WO1998030397A1 - Process of dry printing a paper-like non-woven wall covering material - Google Patents

Process of dry printing a paper-like non-woven wall covering material Download PDF

Info

Publication number
WO1998030397A1
WO1998030397A1 PCT/US1998/000117 US9800117W WO9830397A1 WO 1998030397 A1 WO1998030397 A1 WO 1998030397A1 US 9800117 W US9800117 W US 9800117W WO 9830397 A1 WO9830397 A1 WO 9830397A1
Authority
WO
WIPO (PCT)
Prior art keywords
web material
transfer
transfer cylinder
paper
contact
Prior art date
Application number
PCT/US1998/000117
Other languages
French (fr)
Inventor
Paul Frischer
Original Assignee
Paul Frischer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Frischer filed Critical Paul Frischer
Priority to EP98901692A priority Critical patent/EP0968091A4/en
Priority to AU58151/98A priority patent/AU5815198A/en
Publication of WO1998030397A1 publication Critical patent/WO1998030397A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/17Dry transfer
    • B44C1/1712Decalcomanias applied under heat and pressure, e.g. provided with a heat activable adhesive
    • B44C1/1716Decalcomanias provided with a particular decorative layer, e.g. specially adapted to allow the formation of a metallic or dyestuff layer on a substrate unsuitable for direct deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/18Particular kinds of wallpapers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/025Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet
    • B41M5/035Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet by sublimation or volatilisation of pre-printed design, e.g. sublistatic
    • B41M5/0358Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet by sublimation or volatilisation of pre-printed design, e.g. sublistatic characterised by the mechanisms or artifacts to obtain the transfer, e.g. the heating means, the pressure means or the transport means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/003Transfer printing
    • D06P5/004Transfer printing using subliming dyes
    • D06P5/005Transfer printing using subliming dyes on resin-treated fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1067Continuous longitudinal slitting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/108Flash, trim or excess removal

