WO1998036410A1 - Thin film magnetic head, recording/reproduction separation type head, magnetic disk apparatus and process for producing thin film magnetic head - Google Patents

Thin film magnetic head, recording/reproduction separation type head, magnetic disk apparatus and process for producing thin film magnetic head Download PDF

Info

Publication number
WO1998036410A1
WO1998036410A1 PCT/JP1997/000412 JP9700412W WO9836410A1 WO 1998036410 A1 WO1998036410 A1 WO 1998036410A1 JP 9700412 W JP9700412 W JP 9700412W WO 9836410 A1 WO9836410 A1 WO 9836410A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic core
film
magnetic
head
recording
Prior art date
Application number
PCT/JP1997/000412
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Okada
Yohji Maruyama
Hisano Yamamoto
Isao Nunokawa
Moriaki Fuyama
Matahiro Komuro
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1997/000412 priority Critical patent/WO1998036410A1/en
Publication of WO1998036410A1 publication Critical patent/WO1998036410A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3967Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers

Definitions

  • the present invention relates to a thin-film magnetic head, a read / write separation type head, a magnetic disk device, and a method of manufacturing a thin-film magnetic head.
  • the present invention relates to a thin film magnetic head recording / reproducing separable type head and magnetic disk device used for novel recording / reproducing, and a method of manufacturing a thin film magnetic head.
  • a magnetic disk device data on a recording medium is read and written by a magnetic head.
  • the method of improving the areal recording density is to increase the track density and the linear recording density.
  • the track pitch can be reduced by preventing writing and reading bleeding, so it is important to form the shape of the track vertically. is there.
  • a method of forming a magnetic core including a track portion of a thin-film magnetic head it is widely known that a method using dry etching such as ion milling and a method using frame plating are used.
  • a magnetic film such as permalloy is formed by sputtering on a substrate on which a lower magnetic core, a magnetic gap film, a conductor coil and an insulating film of the conductor coil are formed. Thereafter, a resist pattern is formed on the magnetic film by photolithography. Next the magnetic film is subjected to dry etching such as ion milling using the resist pattern as a mask. Thereby, an upper magnetic core is formed.
  • Japanese Patent Application Laid-Open No. Hei 7-225179 discloses such a dry etching method in which a magnetic pole end region defining a track width is formed by ion milling before a rear region. Examples of how to do this are disclosed.
  • a resist is formed by photolithography on a substrate on which a lower magnetic core, a magnetic gap film, a conductor coil, and a conductor coil insulating film are formed.
  • a magnetic film such as permalloy is mounted on the substrate on which the frame is formed.
  • an area surrounded by the frame is masked with a resist by photolithography, and an unnecessary magnetic film is removed by jet etching to form an upper magnetic core.
  • the film thickness (t) is determined by the track width.
  • the resist pattern is masked due to the dimensional variation of the resist pattern formed by photolithography. Therefore, the upper magnetic core cannot be formed with high precision because the dimensional variations in the dry etching of the magnetic film are superimposed.
  • the dimensional accuracy of the resist frame is not uniform, and the dimensional accuracy of the upper magnetic core is not uniform. Therefore, in terms of the dimensional accuracy, a method using dry etching such as ion milling is used. It is more advantageous than.
  • the method using dry etching such as ion milling is not suitable for tracking.
  • the shape of the part does not become vertical, but becomes a trapezoidal forward taper shape.
  • the frame plating method can also make the track part vertical by controlling the shape of the frame vertically.
  • the resist used for frame formation is applied by spin coating, the rear region of the substrate (the region where the conductor coil and the insulating film of the conductor coil are formed, the portion located above the step on the substrate) The thickness of the resist film at the time becomes thin. For this reason, in the conventional frame plating method, the resist is applied so as to secure the frame height in the rear area of the substrate. At this time, there is a problem that the thickness of the resist film in the tip region of the substrate (the region where the magnetic gap for writing and reading information is formed, the portion located below the step on the substrate) becomes extremely thick. there were.
  • the resist film thickness is large in this way, there is a problem that, for example, it is impossible to form a narrow track pattern of 1.5 tm or less due to the relationship between the depth of focus of the exposure apparatus and the resolution. Also, if the pattern interval can be formed and the frame interval of the track portion is 1.5 ⁇ , the aspect ratio between the frame interval and the frame height is as extremely high as 8 to 10.
  • Japanese Patent Application Laid-Open No. 7-176016 discloses a method in which a frame is formed in a rear region of a substrate, and then the frame is heated to 100 to 140 ° C.
  • a method is disclosed in which the upper magnetic core is formed by curing in a base and then forming a frame in the front end region of the substrate so as to be integrated with the frame in the rear region. According to this method, when forming the frame in the rear region, the resist film in the front region is formed. Since there is no need to consider the thickness, it is possible to make the resist film thickness optimal for the frame in the tip region.
  • the thickness of the resist to be exposed is required to be about 5 m, so that it is difficult to form a narrow track pattern of 1.5 ⁇ or less. is there. In order to form a narrow track pattern, it is necessary to further reduce the thickness of the resist to be exposed.
  • the exposed and developed shape of the thick resist of about 5 ⁇ m becomes a forward tapered shape in the case of a positive type resist, that is, the shape of the upper magnetic core becomes an inverted tapered shape. .
  • the resist shape is an inverted tapered shape, that is, the shape of the upper magnetic core is a forward tapered shape. It is difficult to make the shape of such a thick photoresist vertical, and thus it is also difficult to make the shape of the magnetic core vertical.
  • An object of the present invention is to provide a thin-film magnetic head which has a narrow magnetic track width with high precision and a vertically shaped upper magnetic core, does not cause writing or reading, and a magnetoresistive effect using the same.
  • An object of the present invention is to provide a recording / reproducing separation type head comprising a combination with a die reproducing head, a magnetic disk device having a large capacity and a high recording density, and a method of manufacturing a thin film magnetic head. Disclosure of the invention
  • a lower magnetic core one end of which is laminated on the lower magnetic core and connected to one end of the lower magnetic core, and the other end is connected to the other end of the lower magnetic core via a magnetic gap.
  • An upper magnetic core facing to form a magnetic circuit with the lower magnetic core, a conductor coil provided between the lower magnetic core and the upper magnetic core, the lower magnetic core, the upper magnetic core, and the conductor coil
  • a thin-film magnetic head comprising: an insulating film for electrically insulating
  • the magnetic core has a square cross section at the tip, a track width of 1.5 m or less, and a thickness of the upper magnetic core is larger than the track width. I do.
  • the tip of the upper magnetic core has a ratio (w 2 Zw l) of a track width (wl) to a width (w 2) of an upper portion thereof of 1.3 or less based on the above-described preconditions.
  • the track width is 1.5 ⁇ m or less
  • the thickness of the upper magnetic core is larger than the track width
  • the entire upper magnetic core has substantially the same thickness.
  • the track width is not more than 1.5 ⁇ m
  • the upper magnetic core has a tip whose thickness is larger than the track width and has substantially the same thickness as a whole. It has one of the requirements that the track width is 1.5 ⁇ or less, and its thickness is preferably 1.5 to 5 times, more preferably 1.5 to 3 times the track width.
  • the present invention relates to a recording / reproducing separation type head in which an inductive recording head and a magneto-resistance effect type reproducing head are integrally formed, and the track width of the recording head and the reproducing head.
  • the track width of the recording head and the reproducing head are less than 1.5 ⁇ , and the track width of the recording head is slightly larger in submicron order than the track width of the playback head. I prefer to do that.
  • the present invention provides a recording / reproducing separation type head in which an inductive recording head and a magnetoresistive effect reproducing head are integrally formed,
  • the recording head is stacked on the lower magnetic core, and one end of the recording head is connected to one end of the lower magnetic core, and the other end is connected to the other end of the lower magnetic core via a magnetic gap.
  • an insulating film electrically insulating each other, and a thickness of the upper magnetic core. Is larger than the track width,
  • the reproducing head has first and second magnetic layers of ferromagnetic material separated by a non-magnetic metal layer, and an antiferromagnetic layer provided in contact with one of the magnetic layers.
  • the magnetization direction of the first magnetic layer of the ferromagnetic material is a direction perpendicular to the magnetization direction of the second layer when the applied magnetic field is zero.
  • the recording head and the reproducing head each have a thin film including a soft magnetic layer, a nonmagnetic layer, a ferromagnetic layer, and an antiferromagnetic layer.
  • the thin film has a magnetoresistive effect in which the magnetization of the soft magnetic layer rotates in response to an external magnetic field to change the relative angle with respect to the magnetization of the ferromagnetic layer.
  • a stacked structure of a first ferromagnetic layer, a second ferromagnetic layer and a third ferromagnetic layer, or the reproducing head converts a magnetic signal into an electric signal using a magnetoresistive effect.
  • the present invention provides a magnetic disk for recording information, an inductive recording head for writing the information on the magnetic disk, and a magnetoresistive head for reproducing the information written on the magnetic disk.
  • a head / disk assembly comprising: a recording / reproducing separation type head integrally formed with the recording head; and a driving means for rotating the disk, wherein the recording head or the recording / reproducing separation type head is provided.
  • the head is constituted by the aforementioned thin-film magnetic head or the aforementioned recording / reproducing separation type head.
  • the present invention provides a magnetic disk device having a plurality of head disk assemblies as described above, wherein the recording head or the recording / reproducing separation type head is the thin film magnetic head described above or the recording / reproducing head described above. It is composed of a separate head.
  • the thin-film magnetic head according to the present invention forms a frame on a substrate having a lower magnetic core, a magnetic gap, a conductor coil, and an insulating film, then forms a plating film, and is then surrounded by the frame.
  • An upper magnetic core is formed by etching the plating film using a mask in a region, and a track width w1 at which the upper magnetic core contacts the magnetic gap has a width of 1.5 m.
  • the ratio of the track width wl to the thickness t of the upper magnetic core is as follows:
  • (t / w 1) be 2 or more.
  • the ratio (w 2 Z w l) of (w 1) to the width (w 2) of the upper part of the upper magnetic core is preferably 1.3 or less.
  • the above-mentioned thin-film magnetic head forms a plating film after forming a frame on a substrate having a lower magnetic core, a magnetic gap, a conductor coil, and an insulating film, and thereafter is surrounded by the frame.
  • the upper magnetic core is formed by etching the plating film using a mask as a region, two or more multilayer films having a resist layer as an uppermost layer are formed on the substrate.
  • the thin-film magnetic head is formed so as to have an optimum thickness in the front end region of the substrate where the magnetic gap is formed, and at least the uppermost layer resist of the multilayer film is formed in the upper magnetic core.
  • the lower layer portion below the resist layer is etched using the patterned resist as a mask to form a first flat portion corresponding to the tip region of the upper magnetic core.
  • a first step of forming a beam A resist is formed on the substrate on which the first frame is formed so that the frame has an optimum thickness in a rear region of the substrate on which the conductor coil and the insulating film of the conductor coil are formed. Then, the resist is patterned so that a second film corresponding to a portion formed in the rear region of the upper magnetic core is integrated with the first frame. This can be achieved by a manufacturing method for forming the frame.
  • the uppermost resist may be a Si-containing resist
  • the multilayer film may be an organic film, an intermediate film, or a lowermost layer.
  • the said intermediate layer is made of an inorganic film, particularly S i, S i 0 2, a 1, a 1 2 0 3, T i, T i 0 2, T a, T a 2 0 ⁇ , W, N even b caries Chi rather small 1 TsugaYoshimi or teeth rather, especially was sputtering or for S i 0 2, after applying the spin-on-glass, arbitrary preferred to sintering.
  • the organic film is made of a resist, and is subjected to a curing treatment after the formation of the first frame, and the curing treatment is performed by irradiation with far ultraviolet rays or reactive ion etching.
  • the organic film is made of polyimide and its derivatives, polydimethyldaltarimide (PMGI) and its derivatives, polymethyl methacrylate (PMMA) and its derivatives, benzocyclobutene (BCB) and its derivatives,
  • An electron beam resist is used for the uppermost layer resist
  • an electron beam lithography method is used for exposing the electron beam resist
  • an exposure of the uppermost layer resist is included.
  • the phase shift method or the modified illumination method can be used for light.
  • the first frame may be formed so as to be integrated with the second frame.
  • the thin-film magnetic head according to the present invention comprises the steps of: forming a frame on a substrate having a lower magnetic core, a magnetic gap, a conductor coil, and an insulating film, forming a plating film; A method of forming an upper magnetic core by etching the plating film using a mask in a region surrounded by a frame,
  • a multilayer film having two or more layers having a resist layer as an uppermost layer is formed.
  • a thin film magnetic head is formed so as to have an optimum thickness in a front end region of the substrate where the magnetic gap is formed, and an uppermost layer resist of the multilayer film has a shape corresponding to the frame.
  • the frame is formed by etching the organic pattern in the lower layer portion below the resist layer and in the rear region using the buttered resist as a mask.
  • the etching step, the uppermost layer resist, the multilayer film, the intermediate film, and the uppermost layer resist are the same as described above.
  • the multilayer film can be formed by varnish-like substance spin coating, sputtering, CVD, vapor deposition, electrodeposition, and the like.
  • the film thickness of the lower film may be an optimum film thickness as a frame in the region of the tip.
  • As the uppermost resist a Si-containing resist, a normal resist, an electron beam resist, or the like can be used, and a thin resist of ⁇ ⁇ or less can be used, so that high resolution is possible. Since the Si-containing resist has high resistance to dry etching with oxygen, the underlying organic film can be dry-etched with oxygen. In the case of using a normal resist or electron beam resist, the pattern is temporarily transferred to the intermediate film, and then the intermediate film is removed. Etch the lower layer on the mask.
  • Etching that can be anisotropically etched is preferable.
  • an inorganic film can be used as a mask material for oxygen-based dry etching of an underlying organic film.
  • Is the inorganic film materials S i, S i 0 2 , A 1, A 1 0 3, T i, T i 0 2, T a, T a 2 0 6, W, N b , etc. are available These can all be formed by a sputtering method.
  • S i 0 2 is, the spin-on-glass and Supinko door, it can also be obtained me by the sintering.
  • T a 0 B, W, N b is, SF e, CHF 3, CF 4 or the like of full Tsu Motokei gas, was or, C 1 2, BC 1 3 such as chlorine-based gas can be used, A 1, the a 1 2 0 3 chlorine-based gas such as C 1 2, BC 1 3 can be used.
  • the lower layer is dry-etched with an oxygen-based gas, whereby a frame at the tip can be formed. Apply resist to optimize the frame height in the rear area, but use a high viscosity normal resist or photosensitive polyimide. At this time, if the lower part of the first frame is a resist, it may be dissolved by the solvent of the resist of the second frame. Good.
  • the hardening treatment it is preferable to perform surface treatment by irradiating deep ultraviolet rays or reactive ion etching.
  • irradiating with far ultraviolet rays while heating to a temperature of 80 ° C or more in a vacuum curing proceeds rapidly.
  • the hardening of the surface using reactive etching may be performed, for example, using CHF 3 or the like for about 30 seconds. If a material that does not dissolve in the solvent of the resist of the second frame is used in the lower layer of the first frame, a curing treatment is not necessary.
  • the first frame may be formed after the second frame is formed first. In this case, after forming the second frame, it is better to perform the same curing treatment as that of the first frame.
  • a frame in the front region can be formed.
  • the organic material pattern may be the shape of the second frame, or an organic material pattern may be formed over the entire rear region on the step, and may be patterned together by etching at the time of forming the frame at the front end region. May be.
  • the thin-film magnetic head according to the present invention is formed on a lower magnetic film and a lower magnetic film, one end of which is in contact with one end of the lower magnetic film, and the other end is connected to the other end of the lower magnetic film via a magnetic gap.
  • B s is the saturation magnetic flux density of the upper and lower magnetic, layer (T), e represents a recording wavelength (tm).
  • the output decreases proportionately.
  • thin-film magnetic It is desirable to increase the output by increasing the number of coil turns of the head, specifically, it is desirable that the number of turns is 17 or more.
  • Thin-film magnetic heads are used by creating a magnetic film on a non-magnetic substrate and then processing it into a slider shape.
  • the substrate material may be alumina, zirconia, silicon carbide, or an oxide having a spinel structure.
  • the slider shape of the thin-film magnetic head can be used as a positive pressure slider shape with a reduced levitation force on the side near the head core tip, or a negative pressure slider shape with the opposite. .
  • the magnetic core material of the thin-film magnetic head it is desirable to use a magnetic material having a high saturation magnetic flux density, particularly a material having a saturation magnetic flux density of 1 Tesla or more, for both the upper magnetic film and the lower magnetic film.
  • a magnetic material there is 75 to 85 atomic% of nickel-ferrous crystalline, cobalt-based amorphous and crystalline or iron-based crystalline alloy represented by permalloy.
  • Each of the upper and lower magnetic films may have a multilayer structure. In this case, a magnetic film and a nonmagnetic layer are alternately laminated to form a multilayer film.
  • an insulating film such as alumina or silicon oxide is desirable.
  • the magnetic film thickness of each layer be the same.
  • the magnetic film thickness of each layer may be changed.
  • the total number of layers of the multilayer film is two or more, that is, a minimum, and two or more magnetic films and one nonmagnetic film.
  • Magnetic layers and non-magnetic layers are alternately laminated to form a multilayer film, which not only improves high-frequency magnetic permeability by reducing eddy currents, but also becomes a shape close to a single magnetic domain, resulting in domain wall displacement. It is also effective in stabilizing the playback output by suppressing the noise.
  • a magnetic material having a high saturation magnetic flux density By using a magnetic material having a high saturation magnetic flux density, a high magnetic flux density and a strong magnetic field can be generated to improve the overlap characteristics.
  • a putter method, a plating method, or the like can be used as means for forming a multilayer film.
  • the reproducing head includes: a magnetoresistive effect film whose electric resistance changes by a magnetic field; a lateral bias film for applying a lateral bias magnetic field to the magnetoresistive film; A pair of permanent magnets for applying a longitudinal bias to the magnetoresistive effect film provided in contact with both ends of the magnetoresistive effect film, the magnetoresistive effect film having a separation film provided therebetween; A pair of electrode films provided on the stone film and the permanent magnet film for flowing a signal detection current to the magnetoresistive film; and preferably, the thickness of the permanent magnet film is equal to that of the magnetoresistive film. It is characterized by being smaller than the thickness.
  • the permanent magnet film is made of a Co—Pt alloy, a Co—Cr—Pt alloy, or a Ti oxide, V oxide, Zr oxide, Nb oxide, Mo oxide It is preferable to use an alloy containing at least one element selected from the group consisting of oxides, Hf oxides, Ta oxides, W oxides, A1 oxides, Si oxides, and Cr oxides.
  • the permanent magnet film has a composition represented by (Equation 1) or (Equation 2).
  • M at least one of Ti, V, Zr, Mo, Hf, Ta, W, A1, Si, and Cr
  • the soft magnetic thin film for applying a transverse bias magnetic field to the magnetoresistive effect film has a specific resistance of 70 ⁇ cm or more. It is preferable that the lateral bias film is made of a nickel-iron alloy containing 78 to 84 atomic% of nickel.
  • the reproducing head according to the present invention is provided in contact with a pair of permanent magnet films provided on a substrate, a pair of electrodes formed on each of the permanent magnet films, and the permanent magnet.
  • the two-layered ferromagnetic film is preferably composed of an Ni alloy of 70 to 95 atomic% from the substrate side and a Co layer.
  • the two ferromagnetic films are preferably composed of a soft magnetic film from the antiferromagnetic side and a soft magnetic film having a higher magnetoresistance ratio than the soft magnetic film.
  • a reproduction head is provided in contact with a pair of permanent magnet films provided on a substrate, a pair of electrodes formed on each of the permanent magnet films, and the permanent magnet.
  • they are stacked.
  • a Co-based magnetic film or a film obtained by adding an oxide to the Co-based magnetic film as the permanent magnet film disposed in the passive region at the end of the MR sensor.
  • an oxide is added to the Co-based magnetic film, the coercive force of the Co-based magnetic film increases.
  • the permanent magnet film is a multilayer film divided by a nonmagnetic layer.
  • the coercive force of a single-layer C 0 permanent magnet film is 10 ⁇ ⁇ ! It takes the maximum value at ⁇ 30 nm. Therefore, it is preferable that the permanent magnet film has a multilayer structure divided by a nonmagnetic layer.
  • the recycled head according to the present invention is a nickel-iron alloy, cobalt, one of nickel-iron-cobalt alloys, zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, perylium oxide, and magnesium oxide. , Rare earth oxygen compounds, zirconium nitride, hafnium nitride, aluminum nitride
  • a soft magnetic thin film composed of at least one compound selected from the group consisting of titanium nitride, beryllium nitride, magnesium nitride, silicon nitride, and a rare earth nitrogen compound for the bias film, the reproduction output can be increased. improves.
  • the amount of the compound contained in the bias film is 3 to 20% based on all atoms except oxygen and nitrogen. This is because when the amount of the compound is 3% or less, the increase in electric resistance is small, and when the amount is 20% or more, the saturation magnetic flux density decreases, and the value is not sufficient as a bias film.
  • the specific resistance of the bias film of the present invention increases almost in proportion to the amount of the compound added, the magnetoresistance effect type magnetic head may have a specific resistance of 70 ⁇ cm or more. I like it. This is because the output of the magnetoresistive head is reduced unless the specific resistance of the bias film is sufficiently large compared to the specific resistance of the magnetoresistive film. This is because the specific resistance of the magnetoresistive film is 20 to 3 ⁇ , and the specific resistance of the bias film is at least twice as a guide.
  • the bias film of the present invention can be manufactured by a method such as vapor deposition, sputtering, or ion beam sputtering.
  • the target for sputtering or ion beam sputtering is to mix an alloy powder composed of nickel, iron, cobalt, etc. with a compound powder by an appropriate method, and then sinter and mold the powder.
  • a target in which a compound chip is placed on a metal target made of iron, cobalt, or the like may be used. By using such a target, the alloy and the compound made of nickel, iron, cobalt, etc. are vapor-deposited at the same time. can do.
  • a metal target composed of nickel, iron, cobalt, or the like and a compound target are arranged in a sputtering apparatus, and each particle emitted from the target is disposed. It can also be produced by a method in which the particles are substantially mixed on the substrate.
  • Nigel oxide is preferable, and in addition, an iron-mangan alloy thin film, a chromium-manganese alloy, a chromium-aluminum alloy film, or the like is used.
  • the permanent magnet film which is a hard magnetic film in the present invention
  • the aforementioned cobalt-platinum alloy or iron-cobalt terbium alloy film is used.
  • a hard magnetic film is a magnetic film whose magnetization is hardly changed by an external magnetic field, and it is assumed that the coercive force is, for example, 100 or more Oersteds. Since the direction of the magnetization hardly changes even if the addition is performed, the same effect as the antiferromagnetic film is obtained. That is, when formed in close contact with another magnetic film, it has the property of applying unidirectional anisotropy due to exchange coupling bias, and forms a longitudinal bias magnetic field in the magnetic resistance effect film.
  • the magnetic film includes an alloy of Ni 70 to 95 atomic%, Fe 5 to 30 atomic% and Co 1 to 5 atomic%, or Co 30 to 85 atomic%, Ni 2 to It is preferable to use an alloy of 30 atomic% and Fe of 2 to 50 atomic%.
  • a permalloy, an alloy of permender, or the like may be used. In other words, it is preferable to use a material that is ferromagnetic and has good soft magnetic characteristics.
  • each of the above films has a thickness of about 2 to 1000 persons.
  • an extremely thin non-magnetic insulating film can be used instead of the non-magnetic conductive film. In other words, this film is sufficient as long as electrons can move between the magnetic films, and for example, a tunnel effect may be used.
  • the non-magnetic insulating film is capable of tunneling electrons. It is necessary to be thin each time, and is generally formed at 100 A or less, and substantially at 50 A or less.
  • a surface oxidation of the soft magnetic film, or an oxide film on the surface of a metal film formed separately on the soft magnetic film, for example, aluminum is used as the nonmagnetic insulating film. It is preferable to use it.
  • an aluminum oxide film or the like may be formed and used. That is, it is preferable to use a material having a property of blocking magnetic coupling between magnetic films.
  • the substrate may be a base for forming these films, and may have a function as a slider of a magnetic disk device.
  • the material may have a Ti of 5% or less. Ceramic sintered bodies such as alumina containing C and stabilized zirconia are preferred.
  • the magnetoresistive effect element has a function of changing its electric resistance with respect to a weak external magnetic field, and the rate of change of the electric resistance is 5% to 10%. It has a great effect of%.
  • the magnetic recording / reproducing apparatus of the present invention also has a function of directly digitizing a signal recorded in an analog state at the time of reproduction, and further has a recording capacity per disc area, that is, a recording density. Has the effect of increasing the pressure.
  • the film may be formed by forming a flat film such as aluminum oxide or nickel oxide on a substrate, or iron, titanium, tantalum, zirconium, hafnium, niobium on a substrate.
  • a film made of cobalt iron alloy or the like may be further formed as a base.
  • the film on the substrate has the effect of forming a multilayer film evenly on the surface thereof, and preferably has a uniform and flat film structure on the surface of the substrate. Preferably, it is about 20 to 200 people for the film, and about 5 to 100 OA for the non-metal film.
  • the present invention relates to an antiferromagnetic film, a nonmagnetic film, a nonmagnetic film, a nonmagnetic film, and a hard magnetic film. It is preferable to have a film configuration, and it is preferable that the thickness of each of the antiferromagnetic film and the hard magnetic film is about 20 to 2000 persons.
  • the bias film laminated on the MR film other than the permanent magnet film in the present invention is preferably disposed on the substrate side more than the magnetic film and the non-magnetic film. It preferably has a function as a base film for improving wetting, and the magnetic domain structure of the magnetic film is made into a single magnetic domain by anisotropy, thereby suppressing generation of noise.
  • the film configuration it is preferable to have a configuration of first and second magnetic films stacked via a non-magnetic conductive film and a bias film formed in close contact with the first magnetic film.
  • the first bias film, the first magnetic film, the non-magnetic film, the second magnetic film, the non-magnetic conductive film, the third magnetic film, the second bias film, and the electrodes laminated on the substrate I prefer to be.
  • the third magnetic film preferably has the same function as the first magnetic film magnetically.
  • the control of the bias direction of the bias film and the anisotropic direction of the magnetic film is preferably performed by appropriately applying a magnetic field according to the forming process when forming the multilayer film of the device. Alternatively, it is preferable to perform a heat treatment in a magnetic field during or after the formation of the multilayer film of the element.
  • the direction and magnitude of the magnetic field in accordance with the film laminating process to control the bias application direction and the -axis anisotropy of the magnetic film.
  • the material of the bias film has a high electric resistance. More specifically, it is preferable that the electrical resistivity be 5 ⁇ 10 4 ohm centimeters ( ⁇ cm) or more.
  • the bias film prevents the output of the device from being reduced due to current leakage, and controls the laminated structure of the materials used, particularly the flatness, and enables the device to be laminated.
  • the magnetic field sensitivity is particularly high, about 10 Oe, which is higher than the conventional one.
  • a laminated structure with high reliability of about 2 to 4 times can be realized.
  • the magnetic recording / reproducing apparatus of the present invention is provided with a magnetoresistive effect element for reading a magnetic field from a magnetization pattern written on a recording medium with a predetermined track width.
  • the relationship between the length d ( ⁇ ) in the vertical direction and the track density ⁇ (track / inch) on the medium is d ⁇ 12.5 ⁇ 10 3 ZT. This is preferred.
  • a magnetic recording / reproducing apparatus includes a recording medium for magnetically storing signals, and a magnetic film sandwiched between non-magnetic conductive films by detecting a magnetic field leaking from the recording medium. And a magnetoresistance effect element having a touch structure, wherein a resistance change rate of 5.0 to 9.5% can be obtained with respect to a magnetic field of ⁇ 80 e leaking from the recording medium. .
  • the total thickness of the magnetoresistive film of the present invention is also about 100 to 300 persons in order to prevent a decrease in output due to surface scattering. This is because the output of the magnetic film, especially the thickness of the soft magnetic film at the center of the film, does not decrease at all even when the thickness is 100 or less, especially when it is 10 to 20 people. This effect occurs because the mechanism of the magnetoresistance effect is caused by the interface of the magnetic film / non-magnetic film / magnetic film.
  • the thickness of the magnetic film of the magnetoresistive element mounted in the present invention is preferably 5 to 100, particularly preferably 10 to 100. Separate each magnetic film
  • the thickness of the nonmagnetic conductive film to be separated is preferably 5 to 100 OA.
  • the thickness of this non-magnetic conductive film does not hinder electron conduction, and in particular, it is necessary to keep antiferromagnetic or ferromagnetic coupling between the magnetic films sufficiently small. For example, in the case of Cu, it is desirable to have about 10 to 30 people.
  • the magnetic film particularly, a soft magnetic film, it is preferable to use an alloy of Ni 70 to 95 atomic% and Fe 5 to 30 atomic%.
  • Co is appropriately added to the above Ni—Fe alloy in a range of 5 atomic% or less. Or C o 30 ⁇
  • an alloy thin film having a face-centered cubic structure of 85 at%, 11 to 30 at%, and 62 to 50 at%. These are because they enable a good laminated structure to be formed, have excellent soft magnetic properties, and produce a greater magnetoresistance effect.
  • At least one of Au, Ag, and Cu is preferable to use as the material of the nonmagnetic conductive film. This is because these films produce a magnetoresistive effect when combined with a magnetic film, are excellent in electric conductivity, and enable formation of a favorable laminated structure.
  • One example of the configuration of the magnetoresistive element of the present invention is that a pair of NiO, NiFe, Cu, NiFe, Cu, NiFe, and NiO are sequentially stacked on a substrate.
  • An electrode is provided.
  • a film formed by sequentially laminating NiO, Co / NiFe, Cu, Co / iFe, Cu, Co / iFe, and NiO on a substrate may be used. It consists of a pair of electrodes.
  • NiO, CoNiFe, Cu, NiFe, Cu, Co / iFe, and NiO are sequentially laminated on a substrate. It is preferred to have a pair of electrodes on the membrane. This is because these configurations are due to surface scattering It has the effect of extremely efficiently preventing the output from lowering, effectively increasing the output, and enabling the central film to be thinner, thereby reducing the sensitivity of the element due to the shape anisotropy of the magnetic film. This is because it can be prevented without a decrease in
  • the magnetic recording / reproducing apparatus of the present invention uses the magnetoresistive element as a reproducing section as described above, and can shorten the recording wavelength recorded on a recording medium with a high recording density. Also, it is possible to realize recording with a narrow recording track width, obtain a sufficient reproduction output, and maintain good recording.
  • FIG. 1 is a view of a thin-film magnetic head according to an embodiment of the present invention as viewed from a medium facing surface
  • FIG. 2 is a manufacturing step in an example of the present invention in which a first frame forming step is performed by facing a medium
  • FIG. 3 is a schematic view of a cross section as viewed from a plane
  • FIG. 3 is a schematic view of a cross section as viewed from a medium facing surface in a first frame forming step in a manufacturing process according to an embodiment of the present invention
  • FIG. FIG. 5 is a schematic cross-sectional view of the frame forming step as viewed from the cross-sectional direction of the head.
  • FIG. 3 is a schematic view of a cross section as viewed from a plane
  • FIG. 3 is a schematic view of a cross section as viewed from a medium facing surface in a first frame forming step in a manufacturing process according to an embodiment of the present invention
  • FIG. FIG. 5 is a schematic cross-sectional view of the frame
  • FIG. 5 is a schematic perspective view of the cross section of the magnetic head in the manufacturing step in the embodiment of the present invention.
  • FIG. 7 is a schematic view of a cross section of a head in a frame forming step of a manufacturing process in an embodiment of the present invention
  • FIG. 7 is a cross-sectional view of a tip of a thin film magnetic head
  • FIG. Figure 9 shows the relationship between pole thickness X saturation magnetic flux density and A diagram showing the relationship with the recording wavelength
  • FIG. 10 is a cross-sectional view of a thin-film magnetic head
  • FIG. 11 is a perspective view of a read / write separation type head
  • FIG. 12 is a magnetoresistive head.
  • 13 is a perspective view of the negative pressure slider 1, FIG.
  • FIG. 14 is an overall perspective view of the magnetic disk drive showing the head's disk assembly, and FIG. 15 is a part of the magnetic disk drive.
  • Plan view Fig. 16
  • FIG. 17 is a partial perspective view of a magnetoresistive head
  • FIG. 18 is a partial perspective view of a magnetoresistive head
  • FIG. 19 is a partial perspective view of a magnetoresistive head
  • FIG. 20 is a partial perspective view of the magnetoresistive head
  • FIG. 21 is a diagram of the magnetoresistive head.
  • 1 1, 4 2, 6 2 is the lower magnetic core
  • 1 2 is the upper magnetic core
  • 2 1, 3 1, 4 1, 5 1, 6 1 is the substrate
  • 2 3 S i containing registry 3 3 intermediate film S i 0 2, 4 3, 6 3 magnetic formic Yap film
  • 4 4, 4 6, 5 3, 6 4, 6 6 Insulating film, 45, 54, 65 are conductor coils
  • 47, 68 are multilayer films
  • 52 is lower magnetic core and magnetic gap
  • 55 is first frame
  • 56 is second frame.
  • 1 is a non-magnetic metal layer
  • 2 is a ferromagnetic second magnetic layer
  • 3 is an antiferromagnetic layer
  • 7 is a hard ferromagnetic layer
  • 8, 85 are electrodes
  • 10 is a magnetoresistive film
  • 1 1 is Ferromagnetic layer
  • 12 is nonmagnetic layer
  • 13 and 11 are soft magnetic layers
  • 14 is underlayer
  • 15 is high coercivity Co alloy film
  • 16 is soft magnetic film
  • 17 is C o membrane
  • 18 is separation membrane
  • 19 is a high coercivity magnetic film
  • 24 is a magnetic disk
  • 27 is a magnetic head
  • 26 is an actuator
  • 80 is a base
  • 81 is an upper shield
  • 82 is a lower shield
  • 84 is an upper shield Magnetic core
  • 83 is lower magnetic film
  • 86 is magnetoresistive effect
  • 87 is a coil
  • 88 is a magnetic gap
  • 89 is a non-magnetic insulator
  • 91 is a magnetic domain control film
  • 110 is a lower shield film
  • 120 is a lower gap film
  • 140 is a magnetic resistance Effect film
  • 145 is an oxide antiferromagnetic film
  • 150 is a shunt film
  • 155 is a soft film
  • 160 is a signal detection electrode
  • 170 is an upper gap film
  • 177 is a non-magnetic film
  • 180 is an upper shield film
  • 101 is a non-magnetic substrate.
  • FIG. 1 is a diagram of an inductive recording thin-film magnetic head according to an embodiment of the present invention, as viewed from the medium facing surface (the magnification in the figure is not uniform).
