WO1998029096A1 - Aerosolized hydrophobic drug - Google Patents

Aerosolized hydrophobic drug Download PDF

Info

Publication number
WO1998029096A1
WO1998029096A1 PCT/US1997/023902 US9723902W WO9829096A1 WO 1998029096 A1 WO1998029096 A1 WO 1998029096A1 US 9723902 W US9723902 W US 9723902W WO 9829096 A1 WO9829096 A1 WO 9829096A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophobic
dry powder
hydrophilic
powder composition
component
Prior art date
Application number
PCT/US1997/023902
Other languages
French (fr)
Inventor
Marc S. Gordon
Andrew Clark
Thomas K. Brewer
Original Assignee
Inhale Therapeutic Systems
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inhale Therapeutic Systems filed Critical Inhale Therapeutic Systems
Priority to EP97954799A priority Critical patent/EP0971698A4/en
Priority to JP53022398A priority patent/JP2001507700A/en
Priority to AU60140/98A priority patent/AU6014098A/en
Publication of WO1998029096A1 publication Critical patent/WO1998029096A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0075Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a dry powder inhaler [DPI], e.g. comprising micronized drug mixed with lactose carrier particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • A61K31/355Tocopherols, e.g. vitamin E
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/57Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone
    • A61K31/573Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids substituted in position 17 beta by a chain of two carbon atoms, e.g. pregnane or progesterone substituted in position 21, e.g. cortisone, dexamethasone, prednisone or aldosterone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/59Compounds containing 9, 10- seco- cyclopenta[a]hydrophenanthrene ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7012Compounds having a free or esterified carboxyl group attached, directly or through a carbon chain, to a carbon atom of the saccharide radical, e.g. glucuronic acid, neuraminic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1611Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats
    • A61K9/1623Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • B01D1/18Evaporating by spraying to obtain dry solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/773Nanoparticle, i.e. structure having three dimensions of 100 nm or less
    • Y10S977/775Nanosized powder or flake, e.g. nanosized catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/778Nanostructure within specified host or matrix material, e.g. nanocomposite films
    • Y10S977/783Organic host/matrix, e.g. lipid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/827Nanostructure formed from hybrid organic/inorganic semiconductor compositions
    • Y10S977/829Organic or biological core coated with inorganic shell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/882Assembling of separate components, e.g. by attaching
    • Y10S977/884Assembled via biorecognition entity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/906Drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/915Therapeutic or pharmaceutical composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/926Topical chemical, e.g. cosmetic or sunscreen

