of the invention may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. Furthermore, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments of the present invention for the convenience of the reader and are not for the purpose of limitation.
FIG. 1 shows a side elevational view of a prior art handpiece assembly H. The working member WM is threaded onto the mounting device M. A torque wrench W is slipped over the working member WM to tighten the working member WM to a desired torque to the mounting device M.
Referring now to FIG. 2, an embodiment of the surgical system 10 is illustrated. The surgical system 10 generally includes a generator 30, a handpiece assembly 50, an acoustic or transmission assembly 80, and a surgical tool or instrument 120. The generator 30 sends an electrical signal through a cable 32 at a selected amplitude, frequency, and phase determined by a control system of the generator 30. As will be further described, the signal causes one or more piezoelectric elements of the acoustic assembly 80 to expand and contract, thereby converting the electrical energy into mechanical motion. The mechanical motion results in longitudinal waves of ultrasonic energy that propagate through the acoustic assembly 80 in an acoustic standing wave to vibrate the acoustic assembly 80 at a selected frequency and amplitude. An end effector 88 at the distal end of the acoustic assembly 80 is placed in contact with tissue of the patient to transfer the ultrasonic energy to the tissue. The cells of the tissue in contact with the end effector 88 of the acoustic assembly 80 will move with the end effector 88 and vibrate.
As the end effector 88 couples with the tissue, thermal energy or heat is generated as a result of internal cellular friction within the tissue. The heat is sufficient to break protein hydrogen bonds, causing the highly structured protein (i.e., collagen and muscle protein) to denature (i.e., become less organized). As the proteins are denatured, a sticky coagulum forms to seal or coagulate small blood vessels when coagulum is below 100°C. Deep coagulation of larger blood vessels results when the effect is prolonged.
The transfer of the ultrasonic energy to the tissue causes other effects including mechanical tearing, cutting, cavitation cell disruption, and emulsification. The amount of cutting as well as the degree of coagulation obtained varies with the vibrational amplitude of the end effector 88, the amount of pressure applied by the user, and the sharpness of the end effector 88. The end effector 88 of the acoustic assembly 80 in the surgical system 10 tends to focus the vibrational energy of the system 10 onto tissue in contact with the end effector 88, intensifying and localizing thermal and mechanical energy delivery.
As illustrated in FIG. 2, the generator 30 includes a control system integral to the generator 30, a power switch 34, and a triggering mechanism 36. The power switch 34 controls the electrical power to the generator 30, and when activated by the triggering mechanism 36, the generator 30 provides energy to drive the acoustic assembly 80 of the surgical system 10 at a predetermined frequency and to drive the end effector 88 at a predetermined vibrational amplitude level. The generator 30 may drive or excite the acoustic assembly 80 at any suitable resonant frequency of the acoustic assembly 80.
When the generator 30 is activated via the triggering mechanism 36, electrical energy is continuously applied by the generator 30 to a transducer assembly 82 of the acoustic assembly 80. A phase lock loop in the control system of the generator 30 monitors feedback from the acoustic assembly 80. The phase lock loop adjusts the frequency of the electrical energy sent by the generator 30 to match a preselected harmonic frequency of the acoustic assembly 80. In addition, a second feedback loop in the control system maintains the electrical current supplied to the acoustic assembly 80 at a preselected constant level in order to achieve substantially constant vibrational amplitude at the end effector 88 of the acoustic assembly 80. The electrical signal supplied to the acoustic assembly 80 will cause the distal end to vibrate longitudinally in the range of, for example, approximately 20 kHz to 100 kHz, and preferably in the range of about 54 kHz to 56 kHz, and most preferably at about 55.5 kHz. The amplitude of the acoustic vibrations at the end effector 88 may be controlled by, for example, controlling the amplitude of the electrical signal applied to the transduction portion 90 of the acoustic assembly 80 by the generator 30.
As noted above, the triggering mechanism 36 of the generator 30 allows a user to activate the generator 30 so that electrical energy may be continuously supplied to the acoustic assembly 80. In one embodiment, the triggering mechanism 36 preferably comprises a foot activating switch that is detachably coupled or attached to the generator 30 by a cable or cord. In another embodiment, a hand switch may be incorporated in the handpiece assembly 50 to allow the generator 30 to be activated by a user. The generator 30 also has a power line 38 for insertion in an electrosurgical unit or conventional electrical outlet. It is contemplated that the generator 30 may also be powered by a direct current (DC) source, such as a battery. The generator 30 may be any suitable generator, such as Model No. GENO1 available from Ethicon Endo-Surgery, Inc.
Referring still to FIG. 2, the handpiece assembly 50 includes a multi-piece housing or outer casing 52 adapted to isolate the operator from the vibrations of the acoustic assembly 80. The housing 52 is preferably cylindrically shaped and is adapted to be held by a user in a conventional manner, but may be any suitable shape and size which allows it to be grasped by the user. While a multi-piece housing 52 is illustrated, the housing 52 may comprise a single or unitary component. The housing 52 of the handpiece assembly 50 is preferably constructed from a durable plastic, such as Ultem®. It is also contemplated that the housing 52 may be made from a variety of materials including other plastics (i.e. high impact polystyrene or polypropylene). A suitable handpiece assembly 50 is Model No. HP050, available from Ethicon Endo-Surgery, Inc. Referring still to FIG. 2, the handpiece assembly 50 generally includes a proximal end 54, a distal end 56, and centrally disposed axial opening or cavity 58 extending longitudinally therein. The distal end 56 of the handpiece assembly 50 is coupled to the surgical instrument 120 and includes an opening 60 configured to allow the acoustic assembly 80 of the surgical system 10 to extend therethrough. The proximal end 54 of the handpiece assembly 50 is coupled to the generator 30 by a cable 32. The cable 32 may include ducts or vents 62 to allow air to be introduced into the handpiece assembly 50 to cool the transducer assembly 82 of the acoustic assembly 80. The surgical instrument 120 of the surgical system 10 is preferably couplable to the distal end 56 of the handpiece assembly 50. The surgical instrument 120 generally includes a housing or adapter 122, a compliant support 124, and a sheath or tubular member 128. The proximal end 121 of the housing 122 of the surgical instrument 120 is threaded onto the distal end 56 of the handpiece assembly 50. It is also contemplated that the surgical instrument 120 may be coupled to the handpiece assembly 50 by any suitable means, such as a snap-on connection or the like, without departing from the spirit and scope of the present invention. The housing 122 of the surgical instrument 120 is preferably cylindrically shaped and has an opening 123 at its distal end 126 to allow the acoustic assembly 80 to extend therethrough. The housing 122 may be fabricated from Ultem®. It is contemplated that the housing 122 may be made from any suitable material without departing from the spirit and scope of the invention.
The sheath 128 of the surgical instrument 120 is attached to the distal end 126 of the housing 122. The sheath 128 has an opening extending longitudinally therethrough. The sheath 128 may be fabricated from stainless steel or any other suitable material. Alternatively, polymeric material may surround the transmission rod 86 to isolate it from outside contact.
Referring still to FIG. 2, the acoustic assembly 80 generally includes a transducer stack or assembly 82, a mounting device 84, a transmission rod or waveguide 86, and an end effector or applicator 88. The transducer assembly 82, mounting device 84, a transmission rod 86, and the end effector 88 may be acoustically tuned such that the length of each component is an integral number of one-half system wavelengths (Nλ/2) where the system wavelength λ is the wavelength of a preselected or operating longitudinal vibration frequency f of the acoustic assembly 80. It is also contemplated that the acoustic assembly 80 may incorporate any suitable arrangement of acoustic elements. For example, the acoustic assembly 80 may comprise a transducer assembly and an end effector (i.e. , the acoustic assembly 80 may be configured without a mounting device and a transmission rod). In one embodiment, the transducer 82 and mounting device 84 are carried by the handpiece assembly
50, and the transmission rod 86 and end effector 88 are carried by the surgical instrument 120.
The transducer assembly 82 of the acoustic assembly 80 converts the electrical signal from the generator 30 into mechanical energy that results in longitudinal vibrating motion of the end effector 88 at ultrasonic frequencies.
When the acoustic assembly 80 is energized, a vibratory motion standing wave is generated through the acoustic assembly 80. The amplitude of the vibratory motion at any point along the acoustic assembly 80 depends on the location along the acoustic assembly 80 at which the vibratory motion is measured. For example, a minimum or zero crossing in the vibratory motion standing wave is generally referred to as a node (i.e. , where axial motion is usually minimal and radial motion is usually small), and an absolute value maximum or peak in the standing wave is generally referred to as an antinode. The distance between an antinode and its nearest node is one-quarter wavelength (λ/4) .
As shown in FIG. 2, the transducer assembly 82 of the acoustic assembly 80, which is known as a "Langevin stack", generally includes a transduction portion 90, a first resonator 92, and a second resonator 94. The transducer assembly 82 is preferably an integral number of one-half wavelengths system (Nλ/2) in length. It is to be understood that the present invention may be alternatively configured to include a transducer assembly comprising a magnetostrictive, electromagnetic or electrostatic transducer. The distal end the first resonator 92 is connected to the proximal end of the transduction section 90, and the proximal end of the second resonator 94 is connected to the distal end of the transduction portion 90. The first and second resonators 92 and 94 are preferably fabricated from titanium, aluminum, steel, or any other suitable material. The first and second resonators 92 and 94 have a length determined by a number of variables, including the thickness of the transduction section 90, the density and modulus of elasticity of material used in the resonators 92 and 94, and the fundamental frequency of the transducer assembly 82. The second resonator 94 may be tapered inwardly from its proximal end to its distal end to amplify the ultrasonic vibration amplitude.