Definitions

  • the present invention relates generally to wall coverings, and more particularly, to dry printing a decorative pattern on a paper-like non-woven fibrous web material to produce a "matte" finish with pleasing aesthetic appearance and durable physical characteristics.
  • Wall covering undergoes numerous physical changes as it is transformed from dry roll form, applied to a wall surface, and ultimately removed.
  • wall covering is unrolled in a dry state, and in preparation for hanging on a wall surface is wetted with paste or submersed in water to activate a prepaste.
  • the wall covering is then bookfolded to enable it to either shrink or expand and allow the wall covering adhesive to "setup".
  • the wall covering is then applied to the wall by stretching and pulling it into position, and then smoothing the same with tools and rollers to evacuate air bubbles and eliminate seams.
  • the wall covering is allowed to dry on the wall surface, hopefully without stretching or shrinking.
  • the wall covering may be stripped from the wall surface, usually a difficult task without causing damage.
  • Wall coverings must meet several design criteria.
  • the decorative printing should be resistant to UV light, as long term exposure causes undesirable fading.
  • the surface should be washable to enable cleaning everyday spills and inevitable dirt accumulation over long periods of time.
  • the material should be adapted to prevent the formation of bacteria and mold.
  • the texture and surface of the material should be aesthetically pleasing, and the material if so desired should be embossable and paintable.
  • the materials employed in the process should be environmentally safe and meet ASTM-84 flame certification standards.
  • Paper wall covering is normally "wet” printed, either by inexpensive single color printing or highly complex and relatively expensive multiple color printing. It has been the dominant wall covering material, and still remains popular. However, due to several shortcomings it has given away a significant market share to vinyl supported wall coverings. Paper has the disadvantage of low physical durability, requires careful preparation of the wall surface before hanging, and is susceptible to expansion and shrinkage during hanging. Paper is usually not washable, susceptible to cracking, and not easily strippable when the wall covering is to be removed.
  • Vinyl supported Another common wall covering is vinyl supported, and utilizes high volume "wet" printing and embossing processing with in-line rotor screen and gravure printing.
  • Vinyl supported wall covering is physically durable and washable, but must be backed by a paper, scrim or non-woven material which adds to the cost and complexity of manufacturing.
  • vinyl is difficult to apply to wall surfaces and requires significant drying time. It also is a good host for mold and bacteria due to its low permeability, and requires a large capital investment for processing.
  • Non-woven material is commonly used as a backing material, and has lowered manufacturing costs for vinyl supported wall coverings.
  • Non-woven backing improves the physical characteristics of vinyl supported wall covering and increases its strippability, adhesion, and surface appearance.
  • non-woven materials are not aesthetically suitable for wall covering.
  • the porous nature and uneven texture of non-woven materials generally causes "bleed through" and dimpling, both considered undesirable results in printing.
  • non-woven materials are not washable since their low surface durability results in excessive piling.
  • printed wall covering paper has acceptable aesthetic qualities with low capital investment, but suffers low physical durability and poor strippability .
  • Vinyl has superior aesthetic qualities for printing and strong physical durability, but requires a supporting material, thereby increasing manufacturing complexity and costs.
  • Non-woven materials used as a backing improve vinyl supported wall covering in adhesion, strippability, and embossing, but are not independently suitable for wall covering without a vinyl plastisol coating or vinyl laminated surface.
  • the present invention provides a method for dry heat transfer printing a wall covering material utilizing at least one transfer cylinder having a heated working surface, comprising:
  • the paper-like non-woven web material is fabricated by dispersing natural and synthetic fibers that overlap horizontally and vertically on an inclined fiber-collecting wire using known papermaking techniques.
  • An example of such a material is grade 11984, available from Dexter Corporation of Windsor
  • the web material is treated with an acrylic binder and a penetration inhibitor.
  • the acrylic binder makes the non-woven material suitable for direct printing without the need for a plastisol coating or vinyl laminate.
  • the penetration inhibitor inhibits migration of wall covering adhesive into the fibrous web.
  • the process utilizes a slitting station and includes the step of controlling the width of the web material prior to introducing the web material to the transfer cylinder proximal to the first location to establish a side-to-side repeat of the decorative pattern to be printed and to ensure edgewise integrity of the web material .
  • the web material is stored on a master reel which includes a tensioning bar for tensioning the web material, an introducer roller disposed proximal to the first location where the transfer paper is brought into contact with the working surface of the transfer cylinder and the web material is brought into overlapping contact with the transfer paper, and a nip roller, wherein step (b) includes passing the transfer paper and the web material between the introducer roller and the transfer cylinder and step (c) comprises exerting a rolling contact force against the working surface of the transfer cylinder with the nip roller proximal to the second location to pull the web material into contact with the transfer paper.
  • the surface of the transfer cylinder is heated to a temperature in the range of from about 350 deg . F to 425 deg. F depending upon the rotation speed of the transfer cylinder and the desired printing effect.
  • the sublimation dye on the transfer sheet undergoes a phase change to the gaseous state and transfers the image to the web material.
  • Heating of the transfer cylinder can be implemented by conventional devices such as oil, electric, infrared or the like.
  • the invention can also be used with computer generated multi-color sublistatic dyed images on the transfer sheet to enable rapid transfer printing of the decorative images onto the web material.
  • a method for dry heat transfer printing a wall covering material utilizing at least one transfer cylinder having a heated working surface comprising:
  • FIG. 1 is a schematic of an exemplary dry transfer printing process in accordance with the present invention
  • FIG. 2 is a schematic of a paper-like non-woven web material fabrication process
  • FIG. 3 is a schematic of a web treatment dipping process
  • FIG. 4 is a plan view of a tensioning bar assembly.
  • FIG. 1 is a schematic of a series of stations used in a representative dry transfer printing process in accordance with the present invention.
  • a master reel 10 is pivotably supported at pivot point 12 at a first station 14 and contains a paper-like non-woven fibrous web material 16 wrapped on the surface thereon as shown.
  • the fibrous web material is fed to a slitting station 18 via a plurality of rollers generally designated by "R", where it is cut in such a manner as to establish a predetermined side-to-side repeat of the decorative pattern.
  • a transfer station 20 where it is brought into contact with a continuous sheet of sublimation dye transfer paper 22 around a heated transfer cylinder 24 having a working surface 26.
  • An introducer roller 28 is disposed as shown relative to the transfer cylinder 24, near location "A” and the web material 16 and the sublimation dye transfer paper 22 pass through a gap defined between introducer roller 28 and working surface 26.
  • a nip roller 30 is disposed proximal to location "B" where the web material and the transfer paper are separated and directed to respective take-up rolls 32
  • the paper-like non-woven fibrous web material is produced by known and conventional papermaking techniques, in which synthetic and natural fibers are dispersed on a fiber collecting wire in the form of a continuous sheet-like web material.
  • the fiber dispersions may be formed in a conventional manner using water as a dispersant or by employing other suitable fiber dispersant media.
  • aqueous dispersions are employed in accordance with known papermaking techniques.
  • the fiber dispersion is formed as a dilute aqueous suspension of papermaking fibers, which is conveyed to the web forming screen or wire of a paper making machine.
  • the fibers are then deposited on the wire to form a fibrous web or sheet that is subsequently dried in a conventional manner.
  • This allows for fibers to overlap horizontally and vertically in a configuration similar to "shingles on a roof.”
  • This interlocking action imparts strength and flexibility.
  • the ratio of synthetic to natural fiber dispersion can be altered to adjust for color saturation and permanent fixing of colors. This process is described generally in U.S. Patent No. 4,460,643 to Dexter Corporation, of Windsor Locks, Connecticut, the disclosure of which is incorporated herein as through fully set forth herein. material exhibiting paper-like properties suitable for use in the inventive process may be obtained from Dexter Corporation, and is known as grade 11984.
  • FIG. 2 schematically depicts the fabrication process of the paper-like, non-woven web material 16 in which natural and synthetic fibers 36 are dispensed from a headbox 38 onto an incline wire 40, and then gravity fed along the incline wire to undergo interlocking action. The web material 16 is then advanced to a heater station containing dryers 42 and subsequently dispensed to a roll-up station 54.
  • natural and synthetic fibers 36 are dispensed from a headbox 38 onto an incline wire 40, and then gravity fed along the incline wire to undergo interlocking action.
  • the web material 16 is then advanced to a heater station containing dryers 42 and subsequently dispensed to a roll-up station 54.
  • the paper-like non-woven fibrous web material 16 is dispensed from roll-up station 54 and dipped at dipping station 56 into an acrylic binder and penetration inhibitor.
  • the penetration inhibitor is used to prevent migration of wallpaper adhesive used to attach the wall covering to the wall surface.
  • the acrylic binder imparts the desired structural integrity to the web material required for wall covering backing, and provides a suitable surface upon which dry transfer printing may be effected.
  • the acrylic binder and penetration inhibitor may be applied at the same station in accordance with known teachings.
  • the paper-like non-woven fibrous web material 16 is advanced through a calender station 58 to provide a desired thickness, weight and smooth surface. It is subsequently cut to size at slitter 60 and rolled up on master reel 62.
  • the present invention does not provide the 5 necessary tensioning or pulling action to prevent the non-woven material from moving laterally during printing. This side-to-side motion causes wrinkles in the non-woven material and precludes printing of the outer edges due to "strike back".
  • a method in accordance with the present invention comprises the
  • the master reel 10 includes a tension bar assembly 64 as shown in FIG. 4.
  • Tension bar assembly 64 includes a pair of opposed gripping members 66 and 68 disposed about an elongated shaft 70.
  • Shaft 70 includes a threaded portion 72 on which gripping member 68 is threadably disposed such that the width between retaining members 66 and 68 may be varied so as to impart resistance to the rotation of master reel 10 to compensate for reducing the diameter of the rolled-up web material 16 during processing as it is dispensed into the system.
  • a lock-nut 73 may be urged into contact with gripping member 68 in a conventional manner.
  • the amount of centrifugal force generated by the pulling action is reduced, thereby requiring less tension on the master reel 10 to maintain an equal and constant pressure during the dry printing process.
  • the web material is fed into slitter station 18, such that the width of the web 16 can be established to ensure a proper side-to-side repeat of the decorative pattern to be printed, and to eliminate possible distortion from bruised or damaged edges. This also ensures that the outer portions of each edge can be printed.
  • Each decorative pattern of wall coverings normally has a side-to-side repeat of 20.5, 27, 54 inches, etc.
  • the slitting station 18 enables the web material 16 to be cut to exactly match the repeat of the decorative pattern such that the width of the web material 16 used in the transfer printing process is exactly the width of the side-to-side width of the decorative pattern.
  • the slitting station 18 also enables edges of the web material 16 that may have been damaged during transportation to be removed.
  • the precise matching of the width of the web material 16 to the pattern to be printed is important as the sublimation dye undergoes a phase change into the gaseous state while transferring the image onto the web material 16. If the edges of the web material 16 are not clean, or are damaged or bruised, the sublimation dye can escape and leave distorted or irregular printing near the edges.
  • the sublimation dye transfer paper 22 can make flush contact with the edges of the web material 16 during printing and distorted and or irregular printing is eliminated.
  • an introducer roller 28 is proximally disposed to location A where the web material 16 and transfer paper 22 are bought into overlapping contact on the working surface 20 of the transfer cylinder 24.
  • the respective components are maintained in overlapping relation in order to transfer the sublistatic dyed image from the sublimation transfer paper 22 to the web material 16.
  • the two components are separated at location B after passing between a predetermined gap defined between nip roller 30 and working surface 26 of transfer cylinder 24.
  • the web material 16 having the printed decorative pattern is then communicated to the take-up roll 32 and the transfer paper is advanced to the take-up roll 34 as shown.
  • the contact point A should be at a location selected to maximize the distance between the initial contact print of the web material 16 with working surface of transfer cylinder 24 and the exit point B proximal to nip roller 32. By increasing this distance, maximum “throughput” can be achieved. Depending upon the distance between point A and B, maximum throughput can be calculated allowing the web material 16 and the sublimation dye transfer paper 22 to remain under equal pressure and constant temperature for a dwell time from about 25-45 seconds, depending upon the desired printed results.
  • nip roller 30 is mounted on an actuating bar which allows for selective engagement and disengagement with working surface 26 of constantly rotating transfer cylinder 24.
  • actuating bar which allows for selective engagement and disengagement with working surface 26 of constantly rotating transfer cylinder 24.
  • variable tensioning mechanism 64 enables the necessary back pressure to be maintained so as to stabilize the web material 16 and eliminate wandering and wrinkling as it is continuously “pulled” through slitting station 18, and passes point A on the transfer cylinder 24.
  • sublimation dye transfer paper 22 The independent introduction of sublimation dye transfer paper 22 is implemented through the action of nip roller 30 being engaged with working surface 26 and the web material 16.
  • the sublimation dye transfer paper 22 is not pulled, but rather introduced at point A and passively drawn into the system without requiring any drive mechanism of its own. This enables continuous processing of any desired decorative pattern by replacing the sublimation dye printed transfer paper 22 without interrupting continuous processing of the web material 16. Additionally, in the event that the side-to-side repeat of the decorative pattern changes, a width adjustment to the web material 16 may be accomplished at the slitting station 18 and no changes to the master reel 10 or sublimation dye transfer paper 22 are required.
  • nip roller 30 can be disengaged, transfer cylinder 24 adjusted, and the system then restarted without wasting web material 16 or sublimation dye transfer paper 22.
  • the nip roller system allows for the sublimation dye transfer paper 22 to print the decorative pattern on the edge of the web material 16 without strike back.
  • the side-to-side repeat is established by the decorative pattern on the sublimation dye transfer paper 22 and slitting station 18, the width of the sublimation transfer paper 22 is wider than the web material 16 being printed.
  • the decorative side-to-side repeat on the sublimation dye transfer paper 22 is repeated beyond a single pattern iteration. This allows for printing of the outer edge of the web material 16. Under conventional transfer conditions, such an overlapping condition would normally cause strike back.
  • sublistatic printers such as the Xerox 8900 Series may be used to allow for a computer generated image to be output to a sublistatic printer, and then generated on a conveyer sheet in four process color.
  • the company Visual Edge has a personal computer output system in partnership with the Xerox Corporation using a Pradia Inc. four process color system of sublistatic inks developed by the Hylord company that can output the necessary four process color sublistatic dye onto the transfer paper using a Xerox 8900 sublistatic printer.
  • the flow of the dye is regulated by the personal computer software developed by Visual Edge to reproduce continuous color saturation of a designated print file at a rate of 25 yards per hour.
  • the wall covering printed in accordance with the present invention has a high quality "matte” printed surface exhibiting resistance to UV light, crocking, shrinkage, stretching, and the like. It is strippable, paintable and prepared for wall hanging using clear vinyl paste or prepaste . It is flame test certified under ASTM-84, washable and durable to long-term use.

