WO1998030950A1 - Systeme d'interrupteur pour une alimentation en courant d'un equipement portable - Google Patents

Systeme d'interrupteur pour une alimentation en courant d'un equipement portable Download PDF

Info

Publication number
WO1998030950A1
WO1998030950A1 PCT/JP1997/001401 JP9701401W WO9830950A1 WO 1998030950 A1 WO1998030950 A1 WO 1998030950A1 JP 9701401 W JP9701401 W JP 9701401W WO 9830950 A1 WO9830950 A1 WO 9830950A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
external power
battery
portable device
Prior art date
Application number
PCT/JP1997/001401
Other languages
English (en)
French (fr)
Inventor
Shizuo Yamaguchi
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9004487A external-priority patent/JPH09269852A/ja
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to EP97919654A priority Critical patent/EP0952512A4/en
Priority to US09/117,660 priority patent/US6060789A/en
Publication of WO1998030950A1 publication Critical patent/WO1998030950A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • G06F1/305Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations in the event of power-supply fluctuations

Definitions

  • the present invention relates to a power supply switching circuit used for a card-type portable device such as a memory card containing a plurality of batteries, and particularly to a voltage supply circuit for the card-type portable device.
  • the present invention relates to a power supply switching circuit for a portable device, which is devised so that the internal battery is not consumed when a power supply is switched from an internal battery to an external power supply.
  • Card-type portable devices conforming to the PCMCIA Personal Computer Computer Card International Standard
  • PCMCIA Personal Computer Computer Card International Standard
  • data is transferred from the computer to the card-type mobile device.
  • Power for operating the card-type portable device at that time is supplied from the personal computer.
  • the power supply for the operation of the card-type portable device is the internal battery. Therefore, a card-type portable device requires a power supply switching circuit to select the power supply from an external power supply (power supply on the PC side) and a built-in battery.
  • the external power supply 600 (for example, 5 V) is connected to the portable device body 6 13 via the switch 62 and the diode 6 11.
  • built-in battery for example, 5 V
  • the portable device main body 613 (for example, 3 V) is connected to the portable device main body 613 via a diode 610.
  • the switch 602 When the portable device is a single unit, the switch 602 is open, so that power is supplied to the portable device main body 613 from the built-in battery 604 through the diode 610. At this time, the diode 611 prevents the current from flowing out of the built-in battery 604 to the outside.
  • a field effect transistor (hereinafter referred to as FET) is used between the built-in battery and the portable device body.
  • An external power source 701 (for example, 5 V) is connected to the portable device main body 713 via a switch 702 and a die gate 711.
  • the built-in battery 704 (for example, 3 V) is connected to the portable device main unit 13 via the P channel FET end 10.
  • the source of the P-channel FET 710 is connected to the portable device body 713, and the drain is connected to the built-in battery 704.
  • the gate of the FET 710 is connected to the external power supply switch 702 At the same time, it is connected to the negative electrode of the built-in battery 704 via the bias resistor 709.
  • the negative electrode of the built-in battery 704 is connected to the negative electrode of the external power supply 701 and the negative terminal of the portable device body 713.
  • the drain of the FET 710 is connected to the positive electrode 3 V of the internal battery end 04, and the gate is set to the bias resistance 709. And connected to the negative electrode 0 V of the built-in battery 704, respectively.
  • the source of the FET 710 is almost at the drain voltage (3 V) due to the parasitic diode between the drain and the source. As a result, the source-gate voltage becomes 13 V. Therefore, FET 710 becomes conductive, and the voltage (3 V) of built-in battery 704 continues to be supplied to portable device body 713. At this time, the diode 711 prevents the current from flowing out of the built-in battery 704 to the outside.
  • the gate and the source of the FET 710 are at the voltage of 5 V of the external power supply 701, and the drain is of the internal battery 704.
  • the voltage becomes 3 V.
  • the source-gate voltage becomes 0 V. Therefore, the FET 710 is turned off, preventing the voltage of the built-in battery 704 from being supplied to the portable device main unit 713, and the voltage of the external power supply 701 being switched to the 5 V power switch 710. 2.
  • the parasitic diode of the FET 710 in the cut-off state charges the internal battery 704 with the voltage of the external power supply 701 To prevent this from happening.
  • PCMCIA card card In the case of a general computer, the PCMCIA card card is often used to supply 5 V to the E-Iss.
  • PCMCIA standard memory cards that are used by inserting them into a personal computer often have a built-in 3V coin-type lithium battery.
  • the voltage of the external power supply is higher than the voltage of the built-in battery, so the above two conventional examples are applied, and while the external power is supplied. Can eliminate unnecessary consumption of the built-in battery.
  • card-type portable devices are more advantageous to use two 3-volt coin-type lithium batteries in series at 6 V because of the power consumption.
  • the voltage of the external power supply (5 V) is lower than the voltage of the internal battery (6 V), so such a card-type portable device is a PCMCIA card interface. It cannot be used in combination with a general computer that supplies 5 V to the power supply.
  • An object of the present invention is to provide a portable device that uses two or more built-in batteries connected in series, even if the voltage of the external power supply of the portable device is lower than the voltage of the built-in battery of the portable device, but not less than a certain level. Power supply switching circuit for mobile devices, so that the voltage of the external power supply of the mobile device can be supplied to the mobile device without causing the internal battery to be consumed. Is to do.
  • a power supply switching circuit of the present invention comprises: a power supply path for supplying power from an external power supply and power from a built-in battery to a portable device main body; and a power supply path between the built-in battery and the portable device main body. Receiving the value of the voltage supplied from the external power supply and the first signal for switching the first switching element to the cut-off state when the voltage exceeds a certain level. And an external power supply voltage detection circuit for outputting a second signal for switching the switching element to a conductive state if the voltage does not exceed a certain level.
  • the switching element is a P-channel field effect element, the drain of which is connected to the internal battery, the source is connected to the power input of the mobile device itself, and the gate is connected to the external power supply voltage.
  • Each is connected to a detection circuit.
  • the source gate Since the voltage difference between them becomes equal to or less than the threshold value of the P-channel field-effect element, the P-channel field-effect element is cut off. Therefore, only the voltage of the external power supply is supplied to the portable device itself.
  • the P-channel field effect element causes a voltage difference between the source and the gate. Because it exceeds the threshold, it conducts, The voltage of the built-in battery is supplied to the portable device body.
  • the switching element and the external power supply voltage detecting circuit are both P-channel field effect elements, and the field effect element of the switching element has a drain connected to the external power supply and a source connected to the external power supply.
  • the gate is connected to the input side of the constant voltage regulator, the gate is connected to the output side of the level shifter, and the field effect element of the external power supply voltage detection circuit has a drain connected to the input side of the level shifter and a source connected to the external power supply.
  • the gate is connected to the output side of the constant voltage regulator.
  • FIG. 1 is a block diagram showing a first embodiment of the power supply switching circuit according to the present invention.
  • FIG. 2 is a block diagram showing a second embodiment of the power supply switching circuit according to the present invention.
  • FIG. 3 is a diagram illustrating the operation of the power supply switching circuit of FIG.
  • FIG. 4 is a block diagram showing a third embodiment of the power supply switching circuit according to the present invention.
  • Fig. 5 shows the equivalent circuit of the inverter in the level shift circuit in Fig. 4.
  • Figure 6 shows an example of a conventional power supply switching circuit.
  • FIG. 7 shows another example of a conventional power supply switching circuit.
  • FIG. 1 The first embodiment of a power supply switching circuit for supplying external power from a computer to a card-type portable device having a built-in battery and having a PCMCIA standard interface is shown in FIG. This will be described with reference to a diagram of FIG.
  • the combination of the external power supply 101 and the switch 102 represents, for example, an external power supply (low-voltage generation source) supplied from the personal computer.
  • the external power supply 101 may be a battery.
  • the external power supply 101 is connected to the portable device main body 113 via the switch 102 and the diode 111.
  • the voltage of the first and second internal batteries 103 and 104 connected in series via the first P-channel FET 107 is changed to the second P-channel FET 110 0 is connected to the main body of mobile device 1 1 3.