The transduction portion 90 of the transducer assembly 82 preferably comprises a piezoelectric section of alternating positive electrodes 96 and negative electrodes 98, with piezoelectric elements 100 alternating between the electrodes 96 and 98. The piezoelectric elements 100 may be fabricated from any suitable material, such as lead zirconate, lead titanate, or ceramic crystal material. Each of the piezoelectric elements 100, negative electrodes 98, and positive electrodes 96 may have a bore extending through the center. The positive and negative electrodes 96 and 98 are electrically coupled to a wires
102 and 104, respectively. The wires 102 and 104 transmit the electrical signal from the generator 30 to electrodes 96 and 98.
As shown in Fig. 2, the piezoelectric elements 100 are held in compression between the first and second resonators 92 and 94 by a bolt 106. The bolt 106 preferably has a head, a shank, and a threaded distal end. The bolt 106 is inserted from the proximal end of the first resonator 92 through the bores of the first resonator 92, the electrodes 96 and 98, and piezoelectric elements 100. The threaded distal end of the bolt 106 is screwed into a threaded bore in the proximal end of second resonator 94. The piezoelectric elements 100 are energized in response to the electrical signal supplied from the generator 30 to produce an acoustic standing wave in the acoustic assembly 80. The electrical signal causes disturbances in the piezoelectric elements 100 in the form of repeated small displacements resulting in large compression forces within the material. The repeated small displacements cause the piezoelectric elements 100 to expand and contract in a continuous manner along the axis of the voltage gradient, producing high frequency longitudinal waves of ultrasonic energy. The ultrasonic energy is transmitted through the acoustic assembly 80 to the end effector 88. The mounting device 84 of the acoustic assembly 80 has a proximal end, a distal end, and may have a length substantially equal to an integral number of one-half system wavelengths. The proximal end of the mounting device 84 is preferably axially aligned and coupled to the distal end of the second resonator 94 by an internal threaded connection near an antinode. It is also contemplated that the mounting device 84 may be attached to the second resonator 94 by any suitable means, and that the second resonator 94 and mounting device 84 may be formed as a single or unitary component.
The mounting device 84 is coupled to the housing 52 of the handpiece assembly 50 near a node. (For purposes of this disclosure, the term
"near" is defined to mean "exactly at" or "in close proximity to".) The mounting device 84 may also include an integral ring 108 disposed about its periphery. The integral ring 108 is preferably disposed in an annular groove 110 formed in the housing 52 of the handpiece assembly 50 to couple the mounting device 84 to the housing 58. A compliant member or material 112, such as a pair of silicon O-rings attached by standoffs, may be placed between the annular groove 110 of the housing 52 and the integral ring 108 of the mounting device 84 to reduce or prevent ultrasonic vibration from being transmitted from the mounting device 84 to the housing 52. The mounting device 84 may be secured in a predetermined axial position by a plurality of pins 114, preferably four. The pins 114 are disposed in a longitudinal direction 90 degrees apart from each other around the outer periphery of the mounting device 84. The pins 114 are coupled to the housing 52 of the handpiece assembly 50 and are disposed through notches in the integral ring 108 of the mounting device 84. The pins 114 are preferably fabricated from stainless steel.
The mounting device 84 is preferably configured to amplify the ultrasonic vibration amplitude that is transmitted through the acoustic assembly
80 to the distal end of the end effector 88. In one preferred embodiment, the mounting device 84 comprises a solid, tapered horn. As ultrasonic energy is transmitted through the mounting device 84, the velocity of the acoustic wave transmitted through the mounting device 84 is amplified. It is contemplated that the mounting device 84 may be any suitable shape, such as a stepped horn, a conical horn, an exponential horn, or the like.
The distal end of the mounting device 84 is configured to interface or engage with the proximal end of the transmission rod 86. As shown in FIG. 3, the distal end of the mounting device 84 preferably has a mating or coupling surface 93 that is axially aligned with a mating or coupling surface 95 of the proximal end of the transmission rod 86. The mating surface 93 of the mounting device 84 has a non-threaded cavity or bore that is substantially conically or wedge shaped. It is also contemplated that the mating surface 93 of the mounting device 84 be formed as a convex or partially curved surface.
The mating surface 95 of the transmission rod 86 has a non- threaded axially extending member or projection. The mating surface 95 is preferably substantially spherically shaped. It is contemplated that the surfaces 93,95 could be interchanged. For example, the mounting device 84 may have a non- threaded projection at its distal end and the transmission rod 86 may have a non-threaded cavity at its proximal end. Other suitable mating surfaces having different non-threaded surfaces could be used without departing from the spirit and scope of the present invention. The mating surfaces 93,95 of the mounting device 84 and transmission rod 86 may also be coated with titanium nitride (TiN) to improve wear life.
The mating surface 93 of the mounting device 84 and the mating surface 95 of the transmission rod 86 are forced together axially so that the junction or point of contact is preferably near an antinode. Preferably, a minimal contact area exists between the mating surfaces 93,95. A coupling force between the mating surfaces 93,95 is created when the handpiece assembly 50 is coupled to the surgical instrument 120. The handpiece assembly 50 and the surgical instrument 120 are preferably coupled near a vibrational antinode because it is the point of minimum stress and therefore requires the least preload force.
The mating surfaces 93,95 of the transmission rod 86 and the mounting device 84 provide a socket arrangement which is self-aligning and self-centering. The socket arrangement also allows slight non-axial alignment of the transmission rod 86 and the mounting device 84. The contact region or area between the mating surfaces 93,95 efficiently transfers mechanical or ultrasonic vibration across the junction between them. The contact region between the mating surfaces 93,95 has a relatively small area. As a result, a moderate or relatively low preload force can hold the transmission rod 86 and the mounting device 84 together. For example, because of the shape of the interacting surfaces 93,95, an axial pre-load force between 5-25 pounds may be sufficient to hold the mounting device 84 and transmission rod 86 together. This is a lower force than is often required to reliably couple together threaded ultrasonic elements.
Referring again to FIG. 2, the transmission rod 86 includes a support or retention member. The retention member preferably includes an integral ring or flange 130 disposed around its periphery. It is also contemplated that the retention member may include a number of suitable configurations, such as an O-ring fixedly attached to a groove or the periphery of the transmission rod 88.
A compliant member 124 is preferably positioned between the integral ring 130 of the transmission rod 86 and the distal end 126 of the housing 122 of the surgical tool 120. The compliant member 124 preferably isolates the housing 122 of the surgical instrument 120 from the ultrasonic vibrations of the transmission rod 86. The compliant member 124 is preferably an O-ring fabricated from silicone or polyterafluroethylene (PTFE) and having a low spring rate (i.e., k rate (k)). In an alternative embodiment, the compliant member 124 preferably consists of a thin layer of compliant material with a high or low k rate on a conventional metal or plastic coil or disk spring.
The compliant member 124 preferably contacts the transmission rod 86 at a plane perpendicular to the axis of the transmission rod 86 to provide a compression force perpendicular to the radial motion near or at the node to minimize the loss of ultrasonic power caused by the vibration of the compliant member 124. This configuration also allows the transmission rod 86 to be rotated relative to the handpiece assembly 50 without removing it or loosening the connection between the handpiece assembly 50 and the surgical instrument
120.
To couple the surgical instrument 120 to the handpiece assembly 50, the surgical instrument 120 is preferably threaded onto the distal end 56 of the handpiece assembly 50 bringing the mounting surface 95 of the transmission rod 86 into communication or contact with the mounting surface 93 of the mounting device 84. Alternate arrangements, such as a twist-lock fitting, are also within the spirit and scope of the present invention.
When the surgical instrument 120 is attached to the handpiece assembly 50, the compliant member 124 is compressed to create an attachment force or preload force. The compliant member 124 preferably has a low spring rate (k) to provide a preload force of contact between the mounting device 84 and the transmission rod 86 that is substantially the same regardless of the tolerances of the components or the manner that the surgical instrument 120 is attached to the handpiece assembly 50. It is contemplated that the surgical instrument 120 may be attached to the handpiece assembly 50 by any suitable means, such as, for example, a threaded or snap-on connection, to compress the compliant member, such as, for example, springs, O-rings and the like, to create the preload force. Referring again to FIG. 2, the transmission rod 86 of the acoustic assembly 80 may have a length substantially equal to an integer number of one- half system wavelengths (Nλ/2) . The transmission rod 86 is preferably fabricated from a solid core shaft constructed out of material which propagates ultrasonic energy efficiently, such as titanium alloy (i.e. , T.-6A1-4V) or an aluminum alloy. As those skilled in the art will recognize, the transmission rod 86 may be fabricated from other suitable materials. The transmission rod 86 may also amplify the mechanical vibrations transmitted through the transmission rod 86 to the end effector 88 as is well known in the art. The transmission rod 86 includes stabilizing silicone rings or compliant supports 116 (one being shown) positioned at a plurality of nodes. The silicone rings 116 dampen undesirable vibration and isolate the ultrasonic energy from a sheath 128 of the surgical instrument 120 assuring the flow of ultrasonic energy in a longitudinal direction to the distal end of the end effector 88 with maximum efficiency.