Abstract

A method for dry heat transfer printing a wall covering material utilizing at least one transfer cylinder having a heated working surface, comprising treating a paper-like, non-woven fibrous web material with an acrylic binder and penetration inhibitor, dispensing the web material from a master reel including a tensioning assembly, and passing the web material through a slitting station to establish a side-to-side repeat of the decorative pattern to be printed; dispensing a sublimation dye transfer paper into contact with the working surface of the transfer cylinder from a source between an introducer roller and the working surface; transferring the web material from the slitting station to the transfer cylinder between the introducer roller and the working surface into overlapping contact with the transfer paper at a first location along the circumference of the transfer cylinder; maintaining contact with the transfer paper around a portion of the transfer cylinder as the transfer cylinder rotates at a processing temperature; and separating the web material containing the printed decorative pattern from the transfer paper at a second location proximal to a nip roller along the circumference of the transfer cylinder.

Description

PROCESS OF DRY PRINTING A PAPER- IKE NON-WOVEN WALL COVERING MATERIAL
FIELD OF INVENTION The present invention relates generally to wall coverings, and more particularly, to dry printing a decorative pattern on a paper-like non-woven fibrous web material to produce a "matte" finish with pleasing aesthetic appearance and durable physical characteristics.
BACKGROUND OF THE INVENTION Wall covering undergoes numerous physical changes as it is transformed from dry roll form, applied to a wall surface, and ultimately removed. Generally, wall covering is unrolled in a dry state, and in preparation for hanging on a wall surface is wetted with paste or submersed in water to activate a prepaste. The wall covering is then bookfolded to enable it to either shrink or expand and allow the wall covering adhesive to "setup". The wall covering is then applied to the wall by stretching and pulling it into position, and then smoothing the same with tools and rollers to evacuate air bubbles and eliminate seams. At this stage, the wall covering is allowed to dry on the wall surface, hopefully without stretching or shrinking. At some time in the future, the wall covering may be stripped from the wall surface, usually a difficult task without causing damage.
Wall coverings must meet several design criteria. The decorative printing should be resistant to UV light, as long term exposure causes undesirable fading. The surface should be washable to enable cleaning everyday spills and inevitable dirt accumulation over long periods of time. The material should be adapted to prevent the formation of bacteria and mold. The texture and surface of the material should be aesthetically pleasing, and the material if so desired should be embossable and paintable. Finally, the materials employed in the process should be environmentally safe and meet ASTM-84 flame certification standards.
Paper wall covering is normally "wet" printed, either by inexpensive single color printing or highly complex and relatively expensive multiple color printing. It has been the dominant wall covering material, and still remains popular. However, due to several shortcomings it has given away a significant market share to vinyl supported wall coverings. Paper has the disadvantage of low physical durability, requires careful preparation of the wall surface before hanging, and is susceptible to expansion and shrinkage during hanging. Paper is usually not washable, susceptible to cracking, and not easily strippable when the wall covering is to be removed.
Another common wall covering is vinyl supported, and utilizes high volume "wet" printing and embossing processing with in-line rotor screen and gravure printing. Vinyl supported wall covering is physically durable and washable, but must be backed by a paper, scrim or non-woven material which adds to the cost and complexity of manufacturing. Furthermore, vinyl is difficult to apply to wall surfaces and requires significant drying time. It also is a good host for mold and bacteria due to its low permeability, and requires a large capital investment for processing. Non-woven material is commonly used as a backing material, and has lowered manufacturing costs for vinyl supported wall coverings. Non-woven backing improves the physical characteristics of vinyl supported wall covering and increases its strippability, adhesion, and surface appearance. However, without a vinyl plastisol coating or a vinyl laminated surface, non-woven materials are not aesthetically suitable for wall covering. The porous nature and uneven texture of non-woven materials generally causes "bleed through" and dimpling, both considered undesirable results in printing. In addition, without a vinyl plastisol or vinyl laminated surface, non-woven materials are not washable since their low surface durability results in excessive piling.
In summary, printed wall covering paper has acceptable aesthetic qualities with low capital investment, but suffers low physical durability and poor strippability . Vinyl has superior aesthetic qualities for printing and strong physical durability, but requires a supporting material, thereby increasing manufacturing complexity and costs. Non-woven materials used as a backing improve vinyl supported wall covering in adhesion, strippability, and embossing, but are not independently suitable for wall covering without a vinyl plastisol coating or vinyl laminated surface. SUMMARY OF THE INVENTION
In view of the above described shortcomings in prior art paper and vinyl wall coverings, it is an object of the present invention to provide a new process for dry heat transfer printing a paper-like, non-woven web material that yields a "matte" finish, meets the requisite physical requirements of wall covering, and which can be processed economically with low capital investment .
It is a further object of the present invention to provide a wall covering in accordance with the above that enables direct printing on paper-like non-woven materials with an acceptable level of fit and finish.
It is still another object of the present invention to provide a wall covering in accordance with the above that provides a "paper-like" quality in texture and feel that has superior physical properties for hanging over both paper and vinyl without requiring special tools or rollers to facilitate installation.
It is another object of the invention to provide a wall covering in accordance with the above that may be easily stripped from the wall .
It is yet a further object of the present invention to provide a wall covering in accordance with the above that is resistant to shrinkage and stretching when whetted and dried, and which does not require heavy adhesives such as clear or clay paste to secure the same to a wall surface.
It is still another object of the present invention to provide a wall covering in accordance with the above that can be prepasted prior to or after printing.
It is yet another object of the present invention to provide a wall covering in accordance with the above that inhibits "bleed through" characteristics commonly associated with non-woven materials, yet which does not provide a host for mold and bacteria, typical of low permeability vinyl.
It is still another object of the present invention to provide a wall covering in accordance with the above that can be embossed prior to, during or after printing.
It is another object of the present invention to provide a wall covering in accordance with the above that can be printed in register, and color printed by single or multiple process. It is yet another object of the present invention to provide a wall covering in accordance with the above that is paintable yet resistant to UV light and crocking.
It is still another object of the present invention to provide a wall covering in accordance with the above that meets governmental ASTM-84 flame standards and UV 5 year standards . In accordance with the above objects and additional objects that will become apparent hereinafter, the present invention provides a method for dry heat transfer printing a wall covering material utilizing at least one transfer cylinder having a heated working surface, comprising:
(a) dispensing a sublimation dye transfer paper having a decorative pattern to be printed from a source of the transfer paper into contact with the working surface of the transfer cylinder;
(b) dispensing a paper- like, non-woven fibrous web material from a source of the web material to the transfer cylinder and bringing the web material into overlapping contact with the transfer paper at a first location along a circumference of the transfer cylinder;
(c) maintaining the web material in contact with the transfer paper around a portion of the transfer cylinder as the transfer cylinder rotates about a central axis thereof at a processing temperature; and
(d) separating the web material from the transfer paper at a second location along the circumference of the transfer cylinder.
In accordance with the inventive method, the paper-like non-woven web material is fabricated by dispersing natural and synthetic fibers that overlap horizontally and vertically on an inclined fiber-collecting wire using known papermaking techniques. An example of such a material is grade 11984, available from Dexter Corporation of Windsor