  • the ratio (t / wl) of the track width wl of the upper magnetic core to its thickness t is 2 or more.
  • FIG. 2 is a flow diagram showing a frame forming process for the substrate 21 as viewed from the medium facing surface direction.
  • A shows the Si-containing resist 23 (Hitachi Kasei's RU-160P-39) in the upper layer at 1.4 ⁇ , and the lower layer in the normal resist 22 (Tokyo Ohka OFPR8).
  • Panel (b) shows that the upper layer resist was exposed and developed via a photomask to form a pattern for the first frame for the tip.
  • C shows a state where the first layer is formed by etching the lower layer by reactive ion etching of oxygen using the pattern of the upper layer resist as a mask.
  • FIG. 3 is a flow chart showing a frame forming process for the substrate 31 in the same manner.
  • a normal resist 34 (Tokyo Oka 0FPR800) is applied to the upper layer with a thickness of 0.7 ⁇ , and Sio 2 is formed as an intermediate film 33 by a sputtering method at a thickness of 0.2 tm.
  • a multilayer film in which a normal resist (0FPR8600 manufactured by Tokyo Ohka Co., Ltd.) is laminated by 5 m as the lower layer film 32 is shown.
  • the method of forming the S i 0 2 after applying a spin-on-glass may be a method of baking.
  • (B) shows that the upper layer resist 34 was exposed and developed via a photomask to form a pattern for the first frame for the front end.
  • (C) shows that the SiO 2 of the intermediate film 33 was etched by reactive ion etching of CHF 3 using the pattern of the upper resist 34 as a mask.
  • (d) shows that the lower layer resist 32 is etched by reactive ion etching of oxygen using the intermediate film 33 as a mask to form a first frame.
  • the resist in the uppermost layer may be exposed by a phase shift method or a modified illumination method, or may be exposed by electron beam lithography using an electron beam resist. In both cases of Figs.
  • FIG. 4 is a flow chart showing a manufacturing process as viewed from a cross section of a magnetic head.
  • (a) shows where the magnetic gap film 43, the conductor coil 45, and the insulating films 44, 46 are formed on the lower magnetic core 42.
  • (B) shows where the multilayer film 47 was formed.
  • (C) shows where the first frame has been formed.
  • (D) shows the case where a high-viscosity resist 48 (Shin-Etsu Chemical SIPR9332H) was applied.
  • the resist 48 in this process is of high viscosity and is not only SIPR9332H manufactured by Shin-Etsu Chemical Co., Ltd., but also AZ4620 manufactured by Hext, STR1110 manufactured by Shipley, PMER manufactured by Tokyo Ohka Kogyo Co., Ltd. P-MH600MA-T— 1 is suitable.
  • (E) shows that the second frame integrated with the first frame was formed by exposing and developing through a photomask.
  • FIG. 5 is a perspective view showing a magnetic head manufacturing process in the process of FIG. (A) shows where the magnetic gap film, the conductor coil 54 and the insulating film 53 are formed.
  • (B) is a perspective view of the magnetic head showing where the first frame is formed.
  • (C) is integrated with the first frame
  • FIG. 4 is a perspective view of a magnetic head showing a portion where a second frame is formed.
  • the permalloy was electrolytically deposited using the frame formed by the above method, and as shown in Fig. 1, the track width (w1) was 1.2 ⁇ m and the height (t) was A thin-film magnetic head with an upper magnetic core of 3.5 ⁇ m and an upper width (w 2) of the track portion of 1.4 jct m was produced.
  • the (tw 1) ratio is 2.9.
  • FIG. 6 is a cross-sectional view of the thin-film magnetic head manufacturing process of the present invention (however, the magnification of the figure is not uniform).
  • A shows where the magnetic gap film 63, the conductor coil 65, and the insulating films 64, 66 are formed.
  • B shows the case where a highly viscous resist 67 (Shin-Etsu Chemical SIPR9332H) was applied and a film thickness of 5 ⁇ was obtained on the step.
  • photosensitive polyimide—photosensitive benzocyclobutene may be used.
  • C shows that the resist 67 pattern was formed on the step by performing exposure and development through a photomask.
  • (D) shows an Si-containing resist (Hitachi Chemical RU-1600 P-39) in the upper layer at 1.4 ⁇ , and a normal resist 67 (Tokyo Ohka 0FPR8600) in the lower layer. This shows the point where the multi-layered film 68 having m layers was formed.
  • a normal resist (Tokyo Oka 0FPR800) is applied to the upper layer for 0.7 m, and SiO 2 is used as an intermediate film in a 0.2 ⁇ form by sputtering. Then, as a lower film, a normal resist (Tokyo Ohka 0FPR8600) was laminated to form a multilayer film with a thickness of 5 Atm, and the upper resist was exposed and developed via a photomask to form a top layer.
  • a normal resist Tokyo Ohka 0FPR8600
  • the frame may be formed by etching. Further, the exposure of the uppermost resist may be performed by a phase shift method or a modified illumination method, or may be performed by electron beam lithography using an electron beam resist. .
  • the permalloy is electrolytically deposited using the frame formed by the above method, the track width (wl) is 1.2 ⁇ , the height (t) is 3.5 ⁇ m, and the track portion is The thin-film magnetic head with a width (w 2) of 1.4 ⁇ at the top of the thin film was fabricated (tw 1) ratio was 2.9.
  • the magnetic film and the lower magnetic film were formed by the following electroplating method.
  • the track width is 4.0 ⁇ and the gap length is 0.4 ⁇ .
  • the composition of this magnetic film is 42.4 Ni-Fe (% by weight), and the magnetic properties are as follows: saturation magnetic flux density (B s ): 64 T; hard axis coercive force (H CH ): 0.5 At 0 e, the specific resistance (p) was 48.1 t Q cin.
  • the upper magnetic core 84, the lower magnetic core 83, and the coil 87 has a magnetoresistive element 86 for reproduction, an electrode 85 for passing a sense current to the magnetoresistive element, a lower shield layer 82, and a slider 80.
  • FIG. 7 schematically shows the structure of the tip of the magnetic core of the thin-film magnetic head used in the magnetic disk device of the present invention.
  • Symbol 36 is pole thickness, lower magnetism
  • the length in which the film 84 and the upper magnetic film 83 are parallel at the tip of the head is a magnetic gap depth 38.
  • Reference numeral 39 denotes the thickness of the disk-facing surface of the lower magnetic film
  • reference numeral 35 denotes the same thickness of the upper magnetic film
  • reference numeral 37 denotes the magnetic gap length.
  • 8 7 is a conductor coil.
  • an overwrite method that directly writes new information on already written information becomes important. At the time of a new write, the information that has already been written remains as noise for the new information, but its value is required to be as small as 122 dB or less.
  • H x is the magnetic field strength generated from the magnetic heads
  • H c is the coercive force of the thin film magnetic disks.
  • the upper magnetic film, lower magnetic film, and magnetic gear were made using permalloy with a saturation magnetic flux density of 1 Tesla as the magnetic core material of the thin-film magnetic head.
  • Figure 8 shows the results of a study on the relationship between the sum of the gap length (pole thickness) and the over- write characteristics. From Fig. 8, it can be seen that the overwrite characteristics have higher values as the pole thickness increases. Since the overlay characteristics are required to be less than 22 dB, the pole thickness must be 5.56 m or more. As a result, the write and read characteristics were satisfied, the recording wavelength was 0.68 ⁇ m, and the pole length was 8.6 ⁇ m. The recording density was examined. In order to keep the gap depth large while maintaining the overwrite characteristics at less than 122 dB, it is effective to keep the gap length between 0.2 and 0.4 m.
  • the magnetic film thickness of the recording medium is preferably from 0.04 to 0.06 m in consideration of the fluctuation during film formation.
  • the flying height is more than 0.05 ⁇ from the viewpoint of sliding resistance, and the minimum recording wavelength is 0.3 ⁇ m.
  • Figure 9 shows the results obtained from the above equation based on the relationship between the recording wavelength at which an overwrite of less than 122 dB can be obtained, the product of the pole thickness, and the saturation magnetic flux density of the magnetic core material. And those obtained above the oblique lines.
  • the pole thickness should be 5 ⁇ or more when the saturation magnetic flux density is 1 Tesla. If the thickness of the lower magnetic film is 2 m, the thickness of the upper magnetic film is about 3 ⁇ or more.
  • the ratio of the track width (w l) of the upper magnetic film to its thickness (t) is set to 2 or more.
  • FIG. 11 is a cross-sectional view of the inductive type thin film magnetic head of the present invention.
  • This thin film head comprises an upper seal film 81 and the above-mentioned magnetic film adhered thereon.
  • An upper magnetic film 84 and an upper magnetic film 83 are provided.
  • a non-magnetic insulator 89 is attached between layers 84 and 83.
  • a portion of the insulator defines a magnetic gap 88, which interacts in a transducing relationship with a magnetic medium written, for example, in an air-pairing relationship by well known techniques.
  • the support is in the form of a slider having an air bearing (ABS), which is in close proximity to the media of the rotating disk during disk file operation and is in a floating relationship. You.
  • ABS air bearing
  • the thin-film magnetic head is a pack having a back gap 90 formed by the upper magnetic film 84 and the lower magnetic film 83, and the gap 90 formed by the interposed coil 87. Separated from the
  • the continuous coil 87 is a layer formed on the lower magnetic layer 83 by, for example, plating, and these are electromagnetically coupled.
  • Coil 87 has an electrical contact in the center of the coil, which is filled with non-magnetic insulator 89, and also has a larger area at the outer end of the coil as an electrical contact.
  • the contacts are connected to an external electric wire and a read / write signal processing head circuit (not shown).
  • the coil 87 made of a single layer has a slightly distorted elliptical shape, and a portion having a small cross-sectional area is disposed closest to the magnetic gap. As the distance from becomes larger, the cross-sectional area gradually increases.
  • Knock gap 96 is located relatively close to the magnetic gap ABS.
  • Fig. 11 is a conceptual diagram of an integrated recording / reproducing separation head using the thin-film magnetic head of Example 1 as a recording head and a magnetoresistive head for reproduction. It is.
  • the recording / reproducing separation type head includes an inductive recording / reproducing head using the element of the present invention, and a shield portion for preventing the reproducing head from being confused due to a leakage magnetic field.
  • the mounting with the recording head for horizontal magnetic recording has been described, but the magnetoresistive element of the present invention may be combined with the head for perpendicular magnetic recording and used for perpendicular recording.
  • the head is the substrate
  • a reproducing head composed of a lower shield film 82, a magnetoresistive film 86, an electrode 85, and a lower shield film 81, a top magnetic film 84, a coil 87, and a lower magnetic film 8 And a recording head consisting of three.
  • a signal is written on a recording medium and a signal is read from the recording medium.
  • the sensing part of the reproducing head and the magnetic gap of the recording head on the same slider in this way, they can be positioned simultaneously on the same track.
  • This head was machined into a slider and mounted on a magnetic recording and playback device.
  • 9 1 is a magnetic domain control film.
  • FIG. 12 is a partial cross-sectional view of a magnetic head (MR sensor) using a spin-valve magnetoresistive film as the magnetoresistive head used in this embodiment.
  • the MR sensor of the present invention includes a first ferromagnetic layer 10 of a soft ferromagnetic material made of a permalloy alloy serving as a pin layer and a nonmagnetic metal layer 1 on a suitable substrate 9 such as glass or ceramic. And a second magnetic layer 2 of a ferromagnetic material made of a permalloy alloy serving as a fixed layer.
  • the ferromagnetic layers 10 and 2 are arranged such that when no magnetic field is applied, the individual magnetization directions have an angular difference of about 90 degrees. Further, the magnetization direction of the second magnetic layer 2 is fixed to the same direction as the magnetic field direction of the magnetic medium. When no magnetic field is applied, the magnetization direction of the first magnetic layer 10 of the soft ferromagnetic material is in relation to the magnetic field direction of the second magnetic layer 2.
  • the magnetization is applied to the first magnetic layer 10 in response to the applied magnetic field. Rolling occurs and changes.
  • the first magnetic layer 10, the nonmagnetic metal layer 1, the second magnetic layer 2, and the antiferromagnetic material layer 3 are described later with reference to FIGS. 0 can be used film structure used in the laminate structure shown in FIG., Moreover, a hard strong magnetic layer 7 C o 8 2 C ra P ta, C oso C r 8 P t 8 (Z r 0 2 ) 3 can be used.
  • the film configurations of FIGS. 16, 17 and 18 have film configurations corresponding to the first magnetic layer 10 and the second magnetic layer 2 in this embodiment, and their magnetic field directions. Are formed in the same manner as described above.
  • an appropriate lower film 5 such as, for example, Ta, Ru, or CrV is applied on the substrate 9 before the first magnetic layer 10 of the soft ferromagnetic material is deposited.
  • the purpose of attaching the lower film 5 is to optimize the structure, crystal grain size, and morphology of the layer to be attached later. Layer morphology is very important for obtaining a large MR effect. This is because a very thin spacer layer of the nonmagnetic metal layer 1 can be used depending on the form of the layer.
  • the lower layer should have high electrical resistance to minimize the effects of shunting.
  • the lower layer can be used in an inverted structure as described above. If the substrate 9 has a sufficiently high electric resistance, is sufficiently flat, and has an appropriate crystal structure, the lower film 5 is unnecessary.
  • the first magnetic layer 10 means for generating a bias in the vertical direction for maintaining a single domain state in a direction parallel to the paper surface is used.
  • a hard ferromagnetic layer 7 having a high coercive force, a high squareness, and a high electric resistance is used.
  • the hard ferromagnetic layer 7 is in contact with the region of the end of the first magnetic layer 10 of the soft ferromagnetic material.
  • the magnetization direction of the hard ferromagnetic layer 7 is parallel to the paper.
  • the antiferromagnetic layer is brought into contact with and attached to the end region of the first magnetic layer 10. To produce the required vertical bias. These antiferromagnetic layers preferably have sufficiently different blocking temperatures than the antiferromagnetic layer 3 used to fix the magnetization direction of the ferromagnetic second magnetic layer 2.
  • a layer of a high resistance material such as Ta is preferably deposited over the entire MR sensor.
  • An electrode 8 is provided, and a circuit is formed between the MR sensor structure and the current source and the detecting means.
  • FIG. 13 is a perspective view of a negative pressure slider.
  • the load slider 70 has a negative pressure generation surface 78 surrounded by an air introduction surface 79 and two positive pressure generation surfaces 77, 77 for generating a levitation force.
  • a groove 74 having a larger step than the negative pressure generating surface 78 is formed.
  • an inductive type recording head for recording information on a magnetic disk and an MR sensor for reproducing which will be described later, record the schematic structure shown in FIG. It has a reproduction-separated thin-film magnetic head element 79.
  • FIG. 14 shows an overall view of a magnetic disk drive which is an example of the present invention.
  • the configuration of this magnetic disk drive is a magnetic disk 24 for recording information, A DC motor (not shown) for rotating this, a magnetic head 27 for writing and reading information, and a positioning device for means for supporting and changing the position with respect to the magnetic disk, that is, It consists of an actuator, a poiscoil motor, and an air filter to keep the inside of the equipment clean.
  • the actuator consists of a carriage, rails and bearings, and the voice coil motor consists of a voice coil and a magnet.
  • FIG. 15 is a plan view of a magnetic disk device according to the present invention.
  • 24 is a magnetic disk
  • 27 is a magnetic head
  • 28 is a gimbal system support device
  • 26 is an actuator (positioning device).
  • the magnetic disk 24 is driven to rotate in the direction of arrow a by a rotation drive mechanism.
  • Magnetic heads 2 7 is supported by the supporting device, Ri by the Akuchiyue Ichita 2 6, the rotation diameter 0, on the arrow b, or is positioned is driven in the direction of b 2, its Reniyo predetermined Siri I Sunda T, in ⁇ T n, the magnetic recording, reproduction is performed.
  • the magnetic disk 24 is a medium having a surface roughness R ⁇ ⁇ ⁇ of 100 or less, preferably 50 or less, and having good surface properties.
  • the magnetic disk 24 has a magnetic recording layer formed on a surface of a rigid substrate by a vacuum film forming method. Since the thickness of the magnetic recording layer formed by the vacuum film forming method is 0.5 ⁇ m or less, the surface properties of the rigid substrate are directly reflected as the surface properties of the recording layer. Therefore, a rigid substrate having a surface roughness RMAX of 10 OA or less is used. As such a rigid substrate, a rigid substrate mainly composed of glass, chemically reinforced soda-aluminosilicate glass or ceramic is suitable.
  • the magnetic layer is made of metal or alloy, an oxide layer, a nitride, It is desirable to provide a layer or make the surface an oxide film. It is also desirable to use a carbon protective film. By doing so, the durability of the magnetic recording layer is improved, and damage to the magnetic disk can be prevented even when recording / reproducing with an extremely low flying height or during contact, start, and stop.
  • the oxide layer and the nitride layer can be formed by reactive sputtering, reactive evaporation, or the like.
  • the oxide film can be formed by intentionally oxidizing the surface of the magnetic recording layer by a reactive plasma treatment or the like.
  • the magnetic disk may be either perpendicular recording in which the recording residual magnetization of the magnetic recording layer is a component perpendicular to the film surface as a main component, or in-plane recording in which the in-plane component is a main component.
  • a lubricant may be applied to the surface of the magnetic recording layer.
  • elliptical (elliptical) coils have no corners, sharp corners or edges, and have low resistance to current.
  • the elliptical shape requires less overall length of the conductor than a rectangular or circular (annular) coil. As a result of these advantages, the total resistance of the coil is relatively small, heat generation is small, and appropriate heat dissipation is obtained. Since the amount of heat is reduced, the thin film layer is prevented from collapsing, extending and expanding, and the cause of the pole-tip protrusion in the ABS is eliminated.
  • An elliptical coil shape in which the change in width progresses almost uniformly can be attached by a conventional plating technique that is less expensive than sputtering or evaporation.
  • the adhesion tends to be uneven in width. Removal of corners, sharps and edges gives less mechanical stress to the finished coil
  • the coil wound in a number of turns is almost elliptical and formed between the magnetic cores.
  • the coil cross-section diameter gradually expands from the magnetic gap toward the back gap, so that the signal output increases and the heat generation decreases.
  • the crystal grain size of the magnetic core of this example was 100 to 500, and the hard axis coercive force was less than or equal to 100 e.
  • FIG. 16 shows the structure of the magnetoresistive head of this embodiment used in place of the MR sensor of the second embodiment.
  • a soft magnetic film SAL 16, a separation film 20, and an MR film 13 were sequentially formed.
  • a permalloy alloy of 80 at% Ni—Fe was used.
  • a stencil-shaped photoresist was formed on the central active area.
  • the SAL 16, the separation film 20, and the MR film in an area not masked by the resist material are used.
  • a permanent magnet film 17 and an electrode film 8 forming an end passive region were attached.
  • . 82 ⁇ 1 "... 9 ⁇ 1; 0 .. 9 film or Is ⁇ 0. 8 . ⁇ . 8 ? 1 :. . 9 (2 1 "0 2 ) ... 3 films were used.
  • the permanent magnet film 17 in this case was formed by RF sputtering, and the ZrO 2 chip was placed on the target.
  • yo Ri C o C r was adjusted P t Z r 0 2 concentration in the film.
  • the film thickness of the permanent magnet film 1 7 is a bias magnetic field applied to the central active region
  • each permanent magnet film was 60000 e and 1200 Oe.
  • the permanent magnet film and electrode film attached on the stencil were lifted off.
  • the SAL 16 applies a lateral bias magnetic field 4 to the MR film 13
  • the permanent magnet film 17 applies a vertical bias magnetic field 6 to the MR film 13.
  • the permanent magnet film 17 is laminated thinner than the total thickness of the SAL 16, the separation film 18 and the MR film 13, and the 1 113 ⁇ 4 film 1
  • the taper is formed so as not to remain at the portion 3 and tapered so as to remain at the end with the MR film 13.
  • the electrode film 8 is formed thereafter, and the tape is formed at the contact portion with the MR film 13.
  • 1 9 is 0 .4 ⁇ ⁇ thickness of alumina lower gap film
  • 18 is a lower shield film made of about 2 ⁇ NiFe alloy
  • 14 is an alumina insulating film on the surface of substrate 9. It is formed to a thickness of 0 and polished to smooth the surface of the substrate 9.
  • the substrate 9 is made of a TiC-containing alumina sintered body.
  • the Ta film is used
  • the MR film 13 is made of an 80 at% Ni-Fe alloy with a thickness of 400 persons.
  • the central active region has an MR film, a SAL 16 as a soft bias film for applying a lateral bias, and a separation film 20 for separating the two magnetic films.
  • the end passive region is composed of a permanent magnet film 17 that applies a longitudinal bias to the central active region.
  • the end junction region has two tapers in the central active region.
  • the permanent magnet film 17 gives a longitudinal bias to the central active region by a leakage magnetic field from the permanent magnet film and a coupling magnetic field at a junction region between the permanent magnet film and the central active region.
  • the permanent magnet film needs to apply a magnetic field to the central active region stably against the magnetic field from the magnetic medium to suppress BHN.
  • the permanent magnet film needs to have a coercive force of 1000 e or more.
  • a permanent magnet film such as CoPt or CoCrPt is used as the permanent magnet film.
  • a high coercive force can be obtained by using an underlayer such as Cr for the Co-based magnetic film.
  • a soft magnetic film obtained by adding 10% of zirconium oxide to a magnetic alloy composed of 80 atomic% nickel and the balance of iron A total of 400 people are formed by the sputtering method. Sputtering was performed using a target in which a zirconium oxide chip was placed on a nickel-iron alloy target. The Ar gas pressure during sputtering was 2 mTorr. The substrate temperature was room temperature. Further, an alumina film is formed thereon as an upper gap film at 0.3 ⁇ m, and an upper magnetic shield is formed thereon.
  • an inductive magnetic head for recording is fabricated, but details are omitted. Thereafter, the substrate is cut and processed into a slider to complete the fabrication of the magnetoresistive head. Next, the characteristics of the magnetoresistive head of this embodiment will be described. Evaluation of the magnetoresistive head was performed with the playback output. I got it. For the magnetic head of this example, and for comparison, a head using a nickel-iron alloy having the same structure and 5% niobium added to the bias film was used for comparison. The bias film to which zirconium oxide was added in this example had a saturation magnetic flux density of 0.7 T and a specific resistance of about 120 ⁇ cm, whereas 5% niobium for comparison was added.
  • the nickel-iron film thus obtained had a saturation magnetic flux density of 0.6 T and a specific resistance of 70 ⁇ cm.
  • the reproduction output of a magnetoresistive head using a nickel-iron film containing 5% niobium as the bias film was about 40 ⁇ at a frequency of 10 MHz.
  • the magnetic head of the invention was about 44% at 10% greater. This is because, in a head using a nickel-iron alloy film to which niobium is added as a bias film, the specific current of the bias film is small, so that the detection current flows to both the magnetoresistive film and the bias film, and the resistance read out. This is because the change becomes smaller.
  • niobium In a nickel-iron film to which niobium is added, it is possible to increase the electric resistance by increasing the amount of niobium added.However, when the amount of niobium is increased, the saturation magnetic flux density is significantly reduced. , 5% is the limit. As described above, in the magnetoresistive head of the present embodiment in which the nickel-iron film to which zirconium oxide is added is used as the bias, a high reproduction output can be obtained because the electric resistance of the bias film is large. .
  • the electric resistance of the bias film of the magnetoresistive head according to the present invention will be described.
  • zirconium oxide was added to a magnetic alloy film consisting of 80 atomic% nickel and the balance iron, the specific resistance and saturation magnetic flux density of the film were examined.
  • the thickness is 400 people.
  • aluminum oxide is added, the electrical resistance of the film increases to about 100% at about 10%.
  • the saturation magnetic flux density decreases monotonically with the addition of aluminum oxide, and is about 0.75 T at 10%.
  • aluminum oxide is added as a compound.
  • Other compounds show the same tendency, and it is possible to produce a film with high specific resistance by adding the compound. It is difficult to obtain such a film having a high specific resistance by adding a conventional metal element, and it is understood that the addition of a compound is effective.
  • the characteristics of the bias film containing various compounds will be described. Zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, beryllium oxide, magnesium oxide, cerium oxide as a rare earth oxygen compound, and a metal magnetic thin film consisting of 80% nickel and the balance iron. Coercivity and anisotropy when zirconium nitride, hafnium nitride, aluminum nitride, titanium nitride, beryllium nitride, magnesium nitride, silicon nitride, and about 5% by weight of cerium nitride as a rare earth nitrogen compound are added. The values of the active magnetic field and the saturation magnetic flux density were examined.
  • the film was prepared by a sputtering method.
  • the film thickness was 400 persons, and the specific resistance of the film was about 70 ⁇ Qcm.
  • the coercive force is 1.1 to 1.30 e for oxides in the easy magnetization direction, 5 to 1.70 e for nitrides, and 0.25 to 0.40 Oe for the hard magnetization directions.
  • 0.35 to 0.450 e the anisotropic magnetic field and saturation magnetic flux density were 6.0 to 7.000 e and 0.90 to 0.95 T, respectively.
  • the coercive force is 4.00 e for the iron system in the easy direction, 2.0 e for the nickel system, 2.0 to 2.5 e for the former in the difficult direction, and 0.70 e for the latter in the difficult direction.
  • the coercive force of the added film is reduced to about 30 e. ⁇ 80 e The latter was 15.00 e.
  • the coercive force was reduced when zirconium oxide was added, compared to the case where zirconium oxide was not added, and the soft magnetic properties were improved. It is clear that it will improve.
  • the saturation magnetic flux density is 2.1 to 2.3 T for the former and 0.85 mm for the latter, and the effect of adding zirconium oxide is extremely small.
  • the permanent magnet film is formed Ri by the RF sputtering method, Z r 0 2 or on the target
  • the oxides that increase the coercive force include Ti oxide V oxide, Nb oxide, Mo oxide, Hf oxide, W oxide, A1 oxide, Si oxide, and C oxide. r Oxides are possible.
  • FIG. 17 is a perspective view of the magnetoresistive head of the present embodiment used in place of the MR sensor of Embodiment 2.
  • This embodiment has the same structure as that of the first embodiment, except that the laminated structure of the film of the magnetoresistive head is different.
  • An antiferromagnetic film 93 of NiO with a thickness of 50 nm and an MR film 13 with a thickness of 80 at% Ni with a thickness of 1 nm are sequentially formed on the lower gap film 19 made of alumina.
  • — Fe alloy film 9 4 and 1 nm thick Co film The SAL 16 for applying a lateral bias was formed from a nonmagnetic metal film 96 and a 5 nm thick soft magnetic film of a NiFe alloy from Cu with a thickness of 95 nm and a Cu with a thickness of 2 nm.
  • the MR film 13 sandwiches a thin non-magnetic film (Cu) between two magnetic films (NiFe), and an antiferromagnetic film (Ni0) in contact with one magnetic film. It is a structure consisting of This structure prevents instability in the manufacturing process and a decrease in sensitivity due to shunting of current.
  • the antiferromagnetic film uses an oxide Ni0 that does not corrode in the manufacturing process compared to the conventional material FeMn-This enables high reliability in the mass production process. planned. Further, the output of the head is determined by the product of the current flowing through the head and the resistance change amount of the spin valve film, and the antiferromagnetic film itself does not contribute to the resistance change.
  • the input current can be efficiently contributed to the resistance change, and high magnetic field sensitivity can be obtained.
  • a recording density of about 5 Gb / in 2 can be realized.
  • a film in which an oxide is dispersed in a NiFe alloy on the SAL 1 in the present embodiment as in the first embodiment a higher reproduction output can be obtained.
  • FIG. 18 is a perspective view of a magnetoresistive head of this embodiment used in place of the MR sensor of Embodiment 2.
  • FIG. 19 is a conceptual diagram showing an example of anisotropy control of the magnetoresistive element of this embodiment.
  • the bias films 30 and 38 made of an antiferromagnetic material apply anisotropy by exchange coupling in the directions of arrows 57 and 58 in the figure.
  • the arrow 60 indicates the direction of the magnetic field to be sensed
  • the arrow 47 indicates the direction of the unidirectional anisotropy induced in the magnetic film 36.
  • the direction is applied by the induction of uniaxial anisotropy in the direction of arrow 62 in the figure. This is achieved by applying a magnetic field in a predetermined direction during the growth of the magnetic film.
  • This embodiment is an example in which the application of anisotropy is realized by a bias film and induced magnetic anisotropy.
  • the arrows 47 and 48 are both orthogonal to each other in the film plane.
  • the magnetization of the magnetic film 36 becomes an easy-axis excitation state in which the magnetization and the external magnetic field are parallel due to the anisotropy 47. Due to the anisotropy in Fig. 7, the magnetization and the external magnetic field are perpendicular to each other, and the state is a hard axis excitation. This effect makes the above response more remarkable, and the magnetization of the magnetic film 37 with respect to the external magnetic field.
  • the element is driven by the hard axis excitation due to rotation starting from the direction of the arrow 48. This realizes the state, prevents noise accompanying excitation due to domain wall motion, and enables operation at high frequencies.
  • the film constituting the magnetoresistive element of the present invention was produced by a high-frequency magnetron sputtering apparatus as follows. In an atmosphere of 3 milliliters of argon, the following materials were sequentially laminated on a ceramic substrate and a single-crystal Si substrate with a thickness of 1 millimeter and a diameter of 3 inches.
  • a sputter target was a target of nickel oxide, cobalt, and nickel at 20% iron alloy copper.
  • cobalt to nickel-iron a cobalt chip was placed on a Nigel 20 at% iron alloy target.
  • nickel and iron chips were placed on a cobalt target.
  • high-frequency power is applied to each of the targets on which the target is placed to generate plasma in the device.
  • the shutters arranged for each power source were opened and closed one by one to form each layer sequentially.
  • a magnetic field of about 50 Oersteds is applied in parallel to the substrate using two pairs of electromagnets orthogonal to each other in the substrate plane to give uniaxial anisotropy and to establish the exchange coupling bias of the nickel oxide film. The directions were guided in each direction.
  • Anisotropy was induced by applying a magnetic field in the direction to be induced when forming each magnetic film using two pairs of electromagnets mounted near the substrate.
  • a heat treatment in a magnetic field was performed near the Neel temperature of the antiferromagnetic film after the formation of the multilayer film, and the direction of the antiferromagnetic bias was induced in the direction of the magnetic field.
  • the performance of the magnetoresistive element was evaluated by patterning the film into a strip shape and forming an electrode. At this time, the direction of the uniaxial anisotropy of the magnetic film was made parallel to the current direction of the element.
  • the electric resistance is measured by applying a constant current between the electrode terminals, applying a magnetic field in the direction perpendicular to the current direction in the plane of the element, and measuring the electric resistance of the element as the voltage between the electrode terminals.
  • the resistance change rate in the present example which was sensed as the change rate, was 6%.
  • Ni 0 films are used for the bias films 31 and 32, and Ni 8 is used for the magnetic films 21 and 22.
  • F e 2 This corresponds to the use of an alloy thin film and a Cu film as a nonmagnetic conductive film.
  • Table 1 shows an example of characteristics of a magnetoresistive element manufactured by changing the structure of the film.
  • the characteristics of the element are represented by the resistance change rate and the saturation magnetic field.
  • the reproduction output of the element corresponds to the magnitude of this resistance change rate, and the sensitivity corresponds to the small saturation magnetic field.
  • the magnetoresistive elements of the present invention (Nos. 1 to 5) have a resistance change rate of 4% or more and good magnetic properties. 7), the resistance change rate is superior.
  • Sample Nos. 1, 2, and 4 show good magnetic field sensitivity with a saturation magnetic field of about 10 Oersted and high output with a resistance change rate of 6 to 7%.
  • a NiFe or CoNiFeZCu multilayer film having a NiO antiferromagnetic film as a base on a substrate has extremely high sensitivity as a magnetic resistance effect film.
  • FIG. 20 is a perspective view of a magnetic resistance effect type magnetic head of the present embodiment used in place of the MR sensor of Embodiment 2.
  • FIG. 20 is a perspective view of the magnetic recording medium as viewed from a surface opposing the magnetic recording medium.
  • the magnetoresistive head shown in FIG. 20 is composed of a lower shield film 110 on a ceramic substrate 101 such as zirconia and a lower gap formed on the lower shield film 110. At least the magnetoresistive effect on the film 120, the oxide antiferromagnetic film 144 formed on the upper side of the lower gap film 120, and the oxide antiferromagnetic film 144 A predetermined area of the nonmagnetic film 177 disposed in the magnetic sensing part, the nonmagnetic film 177, and the oxide antiferromagnetic film 145 in which the nonmagnetic film 177 is not disposed And a shunt film 15 disposed on the magnetoresistive effect film 140 to enhance the magnetic response characteristics of the magnetoresistive effect film 140.
  • a soft film 155 a signal detection electrode 160 formed on the soft film 155, an upper gap film 170 formed to cover each film, and Gear It is formed with an upper shield film 1 8 0 formed above the membrane 1 7 0.
  • the lower shield # 110 also serves as a signal detection electrode.
  • the oxide antiferromagnetic film 144 is in direct contact with the magnetoresistive film 140 at both ends of the magnetoresistive film 140. Therefore, the magnetoresistive film 140 and the oxide antiferromagnetic film 144 form ferromagnetic-antiferromagnetic magnetic exchange coupling in this region.
  • this magnetic exchange coupling is formed during the process of heating the oxide antiferromagnetic film 15 above the blocking temperature and cooling it below the blocking temperature while applying an external magnetic field in one direction
  • the magnetic moment in the oxide antiferromagnetic film 144 is fixed in the direction of arrow 451, and the magnetic moment in the magnetoresistive film 140 is directed in the direction of arrow 401. .
  • the magnetic anisotropy of an antiferromagnetic material is extremely strong, once the direction of the magnetic moment in the antiferromagnetic film is fixed, an external magnetic field of about several tens Oe may cause a problem.
  • the magnetization inside the antiferromagnetic film does not change. Therefore, the magnetic moment in the magnetoresistive film 140, which forms magnetic exchange coupling with the oxide antiferromagnetic film 144, is strongly fixed in the direction indicated by the arrow 401.
  • the magnetoresistive film 140 is also forcibly directed in the direction indicated by the arrow 402. This makes it possible to forcibly maintain the magneto-sensitive portion of the magneto-resistance effect film 140 in a single magnetic domain state.
  • a non-magnetic film 177 is disposed at least in the magneto-sensitive portion of the magneto-resistance effect film 140 and between the magneto-resistance effect film 140 and the oxide antiferromagnetic film 144. are doing.
  • the magnetoresistive film 140 and the oxide antiferromagnetic film 145 form magnetic exchange coupling even in the magneto-sensitive portion.