The distal end of the transmission rod 86 is coupled to the proximal end of the end effector 88 by an internal threaded connection, preferably near an antinode. It is contemplated that the end effector 88 may be attached to the transmission rod 86 by any suitable means, such as a welded joint or the like. Although the end effector 88 may be detachable from the transmission rod 86, it is also contemplated that the end effector 88 and transmission rod 86 may be formed as a single unit. The end effector 88 may have a distal region 88b having a smaller cross-section area than a proximal region 88a thereof, thereby forming a vibrational amplitude step-up junction. The step-up junction acts as velocity transformer as known in the art, increasing the magnitude of the ultrasonic vibration transmitted from the proximal region 88a to the distal region 88b of the end effector 88.
The end effector 88 may have a length substantially equal to an integral multiple of one-half system wavelengths (Nλ/2). The distal tip of the end effector 88 is disposed at an antinode where the maximum longitudinal deflection occurs. When the transducer assembly 82 is energized, the distal end of the end effector 88 is configured to move longitudinally in the range of 10 to 500 microns peak-to-peak, and preferably in the range of 30 to 100 microns at a predetermined vibrational frequency, and most preferably at about 90 microns. The end effector 88 is preferably made from a solid core shaft constructed of material which propagates ultrasonic energy, such as a titanium alloy (i.e., Ti-6A1-4V) or an aluminum alloy. As those skilled in the art will recognize, the end effector 88 may be fabricated from other suitable materials. The distal end of the end effector 88 may be any suitable shape to transfer the ultrasonic energy to the tissue of a patient. It is also contemplated that the end effector 88 may have a surface treatment to improve the delivery of energy and desired tissue effect. For example, the end effector 88 may be micro-finished, coated, plated, etched, grit-blasted, roughened or scored to enhance coagulation in tissue. Additionally, the end effector may be shaped to enhance its energy transmission characteristics. For example, the end effector 88 may be blade shaped, hook shaped, or ball shaped.
Referring now to FIG. 4, another embodiment of a coupling arrangement between a first ultrasonic device 200 and a second ultrasonic device 220 is illustrated. The first ultrasonic device 200 generally includes a housing or sheath 202, a transmission component or member 204, and an elastomeric or compliant material 206. The housing 202 of the first ultrasonic device 200 preferably includes an inwardly projecting ring 208 and coupling members 210. The housing 202 preferably surrounds the transmission member 204 to isolate the transmission component 204 from contact by a user.
The housing 202 of the first ultrasonic device 200 is preferably cylindrically shaped. It is contemplated that the housing 202 may be any suitable configuration without departing from the spirit and scope of the invention. The housing 202 may be constructed from any suitable material, preferably Ultem®.
The second ultrasonic device 220 generally includes a housing or sheath 222, a transmission component or member 224, a release mechanism 226, and a elastomeric or compliant material 228. The housing 222 of the second ultrasonic device 220 preferably includes an inwardly projecting ring 230 and coupling members 232. The housing 222 preferably surrounds the transmission component 224 to isolate the transmission member 224 from contact by a user. The housing 222 of the second ultrasonic device 220 is preferably cylindrically shaped. It is contemplated that the housing 222 may be any suitable configuration. The housing may also be fabricated from any suitable material, preferably Ultem®. The housings 202,222 of the first and second ultrasonic devices
200,220 are coup lab le to each other by the coupling members 210,232. The coupling members 210,232 preferably comprise interlocking members to secure the housings 202,222 together. Preferably, the coupling members 210,232 snap together when the housings 202,222 are slid together axially. It is contemplated that the housings 202,222 may be attached by any suitable releasable latching or locking mechanism. The housings 202,222 may be disconnected by pressing the release mechanism 226 while pulling the housings 202,222 apart. When the release mechanism 222 is pressed in the direction of arrows 221a, the release mechanism 222 disconnects the coupling members 202,222. The transmission members 204,224 of the first and second ultrasonic devices 200,220 preferably have mating surfaces or regions 231,233 that are adapted to be brought into communication or contact with each other, preferably near or at an antinode. The mating surfaces or regions 231,233 are substantially similar to the mating surfaces of the transmission rod 86 and the mounting device 84 as described above. As such, further description of the mating surfaces 231,233 of the transmission members 204,224 are unnecessary for a complete understanding of this embodiment. The compliant members 206,228 each comprise an O-ring that is located in grooves 212 and 241 disposed about the periphery of each transmission member 204,224. The complaint members 206,228 are attached to the grooves 212,241 by mechanical interference or an adhesive. In one preferred embodiment, the compliant members 206,228 are secured to the transmission components 206,228 by the adhesion of silicone created by a molding process as is known in the art. The compliant members 206,228 position and support the transmission members 204,241 within the housings 202,232 to reduce the conduction of vibration into the housings 202,232 and minimize energy loss due to heating or noise.
When the ultrasonic devices 200,220 are coupled to each other, a preload force is created between the transmission members 204,224 by the compliant members 206,228 which are compressed or stretched elastically. It is also contemplated that although the support structure is illustrated as an external element, it could be located within a lumen within the transmission members
204,224. For example, the transmission member 204 may be inserted into a lumen of the transmission member 224 and held together by a press fit or floating pin.
Referring now to FIG. 5, another embodiment of a coupling arrangement 250 for joining ultrasonic transmission components is illustrated.
The coupling arrangement 250 generally includes a non-vibrating structure support (generally indicated at 251), a first transmission component or member 256, and a second transmission component or member 258. The non-vibrating structure 251 preferably includes a first portion 252, a second portion 253, and a coupling mechanism 254 for generating a preload force. The first portion 252 of the non-vibrating structure is preferably resiliently coupled to the first transmission component 256 near a node, and the second portion 253 of the non-vibrating structure is resiliently coupled to the second transmission component 258 near a node. The first portion 252 and second portion 253 are isolated from the transmission components 256,258 by compliant support material.
The first and second transmission components 256,258 are joined to or held together near an antinode to minimize the preload force required to hold them together. The coupling mechamsm 254 generates sufficient preload force to couple the transmission components 256,258 together. The coupling mechanism 254 may be provided by any suitable mechamsm, such as springs, living snaps, pneumatics, magnetic, suction/ vacuum from an operating room, mechamcal over center toggle, 1/4 turn threaded fitting, and the like.
Referring now to FIG. 6, a preferred embodiment of an articulated or flexible ultrasonic transmission or waveguide assembly 270 is illustrated. The waveguide assembly 270 includes a plurality of transmission components or members 272, tension wires 274, a spring or adjustable tensioner 275, a tube-like sheath or tension wire guide 276 that surrounds the transmission components 274, and elastomeric attachments 277.
The adjacent ones of the transmission components 272 are joined or held together near an antinode of vibration. The transmission components 272 each have a mating surface or region 278a and 278b that is substantially similar to the mating surfaces of the transmission members 204,224 described above. As such, further description of the mating surface 278 of the transmission components 272 is unnecessary for a complete understanding of this embodiment.
The tension wire 275 of the waveguide assembly 270 extends through the tension wire guide. The tension wire 275 provides a force to create a substantially uniform contact force between the mating surfaces 278a and 278b of the transmission components 272 when tightened. The tension wires 275 may be tightened or loosened through the adjustable tensioner 275 in order to change the angles between the transmission components 274, allowing the waveguide assembly 270 to be configured in a desired shape. The transmission component 272 may be positioned in a wide range of connected angles with respect to each other. The waveguide assembly 270 may be attached or coupled to another transmission component 280.
The methods and devices of present invention allow transmission components to be joined without using an external torque limiting device. Adjacent ones of the transmission components are joined together near or at an antinode. The transmission components are maintained in contact by a preloaded force created by a non-vibrating structure. The area of contact between the transmission components may be relatively small and the transmission components may also have relatively small diameters. Although the present invention has been described in detail by way of illustration and example, it should be understood that a wide range of changes and modifications can be made to the preferred embodiments described above without departing in any way from the scope and spirit of the invention. Thus, the described embodiments are to be considered in all aspects only as illustrative and not restrictive, and the scope of the invention is, therefore, indicated by the appended claims rather than the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