Locks, Connecticut. The web material is treated with an acrylic binder and a penetration inhibitor. The acrylic binder makes the non-woven material suitable for direct printing without the need for a plastisol coating or vinyl laminate. The penetration inhibitor inhibits migration of wall covering adhesive into the fibrous web. The process utilizes a slitting station and includes the step of controlling the width of the web material prior to introducing the web material to the transfer cylinder proximal to the first location to establish a side-to-side repeat of the decorative pattern to be printed and to ensure edgewise integrity of the web material .
The web material is stored on a master reel which includes a tensioning bar for tensioning the web material, an introducer roller disposed proximal to the first location where the transfer paper is brought into contact with the working surface of the transfer cylinder and the web material is brought into overlapping contact with the transfer paper, and a nip roller, wherein step (b) includes passing the transfer paper and the web material between the introducer roller and the transfer cylinder and step (c) comprises exerting a rolling contact force against the working surface of the transfer cylinder with the nip roller proximal to the second location to pull the web material into contact with the transfer paper.
The surface of the transfer cylinder is heated to a temperature in the range of from about 350 deg . F to 425 deg. F depending upon the rotation speed of the transfer cylinder and the desired printing effect. The sublimation dye on the transfer sheet undergoes a phase change to the gaseous state and transfers the image to the web material. Heating of the transfer cylinder can be implemented by conventional devices such as oil, electric, infrared or the like.
The invention can also be used with computer generated multi-color sublistatic dyed images on the transfer sheet to enable rapid transfer printing of the decorative images onto the web material. in accordance with a preferred embodiment of the invention, there is described a method for dry heat transfer printing a wall covering material utilizing at least one transfer cylinder having a heated working surface, comprising:
(a) treating a paper-like, non-woven fibrous web material with an acrylic binder and a penetration inhibitor;
(b) dispensing the web material from a source of the web material and passing the web material through a slitting station to establish a side-to-side repeat of the decorative pattern to be printed and to ensure edgewise integrity of the web material;
(c) dispensing a sublimation dye transfer paper having the decorative pattern to be printed into contact with the working surface of the transfer cylinder from a source of the transfer paper;
(d) transferring the web material from the slitting station to the transfer cylinder and bringing the web material into overlapping contact with the transfer paper at a first location along a circumference of the transfer cylinder;
(e) maintaining the web material in contact with the transfer paper around a portion of the transfer cylinder as the transfer cylinder rotates about a central axis thereof at a processing temperature; and (f) separating the web material containing the printed decorative pattern from the transfer paper at a second location along the circumference of the transfer cylinder.
The many advantages of the present invention will become apparent as it is described in detail below with particular reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic of an exemplary dry transfer printing process in accordance with the present invention;
FIG. 2 is a schematic of a paper-like non-woven web material fabrication process; FIG. 3 is a schematic of a web treatment dipping process; and
FIG. 4 is a plan view of a tensioning bar assembly.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring now to the several views of the drawings, there is shown a method for dry printing a paper-like non-woven fibrous web material with a decorative pattern suitable for use as a wall covering. Specifically, FIG. 1 is a schematic of a series of stations used in a representative dry transfer printing process in accordance with the present invention. A master reel 10 is pivotably supported at pivot point 12 at a first station 14 and contains a paper-like non-woven fibrous web material 16 wrapped on the surface thereon as shown. The fibrous web material is fed to a slitting station 18 via a plurality of rollers generally designated by "R", where it is cut in such a manner as to establish a predetermined side-to-side repeat of the decorative pattern. It is then passed to a transfer station 20 where it is brought into contact with a continuous sheet of sublimation dye transfer paper 22 around a heated transfer cylinder 24 having a working surface 26. An introducer roller 28 is disposed as shown relative to the transfer cylinder 24, near location "A" and the web material 16 and the sublimation dye transfer paper 22 pass through a gap defined between introducer roller 28 and working surface 26. Similarly, a nip roller 30 is disposed proximal to location "B" where the web material and the transfer paper are separated and directed to respective take-up rolls 32
(for the web material) and 34 (for the transfer paper) .
The particular aspects of the process will be described in greater detail in the following description. The paper-like non-woven fibrous web material is produced by known and conventional papermaking techniques, in which synthetic and natural fibers are dispersed on a fiber collecting wire in the form of a continuous sheet-like web material. The fiber dispersions may be formed in a conventional manner using water as a dispersant or by employing other suitable fiber dispersant media. Preferably, aqueous dispersions are employed in accordance with known papermaking techniques. The fiber dispersion is formed as a dilute aqueous suspension of papermaking fibers, which is conveyed to the web forming screen or wire of a paper making machine. The fibers are then deposited on the wire to form a fibrous web or sheet that is subsequently dried in a conventional manner. This allows for fibers to overlap horizontally and vertically in a configuration similar to "shingles on a roof." This interlocking action imparts strength and flexibility. The ratio of synthetic to natural fiber dispersion can be altered to adjust for color saturation and permanent fixing of colors. This process is described generally in U.S. Patent No. 4,460,643 to Dexter Corporation, of Windsor Locks, Connecticut, the disclosure of which is incorporated herein as through fully set forth herein. material exhibiting paper-like properties suitable for use in the inventive process may be obtained from Dexter Corporation, and is known as grade 11984. This material neither exhibits the porous nature typically associated with non-woven materials, nor the undesirable low-permeability characteristics of a vinyl plastisol or vinyl laminated surface. It provides evaporation channels for greater permeability, but does not allow the typical "bleed-through" conditions associated with non-woven material . FIG. 2 schematically depicts the fabrication process of the paper-like, non-woven web material 16 in which natural and synthetic fibers 36 are dispensed from a headbox 38 onto an incline wire 40, and then gravity fed along the incline wire to undergo interlocking action. The web material 16 is then advanced to a heater station containing dryers 42 and subsequently dispensed to a roll-up station 54. In FIG. 3 the paper-like non-woven fibrous web material 16 is dispensed from roll-up station 54 and dipped at dipping station 56 into an acrylic binder and penetration inhibitor. The penetration inhibitor is used to prevent migration of wallpaper adhesive used to attach the wall covering to the wall surface. The acrylic binder imparts the desired structural integrity to the web material required for wall covering backing, and provides a suitable surface upon which dry transfer printing may be effected. The acrylic binder and penetration inhibitor may be applied at the same station in accordance with known teachings. After these materials are added, the paper-like non-woven fibrous web material 16 is advanced through a calender station 58 to provide a desired thickness, weight and smooth surface. It is subsequently cut to size at slitter 60 and rolled up on master reel 62.
It is well known in the art to implement continuous heat transfer printing using sublimation dyes in a Nomex blanket heat transfer machine which provides strict control over heat, pressure and dwell time. Since the materials that are most commonly printed are 100% synthetic (i.e., polyester, acrylic, nylon), or of a synthetic composition (i.e., 60% polyester, 40% cotton) , the sublimation dyes are dependent upon the characteristics of the synthetic fiber to provide the desired results. A Nomex blanket heat transfer machine, however, is not suitable for use with of non-woven materials, because of undesirable wrinkling, wandering of the printed image across the non-woven material, and - li ¬
the inability to print on the outer edges. This is due to the specific attributes of non-woven materials, which require sufficient tension to maintain stability during processing. The Nomex blanket does not provide the 5 necessary tensioning or pulling action to prevent the non-woven material from moving laterally during printing. This side-to-side motion causes wrinkles in the non-woven material and precludes printing of the outer edges due to "strike back". The present invention
10 overcomes the limitations associated with such devices by providing a tensioning system to ensure that the web material 16 is under sufficient tension during the transfer printing process. In this regard, a method in accordance with the present invention comprises the