  • the magnetic moment in the magnetoresistive film 140 is such that the magnetic exchange coupling is so strong that it cannot rotate freely in response to a magnetic signal from the magnetic recording medium. Make the playback sensitivity of the magnetic head significantly lower.
  • the magnetoresistance effect film 140 and the oxide antiferromagnetic film 144 In the present invention in which the nonmagnetic film 177 is interposed, in this region, it is possible to prevent the formation of direct magnetic exchange coupling between the magnetoresistance effect film 140 and the oxide antiferromagnetic film 145. it can. Therefore, the rotation of the magnetic moment in the magnetoresistive effect film 140 of the magnetic sensing portion is relatively free, and a magnetic resistance effect type magnetic head with improved magnetic response characteristics can be obtained.
  • the magnetosensitive portion of the magnetoresistive film 140 is brought into a single magnetic domain state by the oxide antiferromagnetic film 144. Since a moderate longitudinal bias magnetic field to be maintained is applied, Barkhausen noise can be suppressed.
  • N N0 is selected as the oxide antiferromagnetic film 1 45
  • a typical NiFe alloy film is selected as the magnetoresistive film 140
  • the Ni0 film and the NiFe alloy are selected.
  • the membrane was examined for magnetic exchange coupling.
  • the film thickness of NiO is 100
  • the film thickness of NiFe alloy is 400.
  • the magnetization curve is shifted in one direction.
  • the shift amount at the origin of the magnetization curve is the magnitude of the coupling magnetic field, that is, the magnitude of the longitudinal bias magnetic field.
  • the magnitude of the coupling magnetic field is about 20 Oe.
  • the anisotropic magnetic field increases by an amount corresponding to the coupling magnetic field.
  • the anisotropic magnetic field is a magnetic field required for the magnetization curve to be saturated, and indicates the ease of rotation of the magnetic moment.
  • the magnitude of the anisotropic magnetic field is about 250 e.
  • the magnitude of the anisotropic magnetic field is too large to increase the reproduction sensitivity.
  • the non-magnetic film 177 is interposed in the magnetic sensing portion. In this configuration, the vertical bias magnetic field applied to the magnetoresistive film 140 is reduced to several e, and the magnitude of the anisotropic magnetic field sufficient to sufficiently enhance the magnetic response characteristics is obtained. And Barkhausen noise did not occur.
  • the film thickness of Ni 0 is changed, the magnitude of the coupling magnetic field with the Ni Fe alloy film is increased. I checked the size. It can be seen that the coupling magnetic field is constant when the NiO film thickness is 50 OA or more, and deteriorates when it is less than 50 OA.
  • the dependence of the blocking temperature on the Ni film thickness was also investigated. The blocking temperature became constant when the Ni film thickness was 500 or more, was about 200 ° C, and deteriorated below that.
  • the thickness of the NiO film is small, the magnetic characteristics deteriorate because the Nio film cannot form a tight crystal structure when the Nio film is thin, and the Nio film It is presumed that the antiferromagnetic state was not established. Therefore, in order to form magnetic exchange coupling between the NiFe alloy film and the Ni0 film with good stability, it is preferable that the Ni0 film has a thickness of 500 or more.
  • Magnetic exchange coupling is a physical phenomenon near the interface between a ferromagnetic film and an antiferromagnetic film. Therefore, in order to prevent the formation of magnetic exchange coupling in the magnetically sensitive portion, at least one nonmagnetic film may be interposed between the ferromagnetic film and the antiferromagnetic film (the nonmagnetic film is continuous In the case of a film, it is possible to directly prevent magnetic exchange coupling even with a thickness of one atomic layer
  • the nonmagnetic film 177 is formed by a sputtering method. In our experiments, in order to make the non-magnetic film 177 completely continuous, the non-magnetic film 177 should have a very thin film thickness of about 100 people.
  • the non-magnetic film 177 is interposed at least in the magneto-sensitive portion of the magneto-resistance effect film 140 on the oxide anti-ferromagnetic film 144, and the magneto-resistance effect is provided above the non-magnetic film 177.
  • the film 140 is formed, the thickness of the non-magnetic film 177 is extremely small, so that no step break occurs in the magneto-resistance effect film 140. Therefore, the magneto-resistance effect is obtained. It is possible to apply a moderately large longitudinal bias magnetic field with good stability and improved magnetic response characteristics to the magnetic sensing part of the film 140, and a plurality of magnetoresistive heads can be applied. Variations in characteristics were suppressed.
  • the non-magnetic film 177 may be a single metal film, an alloy film, or an oxide film. It may be formed or may be crystalline or amorphous, but an alloy film is most desirable.
  • the magneto-resistance effect type magnetic head of the present embodiment has a shield for applying a lateral bias magnetic field to the magneto-resistance effect film 140 for improving the magnetic response characteristics, on the upper side of the magneto-resistance effect film 140.
  • a film 150 and a soft film 150 are formed, and a signal detection electrode 160 is formed above the film.
  • the shunt film 150 is a conductive film, and when a current flows through the shunt film 150, the periphery of the shunt film 150 is determined by the right-hand screw rule. A magnetic field is generated in the direction As a result, the magnetic moment in the magnetoresistive film 140 rotates.
  • the magnetoresistive film 1 4 0 transverse bias field was or t becomes and this applied, the soft film 1 5 5 is a soft magnetic film.
  • a current flows through the magnetoresistive film 140, a magnetic field is generated around the magnetoresistive film 140 in a direction determined by the right-handed screw rule, and when the magnetic moment in the soft film 150 rotates, The magnetic moment in the magnetoresistive film 140 rotates to stabilize the magnetostatic energy.
  • a lateral bias magnetic field is applied to the magnetoresistive film 140.
  • either of the shunt film 150 and the soft film 150 may be used. However, the shunt film 150 and the soft film 150 may be used.
  • the rotation directions of the magnetic moments are the same, so they may be used simultaneously.
  • the non-magnetic film 177 is interposed in the lower magneto-sensitive portion of the magneto-resistance effect film 140.
  • this film exerts the same effect as the shunt film 150 on the magnetoresistive film 140.
  • a transverse bias magnetic field in the opposite direction to the transverse bias magnetic field provided by the shunt film 150 and the soft film 150 is applied to the magnetoresistive effect film 140.
  • the magnetic response of the magnetoresistive head The response characteristics will be degraded. To prevent this deterioration, it is better to reduce the thickness of the nonmagnetic film and increase the specific resistance.
  • the nonmagnetic film is made of an alloy film having a large specific resistance.
  • the nonmagnetic film is more preferably a metal film than an oxide film.
  • the metal film is made of a material selected from the following. That is, Al, Ti, Cr, Cu, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, In, Sn, Ta, W, R It may be composed of a metal film selected from any of e, 0 s, Ir, Pt, and Au. Two or more metal films may be combined to form an alloy film. In this case, the specific resistance of the nonmagnetic film 177 can be increased.
  • one or more of the above elements except for Cr is used as a main component, and a small amount of Cr is added thereto to form the nonmagnetic film 177.
  • the corrosion resistance and corrosion resistance of the magnetic film 177 can be dramatically improved.
  • the magnetic characteristics of the magnetoresistive effect film 140 can be improved by forming the nonmagnetic film 177 with a metal film or an alloy film formed by adding at least one kind of at least one of them.
  • the magnetoresistive film 140 is usually composed of a NiFe alloy film, a NiCo alloy film, and the like, and these films have an F.CC crystal structure. Therefore, when the nonmagnetic film 177 has the crystal structure of FCC, the magnetoresistance effect film 140 can be epitaxially grown on the nonmagnetic film 177.
  • the noise from the recording medium is placed above the non-magnetic substrate 1.
  • the lower shield film 110 provided for absorbing unnecessary signals is formed by a technique such as a sputtering method.
  • an insulating film such as alumina is formed on the lower shield film 110 by the same method as the lower gap film 120.
  • an oxide antiferromagnetic film 144 is formed on the lower gap film 120 by a similar method.
  • the lower shield film 110, the lower gap film 120, and the oxide antiferromagnetic film 144 are processed into a predetermined shape.
  • the end of the lower magnetic shield film 110 is processed so as to be inclined with respect to the substrate surface. This is to prevent disconnection at the end of the lower magnetic shield layer 110.
  • a resist frame is formed on the oxide antiferromagnetic film 144 so that the nonmagnetic film 177 is arranged at least in the magneto-sensitive portion of the magnetoresistive effect film 140. .
  • a non-magnetic film 177 is formed thereon by a method such as a sputtering method.
  • the resist frame is removed using an organic solvent or the like, and the non-magnetic film 177 is arranged at a predetermined position of the magneto-sensitive portion of the magneto-resistance effect film 140. .
  • the magnetoresistive film 140 is also placed at a predetermined position above the nonmagnetic film 177 and at a predetermined position of the oxide antiferromagnetic film 145 where the nonmagnetic film 177 is not disposed.
  • a shunt film 150 and a soft film 155 are formed by a similar method above the magnetoresistive effect film 140, and these films are formed by the same method.
  • a signal detection electrode 160 is formed above the soft film 155, and after processing into a predetermined shape, an upper gap is formed.
  • the film 170 and the upper shield film 180 are formed and processed to complete the manufacture of the magnetoresistive head.
  • the oxide antiferromagnetic film 144 was processed and arranged in the same shape as the lower gap film 120.
  • the same shape as the magnetoresistive effect 1400 when machining the magnetoresistive effect film 1400 May be processed.
  • the magnetoresistive head has an inductive thin-film magnetic head as the recording head above it, and forms a separate read / write thin-film magnetic head.
  • an external magnetic head for a large computer It is used by mounting it on a storage device.
  • the magnetoresistance effect film 140 is provided to the extent that Barkhausen noise can be reduced.
  • N is made small and S is made as large as possible.
  • the oxide antiferromagnetic film 144 is used as the material for controlling the magnetic domain, and the magnetoresistance effect film 140 and the oxide antiferromagnetic film are used.
  • a non-magnetic film 177 is interposed in the magnetic sensing part between the films 145 and 145.
  • a very thin non-magnetic film 177 is formed on the oxide antiferromagnetic film 145 at least on the magneto-sensitive portion, and a magnetoresistive film 140 is formed thereon. Accordingly, the magnetoresistive film 140 has no advantage that the step is not generated. There is also an advantage that the magnetic domain control layer and the magnetoresistive film 140 can be formed with good stability. In this case, it is possible to further minimize variations in performance among a plurality of magnetic heads caused by variations in performance of the magnetic domain control layer.
  • the magnetoresistive head of the present invention is mounted on a magnetic disk drive.
  • a high SZN ratio can be secured. For this reason, a large-capacity magnetic disk device becomes possible.
  • the thickness of the resist for exposing the frame defining the track portion can be reduced, so that the frame can be formed with high precision and the shape of the frame can be improved. Because of its good verticality, it has a track portion with a high-precision and vertical shape, and can be read and read. In addition, it can be used as a recording head, and a recording / reproducing separation type head in which a magnetoresistive head is integrated with the reproducing head can be used, and a surface of 1 gigabit Z in 2 or more can be used. A large-capacity magnetic disk device having a recording density can be obtained.

Abstract

A thin film magnetic head having a track portion having a precise shape free of read and write blur, a recording/reproduction separation type head using the thin film magnetic head and a production method of the thin film magnetic head. A frame used for forming an upper magnetic core of a thin film magnetic head divided into a distal end portion for defining a track portion and portions other than this distal end portion, and a multilayered resist and reactive ion etching are employed for forming the frame at the distal end portion. The thickness of the distal end portion of the upper magnetic core is greater than the track width, and this track width is not greater than 1.5 νm. A recording/reproduction separation type head is produced by combining integrally this thin film magnetic head for recording and a magnetoresistance effect type head for reproduction. The thickness of the resist film for exposing the frame for defining the track portion can be reduced. Therefore, the frame can be formed into a pattern highly precisely. Since the vertically of the frame shape is high, a thin film magnetic head having a precise and vertical track portion and free of read and write blur can be obtained, and a magnetic disk apparatus having a high recording density and a large capacity can be accomplished.

Description

明 細 書  Specification
薄膜磁気へッ ドと記録再生分離型へッ ド及び磁気 ディ スク装置並びに薄膜磁気へッ ドの製造方法 技術分野  TECHNICAL FIELD The present invention relates to a thin-film magnetic head, a read / write separation type head, a magnetic disk device, and a method of manufacturing a thin-film magnetic head.
本発明は、 新規な記録 · 再生に用いられる薄膜磁気ヘッ ド記録再生分 離型へッ ド及び磁気ディ スク装置並びに薄膜磁気へッ ドの製造方法に関 する。 背景技術  The present invention relates to a thin film magnetic head recording / reproducing separable type head and magnetic disk device used for novel recording / reproducing, and a method of manufacturing a thin film magnetic head. Background art
磁気ディ スク装置では、 記録媒体上のデータは磁気へッ ドによって読 み書きされる。 磁気ディ スクの単位面積当たり の記録容量を多く するた めには、 面記録密度を高密度化する必要がある。 面記録密度向上の方法 は、 トラ ック密度と、 線記録密度を向上させる こ とである。 このう ち ト ラ ック密度向上のためには、 磁気へッ ドの トラ ック幅を微細, 高精度化 する必要がある。 さ らに形状的には、 書きに じみ, 読みに じみを防ぐ こ とによ って、 トラ ック ピッチをつめられることから、 トラ ック部分の形 状を垂直に形成することが重要である。 薄膜磁気へッ ドの トラ ック部分 を含む磁気コァ形成方法と しては、 イオンミ リ ング等の ドライエツチン グを用いる方法及ぴフ レームめっ き法を用いるこ とが広く 知られている イオンミ リ ング等の ドライエッチングを用いる方法では、 下部磁気コ ァ, 磁気ギャ ップ膜, 導体コイル及び導体コイルの絶縁膜が形成された 基板上に、 パーマロイ等の磁性膜をスパッタ リ ングで形成した後、 ホ ト リ ソグラフ ィ 一によ リ該磁性膜上にレジス トのパターンを形成する。 次 に該レジス トのパターンをマスク と して該磁性膜にイオンミ リ ング等の ドライエッチングを施す。 これによ り 、 上部磁気コアを形成する。 この よ う な ドライエッチングを用いたものと して特開平 7— 2259 1 7 号公報に は、 トラ ック幅を画定する磁極端領域をイオンミ リ ングを用いて後部領 域よ り 先に形成する方法の例が開示されている。 In a magnetic disk device, data on a recording medium is read and written by a magnetic head. In order to increase the recording capacity per unit area of a magnetic disk, it is necessary to increase the areal recording density. The method of improving the areal recording density is to increase the track density and the linear recording density. Of these, it is necessary to make the track width of the magnetic head smaller and more precise in order to increase the track density. Further, in terms of shape, the track pitch can be reduced by preventing writing and reading bleeding, so it is important to form the shape of the track vertically. is there. As a method of forming a magnetic core including a track portion of a thin-film magnetic head, it is widely known that a method using dry etching such as ion milling and a method using frame plating are used. In a method using dry etching such as a ring, a magnetic film such as permalloy is formed by sputtering on a substrate on which a lower magnetic core, a magnetic gap film, a conductor coil and an insulating film of the conductor coil are formed. Thereafter, a resist pattern is formed on the magnetic film by photolithography. Next Then, the magnetic film is subjected to dry etching such as ion milling using the resist pattern as a mask. Thereby, an upper magnetic core is formed. Japanese Patent Application Laid-Open No. Hei 7-225179 discloses such a dry etching method in which a magnetic pole end region defining a track width is formed by ion milling before a rear region. Examples of how to do this are disclosed.
一方、 フ レームめっ き法では、 下部磁気コア, 磁気ギャ ップ膜, 導体 コィル及ぴ導体コィルの絶縁膜が形成された基板上に、 ホ ト リ ソグラフ ィ一によ リ レジス 卜のフ レームを形成し、 その後該フ レームが形成され た基板上にパーマロイ等の磁性膜をめつ きする。 次にホ ト リ ソグラフ ィ —によ リ該フ レームで囲まれた領域をレジス トでマスク して、 ゥエツ ト エッチングによ り不要な磁性膜を除去し、 上部磁気コアを形成する。 前述したよ う に磁気ディ スク装置の高記録密度化を達成するためには 磁気ヘッ ドの狭 トラ ック化及び高精度化を図る必要がある。 ま た、 一方 磁気コア先端部である トラ ック部分での磁気的飽和を避けるためには、 磁気コァの膜厚を厚く する必要があ リ 、 その膜厚 ( t ) は、 トラ ック幅 ( w 1 ) が 1 . 5 μ mのとき、 w 1 の 2倍( t / w 1 = 2 ) 以上が必要で ある。 しかしながら、 このよう な厚い膜をイオン ミ リ ング等の ドライエ ツチングを用いる方法では、 ホ ト リ ソグラフ ィ一によつて形成されたレ ジス トパターンの寸法バラツキに、 当該レジス トパターンをマスク と し て磁性膜を ドライエッチングする際の寸法バラツキが重畳されるため、 上部磁気コアを高精度に形成する こ とができない。 この点、 フ レームめ つき法では、 レジス トフ レームの寸法精度がそのま ま上部磁気コアの寸 法精度のバラツキになるので、 寸法精度の点で、 イオンミ リ ング等の ド ライエッチングを用いる方法に比べて有利である。 ま た、 形状について も、 イオンミ リ ング等の ドライエッチングを用いる方法では、 卜ラ ック 部分の形状は垂直にならず、 台形状の順テ一パ形状となる。 この点につ いても、 フ レームめっ き法は、 フ レームの形状を垂直にコ ン トロールす る こ と によ リ 、 トラ ック部分を垂直にする こ とが可能である。 On the other hand, in the frame plating method, a resist is formed by photolithography on a substrate on which a lower magnetic core, a magnetic gap film, a conductor coil, and a conductor coil insulating film are formed. After forming a frame, a magnetic film such as permalloy is mounted on the substrate on which the frame is formed. Next, an area surrounded by the frame is masked with a resist by photolithography, and an unnecessary magnetic film is removed by jet etching to form an upper magnetic core. As described above, in order to achieve a higher recording density of a magnetic disk device, it is necessary to achieve a narrower track and higher accuracy of the magnetic head. On the other hand, in order to avoid magnetic saturation at the track portion, which is the tip of the magnetic core, it is necessary to increase the thickness of the magnetic core, and the film thickness (t) is determined by the track width. When (w 1) is 1.5 μm, it must be at least twice as large as w 1 (t / w 1 = 2). However, in a method using such a thick film by dry etching such as ion milling, the resist pattern is masked due to the dimensional variation of the resist pattern formed by photolithography. Therefore, the upper magnetic core cannot be formed with high precision because the dimensional variations in the dry etching of the magnetic film are superimposed. In this regard, in the frame plating method, the dimensional accuracy of the resist frame is not uniform, and the dimensional accuracy of the upper magnetic core is not uniform. Therefore, in terms of the dimensional accuracy, a method using dry etching such as ion milling is used. It is more advantageous than. In addition, regarding the shape, the method using dry etching such as ion milling is not suitable for tracking. The shape of the part does not become vertical, but becomes a trapezoidal forward taper shape. Regarding this point, the frame plating method can also make the track part vertical by controlling the shape of the frame vertically.
しかし、 フ レーム形成に用いる レジス トをスピンコーティ ングによ リ 塗布すると、 基板の後部領域 (導体コイル及び導体コイルの絶縁膜が形 成されている領域, 基板上の段差上部に位置する部分) でのレジス ト膜 厚が薄く なる。 このため、 従来のフ レームめっ き法では、 基板の後部領 域でのフ レーム高さ を確保するよ う に、 レジス 卜の塗布を行っていた。 このと き基板の先端部領域 (情報の書き込み、 読みだし用の磁気ギヤ ッ プが形成される領域, 基板上の段差下部に位置する部分) のレジス ト膜 厚が著し く厚く なる問題があった。 例えば、 粘度が 8 0 0 cp ( = m P a • s ) のレジス トを、 段差 1 0 β mの基板上において、 後部領域でのレ ジス ト膜厚が 5 mとなるよ う に塗布したと ころ、 先端部領域でのレジ ス ト膜厚は 1 3 i mであった。 このよ う にレジス ト膜厚が厚いと、 露光 機の焦点深度と解像度との関係から、 例えば 1 . 5 t m 以下狭 トラ ック パターン形成できなく なる問題がある。 ま た、 パターンが形成できても トラ ック部分のフ レーム間隔が 1 . 5 μ πι の場合、 フ レーム間隔とフ レ —ム高さ とのアスペク ト比は、 8 〜 1 0 と極めて高く なるため、 トラ ッ ク部分へのめっ き液の流動性が悪く なリ 、 めっ き膜厚が薄く なリ 、 磁性 膜の組成が変化して しま う問題がある。 このよ う な問題を解決する方法 と して、 特開平 7— 176016 号公報には、 基板の後部領域にフ レームを形 成した後、 当該フ レームを 1 0 0〜 1 4 0 °Cのべ一クで硬化させ、 その 後基板の先端部領域にフ レームを後部領域のフ レームと一体化するよう に形成し、 上部磁気コアを形成する方法が開示されている。 この方法に よれば、 後部領域のフ レームを形成する際に、 先端部領域のレジス ト膜 厚を考慮する必要が無いので、 先端部領域のフ レームに最適なレジス 卜 膜厚にする こ とができる。 However, when the resist used for frame formation is applied by spin coating, the rear region of the substrate (the region where the conductor coil and the insulating film of the conductor coil are formed, the portion located above the step on the substrate) The thickness of the resist film at the time becomes thin. For this reason, in the conventional frame plating method, the resist is applied so as to secure the frame height in the rear area of the substrate. At this time, there is a problem that the thickness of the resist film in the tip region of the substrate (the region where the magnetic gap for writing and reading information is formed, the portion located below the step on the substrate) becomes extremely thick. there were. For example, a resist having a viscosity of 800 cp (= mPas) was applied on a substrate with a step of 10 βm so that the resist film thickness in the rear region was 5 m. At this time, the resist film thickness in the tip region was 13 im. When the resist film thickness is large in this way, there is a problem that, for example, it is impossible to form a narrow track pattern of 1.5 tm or less due to the relationship between the depth of focus of the exposure apparatus and the resolution. Also, if the pattern interval can be formed and the frame interval of the track portion is 1.5 μπι, the aspect ratio between the frame interval and the frame height is as extremely high as 8 to 10. Therefore, there are problems that the fluidity of the plating solution to the track portion is poor, the plating film thickness is small, and the composition of the magnetic film is changed. As a method for solving such a problem, Japanese Patent Application Laid-Open No. 7-176016 discloses a method in which a frame is formed in a rear region of a substrate, and then the frame is heated to 100 to 140 ° C. A method is disclosed in which the upper magnetic core is formed by curing in a base and then forming a frame in the front end region of the substrate so as to be integrated with the frame in the rear region. According to this method, when forming the frame in the rear region, the resist film in the front region is formed. Since there is no need to consider the thickness, it is possible to make the resist film thickness optimal for the frame in the tip region.
しかし、 特開平 7— 176016 号公報の発明でも露光する レジス トの膜厚 は、 約 5 m程度必要と考え られるため、 1 . 5 μ ιη 以下の狭 トラ ック パターンを形成するのは困難である。 狭 トラ ックパターンを形成するた めには、 露光する レジス トの膜厚をさ らに薄く する必要がある。 ま た、 約 5 ^ m程度の厚いレジス 卜の露光, 現像後形状は、 ポジ型レジス トの 場合、 順テ一パ形状になり 、 即ち上部磁気コアの形状は、 逆テ一パ形状 になる。 ネガ型レジス トの場合は、 レジス ト形状は逆テ一パ形状とな り 、 即ち上部磁気コアの形状は、 順テーパ形状となる。 このよ う に厚いホ ト レジス トの形状を垂直にする ことは困難であ り 、 したがって、 磁気コア の形状を垂直にする ことも困難となっている。  However, in the invention of Japanese Patent Application Laid-Open No. 7-176016, it is considered that the thickness of the resist to be exposed is required to be about 5 m, so that it is difficult to form a narrow track pattern of 1.5 μιη or less. is there. In order to form a narrow track pattern, it is necessary to further reduce the thickness of the resist to be exposed. In addition, the exposed and developed shape of the thick resist of about 5 ^ m becomes a forward tapered shape in the case of a positive type resist, that is, the shape of the upper magnetic core becomes an inverted tapered shape. . In the case of a negative resist, the resist shape is an inverted tapered shape, that is, the shape of the upper magnetic core is a forward tapered shape. It is difficult to make the shape of such a thick photoresist vertical, and thus it is also difficult to make the shape of the magnetic core vertical.
本発明の目的は高精度に狭 トラ ック幅をもち、 かつ形状の垂直な上部 磁気コアをもち、 書きに じみ及び読みに じみのない薄膜磁気へッ ドとそ れを用いた磁気抵抗効果型再生ヘッ ドとの組合せからなる記録再生分離 型ヘッ ド及び大容量高記録密度を有する磁気ディ スク装置並びに薄膜磁 気へッ ドの製造方法を提供すること にある。 発明の開示  SUMMARY OF THE INVENTION It is an object of the present invention to provide a thin-film magnetic head which has a narrow magnetic track width with high precision and a vertically shaped upper magnetic core, does not cause writing or reading, and a magnetoresistive effect using the same. An object of the present invention is to provide a recording / reproducing separation type head comprising a combination with a die reproducing head, a magnetic disk device having a large capacity and a high recording density, and a method of manufacturing a thin film magnetic head. Disclosure of the invention
本発明は、 下部磁気コアと、 該下部磁気コア上に積層され一端が前記 下部磁気コアの一.端に連らなり他端が前記下部磁気コアの他端に磁気ギ ヤ ップを介して対向 し、 前記下部磁気コアと共に磁気回路を形成する上 部磁気コアと、 前記下部磁気コアと上部磁気コアとの間に設けられた導 体コイルと、 前記下部磁気コア, 上部磁気コア及び導体コイルを互いに 電気的に絶縁する絶縁膜とを具備する薄膜磁気へッ ドにおいて、 前記上 部磁気コアはその先端の断面が四角形を有し、 その トラ ック幅が 1. 5 m 以下であ り 、 前記上部磁気コアの厚さが前記 トラ ック幅よ り大き いこ と を特徴とする。 According to the present invention, there is provided a lower magnetic core, one end of which is laminated on the lower magnetic core and connected to one end of the lower magnetic core, and the other end is connected to the other end of the lower magnetic core via a magnetic gap. An upper magnetic core facing to form a magnetic circuit with the lower magnetic core, a conductor coil provided between the lower magnetic core and the upper magnetic core, the lower magnetic core, the upper magnetic core, and the conductor coil A thin-film magnetic head comprising: an insulating film for electrically insulating The magnetic core has a square cross section at the tip, a track width of 1.5 m or less, and a thickness of the upper magnetic core is larger than the track width. I do.
更に、 本発明は前述の前提条件において、 前記上部磁気コアの先端は トラ ック幅 ( w l ) とその上部の幅 ( w 2 ) との比 ( w 2 Zw l ) が 1. 3 以下及び前記 トラ ック幅が 1. 5 μ m 以下であ り 、 前記上部磁気 コアの厚さが前記 トラ ック幅よ り 大きいこと、 前記上部磁気コァは全体 が実質的に同一の厚さ を有し、 トラ ック幅が 1 . 5 ^ m 以下である こと, 前記上部磁気コアはその先端がトラ ック幅よ リ その厚さが大き く 、 且つ 全体が実質的に同一の厚さ を有し、 トラ ック幅が 1. 5 μ ιη 以下である いずれかの要件を有し、 その厚さは トラ ック幅の 1. 5 〜 5倍、 よ り 1. 5 〜 3倍が好ま しい。  Further, according to the present invention, the tip of the upper magnetic core has a ratio (w 2 Zw l) of a track width (wl) to a width (w 2) of an upper portion thereof of 1.3 or less based on the above-described preconditions. The track width is 1.5 μm or less, the thickness of the upper magnetic core is larger than the track width, and the entire upper magnetic core has substantially the same thickness. The track width is not more than 1.5 ^ m, and the upper magnetic core has a tip whose thickness is larger than the track width and has substantially the same thickness as a whole. It has one of the requirements that the track width is 1.5 μιη or less, and its thickness is preferably 1.5 to 5 times, more preferably 1.5 to 3 times the track width.
本発明は、 誘導型記録へッ ドと磁気抵抗効果型再生へッ ドとが一体に 形成された記録再生分離型へッ ドにおいて、 前記記録へッ ド及び再生へ ッ ドの トラ ック幅がいずれも 1. 5 μ ιη 以下である こ と を特徴と し、 前 記記録へッ ドの トラ ック幅が前記再生へッ ドの トラ ッ ク幅よ りサブミ ク ロンオーダ一で若干大き く するのが好ま しい。  The present invention relates to a recording / reproducing separation type head in which an inductive recording head and a magneto-resistance effect type reproducing head are integrally formed, and the track width of the recording head and the reproducing head. Are less than 1.5 μιη, and the track width of the recording head is slightly larger in submicron order than the track width of the playback head. I prefer to do that.
本発明は、 誘導型記録へッ ドと磁気抵抗効果型再生へッ ドとが一体に 形成された記録再生分離型へッ ドにおいて、  The present invention provides a recording / reproducing separation type head in which an inductive recording head and a magnetoresistive effect reproducing head are integrally formed,
前記記録へッ ドは下部磁気コアと、 該下部磁気コア上に積層され一端 が前記下部磁気コアの一端に連らな リ他端が前記下部磁気コアの他端に 磁気ギャ ップを介して対向 し、 前記下部磁気コアと共に磁気回路を形成 する上部磁気コアと、 前記下部磁気コァと上部磁気コアとの間に設けら れた導体コイルと、 前記下部磁気コア, 上部磁気コア及び導体コイルを 互いに電気的に絶縁する絶縁膜と を具備し、 且つ前記上部磁気コアの厚 さがトラック幅よ り大きく 、 The recording head is stacked on the lower magnetic core, and one end of the recording head is connected to one end of the lower magnetic core, and the other end is connected to the other end of the lower magnetic core via a magnetic gap. An upper magnetic core facing the lower magnetic core to form a magnetic circuit with the lower magnetic core; a conductor coil provided between the lower magnetic core and the upper magnetic core; and a lower magnetic core, an upper magnetic core, and a conductor coil. And an insulating film electrically insulating each other, and a thickness of the upper magnetic core. Is larger than the track width,
前記再生へッ ドは、 非磁性金属層によって仕切られた強磁性体の第 1 及び第 2磁性層と該磁性層のいずれかに接して設けられた反強磁性層と を有し、 記録媒体からの印加磁界がゼロである場合に前記強磁性体の第 1磁性層の磁化方向が前記第 2層の磁化方向に対し直交する方向である ことを特徴とする。  The reproducing head has first and second magnetic layers of ferromagnetic material separated by a non-magnetic metal layer, and an antiferromagnetic layer provided in contact with one of the magnetic layers. Wherein the magnetization direction of the first magnetic layer of the ferromagnetic material is a direction perpendicular to the magnetization direction of the second layer when the applied magnetic field is zero.
本発明の記録再生分離型ヘッ ドにおいて、 前述の記録ヘッ ドと、 前記 再生ヘッ ドは、 軟磁性層, 非磁性層, 強磁性層及び反強磁性層を順次構 成した薄膜を有し、 前記薄膜が外部の磁界に応じて前記軟磁性層の磁化 が回転し前記強磁性層の磁化との相対角度が変わって磁気抵抗効果作用 を有し、 前記強磁性層が互いに非磁性層を介して第一の強磁性層, 第二 の強磁性層及び第三の強磁性層の積層体を有すること、 又は、 前記再生 へッ ドは、 磁気抵抗効果を用いて磁気的信号を電気的信号に変換する磁 気抵抗効果膜と、 前記磁気抵抗効果膜に信号検出電流を流すための一対 の電極と、 前記磁気抵抗効果膜の下側に配置された酸化物反強磁性膜と . 前記磁気抵抗効果膜と前記酸化物反強磁性膜の中間の少なく とも前記磁 気抵抗効果膜の感磁部に非磁性膜を少なく とも 1層有することを特徴と するものである。  In the recording / reproducing separation type head according to the present invention, the recording head and the reproducing head each have a thin film including a soft magnetic layer, a nonmagnetic layer, a ferromagnetic layer, and an antiferromagnetic layer. The thin film has a magnetoresistive effect in which the magnetization of the soft magnetic layer rotates in response to an external magnetic field to change the relative angle with respect to the magnetization of the ferromagnetic layer. Or a stacked structure of a first ferromagnetic layer, a second ferromagnetic layer and a third ferromagnetic layer, or the reproducing head converts a magnetic signal into an electric signal using a magnetoresistive effect. A pair of electrodes for allowing a signal detection current to flow through the magnetoresistive film; and an oxide antiferromagnetic film disposed below the magnetoresistive film. At least the magnetoresistance effect between the resistance effect film and the oxide antiferromagnetic film. At least a non-magnetic film magnetically sensitive portion of the film is characterized in that it has one layer.
本発明は、 情報を記録する磁気ディスクと、 該磁気ディスクに前記情 報を書き込みを行う誘導型記録へッ ド及び前記磁気ディ スクに書き込ま れた情報を再生する磁気抵抗効果型ヘッ ドがスライダーに一体に形成さ れた記録再生分離型へッ ドと、 前記ディ スクを回転させる駆動手段とを 備えたへッ ド · ディスク · アセンブリ において、 前記記録へッ ド又は記 録再生分離型へッ ドが前述の薄膜磁気へッ ド又は前述の記録再生分離型 へッ ドによって構成されるものである。 更に、 本発明は前述のヘッ ド · ディ スク · アセンブリ を複数個有する 磁気ディ スク装置において、 記録へッ ド又は記録再生分離型へッ ドが前 述の薄膜磁気へッ ド又は前述の記録再生分離型へッ ドによ って構成され るものである。 The present invention provides a magnetic disk for recording information, an inductive recording head for writing the information on the magnetic disk, and a magnetoresistive head for reproducing the information written on the magnetic disk. A head / disk assembly comprising: a recording / reproducing separation type head integrally formed with the recording head; and a driving means for rotating the disk, wherein the recording head or the recording / reproducing separation type head is provided. The head is constituted by the aforementioned thin-film magnetic head or the aforementioned recording / reproducing separation type head. Further, the present invention provides a magnetic disk device having a plurality of head disk assemblies as described above, wherein the recording head or the recording / reproducing separation type head is the thin film magnetic head described above or the recording / reproducing head described above. It is composed of a separate head.