WHAT IS CLAIMED IS:
1. An ultrasonic surgical device comprising: a transducer assembly adapted to vibrate at an ultrasonic frequency in response to electrical energy;
a mounting device having a first end and a second end, the mounting device having a length which is substantially equal to an integral number of one-half wavelengths of the ultrasonic frequency, the mounting device being adapted to receive the ultrasonic vibration from the transducer assembly and to transmit the ultrasomc vibration from the first end to the second end of the mounting device, the first end of the mounting device being coupled to the transducer assembly near an antinode; a transmission rod having a first end and a second end, the transmission rod having a length which is substantially equal to an integral multiple of one-half wavelengths of the ultrasonic frequency, the transmission rod being adapted to receive the ultrasonic vibration from the mounting device and to transmit the ultrasonic vibrations from the first end to the second end of
the transmission rod, the first end of the transmission rod being coupled to the second end of the mounting device by a non-threaded interface near an antinode; and
an end effector having a first end and a second end, the end
effector being adapted to receive the ultrasonic vibrations from the transmission rod and transmit the vibrations from the first end to the second end of the end effector; the first end of the end effector being coupled to the second end of the transmission rod, and the second end of the end effector being disposed near an antinode.
2.- The device of claim 1 wherein the second end of the mounting device includes a non- threaded cavity.
3. The device of claim 1 wherein the first end of the transmission rod has a non-threaded projection.
4. The device of claim 1 further comprising a handpiece assembly coupled to the mounting device near a node of vibration.
5. The device of claim 1 further comprising an adapter coupled to the transmission rod near a node of vibration.
6. The device of claim 1 further comprising a generator to energize the transducer assembly.
7. An ultrasonic surgical device comprising: a transducer assembly adapted to vibrate at an ultrasonic frequency in response to electrical energy; and a mounting device having a first end and a second end, the mounting device being adapted to receive the ultrasonic vibration from the transducer assembly and to transmit the ultrasonic vibration from the first end to the second end of the mounting device, the second end of the mounting device having a non-threaded end.
8. The device of claim 7 wherein the non-thread end has a concave cavity.
9. A surgical instrument comprising: a transmission rod having a first end and a second end, the transmission rod being adapted to transmit ultrasonic vibration from the first end to the second end, the first end of the transmission rod having a non- threaded projection extending therefrom; and an end effector having a first end and a second end, the end effector being adapted to receive the ultrasonic vibration from the transmission rod and to transmit ultrasonic vibration from the first end to the second end of the end effector, the first end of the end effector being coupled to the second end of the transmission rod.
10. The surgical instrument of claim 9 wherein the transmission rod includes a flange adapted to compress a compliant member.
11. A surgical device comprising: a handpiece assembly; an acoustic assembly carried by the handpiece assembly, the acoustic assembly having a first end and a second end, the second end of the - acoustic assembly having a non-threaded mating region; a transmission component having a first and a second end, the second end having a non-threaded mating region; and an adapter carrying the transmission component, the adapter being configured to be coupled to the handpiece assembly to hold the non-threaded mating region of the acoustic assembly to the mating region of the transmission component of the adapter.
12. The device of claim 11 wherein the transmission component is attached to the acoustic assembly near an antinode of vibration.
13. The device of claim 11 further comprising a generator to energize the first transmission rod.
14. An ultrasonic device comprising: a first transmission component having a first end and a second end, the first end of the first transmission component being adapted to receive ultrasonic vibrations, the second end of the first transmission component having a non-threaded mating region; and a second transmission component having a first end and a second end, the first end of the second transmission component having a non- threaded mating region configured to interface with the non-threaded region of the second end of the first transmission component, the mating region of the second transmission component held in operable arrangement with the mating region of the first transmission component by a coupling mechamsm.
15. The device of claim 14 further comprising a housing coupled to the first transmission component near node of vibration.
16. The device of claim 14 wherein the first transmission component member is coupled to the second transmission component near a node of vibration.
17. The device of claim 14 wherein the first transmission component comprises a transducer.
18. The device of claim 14 wherein the second transmission component comprises an end effector.
19. An ultrasonic device comprising: a non-vibrating structure having a first portion and second portion, the first portion of the non-vibrating structure coupled to a first ultrasonic component, the second portion of the non-vibrating structare coupled to a second ultrasonic component; and a coupling mechanism coupled to the first portion and the second portion, the coupling mechamsm generating a preload force to hold the first component in contact with the second component.
20. A flexible waveguide comprising: a sheath; a first transmission member carried by the sheath, the first transmission member having a first end and a second end, the second end of the first transmission member having a non- threaded mating surface; a second transmission member carried by the sheath, the second transmission member having a first end and a second end, the first end of the second transmission member having a non-threaded mating surface; and the second end of the first transmission member being in contact with the first end of the second transmission member, the first transmission member configured to be positioned at a predetermined angle relative to the second transmission member by said sheath.
21. The waveguide of claim 20 wherein the sheath includes a tension wire.
22. The waveguide of claim 20 further including a third transmission component having a first end and a second end, the first end of the third component having a non- threaded mating surface;
the second end of the second component having a non-threaded mating surface; and the first end of the third transmission member being in contact with the second end of the second transmission member, wherein the second transmission member is configured to be positioned at a predetermined position relative to the third transmission member.
23. An ultrasonic device comprising: a first transmission member having a first end and a second end; a second transmission member having a first end and a second end; and a non-vibrating structure having means to generate a preload force to hold the second end of the first transmission member in contact with the first end of the second transmission member.
24. The device of claim 23 wherein the second transmission
member includes a retention member; and a compliant member disposed adjacent to the retention member.
25. The device of claim 24 wherein the retention member comprises an integral ring disposed around the periphery of the second transmission member.
26. The device of claim 23 wherein the first transmission member comprises a mounting device.
27. The device of claim 23 wherein the second transmission member comprises a waveguide.
28. A method of joining a first transmission rod to a second transmission rod comprising: providing a first non-vibratory structure carrying the first transmission member having a first end and a second end; providing a second non-vibratory structure carrying the second transmission member having a first end and a second end; attaching the first non-vibratory structare to the second non- vibratory structare to hold the second end of the furst transmission member in contact with the furst end of the second transmission member without the use of a threaded connection between the furst and second transmission members.
29. The method of claim 28 wherein the first non-vibratory structure comprises a housing of a handpiece assembly.
30. The method of claim 28 wherein the second non-vibratory structare comprises a housmg of a surgical instrument.
31. The method of claim 28 wherein the first transmission member comprises a mounting device having a non-threaded cavity at its second end.
32. The method of claim 28 wherein the second transmission member comprises a transmission rod having a non-threaded stud at its first end.
33. An apparatus for joining a first transmission to a second transmission rod comprising: a first non-vibratory structure including a first transmission member having a first end and a second end; a second non-vibratory structare including a second transmission member having a first end and a second end; the first non-vibrating structure attached to the second non- vibratory structare to hold the second end of the first transmission member in contact with the first end of the second transmission member without the use of a threaded connection between the first and second transmission members.
34. The apparatus of claim 33 further including means to provide a preload free between the first non-vibratory structare and the second non- vibratory structure.
35. A non-threaded system to-couple one ultrasonically driven element to another comprising: a first support structare and a second support structure wherein the structures are adapted to releasably engage one another; a first element carried by the first structare wherein the first element has a first non-threaded, coupling end and wherein the first element is adapted to vibrate in an axial direction when ultrasonically driven; a second element carried by the second support structare wherein the second element has a second, non-threaded coupling end and wherein the coupling ends abut one another at a predetermined contact region when the support structures are engaged whereby vibrations of the first member are transmitted to the second member.
36. The system as in claim 35 wherein one of the coupling ends carries a substantially concave coupling surface and wherein the other coupling end carries a substantially convex coupling surface.
37. The system as in claim 35 wherein the predetermined contact region comprises an annular contact region.
PCT/US1997/023020 1996-12-23 1997-12-12 Methods and devices for joining transmission components WO1998027874A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002247149A CA2247149C (en) 1996-12-23 1997-12-12 Methods and devices for joining transmission components
DE69728758T DE69728758T2 (en) 1996-12-23 1997-12-12 DEVICE FOR COUPLING TRANSMISSION ELEMENTS
AU56040/98A AU731135B2 (en) 1996-12-23 1997-12-12 Methods and devices for joining transmission components
EP97952437A EP0893971B1 (en) 1996-12-23 1997-12-12 Devices for joining transmission components
JP10528871A JP2000506431A (en) 1996-12-23 1997-12-12 Method and apparatus for connecting transmission components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US770,550 1985-08-29
US08/770,550 US6051010A (en) 1996-12-23 1996-12-23 Methods and devices for joining transmission components