  • Each of the built-in batteries 103 and 104 may be a single battery or a battery in which several batteries are connected in series.
  • a resistor ⁇ 08 and a resistor 109 are connected in series to the external power supply 101 and the switch 102.
  • the drain of the first P-channel FET 107 is connected to the negative electrode of the first internal battery 103, the source is connected to the positive electrode of the second internal battery 104, and the gate is connected to the resistor 1 They are connected in the middle between the resistor 08 and the resistor 109, respectively.
  • the drain of the second P-channel FET 110 is connected to the positive terminal of the second internal battery 103, the source is connected to the positive terminal of the portable device body 113, and the gate is connected to the gate.
  • the negative electrode of the external power supply 101, the negative electrode of the second internal battery 104, and the negative terminal of the portable device body 113 are commonly grounded.
  • a second diode 105 is connected between the positive electrode of the first internal battery 103 and the positive electrode of the second internal battery 104. Further, a third diode 106 is connected between the negative electrode of the first internal battery 103 and the negative electrode of the second internal battery 104.
  • the external power supply 101 is set to 5 V
  • the voltage of the first and second internal batteries 103 and 104 is set to 3 V
  • the resistance 108 is set to 68 kQ
  • the resistance is set to 68 kQ.
  • 1 08 be 1 0 0 k Q.
  • the threshold value of the source-gate voltage for the conduction of the first and second P-channel FETs 107 and 110 is set to 0.3 V.
  • the gate of the second P-channel FET 110 is supplied with 5 V of the external power supply, and the source is similarly supplied with 5 V of the external power supply via the first diode 11 1. Therefore, the source-gate voltage is 0 V, and the second P-channel FET 107 is also shut off.
  • the switch 102 when the switch 102 is closed, the first and second P-channel FETs 107 and 110 are both cut off, and the first and second internal batteries 10 and 10 are closed. 3, the voltage of 104 is The supply to the portable device body 1 13 is cut off, and the voltage 5 V of the external power supply 102 is supplied to the portable device body ⁇ 13.
  • the source-gate voltage is It becomes 6 V, and the second P-channel FET 110 also becomes conductive.
  • the switch 102 when the switch 102 is opened, the first and second P-channel FETs 107 and 110 are both conductive, and the first and second internal batteries connected in series are connected.
  • the voltage 6 V of 103 and 104 is supplied to the main body 113 of the portable device.
  • the first diode 11 1 prevents the voltage 6 V of the internal batteries 103 and 104 from flowing out to the external personal computer.
  • the second and third diodes 105 and 106 are bypass diodes for replacing the internal battery.
  • Mobile devices When detached from the PC (that is, as described in (2) above, open switch 102 and apply the voltage of built-in batteries 103 and 104 to the main body of portable device 113
  • the remaining internal battery 103 supplies its voltage of 3 V to the second conductive P-channel FET 110 and the third To the portable device main body 113 via the diode 106 of the above.
  • the built-in battery 104 applies the voltage of 3 V to the second conducting P-channel FET. It is supplied to the portable device main body 113 through 110 and the second diode 105.
  • the remaining built-in batteries will continue to supply that voltage to the portable device body 113.
  • the contents stored in the memory of the portable device main body 113 and the contents of timekeeping can be retained even when the battery is replaced.
  • the vertical axis represents the voltage level
  • the horizontal axis represents the time.
  • Curve 310 represents the voltage of the first internal battery 103
  • curve 302 represents the voltage of the second internal battery section 104
  • curve 303 represents the external supply voltage
  • curve 3 represents the external supply voltage.
  • 0 5 is a portable device
  • the voltage levels finally applied to the main body 1 1 and 3 are shown respectively.
  • the straight line 304 indicates the conduction threshold level of the first P-channel FET 107.
  • section T1 the mobile device is disconnected from the personal computer, and the voltage (6 V) of the internal batteries 103 and 104 is supplied to the mobile device main body 113.
  • the supply voltage of 6 V is shown as curve 305.
  • Section T2 is the period during which the second internal battery is removed from the mobile device for replacement. Therefore, as described in (3) above, the mobile device body 113 is supplied with the voltage of 3 V of the first internal battery 103.
  • Section T3 is a period in which the second internal battery is replaced with another one and attached to the portable device, and the portable device is also in a state where both the first and second internal batteries are attached. Its voltage level is 6 V, as in section T1.
  • Section T4 is the period during which the first internal battery is removed from the mobile device for replacement. Therefore, the portable device main body 113 is supplied with the voltage of 3 V of the second internal battery.
  • section T5 after replacing the first built-in battery with another one and attaching it to the portable device, it was inserted into the personal computer and the voltage of the external power supply 101 was supplied to the portable device body 113. This is a period in which the relationship between the external power supply voltage and the switching at that time is clearly shown on the time axis.
  • This section T5 starts and the voltage of the external power supply 101 Until the level (described later) is reached, the portable device body 113 is supplied with the voltage 6 V of the first and second internal batteries 103 and 104. During that time, the first P-channel FET 107 is in a conductive state. By the way, since the voltage of 3 V of the second internal battery 104 is supplied to the source of the first P-channel FET 100, if the voltage of 2.5 V or more is supplied to the gate, the source When the gate-to-gate voltage exceeds 0.5 V, the first P-channel FET 107 switches to the cutoff state.
  • the numerical value 100 in the left calculation formula is the value of the resistor 109 (kQ)
  • 68 is the value of the resistor 108 (k ⁇ ). That is, when the voltage of the external power supply 101 rises to 4.2 V when the section T5 starts, the first P-channel FET 107 is cut off. Level 304 in Fig. 3 indicates this 4.2 V.
  • the voltage of the external power supply 10 rises to reach 4.2 V, and the voltage 6 V of the first and second internal batteries 103 and 104 is supplied to the main body of the portable device 113. Start when no longer available.
  • the voltage of the external power supply 101 rises from 4.2 V to 5 V, and then stabilizes at that value of 5 V.
  • this embodiment is a portable device using a plurality of built-in batteries in series, and the voltage of the external power supply is lower than the voltage of the built-in battery (for example, 6 V). Even if the voltage of the external power supply is more than a certain value (for example, 4.2 V or more), the internal battery is consumed based on the voltage of one internal battery that is lower than the external power supply voltage. An excellent power supply switching circuit that can supply an external power supply voltage to portable equipment has been realized.
  • FIG. 2 shows a block diagram of a second embodiment of a power supply switching circuit for supplying external power from a personal computer to a card-type portable device having a built-in battery and a PCMCIA standard interface. This will be described with reference to a diagram of FIG.
  • the switching circuit according to this embodiment is different from the switching circuit according to the first embodiment shown in FIG. 1 in that the resistor 108 is replaced with a P-channel FET, and the first diode 11 1 It is almost equivalent to the one with a constant voltage regulator between 1 and the portable device body 1 13.
  • the external power source 201 supplies a voltage to the portable device main body 211 via the first diode 211 and the constant voltage regulator 212.
  • the first built-in battery 203 and the second built-in battery 204 are connected in series via a first P-channel FET 207, and a second P-channel FET 207 is connected. Supply voltage to the main body 2 13 of the portable device via 0 8 and the constant voltage regulator 2 1 2
  • a third P-channel is connected between the positive side of the external power supply 201 (switch 202) and the gate of the first P-channel FET 207.
  • Channel FET 208 is connected.
  • the source of this third P-channel FET 208 is on the positive side of the external power supply 201, the drain is on the gate of the first P-channel FET 207, and the gate is a constant voltage. Connected to the output side of the regulator 2 2.
  • the negative electrode of the external power supply 201, the negative electrode of the second built-in battery 204, and the negative terminal of the portable device body 2 13 are commonly grounded.
  • the gate of the first P-channel FET 207, the gate of the second P-channel FET 210 and the drain of the third P-channel FET 208 are connected to each other. And is connected to the common ground through a resistor 209.
  • a second diode 205 is connected between the positive electrode of the first internal battery 203 and the positive electrode of the second internal battery 204.
  • a third diode 206 is connected between the negative electrode of the first internal battery 203 and the negative electrode of the second internal battery 204.
  • the external power supply 202 is set to 5 V
  • the voltage of the first and second internal batteries 103 and 104 is set to 3 V
  • the resistance 209 is set to 100 ⁇ . . 1st, 2nd and 3rd tiers
  • the threshold value of the source-gate voltage for the conduction of T207, 210, and 208 is set to 0.5 V, respectively.
  • the output voltage of the constant voltage regulator is set to 3.3 V.