Definitions

  • the present invention relates generally to dry powder compositions and methods for their preparation and use.
  • the present invention relates to methods for spray drying pharmaceutical and other compositions comprising a hydrophobic drug or other component and a hydrophilic excipient or other component .
  • certain drugs have been sold in formulations suitable for oral inhalation (pulmonary delivery) to treat various conditions in humans.
  • pulmonary drug delivery formulations are designed to be inhaled by the patient so that the active drug within the dispersion reaches the lung. It has been found that certain drugs delivered to the lung are readily absorbed through the alveolar region directly into blood circulation.
  • Such pulmonary delivery can be effective both for systemic delivery and for localized delivery to treat diseases of the lungs.
  • Pulmonary drug delivery can itself be achieved by different approaches, including liquid nebulizers, aerosol- based metered dose inhalers (MDI's), and dry powder dispersion devices. Aerosol-based MDI's are losing favor because they rely on the use of chlorofluorocarbons (CFC's), which are being banned because of their adverse effect on the ozone layer. Dry powder dispersion devices, which do not rely on CFC aerosol technology, are promising for delivering drugs that may be readily formulated as dry powders. The ability to deliver pharmaceutical compositions as dry powders, however, is problematic in certain respects. The dosage of many pharmaceutical compositions is often critical, so it is desirable that dry powder delivery systems be able to accurately, precisely, and reliably deliver the intended amount of drug.
  • CFC's chlorofluorocarbons
  • a particularly promising approach for the pulmonary delivery of dry powder drugs utilizes a hand-held device with a hand pump for providing a source of pressurized gas.
  • the pressurized gas is abruptly released through a powder dispersion device, such as a venturi nozzle, and the dispersed powder made available for patient inhalation.
  • a powder dispersion device such as a venturi nozzle
  • the dispersed powder made available for patient inhalation.
  • hand-held devices are problematic in a number of other respects.
  • the particles being delivered are usually less than 5 ⁇ m in size, making powder handling and dispersion more difficult than with larger particles.
  • the problems are exacerbated by the relatively small volumes of pressurized gas, which are available using hand-actuated pumps.
  • venturi dispersion devices are unsuitable for difficult-to-disperse powders when only small volumes of pressurized gas are available with the handpump .
  • Another requirement for hand-held and other powder delivery devices is efficiency. High device efficiency in delivering the drug to the patient with the optimal size distribution for pulmonary delivery is essential for a commercially viable product.
  • Spray drying is a conventional chemical processing unit operation used to produce dry particulate solids from a variety of liquid and slurry starting materials.
  • the use of spray drying for the formulation of dry powder pharmaceuticals is known, but has usually been limited to spray drying of hydrophilic drugs in aqueous solutions, usually in combination with hydrophilic excipients.
  • Many drugs are hydrophobic, preventing spray drying in aqueous solutions. While spray drying of hydrophobic materials can often be accomplished using an organic solvent, the use of such non- aqueous solvents generally limits the ability to simultaneously spray dry a hydrophilic excipient .
  • hydrophobic and hydrophilic components such as hydrophobic drugs and hydrophilic excipients.
  • spray drying methods should be compatible with a wide variety of hydrophobic drugs as well as conventional hydrophilic excipients, such as povidone (polyvinylpyrrolidone) and other water soluble polymers, citric acid, mannitol, pectin and other water soluble carbohydrates, and particularly with those excipients which are accepted for use inhalation formulations, such as lactose, sodium chloride, and sodium citrate.
  • Such spray drying methods will preferably produce particles having a uniform size distribution, with a mean particle size below 10 ⁇ m, preferably below 5 ⁇ m, and a standard deviation less than or equal to ⁇ 2 ⁇ m. Such powders should further exhibit uniform composition from batch to batch so that any tendency for particles of different compositions and/or sizes to separate in the lungs will have a reproducible impact on the therapeutic effect. Additionally, such spray drying methods should provide for dry powders which are physically and chemically stable and which have low levels of any residual organic solvents or other components which might be used in the spray drying process. At least some of the above objectives will be met by the various embodiments of the present invention which are described in detail below. 2. Description of the Background Art
  • WO 96/09814 describes spray dried pharmaceutical powders.
  • Example 7 describes spray drying budesonide and lactose in ethanol where the budesonide is partially soluble and the lactose is insoluble.
  • U.S. Patent Nos. 5,260,306; 4,590,206; GB 2 105 189; and EP 072 046 describe a method for spray drying nedocromil sodium to form small particles preferably in the range from 2 to 15 ⁇ m for pulmonary delivery.
  • U.S. Patent No. 5,376,386, describes the preparation of particulate polysaccharide carriers for pulmonary drug delivery, where the carriers comprise particles sized from 5 to 1000 ⁇ m. Mumenthaler et al . (1994) Pharm . Res .
  • WO 95/23613 describes preparing an inhalation powder of DNase by spray drying using laboratory-scale equipment.
  • WO 91/16882 describes a method for spray drying proteins and other drugs in liposome carriers.
  • the spray drying methods of the present invention permit the simultaneous spray drying of the hydrophobic component with a hydrophilic component, such as a hydrophilic pharmaceutical excipient, under conditions which result in a dry powder comprising mixtures of both the hydrophilic and hydrophobic components .
  • the methods of the present invention are particularly useful for forming pharmaceutical compositions where the hydrophobic component is a hydrophobic drug, usually present at from 0.01% to 95% of the powder, and the hydrophilic component is a hydrophilic excipient, usually present at from 99.99% to 5% of the powder, the methods may be applied more broadly to form dry powders comprising a variety of hydrophobic and hydrophilic components at different concentration ranges, including hydrophilic drugs and hydrophobic excipients.
  • the spray drying methods of the present invention are compatible with at least most hydrophilic pharmaceutical excipients, particularly including mannitol, povidone, pectin, lactose, sodium chloride, and sodium citrate.
  • hydrophilic pharmaceutical excipients particularly including mannitol, povidone, pectin, lactose, sodium chloride, and sodium citrate.
  • Use of the latter three excipients is particularly preferred for powders intended for pulmonary delivery as they are "generally recognized as safe" (GRAS) for such applications.
  • the methods are also suitable for use with numerous hydrophobic drugs and nutrients, including steroids and their salts, such as budesonide, testosterone, progesterone, estrogen, flunisolide, triamcinolone, beclomethasone, betamethasone; dexamethasone, fluticasone, methylprednisolone, prednisone, hydrocortisone, and the like; peptides, such as cyclosporin and other water insoluble peptides; retinoids, such as all-cis retinoic acid, 13 -trans retinoic acid, and other vitamin A and beta carotene derivatives; vitamins D, E, and K and water insoluble precursors and derivatives thereof; prostaglandins and leukotrienes and their activators and inhibitors including prostacyclin (epoprostanol) , prostaglandins E-_ E 2 , tetrahydrocannabinol ; lung surfactant lipids; lipid soluble antioxidants
  • the spray drying methods can produce a uniform particle size distribution.
  • the mean particle diameter can be controlled below 10 ⁇ m, preferably below 5 ⁇ m, with a size distribution (standard deviation) less than ⁇ 2 ⁇ m.
  • the particles of the powders so produced have a minimum batch-to-batch variability in composition, and are physically and chemically stable.
  • the powders have minimum residual organic solvents to the extent they may have been used in the spray drying process.
  • the method of the present invention comprises preparing an aqueous solution of a hydrophilic component and an organic solution of a hydrophobic component in an organic solvent.
  • the aqueous solution and the organic solution are simultaneously spray dried to form particles comprising a mixture of the hydrophilic and hydrophobic components.
  • the hydrophilic component has a concentration in the aqueous solution from 1 mg/ml to 100 mg/ml, preferably from 5 mg/ml to 60 mg/ml.
  • the hydrophobic component has a solubility in the organic solution of at least 0.01 mg/ml, preferably at least 0.05 mg/ml.
  • the concentration of the hydrophobic component in the organic solution is usually in the range from 0.01 mg/ml to 10 mg/ml, preferably from 0.05 mg/ml to 5 mg/ml.
  • Preferred organic solvents include alcohols, ketones, ethers, aldehydes, hydrocarbons, and polar aprotic solvents, and the like.
  • the use of a separate aqueous and organic solution to carry the hydrophilic and hydrophobic components, respectively, is advantageous in that it allows a much broader range of selection for the organic solvent, since the organic solvent does not also have to solubilize the hydrophilic component.
  • hydrophobic components and hydrophilic components which are chemically or physically incompatible in solution
  • the solutions of the hydrophobic components and hydrophilic components do not reside together until they are passing through the spray nozzle during spray drying. This severely minimizes the contact time between the two solutions before drying occurs, and hence minimizes the potential for undesirable reactions to occur.
  • the aqueous solution and organic solution will be spray dried through a common spray nozzle, more usually through a coaxial spray nozzle.
  • Powders prepared by any of the above methods will be collected from the spray dryer in a conventional manner for subsequent use.
  • the dry powder formulations will usually be measured into a single dose, and the single dose sealed into a package. Such packages are particularly useful for dispersion in dry powder inhalers, as described in detail below.
  • the powders may be packaged in multiple-dose containers.
  • the present invention further comprises dry powder compositions produced according to the methods described above, as well as unit dose and multidose packages of such dried powder compositions containing a therapeutically effective amount of the dry powder.
  • the present invention further provides methods for aerosolizing a dry powder composition comprising the steps of providing an amount of dry powder composition produced by any of the methods described above and subsequently dispersing the dry powder composition into a flowing gas stream.
  • Fig. 1 is a block diagram illustrating a spray drying system suitable for performing the methods of the present invention.
  • Fig. 2. illustrates a coaxial spray nozzle used in spray drying as described in the Experimental section.
  • Fig. 3 illustrates a two-tube spray nozzle used in spray drying as described in the Experimental section.
  • Fig. 3A is a detail cross-section view of region 3A in Fig. 3.
  • the present invention relates to methods for preparing compositions comprising ultrafine dry powders having both hydrophobic and hydrophilic components.
  • the methods are particularly suitable for producing ultrafine pharmaceutical dry powders where the hydrophobic component is a hydrophobic drug and the hydrophilic component is a hydrophilic excipient.
  • the present invention may find use for preparing a variety of other compositions including pharmaceutical compositions having hydrophilic drugs and hydrophobic excipients and compositions intended for non-pharmaceutical applications.
  • the methods rely on spray drying liquid media in which the components are solubilized or suspended.
  • the hydrophobic and hydrophilic components are solubilized in separate liquid media and the media are simultaneously spray dried through a common nozzle.
  • hydrophobic component refers to materials which are insoluble or sparingly or poorly soluble in water. As used herein, such compositions will have a solubility below 5 mg/ml, usually below 1 mg/ml.
  • exemplary hydrophobic drugs include certain steroids, such as budesonide, testosterone, progesterone, estrogen, flunisolide, triamcinolone, beclomethasone, betamethasone; dexamethasone, fluticasone, methylprednisolone, prednisone, hydrocortisone, and the like; certain peptides, such as cyclosporin cyclic peptide, retinoids, such as all-cis retinoic acid, 13 -trans retinoic acid, and other vitamin A and beta carotene derivatives; vitamins D, E, and K and water insoluble precursors and derivatives thereof; prostagladins and leukotrienes and their activators and inhibitors including prostacyclin (epoprostanol)
  • hydrophilic component it is meant that the component is highly soluble in water and frequently capable of swelling and formation of reversible gels. Typical aqueous solubilities of hydrophilic components will be greater than 5 mg/ml, usually greater than 50 mg/ml, often greater than 100 mg/ml and often much higher.
  • the pharmaceutical excipients will generally be selected to provide stability, dispersibility, consistency and/or bulking characteristics to enhance the uniform pulmonary delivery of the dried powder composition to a patient . For pulmonary delivery, the excipients must be capable of being taken into the lungs with no significant adverse toxicological effects on the lungs.
  • hydrophilic excipients include carbohydrates and other materials selected from the group consisting of lactose, sodium citrate, mannitol, povidone, pectin, citric acid, sodium chloride, water soluble polymers, and the like. Particularly preferred are lactose, sodium chloride, sodium citrate, and citric acid which are generally accepted for pulmonary delivery in dry powder formulations.
  • ultrafluine dry powder means a powder composition comprising a plurality of discrete, dry particles having the characteristics set forth below.
  • the dry particles will have an average particle size below
  • the average particle size of the powder will be measured as mass median diameter (MMD) by conventional techniques.
  • MMD mass median diameter
  • a particular powder sizing technique uses a centrifugal sedimentary particle size analyzer (Horiba Capa 700) .
  • the powders will be capable of being readily dispersed in an inhalation device and subsequently inhaled by a patient so that the particles are able to penetrate into the alveolar regions of the lungs .
  • the ultrafine dry particle compositions produced by the method will have particle size distributions which enable them to target the alveolar region of the lung for pulmonary delivery of locally acting steroids, systemically acting proteins, and other biologically active materials that can be administered to or through the lungs.
  • Such compositions advantageously may be incorporated into unit dosage and other forms without further size classification.
  • the ultrafine dry powders will have a size distribution where at least 90% of the powder by weight will comprise particles having an average size in the range from 0.1 ⁇ m to 7 ⁇ m, with preferably at least 85% being in the range from 0.4 ⁇ m to 5 ⁇ m. Additionally, it is desirable that the particle size distribution avoid having an excess amount of particles with very small average diameters, i.e., below 0.4 ⁇ m.
  • dry means that the particles of the powder have a moisture and residual solvent content such that the powder is physically and chemically stable in storage at room temperature and is readily dispersible in an inhalation device to form an aerosol.
  • the moisture and residual solvent content of the particles is below 10% by weight, usually being below 5% by weight, preferably being below 3% by weight, or lower.
  • the moisture and residual solvent content will usually be controlled by the drying conditions, as described in more detail below.
  • dry further means that the particles of the powder have a moisture content such that the powder is readily dispersible in an inhalation device to form an aerosol. In some cases, however, non-aqueous medium may be used for dispersing the components, in which case the aqueous content may approach zero.
  • the term "therapeutically effective amount” is the amount present in the composition that is needed to provide the desired level of hydrophobic drug in the subject to be treated to give the anticipated physiological response. This amount is determined for each drug on a case-by-case basis.
  • physiologically effective amount is that amount delivered to a subject to give the desired palliative or curative effect. This amount is specific for each drug and its ultimate approval dosage level.
  • the therapeutically effective amount of hydrophobic drug will vary in the composition depending on the biological activity of the drug employed and the amount needed in a unit dosage form. Because the subject powders are dispersible, it is highly preferred that they be manufactured in a unit dosage form in a manner that allows for ready manipulation by the formulator and by the consumer.
  • a unit dosage will be between about 0.5 mg and 15 mg of total material in the dry powder composition, preferably between about 1 mg and 10 mg.
  • the amount of hydrophobic drug in the composition will vary from about 0.01% w/w to about 95% w/w. Most preferably the composition will be about 0.05% w/w to about 25% w/w drug.
  • processes according to the present invention for preparing dispersible dry powders of hydrophobic and hydrophilic components comprise an atomization operation 10 which produces droplets of a liquid medium which are dried in a drying operation 20. Drying of the liquid droplets results in formation of the discrete particles which form the dry powder compositions which are then collected in a separation operation 30.
  • atomization operation 10 which produces droplets of a liquid medium which are dried in a drying operation 20. Drying of the liquid droplets results in formation of the discrete particles which form the dry powder compositions which are then collected in a separation operation 30.
  • the atomization process 10 may utilize any one of several forms of atomizers, so long as the atomizer is specially designed to deliver the liquid containing the hydrophobic components and the liquid containing the hydrophilic components separately to the lower portion of the atomizer, for which Fig. 2 and Fig. 3 serve as nonlimiting examples.
  • the atomization process increases the surface area of the starting liquid. Due to atomization there is an increase in the surface energy of the liquid, the magnitude of which is directly proportional to the surface area increase. The source of this energy increase depends on the type of atomizer used. Any atomizer (centrifugal, sonic, pressure, two fluid) capable of producing droplets with a mass median diameter of less than about 20 ⁇ m could be used.
  • Preferred for the present invention is the use of two fluid atomizers where the liquid medium is delivered through a nozzle concurrently with a high pressure gas stream.
  • Particularly preferred is the use of two-fluid atomization nozzles as described in copending application serial no. 08/644,681, which is capable of producing droplets having a median diameter less than 20 ⁇ m.
  • the atomization gas will usually be nitrogen which has been filtered or otherwise cleaned to remove particulates and other contaminants. Alternatively, other gases, such as air may be used.
  • the atomization gas will be pressurized for delivery through the atomization nozzle, typically to a pressure above 5 psig, preferably being above 10 psig.
  • the drying operation 20 will be performed next to evaporate liquid from the droplets produced by the atomization operation 10.
  • the drying will require introducing energy to the droplets, typically by mixing the droplets with a heated gas which causes evaporation of the water or other liquid medium.
  • the heated gas stream will flow concurrently with the atomized liquid, but it would also be possible to employ counter-current flow, cross-current flow, or other flow patterns.
  • the drying rate may be controlled based on a number of variables, including the droplet size distribution, the inlet temperature of the gas stream, the outlet temperature of the gas stream, the inlet temperature of the liquid droplets, and the manner in which the atomized spray and hot drying gas are mixed.
  • the drying gas stream will have an inlet temperature of at least 70°C.
  • the outlet temperature will usually be at least about 40°C.
  • the drying gas will usually be air or nitrogen which has been filtered or otherwise treated to remove particulates and other contaminants.
  • the gas will be moved through the system using conventional blowers or compressors.
  • the separation operation 30 will be selected in order to achieve very high efficiency collection of the ultrafine particles produced by the drying operation 20.
  • separation is achieved using a filter medium such as a membrane medium (bag filter) , a sintered metal fiber filter, or the like.
  • a filter medium such as a membrane medium (bag filter) , a sintered metal fiber filter, or the like.
  • separation may be achieved using cyclone separators, although it is usually desirable to provide for high energy separation in order to assure the efficient collection of sub-micron particles.
  • the separation operation should achieve collection of at least 80% of all particles above 1 ⁇ m in average particle size, preferably being above 85%, more preferably being above 90%, and even more preferably being above 95%, in collection efficiency.
  • a cyclone separator can be used to separate very fine particles, e.g. 0.1 ⁇ m, from the final collected particles.
  • the cyclone operating parameters can be selected to provide an approximate cutoff where particles above about 0.1 ⁇ m are collected while particles below 0.1 ⁇ m are carried over in the overhead exhaust .
  • the presence of particles below 0.1 ⁇ m in the pulmonary powder is undesirable since they will generally not deposit in the alveolar regions of the lungs, but instead will be exhaled.
  • the present invention relies on proper selection of the liquid medium or media for solubilizing the hydrophobic drug or other component and hydrophilic excipient or other component as well as on the manner of introducing the component to the spray dryer.
  • the compositions are spray dried by forming separate solutions of the hydrophobic drug or other component and the hydrophilic excipient or other component.
  • the separate solutions are then concurrently but separately introduced to the spray nozzle, typically by passing through a common spray nozzle or nozzles in the spray dryers described above.
  • This method has the advantage that both the hydrophobic drug and the hydrophilic excipient may be easily dissolved since it is generally straight forward to select compatible solvents capable of fully dissolving only one of the components.
  • a nozzle such as a coaxial nozzle
  • spray dried powders having uniform characteristics may be achieved.
  • This approach has the additional advantage that it minimizes the amount of organic solvent required since only the hydrophobic drug or other component requires an organic solvent for dissolution.
  • the hydrophilic excipient is dissolved in water.
  • An exemplary coaxial spray nozzle 100 is illustrated in Fig. 2 and includes a housing 102 defining a chamber 103.
  • a pair of inlets 104 are disposed at the top of the housing 102 for receiving the excipient solution (which is usually delivered at a higher volumetric flow rate than is the solution of the hydrophobic component) .
  • the excipient solution enters the chamber 103 at a pressure sufficient to achieve a desired flow rate through an outlet orifice 105 at the bottom of the housing 102.
  • the hydrophobic component solution is fed through a feed tube 106 which usually terminates in a reduced diameter section 108 which is disposed coaxially within the orifice 105.
  • the absolute and relative sizes of the orifice 105 and section 108 of feed tube 106 will depend on the total flow rates, operating pressures, and nature of materials being spray dried. A specific example is described in the Experimental section hereinafter.
  • a second exemplary spray nozzle 200 is illustrated in Figs. 3 and 3A.
  • the nozzle 200 comprises a housing 202, inlets 204 and feed tube 206, generally similar to those described above for nozzle 100.
  • Nozzle 200 is not coaxial and instead includes a second, parallel feed tube 208 which receives solution from chamber 203 defined within the housing 202.
  • Both the feed tube 206 and feed tube 208 have outlet orifices 210 and 212, respectively, at their distal ends which direct the solution flow generally horizontally into a mixing chamber 214 disposed at the bottom of the housing 202.
  • the mixing chamber is shown to have a conical geometry terminating at its bottom tip in outlet passage 216.
  • the orifices 210 and 212 are preferably oriented as shown in Fig.
  • unit dosage forms may comprise a unit dosage receptacle containing a dry powder.
  • the powder is placed within a suitable dosage receptacle in an amount sufficient to provide a subject with drug for a unit dosage treatment.
  • the dosage receptacle is one that fits within a suitable inhalation device to allow for the aerosolization of the dry powder composition by dispersion into a gas stream to form an aerosol and then capturing the aerosol so produced in a chamber having a mouthpiece attached for subsequent inhalation by a subject in need of treatment.
  • Such a dosage receptacle includes any container enclosing the composition known in the art such as gelatin or plastic capsules with a removable portion that allows a stream of gas (e.g., air) to be directed into the container to disperse the dry powder composition.
  • a stream of gas e.g., air
  • Such containers are exemplified by those shown in U.S. Patents 4,227,522 issued October 14, 1980; 4,192,309 issued March 11, 1980; and 4,105,027 issued August 8, 1978.
  • Suitable containers also include those used in conjunction with Glaxo ' ⁇ Ventolin Rotohaler ® brand powder inhaler or Fison's Spinhaler ® brand powder inhaler.
  • Another suitable unit-dose container which provides a superior moisture barrier is formed from an aluminum foil plastic laminate.
  • the pharmaceutical-based powder is filled by weight or by volume into the depression in the formable foil and hermetically sealed with a covering foil-plastic laminate.
  • a container for use with a powder inhalation device is described in U.S. patent 4,778,054 and is used with Glaxo ' s Diskhaler " (U.S. Patents 4,627,432; 4,811,731; and 5,035,237) .
  • Preferred dry powder inhalers are those described in U.S. Patent application serial nos. 08/309,691 and 08/487,184, assigned to the assignee of the present invention. The latter application has been published as WO 96/09085.
  • Budesonide (micronized to a median particle size of 1-2 ⁇ m; Steraloids)
  • Lactose monohydrate (NF grade; Foremost Ingredient Group)
  • Sodium Chloride (reagent grade from VWR and USP grade from EM Industries) Deionized water
  • Dryers with nozzles and cyclones that were designed to generate and catch very fine particles.
  • a Buchi 190 Mini Spray Dryer was used that was modified so that it was supplied with nitrogen as the gas source and equipped with an oxygen sensor and other safety equipment to minimize the possibility of explosion.
  • the solution feed rate was 5 ml/minute, inlet temperature was adjusted to obtain the outlet temperature noted in each example, and the top of the cyclone was jacketed and cooled to a temperature of about 30 °C for the examples in Table 1, but it was not cooled for the examples in Table 2.
  • the drying nitrogen flow rate was about 18 SCFM, and the atomizing nitrogen was supplied at 0.5 to 1.5 SCFM.
  • the powders were further dried in the collector for 5 minutes by maintaining approximately the outlet temperature and air volume after the feeding of the liquid formulation was completed.
  • Particle size was determined with a Horiba Particle Size Analyzer, model CAPA 700.
  • Median particle size refers to the volume based particle size distribution of the prepared bulk powders determined via centrifugal sedimentation as follows. A sample of the powder was suspended in an appropriate liquid medium (one that minimizes solubilizing the particle) , sonicated to break up the agglomerates, and then centrifuged. The median particle size was determined by measuring the sedimentation rate during centrifugation. This method provides the median size of the "primary" particle, that is, the size of the particles produced by the manufacturing process, plus potential modification during sample preparation.
  • Moisture content was determined by the Karl-Fischer Reagent titrimetric method.
  • Delivered dose efficiency refers to a measure of the percentage of powder which is drawn out of a blister package and which exits the mouthpiece of an inhaler device as described in U.S. Patent Application Serial No. 08/487,184.
  • Delivered dose efficiency is a measure of efficiency for the powder package/device combination.
  • the test was performed by connecting a vacuum system to the device mouthpiece. The vacuum system was set to be similar to a human inhalation with regard to volume and flow rate (1.2 liters total at 30 liters/minute) .
  • a blister package containing 0.5 to 10 mg of the formulation to be evaluated (5 mg of powder was used for the following examples) was loaded into a device which was held in a testing fixture. The device was pumped and fired, and the vacuum "inhalation" was switched on. The aerosol cloud was thus drawn out of the device chamber by the vacuum, and the powder was collected on a filter placed between the mouthpiece and the vacuum source . The weight of the powder collected on the filter was determined. Delivered dose efficiency was calculated by multiplying this weight by one hundred and dividing by the fill weight in the blister. A higher number was a better result than a lower number.
  • MMAD mass median aerodynamic diameter refers to a measure of the particle size of the aerosolized powder. MMAD was determined with an Andersen cascade impactor. In a cascade impactor the aerosolized powder (which was aerosolized using an inhaler device as described in U.S. Patent Application Serial No. 08/487,184) enters the impactor via an air stream, and encounters a series of stages that separate particles by their aerodynamic diameter (the smallest particles pass farthest down the impactor) . The amount of powder collected on each stage is determined gravimetrically, and the mass median aerodynamic diameter is then calculated.
  • the budesonide was mixed in the organic solvent until all of the budesonide was completely dissolved to form a solution, with sonication if necessary.
  • the excipient was mixed with the water until all of the excipient was completely dissolved to form a solution, with sonication, if necessary.
  • the solutions were spray dried using a coaxial nozzle spray drying system having a nozzle as illustrated in Fig. 2 or Fig. 3.
  • the Fig. 2 orifice 105 had a diameter of 1.0 mm and outlet tube section 108 had an outside diameter of 0.73 mm and an inside diameter of 0.6 mm.
  • the Fig. 3 orifice 216 had a diameter of 1.0 mm and outlet orifices 210 and 212 had diameters of 0.15 mm.
  • the two solutions were fed to the nozzle at constant rates such that they both finished being fed to the nozzle at the same time.
  • Table 1 and Table 2 show the spray dryer atomization air pressure and outlet air temperature, the quantitative composition of example formulations, a description of the particle morphology, the moisture content, particle size, and delivered dose efficiency or MMAD of the resultant powders.
  • Table 1 examples were spray dried using the nozzle illustrated in Fig. 2, whereas Table 2 examples were spray dried using the nozzle illustrated in Fig. 3.

Abstract

Methods for preparing dry powders having hydrophobic and hydrophilic components comprise combining solutions of the components and spray drying them simultaneously in a spray dryer. The hydrophilic and hydrophobic component are separately dissolved in separate solvents and directed simultaneously through a nozzle, usually a coaxial nozzle, into the spray dryer. The method provides dry powders having relatively uniform characteristics.