Publications (1)

Publication Number Publication Date
WO1998027874A1 true WO1998027874A1 (en) 1998-07-02

Family

ID=25088937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1997/023020 WO1998027874A1 (en) 1996-12-23 1997-12-12 Methods and devices for joining transmission components

Country Status (7)

Country Link
US (1) US6051010A (en)
EP (1) EP0893971B1 (en)
JP (1) JP2000506431A (en)
AU (1) AU731135B2 (en)
DE (1) DE69728758T2 (en)
ES (1) ES2218712T3 (en)
WO (1) WO1998027874A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1656895A1 (en) * 1999-03-31 2006-05-17 Ethicon Endo-Surgery, Inc. Combined radio frequency and ultrasonic surgical device
EP1923145A1 (en) * 2006-11-15 2008-05-21 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Remote ultrasonic transducer system
US8690819B2 (en) 2002-08-26 2014-04-08 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
US8956375B2 (en) 2002-08-26 2015-02-17 Flowcardia, Inc. Ultrasound catheter devices and methods
US9113943B2 (en) 2011-03-30 2015-08-25 Covidien Lp Ultrasonic surgical instruments
US9265520B2 (en) 2002-08-02 2016-02-23 Flowcardia, Inc. Therapeutic ultrasound system
US9381027B2 (en) 2002-08-26 2016-07-05 Flowcardia, Inc. Steerable ultrasound catheter
US9402646B2 (en) 2009-06-12 2016-08-02 Flowcardia, Inc. Device and method for vascular re-entry
US9433433B2 (en) 2003-09-19 2016-09-06 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US9629643B2 (en) 2006-11-07 2017-04-25 Flowcardia, Inc. Ultrasound catheter having improved distal end
US10004520B2 (en) 2004-08-26 2018-06-26 Flowcardia, Inc. Ultrasound catheter devices and methods
US10130380B2 (en) 2003-02-26 2018-11-20 Flowcardia, Inc. Ultrasound catheter apparatus
US10285719B2 (en) 2005-01-20 2019-05-14 Flowcardia, Inc. Vibrational catheter devices and methods for making same
US10357263B2 (en) 2012-01-18 2019-07-23 C. R. Bard, Inc. Vascular re-entry device
US10582983B2 (en) 2017-02-06 2020-03-10 C. R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath
US10758256B2 (en) 2016-12-22 2020-09-01 C. R. Bard, Inc. Ultrasonic endovascular catheter
US10813660B2 (en) 2015-06-18 2020-10-27 Olympus Corporation Ultrasonic treatment device
US10835267B2 (en) 2002-08-02 2020-11-17 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US11344750B2 (en) 2012-08-02 2022-05-31 Flowcardia, Inc. Ultrasound catheter system
US11596726B2 (en) 2016-12-17 2023-03-07 C.R. Bard, Inc. Ultrasound devices for removing clots from catheters and related methods
US11633206B2 (en) 2016-11-23 2023-04-25 C.R. Bard, Inc. Catheter with retractable sheath and methods thereof