15 following steps:
(a) dispensing a sublimation die transfer paper 22 having a decorative pattern to be printed from transfer paper reel 23 into contact with working surface 26 of transfer cylinder 24;
20 (b) dispensing the paper-like non-woven fibrous web material 16 from master reel 10 to transfer cylinder 24 and bringing the web material 16 into overlapping contact with transfer paper 22 at a first location A along the circumference of transfer cylinder
25 24;
(c) maintaining the web material 16 in contact with the transfer paper 22 around the portion of the transfer cylinder 24 as the transfer cylinder rotates about a central axis thereof at a processing
30 temperature; and
(d) separating the web material 16 containing the printed decorative pattern from the transfer paper 22 at a second location B along the circumference of the transfer cylinder 24.
35 The master reel 10 includes a tension bar assembly 64 as shown in FIG. 4. Tension bar assembly 64 includes a pair of opposed gripping members 66 and 68 disposed about an elongated shaft 70. Shaft 70 includes a threaded portion 72 on which gripping member 68 is threadably disposed such that the width between retaining members 66 and 68 may be varied so as to impart resistance to the rotation of master reel 10 to compensate for reducing the diameter of the rolled-up web material 16 during processing as it is dispensed into the system. A lock-nut 73 may be urged into contact with gripping member 68 in a conventional manner. As the diameter of the master reel 10 is reduced due to continuous feeding of the web 16 through the system, the amount of centrifugal force generated by the pulling action is reduced, thereby requiring less tension on the master reel 10 to maintain an equal and constant pressure during the dry printing process. By reducing the distance between retaining member 66, 68 pressure is exerted on master reel 10 to increase rolling resistance. As shown in the drawings, the web material is fed into slitter station 18, such that the width of the web 16 can be established to ensure a proper side-to-side repeat of the decorative pattern to be printed, and to eliminate possible distortion from bruised or damaged edges. This also ensures that the outer portions of each edge can be printed. Each decorative pattern of wall coverings normally has a side-to-side repeat of 20.5, 27, 54 inches, etc. Accordingly, instead of requiring "double-cutting" for matching the side-to-side repeat, the slitting station 18 enables the web material 16 to be cut to exactly match the repeat of the decorative pattern such that the width of the web material 16 used in the transfer printing process is exactly the width of the side-to-side width of the decorative pattern. The slitting station 18 also enables edges of the web material 16 that may have been damaged during transportation to be removed. The precise matching of the width of the web material 16 to the pattern to be printed is important as the sublimation dye undergoes a phase change into the gaseous state while transferring the image onto the web material 16. If the edges of the web material 16 are not clean, or are damaged or bruised, the sublimation dye can escape and leave distorted or irregular printing near the edges. By slitting the edges of the web material 16 prior to printing, the sublimation dye transfer paper 22 can make flush contact with the edges of the web material 16 during printing and distorted and or irregular printing is eliminated. Referring now to the transfer cylinder 24, it can be seen that an introducer roller 28 is proximally disposed to location A where the web material 16 and transfer paper 22 are bought into overlapping contact on the working surface 20 of the transfer cylinder 24. The respective components are maintained in overlapping relation in order to transfer the sublistatic dyed image from the sublimation transfer paper 22 to the web material 16. The two components are separated at location B after passing between a predetermined gap defined between nip roller 30 and working surface 26 of transfer cylinder 24. The web material 16 having the printed decorative pattern is then communicated to the take-up roll 32 and the transfer paper is advanced to the take-up roll 34 as shown. The contact point A should be at a location selected to maximize the distance between the initial contact print of the web material 16 with working surface of transfer cylinder 24 and the exit point B proximal to nip roller 32. By increasing this distance, maximum "throughput" can be achieved. Depending upon the distance between point A and B, maximum throughput can be calculated allowing the web material 16 and the sublimation dye transfer paper 22 to remain under equal pressure and constant temperature for a dwell time from about 25-45 seconds, depending upon the desired printed results.
The Nomex blanket used conventional transfer printing systems is eliminated by virtue of the nip roller 30 and variable tensioning mechanism 64 associated with master reel 10. Specifically, nip roller 30 is mounted on an actuating bar which allows for selective engagement and disengagement with working surface 26 of constantly rotating transfer cylinder 24. When nip roller 30 is engaged with working surface 26, the web material 16 is drawn into overlapping contact with transfer paper 22 on working surface 26 of transfer cylinder 24 to provide a mechanism that has constant speed, equal pressure, and uniform pressure. In addition, variable tensioning mechanism 64 enables the necessary back pressure to be maintained so as to stabilize the web material 16 and eliminate wandering and wrinkling as it is continuously "pulled" through slitting station 18, and passes point A on the transfer cylinder 24. The independent introduction of sublimation dye transfer paper 22 is implemented through the action of nip roller 30 being engaged with working surface 26 and the web material 16. The sublimation dye transfer paper 22 is not pulled, but rather introduced at point A and passively drawn into the system without requiring any drive mechanism of its own. This enables continuous processing of any desired decorative pattern by replacing the sublimation dye printed transfer paper 22 without interrupting continuous processing of the web material 16. Additionally, in the event that the side-to-side repeat of the decorative pattern changes, a width adjustment to the web material 16 may be accomplished at the slitting station 18 and no changes to the master reel 10 or sublimation dye transfer paper 22 are required. If the temperature of the working surface 26 of transfer cylinder 24 needs to be increased or decreased in accordance with the printing requirements, nip roller 30 can be disengaged, transfer cylinder 24 adjusted, and the system then restarted without wasting web material 16 or sublimation dye transfer paper 22.
Another benefit of the nip roller system allows for the sublimation dye transfer paper 22 to print the decorative pattern on the edge of the web material 16 without strike back. Although the side-to-side repeat is established by the decorative pattern on the sublimation dye transfer paper 22 and slitting station 18, the width of the sublimation transfer paper 22 is wider than the web material 16 being printed. To allow the width of the sublimation dye transfer paper 22 to extend beyond the width of the non-woven material, the decorative side-to-side repeat on the sublimation dye transfer paper 22 is repeated beyond a single pattern iteration. This allows for printing of the outer edge of the web material 16. Under conventional transfer conditions, such an overlapping condition would normally cause strike back. However, by eliminating the Nomex blanket and utilizing the combination nip roller 30/tensioning mechanism 64 assembly, the overlapped image does not return to strike back and render the edges of web 16 unusable. All web material 16 and exhausted sublimation dye transfer paper 22 is removed from the system at point B, and fed independently to the separate take-up rolls 32, 34 as described above. The master reel of wall covering is removed from roll 32 and then cut-up into single, double or triple roll lengths. The exhaustive sublimation dye transfer paper 22 is then removed .
As the presence of computers and four color printing processes increases, the development of sublistatic printers such as the Xerox 8900 Series may be used to allow for a computer generated image to be output to a sublistatic printer, and then generated on a conveyer sheet in four process color. Currently, the company Visual Edge, has a personal computer output system in partnership with the Xerox Corporation using a Pradia Inc. four process color system of sublistatic inks developed by the Hylord company that can output the necessary four process color sublistatic dye onto the transfer paper using a Xerox 8900 sublistatic printer. The flow of the dye is regulated by the personal computer software developed by Visual Edge to reproduce continuous color saturation of a designated print file at a rate of 25 yards per hour. The wall covering printed in accordance with the present invention has a high quality "matte" printed surface exhibiting resistance to UV light, crocking, shrinkage, stretching, and the like. It is strippable, paintable and prepared for wall hanging using clear vinyl paste or prepaste . It is flame test certified under ASTM-84, washable and durable to long-term use.
The present invention has been shown and described in what is considered to be the most practical and preferred embodiment. It is anticipated, however, that departures may be made therefrom and that obvious modifications will be implemented by persons skilled in the art .