Description

AEROSOLIZED HYDROPHOBIC DRUG
This application is a continuation- in-part of Provisional Application No. 60/034,837, filed on December 31, 1996, the full disclosure of which is incorporated herein by reference.
BACKGROUND OF THE INVENTION 1. Field of the Invention
The present invention relates generally to dry powder compositions and methods for their preparation and use. In particular, the present invention relates to methods for spray drying pharmaceutical and other compositions comprising a hydrophobic drug or other component and a hydrophilic excipient or other component . Over the years, certain drugs have been sold in formulations suitable for oral inhalation (pulmonary delivery) to treat various conditions in humans. Such pulmonary drug delivery formulations are designed to be inhaled by the patient so that the active drug within the dispersion reaches the lung. It has been found that certain drugs delivered to the lung are readily absorbed through the alveolar region directly into blood circulation. Such pulmonary delivery can be effective both for systemic delivery and for localized delivery to treat diseases of the lungs. Pulmonary drug delivery can itself be achieved by different approaches, including liquid nebulizers, aerosol- based metered dose inhalers (MDI's), and dry powder dispersion devices. Aerosol-based MDI's are losing favor because they rely on the use of chlorofluorocarbons (CFC's), which are being banned because of their adverse effect on the ozone layer. Dry powder dispersion devices, which do not rely on CFC aerosol technology, are promising for delivering drugs that may be readily formulated as dry powders. The ability to deliver pharmaceutical compositions as dry powders, however, is problematic in certain respects. The dosage of many pharmaceutical compositions is often critical, so it is desirable that dry powder delivery systems be able to accurately, precisely, and reliably deliver the intended amount of drug. Moreover, many pharmaceutical compositions are quite expensive. Thus, the ability to efficiently formulate, process, package, and deliver the dry powders with a minimal loss of drug is critical. With dry powder drug delivery, both the delivered dose efficiency, i.e. the percentage of drug from a unit dose receptacle which is aerosolized and delivered from a delivery device, and the median particle size distribution, i.e. the deviation from the median size, are critical to the successful delivery of powders to a patient's lungs.
A particularly promising approach for the pulmonary delivery of dry powder drugs utilizes a hand-held device with a hand pump for providing a source of pressurized gas. The pressurized gas is abruptly released through a powder dispersion device, such as a venturi nozzle, and the dispersed powder made available for patient inhalation. While advantageous in many respects, such hand-held devices are problematic in a number of other respects. The particles being delivered are usually less than 5 μm in size, making powder handling and dispersion more difficult than with larger particles. The problems are exacerbated by the relatively small volumes of pressurized gas, which are available using hand-actuated pumps. In particular, venturi dispersion devices are unsuitable for difficult-to-disperse powders when only small volumes of pressurized gas are available with the handpump . Another requirement for hand-held and other powder delivery devices is efficiency. High device efficiency in delivering the drug to the patient with the optimal size distribution for pulmonary delivery is essential for a commercially viable product.
Spray drying is a conventional chemical processing unit operation used to produce dry particulate solids from a variety of liquid and slurry starting materials. The use of spray drying for the formulation of dry powder pharmaceuticals is known, but has usually been limited to spray drying of hydrophilic drugs in aqueous solutions, usually in combination with hydrophilic excipients. Many drugs, however, are hydrophobic, preventing spray drying in aqueous solutions. While spray drying of hydrophobic materials can often be accomplished using an organic solvent, the use of such non- aqueous solvents generally limits the ability to simultaneously spray dry a hydrophilic excipient . For these reasons, it would be desirable to provide improved methods for spray drying pharmaceutical and other compositions which comprise both hydrophobic and hydrophilic components, such as hydrophobic drugs and hydrophilic excipients. Such spray drying methods should be compatible with a wide variety of hydrophobic drugs as well as conventional hydrophilic excipients, such as povidone (polyvinylpyrrolidone) and other water soluble polymers, citric acid, mannitol, pectin and other water soluble carbohydrates, and particularly with those excipients which are accepted for use in inhalation formulations, such as lactose, sodium chloride, and sodium citrate. Such spray drying methods will preferably produce particles having a uniform size distribution, with a mean particle size below 10 μm, preferably below 5 μm, and a standard deviation less than or equal to ± 2 μm. Such powders should further exhibit uniform composition from batch to batch so that any tendency for particles of different compositions and/or sizes to separate in the lungs will have a reproducible impact on the therapeutic effect. Additionally, such spray drying methods should provide for dry powders which are physically and chemically stable and which have low levels of any residual organic solvents or other components which might be used in the spray drying process. At least some of the above objectives will be met by the various embodiments of the present invention which are described in detail below. 2. Description of the Background Art
Methods for spray drying hydrophobic and other drugs and components are described in U.S. Patent Nos . 5,000,888; 5,026,550; 4,670,419, 4,540,602; and 4 , 486 , 435. Bloch and Speison (1983) Pharm. Acta Helv 58:14-22 teaches spray drying of hydrochlorothiazide and chlorthalidone (lipophilic drugs) and a hydrophilic adjuvant (pentaerythritol) in azeotropic solvents of dioxane-water and 2-ethoxyethanol-water . A number of Japanese Patent application Abstracts relate to spray drying of hydrophilic-hydrophobic product combinations, including JP 806766; JP 7242568; JP 7101884; JP 7101883; JP 71018982; JP 7101881; and JP 4036233. Other foreign patent publications relevant to spray drying hydrophilic-hydrophobic product combinations include FR 2594693; DE 2209477; and WO 88/07870.
WO 96/09814 describes spray dried pharmaceutical powders. In particular, Example 7 describes spray drying budesonide and lactose in ethanol where the budesonide is partially soluble and the lactose is insoluble. U.S. Patent Nos. 5,260,306; 4,590,206; GB 2 105 189; and EP 072 046 describe a method for spray drying nedocromil sodium to form small particles preferably in the range from 2 to 15 μm for pulmonary delivery. U.S. Patent No. 5,376,386, describes the preparation of particulate polysaccharide carriers for pulmonary drug delivery, where the carriers comprise particles sized from 5 to 1000 μm. Mumenthaler et al . (1994) Pharm . Res . 11:12 describes recombinant human growth hormone and recombinant tissue-type plasminogen activator. WO 95/23613 describes preparing an inhalation powder of DNase by spray drying using laboratory-scale equipment. WO 91/16882 describes a method for spray drying proteins and other drugs in liposome carriers.
The following applications assigned to the assignee of the present application each describe that spray drying may be used to prepare dry powders of biological macromolecules ; application serial no. 08/644,681, filed on May 8, 1996, which was a continuation-in-part of application serial no. 08/423,515, filed on April 14, 1995; application serial no. 08/383,475, which was a continuation-in-part of application serial no. 08/207,472, filed on March 7, 1994; application serial no. 08/472,563, filed on April 14, 1995, which was a continuation-in-part of application serial no. 08/417,507, filed on April 4, 1995, now abandoned, which was a continuation of application no. 08/044,358, filed on April 7, 1993, now abandoned; application serial no. 08/232,849, filed on April 25, 1994, which was a continuation of application serial no. 07/953,397, now abandoned. WO 94/07514 claims priority from serial no. 07/953,397. WO 95/24183 claims priority from serial nos. 08/207,472 and 08/383,475.
SUMMARY OF THE INVENTION According to the present invention, methods for spray drying hydrophobic drugs and other materials are provided which overcome at least some of the deficiencies noted above with respect to prior spray drying processes. In particular, the spray drying methods of the present invention permit the simultaneous spray drying of the hydrophobic component with a hydrophilic component, such as a hydrophilic pharmaceutical excipient, under conditions which result in a dry powder comprising mixtures of both the hydrophilic and hydrophobic components . Although the methods of the present invention are particularly useful for forming pharmaceutical compositions where the hydrophobic component is a hydrophobic drug, usually present at from 0.01% to 95% of the powder, and the hydrophilic component is a hydrophilic excipient, usually present at from 99.99% to 5% of the powder, the methods may be applied more broadly to form dry powders comprising a variety of hydrophobic and hydrophilic components at different concentration ranges, including hydrophilic drugs and hydrophobic excipients.
The spray drying methods of the present invention are compatible with at least most hydrophilic pharmaceutical excipients, particularly including mannitol, povidone, pectin, lactose, sodium chloride, and sodium citrate. Use of the latter three excipients is particularly preferred for powders intended for pulmonary delivery as they are "generally recognized as safe" (GRAS) for such applications. The methods are also suitable for use with numerous hydrophobic drugs and nutrients, including steroids and their salts, such as budesonide, testosterone, progesterone, estrogen, flunisolide, triamcinolone, beclomethasone, betamethasone; dexamethasone, fluticasone, methylprednisolone, prednisone, hydrocortisone, and the like; peptides, such as cyclosporin and other water insoluble peptides; retinoids, such as all-cis retinoic acid, 13 -trans retinoic acid, and other vitamin A and beta carotene derivatives; vitamins D, E, and K and water insoluble precursors and derivatives thereof; prostaglandins and leukotrienes and their activators and inhibitors including prostacyclin (epoprostanol) , prostaglandins E-_ E2 , tetrahydrocannabinol ; lung surfactant lipids; lipid soluble antioxidants; hydrophobic antibiotics and chemotherapeutic drugs such as amphotericin B, adriamycin, and the like.
The spray drying methods can produce a uniform particle size distribution. For example, the mean particle diameter can be controlled below 10 μm, preferably below 5 μm, with a size distribution (standard deviation) less than ± 2 μm. The particles of the powders so produced have a minimum batch-to-batch variability in composition, and are physically and chemically stable. The powders have minimum residual organic solvents to the extent they may have been used in the spray drying process.
In particular, the method of the present invention comprises preparing an aqueous solution of a hydrophilic component and an organic solution of a hydrophobic component in an organic solvent. The aqueous solution and the organic solution are simultaneously spray dried to form particles comprising a mixture of the hydrophilic and hydrophobic components. Usually the hydrophilic component has a concentration in the aqueous solution from 1 mg/ml to 100 mg/ml, preferably from 5 mg/ml to 60 mg/ml. The hydrophobic component has a solubility in the organic solution of at least 0.01 mg/ml, preferably at least 0.05 mg/ml. The concentration of the hydrophobic component in the organic solution is usually in the range from 0.01 mg/ml to 10 mg/ml, preferably from 0.05 mg/ml to 5 mg/ml. Preferred organic solvents include alcohols, ketones, ethers, aldehydes, hydrocarbons, and polar aprotic solvents, and the like. The use of a separate aqueous and organic solution to carry the hydrophilic and hydrophobic components, respectively, is advantageous in that it allows a much broader range of selection for the organic solvent, since the organic solvent does not also have to solubilize the hydrophilic component. It is also particularly advantageous for spray drying hydrophobic components and hydrophilic components which are chemically or physically incompatible in solution, since the solutions of the hydrophobic components and hydrophilic components do not reside together until they are passing through the spray nozzle during spray drying. This severely minimizes the contact time between the two solutions before drying occurs, and hence minimizes the potential for undesirable reactions to occur. Usually, the aqueous solution and organic solution will be spray dried through a common spray nozzle, more usually through a coaxial spray nozzle.
Powders prepared by any of the above methods will be collected from the spray dryer in a conventional manner for subsequent use. For use as pharmaceuticals and other purposes, it will frequently be desirable to disrupt any agglomerates which may have formed by screening or other conventional techniques. For pharmaceutical uses, the dry powder formulations will usually be measured into a single dose, and the single dose sealed into a package. Such packages are particularly useful for dispersion in dry powder inhalers, as described in detail below. Alternatively, the powders may be packaged in multiple-dose containers.
The present invention further comprises dry powder compositions produced according to the methods described above, as well as unit dose and multidose packages of such dried powder compositions containing a therapeutically effective amount of the dry powder.
The present invention further provides methods for aerosolizing a dry powder composition comprising the steps of providing an amount of dry powder composition produced by any of the methods described above and subsequently dispersing the dry powder composition into a flowing gas stream.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a block diagram illustrating a spray drying system suitable for performing the methods of the present invention.
Fig. 2. illustrates a coaxial spray nozzle used in spray drying as described in the Experimental section.
Fig. 3 illustrates a two-tube spray nozzle used in spray drying as described in the Experimental section.
Fig. 3A is a detail cross-section view of region 3A in Fig. 3.
DETAILED DESCRIPTION OF THE SPECIFIC EMBODIMENTS The present invention relates to methods for preparing compositions comprising ultrafine dry powders having both hydrophobic and hydrophilic components. The methods are particularly suitable for producing ultrafine pharmaceutical dry powders where the hydrophobic component is a hydrophobic drug and the hydrophilic component is a hydrophilic excipient. The present invention, however, may find use for preparing a variety of other compositions including pharmaceutical compositions having hydrophilic drugs and hydrophobic excipients and compositions intended for non-pharmaceutical applications. The methods rely on spray drying liquid media in which the components are solubilized or suspended. In particular, the hydrophobic and hydrophilic components are solubilized in separate liquid media and the media are simultaneously spray dried through a common nozzle.
The term "hydrophobic component" refers to materials which are insoluble or sparingly or poorly soluble in water. As used herein, such compositions will have a solubility below 5 mg/ml, usually below 1 mg/ml. Exemplary hydrophobic drugs include certain steroids, such as budesonide, testosterone, progesterone, estrogen, flunisolide, triamcinolone, beclomethasone, betamethasone; dexamethasone, fluticasone, methylprednisolone, prednisone, hydrocortisone, and the like; certain peptides, such as cyclosporin cyclic peptide, retinoids, such as all-cis retinoic acid, 13 -trans retinoic acid, and other vitamin A and beta carotene derivatives; vitamins D, E, and K and water insoluble precursors and derivatives thereof; prostagladins and leukotrienes and their activators and inhibitors including prostacyclin (epoprostanol) , prostaglandins E± E2 , tetrahydrocannabinol ; lung surfactant lipids; lipid soluble antioxidants; hydrophobic antibiotics and chemotherapeutic drugs such as amphotericin B and adriamycin and the like.
By "hydrophilic component," it is meant that the component is highly soluble in water and frequently capable of swelling and formation of reversible gels. Typical aqueous solubilities of hydrophilic components will be greater than 5 mg/ml, usually greater than 50 mg/ml, often greater than 100 mg/ml and often much higher. In addition to their hydrophilic nature, the pharmaceutical excipients will generally be selected to provide stability, dispersibility, consistency and/or bulking characteristics to enhance the uniform pulmonary delivery of the dried powder composition to a patient . For pulmonary delivery, the excipients must be capable of being taken into the lungs with no significant adverse toxicological effects on the lungs. Exemplary hydrophilic excipients include carbohydrates and other materials selected from the group consisting of lactose, sodium citrate, mannitol, povidone, pectin, citric acid, sodium chloride, water soluble polymers, and the like. Particularly preferred are lactose, sodium chloride, sodium citrate, and citric acid which are generally accepted for pulmonary delivery in dry powder formulations.
The phrase "ultrafine dry powder" means a powder composition comprising a plurality of discrete, dry particles having the characteristics set forth below. In particular, the dry particles will have an average particle size below
10 μm, usually below 5 μm, preferably being in the range from 0.4 to 5 μm, more preferably from 0.4 to 4 μm. The average particle size of the powder will be measured as mass median diameter (MMD) by conventional techniques. A particular powder sizing technique uses a centrifugal sedimentary particle size analyzer (Horiba Capa 700) . The powders will be capable of being readily dispersed in an inhalation device and subsequently inhaled by a patient so that the particles are able to penetrate into the alveolar regions of the lungs .
Of particular importance to the present invention, the ultrafine dry particle compositions produced by the method will have particle size distributions which enable them to target the alveolar region of the lung for pulmonary delivery of locally acting steroids, systemically acting proteins, and other biologically active materials that can be administered to or through the lungs. Such compositions advantageously may be incorporated into unit dosage and other forms without further size classification. Usually, the ultrafine dry powders will have a size distribution where at least 90% of the powder by weight will comprise particles having an average size in the range from 0.1 μm to 7 μm, with preferably at least 85% being in the range from 0.4 μm to 5 μm. Additionally, it is desirable that the particle size distribution avoid having an excess amount of particles with very small average diameters, i.e., below 0.4 μm.
The term "dry" means that the particles of the powder have a moisture and residual solvent content such that the powder is physically and chemically stable in storage at room temperature and is readily dispersible in an inhalation device to form an aerosol. Usually, the moisture and residual solvent content of the particles is below 10% by weight, usually being below 5% by weight, preferably being below 3% by weight, or lower. The moisture and residual solvent content will usually be controlled by the drying conditions, as described in more detail below. The term "dry" further means that the particles of the powder have a moisture content such that the powder is readily dispersible in an inhalation device to form an aerosol. In some cases, however, non-aqueous medium may be used for dispersing the components, in which case the aqueous content may approach zero. The term "therapeutically effective amount" is the amount present in the composition that is needed to provide the desired level of hydrophobic drug in the subject to be treated to give the anticipated physiological response. This amount is determined for each drug on a case-by-case basis. The term "physiologically effective amount" is that amount delivered to a subject to give the desired palliative or curative effect. This amount is specific for each drug and its ultimate approval dosage level. The therapeutically effective amount of hydrophobic drug will vary in the composition depending on the biological activity of the drug employed and the amount needed in a unit dosage form. Because the subject powders are dispersible, it is highly preferred that they be manufactured in a unit dosage form in a manner that allows for ready manipulation by the formulator and by the consumer. This generally means that a unit dosage will be between about 0.5 mg and 15 mg of total material in the dry powder composition, preferably between about 1 mg and 10 mg. Generally, the amount of hydrophobic drug in the composition will vary from about 0.01% w/w to about 95% w/w. Most preferably the composition will be about 0.05% w/w to about 25% w/w drug.
Referring now to Fig. 1, processes according to the present invention for preparing dispersible dry powders of hydrophobic and hydrophilic components comprise an atomization operation 10 which produces droplets of a liquid medium which are dried in a drying operation 20. Drying of the liquid droplets results in formation of the discrete particles which form the dry powder compositions which are then collected in a separation operation 30. Each of these unit operations will be described in greater detail below.
The atomization process 10 may utilize any one of several forms of atomizers, so long as the atomizer is specially designed to deliver the liquid containing the hydrophobic components and the liquid containing the hydrophilic components separately to the lower portion of the atomizer, for which Fig. 2 and Fig. 3 serve as nonlimiting examples. The atomization process increases the surface area of the starting liquid. Due to atomization there is an increase in the surface energy of the liquid, the magnitude of which is directly proportional to the surface area increase. The source of this energy increase depends on the type of atomizer used. Any atomizer (centrifugal, sonic, pressure, two fluid) capable of producing droplets with a mass median diameter of less than about 20 μm could be used. Preferred for the present invention is the use of two fluid atomizers where the liquid medium is delivered through a nozzle concurrently with a high pressure gas stream. Particularly preferred is the use of two-fluid atomization nozzles as described in copending application serial no. 08/644,681, which is capable of producing droplets having a median diameter less than 20 μm. The atomization gas will usually be nitrogen which has been filtered or otherwise cleaned to remove particulates and other contaminants. Alternatively, other gases, such as air may be used. The atomization gas will be pressurized for delivery through the atomization nozzle, typically to a pressure above 5 psig, preferably being above 10 psig.
Although flow of the atomization gas is generally limited to sonic velocity, the higher delivery pressures result in an increased atomization gas density. Such increased gas density has been found to reduce the droplet size formed in the atomization operation. Smaller droplet sizes, in turn, result in smaller particle sizes. The atomization conditions, including atomization gas flow rate, atomization gas pressure, liquid flow rate, and the like, will be controlled to produce liquid droplets having an average diameter below 20 μm as measured by phase doppler velocimetry.
The drying operation 20 will be performed next to evaporate liquid from the droplets produced by the atomization operation 10. Usually, the drying will require introducing energy to the droplets, typically by mixing the droplets with a heated gas which causes evaporation of the water or other liquid medium. Preferably, the heated gas stream will flow concurrently with the atomized liquid, but it would also be possible to employ counter-current flow, cross-current flow, or other flow patterns.
The drying rate may be controlled based on a number of variables, including the droplet size distribution, the inlet temperature of the gas stream, the outlet temperature of the gas stream, the inlet temperature of the liquid droplets, and the manner in which the atomized spray and hot drying gas are mixed. Preferably, the drying gas stream will have an inlet temperature of at least 70°C. The outlet temperature will usually be at least about 40°C. The drying gas will usually be air or nitrogen which has been filtered or otherwise treated to remove particulates and other contaminants. The gas will be moved through the system using conventional blowers or compressors. The separation operation 30 will be selected in order to achieve very high efficiency collection of the ultrafine particles produced by the drying operation 20. Conventional separation operations may be used, although in some cases they should be modified in order to assure collection of sub-micron particles. In an exemplary embodiment, separation is achieved using a filter medium such as a membrane medium (bag filter) , a sintered metal fiber filter, or the like. Alternatively, and often preferably, separation may be achieved using cyclone separators, although it is usually desirable to provide for high energy separation in order to assure the efficient collection of sub-micron particles. The separation operation should achieve collection of at least 80% of all particles above 1 μm in average particle size, preferably being above 85%, more preferably being above 90%, and even more preferably being above 95%, in collection efficiency.
In some cases, a cyclone separator can be used to separate very fine particles, e.g. 0.1 μm, from the final collected particles. The cyclone operating parameters can be selected to provide an approximate cutoff where particles above about 0.1 μm are collected while particles below 0.1 μm are carried over in the overhead exhaust . The presence of particles below 0.1 μm in the pulmonary powder is undesirable since they will generally not deposit in the alveolar regions of the lungs, but instead will be exhaled.
The present invention relies on proper selection of the liquid medium or media for solubilizing the hydrophobic drug or other component and hydrophilic excipient or other component as well as on the manner of introducing the component to the spray dryer. In particular, the compositions are spray dried by forming separate solutions of the hydrophobic drug or other component and the hydrophilic excipient or other component. The separate solutions are then concurrently but separately introduced to the spray nozzle, typically by passing through a common spray nozzle or nozzles in the spray dryers described above. This method has the advantage that both the hydrophobic drug and the hydrophilic excipient may be easily dissolved since it is generally straight forward to select compatible solvents capable of fully dissolving only one of the components. By properly directing the two solutions through a nozzle, such as a coaxial nozzle, spray dried powders having uniform characteristics may be achieved. This approach has the additional advantage that it minimizes the amount of organic solvent required since only the hydrophobic drug or other component requires an organic solvent for dissolution. The hydrophilic excipient is dissolved in water. An exemplary coaxial spray nozzle 100 is illustrated in Fig. 2 and includes a housing 102 defining a chamber 103. A pair of inlets 104 are disposed at the top of the housing 102 for receiving the excipient solution (which is usually delivered at a higher volumetric flow rate than is the solution of the hydrophobic component) . The excipient solution enters the chamber 103 at a pressure sufficient to achieve a desired flow rate through an outlet orifice 105 at the bottom of the housing 102. The hydrophobic component solution is fed through a feed tube 106 which usually terminates in a reduced diameter section 108 which is disposed coaxially within the orifice 105. The absolute and relative sizes of the orifice 105 and section 108 of feed tube 106 will depend on the total flow rates, operating pressures, and nature of materials being spray dried. A specific example is described in the Experimental section hereinafter.
A second exemplary spray nozzle 200 is illustrated in Figs. 3 and 3A. The nozzle 200 comprises a housing 202, inlets 204 and feed tube 206, generally similar to those described above for nozzle 100. Nozzle 200, however, is not coaxial and instead includes a second, parallel feed tube 208 which receives solution from chamber 203 defined within the housing 202. Both the feed tube 206 and feed tube 208 have outlet orifices 210 and 212, respectively, at their distal ends which direct the solution flow generally horizontally into a mixing chamber 214 disposed at the bottom of the housing 202. The mixing chamber is shown to have a conical geometry terminating at its bottom tip in outlet passage 216. The orifices 210 and 212 are preferably oriented as shown in Fig. 3A where the relative angle a is in the range from 5° to 25°, usually about 10°. Such an orifice arrangement results in a vortical mixing flow in the chamber 214 prior to ejection from the passage 216. A variety of other mixing chamber designs could also be utilized.
Once the dry powders have been prepared, they may be packaged in conventional ways. For pulmonary pharmaceutical applications, unit dosage forms may comprise a unit dosage receptacle containing a dry powder. The powder is placed within a suitable dosage receptacle in an amount sufficient to provide a subject with drug for a unit dosage treatment. The dosage receptacle is one that fits within a suitable inhalation device to allow for the aerosolization of the dry powder composition by dispersion into a gas stream to form an aerosol and then capturing the aerosol so produced in a chamber having a mouthpiece attached for subsequent inhalation by a subject in need of treatment. Such a dosage receptacle includes any container enclosing the composition known in the art such as gelatin or plastic capsules with a removable portion that allows a stream of gas (e.g., air) to be directed into the container to disperse the dry powder composition. Such containers are exemplified by those shown in U.S. Patents 4,227,522 issued October 14, 1980; 4,192,309 issued March 11, 1980; and 4,105,027 issued August 8, 1978. Suitable containers also include those used in conjunction with Glaxo ' ε Ventolin Rotohaler® brand powder inhaler or Fison's Spinhaler® brand powder inhaler. Another suitable unit-dose container which provides a superior moisture barrier is formed from an aluminum foil plastic laminate. The pharmaceutical-based powder is filled by weight or by volume into the depression in the formable foil and hermetically sealed with a covering foil-plastic laminate. Such a container for use with a powder inhalation device is described in U.S. patent 4,778,054 and is used with Glaxo ' s Diskhaler" (U.S. Patents 4,627,432; 4,811,731; and 5,035,237) . Preferred dry powder inhalers are those described in U.S. Patent application serial nos. 08/309,691 and 08/487,184, assigned to the assignee of the present invention. The latter application has been published as WO 96/09085.
The following examples are offered by way of illustration, not by way of limitation.
EXPERIMENTAL
The following materials were used: Budesonide (micronized to a median particle size of 1-2 μm; Steraloids)
Lactose monohydrate (NF grade; Foremost Ingredient Group) Sodium Chloride (reagent grade from VWR and USP grade from EM Industries) Deionized water
Ethanol, 200 proof (USP/NF; Spectrum Chemical Mfg. Corp.) Acetone (for histology; EM Industries) All batches were spray dried on Buchi 190 Mini Spray
Dryers, with nozzles and cyclones that were designed to generate and catch very fine particles. A Buchi 190 Mini Spray Dryer was used that was modified so that it was supplied with nitrogen as the gas source and equipped with an oxygen sensor and other safety equipment to minimize the possibility of explosion. The solution feed rate was 5 ml/minute, inlet temperature was adjusted to obtain the outlet temperature noted in each example, and the top of the cyclone was jacketed and cooled to a temperature of about 30 °C for the examples in Table 1, but it was not cooled for the examples in Table 2. The drying nitrogen flow rate was about 18 SCFM, and the atomizing nitrogen was supplied at 0.5 to 1.5 SCFM. The powders were further dried in the collector for 5 minutes by maintaining approximately the outlet temperature and air volume after the feeding of the liquid formulation was completed.
Particle size was determined with a Horiba Particle Size Analyzer, model CAPA 700. Median particle size refers to the volume based particle size distribution of the prepared bulk powders determined via centrifugal sedimentation as follows. A sample of the powder was suspended in an appropriate liquid medium (one that minimizes solubilizing the particle) , sonicated to break up the agglomerates, and then centrifuged. The median particle size was determined by measuring the sedimentation rate during centrifugation. This method provides the median size of the "primary" particle, that is, the size of the particles produced by the manufacturing process, plus potential modification during sample preparation. Because these formulations are composed of both water soluble and water insoluble materials, it is likely that the suspension step during sample preparation does to some extent solubilize part of the particle, and thereby modify the particle size that is determined. Therefore, the resultant particle sizes should be viewed as estimated values, rather than absolute values .
Moisture content was determined by the Karl-Fischer Reagent titrimetric method. Delivered dose efficiency refers to a measure of the percentage of powder which is drawn out of a blister package and which exits the mouthpiece of an inhaler device as described in U.S. Patent Application Serial No. 08/487,184. Delivered dose efficiency is a measure of efficiency for the powder package/device combination. The test was performed by connecting a vacuum system to the device mouthpiece. The vacuum system was set to be similar to a human inhalation with regard to volume and flow rate (1.2 liters total at 30 liters/minute) . A blister package containing 0.5 to 10 mg of the formulation to be evaluated (5 mg of powder was used for the following examples) was loaded into a device which was held in a testing fixture. The device was pumped and fired, and the vacuum "inhalation" was switched on. The aerosol cloud was thus drawn out of the device chamber by the vacuum, and the powder was collected on a filter placed between the mouthpiece and the vacuum source . The weight of the powder collected on the filter was determined. Delivered dose efficiency was calculated by multiplying this weight by one hundred and dividing by the fill weight in the blister. A higher number was a better result than a lower number.
MMAD (mass median aerodynamic diameter) refers to a measure of the particle size of the aerosolized powder. MMAD was determined with an Andersen cascade impactor. In a cascade impactor the aerosolized powder (which was aerosolized using an inhaler device as described in U.S. Patent Application Serial No. 08/487,184) enters the impactor via an air stream, and encounters a series of stages that separate particles by their aerodynamic diameter (the smallest particles pass farthest down the impactor) . The amount of powder collected on each stage is determined gravimetrically, and the mass median aerodynamic diameter is then calculated.
Coaxial Nozzle System:
Manufacturing procedure :
The budesonide was mixed in the organic solvent until all of the budesonide was completely dissolved to form a solution, with sonication if necessary. The excipient was mixed with the water until all of the excipient was completely dissolved to form a solution, with sonication, if necessary. The solutions were spray dried using a coaxial nozzle spray drying system having a nozzle as illustrated in Fig. 2 or Fig. 3. The Fig. 2 orifice 105 had a diameter of 1.0 mm and outlet tube section 108 had an outside diameter of 0.73 mm and an inside diameter of 0.6 mm. The Fig. 3 orifice 216 had a diameter of 1.0 mm and outlet orifices 210 and 212 had diameters of 0.15 mm. The two solutions were fed to the nozzle at constant rates such that they both finished being fed to the nozzle at the same time.
Table 1 and Table 2 show the spray dryer atomization air pressure and outlet air temperature, the quantitative composition of example formulations, a description of the particle morphology, the moisture content, particle size, and delivered dose efficiency or MMAD of the resultant powders. Table 1 examples were spray dried using the nozzle illustrated in Fig. 2, whereas Table 2 examples were spray dried using the nozzle illustrated in Fig. 3.
TABLE 1
10
15
Figure imgf000022_0001
20
Table 2
I
Figure imgf000023_0001
Although the foregoing invention has been described in some detail by way of illustration and example, for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims .

Claims

WHAT IS CLAIMED IS: 1. A method for preparing a dry powder composition, said method comprising: preparing an aqueous solution of a hydrophilic component ; preparing an organic solution of a hydrophobic component in an organic solvent; and spray drying the aqueous solution and the organic solution simultaneously to form particles comprising a mixture of the hydrophilic and hydrophobic component.
2. A method as in claim 1, wherein the hydrophilic component has a concentration in the aqueous solution from 1 mg/ml to 100 mg/ml.
3. A method as in claim 2, wherein the hydrophobic component has a solubility of at least 0.01 mg/ml in the organic solvent .
4. A method as in claim 3, wherein the hydrophobic component has a concentration in the range from 0.01 mg/ml to 10 mg/ml in the organic solvent.
5. A method as in claim 1, wherein the organic solvent is selected from the group consisting of alcohols, ketones, ethers, aldehydes, hydrocarbons, and polar aprotic solvents .
6. A method as in claim 1, wherein the aqueous solution and the organic solution are sprayed through a common nozzle.
7. A method as in claim 6, where the nozzle is a coaxial spray nozzle.
8. A method as in claim 1, wherein the hydrophobic component comprises a hydrophobic drug.
9. A method as in claim 8, wherein the hydrophobic drug is a steroid selected from the group consisting of budesonide, testosterone, progesterone, estrogen, flunisolide, triamcinolone, beclomethasone, betamethasone; dexamethasone, fluticasone, methylprednisolone, prednisone, hydrocortisone .
10. A method as in claim 8, wherein the hydrophobic drug comprises a peptide, a retinoid, vitamin D, vitamin E, vitamin K, precursors and derivatives of these vitamins, a prostaglandin, a leukotriene, tetrahydrocannabinol , lung surfactant lipid, an antioxidant, a hydrophobic antibiotic, and a chemotherapeutic drug.
11. A method as in claim 1, wherein the hydrophilic component comprises an excipient for the hydrophobic drug.
12. A method as in claim 11, wherein the hydrophilic excipient comprises a material selected from the group consisting of lactose, sodium citrate, mannitol, povidone, pectin, citric acid, sodium chloride, and mixtures thereof .
13. A method as in claim 1, further comprising screening the spray dried particles to disrupt agglomerates.
14. A method as in any one of claims 1 to 13, further comprising: measuring a single dosage of the dry powder; and sealing the single dosage in a package.
15. A dry powder composition prepared according to any of claims 1 to 13.
16. A unit dose of a dry powder composition comprising a unit dose receptacle having a therapeutically effective amount of a dry powder composition according to any one of claims 1 to 13.
17. A method for aerosolizing a dry powder composition said method comprising: providing an amount of a dry powder composition according to any of claims 1 to 13 ; and dispersing the dry powder composition into a flowing gas stream.
PCT/US1997/023902 1996-12-31 1997-12-29 Aerosolized hydrophobic drug WO1998029096A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97954799A EP0971698A4 (en) 1996-12-31 1997-12-29 Aerosolized hydrophobic drug
JP53022398A JP2001507700A (en) 1996-12-31 1997-12-29 Hydrophobic aerosol drug
AU60140/98A AU6014098A (en) 1996-12-31 1997-12-29 Aerosolized hydrophobic drug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3483796P 1996-12-31 1996-12-31
US60/034,837 1996-12-31

Publications (1)

Publication Number Publication Date
WO1998029096A1 true WO1998029096A1 (en) 1998-07-09

Family

ID=21878919

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/US1997/023903 WO1998029140A1 (en) 1996-12-31 1997-12-29 Processes and compositions for spray drying hydrophobic drugs in organic solvent suspensions of hydrophilic excipients
PCT/US1997/023902 WO1998029096A1 (en) 1996-12-31 1997-12-29 Aerosolized hydrophobic drug
PCT/US1997/023905 WO1998029098A1 (en) 1996-12-31 1997-12-29 Processes for spray drying aqueous suspensions of hydrophobic drugs with hydrophilic excipients and compositions prepared by such processes
PCT/US1997/023904 WO1998029141A1 (en) 1996-12-31 1997-12-29 Processes for spray drying solutions of hydrophobic drugs with hydrophilic excipients and compositions prepared by such processes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US1997/023903 WO1998029140A1 (en) 1996-12-31 1997-12-29 Processes and compositions for spray drying hydrophobic drugs in organic solvent suspensions of hydrophilic excipients

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/US1997/023905 WO1998029098A1 (en) 1996-12-31 1997-12-29 Processes for spray drying aqueous suspensions of hydrophobic drugs with hydrophilic excipients and compositions prepared by such processes
PCT/US1997/023904 WO1998029141A1 (en) 1996-12-31 1997-12-29 Processes for spray drying solutions of hydrophobic drugs with hydrophilic excipients and compositions prepared by such processes

Country Status (5)

Country Link
US (6) US5976574A (en)
EP (3) EP0952821A4 (en)
JP (3) JP2001507701A (en)
AU (4) AU5806898A (en)
WO (4) WO1998029140A1 (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032107A1 (en) * 1997-12-19 1999-07-01 West Pharmaceutical Services Drug Delivery & Clinical Research Centre Limited Compositions comprising cannabinoids
EP1080717A1 (en) * 1997-05-07 2001-03-07 Maryland Financial Inc. Method for dispensing antioxidant vitamins by inhalation
US6315983B1 (en) * 1996-01-24 2001-11-13 Byk Gulden Lomberg Chemische Fabrik Gmbh Process for the production of powdered pulmonary surfactant preparations
EP1175204A1 (en) * 1999-05-04 2002-01-30 Aradigm Corporation Aerosol formulations and devices for increasing libido in women via acute testosterone administration
WO2003037303A1 (en) * 2001-11-01 2003-05-08 Nektar Therapeutics Spray drying methods and compositions thereof
WO2003080028A2 (en) * 2002-03-20 2003-10-02 Advanced Inhalation Research, Inc. Method and apparatus for producing dry particles
US6630121B1 (en) 1999-06-09 2003-10-07 The Regents Of The University Of Colorado Supercritical fluid-assisted nebulization and bubble drying
JP2003530304A (en) * 1999-05-04 2003-10-14 アラダイム コーポレーション Aerosol formulations and devices for enhancing libido in women via acute testosterone administration
US6747058B1 (en) 1999-08-20 2004-06-08 Unimed Pharmaceuticals, Inc. Stable composition for inhalation therapy comprising delta-9-tetrahydrocannabinol and semiaqueous solvent therefor
US6756062B2 (en) 2000-11-03 2004-06-29 Board Of Regents University Of Texas System Preparation of drug particles using evaporation precipitation into aqueous solutions
EP1242112A4 (en) * 1999-12-21 2005-02-09 Rxkinetix Inc Particulate drug-containing products and method of manufacture
US7090831B1 (en) 1999-04-14 2006-08-15 Smithkline Beecham Corporation Pharmaceutical aerosol formulation
US7258850B2 (en) 1999-05-04 2007-08-21 Aradigm Corporation Methods and compositions for treating erectile dysfunction
US7648696B2 (en) 1999-08-20 2010-01-19 Unimed Pharmaceuticals, Llc Composition for inhalation comprising delta-9-tetrahydrocannabinol in a semiaqueous solvent
US7790145B2 (en) 1997-09-29 2010-09-07 Novartis Ag Respiratory dispersion for metered dose inhalers
WO2010142017A1 (en) 2009-06-09 2010-12-16 Defyrus, Inc . Administration of interferon for prophylaxis against or treatment of pathogenic infection
EP2283896A2 (en) 2001-04-09 2011-02-16 Novartis Vaccines and Diagnostics, Inc. HSA-free formulations of interferon-beta
US8273561B2 (en) 2007-10-05 2012-09-25 Nuron Biotech, Inc. High pressure treatment of aggregated interferons
US8501240B2 (en) 1999-10-29 2013-08-06 Novartis Ag Compositions comprising an active agent
WO2013114374A1 (en) 2012-02-01 2013-08-08 Protalix Ltd. Dnase i polypeptides, polynucleotides encoding same, methods of producing dnase i and uses thereof in therapy
US8551526B2 (en) 2000-11-03 2013-10-08 Board Of Regents, The University Of Texas System Preparation of drug particles using evaporation precipitation into aqueous solutions
WO2013151744A1 (en) 2012-04-05 2013-10-10 University Of Florida Research Foundation, Inc. Materials and methods for treatment of cystic fibrosis and for induction of ion secretion
WO2014164736A1 (en) 2013-03-11 2014-10-09 University Of Florida Research Foundation, Incorporated Materials and methods for improving lung function and for prevention and/or treatment of radiation-induced lung complications
US8877162B2 (en) 2000-05-10 2014-11-04 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery
US9120031B2 (en) 2000-11-09 2015-09-01 Nektar Therapeutics Compositions of particulate coformulation
WO2016057693A1 (en) 2014-10-10 2016-04-14 Alnylam Pharmaceuticals, Inc. Methods and compositions for inhalation delivery of conjugated oligonucleotide
WO2016108244A1 (en) 2015-01-04 2016-07-07 Protalix Ltd. Modified dnase and uses thereof
US9421166B2 (en) 2001-12-19 2016-08-23 Novartis Ag Pulmonary delivery of aminoglycoside
US9682153B2 (en) 2008-09-19 2017-06-20 Nektar Therapeutics Polymer conjugates of therapeutic peptides
US9700529B2 (en) 2002-05-03 2017-07-11 Nektar Therapeutics Particulate materials
US9808030B2 (en) 2011-02-11 2017-11-07 Grain Processing Corporation Salt composition
US10758506B2 (en) 2014-11-24 2020-09-01 Entrinsic Bioscience, Inc. Amino acid compositions for the treatment of porcine epidemic diarrhea
US10806770B2 (en) 2014-10-31 2020-10-20 Monash University Powder formulation
WO2020223237A1 (en) 2019-04-29 2020-11-05 Insmed Incorporated Dry powder compositions of treprostinil prodrugs and methods of use thereof
US10940137B2 (en) 2010-09-24 2021-03-09 University Of Florida Research Foundation, Incorporated Materials and methods for improving gastrointestinal function
WO2021216547A1 (en) 2020-04-20 2021-10-28 Sorrento Therapeutics, Inc. Pulmonary administration of ace2 polypeptides
WO2022074656A1 (en) 2020-10-07 2022-04-14 Protalix Ltd. Long-acting dnase
US11576884B2 (en) 2016-10-04 2023-02-14 University Of Florida Research Foundation, Inc. Amino acid compositions and uses thereof
WO2023150747A1 (en) 2022-02-07 2023-08-10 Insmed Incorporated Dry powder compositions of bedaquiline and salts and methods of use thereof