Families Citing this family (200)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040024393A1 (en) * 2002-08-02 2004-02-05 Henry Nita Therapeutic ultrasound system
US8506519B2 (en) 1999-02-16 2013-08-13 Flowcardia, Inc. Pre-shaped therapeutic catheter
US6325811B1 (en) 1999-10-05 2001-12-04 Ethicon Endo-Surgery, Inc. Blades with functional balance asymmetries for use with ultrasonic surgical instruments
DE10141385B4 (en) * 2000-08-25 2015-05-13 Ethicon Endo-Surgery, Inc. Surgical ultrasonic device with a damping element and ultrasonic transmission rod
US6537291B2 (en) * 2000-10-20 2003-03-25 Ethicon Endo-Surgery, Inc. Method for detecting a loose blade in a hand piece connected to an ultrasonic surgical system
US6561983B2 (en) 2001-01-31 2003-05-13 Ethicon Endo-Surgery, Inc. Attachments of components of ultrasonic blades or waveguides
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US7442168B2 (en) 2002-04-05 2008-10-28 Misonix, Incorporated High efficiency medical transducer with ergonomic shape and method of manufacture
US8133236B2 (en) 2006-11-07 2012-03-13 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US7604608B2 (en) * 2003-01-14 2009-10-20 Flowcardia, Inc. Ultrasound catheter and methods for making and using same
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
EP2656777A3 (en) 2004-08-31 2015-12-02 Surgical Solutions LLC Medical device with articulating shaft
AU2005295010B2 (en) 2004-10-08 2012-05-31 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument
US20060217740A1 (en) * 2005-03-25 2006-09-28 Alcon, Inc. Tip assembly
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US8246642B2 (en) * 2005-12-01 2012-08-21 Ethicon Endo-Surgery, Inc. Ultrasonic medical instrument and medical instrument connection assembly
US20070167965A1 (en) * 2006-01-05 2007-07-19 Ethicon Endo-Surgery, Inc. Ultrasonic medical instrument
US7621930B2 (en) * 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US20070173872A1 (en) * 2006-01-23 2007-07-26 Ethicon Endo-Surgery, Inc. Surgical instrument for cutting and coagulating patient tissue
US20070191712A1 (en) * 2006-02-15 2007-08-16 Ethicon Endo-Surgery, Inc. Method for sealing a blood vessel, a medical system and a medical instrument
US7854735B2 (en) * 2006-02-16 2010-12-21 Ethicon Endo-Surgery, Inc. Energy-based medical treatment system and method
US9282984B2 (en) * 2006-04-05 2016-03-15 Flowcardia, Inc. Therapeutic ultrasound system
CA2622731C (en) 2006-06-08 2011-06-07 Surgical Solutions Llc Medical device with articulating shaft
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8348967B2 (en) 2007-07-27 2013-01-08 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8252012B2 (en) 2007-07-31 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modulator
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US8623027B2 (en) 2007-10-05 2014-01-07 Ethicon Endo-Surgery, Inc. Ergonomic surgical instruments
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US8097011B2 (en) * 2008-02-26 2012-01-17 Olympus Medical Systems Corp. Surgical treatment apparatus
EP2319447B1 (en) 2008-03-31 2012-08-22 Applied Medical Resources Corporation Electrosurgical tool with jaws actuatable by a force regulation mechanism
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US9700339B2 (en) * 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8344596B2 (en) 2009-06-24 2013-01-01 Ethicon Endo-Surgery, Inc. Transducer arrangements for ultrasonic surgical instruments
US9017326B2 (en) 2009-07-15 2015-04-28 Ethicon Endo-Surgery, Inc. Impedance monitoring apparatus, system, and method for ultrasonic surgical instruments
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8461744B2 (en) 2009-07-15 2013-06-11 Ethicon Endo-Surgery, Inc. Rotating transducer mount for ultrasonic surgical instruments
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
DE102009045942A1 (en) * 2009-10-23 2011-04-28 Robert Bosch Gmbh Hand held power tool
US8419759B2 (en) 2010-02-11 2013-04-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with comb-like tissue trimming device
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8323302B2 (en) 2010-02-11 2012-12-04 Ethicon Endo-Surgery, Inc. Methods of using ultrasonically powered surgical instruments with rotatable cutting implements
US8382782B2 (en) 2010-02-11 2013-02-26 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with partially rotating blade and fixed pad arrangement
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8531064B2 (en) 2010-02-11 2013-09-10 Ethicon Endo-Surgery, Inc. Ultrasonically powered surgical instruments with rotating cutting implement
US9259234B2 (en) 2010-02-11 2016-02-16 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with rotatable blade and hollow sheath arrangements
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
ES2664081T3 (en) 2010-10-01 2018-04-18 Applied Medical Resources Corporation Electrosurgical system with a radio frequency amplifier and with means for adapting to the separation between electrodes
US20120109184A1 (en) * 2010-11-01 2012-05-03 Ethicon Endo-Surgery, Inc. Vibratory motor use
US9649150B2 (en) 2010-11-05 2017-05-16 Ethicon Endo-Surgery, Llc Selective activation of electronic components in medical device
US9526921B2 (en) 2010-11-05 2016-12-27 Ethicon Endo-Surgery, Llc User feedback through end effector of surgical instrument
US9017849B2 (en) 2010-11-05 2015-04-28 Ethicon Endo-Surgery, Inc. Power source management for medical device
US10959769B2 (en) 2010-11-05 2021-03-30 Ethicon Llc Surgical instrument with slip ring assembly to power ultrasonic transducer
US9017851B2 (en) 2010-11-05 2015-04-28 Ethicon Endo-Surgery, Inc. Sterile housing for non-sterile medical device component
US20120116381A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging station and wireless communication
US9089338B2 (en) 2010-11-05 2015-07-28 Ethicon Endo-Surgery, Inc. Medical device packaging with window for insertion of reusable component
US9381058B2 (en) 2010-11-05 2016-07-05 Ethicon Endo-Surgery, Llc Recharge system for medical devices
US9011471B2 (en) 2010-11-05 2015-04-21 Ethicon Endo-Surgery, Inc. Surgical instrument with pivoting coupling to modular shaft and end effector
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US9421062B2 (en) 2010-11-05 2016-08-23 Ethicon Endo-Surgery, Llc Surgical instrument shaft with resiliently biased coupling to handpiece
US9161803B2 (en) 2010-11-05 2015-10-20 Ethicon Endo-Surgery, Inc. Motor driven electrosurgical device with mechanical and electrical feedback
US20120116265A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging devices
US10881448B2 (en) 2010-11-05 2021-01-05 Ethicon Llc Cam driven coupling between ultrasonic transducer and waveguide in surgical instrument
US9375255B2 (en) 2010-11-05 2016-06-28 Ethicon Endo-Surgery, Llc Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector
US9000720B2 (en) 2010-11-05 2015-04-07 Ethicon Endo-Surgery, Inc. Medical device packaging with charging interface
US9597143B2 (en) 2010-11-05 2017-03-21 Ethicon Endo-Surgery, Llc Sterile medical instrument charging device
US9510895B2 (en) 2010-11-05 2016-12-06 Ethicon Endo-Surgery, Llc Surgical instrument with modular shaft and end effector
US10085792B2 (en) 2010-11-05 2018-10-02 Ethicon Llc Surgical instrument with motorized attachment feature
US9072523B2 (en) 2010-11-05 2015-07-07 Ethicon Endo-Surgery, Inc. Medical device with feature for sterile acceptance of non-sterile reusable component
US10660695B2 (en) 2010-11-05 2020-05-26 Ethicon Llc Sterile medical instrument charging device
US9039720B2 (en) 2010-11-05 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical instrument with ratcheting rotatable shaft
US9782215B2 (en) 2010-11-05 2017-10-10 Ethicon Endo-Surgery, Llc Surgical instrument with ultrasonic transducer having integral switches
US9247986B2 (en) 2010-11-05 2016-02-02 Ethicon Endo-Surgery, Llc Surgical instrument with ultrasonic transducer having integral switches
US10470788B2 (en) 2010-12-07 2019-11-12 Misonix, Inc Ultrasonic instrument, associated method of use and related manufacturing method
US9114181B2 (en) 2011-03-30 2015-08-25 Covidien Lp Process of cooling surgical device battery before or during high temperature sterilization
US9265568B2 (en) * 2011-05-16 2016-02-23 Coviden Lp Destruction of vessel walls for energy-based vessel sealing enhancement
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
WO2013048963A2 (en) * 2011-09-30 2013-04-04 Ethicon Endo-Surgery, Inc. Laparoscopic instrument with attachable energy end effector
US9050125B2 (en) 2011-10-10 2015-06-09 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modular end effector
US8734476B2 (en) 2011-10-13 2014-05-27 Ethicon Endo-Surgery, Inc. Coupling for slip ring assembly and ultrasonic transducer in surgical instrument
US9125722B2 (en) * 2012-02-09 2015-09-08 Donald N. Schwartz Device for the ultrasonic treatment of glaucoma having a concave tip
EP2811932B1 (en) 2012-02-10 2019-06-26 Ethicon LLC Robotically controlled surgical instrument
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
CN104602631B (en) 2012-09-05 2017-09-08 奥林巴斯株式会社 Ultrasonic wave transfer unit
CN104602630B (en) 2012-09-06 2017-03-01 奥林巴斯株式会社 Ultrasound wave transfer unit
US9492224B2 (en) 2012-09-28 2016-11-15 EthiconEndo-Surgery, LLC Multi-function bi-polar forceps
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10172636B2 (en) 2013-09-17 2019-01-08 Ethicon Llc Articulation features for ultrasonic surgical instrument
US9872698B2 (en) * 2013-09-25 2018-01-23 Covidien Lp Ultrasonic dissector and sealer
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US10851838B2 (en) * 2014-01-28 2020-12-01 Triton Systems, Inc. Liner-as-seal bearings
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
JP6573663B2 (en) 2014-05-16 2019-09-11 アプライド メディカル リソーシーズ コーポレイション Electrosurgical system
AU2015266619B2 (en) 2014-05-30 2020-02-06 Applied Medical Resources Corporation Electrosurgical instrument for fusing and cutting tissue and an electrosurgical generator
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10136938B2 (en) 2014-10-29 2018-11-27 Ethicon Llc Electrosurgical instrument with sensor
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
EP3236870B1 (en) 2014-12-23 2019-11-06 Applied Medical Resources Corporation Bipolar electrosurgical sealer and divider
USD748259S1 (en) 2014-12-29 2016-01-26 Applied Medical Resources Corporation Electrosurgical instrument
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
JP6939429B2 (en) * 2017-11-02 2021-09-22 株式会社デンソー Ultrasonic sensor
CA3111558A1 (en) 2018-09-05 2020-03-12 Applied Medical Resources Corporation Electrosurgical generator control system
US11696796B2 (en) 2018-11-16 2023-07-11 Applied Medical Resources Corporation Electrosurgical system
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US20210196344A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Surgical system communication pathways
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11766275B2 (en) 2020-05-18 2023-09-26 Covidien Lp Articulating ultrasonic surgical instruments and systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827771A (en) * 1988-03-23 1989-05-09 Ird Mechanalysis, Inc. Transducer assemblage for hand-held vibration meters
US5190557A (en) * 1991-10-03 1993-03-02 Urological Instrument Research, Inc. Vibratory method and instrument for extracting stones from urinary tract
EP0578376A1 (en) * 1992-06-18 1994-01-12 Spembly Medical Limited Ultrasonic surgical aspirator
WO1995009570A1 (en) * 1993-10-04 1995-04-13 Baxter International Inc. Improved connector for coupling an ultrasound transducer to an ultrasound catheter
WO1995010233A1 (en) * 1993-10-12 1995-04-20 Baxter International Inc. Ultrasound transmission member having improved longitudinal transmission properties
EP0666113A1 (en) * 1994-02-03 1995-08-09 AEROSPATIALE Société Nationale Industrielle Ultrasonic percussion device
EP0695535A1 (en) * 1994-08-02 1996-02-07 Ethicon Endo-Surgery, Inc. Ultrasonic haemostatic and cutting instrument