本発明に係る薄膜磁気ヘッ ドは、 下部磁気コア, 磁気ギャ ップ, 導体 コイル及び絶縁膜を有する基板上にフ レームを形成した後、 めっき膜を 形成し、 その後、 前記フ レームで囲まれる領域にマスク を して前記めつ き膜をエッチングする ことによ り 上部磁気コァを形成するもので、 前記 上部磁気コアが前記磁気ギャ ップに接する トラ ック幅 w 1 が 1 . 5 m 以下のと き、 前記 トラ ッ ク幅 w l と前記上部磁気コアの厚さ t との比 The thin-film magnetic head according to the present invention forms a frame on a substrate having a lower magnetic core, a magnetic gap, a conductor coil, and an insulating film, then forms a plating film, and is then surrounded by the frame. An upper magnetic core is formed by etching the plating film using a mask in a region, and a track width w1 at which the upper magnetic core contacts the magnetic gap has a width of 1.5 m. The ratio of the track width wl to the thickness t of the upper magnetic core is as follows:
( t / w 1 ) を 2以上とするものが好ま しい。 It is preferable that (t / w 1) be 2 or more.
また、 前記上部磁気コアが前記磁気ギャ ップに接する トラ ック幅 A track width at which the upper magnetic core contacts the magnetic gap;
( w 1 ) と前記上部磁気コアの上部の幅 ( w 2 ) との比 ( w 2 Z w l ) が 1 . 3以下が好ま しい。 The ratio (w 2 Z w l) of (w 1) to the width (w 2) of the upper part of the upper magnetic core is preferably 1.3 or less.
前述の薄膜磁気ヘッ ドは、 下部磁気コア, 磁気ギャ ップ, 導体コイル 及び絶縁膜を有する基板上にフ レームを形成した後、 めっ き膜を形成し 、 その後、 前記フ レームで囲まれる領域にマスク を して前記めつ き膜を エッチングする ことによ り 、 上部磁気コアを形成するに際し、 前記基板 上に、 最上層と してレジス ト層をもつ 2層以上の多層膜を、 薄膜磁気へ ッ ドの磁気ギヤ ップが形成される前記基板の先端部領域で最適な厚みと なるよ う に形成し、 前記多層膜の最上層レジス ト を少な く とも前記上部 磁気コアの前記先端部領域に対応する形状にパターニングした後、 前記 パターニングされたレジス 卜をマスク にレジス ト層以下の下層部をエツ チングして前記上部磁気コアの前記先端部領域に対応する第一のフ レー ムを形成する第一の工程と、 前記第一のフ レームが形成された基板上に、 レジス トを前記導体コィ ル及び前記導体コイルの絶縁膜が形成された前記基板の後部領域に前記 フ レームが最適な厚みとなるよ う に塗布し、 その後、 当該レジス トをパ ターニングして、 上部磁気コアの前記後部領域に形成される部分に対応 する第二のフ一ムを、 前記第一のフ レームと一体となるよ う に形成する ことによ り 、 前記フ レームを形成する製造方法によ って達成できる。 前記ェッチング工程にリ アクティ ブイオンエッチングを用いてもよ く 、 ま た、 前記最上層レジス 卜が S i 含有レジス トでも よ く 、 あるいは、 前 記多層膜が最下層に有機膜, 中間膜, 最上層レジス トの 3層膜からな り 、 その前記中間膜が無機膜からなり 、 特に S i , S i 0 2, A 1, A 1 2 0 3 , T i , T i 0 2 , T a , T a 2 0 Β , W, N b のう ち少な く とも 1 つが好 ま し く 、 特に S i 0 2 についてはスパッタ法ま たは、 スピンオングラス を塗布後、 焼結する ことが好ま しい。 The above-mentioned thin-film magnetic head forms a plating film after forming a frame on a substrate having a lower magnetic core, a magnetic gap, a conductor coil, and an insulating film, and thereafter is surrounded by the frame. When the upper magnetic core is formed by etching the plating film using a mask as a region, two or more multilayer films having a resist layer as an uppermost layer are formed on the substrate. The thin-film magnetic head is formed so as to have an optimum thickness in the front end region of the substrate where the magnetic gap is formed, and at least the uppermost layer resist of the multilayer film is formed in the upper magnetic core. After patterning into a shape corresponding to the tip region, the lower layer portion below the resist layer is etched using the patterned resist as a mask to form a first flat portion corresponding to the tip region of the upper magnetic core. A first step of forming a beam, A resist is formed on the substrate on which the first frame is formed so that the frame has an optimum thickness in a rear region of the substrate on which the conductor coil and the insulating film of the conductor coil are formed. Then, the resist is patterned so that a second film corresponding to a portion formed in the rear region of the upper magnetic core is integrated with the first frame. This can be achieved by a manufacturing method for forming the frame. Reactive ion etching may be used in the etching step, the uppermost resist may be a Si-containing resist, or the multilayer film may be an organic film, an intermediate film, or a lowermost layer. Ri Do three-layered film of the upper layer registry, the said intermediate layer is made of an inorganic film, particularly S i, S i 0 2, a 1, a 1 2 0 3, T i, T i 0 2, T a, T a 2 0 Β, W, N even b caries Chi rather small 1 TsugaYoshimi or teeth rather, especially was sputtering or for S i 0 2, after applying the spin-on-glass, arbitrary preferred to sintering.
前記有機膜がレジス トからなり 、 前記第一のフ レームを形成後に硬化 処理を し、 その前記硬化処理が、 遠紫外線照射、 ま たは、 リ アクティ ブ イオンエッチングによるものである。 前記有機膜が、 ポリ イ ミ ド及びそ の誘導体、 ポリ ジメチルダルタルイ ミ ド ( P M G I ) 及びその誘導体, ポリ メチルメタ ク リ レー ト ( P M M A ) 及びその誘導体, ベンゾシク ロ ブテン ( B C B ) 及びその誘導体, エポキシ及びその誘導体のう ち少な く とも 1 つを含み、 前記最上層レジス トに電子線レジス トを用い、 当該 電子線レジス トの露光に電子線描画法を用い、 前記最上層レジス 卜の露 光に位相シフ ト法、 も し く は変形照明法を用いる こ とができる。  The organic film is made of a resist, and is subjected to a curing treatment after the formation of the first frame, and the curing treatment is performed by irradiation with far ultraviolet rays or reactive ion etching. The organic film is made of polyimide and its derivatives, polydimethyldaltarimide (PMGI) and its derivatives, polymethyl methacrylate (PMMA) and its derivatives, benzocyclobutene (BCB) and its derivatives, An electron beam resist is used for the uppermost layer resist, an electron beam lithography method is used for exposing the electron beam resist, and an exposure of the uppermost layer resist is included. The phase shift method or the modified illumination method can be used for light.
ま た、 前記後部領域に前記第二のフ レームを先に形成後、 次に前記第 一のフ レームを前記第二のフ レームと一体化するよ う に形成する ことも できる。 更に、 本発明に係る薄膜磁気へッ ドは、 下部磁気コア, 磁気ギャ ップ, 導体コイル及び絶縁膜を有する基板上にフ レームを形成した後、 めっ き 膜を形成し、 その後、 前記フ レームで囲まれる領域にマスク を して前記 めっ き膜をエッチングする こ と によ り 、 上部磁気コアを形成する方法で あって、 Further, after forming the second frame in the rear region first, the first frame may be formed so as to be integrated with the second frame. Further, the thin-film magnetic head according to the present invention comprises the steps of: forming a frame on a substrate having a lower magnetic core, a magnetic gap, a conductor coil, and an insulating film, forming a plating film; A method of forming an upper magnetic core by etching the plating film using a mask in a region surrounded by a frame,
前記基板上に、 前記導体コイル及び前記導体コイルの絶縁膜が形成さ れた前記基板の前記後部領域に有機物パターンを形成後、 最上層と して レジス ト層をもつ 2層以上の多層膜を、 薄膜磁気へッ ドの磁気ギャ ップ が形成される前記基板の先端部領域で最適な厚みとなるよ う に形成し、 前記多層膜の最上層レジス ト を前記フ レームに対応する形状にパター二 ングした後、 前記バタ一ニングされたレジス トをマスク にレジス ト層以 下の下層部及び前記後部領域の該有機物パターンをエッチングして前記 フ レームを形成する こ と を特徴とする。  After forming an organic pattern on the substrate on which the conductor coil and the insulating film of the conductor coil are formed, a multilayer film having two or more layers having a resist layer as an uppermost layer is formed. A thin film magnetic head is formed so as to have an optimum thickness in a front end region of the substrate where the magnetic gap is formed, and an uppermost layer resist of the multilayer film has a shape corresponding to the frame. After patterning, the frame is formed by etching the organic pattern in the lower layer portion below the resist layer and in the rear region using the buttered resist as a mask.
前記エッチング工程, 前記最上層レジス ト, 前記多層膜, 前記中間膜, 前記最上層レジス 卜について前述と同様である。  The etching step, the uppermost layer resist, the multilayer film, the intermediate film, and the uppermost layer resist are the same as described above.
上述したよ う に、 本発明によ リ磁気媒体の信号の書きに じみ及び読み に じみを防ぐことができる。  As described above, according to the present invention, it is possible to prevent signal bleeding and reading bleeding of a magnetic medium.
多層膜の形成には、 ワニス状物質のスピンコーティ ング, スパッタ法 C V D法, 蒸着法及び電着等によ り形成できる。 下層膜の膜厚は、 先端 部の領域でフ レームと して最適な膜厚で良い。 最上層レジス トは、 S i 含有レジス ト, 通常のレジス ト, 電子線レジス ト等が使用でき、 Ι μ ηι 以下の薄いレジス 卜も使用できるため高解像が可能である。 S i 含有レ ジス トは、 耐酸素 ドライエッチング性が高いため、 下層の有機膜を酸素 の ドライエッチング加工が可能である。 通常のレジス ト, 電子線レジス トを用いた場合では、 一旦、 中間膜にパターンを転写後、 その中間膜を マスク に下層をエッチングする。 エッチングには、 リ アクティ ブイオン エッチング, イオンミ リ ング等の異方性エッチングできるものが良い。 中間膜と しては、 無機膜が、 下層の有機膜の酸素系 ドライエッチングの マスク材と して使用可能である。 無機膜の材料と しては、 S i, S i 02, A 1 , A 1 03 , T i, T i 02, T a , T a206, W, N b 等が使用 可能で、 これらは、 すべてスパッタ法で形成可能である。 S i 02は、 スピンオングラスをスピンコー ト し、 焼結によ って得る こともできる。 エッチングガスと しては、 S i , S i 0 , T i , T i 02 , T a, The multilayer film can be formed by varnish-like substance spin coating, sputtering, CVD, vapor deposition, electrodeposition, and the like. The film thickness of the lower film may be an optimum film thickness as a frame in the region of the tip. As the uppermost resist, a Si-containing resist, a normal resist, an electron beam resist, or the like can be used, and a thin resist of 像 μηι or less can be used, so that high resolution is possible. Since the Si-containing resist has high resistance to dry etching with oxygen, the underlying organic film can be dry-etched with oxygen. In the case of using a normal resist or electron beam resist, the pattern is temporarily transferred to the intermediate film, and then the intermediate film is removed. Etch the lower layer on the mask. Etching that can be anisotropically etched, such as reactive ion etching or ion milling, is preferable. As an intermediate film, an inorganic film can be used as a mask material for oxygen-based dry etching of an underlying organic film. Is the inorganic film materials, S i, S i 0 2 , A 1, A 1 0 3, T i, T i 0 2, T a, T a 2 0 6, W, N b , etc. are available These can all be formed by a sputtering method. S i 0 2 is, the spin-on-glass and Supinko door, it can also be obtained me by the sintering. Is an etching gas, S i, S i 0, T i, T i 0 2, T a,
T a 0B , W, N bは、 S Fe, C H F3, C F4 等のフ ッ素系ガス、 ま たは、 C 12, B C 13等の塩素系ガスが使用でき、 A 1 , A 1203には C 12 , B C 13等の塩素系ガスが使用可能である。 得られた中間膜のパ ターンを用いて、 下層部を酸素系ガスで ドライエッチングする こ とによ つて、 先端部のフ レームが形成できる。 後部領域のフ レーム高さが最適 になるよう に、 レジス トを塗布するが、 通常のレジス トの高粘度のもの, または感光性ポ リ イ ミ ドを使用する。 このとき、 第一のフ レームの下層 部がレジス トの場合、 第二のフ レームのレジス トの溶媒によって溶解す る可能性があるので、 第一のフ レーム形成後、 硬化処理を施すと よい。 硬化処理と しては、 遠紫外線照射、 ま たは、 リ アクティ ブイオンエッチ ングで表面処理を行う と良い。 遠紫外線照射は、 真空中で、 8 0 °C以上 に加熱しながら照射すると硬化が速やかに進行する。 リ アクティ ブィォ ンエッチングを用いた表面の硬化は、 例えば C H F 3 等を用いて 3 0秒 程度行えば良い。 第一のフ レームの下層部に、 第二のフ レームのレジス トの溶媒によ って溶解しない材料を用いると、 硬化処理は必要無く なり . このよ う な材料と しては、 ポリ イ ミ ド及びその誘導体, ポリ ジメチルダ ルタルイ ミ ド ( P M G I ) 及びその誘導体, ポリ メチルメタク リ レー ト ( P MM A ) 及びその誘導体, ペンゾシク ロブテン ( B C B ) 及びその 誘導体, エポキシ及びその誘導体等がある。 ポリ イ ミ ドは、 日立化成ェ 業及び信越化学から、 ポリ ジメチルダルタルイ ミ ド及びポリ メチルメタ ク リ レー トはマイ ク ロ リ ソグラフ ィ ーケミ カルから、 ベンゾシク ロブテ ンはダウケミ カルよ り 入手可能である。 この製造工程は、 先に第二のフ レームを形成後、 第一のフ レーム形成しても良い。 このときは、 第二の フ レーム形成後、 第一のフ レームと同様の硬化処理を行った方が良い。 ま た、 まず初めに後部領域に有機物のパターンを形成後、 先端部領域の フ レームを形成する こ ともできる。 このと きは、 有機物のパターンは、 前記第二のフ レームの形状でも良い し、 段差上の後部領域全体に有機物 パターンを形成し、 先端部領域のフ レーム形成時のエッチングで一緒に パターン化しても良い。 T a 0 B, W, N b is, SF e, CHF 3, CF 4 or the like of full Tsu Motokei gas, was or, C 1 2, BC 1 3 such as chlorine-based gas can be used, A 1, the a 1 2 0 3 chlorine-based gas such as C 1 2, BC 1 3 can be used. Using the pattern of the obtained intermediate film, the lower layer is dry-etched with an oxygen-based gas, whereby a frame at the tip can be formed. Apply resist to optimize the frame height in the rear area, but use a high viscosity normal resist or photosensitive polyimide. At this time, if the lower part of the first frame is a resist, it may be dissolved by the solvent of the resist of the second frame. Good. As the hardening treatment, it is preferable to perform surface treatment by irradiating deep ultraviolet rays or reactive ion etching. When irradiating with far ultraviolet rays while heating to a temperature of 80 ° C or more in a vacuum, curing proceeds rapidly. The hardening of the surface using reactive etching may be performed, for example, using CHF 3 or the like for about 30 seconds. If a material that does not dissolve in the solvent of the resist of the second frame is used in the lower layer of the first frame, a curing treatment is not necessary. Mido and its derivatives, Polydimethyl phthalimide (PMGI) and its derivatives, Polymethyl methacrylate (PMMA) and its derivatives, benzocyclobutene (BCB) and its derivatives, epoxy and its derivatives. Polyimide is available from Hitachi Chemical and Shin-Etsu Chemical, polydimethyldaltalimide and polymethyl methacrylate are available from Microlithography Chemicals, and benzocyclobutene is available from Dow Chemical. is there. In this manufacturing process, the first frame may be formed after the second frame is formed first. In this case, after forming the second frame, it is better to perform the same curing treatment as that of the first frame. Alternatively, after forming an organic pattern in the rear region, a frame in the front region can be formed. In this case, the organic material pattern may be the shape of the second frame, or an organic material pattern may be formed over the entire rear region on the step, and may be patterned together by etching at the time of forming the frame at the front end region. May be.
本発明に係る薄膜磁気へッ ドは、 下部磁性膜と下部磁性膜上に作製さ れ一端が下部磁性膜の一端に接し、 他端が下部磁性膜の他端に磁気ギヤ ップを介して対向 し、 これによつて下部磁性膜と共に一部に磁気ギヤ ッ プを有する磁気回路を形成する上部磁性膜と、 両磁性膜間を通り磁気回 路と交差する導体コイルとを具備し記録波長と して好ま し く は 0. 3 ~ The thin-film magnetic head according to the present invention is formed on a lower magnetic film and a lower magnetic film, one end of which is in contact with one end of the lower magnetic film, and the other end is connected to the other end of the lower magnetic film via a magnetic gap. An upper magnetic film opposing, thereby forming a magnetic circuit having a magnetic gap in part with the lower magnetic film, a conductor coil passing between the two magnetic films and intersecting the magnetic circuit, and having a recording wavelength of 0.3 to ~
0. 9 7 μ mにおいて、 下記の式
Figure imgf000013_0001
At 0.97 μm, the following equation
Figure imgf000013_0001
こ こで Ρτ はポール厚さ ( μ ιη) 、 B s は上部及び下部磁性、 膜の飽和磁束密度 ( T ) 、 え は記録波長 ( t m ) を示す。 Here in [rho tau Paul thickness (μ ιη), B s is the saturation magnetic flux density of the upper and lower magnetic, layer (T), e represents a recording wavelength (tm).
を満足するポール厚さ を有するのが好ま しい。  It is preferable to have a pole thickness that satisfies the following.
トラ ック密度を上げるために薄膜磁気へッ ドの トラ ック幅を狭く する と、 それに比例して出力が低下する。 これを補償するために、 薄膜磁気 へッ ドのコイルターン数を増加して出力を大きくすることが望ま しく 、 具体的には 1 7ターン以上とすることが望ま しい。 When the track width of the thin-film magnetic head is reduced to increase the track density, the output decreases proportionately. To compensate for this, thin-film magnetic It is desirable to increase the output by increasing the number of coil turns of the head, specifically, it is desirable that the number of turns is 17 or more.
薄膜磁気ヘッ ドは、 非磁性基板上に磁性膜を作成し、 最終的にスライ ダー形状に加工して使用される。 この場合、 基板材料と しては、 アルミ ナ, ジルコニァ, 炭化シリ コン, スピネル構造型の酸化物たとえば  Thin-film magnetic heads are used by creating a magnetic film on a non-magnetic substrate and then processing it into a slider shape. In this case, the substrate material may be alumina, zirconia, silicon carbide, or an oxide having a spinel structure.
M g A 1 2 0 3などのセラミ ックスを用いることが望ま しい。 M g A 1 2 0 3 arbitrariness desirable to use a ceramic box like.
薄膜磁気へッ ドのスライダーの形は、 へッ ドコア先端に近い側の浮上 力を弱めた形状と した正圧スライダー形状或いはその逆と した負圧スラ イダ一形状と して使用することができる。  The slider shape of the thin-film magnetic head can be used as a positive pressure slider shape with a reduced levitation force on the side near the head core tip, or a negative pressure slider shape with the opposite. .
薄膜磁気へッ ドの磁気コア材と しては、 上部磁性膜或いは下部磁性膜 とも飽和磁束密度の高い磁性材料特に 1 テスラ以上の飽和磁束密度を有 する材料を用いることが望ま しい。 このような磁性材料としては、 パー マロイに代表される 7 5〜 8 5原子%のニッケル一鉄結晶質, コバルト 系非晶質及び結晶質或いは鉄系結晶質合金がある。 上部或いは下部磁性 膜は、 夫々多層構造にしてもよい。 この場合、 磁性膜と非磁性層とを交 互に積層して多層膜とする。 非磁性膜と しては、 アルミナや酸化ケィ素 のような絶縁膜が望ま しい。 非磁性膜と磁性膜を交互に積層する場合、 各層の磁性膜厚は同一と したほうが望ま しい。 勿論、 各層の磁性膜厚を 変えてもかまわない。 多層膜の合計の層数は二以上すなわち最小限、 磁 性膜一層と非磁性膜一層の二層以上とする。 磁性膜と非磁性膜を交互に 積層して多層膜とするこ とによ り 、 うず電流低減によ り高周波の透磁率 を向上することができるだけでなく単磁区に近い形になり、 磁壁移動の 抑制による再生出力の安定化にも効果がある。 又、 飽和磁束密度の高い 磁性材料を用いることによ り 、 高い磁束密度及び強い磁界を発生してォ ーパライ ト特性を向上することができる。 多層膜形成手段と しては、 ス パッタ法, めっ き法などを用いる ことができる。 As the magnetic core material of the thin-film magnetic head, it is desirable to use a magnetic material having a high saturation magnetic flux density, particularly a material having a saturation magnetic flux density of 1 Tesla or more, for both the upper magnetic film and the lower magnetic film. As such a magnetic material, there is 75 to 85 atomic% of nickel-ferrous crystalline, cobalt-based amorphous and crystalline or iron-based crystalline alloy represented by permalloy. Each of the upper and lower magnetic films may have a multilayer structure. In this case, a magnetic film and a nonmagnetic layer are alternately laminated to form a multilayer film. As the non-magnetic film, an insulating film such as alumina or silicon oxide is desirable. When alternately laminating a non-magnetic film and a magnetic film, it is desirable that the magnetic film thickness of each layer be the same. Of course, the magnetic film thickness of each layer may be changed. The total number of layers of the multilayer film is two or more, that is, a minimum, and two or more magnetic films and one nonmagnetic film. Magnetic layers and non-magnetic layers are alternately laminated to form a multilayer film, which not only improves high-frequency magnetic permeability by reducing eddy currents, but also becomes a shape close to a single magnetic domain, resulting in domain wall displacement. It is also effective in stabilizing the playback output by suppressing the noise. In addition, by using a magnetic material having a high saturation magnetic flux density, a high magnetic flux density and a strong magnetic field can be generated to improve the overlap characteristics. As means for forming a multilayer film, A putter method, a plating method, or the like can be used.
本発明に係る再生へッ ドは、 磁界によって電気抵抗が変化する磁気抵 抗効果膜, 磁気抵抗効果膜に横バイアス磁界を印加する横バイアス膜及 び前記磁気抵抗効果膜と横バイアス膜との間に設けられた分離膜を有す る磁気抵抗効果素子膜からな り 、 該磁気抵抗効果素子膜の両端部に接し て設けられた前記磁気抵抗効果膜に縦バイアスを印加する一対の永久磁 石膜及び前記磁気抵抗効果膜に信号検出電流を流す前記永久磁石膜上に 設けられた一対の電極膜を有し、 好ま し く は該永久磁石膜の厚さは前記 磁気抵抗効果素子膜の厚さ よ り小さいこ と を特徴とする。  The reproducing head according to the present invention includes: a magnetoresistive effect film whose electric resistance changes by a magnetic field; a lateral bias film for applying a lateral bias magnetic field to the magnetoresistive film; A pair of permanent magnets for applying a longitudinal bias to the magnetoresistive effect film provided in contact with both ends of the magnetoresistive effect film, the magnetoresistive effect film having a separation film provided therebetween; A pair of electrode films provided on the stone film and the permanent magnet film for flowing a signal detection current to the magnetoresistive film; and preferably, the thickness of the permanent magnet film is equal to that of the magnetoresistive film. It is characterized by being smaller than the thickness.
前記永久磁石膜が C o — P t合金, C o — C r — P t合金、 又はこれ らの合金に T i 酸化物, V酸化物, Z r酸化物, N b酸化物, M o酸化 物, H f 酸化物, T a酸化物, W酸化物, A 1 酸化物, S i 酸化物, C r酸化物の内の少なく とも 1元素を含む合金のいずれかからなるもの が好ま しい。  The permanent magnet film is made of a Co—Pt alloy, a Co—Cr—Pt alloy, or a Ti oxide, V oxide, Zr oxide, Nb oxide, Mo oxide It is preferable to use an alloy containing at least one element selected from the group consisting of oxides, Hf oxides, Ta oxides, W oxides, A1 oxides, Si oxides, and Cr oxides.
前記永久磁石膜が (数 1 ) 又は (数 2 ) の組成からなる ことが好ま し い  It is preferable that the permanent magnet film has a composition represented by (Equation 1) or (Equation 2).
CoaCrb P t c又は … (数 1 )Co a Cr b P t c or… (Equation 1)
( CoeCrb Ptc)a -.(MO , … (数 2 )(Co e Cr b Pt c ) a-. (MO,… (Equation 2)
(但し、 x = 0. 0 1 ~ 0. 2 0, y : 0. 〜 3, a : 0. 7〜 0. 9 b : 0〜 0. 1 5, C : 0. 0 3 - 0. 1 5 , M : T i , V, Z r, M o, H f , T a, W, A 1 , S i 及び C rの少な く とも一つ) (However, x = 0.01 ~ 0.20, y: 0 ~ 3, a: 0.7 ~ 0.9b: 0 ~ 0.15, C: 0.03-0.1 5, M: at least one of Ti, V, Zr, Mo, Hf, Ta, W, A1, Si, and Cr)
前記磁気抵抗効果膜に横バイァス磁界を印加するための軟磁性薄膜の 比抵抗が、 7 0 μ Ω cm以上であるものが好ま しい。 前記横バイアス膜が ニッケルを 7 8〜 8 4原子%を有するニッケル一鉄系合金よ り なるもの が好ま しい。 本発明に係る再生へッ ドは、 基板上に設けられた一対の永久磁石膜と、 該永久磁石膜上の各々 に形成された一対の電極と、 前記永久磁石間に接 して設けられた磁気抵抗効果素子膜とを有し、 前記素子膜は前記基板側 よ り 酸化ニッケルよ り なる反強磁性膜, 2層の強磁性膜, 非磁性金属膜 及び軟磁性膜が順次形成されているのが好ま しい。 It is preferable that the soft magnetic thin film for applying a transverse bias magnetic field to the magnetoresistive effect film has a specific resistance of 70 μΩcm or more. It is preferable that the lateral bias film is made of a nickel-iron alloy containing 78 to 84 atomic% of nickel. The reproducing head according to the present invention is provided in contact with a pair of permanent magnet films provided on a substrate, a pair of electrodes formed on each of the permanent magnet films, and the permanent magnet. A magnetoresistive effect element film, wherein the element film is formed by sequentially forming an antiferromagnetic film made of nickel oxide, two ferromagnetic films, a nonmagnetic metal film, and a soft magnetic film from the substrate side. Is preferred.
前記 2層の強磁性膜は前記基板側から N i 7 0〜 9 5原子%の鉄合金 層と C o層とからなるものが好ま しい。 前記 2層の強磁性膜は前記反強 磁性側から軟磁性膜及び該軟磁性膜よ り磁気抵抗変化率の大きい軟磁性 膜からなるものが好ま しい。  The two-layered ferromagnetic film is preferably composed of an Ni alloy of 70 to 95 atomic% from the substrate side and a Co layer. The two ferromagnetic films are preferably composed of a soft magnetic film from the antiferromagnetic side and a soft magnetic film having a higher magnetoresistance ratio than the soft magnetic film.
本発明に係る再生へッ ドは、 基板上に設けられた一対の永久磁石膜と , 該永久磁石膜上の各々 に形成された一対の電極と、 前記永久磁石間に接 して設けられた磁気抵抗効果素子膜とを有し、 前記素子は前記基板側よ リ反強磁性膜, 強磁性膜, 非磁性膜, 軟磁性膜, 非磁性膜, 強磁性膜、 及び反強磁性膜が順次積層されているのが好ま しい。  A reproduction head according to the present invention is provided in contact with a pair of permanent magnet films provided on a substrate, a pair of electrodes formed on each of the permanent magnet films, and the permanent magnet. A magnetoresistive element film, wherein the element is composed of an antiferromagnetic film, a ferromagnetic film, a nonmagnetic film, a soft magnetic film, a nonmagnetic film, a ferromagnetic film, and an antiferromagnetic film sequentially from the substrate side. Preferably, they are stacked.
本発明では M Rセンサ端部受動領域に配置される永久磁石膜と して C o系磁性膜又はこれに酸化物を添加した膜を用いるのが好ま しい。 酸 化物を C o系磁性膜に添加すると C o系磁性膜の保磁力が大き く なる。  In the present invention, it is preferable to use a Co-based magnetic film or a film obtained by adding an oxide to the Co-based magnetic film as the permanent magnet film disposed in the passive region at the end of the MR sensor. When an oxide is added to the Co-based magnetic film, the coercive force of the Co-based magnetic film increases.
ま た、 本発明では永久磁石膜を非磁性層によ リ分割された多層膜とす る。 単層の C 0系永久磁石膜の保磁力は膜厚 1 0 η π!〜 3 0 n mにおい て最大値をとる。 そこで永久磁石膜を非磁性層で分割された多層構造と するのが好ま しい。  In the present invention, the permanent magnet film is a multilayer film divided by a nonmagnetic layer. The coercive force of a single-layer C 0 permanent magnet film is 10 η π! It takes the maximum value at ~ 30 nm. Therefore, it is preferable that the permanent magnet film has a multilayer structure divided by a nonmagnetic layer.
本発明に係る再生へッ ドはニッケル—鉄合金, コバル ト, ニッケル— 鉄—コバル ト合金の一種と、 酸化ジルコニウム, 酸化アルミ ニウム, 酸 化ハフニウム, 酸化チタ ン, 酸化ペリ リ ウム, 酸化マグネシウム, 希土 類酸素化合物, 窒化ジルコ ニウム, 窒化ハフ ニウム, 窒化アルミニウム 窒化チタ ン, 窒化ベリ リ ウム, 窒化マグネシウム, 窒化シリ コ ン、 及び 希土類窒素化合物の内から選択された一種以上の化合物と、 からなる軟 磁性薄膜をバイアス膜に用いる こ と によって、 再生出力が向上する。 バ ィァス膜に含まれる化合物の量は、 酸素及び窒素を除いた全原子に対し て 3 から 2 0 %である ことが好ま しい。 これは、 化合物の量が 3 %以下 では電気抵抗の増加が小さ く 、 ま た、 2 0 %以上では飽和磁束密度が低 下し、 バイアス膜と して十分な値でなく なるためである。 本発明のパイ ァス膜の比抵抗は、 ほぼ化合物の添加量に比例して増大するが、 磁気抵 抗効果型磁気へッ ドは、 7 0 μ Ω cm以上の比抵抗を有する こ とが好ま し い。 これはバイアス膜の比抵抗が、 磁気抵抗効果膜の比抵抗に比べて十 分大き く なければ磁気抵抗効果型ヘッ ドの出力が低下するためである。 磁気抵抗効果膜の比抵抗は 2 0〜 3 Ο μ Ω であり 、 バイアス膜の比抵 抗は少なく とも この 2倍が目安となるためである。 The recycled head according to the present invention is a nickel-iron alloy, cobalt, one of nickel-iron-cobalt alloys, zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, perylium oxide, and magnesium oxide. , Rare earth oxygen compounds, zirconium nitride, hafnium nitride, aluminum nitride By using a soft magnetic thin film composed of at least one compound selected from the group consisting of titanium nitride, beryllium nitride, magnesium nitride, silicon nitride, and a rare earth nitrogen compound for the bias film, the reproduction output can be increased. improves. It is preferable that the amount of the compound contained in the bias film is 3 to 20% based on all atoms except oxygen and nitrogen. This is because when the amount of the compound is 3% or less, the increase in electric resistance is small, and when the amount is 20% or more, the saturation magnetic flux density decreases, and the value is not sufficient as a bias film. Although the specific resistance of the bias film of the present invention increases almost in proportion to the amount of the compound added, the magnetoresistance effect type magnetic head may have a specific resistance of 70 μΩcm or more. I like it. This is because the output of the magnetoresistive head is reduced unless the specific resistance of the bias film is sufficiently large compared to the specific resistance of the magnetoresistive film. This is because the specific resistance of the magnetoresistive film is 20 to 3 μμΩ, and the specific resistance of the bias film is at least twice as a guide.
本発明のバイアス膜は蒸着, スパッタ リ ング法, イオンビームスパッ タ リ ング法などの方法によって作製できる。 スパッタ リ ングあるいはィ オンビームスパッタ リ ングの際のターゲッ トは、 ニッケル, 鉄, コバル ト等からなる合金の粉末と化合物の粉末を適当な方法によって混合し、 焼結, 成形するか、 あるいはニッケル, 鉄, コバル ト等からなる金属タ ーゲッ ト上に化合物のチップを配置したターゲッ 卜で良く 、 このよう な ターゲッ トを用いる こ とによってニッケル, 鉄, コバル ト等からなる合 金と化合物を同時に蒸着する ことができる。 ま た本発明のバイアス膜は スパッタ リ ング装置内に、 ニッケル, 鉄, コバル ト等からなる金属ター ゲッ トと、 化合物のターゲッ トを配置し、 タ一ゲッ トから放出される各 々の粒子が基板上で実質的に混合される よ う な方法によつても作製可能 である。 本発明に係る反強磁性膜には酸化二ッゲルが好ま し く 、 他に鉄一マン ガン合金薄膜, ク ロム—マンガン合金, ク ロム—アルミ合金膜等が用い られる。 The bias film of the present invention can be manufactured by a method such as vapor deposition, sputtering, or ion beam sputtering. The target for sputtering or ion beam sputtering is to mix an alloy powder composed of nickel, iron, cobalt, etc. with a compound powder by an appropriate method, and then sinter and mold the powder. A target in which a compound chip is placed on a metal target made of iron, cobalt, or the like may be used. By using such a target, the alloy and the compound made of nickel, iron, cobalt, etc. are vapor-deposited at the same time. can do. In the bias film of the present invention, a metal target composed of nickel, iron, cobalt, or the like and a compound target are arranged in a sputtering apparatus, and each particle emitted from the target is disposed. It can also be produced by a method in which the particles are substantially mixed on the substrate. As the antiferromagnetic film according to the present invention, Nigel oxide is preferable, and in addition, an iron-mangan alloy thin film, a chromium-manganese alloy, a chromium-aluminum alloy film, or the like is used.
本発明における硬磁性膜である永久磁石膜は、 前述のコバル ト一白金 系合金, 鉄一コバル トテルビウム合金膜が用いられる。 硬磁性膜とは、 外部磁界に対してその磁化の変化しに く い磁性膜であって、 保磁力が例 えば 1 0 0 0ェルステツ ド以上であるとする、 5 0 0ェルステツ ドの磁 界を加えてもその磁化の方向は殆ど変化しないので、 反強磁性膜と同様 の効果がある。 つま り 、 他の磁性膜に密着して形成したと きに交換結合 バイアスによる一方向異方性を印加できる特性を有するもので、 磁気抵 抗効果膜に縦バイァス磁界を形成するものである。  As the permanent magnet film which is a hard magnetic film in the present invention, the aforementioned cobalt-platinum alloy or iron-cobalt terbium alloy film is used. A hard magnetic film is a magnetic film whose magnetization is hardly changed by an external magnetic field, and it is assumed that the coercive force is, for example, 100 or more Oersteds. Since the direction of the magnetization hardly changes even if the addition is performed, the same effect as the antiferromagnetic film is obtained. That is, when formed in close contact with another magnetic film, it has the property of applying unidirectional anisotropy due to exchange coupling bias, and forms a longitudinal bias magnetic field in the magnetic resistance effect film.