Claims

CLAIMS What is claimed is:
1. A method for dry heat transfer printing a wall covering material utilizing at least one transfer cylinder having a heated working surface, comprising:
(a) dispensing a sublimation dye transfer paper having a decorative pattern to be printed from a source of said transfer paper into contact with said working surface of said transfer cylinder; (b) dispensing a paper-like, non-woven fibrous web material from a source of said web material to said transfer cylinder and bringing said web material into overlapping contact with said transfer paper at a first location along a circumference of said transfer cylinder;
(c) maintaining said web material in contact with said transfer paper around a portion of said transfer cylinder as said transfer cylinder rotates about a central axis thereof at a processing temperature; and
(d) separating said web material containing the printed decorative pattern from said transfer paper at a second location along said circumference of said transfer cylinder.
2. The dry heat transfer printing method recited in Claim 1, further including the step of controlling the width of said web material prior to introducing said web material to said transfer cylinder proximal to said first location.
3. The dry heat transfer printing method recited in Claim 1, further including a master reel containing said source of said web material including means for tensioning said web material, an introducer roller disposed proximal to said first location where said transfer paper is brought into contact with said working surface of said transfer cylinder and said web material is brought into overlapping contact with said transfer paper, and a nip roller, wherein step (b) includes passing said transfer paper and said web material between said introducer roller and said transfer cylinder and step (c) comprises exerting a rolling contact force against said working surface of said transfer cylinder with said nip roller proximal to said second location to pull said web material into contact with said transfer paper.
4. The dry heat transfer printing method recited in Claim 1, wherein said working surface of said transfer cylinder ΓÇó is heated to a temperature in the range of from about 350 deg. F to 425 deg. F.
5. The dry heat transfer printing method recited in Claim 1, wherein said web material is fabricated by dispersing fibers that overlap horizontally and vertically on an inclined fiber-collecting wire.
6. The dry heat transfer printing method recited in Claim 1, further comprising the step of treating said web material with an acrylic binder prior to bringing said web material into contact with said transfer paper on said transfer cylinder.
7. The dry heat transfer printing method recited in Claim 6, further comprising the step of adding a penetration inhibitor to said web material prior to bringing said web material into contact with said transfer paper on said transfer cylinder.
8. The dry heat transfer printing method recited in Claim 1, further comprising the step of computer generating a multi-color sublistatic dyed image on said transfer sheet prior to transfer printing the image onto said web material.
9. A method for dry heat transfer printing a wall covering material utilizing at least one transfer cylinder having a heated working surface, comprising: (a) treating a paper- like, non-woven fibrous web material with an acrylic binder;
(b) dispensing said web material from a master reel containing a source of said web material, said master reel including means for tensioning said web material operatively associated therewith, and passing said web material through a slitting station to establish a side-to-side repeat of the decorative pattern to be printed and to ensure edgewise integrity of said web material;
(c) dispensing a sublimation dye transfer paper having said decorative pattern to be printed into contact with said working surface of said transfer cylinder from a source of said transfer paper between an introducer roller and said working surface;
(d) transferring said web material from said slitting station to said transfer cylinder between said introducer roller and said working surface and bringing said web material into overlapping contact with said transfer paper at a first location along a circumference of said transfer cylinder;
(e) maintaining said web material in contact with said transfer paper around a portion of said transfer cylinder between said introducer roller and a nip roller which exerts a rolling contact force against said working surface as said transfer cylinder rotates about a central axis thereof at a processing temperature; and
(f) separating said web material containing the printed decorative pattern from said transfer paper at a second location proximal to said nip roller along said circumference of said transfer cylinder.
10. The dry heat transfer printing method recited in Claim 9, further comprising the step of adding a penetration inhibitor to said web material prior to bringing said web material into contact with said transfer paper on said transfer cylinder.
11. A method for dry heat transfer printing a wall covering material utilizing at least one transfer cylinder having a heated working surface, comprising:
(a) treating a paper-like, non-woven fibrous web material with an acrylic binder and a penetration inhibitor;
(b) dispensing said web material from a source of said web material and passing said web material through a slitting station to establish a side-to-side repeat of the decorative pattern to be printed and to ensure edgewise integrity of said web material ; (c) dispensing a sublimation dye transfer paper having said decorative pattern to be printed into contact with said working surface of said transfer cylinder from a source of said transfer paper;
(d) transferring said web material from said slitting station to said transfer cylinder and bringing said web material into overlapping contact with said transfer paper at a first location along a circumference of said transfer cylinder;
(e) maintaining said web material in contact with said transfer paper around a portion of said transfer cylinder as said transfer cylinder rotates about a central axis thereof at a processing temperature; and
(f) separating said web material from said transfer paper containing the printed decorative pattern at a second location along said circumference of said transfer cylinder.
12. A dry heat transfer printed wall covering material, comprising: a paper-like, non-woven fibrous web material comprising a plurality of dispersed natural and synthetic fibers and a binder impregnated therein, said web material having a decorative pattern printed on one side thereof by overlaying said web material onto a transfer sheet containing said decorative pattern about a transfer cylinder having a heated surface.
13. The wall covering material recited in Claim 12, wherein said binder comprises an acrylic material that provides a printable surface for said decorative pattern.
14. The wall covering material recited in
Claim 12, further comprising a penetration inhibitor impregnated therein to inhibit migration of wall covering adhesive into the fibrous web.
PCT/US1998/000117 1997-01-08 1998-01-06 Process of dry printing a paper-like non-woven wall covering material WO1998030397A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP98901692A EP0968091A4 (en) 1997-01-08 1998-01-06 Process of dry printing a paper-like non-woven wall covering material
AU58151/98A AU5815198A (en) 1997-01-08 1998-01-15 Process of dry printing a paper-like non-woven wall covering material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/780,598 US5989380A (en) 1997-01-08 1997-01-08 Process of dry printing a paper-like non-woven wall covering material
US08/780,598 1997-01-08