Family Cites Families (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US30536A (en) * 1860-10-30 The graphic co
US2874470A (en) * 1954-05-28 1959-02-24 James R Richards High frequency dental tool
US3213537A (en) * 1954-12-24 1965-10-26 Cavitron Corp Supply and control apparatus for vibratory cutting device
US3075288A (en) * 1954-12-24 1963-01-29 Cavitron Ultrasonics Inc Dental instrument
NL242813A (en) * 1958-08-29 1900-01-01
US3293456A (en) * 1963-03-18 1966-12-20 Branson Instr Ultrasonic cleaning apparatus
US3375583A (en) * 1966-03-10 1968-04-02 C & B Inc Ultrasonic dental tool
US3368280A (en) * 1966-03-23 1968-02-13 C & B Inc Dental tool
NL145136C (en) * 1967-07-25 1900-01-01
GB1274671A (en) * 1968-04-01 1972-05-17 Sven Karl Lennart Goof Ultrasonic dental apparatus
US3488851A (en) * 1968-04-18 1970-01-13 Zoltan Haydu Ultrasonic devices
US3489930A (en) * 1968-07-29 1970-01-13 Branson Instr Apparatus for controlling the power supplied to an ultrasonic transducer
US3589012A (en) * 1969-06-30 1971-06-29 C & B Corp Tip for ultrasonic dental instrument
US3593425A (en) * 1969-09-10 1971-07-20 Hydrosonic Corp Electric ultrasonic tooth-cleaning apparatus
US3654502A (en) * 1970-06-24 1972-04-04 Countronic Corp Ultrasonic tool
US3703037A (en) * 1970-06-25 1972-11-21 Seymour Robinson Ultrasonic dental hand-piece with detachable treatment tools
US3636947A (en) * 1970-12-03 1972-01-25 Ultrasonic Systems Ultrasonic home dental instrument and method
US3654540A (en) * 1971-01-15 1972-04-04 Cavitron Corp Magnetostrictive drive circuit feedback coil
US3809977A (en) * 1971-02-26 1974-05-07 Ultrasonic Systems Ultrasonic kits and motor systems
US3930173A (en) * 1971-06-15 1975-12-30 Surgical Design Corp Ultrasonic transducers
US4188952A (en) * 1973-12-28 1980-02-19 Loschilov Vladimir I Surgical instrument for ultrasonic separation of biological tissue
US3956826A (en) * 1974-03-19 1976-05-18 Cavitron Corporation Ultrasonic device and method
US4371816A (en) * 1975-12-30 1983-02-01 Alfred Wieser Control circuit for an ultrasonic dental scaler
US4227110A (en) * 1976-11-10 1980-10-07 Westinghouse Electric Corp. Transducer control system
DE2721225C2 (en) * 1977-05-11 1981-10-29 Siemens AG, 1000 Berlin und 8000 München Circuit arrangement for frequency self-control of an ultrasonic transmitter transducer
FR2391001A1 (en) * 1977-05-18 1978-12-15 Satelec Soc ULTRA-SOUND GENERATOR
US4370131A (en) * 1977-06-24 1983-01-25 Surgical Design Ultrasonic transducer tips
CA1098003A (en) 1977-09-12 1981-03-24 Cesar A. Romero-Sierra Body tissue penetrating method and apparatus
USRE30536E (en) 1978-05-01 1981-03-03 Cavitron Corporation Ultrasonic device and method
DE2922239C2 (en) 1979-05-31 1982-03-25 Olympus Optical Co., Ltd., Tokyo Puncture instrument for diagnosis on the living body
US4406284B1 (en) * 1981-03-20 1997-11-18 Surgical Design Corp Ultrasonic handpiece design
US4491132A (en) * 1982-08-06 1985-01-01 Zimmer, Inc. Sheath and retractable surgical tool combination
US5441512A (en) * 1982-09-24 1995-08-15 Muller; George H. High incision velocity vibrating scalpel structure and method
US4526571A (en) * 1982-10-15 1985-07-02 Cooper Lasersonics, Inc. Curved ultrasonic surgical aspirator
US4492574A (en) * 1983-04-15 1985-01-08 Cavitron, Inc. Ultrasonic endodontic dental apparatus
US4816018A (en) * 1985-08-02 1989-03-28 Ultramed Corporation Ultrasonic probe tip
US4922902A (en) * 1986-05-19 1990-05-08 Valleylab, Inc. Method for removing cellular material with endoscopic ultrasonic aspirator
US4750488A (en) * 1986-05-19 1988-06-14 Sonomed Technology, Inc. Vibration apparatus preferably for endoscopic ultrasonic aspirator
US5047043A (en) * 1986-03-11 1991-09-10 Olympus Optical Co., Ltd. Resecting device for living organism tissue utilizing ultrasonic vibrations
US4674501A (en) * 1986-04-14 1987-06-23 Greenberg I Melbourne Surgical instrument
US4867141A (en) * 1986-06-18 1989-09-19 Olympus Optical Co., Ltd. Medical treatment apparatus utilizing ultrasonic wave
US4808153A (en) * 1986-11-17 1989-02-28 Ultramed Corporation Device for removing plaque from arteries
US4838853A (en) * 1987-02-05 1989-06-13 Interventional Technologies Inc. Apparatus for trimming meniscus
DE3807004A1 (en) * 1987-03-02 1988-09-15 Olympus Optical Co ULTRASONIC TREATMENT DEVICE
US4820152A (en) * 1987-04-21 1989-04-11 Dentsply Research & Development Corp. Single multi-function handpiece for dental instruments
US4931047A (en) * 1987-09-30 1990-06-05 Cavitron, Inc. Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
US4870953A (en) * 1987-11-13 1989-10-03 Donmicheal T Anthony Intravascular ultrasonic catheter/probe and method for treating intravascular blockage
EP0346496B1 (en) * 1987-12-24 1994-11-30 Sumitomo Bakelite Company Limited Excreting apparatus
US5163421A (en) * 1988-01-22 1992-11-17 Angiosonics, Inc. In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging
JPH01291844A (en) * 1988-05-18 1989-11-24 Olympus Optical Co Ltd Ultrasonic probe
US4897079A (en) * 1988-07-22 1990-01-30 Allergan, Inc. Polymeric sleeve for surgical instruments
US4920954A (en) * 1988-08-05 1990-05-01 Sonic Needle Corporation Ultrasonic device for applying cavitation forces
US4936281A (en) * 1989-04-13 1990-06-26 Everest Medical Corporation Ultrasonically enhanced RF ablation catheter
US5180363A (en) * 1989-04-27 1993-01-19 Sumitomo Bakelite Company Company Limited Operation device
US5151085A (en) * 1989-04-28 1992-09-29 Olympus Optical Co., Ltd. Apparatus for generating ultrasonic oscillation
US5123903A (en) * 1989-08-10 1992-06-23 Medical Products Development, Inc. Disposable aspiration sleeve for ultrasonic lipectomy
FR2653040B1 (en) * 1989-10-18 1994-05-13 Aerospatiale Ste Nationale Indle ULTRASONIC PERCUSSION DEVICE.
US5059210A (en) * 1989-12-12 1991-10-22 Ultracision Inc. Apparatus and methods for attaching and detaching an ultrasonic actuated blade/coupler and an acoustical mount therefor
US5057119A (en) * 1989-12-12 1991-10-15 Ultracision Inc. Apparatus and methods for attaching and detaching an ultrasonic actuated blade/coupler and an acoustical mount therefor
US5069664A (en) * 1990-01-25 1991-12-03 Inter Therapy, Inc. Intravascular ultrasonic angioplasty probe
US5026387A (en) * 1990-03-12 1991-06-25 Ultracision Inc. Method and apparatus for ultrasonic surgical cutting and hemostatis
US5263957A (en) * 1990-03-12 1993-11-23 Ultracision Inc. Ultrasonic scalpel blade and methods of application
US5167725A (en) * 1990-08-01 1992-12-01 Ultracision, Inc. Titanium alloy blade coupler coated with nickel-chrome for ultrasonic scalpel
US5112300A (en) * 1990-04-03 1992-05-12 Alcon Surgical, Inc. Method and apparatus for controlling ultrasonic fragmentation of body tissue
US5158086A (en) * 1990-07-20 1992-10-27 W. L. Gore & Associates, Inc. Invasive probe system
US5248296A (en) * 1990-12-24 1993-09-28 Sonic Needle Corporation Ultrasonic device having wire sheath
US5160317A (en) * 1991-01-03 1992-11-03 Costin John A Computer controlled smart phacoemulsification method and apparatus
US5304115A (en) * 1991-01-11 1994-04-19 Baxter International Inc. Ultrasonic angioplasty device incorporating improved transmission member and ablation probe
US5542917A (en) 1991-01-11 1996-08-06 Baxter International, Inc. Ultrasound delivery catheters incorporating improved distal tip construction
EP0525172B1 (en) * 1991-02-13 1999-09-01 Applied Medical Resources, Inc. Surgical trocar
US5190517A (en) * 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5151084A (en) * 1991-07-29 1992-09-29 Fibra-Sonics, Inc. Ultrasonic needle with sleeve that includes a baffle
US5383888A (en) 1992-02-12 1995-01-24 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5391180A (en) * 1991-08-05 1995-02-21 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5490819A (en) * 1991-08-05 1996-02-13 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5478003A (en) * 1991-10-18 1995-12-26 United States Surgical Corporation Surgical apparatus
US5326013A (en) * 1991-10-18 1994-07-05 United States Surgical Corporation Self contained gas powered surgical apparatus
EP0611293B1 (en) * 1991-11-04 1998-03-25 Baxter International Inc. Ultrasonic ablation device adapted for guidewire passage
US5269309A (en) * 1991-12-11 1993-12-14 Fort J Robert Synthetic aperture ultrasound imaging system
US5324299A (en) * 1992-02-03 1994-06-28 Ultracision, Inc. Ultrasonic scalpel blade and methods of application
US5514157A (en) * 1992-02-12 1996-05-07 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5417203A (en) * 1992-04-23 1995-05-23 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5382228A (en) * 1992-07-09 1995-01-17 Baxter International Inc. Method and device for connecting ultrasound transmission member (S) to an ultrasound generating device
US5411519A (en) * 1992-09-23 1995-05-02 United States Surgical Corporation Surgical apparatus having hinged jaw structure
US5330502A (en) * 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5431323A (en) * 1992-10-09 1995-07-11 Ethicon, Inc. Endoscopic surgical instrument with pivotable and rotatable staple cartridge
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5409498A (en) * 1992-11-05 1995-04-25 Ethicon, Inc. Rotatable articulating endoscopic fastening instrument
US5322055B1 (en) * 1993-01-27 1997-10-14 Ultracision Inc Clamp coagulator/cutting system for ultrasonic surgical instruments
DE4302538C1 (en) * 1993-01-29 1994-04-07 Siemens Ag Ultrasonic therapy device for tumour treatment lithotripsy or osteorestoration - with ultrasonic imaging and ultrasonic treatment modes using respective acoustic wave frequencies
US5346502A (en) * 1993-04-15 1994-09-13 Ultracision, Inc. Laparoscopic ultrasonic surgical instrument and methods for manufacturing the instruments
US5462522A (en) 1993-04-19 1995-10-31 Olympus Optical Co., Ltd. Ultrasonic therapeutic apparatus
US5449370A (en) * 1993-05-12 1995-09-12 Ethicon, Inc. Blunt tipped ultrasonic trocar
US5434827A (en) * 1993-06-15 1995-07-18 Hewlett-Packard Company Matching layer for front acoustic impedance matching of clinical ultrasonic tranducers
US5501654A (en) * 1993-07-15 1996-03-26 Ethicon, Inc. Endoscopic instrument having articulating element
US5546947A (en) 1993-09-30 1996-08-20 Terumo Kabushiki Kaisha Ultrasonic endoprobe
US5472439A (en) * 1993-10-06 1995-12-05 American Cyanamid Company Endoscopic surgical instrument with rotatable inner shaft
US5562682A (en) 1993-10-08 1996-10-08 Richard-Allan Medical Industries, Inc. Surgical Instrument with adjustable arms
US5507743A (en) * 1993-11-08 1996-04-16 Zomed International Coiled RF electrode treatment apparatus
US5472447A (en) * 1994-05-03 1995-12-05 Abrams; Andrew L. Power-assisted obturator
US5507738A (en) * 1994-08-05 1996-04-16 Microsonic Engineering Devices Company, Inc. Ultrasonic vascular surgical system
US5509916A (en) * 1994-08-12 1996-04-23 Valleylab Inc. Laser-assisted electrosurgery system
US5609601A (en) 1994-09-23 1997-03-11 United States Surgical Corporation Endoscopic surgical apparatus with rotation lock
US5562610A (en) 1994-10-07 1996-10-08 Fibrasonics Inc. Needle for ultrasonic surgical probe
US5562609A (en) 1994-10-07 1996-10-08 Fibrasonics, Inc. Ultrasonic surgical probe
US5628743A (en) 1994-12-21 1997-05-13 Valleylab Inc. Dual mode ultrasonic surgical apparatus
US5575799A (en) 1995-03-30 1996-11-19 United States Surgical Corporation Articulating surgical apparatus
US5606974A (en) 1995-05-02 1997-03-04 Heart Rhythm Technologies, Inc. Catheter having ultrasonic device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4827771A (en) * 1988-03-23 1989-05-09 Ird Mechanalysis, Inc. Transducer assemblage for hand-held vibration meters
US5190557A (en) * 1991-10-03 1993-03-02 Urological Instrument Research, Inc. Vibratory method and instrument for extracting stones from urinary tract
EP0578376A1 (en) * 1992-06-18 1994-01-12 Spembly Medical Limited Ultrasonic surgical aspirator
WO1995009570A1 (en) * 1993-10-04 1995-04-13 Baxter International Inc. Improved connector for coupling an ultrasound transducer to an ultrasound catheter
WO1995010233A1 (en) * 1993-10-12 1995-04-20 Baxter International Inc. Ultrasound transmission member having improved longitudinal transmission properties
EP0666113A1 (en) * 1994-02-03 1995-08-09 AEROSPATIALE Société Nationale Industrielle Ultrasonic percussion device
EP0695535A1 (en) * 1994-08-02 1996-02-07 Ethicon Endo-Surgery, Inc. Ultrasonic haemostatic and cutting instrument