Families Citing this family (218)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6743777B1 (en) * 1992-03-19 2004-06-01 Eli Lilly And Company Cyclic peptide antifungal agents and process for preparation thereof
US6673335B1 (en) * 1992-07-08 2004-01-06 Nektar Therapeutics Compositions and methods for the pulmonary delivery of aerosolized medicaments
CA2145418A1 (en) * 1992-09-29 1994-04-14 John S. Patton Pulmonary delivery of active fragments of parathyroid hormone
US6051256A (en) 1994-03-07 2000-04-18 Inhale Therapeutic Systems Dispersible macromolecule compositions and methods for their preparation and use
ES2218543T3 (en) * 1994-03-07 2004-11-16 Nektar Therapeutics PROCEDURE AND PREPARATION FOR THE ADMINISTRATION OF INSULIN BY PULMONARY ROUTE.
US20030113273A1 (en) * 1996-06-17 2003-06-19 Patton John S. Methods and compositions for pulmonary delivery of insulin
JPH10500672A (en) * 1994-05-18 1998-01-20 インヘイル セラピューティック システムズ,インコーポレイティド Methods and compositions relating to dry powder formulations of interferon
US6290991B1 (en) 1994-12-02 2001-09-18 Quandrant Holdings Cambridge Limited Solid dose delivery vehicle and methods of making same
US20020052310A1 (en) * 1997-09-15 2002-05-02 Massachusetts Institute Of Technology The Penn State Research Foundation Particles for inhalation having sustained release properties
US20030203036A1 (en) * 2000-03-17 2003-10-30 Gordon Marc S. Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
WO1998029140A1 (en) * 1996-12-31 1998-07-09 Inhale Therapeutic Systems Processes and compositions for spray drying hydrophobic drugs in organic solvent suspensions of hydrophilic excipients
GB9703673D0 (en) * 1997-02-21 1997-04-09 Bradford Particle Design Ltd Method and apparatus for the formation of particles
US20030035778A1 (en) * 1997-07-14 2003-02-20 Robert Platz Methods and compositions for the dry powder formulation of interferon
US7052678B2 (en) 1997-09-15 2006-05-30 Massachusetts Institute Of Technology Particles for inhalation having sustained release properties
US6309623B1 (en) * 1997-09-29 2001-10-30 Inhale Therapeutic Systems, Inc. Stabilized preparations for use in metered dose inhalers
US6565885B1 (en) * 1997-09-29 2003-05-20 Inhale Therapeutic Systems, Inc. Methods of spray drying pharmaceutical compositions
TW581681B (en) * 1998-02-20 2004-04-01 Nektar Therapeutics Liquid crystal forms of cyclosporin
JP2002512183A (en) * 1998-04-18 2002-04-23 グラクソ グループ リミテッド Pharmaceutical aerosol formulation
US6956021B1 (en) * 1998-08-25 2005-10-18 Advanced Inhalation Research, Inc. Stable spray-dried protein formulations
US6234167B1 (en) 1998-10-14 2001-05-22 Chrysalis Technologies, Incorporated Aerosol generator and methods of making and using an aerosol generator
US6509005B1 (en) * 1998-10-27 2003-01-21 Virginia Commonwealth University Δ9 Tetrahydrocannabinol (Δ9 THC) solution metered dose inhaler
US7521068B2 (en) * 1998-11-12 2009-04-21 Elan Pharma International Ltd. Dry powder aerosols of nanoparticulate drugs
US6984404B1 (en) 1998-11-18 2006-01-10 University Of Florida Research Foundation, Inc. Methods for preparing coated drug particles and pharmaceutical formulations thereof
US20020006901A1 (en) * 1999-02-05 2002-01-17 Aldo T. Iacono Use of aerosolized cyclosporine for prevention and treatment of pulmonary disease
US7374779B2 (en) * 1999-02-26 2008-05-20 Lipocine, Inc. Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
JP4936595B2 (en) * 1999-03-03 2012-05-23 イーライ リリー アンド カンパニー Echinocandine pharmaceutical formulations containing micelle-forming surfactants
JP4272359B2 (en) 1999-03-03 2009-06-03 イーライ リリー アンド カンパニー Echinocandin / Carbohydrate Complex
US7919119B2 (en) * 1999-05-27 2011-04-05 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US6610317B2 (en) 1999-05-27 2003-08-26 Acusphere, Inc. Porous paclitaxel matrices and methods of manufacture thereof
US6395300B1 (en) 1999-05-27 2002-05-28 Acusphere, Inc. Porous drug matrices and methods of manufacture thereof
US6406745B1 (en) * 1999-06-07 2002-06-18 Nanosphere, Inc. Methods for coating particles and particles produced thereby
US9006175B2 (en) 1999-06-29 2015-04-14 Mannkind Corporation Potentiation of glucose elimination
CA2376937C (en) * 1999-06-30 2009-01-06 Inhale Therapeutics Systems Inc. Spray drying process for preparing dry powders
US7678364B2 (en) 1999-08-25 2010-03-16 Alkermes, Inc. Particles for inhalation having sustained release properties
US20010036481A1 (en) * 1999-08-25 2001-11-01 Advanced Inhalation Research, Inc. Modulation of release from dry powder formulations
JP2003507410A (en) * 1999-08-25 2003-02-25 アドバンスト インハレーション リサーチ,インコーポレイテッド Controlled release from dry powder formulations
US6749835B1 (en) 1999-08-25 2004-06-15 Advanced Inhalation Research, Inc. Formulation for spray-drying large porous particles
US7304750B2 (en) 1999-12-17 2007-12-04 Nektar Therapeutics Systems and methods for non-destructive mass sensing
US6761909B1 (en) 1999-12-21 2004-07-13 Rxkinetix, Inc. Particulate insulin-containing products and method of manufacture
US7732404B2 (en) 1999-12-30 2010-06-08 Dexcel Ltd Pro-nanodispersion for the delivery of cyclosporin
EP2133098A1 (en) 2000-01-10 2009-12-16 Maxygen Holdings Ltd G-CSF conjugates
GB0003935D0 (en) * 2000-02-08 2000-04-12 King S College London Formulation for dry powder inhaler
US7507687B2 (en) * 2000-03-22 2009-03-24 Cabot Corporation Electrocatalyst powders, methods for producing powder and devices fabricated from same
MY136453A (en) * 2000-04-27 2008-10-31 Philip Morris Usa Inc "improved method and apparatus for generating an aerosol"
US8404217B2 (en) 2000-05-10 2013-03-26 Novartis Ag Formulation for pulmonary administration of antifungal agents, and associated methods of manufacture and use
ES2525087T5 (en) * 2000-05-10 2018-06-28 Novartis Ag Phospholipid-based powders for drug administration
US20030003057A1 (en) * 2000-07-07 2003-01-02 Jeffry Weers Methods for administering leuprolide by inhalation
US7575761B2 (en) * 2000-06-30 2009-08-18 Novartis Pharma Ag Spray drying process control of drying kinetics
WO2002009669A2 (en) * 2000-08-01 2002-02-07 Inhale Therapeutic Systems, Inc. Apparatus and process to produce particles having a narrow size distribution and particles made thereby
WO2002013762A2 (en) * 2000-08-10 2002-02-21 Delsys Pharmaceutical Corporation Improved solid pharmaceutical dosage formulation of hydrophobic drugs
US6767637B2 (en) * 2000-12-13 2004-07-27 Purdue Research Foundation Microencapsulation using ultrasonic atomizers
JP2004516262A (en) * 2000-12-21 2004-06-03 ネクター セラピューティクス Induced phase transition method for the production of microparticles containing hydrophilic activators
JP2004517127A (en) 2000-12-21 2004-06-10 ネクター セラピューティックス Pulmonary delivery of polyene antifungals
US6701921B2 (en) * 2000-12-22 2004-03-09 Chrysalis Technologies Incorporated Aerosol generator having heater in multilayered composite and method of use thereof
US6681998B2 (en) 2000-12-22 2004-01-27 Chrysalis Technologies Incorporated Aerosol generator having inductive heater and method of use thereof
US7077130B2 (en) * 2000-12-22 2006-07-18 Chrysalis Technologies Incorporated Disposable inhaler system
US6491233B2 (en) 2000-12-22 2002-12-10 Chrysalis Technologies Incorporated Vapor driven aerosol generator and method of use thereof
US6799572B2 (en) 2000-12-22 2004-10-05 Chrysalis Technologies Incorporated Disposable aerosol generator system and methods for administering the aerosol
US6501052B2 (en) 2000-12-22 2002-12-31 Chrysalis Technologies Incorporated Aerosol generator having multiple heating zones and methods of use thereof
US20020141946A1 (en) * 2000-12-29 2002-10-03 Advanced Inhalation Research, Inc. Particles for inhalation having rapid release properties
EP1345629A2 (en) * 2000-12-29 2003-09-24 Advanced Inhalation Research, Inc. Particles for inhalation having sustained release properties
IL156059A0 (en) 2001-02-27 2003-12-23 Maxygen Aps NEW INTERFERON beta-LIKE MOLECULES
EP1418945A2 (en) * 2001-03-13 2004-05-19 Angiotech Pharmaceuticals, Inc. Micellar drug delivery vehicles and uses thereof
US20030157170A1 (en) * 2001-03-13 2003-08-21 Richard Liggins Micellar drug delivery vehicles and precursors thereto and uses thereof
US6667344B2 (en) 2001-04-17 2003-12-23 Dey, L.P. Bronchodilating compositions and methods
CN1325049C (en) * 2001-07-30 2007-07-11 Dsmip资产有限公司 Composition containing epigallocatechin gallate
JP4644397B2 (en) * 2001-09-05 2011-03-02 信越化学工業株式会社 Method for producing pharmaceutical solid preparation containing poorly soluble drug
US6568390B2 (en) 2001-09-21 2003-05-27 Chrysalis Technologies Incorporated Dual capillary fluid vaporizing device
US6640050B2 (en) 2001-09-21 2003-10-28 Chrysalis Technologies Incorporated Fluid vaporizing device having controlled temperature profile heater/capillary tube
PT1455755E (en) 2001-11-20 2013-06-18 Civitas Therapeutics Inc Improved particulate compositions for pulmonary delivery
US20030099601A1 (en) * 2001-11-27 2003-05-29 Gordon Marc S. Inhalation lung surfactant therapy
US6804458B2 (en) 2001-12-06 2004-10-12 Chrysalis Technologies Incorporated Aerosol generator having heater arranged to vaporize fluid in fluid passage between bonded layers of laminate
US6681769B2 (en) 2001-12-06 2004-01-27 Crysalis Technologies Incorporated Aerosol generator having a multiple path heater arrangement and method of use thereof
US6701922B2 (en) 2001-12-20 2004-03-09 Chrysalis Technologies Incorporated Mouthpiece entrainment airflow control for aerosol generators
US20040014679A1 (en) * 2002-02-20 2004-01-22 Boehringer Ingelheim Pharma Gmbh & Co., Kg Inhalation powder containing the CGRP antagonist BIBN4096 and process for the preparation thereof
EP1485073A2 (en) * 2002-03-20 2004-12-15 Advanced Inhalation Research, Inc. Method for administration of growth hormone via pulmonary delivery
EP1894591B1 (en) 2002-03-20 2013-06-26 MannKind Corporation Cartridge for an inhalation apparatus
US20050163725A1 (en) * 2002-03-20 2005-07-28 Blizzard Charles D. Method for administration of growth hormone via pulmonary delivery
EP2087882A1 (en) 2002-03-26 2009-08-12 Teva Pharmaceutical Industries Ltd. Drug microparticles
CA2483102C (en) * 2002-04-25 2013-06-18 The Scripps Research Institute Treatment and prevention of pulmonary conditions
GB0216562D0 (en) 2002-04-25 2002-08-28 Bradford Particle Design Ltd Particulate materials
US6919348B2 (en) 2002-05-02 2005-07-19 Edward T. Wei Therapeutic 1,2,3,6-tetrahydropyrimidine-2-one compositions and methods therewith
US6991800B2 (en) * 2002-06-13 2006-01-31 Vicuron Pharmaceuticals Inc. Antifungal parenteral products
US7794743B2 (en) 2002-06-21 2010-09-14 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of making the same
US7033602B1 (en) 2002-06-21 2006-04-25 Advanced Cardiovascular Systems, Inc. Polycationic peptide coatings and methods of coating implantable medical devices
US7217426B1 (en) 2002-06-21 2007-05-15 Advanced Cardiovascular Systems, Inc. Coatings containing polycationic peptides for cardiovascular therapy
US7056523B1 (en) 2002-06-21 2006-06-06 Advanced Cardiovascular Systems, Inc. Implantable medical devices incorporating chemically conjugated polymers and oligomers of L-arginine
US8506617B1 (en) 2002-06-21 2013-08-13 Advanced Cardiovascular Systems, Inc. Micronized peptide coated stent
DE10234165B4 (en) * 2002-07-26 2008-01-03 Advanced Micro Devices, Inc., Sunnyvale A method of filling a trench formed in a substrate with an insulating material
US20040023935A1 (en) * 2002-08-02 2004-02-05 Dey, L.P. Inhalation compositions, methods of use thereof, and process for preparation of same
GB0219512D0 (en) * 2002-08-21 2002-10-02 Norton Healthcare Ltd Inhalation compositions with high drug ratios
GB0219511D0 (en) * 2002-08-21 2002-10-02 Norton Healthcare Ltd Method of preparing dry powder inhalation compositions
US20040109826A1 (en) * 2002-12-06 2004-06-10 Dey, L.P. Stabilized albuterol compositions and method of preparation thereof
AU2003297320B8 (en) * 2002-12-17 2008-02-21 Medimmune, Llc High pressure spray-dry of bioactive materials
US6962006B2 (en) * 2002-12-19 2005-11-08 Acusphere, Inc. Methods and apparatus for making particles using spray dryer and in-line jet mill
DK2526996T3 (en) 2002-12-20 2019-12-02 Xeris Pharmaceuticals Inc Formulation for intracutaneous injection
AU2003302329B2 (en) 2002-12-30 2010-01-07 Novartis Ag Prefilming atomizer
JP2006513235A (en) * 2002-12-31 2006-04-20 ネクター セラピューティクス Aerosolizable pharmaceutical formulation for fungal infection therapy
CN1741789A (en) * 2002-12-31 2006-03-01 尼克塔治疗公司 Pharmaceutical formulation with an insoluble active agent
SE0300514D0 (en) * 2003-02-26 2003-02-26 Astrazeneca Ab Powder generating apparatus and methods
US20060254583A1 (en) * 2003-03-20 2006-11-16 Arthur Deboeck Dry powder inhaler system
WO2004091577A1 (en) * 2003-04-17 2004-10-28 Porten Pharmaceutical Ab Composition, method and pharmaceutical preparation for pharmaceutical spray suspensions
CA2523475C (en) * 2003-05-28 2013-02-05 Nektar Therapeutics Pharmaceutical formulation comprising a water-insoluble active agent
TWI359675B (en) 2003-07-10 2012-03-11 Dey L P Bronchodilating β-agonist compositions
US20050043247A1 (en) * 2003-08-18 2005-02-24 Boehringer Ingelheim International Gmbh Spray-dried amorphous BIBN 4096, process for preparing and the use thereof as inhalative
DE10339197A1 (en) * 2003-08-22 2005-03-24 Boehringer Ingelheim Pharma Gmbh & Co. Kg Spray-dried amorphous powder with low residual moisture and good storage stability
GB0327723D0 (en) * 2003-09-15 2003-12-31 Vectura Ltd Pharmaceutical compositions