  • the voltage of 5 V of the external power supply 201 is supplied to the source of the third channel FET 208, and the output voltage of the constant voltage regulator 212 to the gate is 3. 3 V is supplied.
  • the third channel FET 208 has a source-gate voltage of 1.7 V and conducts, and both the drain and the source have the voltage of 5 V of the external power supply 201.
  • the voltage of 5 V is supplied to the gate of the first channel FET 207 and the gate of the second channel FET 210.
  • the gate of the first channel F F207 is supplied with 5 V from the drain of the third channel F ⁇ 208, and the source is supplied with the second voltage. 3 V of built-in battery 204 is supplied. As a result, the source-gate voltage of the first channel FET 207 becomes +2 V, and is cut off, and the first internal battery 203 and the second internal battery 200 The connection with 4 is cut off.
  • the gate of the second channel FET 210 is supplied with 5 V power from the drain channel of the third channel FET 208 and the source is supplied with the first die.
  • a voltage of 5 V of the external power supply 201 is supplied via the capacitor 211.
  • the voltage between the source and the gate of this second channel F 210 becomes 0 V, and the state is cut off. That is, when the switch 202 is closed, first, the third P-channel FET 208 becomes conductive, and as a result, the first P-channel FET 207 and the second P-channel FET 207 are turned on.
  • the FET 210 is shut off, and the supply of voltage from the first and second internal batteries 203 and 204 is stopped.
  • the 5 V voltage of the external power supply 201 is supplied to the constant voltage regulator 212, and the constant voltage regulator 212 regulates the stabilized voltage of 3.3 V to the portable device. Supply to main body 2 1 3.
  • the switch 202 is opened to disconnect the external power supply 201 from the constant voltage regulator.
  • the gate of the P-channel FET 208 is supplied with 3 V from the constant voltage regulator 212, and the source is supplied with 0 V from the external power supply 201.
  • the third P channel FET 208 has the source-gate voltage of +3, 3 V and is cut off.
  • the gate of the first P-channel FET 207 is grounded via the resistor 209, so that 0 V is supplied to the gate, and the source is 3 V from the second internal battery 204. Is supplied.
  • the first P-channel FET 207 has a source-gate voltage of 13 V and becomes conductive. Therefore, a voltage of 6 V from the first and second internal batteries 203 and 204 connected in series is supplied to the drain of the second P-channel FET 210. .
  • This second P-channel FET 210 is connected to the source due to the presence of a parasitic diode between the drain and the source. Is also supplied with a voltage of 6 V. On the other hand, the gate is grounded via the resistor 209 and is at 0 V. As a result, the voltage between the source and the gate of the second P-channel FET 210 becomes 16 V, and the second P-channel FET 210 becomes conductive.
  • both the first P-channel FET 207 and the second P-channel FET 210 are connected.
  • First and second built-in batteries connected in series by conducting
  • a voltage of 6 V from 203 and 204 is supplied to the constant voltage regulator 212. At this time, the first diode 2 1 1 prevents this 6 V from flowing out. Constant voltage regulator supplied with 6 V 2 1 2 stabilized 3,
  • bypass diode for replacing the built-in battery
  • the functions of the second and third diodes 205 and 206 as the bypass diodes are the same as those of the first and second embodiments. Since the function is the same as that of the third diodes 105 and 106, the description is omitted.
  • the portable device When the portable device is inserted into the personal computer and the voltage of the external power supply 201 is supplied to the portable device main body 211, the portable device is kept in the portable power supply until the voltage of the external power supply 201 rises to a predetermined level (described later).
  • the voltage of 6 V of the first and second built-in batteries 203 and 204 is continuously supplied to the constant voltage regulator 212 of the device body 113.
  • the source-gate voltage of the third P-channel FET 208 becomes 10 or more than 5 V, as described above, the third P-channel FET 208 becomes conductive.
  • the first and second channel FETs 207 and 208 are shut off, and the voltage 6 V of the first and second internal batteries 203 and 204 is changed to a constant voltage regulator.
  • the built-in battery connected in series is 6 V and a voltage of 3 or 8 V or more is supplied from an external power supply, the voltage is supplied from the external power supply to the portable device itself.
  • this embodiment is a portable device using a plurality of built-in batteries in series, and the voltage of the external power supply is lower than the voltage of the built-in battery (for example, 6 V). Even in this case, if the voltage of the external power supply is higher than a certain value (for example, 3 or 8 V or higher), an excellent power supply switch that can supply the external power supply voltage to the portable device without draining the internal battery The circuit has been realized.
  • a certain value for example, 3 or 8 V or higher
  • FIG. 3 shows a third embodiment of a power supply switching circuit for supplying external power from the PC to a portable type portable device that has a PCMCIA standard interface with a built-in battery. This will be described with reference to the drawings.
  • the first and second built-in batteries 403 and 404 connected in series are the first and second P-channel FETs 414 and 415, and the constant voltage regulator 41.
  • the voltage is supplied to the portable device main body 4 18 via 7.
  • the voltage of the external power supply 401 is supplied to the portable device main body 418 via the switch 402 and the third chan- nel channel 416 and the constant voltage regulator 417. Supply voltage.
  • the channel FET 410 constitutes a flip-flop type level shifter 419 (a portion surrounded by a dotted line in FIG. 4).
  • One output of the level shifter 419 is connected to the gates of the first and second channel FETs 414 and 415, and the other output of the level shifter 419 is The gates of the third P-channel FETs 416 are respectively connected to the gates.
  • Diodes 405 and 406 supply the higher power supply voltage of the internal battery and the external power supply to the flip-flop of the level shifter 419, and the inverter 411 supplies the same to the flip-flop. Output voltage of constant voltage regulator 4 17 is supplied.
  • the source of the fourth P-channel FET 412 is connected to the external power supply 411 (switch 402), and the gate is connected to the output of the constant-voltage regulator 417. Are grounded to a common potential via a resistor 413 to form a voltage detection circuit of an external power supply.
  • the source of the fourth P-channel FET 412 is the output of the voltage detection circuit and is connected to the input of the level shifter 419.
  • the external power supply 401 is set to 5 V
  • the voltages of the first and second internal batteries 400 and 404 are set to 3 V
  • the fourth channel F is set to 4 V.
  • the threshold value of the source-gate voltage of 12 is -0.5 V
  • the output of the constant voltage regulator is 3.3 V.
  • the constant voltage regulator 417 supplies a predetermined voltage to the portable device main body 213.
  • the external power supply 401 is supplied to the source of the fourth P-channel FET 412, and 3.3 V of the output voltage of the constant voltage regulation 417 is supplied to the gate.
  • the input of the level shifter 419 becomes the external power supply voltage of 5 V, and is connected to the gates of the first and second P-channel FETs 414, 415 of the level shifter 419.
  • the output that is "1" is supplied.
  • the voltage of "0" is supplied to the other outputs of the level shifter 419 connected to the gate of the third P-channel FET 416.
  • the higher power supply voltage of the internal battery and the external power supply is supplied to the level shifter 419 via diodes 405 and 406.
  • a voltage of 6 V of the series voltage of the first and second internal batteries 403 and 404, which is higher than the voltage 5 V of 1, is supplied, and the voltage of the output "1" of the level shifter is 6 V.
  • the source voltage of the third P-channel FET 416 is 5 V
  • the gate voltage is 0 V
  • the source-gate voltage is —5 V
  • the third P-channel FET 41 16 6 is conductive
  • the source voltage of the first P-channel FET 4 14 is 6 V
  • the gate voltage is also 6 V
  • the source-gate voltage is 0 V
  • the first P-channel FET 4 14 is cut off
  • the source voltage of the second P-channel FET 4 15 is 5 V
  • the gate voltage is 6 V
  • the source-gate voltage is +1 V
  • the second P-channel FET 4 415 is cut off
  • the voltage of the first and second internal batteries 403 and 404 is not input to the constant voltage regulator 417.
  • the output connected to the gates of the first and second P-channel FETs 414 and 415 of the level shifter 419 is "0" and the third P-channel FET 4
  • the other outputs of the level shifter 4 19 connected to the gate of 16 are "1".
  • the voltage of the level shifter output "1" is 6 V.
  • the source voltage of the first P-channel FET 414 is 6 V
  • the gate voltage is 0 V
  • the source-to-gate voltage is 16 V
  • the first P-channel FET The channel FET 414 is conducting
  • the source voltage of the second P-channel FET 415 is also 5 V
  • the gate voltage is 0 V
  • the source-gate voltage is 16 V
  • the second P-channel FET 415 The channel FET 415 also conducts
  • the third P channel FE 411 is at a source voltage of 6 V and a gate voltage of 6 V.
  • the gate-to-gate voltage is 0 V and the third P channel
  • the channel FET 416 is shut off, and the voltages of the first and second internal batteries 403 and 404 are input to the constant voltage regulator 417.
  • This insulator 411 has a CMOS structure of an N-channel FET 502 and a P-channel FET 503 as a basic structure, and a diode having an anode as a common.
  • a ⁇ -type gate protection circuit consisting of capacitors 504 and 506 and a resistor 505 is attached. This MOS gate can apply a cutoff voltage exceeding the source voltage of the ⁇ channel FET503.