Publications (1)

Publication Number Publication Date
WO1998030397A1 true WO1998030397A1 (en) 1998-07-16

Family

ID=25120055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/000117 WO1998030397A1 (en) 1997-01-08 1998-01-06 Process of dry printing a paper-like non-woven wall covering material

Country Status (4)

Country Link
US (1) US5989380A (en)
EP (1) EP0968091A4 (en)
AU (1) AU5815198A (en)
WO (1) WO1998030397A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2263884A1 (en) 2009-06-17 2010-12-22 Coldenhove Know How B.V. Wallcovering and process for producing wallcoverings
WO2016151409A1 (en) * 2015-03-26 2016-09-29 Dsm Ip Assets B.V. Systems and methods for the transfer of color and other physical properties to fibers, braids, laminate composite materials, and other articles
US9789662B2 (en) 2013-03-13 2017-10-17 Cubic Tech Corporation Engineered composite systems
CN107813583A (en) * 2017-11-27 2018-03-20 上海佰润诺机械制造工程有限公司 A kind of transfer coated system
US9993978B2 (en) 2012-11-09 2018-06-12 Cubic Tech Corporation Systems and method for producing three-dimensional articles from flexible composite materials
US10189209B2 (en) 2013-03-13 2019-01-29 Dsm Ip Assets B.V. Systems and method for producing three-dimensional articles from flexible composite materials
US10513088B2 (en) 2015-01-09 2019-12-24 Dsm Ip Assets B.V. Lightweight laminates and plate-carrier vests and other articles of manufacture therefrom
WO2020106247A3 (en) * 2018-11-23 2020-07-23 Baybars Dijital Baski Tekstil Sanayi Ve Ticaret Anonim Sirketi Production method of wall coating rolls made of fabric
US11072143B2 (en) 2013-03-13 2021-07-27 Dsm Ip Assets B.V Flexible composite systems and methods

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018579A1 (en) 1998-12-18 2001-08-30 Walter Klemp Disposable absorbent garment having stretchable side waist regions
US6964722B2 (en) * 2002-08-07 2005-11-15 Trio Industries Holdings, L.L.C. Method for producing a wood substrate having an image on at least one surface
IL154452A (en) * 2003-02-13 2009-09-01 N R Spuntech Ind Ltd Printing on non woven fabrics
US7682350B2 (en) 2005-10-14 2010-03-23 The Procter & Gamble Company Disposable absorbent articles
US7432413B2 (en) 2005-12-16 2008-10-07 The Procter And Gamble Company Disposable absorbent article having side panels with structurally, functionally and visually different regions
US8491558B2 (en) 2006-03-31 2013-07-23 The Procter & Gamble Company Absorbent article with impregnated sensation material for toilet training
US8664467B2 (en) 2006-03-31 2014-03-04 The Procter & Gamble Company Absorbent articles with feedback signal upon urination
US8057450B2 (en) 2006-03-31 2011-11-15 The Procter & Gamble Company Absorbent article with sensation member
US20070275617A1 (en) * 2006-05-25 2007-11-29 Wp Ip, Llc Decorative flame barrier surface covering
US20070287345A1 (en) * 2006-06-09 2007-12-13 Philip Confalone Synthetic nonwoven wallcovering with aqueous ground coating
US7896858B2 (en) 2006-12-04 2011-03-01 The Procter & Gamble Company Absorbent articles comprising graphics
WO2013170433A1 (en) 2012-05-15 2013-11-21 The Procter & Gamble Company Absorbent article having characteristic waist end
US20150158263A1 (en) * 2013-12-06 2015-06-11 Alcoa Inc. Embossing apparatus and methods using texture features digitally applied to a work roll or sheet for subsequent roll embossing
WO2017040372A1 (en) * 2015-08-31 2017-03-09 Kimberly-Clark Worldwide, Inc. Article of commerce treated with sublimable material
DE102021118319A1 (en) * 2021-07-15 2023-01-19 Koehler Innovation & Technology Gmbh Dye Sublimation Paper and Printed Dye Sublimation Paper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961388A (en) * 1975-01-03 1976-06-08 Precision Screen Machines Inc. Method and apparatus for effecting transfer printing
US3974948A (en) * 1974-03-11 1976-08-17 Maschinenfabrik Goebel, Gmbh Web tension control device
US4246311A (en) * 1979-01-23 1981-01-20 Chelsea Industries, Inc. Wall covering comprising a web having an impregnation and a back coating
US4460643A (en) * 1983-02-07 1984-07-17 The Dexter Corporation Nonwoven fibrous backing for vinyl wallcover
US4650704A (en) * 1985-03-06 1987-03-17 Stik-Trim Industries, Inc. Self-adhesive wall covering or the like and method of making same
US5574829A (en) * 1994-01-07 1996-11-12 Wallace; Elizabeth Method and apparatus for producing needlework canvas