US7413690B1 (en) 2003-10-29 2008-08-19 The University Of Mississippi Process and apparatus for producing spherical pellets using molten solid matrices
US20050214224A1 (en) * 2003-11-04 2005-09-29 Nektar Therapeutics Lipid formulations for spontaneous drug encapsulation
SE0303269L (en) * 2003-12-03 2005-06-04 Microdrug Ag Medical product
AU2004296206A1 (en) * 2003-12-04 2005-06-23 The Scripps Research Institute Treatment and preventions of asthma
US20050238732A1 (en) * 2003-12-19 2005-10-27 Kaitao Lu Carbonated germicide with pressure control
US20050136118A1 (en) * 2003-12-19 2005-06-23 Wu Su-Syin S. Distribution and preparation of germicidal compositions
ITMI20040795A1 (en) * 2004-04-23 2004-07-23 Eratech S R L DRY SOLID PHARMACEUTICAL COMPOSITION ON ITS STABLE WATER PREPARATION AND SUSPENSION PROCESS OBTAINED BY ITSELF
US8513204B2 (en) * 2004-06-21 2013-08-20 Novartis Ag Compositions comprising amphotericin B, mehods and systems
WO2006002140A2 (en) * 2004-06-21 2006-01-05 Nektar Therapeutics Compositions comprising amphotericin b
CN101010305B (en) 2004-08-20 2010-08-11 曼金德公司 Catalysis of diketopiperazine synthesis
PL2322180T3 (en) 2004-08-23 2015-10-30 Mannkind Corp Diketopiperazine salts for drug delivery
GB0427568D0 (en) * 2004-12-16 2005-01-19 Resolution Chemicals Ltd Particle-size reduction apparatus, and the use thereof
PT1855652E (en) * 2005-01-28 2016-01-26 Bend Res Inc Drying of drug-containing particles
US20070148233A1 (en) * 2005-12-28 2007-06-28 Lerner E I Pharmaceutical formulations of fenofibrate having improved bioavailability
UA95446C2 (en) * 2005-05-04 2011-08-10 Іллюміджен Байосайєнсіз, Інк. Mutations in oas1 genes
AU2006249349B2 (en) * 2005-05-26 2012-01-12 Teva Women's Health, Inc. Oral dosage forms comprising progesterone and methods of making and using the same
US9101949B2 (en) 2005-08-04 2015-08-11 Eilaz Babaev Ultrasonic atomization and/or seperation system
US20070031611A1 (en) * 2005-08-04 2007-02-08 Babaev Eilaz P Ultrasound medical stent coating method and device
US7896539B2 (en) 2005-08-16 2011-03-01 Bacoustics, Llc Ultrasound apparatus and methods for mixing liquids and coating stents
EP1957096A4 (en) * 2005-08-29 2012-03-21 Palatin Technologies Inc Cyclic peptide isolation by spray drying
CN104324362B (en) * 2005-09-14 2018-04-24 曼金德公司 Method for preparation of drug based on improving affinity of the active agent to crystalline microparticle surfaces
DK1795183T3 (en) * 2005-12-09 2009-10-19 Teva Pharma Aqueous dispersions and solutions of poorly soluble compounds and processes for their preparation
CN104383546B (en) 2006-02-22 2021-03-02 曼金德公司 Method for improving the pharmaceutical properties of microparticles comprising diketopiperazines and an active agent
JP2009532489A (en) * 2006-04-03 2009-09-10 テバ ファーマシューティカル インダストリーズ リミティド Drug fine particles
GB0613925D0 (en) * 2006-07-13 2006-08-23 Unilever Plc Improvements relating to nanodispersions
PT2043610E (en) * 2006-07-21 2015-10-22 Bend Res Inc Drying of drug-containing particles
EP1925296A1 (en) * 2006-11-22 2008-05-28 Boehringer Ingelheim Pharma GmbH & Co. KG Stable powder formulation containing a new antichinolinergic agent
US8293819B2 (en) 2006-11-24 2012-10-23 Canon Kabushiki Kaisha Method for producing particles and particles
US7985058B2 (en) * 2007-01-12 2011-07-26 Mark Gray Method and apparatus for making uniformly sized particles
US8415390B2 (en) 2008-05-30 2013-04-09 Microdose Therapeutx, Inc. Methods and compositions for administration of oxybutynin
US9119777B2 (en) 2008-05-30 2015-09-01 Microdose Therapeutx, Inc. Methods and compositions for administration of oxybutynin
US20090105490A1 (en) * 2007-07-12 2009-04-23 Nurit Perlman Polymorphic forms of ramelteon and processes for preparation thereof
US7780095B2 (en) 2007-07-13 2010-08-24 Bacoustics, Llc Ultrasound pumping apparatus
US7753285B2 (en) 2007-07-13 2010-07-13 Bacoustics, Llc Echoing ultrasound atomization and/or mixing system
WO2011163272A1 (en) 2010-06-21 2011-12-29 Mannkind Corporation Dry powder drug delivery system and methods
ES2382618T3 (en) * 2008-03-25 2012-06-11 Formac Pharmaceuticals N.V. Preparation method for solid dispersions
WO2009140587A1 (en) 2008-05-15 2009-11-19 Novartis Ag Pulmonary delivery of a fluoroquinolone
US8485180B2 (en) 2008-06-13 2013-07-16 Mannkind Corporation Dry powder drug delivery system
DK2293833T3 (en) 2008-06-13 2016-05-23 Mannkind Corp DRY POWDER INHALER AND MEDICINAL ADMINISTRATION SYSTEM
KR101628410B1 (en) 2008-06-20 2016-06-08 맨카인드 코포레이션 An interactive apparatus and method for real-time profiling of inhalation efforts
JP2010028022A (en) * 2008-07-24 2010-02-04 Mitsubishi Electric Corp Additive dissolving device
TWI494123B (en) 2008-08-11 2015-08-01 Mannkind Corp Use of ultrarapid acting insulin
GB0814953D0 (en) * 2008-08-18 2008-09-24 Unilever Plc Improvements relating to nanodisperse compositions
US8314106B2 (en) 2008-12-29 2012-11-20 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
MX2011007065A (en) 2008-12-29 2011-08-03 Mannkind Corp Substituted diketopiperazine analogs for use as drug delivery agents.
US11304960B2 (en) 2009-01-08 2022-04-19 Chandrashekar Giliyar Steroidal compositions
US8889213B2 (en) * 2009-01-26 2014-11-18 Teva Pharmaceutical Industries Ltd. Processes for coating a carrier with microparticles
US20100209475A1 (en) * 2009-02-19 2010-08-19 Biomet Manufacturing Corp. Medical implants having a drug delivery coating
DK2405963T3 (en) 2009-03-11 2013-12-16 Mannkind Corp DEVICE, SYSTEM AND PROCEDURE FOR MEASURING RESISTANCE IN AN INHALATOR
WO2010107964A1 (en) 2009-03-18 2010-09-23 Pleiades Cardio-Therapeutics, Inc. Unit doses, aerosols, kits, and methods for treating heart conditions by pulmonary administration
BRPI1013154B1 (en) 2009-06-12 2020-04-07 Mannkind Corp MICROPARTICLES OF DICETOPIPERAZINE WITH SPECIFIC SURFACE AREAS DEFINED, DRY POWDER UNDERSTANDING THE REFERRED MICROPARTICLES, METHOD FOR FORMATION OF THE REFERENCESMICROPARTICLES AND THE FORMATION OF MICROPARTYSTEMS
EP2496295A1 (en) 2009-11-03 2012-09-12 MannKind Corporation An apparatus and method for simulating inhalation efforts
US20110262502A1 (en) * 2010-02-08 2011-10-27 Prairie Pharmaceuticals LLC Pulmonary delivery of 17-hydroxyprogesterone caproate (17-hpc)
EP2538923A2 (en) * 2010-02-22 2013-01-02 Lupin Limited Taste-masked powder for suspension compositions of methylprednisolone
EP2575710A1 (en) * 2010-06-07 2013-04-10 Cva Technologies, LLC Methods and systems for cerebral cooling
WO2011154014A1 (en) * 2010-06-11 2011-12-15 Gea Process Engineering A/S Controlled humidity drying
US20120046225A1 (en) 2010-07-19 2012-02-23 The Regents Of The University Of Colorado, A Body Corporate Stable glucagon formulations for the treatment of hypoglycemia
US9332776B1 (en) 2010-09-27 2016-05-10 ZoomEssence, Inc. Methods and apparatus for low heat spray drying
US8939388B1 (en) 2010-09-27 2015-01-27 ZoomEssence, Inc. Methods and apparatus for low heat spray drying
US20180153904A1 (en) 2010-11-30 2018-06-07 Lipocine Inc. High-strength testosterone undecanoate compositions
US9358241B2 (en) 2010-11-30 2016-06-07 Lipocine Inc. High-strength testosterone undecanoate compositions
US9034858B2 (en) 2010-11-30 2015-05-19 Lipocine Inc. High-strength testosterone undecanoate compositions
US20120148675A1 (en) 2010-12-10 2012-06-14 Basawaraj Chickmath Testosterone undecanoate compositions
US8709310B2 (en) 2011-01-05 2014-04-29 Hospira, Inc. Spray drying vancomycin
KR101978527B1 (en) 2011-03-10 2019-09-03 엑스에리스 파머수티클스, 인크. Stable formulations for parenteral injection of peptide drugs
EP3225235B1 (en) 2011-03-10 2020-12-16 Xeris Pharmaceuticals, Inc. Stable peptide formulations for parenteral injection
SG194034A1 (en) 2011-04-01 2013-11-29 Mannkind Corp Blister package for pharmaceutical cartridges
CA2754237A1 (en) 2011-05-27 2012-11-27 The Regents Of The University Of California Cyanoquinoline compounds having activity in correcting mutant-cftr processing and increasing ion transport and uses thereof
WO2012174472A1 (en) 2011-06-17 2012-12-20 Mannkind Corporation High capacity diketopiperazine microparticles
AU2012328885B2 (en) 2011-10-24 2017-08-31 Mannkind Corporation Methods and compositions for treating pain
MX349383B (en) 2011-10-31 2017-07-26 Xeris Pharmaceuticals Inc Formulations for the treatment of diabetes.
EP2822539B1 (en) 2012-03-07 2018-11-21 National Institute Of Pharmaceutical Education And Research (NIPER) Nanocrystalline solid dispersion compositions
US8753643B1 (en) 2012-04-11 2014-06-17 Life-Science Innovations, Llc Spray dried compositions and methods of use
WO2013153146A1 (en) 2012-04-13 2013-10-17 Glaxosmithkline Intellectual Property Development Limited Aggregate particles
US9125805B2 (en) 2012-06-27 2015-09-08 Xeris Pharmaceuticals, Inc. Stable formulations for parenteral injection of small molecule drugs
CN108057154B (en) 2012-07-12 2021-04-16 曼金德公司 Dry powder drug delivery system and method
WO2014066856A1 (en) 2012-10-26 2014-05-01 Mannkind Corporation Inhalable influenza vaccine compositions and methods
CN104822276A (en) * 2012-11-07 2015-08-05 理研维他命股份有限公司 Powdered plant sterol composition and production method therefor
BR112015010601B1 (en) * 2012-11-09 2022-07-19 Civitas Therapeutics, Inc. PHARMACEUTICAL COMPOSITION AND USE OF THE COMPOSITION
US9018162B2 (en) 2013-02-06 2015-04-28 Xeris Pharmaceuticals, Inc. Methods for rapidly treating severe hypoglycemia
WO2014124096A1 (en) 2013-02-06 2014-08-14 Perosphere Inc. Stable glucagon formulations
ES2928365T3 (en) 2013-03-15 2022-11-17 Mannkind Corp Microcrystalline diketopiperazine compositions, methods of preparation and use thereof
EP3021834A1 (en) 2013-07-18 2016-05-25 MannKind Corporation Heat-stable dry powder pharmaceutical compositions and methods
CN105517607A (en) 2013-08-05 2016-04-20 曼金德公司 Insufflation apparatus and methods
US10307464B2 (en) 2014-03-28 2019-06-04 Mannkind Corporation Use of ultrarapid acting insulin
JP6982495B2 (en) 2014-08-06 2021-12-17 ゼリス ファーマシューティカルズ インコーポレイテッド Syringes, kits, and methods for intradermal and / or subcutaneous injection of paste
US20170246187A1 (en) 2014-08-28 2017-08-31 Lipocine Inc. (17-ß)-3-OXOANDROST-4-EN-17-YL TRIDECANOATE COMPOSITIONS AND METHODS OF THEIR PREPARATION AND USE
US9498485B2 (en) 2014-08-28 2016-11-22 Lipocine Inc. Bioavailable solid state (17-β)-hydroxy-4-androsten-3-one esters
US10561806B2 (en) 2014-10-02 2020-02-18 Mannkind Corporation Mouthpiece cover for an inhaler
EP3212169B1 (en) 2014-10-31 2021-01-13 Bend Research, Inc. Process for forming active domains dispersed in a matrix
US9649364B2 (en) 2015-09-25 2017-05-16 Xeris Pharmaceuticals, Inc. Methods for producing stable therapeutic formulations in aprotic polar solvents
WO2016196976A1 (en) 2015-06-04 2016-12-08 Xeris Pharmaceuticals, Inc. Glucagon delivery apparatuses and related methods
EP3307295A1 (en) 2015-06-10 2018-04-18 Xeris Pharmaceuticals, Inc. Use of low dose glucagon
EP3346987A1 (en) * 2015-09-09 2018-07-18 Novartis AG Targeted delivery of spray-dried formulations to the lungs
US11590205B2 (en) 2015-09-25 2023-02-28 Xeris Pharmaceuticals, Inc. Methods for producing stable therapeutic glucagon formulations in aprotic polar solvents
PT108885B (en) 2015-10-12 2019-02-13 Hovione Farm S A METHOD OF PRODUCTION OF INHALABLE COMPOSITE PARTICULARS USING A THREE FLUID ATOMIZER
CN114847965A (en) 2016-02-01 2022-08-05 英凯达治疗公司 Electronic monitoring in conjunction with inhalation pharmacological therapy for managing arrhythmias
US20190183850A1 (en) * 2016-07-25 2019-06-20 Canopy Growth Corporation New cannabis tablet formulations and compositions and methods of making the same
EP3544614A4 (en) 2016-11-28 2020-08-05 Lipocine Inc. Oral testosterone undecanoate therapy
JP2020519628A (en) 2017-05-10 2020-07-02 インカーダ セラピューティクス, インコーポレイテッド Unit doses, aerosols, kits and methods for treating cardiac conditions by pulmonary administration
CN110996984A (en) 2017-05-22 2020-04-10 英斯麦德公司 Lipoglycopeptide cleavable derivatives and uses thereof
KR102646865B1 (en) 2017-06-02 2024-03-11 엑스에리스 파머수티클스, 인크. Precipitation-resistant small molecule drug formulation
US10486173B2 (en) 2017-08-04 2019-11-26 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US9861945B1 (en) 2017-08-04 2018-01-09 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US9993787B1 (en) 2017-08-04 2018-06-12 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
US10155234B1 (en) 2017-08-04 2018-12-18 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
AU2018312095B2 (en) 2017-08-04 2021-10-28 ZoomEssence, Inc. Ultrahigh efficiency spray drying apparatus and process
CA3087927C (en) 2018-01-08 2023-05-23 Vivonics, Inc. System and method for cooling the brain of a human subject
US10744087B2 (en) 2018-03-22 2020-08-18 Incarda Therapeutics, Inc. Method to slow ventricular rate
US10569244B2 (en) 2018-04-28 2020-02-25 ZoomEssence, Inc. Low temperature spray drying of carrier-free compositions
US11007185B2 (en) 2019-08-01 2021-05-18 Incarda Therapeutics, Inc. Antiarrhythmic formulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011678A (en) * 1989-02-01 1991-04-30 California Biotechnology Inc. Composition and method for administration of pharmaceutically active substances
US5130137A (en) * 1989-08-09 1992-07-14 The General Hospital Corporation Continuous delivery of luteinizing hormone releasing hormone compositions in combination with sex steroid delivery for use in treating benign ovarian secretory disorders
US5348730A (en) * 1989-09-20 1994-09-20 Minnesota Mining And Manufacturing Company Method for preparing medicinal aerosol formulation containing coated medicament