Description

明 細 香
携帯機器用の電源切り換え回路
技 術 分 野
本発明は、 複数の電池を内蔵するメ モ リ ー カー ドなど のカー ド型携帯機器に使用される電源切り換え回路にか かるものであって、 特に、 カ ー ド型携帯機器への電圧供 給源を内蔵電池から外部供給電源に切り換えたときに内 蔵電池の消耗を伴わないように工夫 した、 携帯機器用の 電源切 り換え回路に関する。
背 景 技 術
電池を内蔵した携帯機器と して、 P C M C I A ( Pers ona I Computer Memory Card Internat iona l Assoc i at i o n) 規格のカー ド型携帯機器が使用されている。 カー ド 型携帯機器をパソ コ ンに挿入するとパソ コ ンからデータ がカー ド型携帯機器に転送される。 そのときのカー ド型 携帯機器の動作のための電源はパソ コ ン側から供給され る。 データがカー ド型携帯機器に転送されてパソ コ ンか ら切り放された以後のカ ー ド型携帯機器の動作のための 電源は内蔵電池となる。 したがって、 カー ド型携帯機器 には、 供給電源を外部電源 (パソ コ ン側の電源) と内蔵 電池とのいずれかに選択するための電源切り換え回路が 必要となる。
そこで、 携帯機器において使用されている電源切 り換 え回路の従来例を 2 つ、 図 6及び図 7 に示す。
図 6 に示す第 1 例において、 外部電源 6 0 1 (例えば 5 V ) はスィ ッ チ 6 0 2 及びダイ オー ド 6 1 1 を介して 携帯機器本体 6 1 3 に接続している。 さ らに、 内蔵電池
6 0 4 (例えば 3 V ) はダイ オー ド 6 1 0 を介 して携帯 機器本体 6 1 3 に接続している。
携帯機器が単体のときは、 スィ ッ チ 6 0 2 は開かれて いるので、 携帯機器本体 6 1 3 には内蔵電池 6 0 4から ダイ オー ド 6 1 0 を通って電源が供給される。 このとき、 ダイ才ー ド 6 1 1 は内蔵電池 6 0 4 のから外部へ電流が 流出することを妨げる。
一方、 このスィ ッ チが閉 じて外部電源 6 0 1 もダイ 才 ー ド 6 1 1 を介して携帯機器本体 6 1 3 と接続 したとき は、 外部電源 6 0 1 の電圧が内蔵電池 6 0 4 の電圧よ り も高い場合に限り、 携帯機器本体 6 1 3 には外部電源 6 0 1 の電圧が供給される。 このとき、 ダイ オー ド 6 1 0 は外部電源が内蔵電池 6 0 4 を充電することを阻止する。
図 7 に示す第 2例では、 内蔵電池と携帯機器本体との 間に電界効果 ト ラ ンジスタ (以下 F E T とする) を用い ている。 外部電源 7 0 1 (例えば 5 V ) はスィ ッ チ 7 0 2 及びダイ才ー ド 7 1 1 を介して携帯機器本体 7 1 3 に 接続している。 一方、 内蔵電池 7 0 4 (例えば 3 V ) は P チャ ネル F E T 了 1 0 を介して携帯機器本体了 1 3 に 接続している。
P チ ャ ネル F E T 7 1 0 のソ ースは携帯機器本体 7 1 3 に、 ド レイ ンは内蔵電池 7 0 4 に接続している。 また、 同 F E T 7 1 0 のゲー ト は外部電源供給スィ ッ チ 7 0 2 接続する とと もに、 バイ アス抵抗 7 0 9 を経て内蔵電池 7 0 4 の負極に接続している。 内蔵電池 7 0 4 の負極は、 外部電源 7 0 1 の負極、 及び携帯機器本体 7 1 3 の負極 側端子に接続している。
こ こで、 外部電源供給スィ ッ チ 7 0 2が開放されてい る ときは、 F E T 7 1 0 の ド レイ ンは内蔵電池了 0 4 の 正極 3 V に、 ゲー 卜はバイ アス抵抗 7 0 9 を経て内蔵電 池 7 0 4 の負極 0 Vに、 それぞれ接続されている。 また、 F E T 7 1 0 のソースは、 ド レイ ン ' ソース間の寄生ダ ィ オー ドによ っ てほ ヾ ド レイ ン電圧 ( 3 V ) とな ってい る。 その結果、 ソース · ゲー ト間電圧は一 3 V となる。 したがって、 F E T 7 1 0 は導通状態とな り、 内蔵電池 7 0 4 の電圧 ( 3 V ) は携帯機器本体 7 1 3 に供給され 続ける。 このとき、 ダイオー ド 7 1 1 は内蔵電池 7 0 4 から外部へ電流が流出することを阻止している。
一方、 外部電源供給スィ ッ チ 7 0 2が閉 じているとき は、 F E T 7 1 0 のゲー ト及びソースは外部電源 7 0 1 の電圧 5 Vとなり、 ド レイ ンは内蔵電池 7 0 4 の電圧 3 V となる。 その結果、 ソース · ゲー ト間電圧は 0 V とな る。 したがって、 F E T 7 1 0 は遮断状態となり、 内蔵 電池 7 0 4 の電圧が携帯機器本体 7 1 3 に供給されるの を阻止して、 外部電源 7 0 1 の電圧 5 V力 スィ ッ チ 7 0 2、 ダイ オー ド 7 1 1 を介して携帯機器本体了 1 3 に供 給される。 このとき遮断状態の F E T 7 1 0 の寄生ダイ オー ドは外部電源 7 0 1 の電圧で内蔵電池 7 0 4 を充電 するこ とを阻止している。
一般的なノ\°ソ コ ンの場合は P C M C I A カー ドイ ン夕 —フ : E イ スには 5 Vを供給 している場合が多い。 一方、 パソ コ ンに挿入して使用する P C M C I A規格のメ モ リ カー ドなどは 3 Vのコ イ ン型リ チュ ウ厶電池を内蔵する 場合が多い。 このよう に、 カー ド型携帯機器において、 外部供給電源の電圧のほうが内蔵電池の電圧よ リ高いた め、 上記の 2 つの従来例が適用され、 そ して、 外部電源 が供給されている間は、 内蔵電池の無駄な消耗を無く す ことができる。
とこ ろで、 カー ド型携帯機器にはその使用電力の都合 で 3 Vのコィ ン型リ チュ ウ厶電池を 2個直列に して 6 V で使用 したほうが有利なものもある。 しカヽし、 この場合 は、 外部供給電源の電圧 ( 5 V ) のほうが内蔵電池の電 圧 ( 6 V ) よ り低く なるため、 そのようなカー ド型携帯 機器は、 P C M C I Aカー ドイ ンターフ ェ イ スに 5 Vを 供給する一般的なパソ コ ンと組み合わせで使用できな く なる。
発 明 の 開 示
本発明の目的は、 2 個以上の内蔵電池を直列に接続し て使用する携帯機器において、 その携帯機器の外部供給 電源の電圧が携帯機器の内蔵電池の電圧よ り も低く ても 一定以上あれば、 携帯機器の外部供給電源の電圧が、 内 蔵電池の消耗を引き起こすことな く、 携帯機器に供給さ れるよ うに した、 携帯機器用の電源切り換え回路を提供 することにある。
上記目的を達成するため、 本発明の電源切り換え回路 は、 外部電源からの電力及び内蔵電池からの電力を携帯 機器本体に供給するための電力供給路と、 上記内蔵電池 と携帯機器本体との間に介在するスィ ツ チング素子と、 上記外部電源から供給される電圧の値を受け取って、 そ の電圧が一定レベルを越えると上記第 1 のスィ ツ チング 素子を遮断状態に切り換える第 1 の信号を出力 し、 また、 その電圧が一定レベルを越えなければ上記スィ ッ チング 素子を導通状態に切り換える第 2 の信号を出力する、 外 部電源電圧検知回路と含む。
好ま し く は、 上記スイ ッ チング素子は P チャネル電界 効果素子であ り、 その ド レイ ンは内蔵電池に接続され、 ソースは携帯機器本体の電力入力側に接続され、 ゲー ト は外部電源電圧検知回路にそれぞれ接続される。 そ して、 外部電源から一定レベル以上の電圧がこの P チ ャ ネル電 界効果素子のソースに供給され、 また、 外部電源電圧検 知回路を経てゲー トに供給されると、 ソース · ゲー ト間 の電圧差はこの P チヤネル電界効果素子の しきい値以下 になるので、 この P チ ャ ネル電界効果素子は遮断される。 したがって、 携帯機器本体へは外部電源の電圧のみ供給 される。 一方、 外部電源が携帯機器本体と切り離された ときまたは外部電源からの供給電圧が一定レベルにまで 達 しないとき は、 P チ ャ ネル電界効果素子は、 ソース · ゲ一 卜間の電圧差がしきい値を越えるので、 導通して、 内蔵電池の電圧が携帯機器本体に供給される。'
また好ま し く は、 上記スイ ッ チ ング素子及び外部電源 電圧検知回路はと もに P チャネル電界効果素子であ り、 スィ ツ チング素子の電界効果素子は ド レイ ンが外部電源 に、 ソースが定電圧レギユ レ一夕の入力側に、 ゲー トが レベルシフタの出力側にそれぞれ接続され、 また、 外部 電源電圧検知回路の電界効果素子は ド レイ ンがレベルシ フタの入力側に、 ソースが外部電源に、 ゲー トが定電圧 レギュ レー夕の出力側にそれぞれ接続される。 そ して、 外部電源から一定レベル以上の電圧が外部電源電圧検知 回路の電界効果素子に供給される と、 その電界効果素子 はソース · ゲー 卜間電圧がその電界効果素子の しきい値 を越えるので導通となり、 その結果、 この電界効果素子 を経て外部電源の電圧がレベルシフタに入力される。 す る と、 このレベルシフタは上記スイ ッ チング素子と して の電界効果素子を導通に切 り替え、 さらに、 内蔵電池と 定電圧レギュ レー夕の入力側に介在するスィ ツ チング素 子を遮断するので、 外部電源の電圧は定電圧レギユ レ一 夕に供給され、 この定電圧レギユ レ一夕は定電圧を携帯 機器本体に供給する。 一方、 外部電源が携帯機器本体と 切 り離されたときまたは外部電源からの供給電圧が一定 レベルにまで達 しないときは、 これらスィ ツ チング素子 の遮断ノ導通状態がすべて切り替わって、 その結果、 内 蔵電池の電圧のみが定電圧レギュ レー夕に入力される。
図 面 の 簡 単 な 锐 明 図 1 は、 本発明による電源切り換え回路の第 1 の実施 例を示すブ口 ッ ク図である。
図 2 は、 本発明による電源切り換え回路の第 2 の実施 例を示すブロ ッ ク図である。
図 3 は、 図 1 の電源切り替え回路の動作を説明するダ ィ アグラムである。