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1656895A1 (en) * 1999-03-31 2006-05-17 Ethicon Endo-Surgery, Inc. Combined radio frequency and ultrasonic surgical device
US9265520B2 (en) 2002-08-02 2016-02-23 Flowcardia, Inc. Therapeutic ultrasound system
US10111680B2 (en) 2002-08-02 2018-10-30 Flowcardia, Inc. Therapeutic ultrasound system
US10722262B2 (en) 2002-08-02 2020-07-28 Flowcardia, Inc. Therapeutic ultrasound system
US10835267B2 (en) 2002-08-02 2020-11-17 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US8956375B2 (en) 2002-08-26 2015-02-17 Flowcardia, Inc. Ultrasound catheter devices and methods
US9381027B2 (en) 2002-08-26 2016-07-05 Flowcardia, Inc. Steerable ultrasound catheter
US9421024B2 (en) 2002-08-26 2016-08-23 Flowcardia, Inc. Steerable ultrasound catheter
US8690819B2 (en) 2002-08-26 2014-04-08 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
US10376272B2 (en) 2002-08-26 2019-08-13 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
US10285727B2 (en) 2002-08-26 2019-05-14 Flowcardia, Inc. Steerable ultrasound catheter
US10130380B2 (en) 2003-02-26 2018-11-20 Flowcardia, Inc. Ultrasound catheter apparatus
US11103261B2 (en) 2003-02-26 2021-08-31 C.R. Bard, Inc. Ultrasound catheter apparatus
US9433433B2 (en) 2003-09-19 2016-09-06 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US10349964B2 (en) 2003-09-19 2019-07-16 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US11426189B2 (en) 2003-09-19 2022-08-30 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US11109884B2 (en) 2003-11-24 2021-09-07 Flowcardia, Inc. Steerable ultrasound catheter
US10682151B2 (en) 2004-08-26 2020-06-16 Flowcardia, Inc. Ultrasound catheter devices and methods
US10004520B2 (en) 2004-08-26 2018-06-26 Flowcardia, Inc. Ultrasound catheter devices and methods
US11510690B2 (en) 2005-01-20 2022-11-29 Flowcardia, Inc. Vibrational catheter devices and methods for making same
US10285719B2 (en) 2005-01-20 2019-05-14 Flowcardia, Inc. Vibrational catheter devices and methods for making same
US11229772B2 (en) 2006-11-07 2022-01-25 Flowcardia, Inc. Ultrasound catheter having improved distal end
US9629643B2 (en) 2006-11-07 2017-04-25 Flowcardia, Inc. Ultrasound catheter having improved distal end
US10537712B2 (en) 2006-11-07 2020-01-21 Flowcardia, Inc. Ultrasound catheter having improved distal end
EP1923145A1 (en) * 2006-11-15 2008-05-21 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Remote ultrasonic transducer system
US9402646B2 (en) 2009-06-12 2016-08-02 Flowcardia, Inc. Device and method for vascular re-entry
US9113943B2 (en) 2011-03-30 2015-08-25 Covidien Lp Ultrasonic surgical instruments
US11191554B2 (en) 2012-01-18 2021-12-07 C.R. Bard, Inc. Vascular re-entry device
US10357263B2 (en) 2012-01-18 2019-07-23 C. R. Bard, Inc. Vascular re-entry device
US11344750B2 (en) 2012-08-02 2022-05-31 Flowcardia, Inc. Ultrasound catheter system
US10813660B2 (en) 2015-06-18 2020-10-27 Olympus Corporation Ultrasonic treatment device
US11633206B2 (en) 2016-11-23 2023-04-25 C.R. Bard, Inc. Catheter with retractable sheath and methods thereof
US11596726B2 (en) 2016-12-17 2023-03-07 C.R. Bard, Inc. Ultrasound devices for removing clots from catheters and related methods
US10758256B2 (en) 2016-12-22 2020-09-01 C. R. Bard, Inc. Ultrasonic endovascular catheter
US10582983B2 (en) 2017-02-06 2020-03-10 C. R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath
US11638624B2 (en) 2017-02-06 2023-05-02 C.R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath

Also Published As

Publication number Publication date
EP0893971B1 (en) 2004-04-21
JP2000506431A (en) 2000-05-30
ES2218712T3 (en) 2004-11-16
US6051010A (en) 2000-04-18
AU731135B2 (en) 2001-03-22
DE69728758D1 (en) 2004-05-27
AU5604098A (en) 1998-07-17
DE69728758T2 (en) 2005-04-28
EP0893971A1 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
US6051010A (en) Methods and devices for joining transmission components
US5938633A (en) Ultrasonic surgical devices
EP0917446B1 (en) Apparatus for applying torque to an ultrasonic transmission component
US6274963B1 (en) Methods and devices for controlling the vibration of ultrasonic transmission components
US5776155A (en) Methods and devices for attaching and detaching transmission components
CA2252822C (en) Damping ultrasonic transmission components
JP4063425B2 (en) Ultrasonic clamp coagulator device with clamping mechanism
JP4832468B2 (en) Ultrasonic surgical forceps device
JP4063426B2 (en) Ultrasonic forceps coagulation device with improved forceps arm pivot attachment
JP2008229357A (en) Ultrasonic surgical clamp apparatus
JP2008246211A (en) Ultrasonic surgical clamp coagulator apparatus having indexed rotational positioning
WO1998037819A1 (en) Preventing reuse of surgical devices
CA2247149C (en) Methods and devices for joining transmission components

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 56040/98

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2247149

Country of ref document: CA

Ref country code: CA

Ref document number: 2247149

Kind code of ref document: A

Format of ref document f/p: F

CFP Corrected version of a pamphlet front page

Free format text: PUBLISHED FIGURE REPLACED BY CORRECT FIGURE

WWE Wipo information: entry into national phase

Ref document number: 1997952437

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997952437

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 56040/98

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1997952437

Country of ref document: EP