前記磁性膜には、 N i 7 0〜 9 5原子%, F e 5〜 3 0原子%及び C o 1 ~ 5原子%の合金、 又は C o 3 0〜 8 5原子%, N i 2〜 3 0原 子%及び F e 2〜 5 0原子%の合金を用いる こ とが好ま し く 、 この他、 パーマロイ , パーメ ンダ一合金等を用いても良い。 つま り 、 強磁性で良 好な軟磁気特性を有するものを用いる こ とが好ま しい。  The magnetic film includes an alloy of Ni 70 to 95 atomic%, Fe 5 to 30 atomic% and Co 1 to 5 atomic%, or Co 30 to 85 atomic%, Ni 2 to It is preferable to use an alloy of 30 atomic% and Fe of 2 to 50 atomic%. In addition, a permalloy, an alloy of permender, or the like may be used. In other words, it is preferable to use a material that is ferromagnetic and has good soft magnetic characteristics.
前記非磁性導電膜には、 A u, A g , C u を用いる こ とが好ま し く 、 この他、 C r , P t , P d, R u , R h等ま たはこれらの合金を用いて も良い。 つま り 、 室温で自発磁化を持たず、 電子の良好な透過性を有す るものを用いる ことが好ま しい。 以上の膜は、 それぞれ 2 ~ 1 0 0 0 人 程度の膜厚を有する ことが好ま しい。  It is preferable to use Au, Ag, and Cu for the nonmagnetic conductive film. In addition, Cr, Pt, Pd, Ru, Rh, or the like, or an alloy thereof may be used. May be used. That is, it is preferable to use a material that does not have spontaneous magnetization at room temperature and has good electron permeability. It is preferable that each of the above films has a thickness of about 2 to 1000 persons.
ま た、 非磁性導電膜の代わり に、 極めて薄い非磁性絶縁膜を使用する こともできる。 つま り 、 この膜は磁性膜と磁性膜との間を電子が移動で きるものであれば足り るため、 例えば トンネル効果を使用 しても良い。 この場合には、 前記非磁性絶縁膜は電子の トンネリ ングが可能である程 度に薄い必要があ り 、 一般的には 1 0 0 A以下、 実質的には 5 0 A以下 に形成する。 上記形成の手段と しては前記軟磁性膜の表面酸化、 あるい は、 前記軟磁性膜上に別個に形成した金属膜、 例えばアルミ ニウム、 の 表面の酸化膜を前記非磁性絶縁膜と して用いる こ とが好ま しい。 この他, 酸化アルミニウム膜等を成膜して用いても良い。 つま り 、 磁性膜間の磁 気的な結合を遮断する特性を有するものを用いる ことが好ま しい。 Also, an extremely thin non-magnetic insulating film can be used instead of the non-magnetic conductive film. In other words, this film is sufficient as long as electrons can move between the magnetic films, and for example, a tunnel effect may be used. In this case, the non-magnetic insulating film is capable of tunneling electrons. It is necessary to be thin each time, and is generally formed at 100 A or less, and substantially at 50 A or less. As a means for forming the nonmagnetic insulating film, a surface oxidation of the soft magnetic film, or an oxide film on the surface of a metal film formed separately on the soft magnetic film, for example, aluminum, is used as the nonmagnetic insulating film. It is preferable to use it. In addition, an aluminum oxide film or the like may be formed and used. That is, it is preferable to use a material having a property of blocking magnetic coupling between magnetic films.
更に、 前記基板は、 これらの膜を形成するための下地であって、 磁気 ディ スク装置のスライ ダーと しての機能を有するものでも良く 、 この材 料と しては 5 %以下の T i C を含むアルミナ, 安定化ジルコニァ等のセ ラ ミ ックス焼結体が好ま しい。  Further, the substrate may be a base for forming these films, and may have a function as a slider of a magnetic disk device. The material may have a Ti of 5% or less. Ceramic sintered bodies such as alumina containing C and stabilized zirconia are preferred.
こ う した膜構成を有する ことによ り 、 磁気抵抗効果素子はその電気抵 杭が微弱な外部磁界に対して変化する機能を有し、 しかもその電気抵抗 の変化の割合が 5 %から 1 0 %と大きい効果を有する。 このため、 本発 明の磁気記録再生装置は、 アナログ状態で記録された信号を再生時には 直接デジタル化する機能をも有し、 さ らにディ スク面積あた り の記録容 量、 即ち記録密度が高く せしめる効果を有する。  By having such a film configuration, the magnetoresistive effect element has a function of changing its electric resistance with respect to a weak external magnetic field, and the rate of change of the electric resistance is 5% to 10%. It has a great effect of%. For this reason, the magnetic recording / reproducing apparatus of the present invention also has a function of directly digitizing a signal recorded in an analog state at the time of reproduction, and further has a recording capacity per disc area, that is, a recording density. Has the effect of increasing the pressure.
ま た、 膜構成と しては、 基板上に酸化アルミ ニウム, 酸化ニッケルな どの平坦な膜を形成してなるもの、 又は基板上に、 鉄, チタ ン, タ ンタ ル, ジルコニウム, ハフニウム, ニオブ, コバル ト鉄合金などの膜を下 地と してさ らに形成してなるものであっても良い。 基体上の膜は、 その 表面上に多層膜を平坦に形成する効果を有し、 基体表面上に均質かつ平 坦な膜構造を有するこ とが好ま し く 、 それぞれの膜の厚みは金属の膜で は 2 0 から 2 0 0 人、 金属以外の膜では 5 から 1 0 0 O A程度であるこ とが好ま しい。  The film may be formed by forming a flat film such as aluminum oxide or nickel oxide on a substrate, or iron, titanium, tantalum, zirconium, hafnium, niobium on a substrate. Alternatively, a film made of cobalt iron alloy or the like may be further formed as a base. The film on the substrate has the effect of forming a multilayer film evenly on the surface thereof, and preferably has a uniform and flat film structure on the surface of the substrate. Preferably, it is about 20 to 200 people for the film, and about 5 to 100 OA for the non-metal film.
本発明は、 反強磁性膜ノ磁性膜ノ非磁性導電膜ノ磁性膜ノ硬磁性膜の 膜構成を有する こ とが好ま し く 、 反強磁性膜及び硬磁性膜のそれぞれの 膜の厚みは 2 0から 2 0 0 0 人程度である こ とが好ま しい。 The present invention relates to an antiferromagnetic film, a nonmagnetic film, a nonmagnetic film, a nonmagnetic film, and a hard magnetic film. It is preferable to have a film configuration, and it is preferable that the thickness of each of the antiferromagnetic film and the hard magnetic film is about 20 to 2000 persons.
本発明における永久磁石膜以外の M R膜に対して積層されるバイアス 膜は、 磁性膜及び非磁性膜よ り もさ らに基板側に配置する ことが好ま し く 、 表面を平坦化し積層膜のぬれを向上する下地膜と しての機能を有す る ことが好ま し く 、 異方性によって磁性膜の磁区構造を単磁区化し、 ノ ィズの発生を抑制するものである。 膜構成と しては、 非磁性導電膜を介 して積層される第一及び第二の磁性膜と第一の磁性膜に密着形成させる バイアス膜との構成を有するよ う にすると よい。  The bias film laminated on the MR film other than the permanent magnet film in the present invention is preferably disposed on the substrate side more than the magnetic film and the non-magnetic film. It preferably has a function as a base film for improving wetting, and the magnetic domain structure of the magnetic film is made into a single magnetic domain by anisotropy, thereby suppressing generation of noise. As the film configuration, it is preferable to have a configuration of first and second magnetic films stacked via a non-magnetic conductive film and a bias film formed in close contact with the first magnetic film.
特に、 基体上に積層 した第一のバイアス膜, 第一の磁性膜, 非磁性膜, 第二の磁性膜, 非磁性導電膜, 第三の磁性膜, 第二のバイアス膜.及び電 極からなる ことが好ま しい。 なお、 第三の磁性膜は磁気的に第一の磁性 膜と同 じ機能を有する ことが好ま しい。  In particular, the first bias film, the first magnetic film, the non-magnetic film, the second magnetic film, the non-magnetic conductive film, the third magnetic film, the second bias film, and the electrodes laminated on the substrate. I prefer to be. The third magnetic film preferably has the same function as the first magnetic film magnetically.
バイアス膜のバイアス方向及び磁性膜の異方性方向の制御は、 素子の 多層膜形成時に、 その形成工程に応じて適宜磁界を印加して行う こ とが 好ま しい。 又は、 素子の多層膜形成中或いは形成後に、 磁界中熱処理を 行う ことが好ま しい。  The control of the bias direction of the bias film and the anisotropic direction of the magnetic film is preferably performed by appropriately applying a magnetic field according to the forming process when forming the multilayer film of the device. Alternatively, it is preferable to perform a heat treatment in a magnetic field during or after the formation of the multilayer film of the element.
膜の形成において、 磁場の印加に関しては、 膜の積層工程に合わせて 磁界の方向及び大きさ を制御し、 バイアスの印加方向と磁性膜のー軸異 方性と を制御する ことが好ま しい。  In the formation of the film, it is preferable to control the direction and magnitude of the magnetic field in accordance with the film laminating process to control the bias application direction and the -axis anisotropy of the magnetic film.
更に、 膜の形成において、 磁場中で熱処理を行う場合には、 バイアス 膜の異方性及び磁性膜の一軸異方性を制御するこ とが好ま しい。  Further, when performing a heat treatment in a magnetic field in forming the film, it is preferable to control the anisotropy of the bias film and the uniaxial anisotropy of the magnetic film.
M R膜に対し積層される硬磁性膜を有する場合には、 素子を作製後、 磁界を印加して硬磁性膜の磁化を所定の方向に向ける方法が望ま しい。 バイアス膜の材料は、 高い電気抵抗を有するものである ことが好ま し く 、 具体的には、 電気抵抗率が 5 X 1 0 _4オームセンチメー トル(Ω cm ) 以上である ことが好ま しい。 このバイアス膜は、 電流漏洩による素子の 出力低下を防ぐと共に、 用い られる材料の積層構造、 特に平坦性を制御 し、 素子の積層を可能にするものである。 実質的に絶縁体である酸化二 ッケル(N i 0 )膜をバイアス膜と して用いた場合には、 特に、 磁界感度 が 1 0 エルステッ ド程度に高感度であって、 従来と比較して 2 から 4倍 程度の高い信頼性を有する積層構造が実現できる。 When a hard magnetic film is laminated on the MR film, it is desirable that a method of applying a magnetic field to orient the magnetization of the hard magnetic film in a predetermined direction after fabricating the element. It is preferable that the material of the bias film has a high electric resistance. More specifically, it is preferable that the electrical resistivity be 5 × 10 4 ohm centimeters (Ωcm) or more. The bias film prevents the output of the device from being reduced due to current leakage, and controls the laminated structure of the materials used, particularly the flatness, and enables the device to be laminated. When a nickel oxide (Ni0) film, which is substantially an insulator, is used as a bias film, the magnetic field sensitivity is particularly high, about 10 Oe, which is higher than the conventional one. A laminated structure with high reliability of about 2 to 4 times can be realized.
ま た、 本発明の磁気記録再生装置は、 記録媒体に所定の トラ ック幅で 書き込まれた磁化のパターンからの磁界を読み取る磁気抵抗効果素子を 搭載したものであって、 素子の記録媒体に対して垂直方向の長さ d ( μ τα ) と、 媒体上の トラ ッ クの密度 Τ ( 卜ラ ック Ζイ ンチ) との関係 が、 dく 1 2 . 5 X 1 0 3 Z Tである こ とが好ま しい。 Further, the magnetic recording / reproducing apparatus of the present invention is provided with a magnetoresistive effect element for reading a magnetic field from a magnetization pattern written on a recording medium with a predetermined track width. On the other hand, the relationship between the length d (μτα) in the vertical direction and the track density Τ (track / inch) on the medium is d × 12.5 × 10 3 ZT. This is preferred.
ま た、 本発明に係る磁気記録再生装置は、 信号を磁気的に記憶する記 録媒体と、 前記記録媒体から漏洩する磁界を検出し、 非磁性導電膜を間 に挟んだ磁性膜のサン ドウイ ツチ構造を具備する前述の磁気抵抗効果素 子とを有するものであって、 前記記録媒体から漏洩する ± 8 0 e の磁界 に対して 5 . 0 ~ 9 . 5 %の抵抗変化率が得られる。  Further, a magnetic recording / reproducing apparatus according to the present invention includes a recording medium for magnetically storing signals, and a magnetic film sandwiched between non-magnetic conductive films by detecting a magnetic field leaking from the recording medium. And a magnetoresistance effect element having a touch structure, wherein a resistance change rate of 5.0 to 9.5% can be obtained with respect to a magnetic field of ± 80 e leaking from the recording medium. .
一方、 本発明の磁気抵抗効果膜の合計の厚さは、 やはり表面散乱によ る出力の低下を防ぐために 1 0 0 〜 3 0 0 人程度であるが、 非磁性膜で 分離された個々の磁性膜、 特に膜中央の軟磁性膜の厚さは 1 0 0 人以下 特に 1 0 〜 2 0人に しても出力の低下を全く 生じないからである。 この 作用は磁気抵抗効果の発現機構が、 その磁性膜/非磁性膜/磁性膜の界 面に起因する ことによ リ生じる。  On the other hand, the total thickness of the magnetoresistive film of the present invention is also about 100 to 300 persons in order to prevent a decrease in output due to surface scattering. This is because the output of the magnetic film, especially the thickness of the soft magnetic film at the center of the film, does not decrease at all even when the thickness is 100 or less, especially when it is 10 to 20 people. This effect occurs because the mechanism of the magnetoresistance effect is caused by the interface of the magnetic film / non-magnetic film / magnetic film.
ま た、 本発明に搭載される磁気抵抗効果素子の磁性膜の厚さは、 5 〜 1 0 0 0 人、 特に 1 0 〜 1 0 0 人である こ とが好ま しい。 各磁性膜を隔 離する非磁性導電膜の厚さは、 5〜 1 0 0 O Aである こ とが好ま しい。 この非磁性導電膜の厚さは、 電子の伝導を妨げず、 特に磁性膜間の反強 磁性的或いは強磁性的な結合を十分に小さ く 保つ必要があるからであ り 、 特定の厚さ、 例えば C uであれば 1 0人から 3 0人程度である ことが望 ま しい。 Further, the thickness of the magnetic film of the magnetoresistive element mounted in the present invention is preferably 5 to 100, particularly preferably 10 to 100. Separate each magnetic film The thickness of the nonmagnetic conductive film to be separated is preferably 5 to 100 OA. The thickness of this non-magnetic conductive film does not hinder electron conduction, and in particular, it is necessary to keep antiferromagnetic or ferromagnetic coupling between the magnetic films sufficiently small. For example, in the case of Cu, it is desirable to have about 10 to 30 people.
磁性膜、 特に軟磁性膜の材料と しては、 N i 7 0〜 9 5原子%及び F e 5〜 3 0原子%なる合金を用いる ことが好ま しい。  As a material of the magnetic film, particularly, a soft magnetic film, it is preferable to use an alloy of Ni 70 to 95 atomic% and Fe 5 to 30 atomic%.
更に、 磁性膜の材料と しては、 上記 N i — F e系合金に、 適宜、 C o を 5原子%以下の範囲で添加する こ とが好ま しい。 或いは C o 3 0〜  Further, as a material for the magnetic film, it is preferable that Co is appropriately added to the above Ni—Fe alloy in a range of 5 atomic% or less. Or C o 30 ~
8 5原子%, 1 1 2〜 3 0原子%, 6 2〜 5 0原子%の面心立方構造 を有する合金薄膜を用いることが望ま しい。 これらは良好な積層構造の 形成を可能と し、 軟磁気特性に優れ、 さ らに大きな磁気抵抗効果を生じ るからである。  It is desirable to use an alloy thin film having a face-centered cubic structure of 85 at%, 11 to 30 at%, and 62 to 50 at%. These are because they enable a good laminated structure to be formed, have excellent soft magnetic properties, and produce a greater magnetoresistance effect.
ま た非磁性導電膜の材料と しては、 A u , A g , C uの少な く とも一 つを用いる こ とが好ま しい。 これらの膜は磁性膜との組み合わせによ つ て磁気抵抗効果を生じ、 電気伝導度に優れ、 かつ良好な積層構造の形成 を可能にするからである。  Also, it is preferable to use at least one of Au, Ag, and Cu as the material of the nonmagnetic conductive film. This is because these films produce a magnetoresistive effect when combined with a magnetic film, are excellent in electric conductivity, and enable formation of a favorable laminated structure.
本発明の磁気抵抗効果素子の構成の一例は、 基板上に、 N i 0, NiFe, C u, N i F e , C u, N i F e , N i Oを順次積層 した膜に一対の電 極を配してなる。 ま たは、 基板上に、 N i O, C o / N i F e , C u , C o / i F e , C u , C o / i F e , N i Oを順次積層 した膜に一 対の電極を配してなる。  One example of the configuration of the magnetoresistive element of the present invention is that a pair of NiO, NiFe, Cu, NiFe, Cu, NiFe, and NiO are sequentially stacked on a substrate. An electrode is provided. Alternatively, a film formed by sequentially laminating NiO, Co / NiFe, Cu, Co / iFe, Cu, Co / iFe, and NiO on a substrate may be used. It consists of a pair of electrodes.
本発明に係る磁気抵抗効果素子は、 基板上に、 N i O, C o N i F e , C u , N i F e , C u , C o / i F e , N i Oを順次積層 した膜に一 対の電極を配するのが好ま しい。 これはこれらの構成が表面散乱による 出力の低下を極めて効率的に防止し、 実効上出力を向上させる効果があ るとともに中央の膜を薄くすることを可能にして磁性膜の形状異方性に よる素子の感度の劣化を、 出力の低下なしに防止することができるから である。 In the magnetoresistive element according to the present invention, NiO, CoNiFe, Cu, NiFe, Cu, Co / iFe, and NiO are sequentially laminated on a substrate. It is preferred to have a pair of electrodes on the membrane. This is because these configurations are due to surface scattering It has the effect of extremely efficiently preventing the output from lowering, effectively increasing the output, and enabling the central film to be thinner, thereby reducing the sensitivity of the element due to the shape anisotropy of the magnetic film. This is because it can be prevented without a decrease in
本発明の磁気記録再生装置は、 このよう に磁気抵抗効果素子を再生部 と し、 高い記録密度、 すなわち記録媒体上に記録される記録波長を短く することができる。 また、 記録トラ ックの幅が狭い記録を実現でき、 十 分な再生出力を得、 記録を良好に保つことができる。 図面の簡単な説明  The magnetic recording / reproducing apparatus of the present invention uses the magnetoresistive element as a reproducing section as described above, and can shorten the recording wavelength recorded on a recording medium with a high recording density. Also, it is possible to realize recording with a narrow recording track width, obtain a sufficient reproduction output, and maintain good recording. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明の実施の形態における薄膜磁気へッ ドを媒体対向面 から見た図、 第 2図は本発明の実施例における作製工程のうち、 第一フ レーム形成工程を媒体対向面からみた断面の概略図、 第 3図は本発明の 実施例における作製工程のうち、 第一フレーム形成工程を媒体対向面か らみた断面の概略図、 第 4図は本発明の実施例における作製工程のうち. フ レーム形成工程をへッ ドの断面方向からみた断面の概略図、 第 5図は 本発明の実施例における作製工程の磁気へッ ドの断面の斜視概略図、 第 6図は本発明の実施例における作製工程のうち、 フレーム形成工程をへ ッ ドの断面の概略図、 第 7図は薄膜磁気ヘッ ド先端部の断面図、 第 8図 はオーバライ トとポール厚さとの関係を示す線図、 第 9図はポール厚さ X飽和磁束密度と記録波長との関係を示す線図、 第 1 0図は薄膜磁気へ ッ ドの断面図、 第 1 1 図は記録再生分離型ヘッ ドの斜視図、 第 1 2図は 磁気抵抗効果型へッ ドの部分斜視図、 第 1 3図は負圧スライダ一の斜視 図、 第 1 4図はヘッ ド ' ディスク · アセンブリ を示す磁気ディスク装置 の全体斜視図、 第 1 5図は磁気ディスク装置の部分平面図、 第 1 6図は 磁気抵抗効果型へッ ドの部分斜視図、 第 1 7図は磁気抵抗効果型へッ ド の部分斜視図、 第 1 8図は磁気抵抗効果型ヘッ ドの部分斜視図、 第 1 9 図は磁気抵抗効果型へッ ドの膜構成図、 第 2 0図は磁気抵抗効果型へッ ドの部分斜視図、 第 2 1 図は磁気抵抗効果型ヘッ ドの膜構成図である。 FIG. 1 is a view of a thin-film magnetic head according to an embodiment of the present invention as viewed from a medium facing surface, and FIG. 2 is a manufacturing step in an example of the present invention in which a first frame forming step is performed by facing a medium. FIG. 3 is a schematic view of a cross section as viewed from a plane, FIG. 3 is a schematic view of a cross section as viewed from a medium facing surface in a first frame forming step in a manufacturing process according to an embodiment of the present invention, and FIG. FIG. 5 is a schematic cross-sectional view of the frame forming step as viewed from the cross-sectional direction of the head. FIG. 5 is a schematic perspective view of the cross section of the magnetic head in the manufacturing step in the embodiment of the present invention. FIG. 7 is a schematic view of a cross section of a head in a frame forming step of a manufacturing process in an embodiment of the present invention, FIG. 7 is a cross-sectional view of a tip of a thin film magnetic head, and FIG. Figure 9 shows the relationship between pole thickness X saturation magnetic flux density and A diagram showing the relationship with the recording wavelength, FIG. 10 is a cross-sectional view of a thin-film magnetic head, FIG. 11 is a perspective view of a read / write separation type head, and FIG. 12 is a magnetoresistive head. 13 is a perspective view of the negative pressure slider 1, FIG. 14 is an overall perspective view of the magnetic disk drive showing the head's disk assembly, and FIG. 15 is a part of the magnetic disk drive. Plan view, Fig. 16 FIG. 17 is a partial perspective view of a magnetoresistive head, FIG. 18 is a partial perspective view of a magnetoresistive head, and FIG. 19 is a partial perspective view of a magnetoresistive head. FIG. 20 is a partial perspective view of the magnetoresistive head, and FIG. 21 is a diagram of the magnetoresistive head.
1 1, 4 2, 6 2は下部磁気コア、 1 2は上部磁気コア、 2 1, 3 1 , 4 1, 5 1, 6 1 は基板、 2 2, 3 2, 3 4, 4 8, 6 7はレジス ト、 2 3は S i 含有レジス ト、 3 3は中間膜 S i 02 、 4 3 , 6 3は磁気ギ ヤップ膜、 4 4, 4 6, 5 3, 6 4, 6 6は絶縁膜、 4 5, 5 4 , 6 5 は導体コイル、 4 7, 6 8は多層膜、 5 2は下部磁気コア及び磁気ギヤ ップ、 5 5は第一フ レーム、 5 6は第二フ レーム、 1 1, 4 2, 6 2 is the lower magnetic core, 1 2 is the upper magnetic core, 2 1, 3 1, 4 1, 5 1, 6 1 is the substrate, 2, 3 2, 3 4, 4 8, 6 7 registry, 2 3 S i containing registry, 3 3 intermediate film S i 0 2, 4 3, 6 3 magnetic formic Yap film, 4 4, 4 6, 5 3, 6 4, 6 6 Insulating film, 45, 54, 65 are conductor coils, 47, 68 are multilayer films, 52 is lower magnetic core and magnetic gap, 55 is first frame, 56 is second frame. Laem,
1 は非磁性金属層、 2は強磁性体の第 2磁性層、 3は反強磁性層、 7 は硬質強磁性層、 8, 8 5は電極、 1 0は磁気抵抗効果膜、 1 1 は強磁 性層、 1 2は非磁性層、 1 3, 1 1 2は軟磁性層、 1 4は下地膜、 1 5 は高保磁力 C o合金膜、 1 6は軟磁性膜、 1 7は C o膜、 1 8は分離膜 1 is a non-magnetic metal layer, 2 is a ferromagnetic second magnetic layer, 3 is an antiferromagnetic layer, 7 is a hard ferromagnetic layer, 8, 85 are electrodes, 10 is a magnetoresistive film, 1 1 is Ferromagnetic layer, 12 is nonmagnetic layer, 13 and 11 are soft magnetic layers, 14 is underlayer, 15 is high coercivity Co alloy film, 16 is soft magnetic film, and 17 is C o membrane, 18 is separation membrane
1 9は高保磁力磁性膜、 2 4は磁気ディスク、 2 7は磁気ヘッ ド、 2 6 はァクチユエ一タ、 8 0は基体、 8 1 は上部シールド、 8 2は下部シー ルド、 8 4は上部磁気コア、 8 3は下部磁性膜、 8 6は磁気抵抗効果、19 is a high coercivity magnetic film, 24 is a magnetic disk, 27 is a magnetic head, 26 is an actuator, 80 is a base, 81 is an upper shield, 82 is a lower shield, and 84 is an upper shield Magnetic core, 83 is lower magnetic film, 86 is magnetoresistive effect,
8 7はコイル、 8 8は磁気ギャップ、 8 9は非磁性絶縁体、 9 1 は磁区 制御膜、 1 1 0は下部シールド膜、 1 2 0は下部ギャ ップ膜、 1 4 0は 磁気抵抗効果膜、 1 4 5は酸化物反強磁性膜、 1 5 0はシャ ン 卜膜、87 is a coil, 88 is a magnetic gap, 89 is a non-magnetic insulator, 91 is a magnetic domain control film, 110 is a lower shield film, 120 is a lower gap film, and 140 is a magnetic resistance Effect film, 145 is an oxide antiferromagnetic film, 150 is a shunt film,
1 5 5はソフ ト膜、 1 6 0は信号検出電極、 1 7 0は上部ギャ ップ膜、155 is a soft film, 160 is a signal detection electrode, 170 is an upper gap film,
1 7 7は非磁性膜、 1 8 0は上部シールド膜、 1 0 1 は非磁性基板。 発明を実施するための最良の形態 177 is a non-magnetic film, 180 is an upper shield film, and 101 is a non-magnetic substrate. BEST MODE FOR CARRYING OUT THE INVENTION
(実施例 1 ) 第 1 図は、 本発明の一実施例を示すイ ンダクティ ブ型記録用薄膜磁気 ヘッ ドの媒体対向面からみた図である (図の拡大倍率は一様ではない) < 図に示すよ う に、 本発明における磁気へッ ドはその上部磁気コァの ト ラ ック幅 w l とその厚さ t との比 ( t /w l ) が 2以上とするものであ る。 (Example 1) FIG. 1 is a diagram of an inductive recording thin-film magnetic head according to an embodiment of the present invention, as viewed from the medium facing surface (the magnification in the figure is not uniform). In the magnetic head of the present invention, the ratio (t / wl) of the track width wl of the upper magnetic core to its thickness t is 2 or more.
この上部磁気コアをもつ磁気ヘッ ドの製造工程を第 2図及び第 3図に 示す。 第 2図は媒体対向面方向からみた、 基板 2 1 に対してフ レームの 形成工程を示すフ ロー図である。 ( a ) は、 上層に S i 含有レジス ト 2 3 ( 日立化成製 RU— 1 6 0 0 P— 3 9 )を 1. 4 μ ηι、 下層に通常の レジス ト 2 2 (東京応化製 O F P R 8 6 0 0 ) を 5 μ πι積層 した多層膜 を形成したと ころを示す。 ( b ) は、 上層のレジス トにフ ォ トマスク を 介して、 露光, 現像を行い先端部用の第一のフ レーム用のパターンを形 成したと ころを示す。 ( c ) は、 上層レジス トのパターンをマスクに下 層部を酸素のリ アクティ ブイオンエッチングによ りエッチングし、 第一 のフ レームを形成したと ころを示す。  The manufacturing process of the magnetic head having the upper magnetic core is shown in FIGS. FIG. 2 is a flow diagram showing a frame forming process for the substrate 21 as viewed from the medium facing surface direction. (A) shows the Si-containing resist 23 (Hitachi Kasei's RU-160P-39) in the upper layer at 1.4 μηι, and the lower layer in the normal resist 22 (Tokyo Ohka OFPR8). Here, a multilayer film in which 600 μm) is laminated by 5 μπι is shown. Panel (b) shows that the upper layer resist was exposed and developed via a photomask to form a pattern for the first frame for the tip. (C) shows a state where the first layer is formed by etching the lower layer by reactive ion etching of oxygen using the pattern of the upper layer resist as a mask.
第 3図は同 じ く 基板 3 1 に対してフ レームの形成工程を示すフ ロー図 である。 ( a ) には、 上層に通常のレジス ト 3 4 (東京応化製 0FPR800 ) を 0. 7 μ πι塗布し、 中間膜 3 3 と して S i 02 をスパッタ法で 0. 2 t m形成し、 下層膜 3 2 と して通常のレジス ト (東京応化製 0FPR8600 ) を 5 ^ m積層 した多層膜を形成したと ころ を示す。 S i 02 の形成方法 は、 スピンオングラスを塗布後、 ベークする方法でも良い。 ( b ) は、 上層のレジス ト 3 4にフ ォ トマスク を介して、 露光, 現像を行い先端部 用の第一のフ レーム用のパターンを形成したと ころを示す。 ( c ) は、 上層レジス ト 3 4のパターンをマスク に中間膜 3 3の S i 02を C H F3 のリ アクティ ブイオンエッチングによ り エッチングしたと ころを示す。 ( d ) は、 中間膜 3 3 をマスク に下層のレジス ト 3 2 を酸素のリ アクテ イ ブイオンエッチングによ り エッチングし、 第一のフ レームを形成した と ころを示す。 最上層のレジス トの露光は、 位相シフ ト法や変形照明法 によ り 、 露光しても良いし、 電子線レジス トを用いて、 電子線描画によ リ露光しても良い。 第 2図及び第 3図の場合とも、 この後遠紫外線を、 真空中で 1 0 0 °Cにべーク しながら遠紫外線を、 5. 6 J Zcni2照射して、 下層のレジス トからなるフ レームを硬化させる。 紫外線照射の代り に、 例えば C H F 3ま たは S F 6のリ アクティ ブイオンエッチングを行い、 レ ジス ト表面に効果膜形成しても良い。 ポリ イ ミ ド, ポリ ジメチルダルタ ルイ ミ ド, ポリ メチルメタ ク リ レー ト, ペンゾシク ロブテン等を用いた 場合は、 硬化処理は必要ない。 FIG. 3 is a flow chart showing a frame forming process for the substrate 31 in the same manner. In (a), a normal resist 34 (Tokyo Oka 0FPR800) is applied to the upper layer with a thickness of 0.7 μππ, and Sio 2 is formed as an intermediate film 33 by a sputtering method at a thickness of 0.2 tm. Here, a multilayer film in which a normal resist (0FPR8600 manufactured by Tokyo Ohka Co., Ltd.) is laminated by 5 m as the lower layer film 32 is shown. The method of forming the S i 0 2 after applying a spin-on-glass may be a method of baking. (B) shows that the upper layer resist 34 was exposed and developed via a photomask to form a pattern for the first frame for the front end. (C) shows that the SiO 2 of the intermediate film 33 was etched by reactive ion etching of CHF 3 using the pattern of the upper resist 34 as a mask. (d) shows that the lower layer resist 32 is etched by reactive ion etching of oxygen using the intermediate film 33 as a mask to form a first frame. The resist in the uppermost layer may be exposed by a phase shift method or a modified illumination method, or may be exposed by electron beam lithography using an electron beam resist. In both cases of Figs. 2 and 3, 5.6 J Zcni 2 was applied to the substrate while baking it at 100 ° C in a vacuum, and then irradiated from the lower layer resist. To cure the frame. Instead of UV irradiation, for example, reactive ion etching of CHF 3 or SF 6 may be performed to form an effect film on the resist surface. When polyimide, polydimethyl daltarimide, polymethyl methacrylate, benzocyclobutene, etc. are used, no curing treatment is required.
第 4図は磁気ヘッ ド断面からみた製造工程を示すフ ロー図である。 ( a ) は、 下部磁気コァ 4 2の上に磁気ギヤ ップ膜 4 3, 導体コィル 4 5及び絶縁膜 4 4, 4 6が形成されたと ころを示す。 ( b ) に多層膜 4 7 を形成したと ころを示す。 ( c ) は、 第一のフ レームが形成された と ころを示す。 (d ) には高粘度のレジス 卜 4 8 (信越化学製 SIPR9332H) を塗布したと ころ を示す。 この工程でのレジス ト 4 8は、 高粘度のもの で信越化学製 SIPR9332H 以外に、 へキス ト社製 A Z 4 6 2 0 , シプレイ 社製 STR1110, 東京応化工業製 P M E R— P -MH600MA- T— 1 が適して いる。 ( e ) は、 フ ォ トマスク を介して、 露光, 現像を行い、 第一のフ レームと一体化した第二のフ レームを形成したと ころを示す。  FIG. 4 is a flow chart showing a manufacturing process as viewed from a cross section of a magnetic head. (a) shows where the magnetic gap film 43, the conductor coil 45, and the insulating films 44, 46 are formed on the lower magnetic core 42. (B) shows where the multilayer film 47 was formed. (C) shows where the first frame has been formed. (D) shows the case where a high-viscosity resist 48 (Shin-Etsu Chemical SIPR9332H) was applied. The resist 48 in this process is of high viscosity and is not only SIPR9332H manufactured by Shin-Etsu Chemical Co., Ltd., but also AZ4620 manufactured by Hext, STR1110 manufactured by Shipley, PMER manufactured by Tokyo Ohka Kogyo Co., Ltd. P-MH600MA-T— 1 is suitable. (E) shows that the second frame integrated with the first frame was formed by exposing and developing through a photomask.
第 5図は第 5図の工程における磁気ヘッ ド製造工程を示すその斜視図 である。 ( a ) は、 磁気ギャ ップ膜、 導体コィル 5 4及ぴ絶縁膜 5 3が 形成されたと ころを示す。 ( b ) は、 第一のフ レームを形成した所を示 す磁気へッ ドの斜視図である。 ( c ) は、 第一のフ レームと一体化して 第二のフ レームを形成したと ころを示す磁気へッ ドの斜視図である。 上 記方法によ リ形成したフ レーム用いてパーマロイ を電解めつ き し、 第 1 図に示すよ う に、 トラ ック幅 ( w 1 ) が 1 . 2 μ m, 高さ ( t ) が 3. 5 μ m, トラ ッ ク部分の上部の幅 ( w 2 ) が 1 . 4 jct m の上部磁気コアを 有する薄膜磁気ヘッ ドを作製する こ とができた。 ( t w 1 ) 比は 2. 9 である。 FIG. 5 is a perspective view showing a magnetic head manufacturing process in the process of FIG. (A) shows where the magnetic gap film, the conductor coil 54 and the insulating film 53 are formed. (B) is a perspective view of the magnetic head showing where the first frame is formed. (C) is integrated with the first frame FIG. 4 is a perspective view of a magnetic head showing a portion where a second frame is formed. The permalloy was electrolytically deposited using the frame formed by the above method, and as shown in Fig. 1, the track width (w1) was 1.2 μm and the height (t) was A thin-film magnetic head with an upper magnetic core of 3.5 μm and an upper width (w 2) of the track portion of 1.4 jct m was produced. The (tw 1) ratio is 2.9.