図 4 は、 本発明による電源切り換え回路の第 3 の実施 例を示すブロ ッ ク図である。 図 5 は図 4 における レべ ルシフ 夕回路中のィ ンバ一夕の等価回路を示す。
図 6 は、 従来の電源切り換え回路の 1 例を示す。 そ し て、
図 7 は、 従来の電源切り換え回路の他の例を示す。
発明 を実施す る た めの最良の形態
[第 1 実施例の説明 ]
電池を内蔵して P C M C I A規格のイ ンターフ ヱイ ス を有するカ ー ド型携帯機器へバソ コ ン本体から外部電源 を供給するときの電源切 り換え回路の第 1 の実施例を図 1 のブロ ッ ク図を参照 して説明する。
( 1 ) 電源切 り換え回路の構造 :
図 1 の電源切 り換え回路において、 外部電源 1 0 1 と ス ィ ッ チ 1 0 2 との組み合わせは、 例えばパソ コ ン側か ら供給される外部供給電源 (低電圧発生源) を表す。 た だ し、 この外部電源 1 0 1 は電池であってもよい。 そ し て、 外部電源 1 0 1 はスィ ッチ 1 0 2及びダイ オー ド 1 1 1 を介して携帯機器本体 1 1 3 に接続されている。 また、 第 1 の P チ ャ ネル F E T 1 0 7 を介して直列に 接続された第 1 、 第 2 の内蔵電池 1 0 3、 1 0 4 の電圧 は、 第 2 の P チ ャ ネル F E T 1 1 0 を介して携帯機器本 体 1 1 3 に接続されている。 この内蔵電池 1 0 3、 1 0 4 の各々は単体の電池でもよ く、 またいく つかの電池を 直列に接続したものであってもよい。
外部電源 1 0 1 及びスィ ッ チ 1 0 2 には抵抗 〗 0 8及 び抵抗 1 0 9が直列に接続されている。 第 1 の P チ ヤネ ル F E T 1 0 7 の ド レイ ンは第 1 の内蔵電池 1 0 3 の負 極に、 ソースは第 2 の内蔵電池 1 0 4 の正極に、 また、 ゲー ト は抵抗 1 0 8及と抵抗 1 0 9 との中間に、 それぞ れ接続されている。 さ らに、 第 2 の P チ ャ ネル F E T 1 1 0 の ド レイ ンは第 〗 の内蔵電池 1 0 3 の正極に、 ソー スは携帯機器本体 1 1 3 の正極側端子に、 また、 ゲー ト はスィ ッ チ 1 0 2 と抵抗 1 0 8 の中間点に、 それぞれ接 続されている。
外部電源 1 0 1 の負極、 第 2 の内蔵電池 1 0 4 の負極、 及び携帯機器本体 1 1 3 の負極側端子は共通に接地され ている。
さらに、 第 1 の内蔵電池 1 0 3 の正極と第 2 の内蔵電 池 1 0 4 の正極との間には第 2 のダイ オー ド 1 0 5が接 続されている。 また、 第 1 の内蔵電池 1 0 3 の負極と第 2 の内蔵電池 1 0 4 の負極との間には第 3 のダイ オー ド 1 0 6 が接続されている。
( 2 ) 外部電源の電圧を携帯機器本体に供給するとき、 スィ ッ チ 1 0 2 を閉 じて外部電源 1 0 1 の電圧を第 1 のダイ オー ド 1 1 1 を介して携帯機器本体 1 1 3 に供給 するとき、 第 1 の P チ ャ ネル F E T 1 0 7 のゲー トには 抵抗 1 0 8 と抵抗 1 0 9 とで分圧された外部電源 1 0 1 電圧が供給され、 また、 第 2 の P チ ャ ネル F E T 1 1 0 のゲ一 卜 には外部電源 1 0 1 の電圧が供給される。
こ こで、 外部電源 1 0 1 を 5 V と し、 第 1 、 第 2 の内 蔵電池 1 0 3、 1 0 4 の電圧を 3 V と し、 抵抗 1 0 8 を 6 8 k Q、 抵抗 1 0 8 を 1 0 0 k Q とする。 また、 第 1 、 第 2 の P チ ャ ネル F E T 1 0 7、 1 1 0 の導通のソース • ゲー 卜間電圧の しきい値は一 0. 3 V とする。
する と、 第 1 の P チヤ ネノレ F E T 1 0 7 のゲー トには 5 * [ 1 0 0 / ( 6 8 + 1 0 0 ) ] = 2. 9 7 V ( 3 V ) の電圧が供給され、 ソースには第 2 の内蔵電池 1 0 4 の電圧 3 Vが供給されて、 ソース · ゲー ト間電圧はほ ぼ 0 V となり、 第 1 の P チ ャ ネル F E T 1 0 7 は遮断状 態となる。
一方、 第 2 の P チャ ネル F E T 1 1 0 のゲー ト には外 部電源の 5 Vが供給され、 ソースには同 じ く 外部電源の 5 Vが第 1 のダイ オー ド 1 1 1 を介して供給されるから、 ソ ース · ゲー ト間電圧は 0 V とな り、 第 2 の P チ ャ ネル F E T 1 0 7 も遮断状態となる。
したがって、 スィ ッ チ 1 0 2 を閉 じると、 第 1 、 第 2 の P チ ャ ネル F E T 1 0 7、 1 1 0 はともに遮断状態と なって、 第 1 、 第 2 の内蔵電池 1 0 3、 1 0 4 の電圧が 携帯機器本体 1 1 3 に供給されるのを遮断して、 外部電 源 1 0 2 の電圧 5 Vが携帯機器本体 〗 1 3 に供給される。
( 3 ) 外部電源の電圧を携帯機器本体に供給しないとき、 スィ ッ チ 〗 0 2 を開いて外部電源 1 0 1 と携帯機器本 体 1 1 3 との接続を断ったときは、 第 1 の P チ ャ ネル F E T 1 0 7 のゲ一 卜には接地電圧 0 Vが供給され、 ソー スには第 2 の内蔵電池 1 0 4 の電圧 3 Vが供給されて、 ソース · ゲー ト間電圧はほぼ一 3 V となり、 第 1 の P チ ャ ネル F E T 1 0 7 は導通状態となる。
一方、 第 2 の P チ ャ ネル F E T 1 1 0 のゲ一 卜 には接 地電圧 0 Vが供給され、
ソ ースには第 1 及第 2 の内蔵電池 1 0 3、 1 0 4 の合計 電圧 6 Vが ド レンから寄生ダイ 才ー ドを通って供給され るので、 ソース · ゲー ト間電圧は— 6 V となり、 第 2 の P チ ャ ネル F E T 1 1 0 も導通状態となる。
したがって、 スィ ッ チ 1 0 2 を開く と、 第 1 、 第 2 の P チ ャ ネル F E T 1 0 7、 1 1 0 はともに導通状態とな つて、 直列接続された第 1 、 第 2 の内蔵電池 1 0 3、 1 0 4 の電圧 6 Vが携帯機器本体 1 1 3 に供給される。 な お、 このと き、 第 1 のダイ オー ド 1 1 1 は内蔵電池 1 0 3、 1 0 4 の電圧 6 Vが外部のパソ コ ンの側に流出する のを阻止する。
( 4 ) 内蔵電池交換のためのバイパスダイ 才ー ドついて、 第 2 および第 3 のダイ オー ド 1 0 5 および 1 0 6 は内 蔵電池交換時のバイパスダイオー ドである。 携帯機器を パソコ ンからはず しているとき (すなわち、 上記 ( 2 ) で説明 したよ う に、 スィ ッ チ 1 0 2 を開いて、 内蔵電池 1 0 3 および 1 0 4 の電圧を携帯機器本体 1 1 3 に供給 している とき) 、 一方の内蔵電池 1 0 4 を取り外すと、 残りの内蔵電池 1 0 3 はその電圧 3 Vを、 導通 している 第 2 の P チャ ネル F E T 1 1 0 及び第 3 のダイ オー ド 1 0 6 を介して、 携帯機器本体 1 1 3 に供給する。 内蔵電 池 1 0 4 を新しいものに交換したあと、 次に内蔵電池 1 0 4 を取り外すと、 その内蔵電池 1 0 4 はその電圧 3 V を、 導通 している第 2 の P チ ャ ネル F E T 1 1 0 及び第 2 のダイ オー ド 1 0 5 を介して、 携帯機器本体 1 1 3 に 供給する。
このよ うに、 2 つある内蔵電池 1 0 3、 1 0 4 のうち、 交換のためいずれか一方を取り外しても、 残り の内蔵電 池がその電圧を携帯機器本体 1 1 3 に供給し続けるので、 その電圧を利用 して、 電池交換時も携帯機器本体 1 1 3 のメ モ リ 一に格納 した記憶内容や計時内容を保持するこ とができる。
( 5 ) 電源切 り換え回路の動作電圧、
図 1 の電源切 り換え回路の動作電圧の時間的変化を図 3 を参照 して以下に説明する。
図 3 において、 縦軸は電圧レベルを、 横軸は時刻をそ れぞれ表す。 曲線 3 0 1 は第 1 の内蔵電池 1 0 3 の電圧 を、 曲線 3 0 2 は第 2 の内蔵電池部 1 0 4 の電圧を、 曲 線 3 0 3 は外部からの供給電圧を、 曲線 3 0 5 は携帯機 器本体 1 1 3 に最終的に印加される電圧レベルを、 それ ぞれ示す。 なお直線 3 0 4 は第 1 の P チャネル F E T 1 0 7 の導通の しきい値レベルを示す。
区間 T 1 は、 携帯機器がパソ コ ンからはずされていて、 内蔵電池 1 0 3 および 1 0 4 の電圧 ( 6 V ) が携帯機器 本体 1 1 3 に供給されている。 図 3 において、 供給電圧 6 Vは曲線 3 0 5 と して図示されている。
区間 T 2 は、 携帯機器から第 2 の内蔵電池を交換のた め取り外している期間である。 したがって、 携帯機器本 体 1 1 3 には、 上記 ( 3 ) で説明 したよ うに、 第 1 の内 蔵電池 1 0 3 の電圧 3 Vが供給されている。
区間 T 3 は、 第 2の内蔵電池を別のものと交換して携 帯機器に装着したため、 携帯機器はまた第 1 、 第 2 の内 蔵電池をともに装着した状態にある期間である。 その電 圧レベルは区間 T 1 と同 じ く、 6 Vである。
区間 T 4 は、 携帯機器から第 1 の内蔵電池を交換のた め取り外している期間である。 したがって、 携帯機器本 体 1 1 3 には第 2 の内蔵電池の電圧 3 Vが供給されてい る。
区間 T 5 は、 第 1 の内蔵電池を別のものと交換 して携 帯機器に装着した後、 パソ コ ン に挿入して外部電源 1 0 1 の電圧を携帯機器本体 1 1 3 に供給したときの外部電 源電圧と切り換えの関係を時間軸で解り易 く 示 してある 期間である。