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4722941A (en) * 1978-06-07 1988-02-02 Kali-Chemie Pharma Gmbh Readily absorbable pharmaceutical compositions of per se poorly absorbable pharmacologically active agents and preparation thereof
DE3013839A1 (en) * 1979-04-13 1980-10-30 Freunt Ind Co Ltd METHOD FOR PRODUCING AN ACTIVATED PHARMACEUTICAL COMPOSITION
JPS6034925B2 (en) 1979-07-31 1985-08-12 帝人株式会社 Long-acting nasal preparation and its manufacturing method
JPS607965B2 (en) 1980-08-07 1985-02-28 帝人株式会社 Method for manufacturing powder for nasal mucosal administration
US5260306A (en) * 1981-07-24 1993-11-09 Fisons Plc Inhalation pharmaceuticals
EP0072046B1 (en) * 1981-07-24 1986-01-15 FISONS plc Inhalation drugs, methods for their production and pharmaceutical formulations containing them
JPS5921613A (en) * 1982-07-28 1984-02-03 Takeda Chem Ind Ltd Pharmaceutical preparation for rectum administration
SE458824B (en) 1982-10-08 1989-05-16 Glaxo Group Ltd DEVICE FOR ADDING MEDICINE TO PATIENTS
US4778054A (en) 1982-10-08 1988-10-18 Glaxo Group Limited Pack for administering medicaments to patients
US4486435A (en) * 1983-05-16 1984-12-04 Basf Wyandotte Corporation Spray-dried vitamin powders using hydrophobic silica
GB2178965B (en) 1985-07-30 1988-08-03 Glaxo Group Ltd Devices for administering medicaments to patients
JP2562624B2 (en) * 1986-11-07 1996-12-11 昭和電工株式会社 Water-soluble microcapsule and liquid detergent composition
SE8701479L (en) * 1987-04-09 1988-10-10 Carbomatrix Ab METHOD FOR CONTAINING BIOLOGICALLY EFFECTIVE PREPARATIONS AND USE THEREOF
CH672048A5 (en) * 1987-09-16 1989-10-31 Nestle Sa
US4999189A (en) * 1988-11-14 1991-03-12 Schering Corporation Sustained release oral suspensions
US5376386A (en) * 1990-01-24 1994-12-27 British Technology Group Limited Aerosol carriers
GB9001635D0 (en) 1990-01-24 1990-03-21 Ganderton David Aerosol carriers
AU7908791A (en) * 1990-05-08 1991-11-27 Liposome Technology, Inc. Direct spray-dried drug/lipid powder composition
US5000888A (en) * 1990-05-23 1991-03-19 Basf Corporation Process for spray drying riboflavin to produce a granulate product having low binder content
JP3181392B2 (en) * 1991-08-02 2001-07-03 株式会社ヤトロン Stable aqueous transparent liquid, method for producing the same, and freeze-dried powder
DE69220317T2 (en) * 1991-10-01 1997-10-16 Takeda Chemical Industries Ltd Microparticle summary for extended release and manufacture of the same
WO1993025198A1 (en) * 1992-06-12 1993-12-23 Teijin Limited Ultrafine powder for inhalation and production thereof
AU4198793A (en) * 1992-07-24 1994-01-27 Takeda Chemical Industries Ltd. Microparticle preparation and production thereof
CA2145418A1 (en) * 1992-09-29 1994-04-14 John S. Patton Pulmonary delivery of active fragments of parathyroid hormone
JP3523254B2 (en) 1992-10-26 2004-04-26 シュヴァルツ・ファルマ・アクチエンゲゼルシャフト Manufacturing method of microcapsules
NZ248813A (en) * 1992-11-25 1995-06-27 Eastman Kodak Co Polymeric grinding media used in grinding pharmaceutical substances
US5773026A (en) * 1993-03-22 1998-06-30 Betatene Limited Aqueous formulations of water-insoluble therapeutic agent comprising carotenoids and/or tocopherols
US5994314A (en) * 1993-04-07 1999-11-30 Inhale Therapeutic Systems, Inc. Compositions and methods for nucleic acid delivery to the lung
US5510391A (en) * 1993-10-22 1996-04-23 Mayapple Holdings, Llc Method of treating blood vessel disorders of the skin using vitamin K
EP0655237A1 (en) * 1993-11-27 1995-05-31 Hoechst Aktiengesellschaft Medicinal aerosol formulation
JP2986215B2 (en) * 1994-03-04 1999-12-06 ジェネンテック インコーポレイテッド Pharmaceutical preparation containing DNase
ES2218543T3 (en) * 1994-03-07 2004-11-16 Nektar Therapeutics PROCEDURE AND PREPARATION FOR THE ADMINISTRATION OF INSULIN BY PULMONARY ROUTE.
JP3706136B2 (en) 1994-09-21 2005-10-12 ネクター セラピューティクス Apparatus and method for dispersing dry powder drug
JPH0892098A (en) * 1994-09-27 1996-04-09 Teijin Ltd Therapeutic medicine for consumption
AU701440B2 (en) * 1994-09-29 1999-01-28 Quadrant Drug Delivery Limited Spray-dried microparticles as therapeutic vehicles
US5534270A (en) * 1995-02-09 1996-07-09 Nanosystems Llc Method of preparing stable drug nanoparticles
US5510118A (en) * 1995-02-14 1996-04-23 Nanosystems Llc Process for preparing therapeutic compositions containing nanoparticles
JPH08301762A (en) * 1995-05-12 1996-11-19 Teijin Ltd Agent for treatment of lung cancer
PT828495E (en) * 1995-06-01 2003-01-31 Searle & Co MISOPROSTOL STABILIZED SOLID SCATTERS
US5667806A (en) * 1995-06-07 1997-09-16 Emisphere Technologies, Inc. Spray drying method and apparatus
UA59358C2 (en) * 1996-01-24 2003-09-15 Бик Гулден Ломберг Хеміше Фабрік Гмбх Process for production of powdered pulmonary surfactant preparation and powdered preparation of surfactant
GB9606677D0 (en) * 1996-03-29 1996-06-05 Glaxo Wellcome Inc Process and device
US5874064A (en) 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
WO1998029140A1 (en) * 1996-12-31 1998-07-09 Inhale Therapeutic Systems Processes and compositions for spray drying hydrophobic drugs in organic solvent suspensions of hydrophilic excipients