第 6 図は本発明の薄膜磁気ヘッ ド製造工程の断面図である (但し、 図 の拡大倍率は均一ではない) 。 ( a ) に、 磁気ギヤ ップ膜 6 3 , 導体コ ィル 6 5及ぴ絶縁膜 6 4 , 6 6 が形成されたと ころを示す。 ( b ) は、 高粘度のレジス ト 6 7 (信越化学製 SIPR9332H) を塗布し段差上で 5 μ πι の膜厚を得たと ころを示す。 レジス トの代り に感光性ポリ イ ミ ドゃ感光 性ベンゾシク ロブテンを用いても良い。 ( c ) は、 フ ォ トマスク を介し て、 露光, 現像を行い、 段差上にレジス ト 6 7 のパターンを形成したと ころ を示す。 ( d ) は、 上層に S i 含有レジス ト ( 日立化成製 R U— 1 6 0 0 P — 3 9 )を 1 . 4 μ πι, 下層に通常のレジス ト 6 7 (東京応化 製 0FPR8600 ) を 5 m積層 した多層膜 6 8 を形成したと ころを示す。 FIG. 6 is a cross-sectional view of the thin-film magnetic head manufacturing process of the present invention (however, the magnification of the figure is not uniform). (A) shows where the magnetic gap film 63, the conductor coil 65, and the insulating films 64, 66 are formed. (B) shows the case where a highly viscous resist 67 (Shin-Etsu Chemical SIPR9332H) was applied and a film thickness of 5 μπι was obtained on the step. Instead of the resist, photosensitive polyimide—photosensitive benzocyclobutene may be used. (C) shows that the resist 67 pattern was formed on the step by performing exposure and development through a photomask. (D) shows an Si-containing resist (Hitachi Chemical RU-1600 P-39) in the upper layer at 1.4 μππ, and a normal resist 67 (Tokyo Ohka 0FPR8600) in the lower layer. This shows the point where the multi-layered film 68 having m layers was formed.
( e ) は、 実施例 1 と同様に上層のレジス トにフ ォ トマスク を介して、 露光, 現像を行い先端部用の第一のフ レーム用のパターンを形成し、 上 層レジス トのパターンをマスクに下層部を酸素のリ アクティ ブイオンェ ツチングによ リ エッチングし、 フ レームを形成したと ころを示す。 (e) Exposes and develops the upper layer resist through a photomask to form a pattern for the first frame for the front end portion as in Example 1, and forms a pattern for the upper layer resist. This shows that the lower layer was re-etched by reactive ion etching of oxygen using the mask as a mask to form a frame.
ま たは、 第 4図と同様に、 上層に通常のレジス ト(東京応化製 0FPR800) を 0. 7 m塗布し、 中間膜と して S i 02 をスパッタ法で 0. 2 μ πι形 成し、 下層膜と して通常のレジス ト (東京応化製 0FPR8600 ) を 5 At m積 層 した多層膜を形成し、 上層のレジス トにフ ォ トマスク を介して、 露光, 現像を行い先端部用の第一のフ レーム用のパターンを形成後、 上層レジ ス トのパターンをマスク に中間膜の S i 02 を C H F 3 のリ アクティ ブ イオンエッチングによ リエッチングし、 この中間膜をマスク に下層のレ ジス 卜を酸素の リ アクティ ブイオンエッチングによ り エッチングし、 フ レームを形成しても良い。 ま た、 最上層のレジス トの露光は、 位相シフ ト法ゃ変形照明法によ り 、 露光しても良い し、 電子線レジス トを用いて、 電子線描画によ り露光しても良い。 上記方法によ り形成したフ レームを 用いてパーマロイ を電解めつ き し、 トラ ック幅 ( w l ) が 1 . 2 μ ιη , 高さ ( t ) が 3 . 5 ^ m, トラ ック部分の上部の幅 ( w 2 ) が 1 . 4 μ ιη の薄膜磁気ヘッ ドを作製する こ とができた ( t w 1 ) 比は 2 . 9 であ る。 Or, as in Fig. 4, a normal resist (Tokyo Oka 0FPR800) is applied to the upper layer for 0.7 m, and SiO 2 is used as an intermediate film in a 0.2 μππ form by sputtering. Then, as a lower film, a normal resist (Tokyo Ohka 0FPR8600) was laminated to form a multilayer film with a thickness of 5 Atm, and the upper resist was exposed and developed via a photomask to form a top layer. After forming the pattern for the first frame for The be sampled pattern as a mask S i 0 2 intermediate film re etched by the re active ion etching of CHF 3, Ri by the intermediate film underlying les Soo Bok Lee active ion etching of oxygen mask The frame may be formed by etching. Further, the exposure of the uppermost resist may be performed by a phase shift method or a modified illumination method, or may be performed by electron beam lithography using an electron beam resist. . The permalloy is electrolytically deposited using the frame formed by the above method, the track width (wl) is 1.2 μιη, the height (t) is 3.5 ^ m, and the track portion is The thin-film magnetic head with a width (w 2) of 1.4 μιη at the top of the thin film was fabricated (tw 1) ratio was 2.9.
本実施例において上記磁性膜及び下部磁性膜を次の電気めつ き法によ つて形成した。  In this embodiment, the magnetic film and the lower magnetic film were formed by the following electroplating method.
N i + 量 : 1 6 . 7 g Z l , F e + +量 : 2. 4 g / l を含み、 その他通 常の応力緩和剤, 界面活性剤を含んだめっ き浴において、 P H : 3 . 0 , めっ き電流密度 : 1 5 m A// cm2 の条件でフ レームめつ き した上 ' 下部 磁気コアを有する誘導型の薄膜磁気へッ ドを作製した。 トラ ック幅は 4. 0 να 、 ギャ ップ長は 0. 4 μ πι である。 この磁性膜の組成は 4 2 . 4 N i - F e (重量% ) であり 、 磁気特性は飽和磁束密度 ( B s ) が し 6 4 T, 困難軸保磁力(H CH)が 0. 5 0 e で比抵抗(p ) は 4 8. 1 t Q cinであった。 上部磁気コア 8 4 , 下部磁気コア 8 3 , コイル 8 7 で ある。 再生のための磁気抵抗効果型素子 8 6 , 磁気抵抗効果型素子にセ ンス電流を流すための電極 8 5 , 下部シール ド層 8 2 , スライ ダー 8 0 の構成を有する。 Ni + content: 16.7 g Zl, Fe ++ content: 2.4 g / l, and in a plating bath containing other usual stress relaxation agents and surfactants, PH: 3 2.0, an inductive thin-film magnetic head with upper and lower magnetic cores was fabricated under the conditions of plating current density: 15 mA / cm 2 . The track width is 4.0 να and the gap length is 0.4 μπι. The composition of this magnetic film is 42.4 Ni-Fe (% by weight), and the magnetic properties are as follows: saturation magnetic flux density (B s ): 64 T; hard axis coercive force (H CH ): 0.5 At 0 e, the specific resistance (p) was 48.1 t Q cin. The upper magnetic core 84, the lower magnetic core 83, and the coil 87. It has a magnetoresistive element 86 for reproduction, an electrode 85 for passing a sense current to the magnetoresistive element, a lower shield layer 82, and a slider 80.
第 7 図は、 本発明の磁気ディ スク装置に使用される薄膜磁気へッ ドの、 磁気コア先端部の構造の概略を示す。 符号 3 6 はポール厚さ, 下部磁性 膜 8 4 と上部磁性膜 8 3 とがへッ ド先端部で平行になっている長さは磁 気ギャ ップ深さ 3 8である。 符号 3 9 は下部磁性膜のディ スク対向面の 厚さ、 符号 3 5 は同じ く 上部磁性膜の厚さ、 3 7 は磁気ギャ ップ長であ る。 8 7 は導体コイルである。 大容量磁気ディ スク装置ではすでに書き 込まれている情報の上に新しい情報を直接書き込むというォ一バライ ト 方式が重要になる。 新しい書き込みの際に、 すでに書き込まれている情 報は、 新しい情報にとってノイズと して残るが、 その値は一 2 2 d B以 下の小さ な値にする ことが要求される。 FIG. 7 schematically shows the structure of the tip of the magnetic core of the thin-film magnetic head used in the magnetic disk device of the present invention. Symbol 36 is pole thickness, lower magnetism The length in which the film 84 and the upper magnetic film 83 are parallel at the tip of the head is a magnetic gap depth 38. Reference numeral 39 denotes the thickness of the disk-facing surface of the lower magnetic film, reference numeral 35 denotes the same thickness of the upper magnetic film, and reference numeral 37 denotes the magnetic gap length. 8 7 is a conductor coil. In a large-capacity magnetic disk device, an overwrite method that directly writes new information on already written information becomes important. At the time of a new write, the information that has already been written remains as noise for the new information, but its value is required to be as small as 122 dB or less.
そこで、 記録波長 0 . 6 8 t m , 浮上量 0 . 1 μ m, 磁気膜厚 0 . 0 6 t mの薄膜磁気ディ スク媒体 (スパッタ法で膜作製) について、 薄膜磁 気ディ スクの保磁力と、 薄膜磁気ヘッ ドから発生する磁界強さ との関係 を調べた。 結果、 必要なオーバライ ト特性を得るには H x≥ H c + 8 0 0 を満足するのが好ま しい。 こ こで、 H x は磁気ヘッ ドから発生する磁界 強さ、 H c は薄膜磁気ディ スクの保磁力である。 上記関係式を満足する よ う に薄膜磁気へッ ドから発生する磁界強さ を大き く するには、 ポール 厚さ を厚く する こ とが大切である。 これはポール厚さが厚い程、 磁気コ ァ先端部から薄膜磁気ディ スクの方に出る磁束が強く なるためである。 磁気ディ スク装置の記憶容量は、 電子計算機の高性能化にともなって 増加している。 この磁気ディ スク装置の高性能化を達成する一つの手段 は、 記録波長を短く する ことである。 Therefore, for a thin-film magnetic disk medium with a recording wavelength of 0.68 tm, a flying height of 0.1 μm, and a magnetic film thickness of 0.66 tm (film formation by sputtering), the coercive force of the thin-film magnetic disk and Then, the relationship with the magnetic field intensity generated from the thin-film magnetic head was examined. As a result, it is preferable to satisfy H x ≥ H c + 800 in order to obtain the required overwrite characteristics. In here, H x is the magnetic field strength generated from the magnetic heads, the H c is the coercive force of the thin film magnetic disks. In order to increase the magnetic field strength generated from the thin-film magnetic head so as to satisfy the above relational expression, it is important to increase the pole thickness. This is because the larger the pole thickness, the stronger the magnetic flux emitted from the tip of the magnetic core toward the thin-film magnetic disk. The storage capacity of magnetic disk units is increasing with the advancement of electronic computers. One means of achieving higher performance of this magnetic disk device is to shorten the recording wavelength.
そこで、 まず最初に、 記録波長が 0 . 6 8 μ m の場合について、 薄膜 磁気ヘッ ドの磁気コア材と して飽和磁束密度が 1 テスラのパーマロイ を 用い上部磁性膜と下部磁性膜および磁気ギヤ ップ長との総和 (ポール厚 さ ) とオーバライ ト特性の関係について調べた結果を第 8図に示す。 第 8図から、 オーバライ ト特性はポール厚さが増加する程高い値が得られ る、 オーバライ ト特性と しては一 2 2 d B以下が要求されるため、 ポー ル厚さは 5. 5 6 m 以上必要である。 この結果、 書き込み, 読み出 し特 性を満足し、 記録波長が 0. 6 8 μ m, ポール長 8. 6 μ mと し、 記録密 度について検討した。 オーバライ ト特性を一 2 2 d B以下に保ちながら ギャ ップ深さ を大き く 保っためには、 ギャ ップ長を 0. 2〜 0. 4 mに 保つこ とが有効である。 Therefore, first, for a recording wavelength of 0.68 μm, the upper magnetic film, lower magnetic film, and magnetic gear were made using permalloy with a saturation magnetic flux density of 1 Tesla as the magnetic core material of the thin-film magnetic head. Figure 8 shows the results of a study on the relationship between the sum of the gap length (pole thickness) and the over- write characteristics. From Fig. 8, it can be seen that the overwrite characteristics have higher values as the pole thickness increases. Since the overlay characteristics are required to be less than 22 dB, the pole thickness must be 5.56 m or more. As a result, the write and read characteristics were satisfied, the recording wavelength was 0.68 μm, and the pole length was 8.6 μm. The recording density was examined. In order to keep the gap depth large while maintaining the overwrite characteristics at less than 122 dB, it is effective to keep the gap length between 0.2 and 0.4 m.
ま た、 記録媒体の磁性膜厚は膜作製時の変動を考慮すると 0. 0 4〜 0. 0 6 m が好ま しい。 浮上量は耐摺動の観点から 0. 0 5 μ ιη 以上、 最小記録波長は 0. 3 μ m となる。  Further, the magnetic film thickness of the recording medium is preferably from 0.04 to 0.06 m in consideration of the fluctuation during film formation. The flying height is more than 0.05 μιη from the viewpoint of sliding resistance, and the minimum recording wavelength is 0.3 μm.
更に、 一 2 2 d B以下のオーバライ トが得られる記録波長とポール厚 さ , 磁気コア材の飽和磁束密度の積との関係から前述の式によって得ら れる結果は第 9図に示すよ う に、 斜線の上側で得られるものである。 第 1 0図に示すよ う に記録波長を 0. 5 t m 以下の高密度記載を達成する には飽和磁束密度を 1 テスラと した場合、 ポール厚さ を 5 μ πι以上とす べきであ り 、 下部磁性膜の厚さ を 2 mとすれば上部磁性膜を厚さ は約 3 μ πι以上となる。 その結果、 上部磁性膜の トラ ック幅 ( w l ) とその 厚さ ( t ) との比を 2以上となるよ う にする。  Figure 9 shows the results obtained from the above equation based on the relationship between the recording wavelength at which an overwrite of less than 122 dB can be obtained, the product of the pole thickness, and the saturation magnetic flux density of the magnetic core material. And those obtained above the oblique lines. As shown in Fig. 10, in order to achieve a high-density recording with a recording wavelength of 0.5 tm or less, the pole thickness should be 5 μπι or more when the saturation magnetic flux density is 1 Tesla. If the thickness of the lower magnetic film is 2 m, the thickness of the upper magnetic film is about 3 μπι or more. As a result, the ratio of the track width (w l) of the upper magnetic film to its thickness (t) is set to 2 or more.
第 1 1 図は本発明のイ ンダクティ ブ型の薄膜磁気へッ ドの断面図であ るが、 この薄膜ヘッ ドは上部シール膜 8 1 と、 その上に付着された前述 の磁性膜からなる上部磁性膜 8 4及び上部磁性膜 8 3からなる。 非磁性 絶縁体 8 9が層 8 4, 8 3の間に付着されている。 絶縁体の一部が磁気 ギャ ップ 8 8を規定し、 これは例えば周知技術によ りエア ' ペア リ ング 関係に書かれた磁性媒体と変換関係で相互作用する。 支持体はエア · ベ ァリ ング ( A B S ) を有するスライダーの形になっており 、 これはディ スク · フ ァイル動作中に回転するディ スクの媒体に近接し浮上関係にあ る。 FIG. 11 is a cross-sectional view of the inductive type thin film magnetic head of the present invention. This thin film head comprises an upper seal film 81 and the above-mentioned magnetic film adhered thereon. An upper magnetic film 84 and an upper magnetic film 83 are provided. A non-magnetic insulator 89 is attached between layers 84 and 83. A portion of the insulator defines a magnetic gap 88, which interacts in a transducing relationship with a magnetic medium written, for example, in an air-pairing relationship by well known techniques. The support is in the form of a slider having an air bearing (ABS), which is in close proximity to the media of the rotating disk during disk file operation and is in a floating relationship. You.
薄膜磁気へッ ドは上部磁性膜 8 4, 下部磁性膜 8 3 によ りできるバッ ク · ギャ ップ 9 0 を有するパック · ギャ ップ 9 0は介在するコイル 8 7 によ り磁気ギャ ップから隔てられている。  The thin-film magnetic head is a pack having a back gap 90 formed by the upper magnetic film 84 and the lower magnetic film 83, and the gap 90 formed by the interposed coil 87. Separated from the
連続しているコイル 8 7は例えばめつきによ り下部磁性層 8 3の上に 作った層になっており、 これらを電磁結合する。 コイル 8 7は非磁性絶 縁体 8 9で埋められてあるコイルの中央には電気接点があり、 同じく コ ィルの外端部終止点には電気接点と して更に大きな区域がある。 接点は 外部電線及び読み取り書き込み信号処理へッ ド回路 (図示略) に接続さ れている。  The continuous coil 87 is a layer formed on the lower magnetic layer 83 by, for example, plating, and these are electromagnetically coupled. Coil 87 has an electrical contact in the center of the coil, which is filled with non-magnetic insulator 89, and also has a larger area at the outer end of the coil as an electrical contact. The contacts are connected to an external electric wire and a read / write signal processing head circuit (not shown).
本発明においては、 単一の層で作られたコイル 8 7が、 やや歪んだ楕 円形をしており、 その断面積の小さい部分が磁気ギヤ ップに最も近く配 置され、 磁気ギャ ップからの距離が大きく なるにつれ、 断面積が徐々に 大きく なる。  In the present invention, the coil 87 made of a single layer has a slightly distorted elliptical shape, and a portion having a small cross-sectional area is disposed closest to the magnetic gap. As the distance from becomes larger, the cross-sectional area gradually increases.
ノ ック · ギャ ップ 9 6は磁気ギャ ップの A B Sに相対的に近く位置し ている。  Knock gap 96 is located relatively close to the magnetic gap ABS.
本実施例によれば、 面記録密度 1 ギガビッ トノ i n 2 以上での記録が 可能になるとともに、 読み出しにおける出力変動率が 5 %以下のきわめ て安定した電磁変換特性が得られることが分った。 特に、 上部磁気コア の トラック幅を と し、 その厚さを 2 . Ο μ ιηしたものは 4ギガ ビッ ト/ i n 2 以上の面記録密度が得られるとともに読み出しにおける 変動率も 2 %以下と低いものであった。 According to this example, it was found that recording was possible at an areal recording density of 1 gigabit in 2 or more, and extremely stable electromagnetic conversion characteristics with an output fluctuation rate of 5% or less during reading were obtained. . In particular, when the track width of the upper magnetic core is assumed to be 2.Ο μιη, the areal recording density of 4 gigabits / in 2 or more is obtained and the fluctuation rate in reading is as low as 2% or less. Was something.
(実施例 2 )  (Example 2)
第 1 1図は実施例 1 の薄膜磁気へッ ドを記録用へッ ドに用い、 再生用 に磁気抵抗効果型へッ ドを用いた一体型の記録再生分離へッ ドの概念図 である。 記録再生分離型ヘッ ドは、 本発明の素子を用いたイ ンダクティ ブ型の記録ヘッ ド, 再生ヘッ ドと、 及び、 漏れ磁界による再生ヘッ ドの 混乱を防止するためのシール ド部からなる。 こ こでは水平磁気記録用の 記録へッ ドとの搭載を示したが、 本発明の磁気抵抗効果素子を垂直磁気 記録用のヘッ ドと組合わせ、 垂直記録に用いても良い。 ヘッ ドは、 基体Fig. 11 is a conceptual diagram of an integrated recording / reproducing separation head using the thin-film magnetic head of Example 1 as a recording head and a magnetoresistive head for reproduction. It is. The recording / reproducing separation type head includes an inductive recording / reproducing head using the element of the present invention, and a shield portion for preventing the reproducing head from being confused due to a leakage magnetic field. Here, the mounting with the recording head for horizontal magnetic recording has been described, but the magnetoresistive element of the present invention may be combined with the head for perpendicular magnetic recording and used for perpendicular recording. The head is the substrate
8 0上に下部シール ド膜 8 2 , 磁気抵抗効果膜 8 6及び電極 8 5 , 下部 シール ド膜 8 1 からなる再生へッ ドと、 上部磁性膜 8 4 , コイル 8 7, 下部磁性膜 8 3 からなる記録へッ ドと を形成してなる。 このヘッ ドによ つて、 記録媒体上に信号を書き込み、 ま た記録媒体から信号を読み取る のである。 再生ヘッ ドの感知部分と、 記録ヘッ ドの磁気ギャ ップはこの よう に同一スライ ダー上に重ねた位置に形成する こ とで、 同一 トラ ック に同時に位置決めができる。 このヘッ ドをスライダ一に加工し、 磁気記 録再生装置に搭載した。 9 1 は磁区制御膜である。 A reproducing head composed of a lower shield film 82, a magnetoresistive film 86, an electrode 85, and a lower shield film 81, a top magnetic film 84, a coil 87, and a lower magnetic film 8 And a recording head consisting of three. With this head, a signal is written on a recording medium and a signal is read from the recording medium. By forming the sensing part of the reproducing head and the magnetic gap of the recording head on the same slider in this way, they can be positioned simultaneously on the same track. This head was machined into a slider and mounted on a magnetic recording and playback device. 9 1 is a magnetic domain control film.
第 1 2 図は本実施例で用いた磁気抵抗効果型へッ ドと してスピンバル ブ磁気抵抗効果膜を用いた磁気ヘッ ド ( M Rセンサ) の部分断面図であ る。  FIG. 12 is a partial cross-sectional view of a magnetic head (MR sensor) using a spin-valve magnetoresistive film as the magnetoresistive head used in this embodiment.
本発明の M Rセンサは、 ガラス, セラ ミ ックのよ う な適切な基板 9 の 上に、 ピン層となるパーマロイ合金からなる軟質強磁性体の第 1磁性層 1 0 , 非磁性金属層 1 、 及び固定層となるパーマロイ合金からなる強磁 性体の第 2磁性層 2 を付着させた構造である。 強磁性層 1 0及び 2 は、 磁界が印加されていない場合は、 個々の磁化方向が約 9 0度の角度差に なるよ う にする。 さ らに、 第 2磁性層 2 の磁化方向は、 磁性媒体の磁界 方向と同じ方向に固定される。 磁界が印加されていない場合の軟質強磁 性体の第 1磁性層 1 0 の磁化方向は第 2磁性層 2 の磁界方向に対して The MR sensor of the present invention includes a first ferromagnetic layer 10 of a soft ferromagnetic material made of a permalloy alloy serving as a pin layer and a nonmagnetic metal layer 1 on a suitable substrate 9 such as glass or ceramic. And a second magnetic layer 2 of a ferromagnetic material made of a permalloy alloy serving as a fixed layer. The ferromagnetic layers 10 and 2 are arranged such that when no magnetic field is applied, the individual magnetization directions have an angular difference of about 90 degrees. Further, the magnetization direction of the second magnetic layer 2 is fixed to the same direction as the magnetic field direction of the magnetic medium. When no magnetic field is applied, the magnetization direction of the first magnetic layer 10 of the soft ferromagnetic material is in relation to the magnetic field direction of the second magnetic layer 2.
9 0度傾いている。 印加された磁界に感応して第 1 磁性層 1 0 に磁化回 転が生じ変化する。 90 degrees inclined. The magnetization is applied to the first magnetic layer 10 in response to the applied magnetic field. Rolling occurs and changes.
本実施例における第 1磁性層 1 0, 非磁性金属層 1 , 第 2磁性層 2及 ぴ反強磁性体層 3は後述する第 1 6図, 第 1 7図, 第 1 8図, 第 2 0図 に示した積層構造で用いた膜構成を用いることができ、 また、 硬質強磁 性層 7 には C o 8 2 C r a P t a , C o s o C r 8 P t 8 ( Z r 0 2 ) 3を用いるこ とができる。 これらの第 1 6図, 第 1 7図及び第 1 8図の膜構成は本実 施例における第 1磁性層 1 0 と第 2磁性層 2 に相当する膜構成を有し、 それらの磁界方向は前述と同様に形成されている。 In this embodiment, the first magnetic layer 10, the nonmagnetic metal layer 1, the second magnetic layer 2, and the antiferromagnetic material layer 3 are described later with reference to FIGS. 0 can be used film structure used in the laminate structure shown in FIG., Moreover, a hard strong magnetic layer 7 C o 8 2 C ra P ta, C oso C r 8 P t 8 (Z r 0 2 ) 3 can be used. The film configurations of FIGS. 16, 17 and 18 have film configurations corresponding to the first magnetic layer 10 and the second magnetic layer 2 in this embodiment, and their magnetic field directions. Are formed in the same manner as described above.
本実施例では軟質強磁性体の第 1磁性層 1 0の付着を行う前に、 例え ば、 T a, R u、 又は C r Vのような適切な下部膜 5 を基板 9の上に付 着させる。 下部膜 5を付着させる目的は、 後に付着させる層の組織, 結 晶粒度、 及び形態を最適化させるためである。 層の形態は、 大きな M R 効果を得るのに非常に重要である。 それは層の形態によって非磁性金属 層 1 の非常に薄いスぺ一サ層を利用することができるからである。 さ ら に分流による影響を最小にするために、 下部層は高電気抵抗がよい。 下 部層は前述したように逆構造と しても使用できる。 基板 9は十分な高電 気抵抗で、 十分に平面であり、 且つ適切な結晶構造の場合は、 下部膜 5 は不要である。  In this embodiment, an appropriate lower film 5 such as, for example, Ta, Ru, or CrV is applied on the substrate 9 before the first magnetic layer 10 of the soft ferromagnetic material is deposited. To wear. The purpose of attaching the lower film 5 is to optimize the structure, crystal grain size, and morphology of the layer to be attached later. Layer morphology is very important for obtaining a large MR effect. This is because a very thin spacer layer of the nonmagnetic metal layer 1 can be used depending on the form of the layer. In addition, the lower layer should have high electrical resistance to minimize the effects of shunting. The lower layer can be used in an inverted structure as described above. If the substrate 9 has a sufficiently high electric resistance, is sufficiently flat, and has an appropriate crystal structure, the lower film 5 is unnecessary.
第 1磁性層 1 0は、 紙面に平行な方向に単一の ドメイン状態に保持さ せるための縦方向にバイアスを生じさせる手段が用いられる。 縦方向に バイアスを生じさせる手段は、 高飽和保磁力, 高直角度、 且つ、 高電気 抵抗を有する硬質強磁性層 7が用いられる。 硬質強磁性層 7は、 軟質強 磁性体の第 1磁性層 1 0の端部の領域に接触している。 硬質強磁性層 7 の磁化方向は、 紙面に平行である。  As the first magnetic layer 10, means for generating a bias in the vertical direction for maintaining a single domain state in a direction parallel to the paper surface is used. As means for generating a bias in the vertical direction, a hard ferromagnetic layer 7 having a high coercive force, a high squareness, and a high electric resistance is used. The hard ferromagnetic layer 7 is in contact with the region of the end of the first magnetic layer 10 of the soft ferromagnetic material. The magnetization direction of the hard ferromagnetic layer 7 is parallel to the paper.
反強磁性層を第 1磁性層 1 0の端部の領域に接触させて付着させるこ とができ、 必要な縦方向のバイアスを生じさせる。 これらの反強磁性層 は、 強磁性体の第 2磁性層 2の磁化方向を固定させるために用いられる 反強磁性層 3 よ リも十分に異なるブロッキング温度を有するものが良い。 次に、 例えば、 T aのような高抵抗の材料のキヤ ヅビング層が、 M R センサ上部全体に付着させられるのが好ま しい。 電極 8が備えられ、 M Rセンサ構造体と電流源及び検知手段間に回路が形成される。 The antiferromagnetic layer is brought into contact with and attached to the end region of the first magnetic layer 10. To produce the required vertical bias. These antiferromagnetic layers preferably have sufficiently different blocking temperatures than the antiferromagnetic layer 3 used to fix the magnetization direction of the ferromagnetic second magnetic layer 2. Next, a layer of a high resistance material such as Ta is preferably deposited over the entire MR sensor. An electrode 8 is provided, and a circuit is formed between the MR sensor structure and the current source and the detecting means.
第 1 3図は負圧スライダーの斜視図である。 負荷スライダー 7 0は、 空気導入面 7 9 と浮揚力を発生する 2つの正圧発生面 7 7, 7 7 とに囲 まれた負圧発生面 7 8 を有し、 さ らに空気導入面 7 9並びに 2つの正圧 発生面 7 7 , 7 7 と負圧発生面 7 3 との境界において負圧発生面 7 8 よ リ段差の大きい溝 7 4とから構成される。 なお、 空気流出端 7 5には磁 気ディスクに情報の記録を行う後述するインダクティ ブ型の記録ヘッ ド と再生を行う前述の M Rセンサとが前述の第 2 1 図に示す概略構造の記 録再生分離型の薄膜磁気へッ ドエレメン ト 7 9 を有する。  FIG. 13 is a perspective view of a negative pressure slider. The load slider 70 has a negative pressure generation surface 78 surrounded by an air introduction surface 79 and two positive pressure generation surfaces 77, 77 for generating a levitation force. At the boundary between the positive and negative pressure generating surfaces 77, 77 and the negative pressure generating surface 73, a groove 74 having a larger step than the negative pressure generating surface 78 is formed. At the air outflow end 75, an inductive type recording head for recording information on a magnetic disk and an MR sensor for reproducing, which will be described later, record the schematic structure shown in FIG. It has a reproduction-separated thin-film magnetic head element 79.
負圧スライダー 7 0の浮上時においては、 空気導入面 7 9から導入さ れた空気は負圧発生面 7 3で膨張されるが、 その際に溝 7 4に向かう空 気の流れも作られるため、 溝 7 4の内部にも空気導入面 7 9から空気流 出端 7 5に向かう空気の流れが存在する。 したがって、 負圧スライダー 7 0の浮上時に空気中に浮遊する塵芥が空気導入面 7 9から導入された と しても溝 7 4の内部へ導入され、 溝 7 4内部の空気の流れによって押 し流され、 空気流出端 7 8 よ り負圧スライダー 7 0の外へ排出されるこ とになる。 また負圧スライダー 7 0の浮上時には溝 4内部には常に空気 の流れが存在し澱み等がないため、 塵芥が凝集することもない。  When the negative pressure slider 70 floats, the air introduced from the air introduction surface 79 is expanded on the negative pressure generation surface 73, and at that time, the air flows toward the groove 74. Therefore, an air flow from the air introduction surface 79 to the air outflow end 75 also exists inside the groove 74. Therefore, even if the dust floating in the air when the negative pressure slider 70 rises is introduced from the air introduction surface 79, it is introduced into the groove 74, and is pushed by the air flow inside the groove 74. The air is discharged from the negative pressure slider 70 from the air outflow end 78. Further, when the negative pressure slider 70 floats, there is always air flow inside the groove 4 and there is no stagnation or the like, so that dust does not aggregate.
第 1 4図に本発明の一例である磁気ディスク装置の全体図を示す。 本 磁気ディスク装置の構成は、 情報を記録するための磁気ディスク 2 4、 これを回転する手段の D Cモータ (図面省略) , 情報を書き込み, 読み 取りするための磁気へッ ド 2 7 、 これを支持して磁気ディ スク に対して 位置を変える手段の位置決め装置、 即ち、 ァクチユエ一タ とポイスコィ ルモータ、 及び装置内部を清浄に保っためのエアフ ィルタ などからなる。 ァクチユエータは、 キャ リ ッジ, レール, 軸受からなリ 、 ボイスコイル モータ はボイ スコイル, マグネッ トからなる。 これらの図では、 同一の 回転軸に 4枚の磁気ディ スク を取付け、 合計の記憶容量を大き く した例 を示している。 FIG. 14 shows an overall view of a magnetic disk drive which is an example of the present invention. The configuration of this magnetic disk drive is a magnetic disk 24 for recording information, A DC motor (not shown) for rotating this, a magnetic head 27 for writing and reading information, and a positioning device for means for supporting and changing the position with respect to the magnetic disk, that is, It consists of an actuator, a poiscoil motor, and an air filter to keep the inside of the equipment clean. The actuator consists of a carriage, rails and bearings, and the voice coil motor consists of a voice coil and a magnet. These figures show an example in which four magnetic disks are mounted on the same rotating shaft to increase the total storage capacity.
第 1 5 図は本発明に係る磁気ディ スク装置の平面図である。 図におい て、 2 4は磁気ディ スク、 2 7 は磁気ヘッ ド、 2 8 はジンバル系支持装 置、 2 6 はァクチユエータ (位置決め装置) である。 磁気ディ スク 2 4 は回転駆動機構によ り 、 矢印 aの方向に回転駆動される。 磁気ヘッ ド 2 7 は支持装置によって支持され、 ァクチユエ一タ 2 6 によ り 、 回転直 径 0 , 上で、 矢印 b , ま たは b 2 の方向に駆動されて位置決めされ、 そ れによ って所定のシリ ンダ T , 〜 T n において、 磁気記録, 再生が行わ れる。 FIG. 15 is a plan view of a magnetic disk device according to the present invention. In the figure, 24 is a magnetic disk, 27 is a magnetic head, 28 is a gimbal system support device, and 26 is an actuator (positioning device). The magnetic disk 24 is driven to rotate in the direction of arrow a by a rotation drive mechanism. Magnetic heads 2 7 is supported by the supporting device, Ri by the Akuchiyue Ichita 2 6, the rotation diameter 0, on the arrow b, or is positioned is driven in the direction of b 2, its Reniyo predetermined Siri I Sunda T, in ~ T n, the magnetic recording, reproduction is performed.
磁気ディ スク 2 4は表面粗さ R Μ Α Χ が 1 0 0 人以下、 望ま し く は 5 0 人以下の表面性の良好な媒体とする。 磁気ディ スク 2 4は、 剛性基体の 表面に真空成膜法によって磁気記録曆を形成してある。 真空成膜法によ つて形成される磁気記録層の膜厚は 0 . 5 μ m 以下であるので、 剛性基 体の表面性がそのま ま記録層の表面性と して反映される。 従って、 剛性 基体は、 表面粗さ R M A X が 1 0 O A以下のものを使用する。 そのよ う な 剛性基体と しては、 ガラス, 化学強化されたソ一ダアルミ ノ珪酸ガラス またはセラ ミ ック を主成分とする剛性基体が適している。 The magnetic disk 24 is a medium having a surface roughness R Μ Α Χ of 100 or less, preferably 50 or less, and having good surface properties. The magnetic disk 24 has a magnetic recording layer formed on a surface of a rigid substrate by a vacuum film forming method. Since the thickness of the magnetic recording layer formed by the vacuum film forming method is 0.5 μm or less, the surface properties of the rigid substrate are directly reflected as the surface properties of the recording layer. Therefore, a rigid substrate having a surface roughness RMAX of 10 OA or less is used. As such a rigid substrate, a rigid substrate mainly composed of glass, chemically reinforced soda-aluminosilicate glass or ceramic is suitable.