この区間 T 5 が開始 して外部電源 1 0 1 の電圧が所定 レベル (後述) に到達するまでの間、 携帯機器本体 1 1 3 には第 1、 第 2 の内蔵電池 1 0 3、 1 0 4 の電圧 6 V が供給される。 その間、 第 1 の P チ ャ ネル F E T 1 0 7 は導通状態にある。 ところで第 1 の P チャネル F E T 1 0 了 はソースに第 2 の内蔵電池 1 0 4 の電圧 3 Vが供給 されているので、 ゲー トに 2. 5 V以上の電圧が供給さ れると、 ソース · ゲー ト間電圧が一 0. 5 V以上になつ て第 1 の P チャネル F E T 1 0 7 は遮断状態に切 り替わ る。 そ して、 第 1 の P チャネル F E T 1 0 7 のゲー トに 2. 5 V以上の電圧を供給するには、 外部電源 1 0 の電 圧が、 2. 5 / [ ( 6 8 + 1 0 0 ) / 1 0 0 ] = 4. 2 ( V ) 以上のときである。 ここで、 左の計算式の数値 1 0 0 は抵抗 1 0 9 の値 ( k Q ) であり、 6 8 は抵抗 1 0 8 の値 ( k Ω ) である。 すなわち、 区間 T 5が開始して 外部電源 1 0 1 の電圧が上昇して 4. 2 Vに達すると第 1 の P チャネル F E T 1 0 7 は遮断される。 図 3 のレべ ル 3 0 4 はこの 4. 2 Vを示す。
期間 T 6 は、 外部電源 1 0 の電圧が上昇して 4. 2 V に達し、 第 1 、 第 2 の内蔵電池 1 0 3、 1 0 4 の電圧 6 Vが携帯機器本体 1 1 3 に供給されなく なった時点で開 始する。 外部電源 1 0 1 の電圧は 4. 2 Vからさ らに 5 V まで上昇し、 その後はその値 5 Vで安定する。
以上の説明から分かるよ うに、 この実施例は、 内蔵電 池を複数個直列に使用する携帯機器であってその内蔵電 池の電圧 (例えば 6 V ) よ り も外部供給電源の電圧が低 い場合であっても、 その外部電源の電圧が一定値以上 (例えば 4 . 2 V以上) であれば、 外部電源の電圧よ り 低い内蔵電池 1 個の電圧を基準に内蔵電池の消耗を伴う こ とな く 外部電源電圧を携帯機器に供給できる優れた電 源切り替え回路を実現している。
[第 2 実施例の説明 ]
電池を内蔵 して P C M C I A規格のイ ンタ一フ ヱ イ ス を有するカー ド型携帯機器へパソ コ ン本体から外部電源 を供給するときの電源切り換え回路の第 2 の実施例を図 2 のブロ ッ ク図を参照 して説明する。
( 1 ) 電源切 り換え回路の構造 :
この実施例の切 り換え回路は、 図 1 に示した第 1 の実 施例の切り換え回路における抵抗 1 0 8 を P チ ャ ネル F E Tに代え、 さ らに、 第 1 のダイ オー ド 1 1 1 と携帯機 器本体 1 1 3 との間には定電圧レギユ レ一夕を介在させ たものにほぼ相当する。
外部電源 2 0 1 はスィ ッ チ 2 0 2が閉 じたと き第 1 の ダイオー ド 2 1 1 及び定電圧レギユ レ一夕 2 1 2 を介し て携帯器本体 2 1 3 に電圧を供給する。 一方、 第 1 の内 蔵電池 2 0 3 と第 2 の内蔵電池 2 0 4 は第 1 の P チ ヤ ネ ル F E T 2 0 7 を介して直列に接続され、 第 2 の P チ ヤ ネル F E T 2 0 8 及び定電圧レギユ レ一夕 2 1 2 を介し て携帯器本体 2 1 3 に電圧を供給する
外部電源 2 0 1 の正極側 (スィ ッ チ 2 0 2 ) と第 1 の P チ ャ ネル F E T 2 0 7 のゲー ト と間には第 3 の P チ ヤ ネル F E T 2 0 8 が接続されている。 この第 3 の P チ ヤ ネル F E T 2 0 8 のソースは外部電源 2 0 1 の正極側に、 ド レイ ンは第 1 の P チ ャ ネル F E T 2 0 7 のゲー 卜 に、 ゲー トは定電圧レギユ レ一タ 2 1 2 の出力側に接続され ている。
外部電源 2 0 1 の負極、 第 2 の内蔵電池 2 0 4 の負極、 及び携帯機器本体 2 1 3 の負極側端子は共通に接地され ている。
第 1 の P チ ヤ ネノレ F E T 2 0 7 のゲー ト と、 第 2 の P チ ャ ネル F E T 2 1 0 のゲ一 卜 と第 3 の P チ ャ ネル F E T 2 0 8 の ド レイ ンは互いに接続 し、 抵抗 2 0 9 を介 し て上記共通接地に接続 している。
さらに、 第 1 の内蔵電池 2 0 3 の正極と第 2 の内蔵電 池 2 0 4 の正極との間には第 2 のダイ才ー ド 2 0 5が接 続されている。 また、 第 1 の内蔵電池 2 0 3 の負極と第 2 の内蔵電池 2 0 4の負極との間には第 3 のダイ オー ド 2 0 6が接続されている。
( 2 ) 外部電源の電圧を携帯機器本体に供給するとき、 スィ ッ チ 2 0 2 を閉 じて外部電源 2 0 1 の電圧を第 1 のダイ オー ド 2 1 1 を介 して定電圧レギユ レ一夕 2 1 2 に供給する。 すると定電圧レギユ レ一夕 2 1 2 は所定値 の電圧を携帯機器本体 2 1 3 に供給する
ここで、 外部電源 2 0 2 を 5 V と し、 第 1、 第 2 の内 蔵電池 1 0 3、 1 0 4 の電圧を 3 V と し、 抵抗 2 0 9 を 1 0 0 Ι Ωとする。 第 1 、 第 2、 第 3 の Ρ チ ヤ ネノレ F E T 2 0 7、 2 1 0、 2 0 8 の導通のソー ス ' ゲ一 卜間電 圧の しきい値はそれぞれ一 0. 5 V とする。 さ らに、 定 電圧レギユ レ一夕 2 1 2 の出力電圧は 3. 3 V とする。
すると、 第 3 の Ρ チ ャ ネル F E T 2 0 8 のソースには 外部電源 2 0 1 の電圧 5 Vが供給され、 ゲー ト には定電 圧レギユ レ一夕 2 1 2 の出力電圧は 3. 3 Vが供給され る。 その結果、 この第 3 の Ρ チャネル F E T 2 0 8 は、 ソース · ゲー ト間電圧が一 1 . 7 V となり導通して、 ド レイ ン、 ソースはともに外部電源 2 0 1 の電圧 5 V とな り、 この電圧 5 Vを第 1 の Ρ チ ャ ネル F E T 2 0 7 のゲ 一 卜及び第 2 の Ρ チ ャ ネル F E T 2 1 0 のゲー ト に供給 する。
第 1 の Ρ チ ャ ネル F Ε Τ 2 0 7 のゲー 卜 には第 3 の Ρ チ ャ ネル F Ε Τ 2 0 8 の ド レイ ンから 5 Vが供給され、 また、 ソースには第 2 の内蔵電池 2 0 4 の 3 Vが供給さ れる。 その結果、 この第 1 の Ρ チ ャ ネル F E T 2 0 7 の ソ ース · ゲー ト間電圧は + 2 V となり、 遮断状態となり、 第 1 の内蔵電池 2 0 3 と第 2 の内蔵電池 2 0 4 との接続 は遮断される。
また、 第 2 の Ρ チ ャ ネル F E T 2 1 0 のゲー ト には第 3 の Ρ チ ヤ ネノレ F Ε Τ 2 0 8 の ド レイ ンカヽら 5 V力 供給 され、 ソースには第 1 のダイ 才ー ド 2 1 1 を経て外部電 源 2 0 1 の電圧 5 Vが供給される。 その結果、 この第 2 の Ρ チ ャ ネル F Ε Τ 2 1 0 のソース · ゲ一 卜間電圧は 0 V となり、 遮断状態となる。 すなわち、 スィ ッ チ 2 0 2 を閉 じると、 まず第 3 の P チャネル F E T 2 0 8が導通して、 その結果、 第 1 の P チ ャ ネル F E T 2 0 7 及び第 2 の P チ ャ ネル F E T 2 1 0 はと も に遮断となり、 第 1、 第 2 の内蔵電池 2 0 3、 2 0 4 からの電圧の供給を停止する。 そ して、 外部電源 2 0 1 の電圧 5 Vが定電圧レギユ レ一夕 2 1 2 に供給さ れ、 定電圧レギユ レ一夕 2 1 2 は安定化 した 3、 3 Vの 電圧を携帯機器本体 2 1 3 に供給する。
( 3 ) 外部電源の電圧を携帯機器本体に供給しないとき、 スィ ッ チ 2 0 2 を開いて外部電源 2 0 1 と定電圧レギ ユ レ一夕 2 1 2 との接続を断つと、 第 3 の P チャネル F E T 2 0 8のゲー 卜には定電圧レギユ レ一夕 2 1 2 の 3 Vが、 ソースには外部電源 2 0 1 からの 0 Vが供給され る。 その結果、 第 3 の P チ ヤ ネノレ F E T 2 0 8 は、 ソー ス · ゲー ト間電圧が + 3、 3 V となり、 遮断される。
したがって、 第 1 の P チ ャ ネル F E T 2 0 7 のゲ一 卜 には抵抗 2 0 9 を介して接地となるので 0 Vが供給され、 ソースには第 2 の内蔵電池 2 0 4 から 3 Vが供給される。 その結果、 第 1 の P チ ャ ネル F E T 2 0 7 は、 ソース ' ゲー ト間電圧が一 3 V となり、 導通となる。 したがって、 直列に接続された第 1 、 第 2 の内蔵電池 2 0 3、 2 0 4 力ヽらの電圧 6 Vが第 2 の P チ ャ ネル F E T 2 1 0 の ド レ ィ ンに供給される。
この第 2 の P チ ャ ネル F E T 2 1 0 は、 ド レイ ンと ソ ース間に寄生ダイ オー ドが介在しているため、 ソ ースに も 6 Vの電圧が供給される。 一方、 ゲー ト は抵抗 2 0 9 を介して接地とな り 0 Vである。 その結果、 第 2 の P チ ャ ネル F E T 2 1 0 は、 ソ ー ス ' ゲ一 卜間電圧が一 6 V となり、 導通となる。
したがって、 外部電源を供給していないときは (スィ ツ チ 2 0 2 を開いているときは) 、 第 1 の P チャ ネル F E T 2 0 7及び第 2 の P チ ヤ ネゾレ F E T 2 1 0 はともに 導通となって、 直列に接続された第 1 、 第 2 の内蔵電池