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US34093A (en) * 1862-01-07 Improvement in revolving fire-arms
US1608243A (en) * 1924-04-08 1926-11-23 New Process Cork Company Inc Fabricated cork sheet
US2828219A (en) * 1955-07-29 1958-03-25 Armstrong Cork Co Floor and wall covering
CH272468A4 (en) * 1968-02-26 1974-07-31
US3768280A (en) * 1970-02-05 1973-10-30 Kannegiesser Maschinen Apparatus for printing on textile strips and pieces
US3960652A (en) * 1973-03-15 1976-06-01 The Dexter Corporation Process of forming wet laid tufted nonwoven fibrous web and tufted product
US4042453A (en) * 1974-07-17 1977-08-16 The Dexter Corporation Tufted nonwoven fibrous web
DE2438262A1 (en) * 1974-08-08 1976-02-26 Brueckner Apparatebau Gmbh PROCESS FOR CONTINUOUS PRINTING OF TEXTILE LINES
US4130685A (en) * 1974-09-20 1978-12-19 Tarullo John A Cork wall covering
FR2318742A1 (en) * 1975-07-21 1977-02-18 Rejto Thomas TRANSFER PRINTING PROCESS WITH SIMULTANEOUS EMBOSSING AND INSTALLATION FOR IMPLEMENTING THE PROCESS
CA997632A (en) * 1975-11-07 1976-09-28 Rudy L. Gagne Method and apparatus for coating a substrate with plastic
JPS52103579A (en) * 1976-02-26 1977-08-30 Toppan Printing Co Ltd Transfer printing method
GB1572233A (en) * 1977-04-29 1980-07-30 Lemaire & Cie Method for the heat-transfer printing of a textile material
FR2391069A1 (en) * 1977-05-20 1978-12-15 Dollfus & Noack Hot transfer printing pressure belts - with impermeable silicone or fluorocarbon! coatings to inhibit belt wear or fouling and vacuum hood losses
CH612565GA3 (en) * 1977-10-07 1979-08-15
US4226594A (en) * 1978-05-31 1980-10-07 Societe Anonyme Dite: Anciens Ets P. Lemaire & Cie Method for the heat-transfer printing of a textile material
US4235657A (en) * 1979-02-12 1980-11-25 Kimberly Clark Corporation Melt transfer web
US4577585A (en) * 1984-04-23 1986-03-25 Anselmo Anthony G Method and apparatus for making a color blended wall covering
US5001500A (en) * 1986-12-16 1991-03-19 L & C Family Partnership Endless belt printing apparatus
DE4126096A1 (en) * 1991-08-07 1993-02-11 Thomas Kerle METHOD FOR PRINTING SUBSTRATES BY TRANSFER PRINTING METHOD

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3974948A (en) * 1974-03-11 1976-08-17 Maschinenfabrik Goebel, Gmbh Web tension control device
US3961388A (en) * 1975-01-03 1976-06-08 Precision Screen Machines Inc. Method and apparatus for effecting transfer printing
US4246311A (en) * 1979-01-23 1981-01-20 Chelsea Industries, Inc. Wall covering comprising a web having an impregnation and a back coating
US4460643A (en) * 1983-02-07 1984-07-17 The Dexter Corporation Nonwoven fibrous backing for vinyl wallcover
US4650704A (en) * 1985-03-06 1987-03-17 Stik-Trim Industries, Inc. Self-adhesive wall covering or the like and method of making same
US5574829A (en) * 1994-01-07 1996-11-12 Wallace; Elizabeth Method and apparatus for producing needlework canvas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0968091A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2263884A1 (en) 2009-06-17 2010-12-22 Coldenhove Know How B.V. Wallcovering and process for producing wallcoverings
WO2010147468A1 (en) 2009-06-17 2010-12-23 Coldenhove Know How B.V. Wallcovering and process for producing wallcoverings
US9993978B2 (en) 2012-11-09 2018-06-12 Cubic Tech Corporation Systems and method for producing three-dimensional articles from flexible composite materials
US9789662B2 (en) 2013-03-13 2017-10-17 Cubic Tech Corporation Engineered composite systems
US10189209B2 (en) 2013-03-13 2019-01-29 Dsm Ip Assets B.V. Systems and method for producing three-dimensional articles from flexible composite materials
US11072143B2 (en) 2013-03-13 2021-07-27 Dsm Ip Assets B.V Flexible composite systems and methods
US11090898B2 (en) 2013-03-13 2021-08-17 Dsm Ip Assets B.V. Engineered composite systems
US10513088B2 (en) 2015-01-09 2019-12-24 Dsm Ip Assets B.V. Lightweight laminates and plate-carrier vests and other articles of manufacture therefrom
WO2016151409A1 (en) * 2015-03-26 2016-09-29 Dsm Ip Assets B.V. Systems and methods for the transfer of color and other physical properties to fibers, braids, laminate composite materials, and other articles
CN107429480A (en) * 2015-03-26 2017-12-01 帝斯曼知识产权资产管理有限公司 System and method for color and other physical properties to be transferred to fiber, braid, laminar composite and other products
CN107813583A (en) * 2017-11-27 2018-03-20 上海佰润诺机械制造工程有限公司 A kind of transfer coated system
WO2020106247A3 (en) * 2018-11-23 2020-07-23 Baybars Dijital Baski Tekstil Sanayi Ve Ticaret Anonim Sirketi Production method of wall coating rolls made of fabric

Also Published As

Publication number Publication date
EP0968091A1 (en) 2000-01-05
EP0968091A4 (en) 2000-05-10
US5989380A (en) 1999-11-23
AU5815198A (en) 1998-08-03

Similar Documents

Publication Publication Date Title
US5989380A (en) Process of dry printing a paper-like non-woven wall covering material
US3434861A (en) Process for forming decorative patterns
WO2000037186A1 (en) Surface covering having a natural appearance and method for making it
EP0297875B1 (en) Paste-the-wall wallcoverings and method of making
US20010002293A1 (en) Surface coverings having a natural appearance and methods to make a surface covering having a natural appearance
SI0921953T1 (en)
EP0313979A3 (en) Method for producing extruded plastic sheets with scratch resistant coating
JP2008504949A (en) Undercoating method and apparatus, and printed matter
US4140566A (en) Reinforced sheet-type wallcovering
US4427731A (en) Decorative wallcovering in roll form
US5667618A (en) Method for making translucent colored-backed films and continuous length made thereby
NZ204623A (en) Continuously forming patterned floor or wall covering from a plastisol coated sheet
US4196244A (en) Wall covering and method of making same
WO2018154475A1 (en) A process and apparatus for making a continuous web of fibrous material
US20040062923A1 (en) Self-adhesive labelstock, a face paper for self -adhesive labelstock, a print carrier and a method for making the face paper and the print carrier for self-adhesive labelstock
US4161563A (en) Printed textile web material
EP0733477A2 (en) Methods of forming materials for upholstery use
JP4043534B2 (en) Manufacturing method of embossed synchronized makeup sheet
EP0898513B1 (en) Paper treatment
US4202716A (en) Wall covering and method of making same
US5795491A (en) Method of producing decorative louver window covering material
WO2004037545A1 (en) Wall paper having 3-dimensional exterior view and method for preparing the same
AU4644093A (en) Method for making translucent colored-backed films
CN1154918A (en) Method for printing on artificial leather
CN207646455U (en) A kind of thermoprint embossing synchronous forming device of terylene compound fabric

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998901692

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1998901692

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998531018

Format of ref document f/p: F

WWW Wipo information: withdrawn in national office

Ref document number: 1998901692

Country of ref document: EP