また、 磁性層が金属や合金などの場合には、 表面に酸化物層, 窒化物 層を設けるか、 表面を酸化皮膜とするのが望ま しい。 また、 炭素保護膜 の使用等も望ま しい。 こうすることによ り 、 磁気記録層の耐久性が向上 し、 極く低浮上量で記録再生する場合や、 コンタク ト, スタート, ス ト ップ時においても、 磁気ディスクの損傷を防止できる。 酸化物層及び窒 化物層は、 反応性スパッタ, 反応性蒸着等によって形成できる。 また、 酸化皮膜は、 磁気記録層の表面を、 反応性プラズマ処理等によ り、 意図 的に酸化して形成できる。 磁気ディスクは、 磁気記録層の記録残留磁化 が膜面に対して垂直方向の成分を主成分とする垂直記録, 膜面内成分を 主成分とする面内記録のいずれであってもよい。 図示は省略したが、 磁 気記録層の表面に潤滑剤を塗布してもよい。 When the magnetic layer is made of metal or alloy, an oxide layer, a nitride, It is desirable to provide a layer or make the surface an oxide film. It is also desirable to use a carbon protective film. By doing so, the durability of the magnetic recording layer is improved, and damage to the magnetic disk can be prevented even when recording / reproducing with an extremely low flying height or during contact, start, and stop. The oxide layer and the nitride layer can be formed by reactive sputtering, reactive evaporation, or the like. The oxide film can be formed by intentionally oxidizing the surface of the magnetic recording layer by a reactive plasma treatment or the like. The magnetic disk may be either perpendicular recording in which the recording residual magnetization of the magnetic recording layer is a component perpendicular to the film surface as a main component, or in-plane recording in which the in-plane component is a main component. Although not shown, a lubricant may be applied to the surface of the magnetic recording layer.
しかし楕円形コイルはバック · ギャップ 9 6 と磁気ギャ ップ 8 8 との 間で比較的密に多数本入っており、 コイルの幅乃至断面直径はこの区域 では小さい。 更に、 磁気ギャ ップから最も遠い部分での大きな断面直径 は電気抵抗の減少をもたらす。 更に、 楕円 (長円) 形コイルは角や鋭い 隅や端部を持たず、 電流への抵抗が少ない。 又、 楕円形状は矩形や円形 (環状) コイルに比べ導電体の全長が少なく て済む。 これらの利点の結 果、 コイルの全抵抗は比較的少なく 、 発熱は少なく 、 適度の放熱性が得 られる。 熱を相手量減らすので、 薄膜層の層崩れ、 伸長, 膨張は防止さ れ、 A B Sでのポール · チップ突出の原因が除かれる。  However, many of the elliptical coils are relatively densely packed between the back gap 96 and the magnetic gap 88, and the width or cross-sectional diameter of the coil is small in this area. In addition, a large cross-sectional diameter at the portion farthest from the magnetic gap results in a decrease in electrical resistance. In addition, elliptical (elliptical) coils have no corners, sharp corners or edges, and have low resistance to current. In addition, the elliptical shape requires less overall length of the conductor than a rectangular or circular (annular) coil. As a result of these advantages, the total resistance of the coil is relatively small, heat generation is small, and appropriate heat dissipation is obtained. Since the amount of heat is reduced, the thin film layer is prevented from collapsing, extending and expanding, and the cause of the pole-tip protrusion in the ABS is eliminated.
幅の変化がほぼ均一に進む楕円形コィル形状は、 スパッタ リ ングゃ蒸 着等よ り安価な従来のめっき技術で付着できる。 他の形状特に角のある 形のコイルではめつき付着が不均一な幅の構造になり易い。 角や鋭や端 縁部の除去はでき上ったコイルによ リ少ない機械的ス トレスしか与えな い  An elliptical coil shape in which the change in width progresses almost uniformly can be attached by a conventional plating technique that is less expensive than sputtering or evaporation. In coils with other shapes, especially angular shapes, the adhesion tends to be uneven in width. Removal of corners, sharps and edges gives less mechanical stress to the finished coil
本実施例では多数巻回したコィルがほぼ楕円形状で磁気コア間に形成 され、 コイル断面径は磁気ギャ ップからバック · ギャ ップに向けて徐々 に拡がっており 、 信号出力は増加し、 発熱が減少される。 In this embodiment, the coil wound in a number of turns is almost elliptical and formed between the magnetic cores. The coil cross-section diameter gradually expands from the magnetic gap toward the back gap, so that the signal output increases and the heat generation decreases.
本実施例の磁気コアの結晶粒径は 1 0 0 ~ 5 0 0人とな り 、 困難軸保 磁力が し 0 0 e 以下であった。  The crystal grain size of the magnetic core of this example was 100 to 500, and the hard axis coercive force was less than or equal to 100 e.
本実施例による記録ヘッ ドの性能 (オーバーライ ト特性) を測定した 結果、 4 0 MH z以上の高周波領域でも— 5 0 d B程度の優れた記録性 能が得られた。  As a result of measuring the performance (overwrite characteristics) of the recording head according to the present example, an excellent recording performance of about −50 dB was obtained even in a high frequency region of 40 MHz or more.
本実施例によれば、 高保磁力媒体に対しても、 高周波領域でも十分に 記録可能であ り 、 メディ ァ転送速度 1 5 MB Z秒以上, 記録周波数 4 5 MH z以上, 磁気ディ スク 4 0 0 0 rpm 以上のデータの高速転送, ァク セス時間の短縮, 記録容量の増大と、 異方性磁気抵抗効果を基礎と して 優れた MR効果を有する高感度の MRセンサが得られる こ とから面記録 密度と して 3 G b / i n 2 以上との磁気ディ スク装置が得られるもので ある。 According to this embodiment, it is possible to sufficiently record even on a high coercive force medium even in a high frequency region, a media transfer speed of 15 MB Z seconds or more, a recording frequency of 45 MHz or more, and a magnetic disk 40. A high-sensitivity MR sensor with excellent MR effect based on the anisotropic magnetoresistive effect and high-speed transfer of data at 0 rpm or higher, shortening access time, increasing recording capacity, and the like. Thus, a magnetic disk device having an areal recording density of 3 Gb / in 2 or more can be obtained.
(実施例 3 )  (Example 3)
第 1 6図は実施例 2の MRセンサに代えて用いた本実施例の磁気抵抗 効果型ヘッ ドの構造である。 まず軟磁性膜の S A L 1 6 , 分離膜 2 0お よび MR膜 1 3 を順次成膜した。 MR膜 1 3 と してパーマロイ合金であ る 8 0 a t % N i — F eを用いた。 その後、 中央能動領域上にステンシ ル状のホ トレジス トを形成した。 続いて このレジス ト材によってマスク されていない領域の上記 S A L 1 6 , 上記分離膜 2 0および上記 M R膜 FIG. 16 shows the structure of the magnetoresistive head of this embodiment used in place of the MR sensor of the second embodiment. First, a soft magnetic film SAL 16, a separation film 20, and an MR film 13 were sequentially formed. As the MR film 13, a permalloy alloy of 80 at% Ni—Fe was used. Then, a stencil-shaped photoresist was formed on the central active area. Subsequently, the SAL 16, the separation film 20, and the MR film in an area not masked by the resist material are used.
1 3 をイオンミ リ ングによ り 除去した。 このと き基板をイオンビームに 対し適切な角度を維持したま ま回転させる こと によ り末広がり のテーパ13 was removed by ion milling. At this time, the substrate is rotated while maintaining an appropriate angle with respect to the ion beam, so that the divergent taper
5を形成した。 次に端部受動領域を形成する永久磁石膜 1 7および電極 膜 8 を付着した。 永久磁石膜 1 7 と して 0 0。.821"。.。9卩 1; 0.。9膜又 は〇 0 。 . 8。〇 。. 。8 ? 1:。 . 。9 (2 1" 02)。.。3 膜を用いた。 今回の永久磁 石膜 1 7は R Fスパッタ法によ り形成し、 ターゲッ ト上に Z r 02 チッ プを配置する ことによ り C o C r P t膜中の Z r 02 濃度を調節した。 永久磁石膜 1 7の膜厚は中央能動領域に与えるバイアス磁界が 5 formed. Next, a permanent magnet film 17 and an electrode film 8 forming an end passive region were attached. 0 0 as the permanent magnet film 17. . 821 "... 9卩1; 0 .. 9 film or Is 〇 0. 8 . 〇 . 8 ? 1 :. . 9 (2 1 "0 2 ) ... 3 films were used. The permanent magnet film 17 in this case was formed by RF sputtering, and the ZrO 2 chip was placed on the target. yo Ri C o C r was adjusted P t Z r 0 2 concentration in the film. the film thickness of the permanent magnet film 1 7 is a bias magnetic field applied to the central active region
(-^ θ. 82 ^ Γ ο . Οθ Ι t o . 09 ^ 0. 800 Γ o . 08 Ι θ . 09、^< Γ θ 2ノ 0. 03 膜で同 じになるよ うそれぞれ 5 0 n m, 5 2 n mに選んだ。 それぞれの 永久磁石膜の保磁力は 6 0 00 e及び 1 2 0 0 O eであった。 ステンシ ル上に付着した永久磁石膜および電極膜は、 リ フ トオフ によ リ ステンシ ルと共に除去した。 S A L 1 6は M R膜 1 3 に横バイアス磁界 4を印加 するものであ り 、 永久磁石膜 1 7は M R膜 1 3 に縦バイ アス磁界 6 を印 加するものである。 永久磁石膜 1 7は M R膜 1 3 を所定の形状に作成し た後 S A L 1 6 , 分離膜 1 8及び MR膜 1 3の合計の厚さ よ り薄く積層 され、 1^ 1¾膜 1 3の部分に残らないよ う に除去され、 M R膜 1 3 との端 部で残るよ う にテーパが形成される。 更に、 その後電極膜 8が形成され M R膜 1 3 との接触部でテ一パが形成される。 1 9は 0.4 μ ιη の厚さ のアルミナの下部ギャ ップ膜、 1 8は約 2 μ πχの N i F e合金からなる 下部シール ド膜、 1 4は基板 9の表面にアルミナの絶縁膜を 1 0 の 厚さで形成し研摩して基板 9の表面を平滑にするためのものである。 基 板 9は T i C含有アルミナ焼結体が用いられる。 分離膜 2 0は 2 0 0 A の T a膜が用いられる。 MR膜 1 3は厚さ 4 0 0人の 8 0 a t % N i ― F e合金が用いられる。  (-^ θ. 82 ^ ο ο. Οθ Ι to. 09 ^ 0.800 Γ o. 08 Ι θ .09, ^ <Γ θ2 no 0.03 The coercive force of each permanent magnet film was 60000 e and 1200 Oe.The permanent magnet film and electrode film attached on the stencil were lifted off. The SAL 16 applies a lateral bias magnetic field 4 to the MR film 13, and the permanent magnet film 17 applies a vertical bias magnetic field 6 to the MR film 13. After the MR film 13 is formed into a predetermined shape, the permanent magnet film 17 is laminated thinner than the total thickness of the SAL 16, the separation film 18 and the MR film 13, and the 1 11¾ film 1 The taper is formed so as not to remain at the portion 3 and tapered so as to remain at the end with the MR film 13. Further, the electrode film 8 is formed thereafter, and the tape is formed at the contact portion with the MR film 13. 1 9 is 0 .4 μ ιη thickness of alumina lower gap film, 18 is a lower shield film made of about 2 μπχ NiFe alloy, 14 is an alumina insulating film on the surface of substrate 9. It is formed to a thickness of 0 and polished to smooth the surface of the substrate 9. The substrate 9 is made of a TiC-containing alumina sintered body. The Ta film is used The MR film 13 is made of an 80 at% Ni-Fe alloy with a thickness of 400 persons.
これらのへッ ドの電気磁気変換特性を測定した結果、 出力変動 2 0 % 波形変動 1 0 %であった C o。 .82 C r。 .。 9 P t。 .。 9膜を用いたへッ ドに 対し、 C o。.8。 C r。.。8 P t。.。9 (Z r 02)。.。3 膜を用いたヘッ ドでは 出力変動 5 %以内, 波形変動 5 %以内に低減する ことができた。 よって C o。.8。 C r 0.。8 P t。.。9 (Z r O2 ) o . 0 3 膜を永久磁石膜に用いる こと によ り B H N及び波形変動抑制効果が高く なる こと を確認した。 As a result of measuring the electromagnetic conversion characteristics of these heads, the output variation was 20%, and the waveform variation was 10%. 82 C r. .. 9 Pt. .. Co for a head using 9 membranes. 8 . C r. .. 8 Pt. .. 9 (Z r 0 2). .. With a head using three films, the output fluctuation was reduced to within 5% and the waveform fluctuation was reduced to within 5%. Therefore C o. 8 . C r 0 .. 8 Pt. .. It has been confirmed that the use of the 9 (ZrO 2 ) o.03 film as the permanent magnet film enhances the effect of suppressing BHN and waveform fluctuation.
中央能動領域は MR膜, 横バイアスを印加するソフ 卜バイアス膜であ る S A L 1 6 と前記 2磁性膜を分離する分離膜 2 0 を有する。 端部受動 領域は中央能動領域に縦バイアスを印加する永久磁石膜 1 7 よ リ構成さ れる。 端部接合領域は中央能動領域に二つのテーパを有している。  The central active region has an MR film, a SAL 16 as a soft bias film for applying a lateral bias, and a separation film 20 for separating the two magnetic films. The end passive region is composed of a permanent magnet film 17 that applies a longitudinal bias to the central active region. The end junction region has two tapers in the central active region.
この永久磁石膜 1 7は、 永久磁石膜からの漏洩磁界と、 永久磁石膜と 中央能動領域との接合領域での結合磁界によ り 中央能動領域に縦バイァ スを与える。 永久磁石膜は B HN抑制のために磁気媒体からの磁界に対 して安定に中央能動領域に磁界を印加する必要がある。 このためには永 久磁石膜の保磁力と して 1 0 0 00 e以上が必要である。 永久磁石膜は C o P t , C o C r P t等の永久磁石膜が用いられる。 C o系磁性膜は C r等の下地膜を用いる ことによ り高保磁力が得られる。  The permanent magnet film 17 gives a longitudinal bias to the central active region by a leakage magnetic field from the permanent magnet film and a coupling magnetic field at a junction region between the permanent magnet film and the central active region. The permanent magnet film needs to apply a magnetic field to the central active region stably against the magnetic field from the magnetic medium to suppress BHN. For this purpose, the permanent magnet film needs to have a coercive force of 1000 e or more. As the permanent magnet film, a permanent magnet film such as CoPt or CoCrPt is used. A high coercive force can be obtained by using an underlayer such as Cr for the Co-based magnetic film.
磁気抵抗効果膜にバイアス磁界を印加するための軟磁性膜からなる S A L 1 6 と して、 8 0原子%ニッケル及び残部鉄からなる磁性合金に 酸化ジルコニウムを 1 0 %添加した軟磁性膜を、 スパッタ リ ング法によ つて 4 0 0人形成する。 スパッタ リ ングはニッケル—鉄合金ターゲッ ト 上に酸化ジルコニウムチップを配置したターゲッ トを用いて行った。 ス パッタ リ ングの際の A r ガス圧は 2 mTorrと した。 また、 基板温度は室 温と した。 さ らにその上部に上部ギヤ ップ膜と してアルミナ膜を 0. 3 β m , さ らにその上部に上部磁気シール ドを形成する。 さ らにその上部 に絶縁膜を形成後、 記録用の誘導型磁気へッ ドを作製するが詳細は省略 する。 この後、 基板を切断, スライ ダーに加工して磁気抵抗効果型磁気 へッ ドの作製を完了する。 次に本実施例の磁気抵抗効果型磁気へッ ドの 特性について述べる。 磁気抵抗効果型磁気へッ ドの評価は再生出力で行 つた。 本実施例の磁気ヘッ ド及び、 比較のために同様の構造でバイアス 膜に 5 %ニオブを添加したニッケル一鉄合金を用いたへッ ドについて行 つた。 本実施例の酸化ジルコ二ゥムを添加 したバイァス膜は飽和磁束密 度が 0 . 7 T で、 比抵抗が約 1 2 0 Ω cmであるのに対し、 比較のため の 5 %ニオブを添加したニッケル一鉄膜では飽和磁束密度 0 . 6 T 、 比 抵抗が 7 0 μ Ω cmであった。 ニオブを 5 %添加したニッケル一鉄膜をバ ィァス膜に用いた磁気抵抗効果型磁気ヘッ ドの再生出力は、 1 0 M H z の周波数で約 4 0 Ο μ νであったのに対し、 本発明の磁気へッ ドは 1 0 %大きな約 4 4 0 Vであった。 これは、 ニオブを添加したニッケル一 鉄合金膜をバイアス膜と したへッ ドでは、 バイアス膜の比抵抗が小さい ため、 検出電流が磁気抵抗効果膜とバイアス膜の両方に流れ、 読み出さ れる抵抗の変化が小さ く なるためである。 ニオブを添加したニッケル一 鉄膜では添加するニオブの量を増やすこと によって、 電気抵抗を上昇さ せる ことが可能であるが、 ニオブの添加量を増加させると飽和磁束密度 が著し く 低下するので、 5 %が限界である。 このよ う に、 酸化ジルコ二 ゥムを添加した二ッケルー鉄膜をバイァス胰と した本実施例の磁気抵抗 効果型磁気ヘッ ドでは、 バイアス膜の電気抵抗が大きいので、 高い再生 出力が得られる。 As a SAL 16 composed of a soft magnetic film for applying a bias magnetic field to the magnetoresistive film, a soft magnetic film obtained by adding 10% of zirconium oxide to a magnetic alloy composed of 80 atomic% nickel and the balance of iron, A total of 400 people are formed by the sputtering method. Sputtering was performed using a target in which a zirconium oxide chip was placed on a nickel-iron alloy target. The Ar gas pressure during sputtering was 2 mTorr. The substrate temperature was room temperature. Further, an alumina film is formed thereon as an upper gap film at 0.3 μm, and an upper magnetic shield is formed thereon. After forming an insulating film on top of it, an inductive magnetic head for recording is fabricated, but details are omitted. Thereafter, the substrate is cut and processed into a slider to complete the fabrication of the magnetoresistive head. Next, the characteristics of the magnetoresistive head of this embodiment will be described. Evaluation of the magnetoresistive head was performed with the playback output. I got it. For the magnetic head of this example, and for comparison, a head using a nickel-iron alloy having the same structure and 5% niobium added to the bias film was used for comparison. The bias film to which zirconium oxide was added in this example had a saturation magnetic flux density of 0.7 T and a specific resistance of about 120 Ωcm, whereas 5% niobium for comparison was added. The nickel-iron film thus obtained had a saturation magnetic flux density of 0.6 T and a specific resistance of 70 μΩcm. The reproduction output of a magnetoresistive head using a nickel-iron film containing 5% niobium as the bias film was about 40 μμν at a frequency of 10 MHz. The magnetic head of the invention was about 44% at 10% greater. This is because, in a head using a nickel-iron alloy film to which niobium is added as a bias film, the specific current of the bias film is small, so that the detection current flows to both the magnetoresistive film and the bias film, and the resistance read out. This is because the change becomes smaller. In a nickel-iron film to which niobium is added, it is possible to increase the electric resistance by increasing the amount of niobium added.However, when the amount of niobium is increased, the saturation magnetic flux density is significantly reduced. , 5% is the limit. As described above, in the magnetoresistive head of the present embodiment in which the nickel-iron film to which zirconium oxide is added is used as the bias, a high reproduction output can be obtained because the electric resistance of the bias film is large. .
次に本発明の磁気抵抗効果型磁気ヘッ ドのバイアス膜の電気抵抗につ いて述べる。 8 0原子%ニッケル, 残部鉄よ り なる磁性合金膜に、 酸化 ジルコニウムを添加した場合の膜の比抵抗及び飽和磁束密度を調べた。 膜厚は 4 0 0 人である。 酸化アルミ ニゥムを添加すると膜の電気抵抗は 増加し、 約 1 0 %で 1 0 0 Ω cmになる。 一方、 飽和磁束密度は酸化ァ ルミ 二ゥムの添加によって単調に減少し、 1 0 %では約 0 . 7 5 T であ る。 これは化合物と して酸化アルミ ニゥムを添加した場合の例であるが 他の化合物でも同様の傾向を示し、 化合物の添加によ り、 高い比抵抗の 膜を作製することが可能である。 このような高い比抵抗の膜は、 従来の 金属元素の添加では得ることが困難であり、 化合物の添加が有効である ことがわかる。 Next, the electric resistance of the bias film of the magnetoresistive head according to the present invention will be described. When zirconium oxide was added to a magnetic alloy film consisting of 80 atomic% nickel and the balance iron, the specific resistance and saturation magnetic flux density of the film were examined. The thickness is 400 people. When aluminum oxide is added, the electrical resistance of the film increases to about 100% at about 10%. On the other hand, the saturation magnetic flux density decreases monotonically with the addition of aluminum oxide, and is about 0.75 T at 10%. This is an example of the case where aluminum oxide is added as a compound. Other compounds show the same tendency, and it is possible to produce a film with high specific resistance by adding the compound. It is difficult to obtain such a film having a high specific resistance by adding a conventional metal element, and it is understood that the addition of a compound is effective.
次に種々の化合物を含むバイアス膜の特性について述べる。 ニッケル が 8 0 %で残部鉄よ リなる金属磁性薄膜に酸化ジルコ二ゥム, 酸化アル ミニゥム, 酸化ハフニウム, 酸化チタン, 酸化ベリ リ ウム, 酸化マグネ シゥム, 希土類酸素化合物と して酸化セリ ウム, 窒化ジルコニウム, 窒 化ハフニウム, 窒化アルミニウム, 窒化チタン, 窒化ベリ リ ウム, 窒化 マグネシウム, 窒化シリ コン、 及び希土類窒素化合物と して窒化セリ ウ ムを約 5重量%添加した場合の保磁力, 異方性磁界, 飽和磁束密度の値 を調べた。 膜はスパッタ リ ング法によ り作製した。 膜厚は 4 0 0人であ リ、 膜の比抵抗は約 7 0 μ Qcmであった。 保持力は磁化容易方向では酸 化物では 1. 1 〜 1. 3 0 e、 窒化物では し 5〜 1. 7 0 e、 磁化困難方 向では前者が 0. 2 5〜 0.4 0 O e、 後者では 0. 3 5〜 0.4 50 e、 異方性磁界及び飽和磁束密度はいずれも各々 6.0〜 7. O O e及び 0.90 〜 0. 9 5 Tであった。  Next, the characteristics of the bias film containing various compounds will be described. Zirconium oxide, aluminum oxide, hafnium oxide, titanium oxide, beryllium oxide, magnesium oxide, cerium oxide as a rare earth oxygen compound, and a metal magnetic thin film consisting of 80% nickel and the balance iron. Coercivity and anisotropy when zirconium nitride, hafnium nitride, aluminum nitride, titanium nitride, beryllium nitride, magnesium nitride, silicon nitride, and about 5% by weight of cerium nitride as a rare earth nitrogen compound are added. The values of the active magnetic field and the saturation magnetic flux density were examined. The film was prepared by a sputtering method. The film thickness was 400 persons, and the specific resistance of the film was about 70 μQcm. The coercive force is 1.1 to 1.30 e for oxides in the easy magnetization direction, 5 to 1.70 e for nitrides, and 0.25 to 0.40 Oe for the hard magnetization directions. Then, 0.35 to 0.450 e, the anisotropic magnetic field and saturation magnetic flux density were 6.0 to 7.000 e and 0.90 to 0.95 T, respectively.
次に、 鉄, 鉄一コバルト合金及びニッケル一コバルト合金に酸化ジル コニゥムを 5重量%添加したバイアス膜の特性を調べた。 保磁力は容易 方向では鉄系が 4.0 0 e , ニッケル系が 2. 0 0 e, 困難方向では前者 が 2. 0〜 2. 5 0 e, 後者が 0. 7 0 e であり、 酸化ジルコニウムを添 加した膜は保磁力が約 3 0 e に減少し、 異方性磁界は前者が?〜 80 e 後者が 1 5.0 0 e であった。 鉄—コバルト合金, ニッケル—コバルト 合金の場合にも酸化ジルコニウムを添加していない場合に比べ、 酸化ジ ルコニゥムを添加した場合には保磁力の減少が見られ、 軟磁気特性が向 上する こ とが明らかである。 飽和磁束密度は前者が 2. 1 〜 2. 3 T, 後 者が 0. 8 5 Τ で、 酸化ジルコニウム添加による影響はきわめて小さい。 (実施例 4 ) Next, the characteristics of the bias film obtained by adding 5% by weight of zirconium oxide to iron, iron-cobalt alloy, and nickel-cobalt alloy were examined. The coercive force is 4.00 e for the iron system in the easy direction, 2.0 e for the nickel system, 2.0 to 2.5 e for the former in the difficult direction, and 0.70 e for the latter in the difficult direction. The coercive force of the added film is reduced to about 30 e. ~ 80 e The latter was 15.00 e. In the case of iron-cobalt alloy and nickel-cobalt alloy, the coercive force was reduced when zirconium oxide was added, compared to the case where zirconium oxide was not added, and the soft magnetic properties were improved. It is clear that it will improve. The saturation magnetic flux density is 2.1 to 2.3 T for the former and 0.85 mm for the latter, and the effect of adding zirconium oxide is extremely small. (Example 4)
次に実施例 2 における永久磁石膜の材料の検討を行つた。 永久磁石膜 は R Fスパッタ法によ り形成し、 ターゲッ ト上に Z r 02 または Next, the material of the permanent magnet film in Example 2 was examined. The permanent magnet film is formed Ri by the RF sputtering method, Z r 0 2 or on the target
T a205チップを配置する ことによ り C 0 C r P t膜中の酸化物濃度を 調節した。 膜厚 4 0 n mでの ( C oo. 82 C r o j 9 P t o . 09 ) ) — Χ Ζ ΧIt was adjusted to T a 2 0 5 especially good Ri C to place the chip 0 C r P t oxides concentration in the film. Thickness 4 at 0 nm (C oo 82 C roj 9 P to 09..)) - Χ Ζ Χ film
( Ζ = Z r 02 , T a206 ) の磁気特性を調べた結果、 Z r 02添加膜で は酸化物濃度 3mol% で保磁力が 1 2 0 00 e以上となる ことが分かつ た。 T a205においても保磁力 1 2 0 O O e以上が得られた。 Z r 02, T a 205添加膜において酸化物濃度が大きいこと に保磁力が低下してい るのは、 永久磁石膜面内での組成のばらつきと結晶性が乱れてァモルフ ァス的になるためである。 これらの系では保磁力が 1 0 0 O O e以上と なるのは酸化物濃度 0. 5mol%〜 4mol %であった。 ま た異なった組成 の C o C r P t膜を用いた検討では好ま しい酸化物濃度は 0. 5mol%〜 (Ζ = Z r 0 2, T a 2 0 6) result of examining the magnetic properties of coercive force divide be a 1 2 0 00 e or more oxide concentration 3 mol% in the Z r 0 2 added film Was. Coercivity 1 2 0 OO e above were obtained in T a 2 0 5. Z r 0 2, T a 2 0 5 additive film oxide concentration coercive force are decreased to be large in Runowa, Amorufu § scan manner by variation crystalline composition of a permanent magnet film plane is disturbed Because it becomes. In these systems, the coercive force was 100 000 e or more when the oxide concentration was 0.5 mol% to 4 mol%. In a study using CoCrPt films of different compositions, the preferred oxide concentration was 0.5 mol%
1 Omol% であった。 ま た保磁力を増大させる酸化物と して T i 酸化物 V酸化物, N b酸化物, M o酸化物, H f 酸化物, W酸化物, A 1 酸化 物, S i 酸化物, C r酸化物が考えられる。 It was 1 Omol%. The oxides that increase the coercive force include Ti oxide V oxide, Nb oxide, Mo oxide, Hf oxide, W oxide, A1 oxide, Si oxide, and C oxide. r Oxides are possible.
(実施例 5 )  (Example 5)
第 1 7図は実施例 2の MRセンサに代えて用いた本実施例の磁気抵抗 効果ヘッ ドの斜視図である。  FIG. 17 is a perspective view of the magnetoresistive head of the present embodiment used in place of the MR sensor of Embodiment 2.
本実施例は実施例 1 と同じ構造で、 磁気抵抗効果型へッ ドの膜の積層 構造が異なるものである。 アルミナからなる下部ギャ ップ膜 1 9の上に 順次厚さ 5 0 n mの N i Oからなる反強磁性膜 9 3 , M R膜 1 3 と して 厚さ 1 n mの 8 0 a t % N i — F e合金膜 9 4と厚さ 1 n mの C o膜 9 5 , 厚さ 2 n mの C uから非磁性金属膜 9 6及び厚さ 5 n mの N i F e 合金の軟磁性膜からなる横バイアス印加用の S A L 1 6 が形成されたも のである。 This embodiment has the same structure as that of the first embodiment, except that the laminated structure of the film of the magnetoresistive head is different. An antiferromagnetic film 93 of NiO with a thickness of 50 nm and an MR film 13 with a thickness of 80 at% Ni with a thickness of 1 nm are sequentially formed on the lower gap film 19 made of alumina. — Fe alloy film 9 4 and 1 nm thick Co film The SAL 16 for applying a lateral bias was formed from a nonmagnetic metal film 96 and a 5 nm thick soft magnetic film of a NiFe alloy from Cu with a thickness of 95 nm and a Cu with a thickness of 2 nm.
本実施例における M R膜 1 3 は二枚の磁性膜 ( N i F e ) で薄い非磁 性膜 ( C u ) を挾み、 片方の磁性膜に接した反強磁性膜 ( N i 0 ) から なる構造である。 この構造によ り 、 製造工程の不安定さ と、 電流の分流 による感度低下を防止したものである。 ま た、 反強磁性膜と しては、 従 来材料の F e M n に比べ、 製造工程での腐食がない酸化物 N i 0を用い - これによ り量産工程での高信頼化を図った。 ま た、 ヘッ ドの出力は、 へ ッ ドに流す電流とスピンバルブ膜の抵抗変化量の積によって決ま り 、 反 強磁性膜自身は抵抗変化には寄与しない。 従って、 反強磁性膜と して絶 縁物質である N i 0を用いる ことで、 入力 した電流を効率良く 抵抗変化 に寄与させ、 高い磁界感度を得る ことができるよ う になった。 以上のよ う に、 本実施例においては約 5 G b / i n 2 の記録密度を実現できる。 さ らに、 本実施例における S A L 1 に実施例 1 と同様に N i F e合金 に酸化物を分散させた膜を形成させる こと によ リ高い再生出力が得られ る。 In this embodiment, the MR film 13 sandwiches a thin non-magnetic film (Cu) between two magnetic films (NiFe), and an antiferromagnetic film (Ni0) in contact with one magnetic film. It is a structure consisting of This structure prevents instability in the manufacturing process and a decrease in sensitivity due to shunting of current. In addition, the antiferromagnetic film uses an oxide Ni0 that does not corrode in the manufacturing process compared to the conventional material FeMn-This enables high reliability in the mass production process. planned. Further, the output of the head is determined by the product of the current flowing through the head and the resistance change amount of the spin valve film, and the antiferromagnetic film itself does not contribute to the resistance change. Therefore, by using the insulating material Ni 0 as the antiferromagnetic film, the input current can be efficiently contributed to the resistance change, and high magnetic field sensitivity can be obtained. As described above, in this embodiment, a recording density of about 5 Gb / in 2 can be realized. Further, by forming a film in which an oxide is dispersed in a NiFe alloy on the SAL 1 in the present embodiment as in the first embodiment, a higher reproduction output can be obtained.
(実施例 6 )  (Example 6)
第 1 8図は実施例 2 の M Rセンサに代えて用いた本実施例の磁気抵抗 効果型へッ ドの斜視図である。  FIG. 18 is a perspective view of a magnetoresistive head of this embodiment used in place of the MR sensor of Embodiment 2.
第 1 9 図は本実施例の磁気抵抗効果素子の異方性制御の例を示す概念 図である。 反強磁性材からなるバイアス膜 3 0及ぴ 3 8 は、 図中矢印 5 7及び 5 8 の方向に交換結合による異方性を印加する。 図中矢印 6 0 は感知すべき磁界の方向、 矢印 4 7 は磁性膜 3 6 に誘導した一方向異方 性の方向を示す。 非磁性導電膜 3 5 に挟まれた磁性膜 3 7 の容易磁化方 向は図中矢印 6 2の方向に一軸異方性の誘導によって印加する。 これは 磁性膜の成長中に所定の方向に磁界を印加することで達成される。 本図 の実施例は異方性の印加をバイアス膜と誘導磁気異方性で実現した例で ある。 この結果矢印 4 7 と 4 8は共に膜面内で、 互いに直交する。 感知 すべき磁界の大きさに比較して、 磁性膜 3 6の異方性を大きく磁性膜 3 7の異方性を小さ く することで、 磁性膜 3 6の磁化を外部磁界に対し てほぼ固定し、 磁性膜 3 7の磁化のみが外部磁界に対して大きく反応す るよう になる。 さ らに矢印 6 0の方向にかかる感知すべき磁界に対して、 磁性膜 3 6の磁化は異方性 4 7 によって磁化と外部磁界が平行な容易軸 励磁の状態に、 逆に磁性膜 3 7の異方性に依って磁化と外部磁界が垂直 な困難軸励磁の状態になっている。 この効果によって上記の応答をさ ら に顕著なものにできるとともに、 外部磁界に対して磁性膜 3 7の磁化が. 矢印 4 8の方向を起点に、 回転による困難軸励磁で素子が駆動される状 態が実現し、 磁壁移動による励磁に伴う ノイズを防止し、 高周波での動 作を可能にすることができる。 FIG. 19 is a conceptual diagram showing an example of anisotropy control of the magnetoresistive element of this embodiment. The bias films 30 and 38 made of an antiferromagnetic material apply anisotropy by exchange coupling in the directions of arrows 57 and 58 in the figure. In the figure, the arrow 60 indicates the direction of the magnetic field to be sensed, and the arrow 47 indicates the direction of the unidirectional anisotropy induced in the magnetic film 36. How to easily magnetize the magnetic film 37 sandwiched between the nonmagnetic conductive films 35 The direction is applied by the induction of uniaxial anisotropy in the direction of arrow 62 in the figure. This is achieved by applying a magnetic field in a predetermined direction during the growth of the magnetic film. This embodiment is an example in which the application of anisotropy is realized by a bias film and induced magnetic anisotropy. As a result, the arrows 47 and 48 are both orthogonal to each other in the film plane. By increasing the anisotropy of the magnetic film 36 and decreasing the anisotropy of the magnetic film 37 as compared to the magnitude of the magnetic field to be sensed, the magnetization of the magnetic film 36 is substantially reduced with respect to the external magnetic field. When fixed, only the magnetization of the magnetic film 37 reacts greatly to an external magnetic field. Further, with respect to the magnetic field to be sensed in the direction of arrow 60, the magnetization of the magnetic film 36 becomes an easy-axis excitation state in which the magnetization and the external magnetic field are parallel due to the anisotropy 47. Due to the anisotropy in Fig. 7, the magnetization and the external magnetic field are perpendicular to each other, and the state is a hard axis excitation. This effect makes the above response more remarkable, and the magnetization of the magnetic film 37 with respect to the external magnetic field. The element is driven by the hard axis excitation due to rotation starting from the direction of the arrow 48. This realizes the state, prevents noise accompanying excitation due to domain wall motion, and enables operation at high frequencies.