2 0 3、 2 0 4 からの電圧 6 Vが定電圧レギユ レ一夕 2 1 2 に供給される。 このとき、 第 1 のダイ オー ド 2 1 1 はこの 6 Vが外部に流出することを阻止している。 6 V 供給される定電圧レギユ レ一夕 2 1 2 は安定化 した 3、
3 V の電圧を携帯機器本体 2 1 3 に出力する。
( 4 ) 内蔵電池交換のためのバイ パスダイ オー ドついて バイ パスダイ オー ドと しての第 2、 第 3 のダイ オー ド 2 0 5、 2 0 6 の機能は、 第 1 実施例の第 2、 第 3 のダ ィ オー ド 1 0 5、 1 0 6 の機能と同 じであるので、 その 説明は省略する。
( 5 ) 電源切 り換え回路の動作電圧、
携帯機器をパソ コ ン に挿入して外部電源 2 0 1 の電圧 を携帯機器本体 2 1 3 に供給する と、 外部電源 2 0 1 の 電圧が所定レベル (後述) にまで立ち上がるまで期間は、 携帯機器本体 1 1 3 に は第 1、 第 2 の内蔵電池 2 0 3、 2 0 4 の電圧 6 Vが定電圧レギユ レ一夕 2 1 2 に供給さ れ続ける。 第 3 の P チ ャ ネル F E T 2 0 8 のソース · ゲー 卜間電 圧が一 0、 5 V以上になる と、 前述 したよ うに、 第 3 の Ρ チ ャ ネル F E T 2 0 8 は導通 して、 その結果、 第 1 、 第 2 の Ρ チャ ネル F E T 2 0 7、 2 0 8 は遮断し、 第 1 、 第 2 の内蔵電池 2 0 3、 2 0 4 の電圧 6 Vが定電圧レギ ユ レ一夕 2 1 2 に供給されなく なる。 と ころで、 第 3 の P チャネル F E T 2 0 8 は、 ゲー トに定電圧レギユ レ一 夕 2 1 2 の出力 3、 3 Vが供給されているので、 ソース に 3. 3 - ( - 0. 5 ) = 3. 8 V以上の電圧が供給さ れると、 導通する。
すなわち、 直列接続の内蔵電池が 6 Vで、 外部電源か ら 3、 8 V以上の電圧が供給される と、 外部電源から電 圧が携帯器機器本体に供給される ことになる。
以上の説明から分かるよ うに、 この実施例は、 複数の 内蔵電池を複数個直列に使用する携帯機器であってその 内蔵電池の電圧 (例えば 6 V ) よ り も外部供給電源の電 圧が低い場合であっても、 その外部電源の電圧が一定値 以上 (例えば 3、 8 V以上) であれば、 内蔵電池の消耗 を伴う こ となく 外部電源電圧を携帯機器に供給できる優 れた電源切り替え回路を実現している。
[第 3 実施例の説明 ]
電池を内蔵して P C M C I A規格のイ ンターフ ェ イ ス を有する力一 ド型携帯機器へパソ コ ン本体から外部電源 を供給するときの電源切り換え回路の第 3 の実施例を図 4 のブロ ッ ク図を参照 して説明する。 ( 1 ) 電源切 り換え回路の構造 :
直列に接続された第 1 、 第 2 の内蔵電池 4 0 3、 4 0 4 は、 第 1、 第 2 の P チ ヤ ネゾレ F E T 4 1 4、 4 1 5 及 び定電圧レギユ レ一夕 4 1 7 を介 して携帯機器本体 4 1 8 に電圧を供給する。 一方、 外部電源 4 0 1 の電圧は ス イ ッ チ 4 0 2及び第 3 の 卩 チ ャ ネル £ 丁 4 1 6 及び定 電圧レギユ レ一夕 4 1 7 を介して携帯器本体 4 1 8 に電 圧を供給する。
イ ンノく一夕 4 1 1、 第 5 の P チ ヤ ネソレ F E T 4 0 7、 第 6 の P チ ャ ネル F E T 4 0 8、 第 1 の N チ ヤ ネゾレ F E T 4 0 9、 第 2 の Ν チ ャ ネル F E T 4 1 0 は (図 4 で点 線において囲まれた部分) フ リ ップフ ロ ップ型の レベル シフタ 4 1 9 を構成している。
レベル シフ タ 4 1 9 の一つの出力は第 1 、 第 2 の Ρ チ ャ ネノレ F E T 4 1 4、 4 1 5 のゲ一 卜 に、 レべゾレ シ フ タ 4 1 9 の他の出力は第 3 の P チ ャ ネル F E T 4 1 6 のゲ — 卜に、 それぞれ接続されている。
ダイ オー ド 4 0 5、 4 0 6 は内蔵電池と外部電源のい ずれか高い方の電源電圧をレベルシフタ 4 1 9 のフ リ ツ プフ ロ ップへ供給し、 イ ンバー夕 4 1 1 へは定電圧レギ ユ レ一夕 4 1 7 の出力電圧を供給 している。
第 4 の P チ ャ ネル F E T 4 1 2 の ソ ー ス は外部電源 4 0 1 (スィ ッ チ 4 0 2 ) に、 ゲー トは定電圧レギユ レ一 夕 4 1 7 の出力に、 ド レイ ンは抵抗 4 1 3 を介 して共通 電位に接地して外部電源の電圧検出回路を構成している。 第 4 の P チ ャ ネル F E T 4 1 2 のソースは電圧検出回 路の出力であって、 レベルシフ タ 4 1 9 の入力に接続さ れている。
こ こで、 外部電源 4 0 1 を 5 V と し、 第 1、 第 2 の内 蔵電池 4 0 3、 4 0 4 の電圧を 3 V と し、 第 4 の Ρ チ ヤ ネル F Ε Τ 4 1 2 のソース · ゲ一 卜間電圧の しきい値は — 0. 5 V、 定電圧レギユ レ一夕 4 1 7 の出力は 3. 3 V とする。
( 2 ) 外部電源の電圧を携帯機器本体に供給する とき、 スィ ッ チ 4 0 2 を閉 じて外部電源 4 0 1 の電圧を第 3 の P チャ ネル F E T 1 6 を介して定電圧レギユ レ一夕
1 7 に供給する。 すると定電圧レギユ レ一夕 4 1 7 は 所定値の電圧を携帯機器本体 2 1 3 に供給する。
すなわち、 第 4 の P チ ャ ネル F E T 4 1 2 のソースに は外部電源 4 0 1 が供給され、 ゲー トには定電圧レギュ レ一夕 4 1 7 の出力電圧の 3. 3 Vが供給される。
したがって、 第 4 の P チ ヤ ネソレ F E T 4 1 2 のソース ' ゲー ト間電圧は 3. 3 - 5 = 一 1 . 7 Vである力、 ら、 第 4 の P チャネル F E T 4 1 2 は導通となる。 この 結果、 レベルシフ タ 4 1 9 の入力は外部電源電圧の 5 V となり、 レベルシフタ 4 1 9 の第 1、 第 2 の P チ ャ ネル F E T 4 1 4、 4 1 5 のゲ一 卜 に接続している出力には " 1 " 力 第 3 の P チ ヤ ネノレ F E T 4 1 6 のゲー ト に接 続している レベルシフ夕 4 1 9 の他の出力には" 0 " の 電圧が供給される。 レベルシフ 夕 4 1 9 には内蔵電池と外部電源のいずれ か高い方の電源電圧がダイ 才ー ド 4 0 5、 4 0 6 を介 し て供給されているから、 この場合は、 外部電源 4 0 1 の 電圧 5 Vよ り高い第 1 、 第 2 の内蔵電池 4 0 3、 4 0 4 の直列電圧の 6 Vが供給され、 レベルシフ夕の出力 " 1 " の電圧は 6 V である。
この結果、 第 3 の P チ ャ ネル F E T 4 1 6 のソース電 圧は 5 V、 ゲー 卜電圧は 0 Vでソース ' ゲー ト間電圧は — 5 Vで第 3 の P チ ャ ネル F E T 4 1 6 は導通、 第 1 の P チ ャ ネル F E T 4 1 4 のソース電圧は 6 V、 ゲー ト電 圧も 6 Vでソース · ゲ一 卜間電圧は 0 Vで第 1 の P チ ヤ ネル F E T 4 1 4 は遮断、 第 2 の P チ ャ ネル F E T 4 1 5 のソース電圧は 5 V、 ゲー 卜電圧は 6 Vでソース · ゲ 一 卜間電圧は + 1 Vで第 2 の P チ ャ ネル F E T 4 1 5 は 遮断とな り、 第 1 、 第 2 の内蔵電池 4 0 3、 4 0 4 の電 圧は定電圧レギユ レ一夕 4 1 7 に入力されない。
( 3 ) 外部電源の電圧を携帯機器本体に供給しないとき、 スィ ッ チ 4 0 2 を開いて外部電源 4 0 1 を供給しない と きは、 抵抗 4 1 3 には第 4 の P チ ヤ ネゾレ F E T 4 1 2 を介して電流が流れな く なるから レベルシフ タ 4 1 9 の 入力は 0 Vとなる。
この結果、 レベルシフタ 4 1 9 の第 1 、 第 2 の P チ ヤ ネル F E T 4 1 4、 4 1 5 のゲー トに接続している出力 には " 0 " 力 第 3 の P チ ャ ネル F E T 4 1 6 のゲー ト に接続している レベルシフタ 4 1 9 の他の出力には" 1 " の電圧が供給される。 こ こでも レベルシフ タの出力 " 1 " の電圧は 6 Vである。
この結果、 第 1 の P チ ャ ネル F E T 4 1 4 のソ ース電 圧は 6 V、 ゲー ト電圧は 0 Vでソ ース ' ゲー ト間電圧は 一 6 Vで第 1 の P チ ャ ネル F E T 4 1 4 は導通、 第 2 の P チ ャ ネル F E T 4 1 5 のソース電圧も 5 V、 ゲー ト電 圧は 0 Vでソース · ゲ一 卜間電圧は一 6 Vで第 2 の P チ ャ ネル F E T 4 1 5 も導通、 第 3 の P チ ャ ネル F E 丁 4 1 6 のソース電圧は 6 V、 ゲー ト電圧も 6 Vでソース . ゲー ト間電圧は 0 Vで第 3 の P チ ャ ネル F E T 4 1 6 は 遮断とな り、 第 1 、 第 2 の内蔵電池 4 0 3、 4 0 4 の電 圧が定電圧レギユ レ一夕 4 1 7 に入力される。
なお、 図 4 の レベルシフ タ 4 1 9 に使用 しているイ ン バー夕 4 1 1 の詳細を図 5 の等価回路を用いて説明する。
このイ ンゾ 一夕 4 1 1 は、 N チャ ネル F E T 5 0 2 と P チ ャ ネル F E T 5 0 3 の C M O S構造を基本構造とす るもので、 それにアノ ー ドをコ モンとするダイ オー ド 5 0 4、 5 0 6 と さ らに抵抗 5 0 5 とからなる π形のゲー 卜保護回路が付随している。 この M O Sのゲー トは Ρ チ ャネル F E T 5 0 3 のソース電圧を超えるカ ツ ト才フ電 圧を印加できる。