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011678A (en) * 1989-02-01 1991-04-30 California Biotechnology Inc. Composition and method for administration of pharmaceutically active substances
US5130137A (en) * 1989-08-09 1992-07-14 The General Hospital Corporation Continuous delivery of luteinizing hormone releasing hormone compositions in combination with sex steroid delivery for use in treating benign ovarian secretory disorders
US5348730A (en) * 1989-09-20 1994-09-20 Minnesota Mining And Manufacturing Company Method for preparing medicinal aerosol formulation containing coated medicament

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0971698A4 *

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6315983B1 (en) * 1996-01-24 2001-11-13 Byk Gulden Lomberg Chemische Fabrik Gmbh Process for the production of powdered pulmonary surfactant preparations
EP1080717A1 (en) * 1997-05-07 2001-03-07 Maryland Financial Inc. Method for dispensing antioxidant vitamins by inhalation
US7790145B2 (en) 1997-09-29 2010-09-07 Novartis Ag Respiratory dispersion for metered dose inhalers
US9554993B2 (en) 1997-09-29 2017-01-31 Novartis Ag Pulmonary delivery particles comprising an active agent
WO1999032107A1 (en) * 1997-12-19 1999-07-01 West Pharmaceutical Services Drug Delivery & Clinical Research Centre Limited Compositions comprising cannabinoids
US6383513B1 (en) 1997-12-19 2002-05-07 West Pharmaceutical Services Drug Delivery & Clinical Research Centre Limited Compositions comprising cannabinoids
EP1437136A1 (en) * 1997-12-19 2004-07-14 West Pharmaceutical Services Drug Delivery & Clinical Research Centre Limited Compositions comprising cannabinoids
US7090831B1 (en) 1999-04-14 2006-08-15 Smithkline Beecham Corporation Pharmaceutical aerosol formulation
JP2003530304A (en) * 1999-05-04 2003-10-14 アラダイム コーポレーション Aerosol formulations and devices for enhancing libido in women via acute testosterone administration
EP1175204A4 (en) * 1999-05-04 2006-05-31 Aradigm Corp Aerosol formulations and devices for increasing libido in women via acute testosterone administration
EP1175204A1 (en) * 1999-05-04 2002-01-30 Aradigm Corporation Aerosol formulations and devices for increasing libido in women via acute testosterone administration
US7258850B2 (en) 1999-05-04 2007-08-21 Aradigm Corporation Methods and compositions for treating erectile dysfunction
JP4874483B2 (en) * 1999-06-09 2012-02-15 ロバート イー. シーバース Supercritical fluid assisted nebulization and bubble drying
US6630121B1 (en) 1999-06-09 2003-10-07 The Regents Of The University Of Colorado Supercritical fluid-assisted nebulization and bubble drying
US7648696B2 (en) 1999-08-20 2010-01-19 Unimed Pharmaceuticals, Llc Composition for inhalation comprising delta-9-tetrahydrocannabinol in a semiaqueous solvent
US6747058B1 (en) 1999-08-20 2004-06-08 Unimed Pharmaceuticals, Inc. Stable composition for inhalation therapy comprising delta-9-tetrahydrocannabinol and semiaqueous solvent therefor
US8501240B2 (en) 1999-10-29 2013-08-06 Novartis Ag Compositions comprising an active agent
US7125566B2 (en) 1999-12-21 2006-10-24 Rxkinetix, Inc. Particulate drug-containing products and method of manufacture
EP1242112A4 (en) * 1999-12-21 2005-02-09 Rxkinetix Inc Particulate drug-containing products and method of manufacture
US9439862B2 (en) 2000-05-10 2016-09-13 Novartis Ag Phospholipid-based powders for drug delivery
US8877162B2 (en) 2000-05-10 2014-11-04 Novartis Ag Stable metal ion-lipid powdered pharmaceutical compositions for drug delivery
US8551526B2 (en) 2000-11-03 2013-10-08 Board Of Regents, The University Of Texas System Preparation of drug particles using evaporation precipitation into aqueous solutions
US6756062B2 (en) 2000-11-03 2004-06-29 Board Of Regents University Of Texas System Preparation of drug particles using evaporation precipitation into aqueous solutions
US9120031B2 (en) 2000-11-09 2015-09-01 Nektar Therapeutics Compositions of particulate coformulation
US10798955B2 (en) 2000-11-09 2020-10-13 Nektar Therapeutics Compositions of particulate coformulation
EP2283896A2 (en) 2001-04-09 2011-02-16 Novartis Vaccines and Diagnostics, Inc. HSA-free formulations of interferon-beta
EP2283897A2 (en) 2001-04-09 2011-02-16 Novartis Vaccines and Diagnostics, Inc. HSA-free formulations of interferon-beta
US8936813B2 (en) 2001-11-01 2015-01-20 Novartis Ag Spray drying methods and related compositions
AU2009202578A8 (en) * 2001-11-01 2012-04-05 Novartis Ag Spray drying methods and compositions thereof
AU2009202578B8 (en) * 2001-11-01 2012-04-05 Novartis Ag Spray drying methods and compositions thereof
WO2003037303A1 (en) * 2001-11-01 2003-05-08 Nektar Therapeutics Spray drying methods and compositions thereof
US9421166B2 (en) 2001-12-19 2016-08-23 Novartis Ag Pulmonary delivery of aminoglycoside
WO2003080028A3 (en) * 2002-03-20 2004-01-22 Advanced Inhalation Res Inc Method and apparatus for producing dry particles
US7008644B2 (en) 2002-03-20 2006-03-07 Advanced Inhalation Research, Inc. Method and apparatus for producing dry particles
WO2003080028A2 (en) * 2002-03-20 2003-10-02 Advanced Inhalation Research, Inc. Method and apparatus for producing dry particles
US9700529B2 (en) 2002-05-03 2017-07-11 Nektar Therapeutics Particulate materials
US10188614B2 (en) 2002-05-03 2019-01-29 Nektar Therapeutics Particulate materials
US10945972B2 (en) 2002-05-03 2021-03-16 Nektar Therapeutics Particulate materials
US8273561B2 (en) 2007-10-05 2012-09-25 Nuron Biotech, Inc. High pressure treatment of aggregated interferons
US9682153B2 (en) 2008-09-19 2017-06-20 Nektar Therapeutics Polymer conjugates of therapeutic peptides
WO2010142017A1 (en) 2009-06-09 2010-12-16 Defyrus, Inc . Administration of interferon for prophylaxis against or treatment of pathogenic infection
US10940137B2 (en) 2010-09-24 2021-03-09 University Of Florida Research Foundation, Incorporated Materials and methods for improving gastrointestinal function
US9808030B2 (en) 2011-02-11 2017-11-07 Grain Processing Corporation Salt composition
WO2013114371A1 (en) 2012-02-01 2013-08-08 Protalix Ltd. Dry powder formulations of dnase i
US9603906B2 (en) 2012-02-01 2017-03-28 Protalix Ltd. Inhalable liquid formulations of DNase I
US9603907B2 (en) 2012-02-01 2017-03-28 Protalix Ltd. Dry powder formulations of dNase I
WO2013114374A1 (en) 2012-02-01 2013-08-08 Protalix Ltd. Dnase i polypeptides, polynucleotides encoding same, methods of producing dnase i and uses thereof in therapy
WO2013151744A1 (en) 2012-04-05 2013-10-10 University Of Florida Research Foundation, Inc. Materials and methods for treatment of cystic fibrosis and for induction of ion secretion
EP3427730A1 (en) 2013-03-11 2019-01-16 University of Florida Research Foundation, Inc. Materials and methods for improving lung function
US10758507B2 (en) 2013-03-11 2020-09-01 University Of Florida Research Foundation, Incorporated Materials and methods for improving lung function and for prevention and/or treatment of radiation-induced lung complications
WO2014164736A1 (en) 2013-03-11 2014-10-09 University Of Florida Research Foundation, Incorporated Materials and methods for improving lung function and for prevention and/or treatment of radiation-induced lung complications
WO2016057693A1 (en) 2014-10-10 2016-04-14 Alnylam Pharmaceuticals, Inc. Methods and compositions for inhalation delivery of conjugated oligonucleotide
US10806770B2 (en) 2014-10-31 2020-10-20 Monash University Powder formulation
US10758506B2 (en) 2014-11-24 2020-09-01 Entrinsic Bioscience, Inc. Amino acid compositions for the treatment of porcine epidemic diarrhea
WO2016108244A1 (en) 2015-01-04 2016-07-07 Protalix Ltd. Modified dnase and uses thereof
US11576884B2 (en) 2016-10-04 2023-02-14 University Of Florida Research Foundation, Inc. Amino acid compositions and uses thereof
WO2020223237A1 (en) 2019-04-29 2020-11-05 Insmed Incorporated Dry powder compositions of treprostinil prodrugs and methods of use thereof
WO2021216547A1 (en) 2020-04-20 2021-10-28 Sorrento Therapeutics, Inc. Pulmonary administration of ace2 polypeptides
WO2022074656A1 (en) 2020-10-07 2022-04-14 Protalix Ltd. Long-acting dnase
WO2023150747A1 (en) 2022-02-07 2023-08-10 Insmed Incorporated Dry powder compositions of bedaquiline and salts and methods of use thereof

Also Published As

Publication number Publication date
JP2001507702A (en) 2001-06-12
US6001336A (en) 1999-12-14
US5976574A (en) 1999-11-02
EP0952821A4 (en) 2006-07-26
US6365190B1 (en) 2002-04-02
JP2001507701A (en) 2001-06-12
AU5719798A (en) 1998-07-31
US5985248A (en) 1999-11-16
US6572893B2 (en) 2003-06-03
WO1998029141A1 (en) 1998-07-09
JP2001507700A (en) 2001-06-12
EP0971698A4 (en) 2006-07-26
US6077543A (en) 2000-06-20
WO1998029098A1 (en) 1998-07-09
WO1998029140A1 (en) 1998-07-09
AU5806998A (en) 1998-07-31
EP0951300A1 (en) 1999-10-27
AU5806898A (en) 1998-07-31
AU6014098A (en) 1998-07-31
US20020132011A1 (en) 2002-09-19
EP0952821A1 (en) 1999-11-03
EP0971698A1 (en) 2000-01-19
EP0951300A4 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
US6077543A (en) Systems and processes for spray drying hydrophobic drugs with hydrophilic excipients
US8802149B2 (en) Systems and processes for spray drying hydrophobic and hydrophilic components
KR100951750B1 (en) Spray drying methods and compositions thereof
US8668934B2 (en) Pharmaceutical formulation comprising a water-insoluble active agent
AU2002342241A1 (en) Spray drying methods and compositions thereof
JPH11501657A (en) Powder type pharmacological composition having improved dispersibility
JP5285904B2 (en) Dry powder pharmaceutical composition, process for its preparation, and stable aqueous suspension obtained from the composition

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1997954799

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 530223

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997954799

Country of ref document: EP