Claims

請 求 の 範 囲
1 . 外部電源からの電力及び内蔵電池からの電力を携帯 機器本体に供給するための電力供給路と、
上記内蔵電池と携帯機器本体との間に介在する第 1 のスイ ッ チ ング素子と、
上記外部電源から供給される電圧の値を受け取って、 その電圧が一定レベルを越えると上記第 1 のスィ ッ チ ング素子を遮断状態に切 り換える第 1 の信号を出力 し、 また、 その電圧が一定レベルを越えなければ上記第 1 のスイ ッ チ ング素子を導通状態に切り換える第 2 の信 号を出力する、 外部電源電圧検知回路と含む
携帯機器用の電源切り換え回路。
2 . 上記外部電源電圧検知回路は、 上記外部電源の電圧 を分圧する抵抗を含む、 請求の範囲第 1 項記載の携帯 機器用の電源切 り換え回路。
3 . 上記外部電源と上記携帯機器本体とを接続する上記 電力供給路は、 外部電源と携帯機器本体との間に定電 圧レギユ レ一夕を介在させている、 請求の範囲第 1 項 記載の携帯機器用の電源切り換え回路
4 . 上記外部電源電圧検知回路は、 外部電源に接続され る第 2 のスィ ツ チング素子と抵抗との直列接続体から なり、 この第 2 のスイ ッ チング素子は、 外部電源の電 圧と、 上記定電圧レギユ レ一夕からの出力電圧とに応 答して導通か遮断のいずれかの状態になって、 その結 果、 上記外部電源電圧検知回路は第 1 のスイ ッ チング 素子に対して上記第 1 または第 2 の信号を出力するこ とになる、 請求の範囲第 3項記載の携帯機器用の電源 切り換え回路。
上記第 1 のスイ ッ チング素子にはそのスイ ッ チング 素子を通って外部電源の電圧が内蔵電池の方に流れる のを阻止するためのダイ 才一 ドが設けられている、 請 求の範囲第 1 項項記載の携帯機器用の電源切 り換え回 路。
外部電源からの電力を携帯機器に供給するための電 力供給路には、 そこを通って内蔵電池の電圧が外部に 流出することを阻止するための第 1 のダイ 才ー ドが介 在されている、 請求の範囲第 1 項または 3項記載の携 帯機器用の電源切り換え回路。
上記内蔵電池は第 1 の内蔵電池と第 2 の内蔵電池が 直列に接続されたものからな り、 これら第 1 の内蔵電 池と第 2 の内蔵電池との間には第 3 のスイ ッ チング素 子が介在し、
これら第 3 のスィ ツ チング素子は上記外部電源電圧 と上記第 2 の内蔵電池の出力電圧に応答して導通か遮 断かのいずれかの状態になり、
さ らに、 第 1 の電池の正極側と第 2 の電池の正極側 とを第 2 のダイ 才ー ド力
また、 第 1 の電池の負極側と第 2 の電池の負極側とを 第 3 のダイ 才ー ドが接続されている、
請求の範囲第 2項または 4項に記載の携帯機器用の電 源切 り換え回路。
さ らに、 外部電源と上記定電圧レギユ レ一夕との間 に第 4 のスィ ツ チング素子を介在させ、
上記第 4 の第 4 のスイ ッ チング素子は、 上記外部電 源電圧検知回路から上記第 1 のスイ ッ チ ング素子を遮 断状態に切 り換える第 1 の信号を受け取ると導通の状 態に、 また、 上記第 1 のスイ ッ チング素子を導通状態 に切 り換える上記第 2 の信号を受け取ると遮断の状態 に、 それぞれ切 り替わる、
請求の範囲第 4項に記載の携帯機器用の電源切 り換え 回路。
上記スィ ツ チング素子のうちの少なく とも一つは、 電界効果素子からなる、 請求の範囲第 1 項、 4、 7、 8項のいずれかに記載の携帯機器用の電源切 り換え回 路。
PCT/JP1997/001401 1997-01-14 1997-04-23 Systeme d'interrupteur pour une alimentation en courant d'un equipement portable WO1998030950A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97919654A EP0952512A4 (en) 1997-01-14 1997-04-23 POWER SUPPLY CIRCUIT FOR PORTABLE DEVICE
US09/117,660 US6060789A (en) 1997-01-14 1997-04-23 Power supply switching circuit for portable equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/4487 1997-01-14
JP9004487A JPH09269852A (ja) 1996-01-29 1997-01-14 電源切り換え回路および携帯機器

Publications (1)

Publication Number Publication Date
WO1998030950A1 true WO1998030950A1 (fr) 1998-07-16

Family

ID=11585458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001401 WO1998030950A1 (fr) 1997-01-14 1997-04-23 Systeme d'interrupteur pour une alimentation en courant d'un equipement portable

Country Status (3)

Country Link
US (1) US6060789A (ja)
EP (1) EP0952512A4 (ja)
WO (1) WO1998030950A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10215494A1 (de) * 2002-04-09 2003-11-06 Bayer Ag Computersystem für das Wissensmanagement

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1173247A (ja) * 1997-06-27 1999-03-16 Canon Inc I/oカード、電子機器、電子システム及び電子機器の立ち上げ方法
JP2000148310A (ja) * 1998-11-04 2000-05-26 Nec Yonezawa Ltd 携帯用情報機器の選択型電源供給システム
JP2000184264A (ja) * 1998-12-14 2000-06-30 Olympus Optical Co Ltd カメラ
JP3578656B2 (ja) * 1999-03-04 2004-10-20 矢崎総業株式会社 電源供給装置
JP3609003B2 (ja) * 2000-05-02 2005-01-12 シャープ株式会社 Cmos半導体集積回路
GB2363919B (en) * 2000-06-22 2004-07-14 Mitel Corp Efficient battery transfer circuit
JP3690665B2 (ja) * 2001-10-30 2005-08-31 インターナショナル・ビジネス・マシーンズ・コーポレーション 電気機器、コンピュータ装置、および電力供給方法
US6522190B1 (en) 2001-10-31 2003-02-18 International Business Machines Corporation High efficiency multiple input voltage sources power supply
US6854657B2 (en) * 2001-11-28 2005-02-15 General Instrument Corporation Dual battery configuration and method of using the same to provide a long-term power solution in a programmable smart card
US7023111B2 (en) * 2002-08-20 2006-04-04 Sony Corporation Electronic device with attachment and switching between batteries therefor
US20040051390A1 (en) * 2002-09-04 2004-03-18 Carroll Chason Allan Accessory identification circuit
CN102081418B (zh) * 2009-12-01 2014-07-09 鸿富锦精密工业(深圳)有限公司 线性稳压电路
WO2011137869A2 (zh) * 2011-07-21 2011-11-10 华为终端有限公司 一种无线宽带设备
US8793518B2 (en) * 2012-06-13 2014-07-29 Dell Products Lp Systems and methods for providing supplemental power to battery powered information handling systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022474A (ja) * 1988-06-15 1990-01-08 Mitsubishi Electric Corp メモリカード
JPH02139649A (ja) * 1988-11-18 1990-05-29 Toshiba Corp Sramメモリカード用バックアップ回路
JPH06342326A (ja) * 1993-06-01 1994-12-13 Pfu Ltd 電源装置
JPH08161086A (ja) * 1994-12-02 1996-06-21 Citizen Watch Co Ltd 携帯型電子機器の電源回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198567U (ja) * 1987-06-12 1988-12-21
JPH0695350B2 (ja) * 1988-08-12 1994-11-24 三菱電機株式会社 Icメモリカード用バッテリ回路
US5307318A (en) * 1990-01-30 1994-04-26 Nec Corporation Semiconductor integrated circuit device having main power terminal and backup power terminal independently of each other
US5267211A (en) * 1990-08-23 1993-11-30 Seiko Epson Corporation Memory card with control and voltage boosting circuits and electronic appliance using the same
US5761061A (en) * 1993-12-17 1998-06-02 Berg Technology, Inc. Data processing medium, its backup circuit, and data processing system
KR0147199B1 (ko) * 1995-04-27 1998-09-15 문정환 Ic 메모리 카드의 메모리 ic 전원공급 방법 및 회로

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022474A (ja) * 1988-06-15 1990-01-08 Mitsubishi Electric Corp メモリカード
JPH02139649A (ja) * 1988-11-18 1990-05-29 Toshiba Corp Sramメモリカード用バックアップ回路
JPH06342326A (ja) * 1993-06-01 1994-12-13 Pfu Ltd 電源装置
JPH08161086A (ja) * 1994-12-02 1996-06-21 Citizen Watch Co Ltd 携帯型電子機器の電源回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10215494A1 (de) * 2002-04-09 2003-11-06 Bayer Ag Computersystem für das Wissensmanagement

Also Published As

Publication number Publication date
US6060789A (en) 2000-05-09
EP0952512A4 (en) 2000-09-13
EP0952512A1 (en) 1999-10-27

Similar Documents

Publication Publication Date Title
KR102285228B1 (ko) 이차전지 보호 회로, 이차전지 보호 장치, 전지 팩 및 이차전지 보호 회로의 제어 방법
US7598711B2 (en) Power source switchover apparatus and method
JP3655171B2 (ja) 充放電制御回路及び二次電池装置
WO1998030950A1 (fr) Systeme d'interrupteur pour une alimentation en courant d'un equipement portable
US6690559B2 (en) Charge/discharge type power supply
JP2001111403A (ja) 双方向性スイッチ用の制御システムおよび制御方法
US6933768B2 (en) Method for increasing the input voltage of an integrated circuit with a two-stage charge pump, and integrated circuit
JP2013544068A (ja) バッテリー電力経路管理装置及び方法
KR0161308B1 (ko) 전원 접속 회로 및 전원선용 스위치 집적 회로
CN110890749A (zh) 电源防反接电路和电源电路
EP0823115A1 (en) Reference for cmos memory cell having pmos and nmos transistors with a common floating gate
US3997881A (en) Static storage element circuit
CN112416043A (zh) 负压产生电路以及芯片
JP7345416B2 (ja) 充放電制御装置及びバッテリ装置
CN212627662U (zh) 驱动器电路和驱动器
JP4467150B2 (ja) 駆動回路
US7466117B2 (en) Multi-function voltage regulator
US20130257492A1 (en) Method and device for lowering the impedance of a transistor
CN219512634U (zh) Usb模组控制电路、usb设备、电子设备
CN112968518B (zh) 一种包括后备电源的供电系统
US20230238873A1 (en) Voltage regulator circuit for a switching circuit load
CN102204061B (zh) 通信装置及内置该通信装置的电池组
JPH10229636A (ja) 充放電制御回路
KR960015319B1 (ko) 반도체 메모리 장치의 전압 변환회로
CN113644705A (zh) 自适应的衬底切换电路结构及电池保护芯片

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09117660

Country of ref document: US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997919654

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997919654

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997919654

Country of ref document: EP