本発明の磁気抵抗効果素子を構成する膜は高周波マグネ トロンスパッ タ リ ング装置によ り以下のように作製した。 アルゴン 3 ミ リ トールの雰 囲気中にて、 厚さ 1 ミ リ , 直径 3インチのセラミ ックス基板および S i 単結晶基板上に以下の材料を順に積層して作製した。 スパッタ リ ングタ —ゲッ トと して酸化ニッケル, コバルト, ニッケル一 2 0 a t %鉄合金 銅のタ一ゲッ トを用いた。 ニッケル一鉄中へのコバルトの添加にはニッ ゲル一 2 0 a t %鉄合金タ一ゲッ 卜上にコバルトのチップを配置した。 またコバルト中へのニッケル, 鉄の添加にはコバルトタ一ゲッ ト上に二 ッケルおよび鉄のチップを配置した。 積層膜は、 各ターゲッ トを配置し たカゾードに各々高周波電力を印加して装置内にプラズマを発生させて おき、 各力ソー ドごとに配置されたシャ ッターを一つずつ開閉して順次 各層を形成した。 膜形成時には基板面内で直交する二対の電磁石を用い て基板に平行におよそ 5 0ェルステツ ドの磁界を印加して、 一軸異方性 を持たせると共に、 酸化二ッケル膜の交換結合バイァスの方向をそれぞ れの方向に誘導した。 The film constituting the magnetoresistive element of the present invention was produced by a high-frequency magnetron sputtering apparatus as follows. In an atmosphere of 3 milliliters of argon, the following materials were sequentially laminated on a ceramic substrate and a single-crystal Si substrate with a thickness of 1 millimeter and a diameter of 3 inches. A sputter target was a target of nickel oxide, cobalt, and nickel at 20% iron alloy copper. For the addition of cobalt to nickel-iron, a cobalt chip was placed on a Nigel 20 at% iron alloy target. To add nickel and iron to cobalt, nickel and iron chips were placed on a cobalt target. In the laminated film, high-frequency power is applied to each of the targets on which the target is placed to generate plasma in the device. The shutters arranged for each power source were opened and closed one by one to form each layer sequentially. At the time of film formation, a magnetic field of about 50 Oersteds is applied in parallel to the substrate using two pairs of electromagnets orthogonal to each other in the substrate plane to give uniaxial anisotropy and to establish the exchange coupling bias of the nickel oxide film. The directions were guided in each direction.
異方性の誘導は、 基板近傍に取り付けた二対の電磁石によって、 各磁 性膜の形成時に誘導すべき方向に磁界を加えて行った。 或いは、 多層膜 形成後に反強磁性膜のネール温度近傍で磁界中熱処理を行い、 反強磁性 バイアスの方向を磁界の方向に誘導した。  Anisotropy was induced by applying a magnetic field in the direction to be induced when forming each magnetic film using two pairs of electromagnets mounted near the substrate. Alternatively, a heat treatment in a magnetic field was performed near the Neel temperature of the antiferromagnetic film after the formation of the multilayer film, and the direction of the antiferromagnetic bias was induced in the direction of the magnetic field.
磁気抵抗効果素子の性能の評価は膜を短冊形状にパターニングし、 電 極を形成して行った。 この時、 磁性膜の一軸異方性の方向と素子の電流 方向が平行となるようにした。 電気抵抗は電極端子間に一定の電流を通 じ、 素子の面内に電流方向に垂直な方向に磁界を印加して、 素子の電気 抵抗を電極端子間の電圧と して測定し、 磁気抵抗変化率と して感知した 本実施例における抵抗変化率は 6 %であつた。  The performance of the magnetoresistive element was evaluated by patterning the film into a strip shape and forming an electrode. At this time, the direction of the uniaxial anisotropy of the magnetic film was made parallel to the current direction of the element. The electric resistance is measured by applying a constant current between the electrode terminals, applying a magnetic field in the direction perpendicular to the current direction in the plane of the element, and measuring the electric resistance of the element as the voltage between the electrode terminals. The resistance change rate in the present example, which was sensed as the change rate, was 6%.
第 1 9図においてバイアス膜 3 1, 3 2 に N i 0膜を、 磁性膜 2 1 , 2 2に N i 8。 F e 2。合金薄膜を、 非磁性導電膜に C u膜を用いたことに 対応している。 In FIG. 19, Ni 0 films are used for the bias films 31 and 32, and Ni 8 is used for the magnetic films 21 and 22. F e 2 . This corresponds to the use of an alloy thin film and a Cu film as a nonmagnetic conductive film.
膜の構成を変えて作製した磁気抵抗効果素子の特性例を第 1表に示す 膜構成は紙面左側が基体側で順次右側に積層したものである。 第 1表 Table 1 shows an example of characteristics of a magnetoresistive element manufactured by changing the structure of the film. Table 1
Figure imgf000046_0001
第 1表では素子の特性を抵抗変化率と飽和磁界で表した。 素子と して の再生出力はこの抵抗変化率の大きさに、 感度は飽和磁界の小ささに、 それぞれ対応する。
Figure imgf000046_0001
In Table 1, the characteristics of the element are represented by the resistance change rate and the saturation magnetic field. The reproduction output of the element corresponds to the magnitude of this resistance change rate, and the sensitivity corresponds to the small saturation magnetic field.
第 1表の結果から明らかなよう に本発明の磁気抵抗素子(No. 1〜 5 ) は 4 %以上の抵抗変化率と良好な磁気特性を有するものであり、 比較の 積層膜 ( No. 6, 7 ) に比べ、 抵抗変化率において優れている。 特に、 試料 No. 1, 2, 4は飽和磁界 1 0エルステッ ド程度の良好な磁界感度 と抵抗変化率 6から 7 %の高い出力を示している。  As is clear from the results in Table 1, the magnetoresistive elements of the present invention (Nos. 1 to 5) have a resistance change rate of 4% or more and good magnetic properties. 7), the resistance change rate is superior. In particular, Sample Nos. 1, 2, and 4 show good magnetic field sensitivity with a saturation magnetic field of about 10 Oersted and high output with a resistance change rate of 6 to 7%.
磁性膜と して C o を用いた N i OZC o ZC u /C o膜の磁気抵抗曲 線である。 ゼロ磁界近傍で、 C o膜の保磁力に起因するヒステリ シスが 見られるが、 抵抗変化率は同じ構成で N i F e を用いた場合の 2倍近い 7 %を示した。 It is a magnetoresistive curve of a NiOZCoZCu / Co film using Co as a magnetic film. Hysteresis due to the coercive force of the Co film is observed near the zero magnetic field, but the resistance change rate is nearly twice that of the case of using Ni Fe with the same configuration. 7%.
N i O / C o B1 N i 27 F e 22/Cu/Ni Fe/C u /CoB i Ni27 F e22 /N i O膜の磁気抵抗曲線で、 8 %以上の出力とゼロ磁界近傍での高い 磁界感度を合わせ持っている。 このよ う に、 基体上に下地と して N i O 反強磁性膜を有した N i F e或いは C o N i F e ZC u積層膜は磁気抵 抗効果膜と して極めて高い感度を有している。 N i O / C o B1 N i 27 F e 22 / Cu / Ni Fe / C u / Co B i Ni 2 7 F e 22 / N i O magnetoresistive curves of the film, of more than 8% power and zero field High magnetic field sensitivity in the vicinity. As described above, a NiFe or CoNiFeZCu multilayer film having a NiO antiferromagnetic film as a base on a substrate has extremely high sensitivity as a magnetic resistance effect film. Have.
(実施例 7 )  (Example 7)
第 2 0図は、 実施例 2の MRセンサに代えて用いた本実施例の磁気抵 抗効果型磁気へッ ドの斜視図である。 第 2 0図は、 磁気記録媒体に対抗 する面から見た斜視図を示している。  FIG. 20 is a perspective view of a magnetic resistance effect type magnetic head of the present embodiment used in place of the MR sensor of Embodiment 2. FIG. 20 is a perspective view of the magnetic recording medium as viewed from a surface opposing the magnetic recording medium.
第 2 0図の磁気抵抗効果型磁気へッ ドは、 ジルコニァなどのセラミク ス基板 1 0 1上に下部シールド膜 1 1 0と、 下部シールド膜 1 1 0の上 に形成される下部ギャ ップ膜 1 2 0と、 この下部ギヤ ップ膜 1 2 0の上 側に形成される酸化物反強磁性膜 1 4 5と、 酸化物反強磁性膜 1 4 5上 に、 少なく とも磁気抵抗効果膜 1 4 0感磁部に配置される非磁性膜 177 と、 非磁性膜 1 7 7 と、 非磁性膜 1 7 7の配置されていない酸化物反強 磁性膜 1 4 5の所定の頜域を覆って形成される磁気抵抗効果膜 1 4 0と . 磁気抵抗効果膜 1 4 0上に、 磁気抵抗効果膜 1 4 0の磁気応答特性を高 めるために配置されるシャン ト膜 1 5 0とソフ ト膜 1 5 5と、 このソフ ト膜 1 5 5の上に形成される信号検出電極 1 6 0と、 各膜を覆うように 形成される上部ギヤップ膜 1 7 0と、 この上部ギヤップ膜 1 7 0の上側 に形成される上部シールド膜 1 8 0を備えて形成される。 尚、 下部シ一 ルド胰 1 1 0は信号検出電極を兼ねている。  The magnetoresistive head shown in FIG. 20 is composed of a lower shield film 110 on a ceramic substrate 101 such as zirconia and a lower gap formed on the lower shield film 110. At least the magnetoresistive effect on the film 120, the oxide antiferromagnetic film 144 formed on the upper side of the lower gap film 120, and the oxide antiferromagnetic film 144 A predetermined area of the nonmagnetic film 177 disposed in the magnetic sensing part, the nonmagnetic film 177, and the oxide antiferromagnetic film 145 in which the nonmagnetic film 177 is not disposed And a shunt film 15 disposed on the magnetoresistive effect film 140 to enhance the magnetic response characteristics of the magnetoresistive effect film 140. 0, a soft film 155, a signal detection electrode 160 formed on the soft film 155, an upper gap film 170 formed to cover each film, and Gear It is formed with an upper shield film 1 8 0 formed above the membrane 1 7 0. Note that the lower shield # 110 also serves as a signal detection electrode.
第 2 1図の磁区制御層に示すように、 酸化物反強磁性膜 1 4 5は磁気 抵抗効果膜 1 4 0と、 磁気抵抗効果膜 1 4 0両端部で直接接している。 したがって、 磁気抵抗効果膜 1 4 0 と酸化物反強磁性膜 1 4 5 は、 この 領域で強磁性一反強磁性の磁気交換結合を形成する。 酸化物反強磁性膜 1 5 のブロ ッ キング温度以上に加熱し、 一方向に外部磁界を印加しな がらプロ ッキング温度以下に冷却される工程の中で、 この磁気交換結合 が形成されると、 酸化物反強磁性膜 1 4 5 内の磁気モーメ ン トは矢印 4 5 1 の方向に固定され、 磁気抵抗効果膜 1 4 0 内の磁気モーメ ン トは 矢印 4 0 1 の方向に向けられる。 一般に、 反強磁性体の磁気異方性は極 めて強いため、 ひとたび、 反強磁性膜内の磁気モーメ ン トの方向が固定 されると数十 O e程度の外部磁界によ っては、 反強磁性膜内部の磁化は 変化しない。 したがって、 酸化物反強磁性膜 1 4 5 と磁気交換結合を形 成している磁気抵抗効果膜 1 4 0 内の磁気モーメ ン トは、 矢印 4 0 1 で 示した方向に強く 固定される こ とになる。 磁気抵抗効果膜 1 4 0両端部 で、 磁気モーメ ン トの方向が矢印 4 0 1 の方向に向けられると、 酸化物 反強磁性膜 1 4 5 と、 直接、 接していない、 磁気抵抗効果膜 1 4 0の感 磁部の磁気モ一メ ン 卜も矢印 4 0 2で示した方向に強制的に向けられる ことになる。 これによ り 、 磁気抵抗効果膜 1 4 0 の感磁部をも強制的に 単一磁区状態に維持する ことが可能となる。 As shown in the magnetic domain control layer of FIG. 21, the oxide antiferromagnetic film 144 is in direct contact with the magnetoresistive film 140 at both ends of the magnetoresistive film 140. Therefore, the magnetoresistive film 140 and the oxide antiferromagnetic film 144 form ferromagnetic-antiferromagnetic magnetic exchange coupling in this region. When this magnetic exchange coupling is formed during the process of heating the oxide antiferromagnetic film 15 above the blocking temperature and cooling it below the blocking temperature while applying an external magnetic field in one direction The magnetic moment in the oxide antiferromagnetic film 144 is fixed in the direction of arrow 451, and the magnetic moment in the magnetoresistive film 140 is directed in the direction of arrow 401. . In general, since the magnetic anisotropy of an antiferromagnetic material is extremely strong, once the direction of the magnetic moment in the antiferromagnetic film is fixed, an external magnetic field of about several tens Oe may cause a problem. However, the magnetization inside the antiferromagnetic film does not change. Therefore, the magnetic moment in the magnetoresistive film 140, which forms magnetic exchange coupling with the oxide antiferromagnetic film 144, is strongly fixed in the direction indicated by the arrow 401. And At both ends of the magnetoresistive film 140, when the direction of the magnetic moment is directed in the direction of arrow 401, the magnetoresistive film is not directly in contact with the oxide antiferromagnetic film 144. The magnetic moment of the magnetic sensing part 140 is also forcibly directed in the direction indicated by the arrow 402. This makes it possible to forcibly maintain the magneto-sensitive portion of the magneto-resistance effect film 140 in a single magnetic domain state.
本発明では、 少な く とも磁気抵抗効果膜 1 4 0 の感磁部に、 磁気抵抗 効果膜 1 4 0 と酸化物反強磁性膜 1 4 5 の中間に、 非磁性膜 1 7 7 を配 置している。 非磁性膜 1 7 7 を配置しない場合、 感磁部でも磁気抵抗効 果膜 1 4 0 と酸化物反強磁性膜 1 4 5 は磁気交換結合を形成する。 この 場合、 磁気抵抗効果膜 1 4 0 内の磁気モーメ ン トは、 磁気交換結合が強 すぎて磁気記録媒体からの磁気信号に応じて自由に回転する ことができ なく な リ 、 磁気抵抗効果型磁気へッ ドの再生感度を著し く 小さ く して し ま う 。 一方、 磁気抵抗効果膜 1 4 0 と酸化物反強磁性膜 1 4 5 の中間に 非磁性膜 1 7 7 を介在させた本発明では、 この領域では、 磁気抵抗効果 膜 1 4 0 と酸化物反強磁性膜 1 4 5の直接的な磁気交換結合の形成を阻 止することができる。 このため、 感磁部の磁気抵抗効果膜 1 4 0内の磁 気モーメ ン トの回転は比較的自由となり、 磁気応答特性を高めた磁気抵 抗効果型磁気ヘッ ドが得られる。 しかも、 磁気抵抗効果膜 1 4 0両端部 で、 酸化物反強磁性膜 1 4 5 によ って、 磁気抵抗効果膜 1 4 0 の感磁部 には、 感磁部を単一磁区状態に維持する適度な縦バイアス磁界が付与さ れているのでバルクハウゼンノイズの抑止もできる。 According to the present invention, a non-magnetic film 177 is disposed at least in the magneto-sensitive portion of the magneto-resistance effect film 140 and between the magneto-resistance effect film 140 and the oxide antiferromagnetic film 144. are doing. When the nonmagnetic film 177 is not provided, the magnetoresistive film 140 and the oxide antiferromagnetic film 145 form magnetic exchange coupling even in the magneto-sensitive portion. In this case, the magnetic moment in the magnetoresistive film 140 is such that the magnetic exchange coupling is so strong that it cannot rotate freely in response to a magnetic signal from the magnetic recording medium. Make the playback sensitivity of the magnetic head significantly lower. On the other hand, between the magnetoresistance effect film 140 and the oxide antiferromagnetic film 144 In the present invention in which the nonmagnetic film 177 is interposed, in this region, it is possible to prevent the formation of direct magnetic exchange coupling between the magnetoresistance effect film 140 and the oxide antiferromagnetic film 145. it can. Therefore, the rotation of the magnetic moment in the magnetoresistive effect film 140 of the magnetic sensing portion is relatively free, and a magnetic resistance effect type magnetic head with improved magnetic response characteristics can be obtained. In addition, at the both ends of the magnetoresistive film 140, the magnetosensitive portion of the magnetoresistive film 140 is brought into a single magnetic domain state by the oxide antiferromagnetic film 144. Since a moderate longitudinal bias magnetic field to be maintained is applied, Barkhausen noise can be suppressed.
酸化物反強磁性膜 1 4 5と して N ί 0を選択し、 磁気抵抗効果膜 140 と して代表的な N i F e合金膜を選択し、 N i 0膜と N i F e合金膜を 磁気交換結合を調べた。 N i Oの膜厚は 1 0 0 0人, N i F e合金の膜 厚は 4 0 0人である。 磁気交換結合が形成されていると、 磁化曲線は一 方向にシフ ト した曲線となる。 磁化曲線の原点のシフ ト量が結合磁界の 大きさ、 すなわち、 縦バイアス磁界の大きさである。 結合磁界の大きさ は約 2 0 O eである。 また、 磁気交換結合の形成に伴い、 結合磁界に相 当する分だけ異方性磁界が増加する。 こ こで、 異方性磁界とは、 磁化曲 線が飽和するのに要する磁界であり、 磁気モーメン トの回転のし易さを 示している。 異方性磁界の大きさは約 2 5 0 eである。 この異方性磁界 の大きさは、 再生感度を高めるには大きすぎる。 本発明では、 この大き すぎる異方性磁界を低減するため、 感磁部に非磁性膜 1 7 7 を介在させ てある。 この構成では、 磁気抵抗効果膜 1 4 0感磁部に付与される縦バ ィァス磁界は数 0 eにまで低減され、 磁気応答特性を充分高めるに充分 な異方性磁界の大きさを得ることができ、 しかも、 バルクハウゼンノィ ズは生じなかった。  N N0 is selected as the oxide antiferromagnetic film 1 45, a typical NiFe alloy film is selected as the magnetoresistive film 140, and the Ni0 film and the NiFe alloy are selected. The membrane was examined for magnetic exchange coupling. The film thickness of NiO is 100, and the film thickness of NiFe alloy is 400. When the magnetic exchange coupling is formed, the magnetization curve is shifted in one direction. The shift amount at the origin of the magnetization curve is the magnitude of the coupling magnetic field, that is, the magnitude of the longitudinal bias magnetic field. The magnitude of the coupling magnetic field is about 20 Oe. Also, with the formation of magnetic exchange coupling, the anisotropic magnetic field increases by an amount corresponding to the coupling magnetic field. Here, the anisotropic magnetic field is a magnetic field required for the magnetization curve to be saturated, and indicates the ease of rotation of the magnetic moment. The magnitude of the anisotropic magnetic field is about 250 e. The magnitude of the anisotropic magnetic field is too large to increase the reproduction sensitivity. In the present invention, in order to reduce this anisotropic magnetic field that is too large, the non-magnetic film 177 is interposed in the magnetic sensing portion. In this configuration, the vertical bias magnetic field applied to the magnetoresistive film 140 is reduced to several e, and the magnitude of the anisotropic magnetic field sufficient to sufficiently enhance the magnetic response characteristics is obtained. And Barkhausen noise did not occur.
次に、 N i 0の膜厚を変えたときの N i F e合金膜との結合磁界の大 きさを調べた。 結合磁界は、 N i O膜厚 5 0 O A以上で一定となり、 そ れ以下では劣化することがわかる。 さ らに、 ブロ ッキング温度の N i 0 膜厚依存性についても調べた。 ブロ ッキング温度は N i 0膜厚 5 0 0人 以上で一定となり、 約 2 0 0 °Cであり、 それ以下では劣化した。 N i O 膜厚が薄いとき磁気特性が劣化するのは、 N i 0膜の膜厚が薄い場合、 N i 0膜はしつかり とした結晶構造を形成することができず、 N i 0膜 がしつかり と した反強磁性状態になっていないためと推定される。 この ため、 N i F e合金膜と N i 0膜との間で、 安定性よ く磁気交換結合を 形成するには、 N i 0膜の膜厚を 5 0 0人以上が好ま しい。 Next, when the film thickness of Ni 0 is changed, the magnitude of the coupling magnetic field with the Ni Fe alloy film is increased. I checked the size. It can be seen that the coupling magnetic field is constant when the NiO film thickness is 50 OA or more, and deteriorates when it is less than 50 OA. In addition, the dependence of the blocking temperature on the Ni film thickness was also investigated. The blocking temperature became constant when the Ni film thickness was 500 or more, was about 200 ° C, and deteriorated below that. When the thickness of the NiO film is small, the magnetic characteristics deteriorate because the Nio film cannot form a tight crystal structure when the Nio film is thin, and the Nio film It is presumed that the antiferromagnetic state was not established. Therefore, in order to form magnetic exchange coupling between the NiFe alloy film and the Ni0 film with good stability, it is preferable that the Ni0 film has a thickness of 500 or more.
磁気交換結合は、 強磁性膜と反強磁性膜の界面付近での物理現象であ る。 このため、 感磁部で磁気交換結合の形成を阻止するためには、 強磁 性膜と反強磁性膜の中間に非磁性膜を少なく とも 1層介在させればよい ( 非磁性膜が連続膜であれば 1原子層の厚さであっても直接的な磁気交換 結合の阻止は可能である。 本発明では、 非磁性膜 1 7 7はスパッタ リ ン グ法によ り形成している。 発明者らの実験では、 非磁性膜 1 7 7 を完全 に連続膜にするには、 非磁性膜 1 7 7の膜厚は 1 0 0人程度の非常に薄 い膜でよかった。 このよ う に、 本発明では、 酸化物反強磁性膜 1 4 5上, 磁気抵抗効果膜 1 4 0のすく なく とも感磁部に非磁性膜 1 7 7 を介在さ せ、 その上方に磁気抵抗効果膜 1 4 0を形成した場合、 非磁性膜 1 7 7 の膜厚は非常に薄いので磁気抵抗効果膜 1 4 0に段切れが生じるこ とは ない。 このため、 磁気抵抗効果膜 1 4 0の感磁部に、 安定性よ く磁気応 答特性を高めた適度な大きさの縦バイアス磁界を印加することが可能と なり、 複数の磁気抵抗効果型磁気へッ ド間の特性のばらつきを抑えるこ とができた。 Magnetic exchange coupling is a physical phenomenon near the interface between a ferromagnetic film and an antiferromagnetic film. Therefore, in order to prevent the formation of magnetic exchange coupling in the magnetically sensitive portion, at least one nonmagnetic film may be interposed between the ferromagnetic film and the antiferromagnetic film (the nonmagnetic film is continuous In the case of a film, it is possible to directly prevent magnetic exchange coupling even with a thickness of one atomic layer In the present invention, the nonmagnetic film 177 is formed by a sputtering method. In our experiments, in order to make the non-magnetic film 177 completely continuous, the non-magnetic film 177 should have a very thin film thickness of about 100 people. Thus, in the present invention, the non-magnetic film 177 is interposed at least in the magneto-sensitive portion of the magneto-resistance effect film 140 on the oxide anti-ferromagnetic film 144, and the magneto-resistance effect is provided above the non-magnetic film 177. When the film 140 is formed, the thickness of the non-magnetic film 177 is extremely small, so that no step break occurs in the magneto-resistance effect film 140. Therefore, the magneto-resistance effect is obtained. It is possible to apply a moderately large longitudinal bias magnetic field with good stability and improved magnetic response characteristics to the magnetic sensing part of the film 140, and a plurality of magnetoresistive heads can be applied. Variations in characteristics were suppressed.
非磁性膜 1 7 7は、 単一金属膜, 合金膜, 酸化物膜のいずれの膜で構 成してもよ く 、 結晶質であっても非晶質であってもよいが、 合金膜が最 も望ま しい。 The non-magnetic film 177 may be a single metal film, an alloy film, or an oxide film. It may be formed or may be crystalline or amorphous, but an alloy film is most desirable.
本実施例の磁気抵抗効果型磁気へッ ドは、 磁気抵抗効果膜 1 4 0の上 側に、 磁気応答特性を高めるための磁気抵抗効果膜 1 4 0に横バイアス 磁界を印加するためのシャ ン ト膜 1 5 0, ソフ ト膜 1 5 5が形成され、 その上方に、 信号検出電極 1 6 0が形成される。 こ こで、 シャ ン ト膜 1 5 0は導電膜であ り 、 シャ ン 卜膜 1 5 0に電流が流れると、 シャ ン ト 膜 1 5 0の周囲には、 右ねじの法則で定ま る方向に磁界が生じる。 その 結果、 磁気抵抗効果膜 1 4 0内の磁気モーメ ン トは回転する。 これによ リ 、 磁気抵抗効果膜 1 4 0には横バイアス磁界が印加される こ とになる t ま た、 ソフ ト膜 1 5 5とは軟磁性膜である。 磁気抵抗効果膜 1 4 0に電 流が流れると磁気抵抗効果膜 1 4 0の周囲に右ねじの法則で定まる方向 に磁界を生じ、 ソフ ト膜 1 5 5内の磁気モーメ ン トが回転すると静磁ェ ネルギを安定とするよ う磁気抵抗効果膜 1 4 0内の磁気モーメ ン トが回 転する。 これによ り 、 磁気抵抗効果膜 1 4 0 に横バイアス磁界が印加さ れる ことになる。 横バイアス磁界を印加するために、 これらシャ ン ト膜 1 5 0 , ソフ ト膜 1 5 5のいずれの膜を用いてもよいが、 これら、 シャ ン ト膜 1 5 0, ソフ ト膜 1 5 5を上記の構成で用いる場合、 磁気モーメ ン 卜の回転方向は同 じであるので同時に用いてもよい。 The magneto-resistance effect type magnetic head of the present embodiment has a shield for applying a lateral bias magnetic field to the magneto-resistance effect film 140 for improving the magnetic response characteristics, on the upper side of the magneto-resistance effect film 140. A film 150 and a soft film 150 are formed, and a signal detection electrode 160 is formed above the film. Here, the shunt film 150 is a conductive film, and when a current flows through the shunt film 150, the periphery of the shunt film 150 is determined by the right-hand screw rule. A magnetic field is generated in the direction As a result, the magnetic moment in the magnetoresistive film 140 rotates. I to Li, the magnetoresistive film 1 4 0 transverse bias field was or t becomes and this applied, the soft film 1 5 5 is a soft magnetic film. When a current flows through the magnetoresistive film 140, a magnetic field is generated around the magnetoresistive film 140 in a direction determined by the right-handed screw rule, and when the magnetic moment in the soft film 150 rotates, The magnetic moment in the magnetoresistive film 140 rotates to stabilize the magnetostatic energy. As a result, a lateral bias magnetic field is applied to the magnetoresistive film 140. In order to apply a lateral bias magnetic field, either of the shunt film 150 and the soft film 150 may be used. However, the shunt film 150 and the soft film 150 may be used. When 5 is used in the above configuration, the rotation directions of the magnetic moments are the same, so they may be used simultaneously.
さて、 本発明では、 磁気抵抗効果膜 1 4 0の下側感磁部に非磁性膜 1 7 7 を介在させている。 非磁性膜 1 7 7が導電性の膜で構成される場 合、 この膜はシャ ン ト膜 1 5 0と同じ効果を磁気抵抗効果膜 1 4 0に及 ぼすことになる。 この場合、 シャン ト膜 1 5 0 とソフ 卜膜 1 5 5によつ て付与される横バイアス磁界とは逆方向の横バイアス磁界を磁気抵抗効 果膜 1 4 0に付与する ことになリ、 磁気抵抗効果型磁気ヘッ ドの磁気応 答特性を劣化させる こ と になる。 この劣化を防止するには、 非磁性膜の 膜厚を薄く し、 比抵抗を大き く するのがよい。 本発明では、 この劣化を 防止するために非磁性膜を比抵抗の大きい合金膜で構成している。 Now, in the present invention, the non-magnetic film 177 is interposed in the lower magneto-sensitive portion of the magneto-resistance effect film 140. When the nonmagnetic film 177 is formed of a conductive film, this film exerts the same effect as the shunt film 150 on the magnetoresistive film 140. In this case, a transverse bias magnetic field in the opposite direction to the transverse bias magnetic field provided by the shunt film 150 and the soft film 150 is applied to the magnetoresistive effect film 140. The magnetic response of the magnetoresistive head The response characteristics will be degraded. To prevent this deterioration, it is better to reduce the thickness of the nonmagnetic film and increase the specific resistance. In the present invention, in order to prevent this deterioration, the nonmagnetic film is made of an alloy film having a large specific resistance.
次に、 非磁性膜 1 7 7の材質について述べる。 上述したよ う に非磁性 膜は、 酸化物膜よ り金属膜の方が望ま しい。 金属膜は下記よ り選ばれる 材料で構成される。 すなわち、 A l, T i , C r , C u , Z r, N b, M o, T c, R u, R h, P d, A g , I n , S n, T a, W, R e, 0 s , I r , P t, A uのいずれかよ り選ばれる金属膜で構成すればよ い。 金属膜を 2種以上組み合わせて合金膜と してもよい。 この場合、 非 磁性膜 1 7 7の比抵抗を高める ことができる。  Next, the material of the nonmagnetic film 177 will be described. As described above, the nonmagnetic film is more preferably a metal film than an oxide film. The metal film is made of a material selected from the following. That is, Al, Ti, Cr, Cu, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, In, Sn, Ta, W, R It may be composed of a metal film selected from any of e, 0 s, Ir, Pt, and Au. Two or more metal films may be combined to form an alloy film. In this case, the specific resistance of the nonmagnetic film 177 can be increased.
さ らに、 上記元素のう ち C r を除く 1種以上の元素を主成分と し、 こ れに少量の C r を添加 して非磁性膜 1 7 7 を構成する こ とによ り 非磁性 膜 1 7 7の耐食性、 および耐腐食性を飛躍的に向上できる。  In addition, one or more of the above elements except for Cr is used as a main component, and a small amount of Cr is added thereto to form the nonmagnetic film 177. The corrosion resistance and corrosion resistance of the magnetic film 177 can be dramatically improved.
さ らに、 F . C. C. の結晶構造を持つ C u, R h , P d, A g, I r P t , A uなど、 あるいは、 これらの元素を主成分と し、 これ以外の上 記元素を 1種以上少量添加して構成した金属膜、 あるいは、 合金膜で非 磁性膜 1 7 7 を構成する ことによ り磁気抵抗効果膜 1 4 0の磁気特性を 改善する ことが可能である。 磁気抵抗効果膜 1 4 0は、 通常 N i F e合 金膜, N i C o合金膜などで構成され、 これらの膜は F . C. C. の結晶 構造を している。 したがって、 非磁性膜 1 7 7が F. C. C. の結晶構造 を所有する場合、 磁気抵抗効果膜 1 4 0は、 非磁性膜 1 7 7の上にェピ タ キシャル成長する こ とができる。 磁気抵抗効果膜 1 4 0がェピタキシ ャル成長すると磁気抵抗効果膜 1 4 0の磁気特性が向上するからである 次に、 本発明に磁気抵抗効果型磁気へッ ドの製造方法について説明す る。 まず最初に、 非磁性基板 1 ひ 1 の上側に記録媒体からのノ ィズとな る不用な信号を吸収するために設けられる下部シール ド膜 1 1 0がスパ ッタ リ ング法等の手法によ り形成される。 次に、 下部シール ド膜 1 1 0 の上に、 下部ギャ ップ膜 1 2 0 とするアルミ ナなどの絶縁膜を同様の手 法によ り形成する。 次に、 下部ギャ ップ膜 1 2 0上に酸化物反強磁性膜 1 4 5 を同様の手法によ り形成する。 そ して、 この下部シール ド膜 1 10 と下部ギャ ップ膜 1 2 0 と酸化物反強磁性膜 1 4 5 を所定の形状に加工 する。 こ こで、 下部磁気シール ド膜 1 1 0 の端部は、 基板面に対して傾 斜するよ う に加工する。 これは、 下部磁気シール ド層 1 1 0 の端部で断 線するのを防止するためである。 次に、 酸化物反強磁性膜 1 4 5 の上に、 磁気抵抗効果膜 1 4 0 の少なく とも感磁部に非磁性膜 1 7 7 が配置され るよ う レジス 卜フ レームが形成される。 そ して、 この上方にスパッタ リ ング法などの手法によ り 非磁性膜 1 7 7 が形成される。 非磁性膜 1 7 7 を形成後、 有機溶剤などを用いて、 レジス トフ レームを除去すると、 非 磁性膜 1 7 7 が磁気抵抗効果膜 1 4 0 の感磁部の所定の位置に配置され る。 非磁性膜 1 7 7 の上方と、 非磁性膜 1 7 7 の配置されていない酸化 物反強磁性膜 1 4 5の所定の位置に磁気抵抗効果膜 1 4 0が同 じ く スパ ッタ リ ング法の手法によ り形成され、 磁気抵抗効果膜 1 4 0 の上方に、 シャ ン ト膜 1 5 0 とソフ ト膜 1 5 5が同様の手法によ り形成され、 これ らの膜をフ ォ ト リ ソグラフ ィ などの技術を用い所定の形状に加工した後 ソフ ト膜 1 5 5 の上方に信号検出用電極 1 6 0 を形成し、 所定の形状に 加工した後、 上部ギャ ップ膜 1 7 0 , 上部シール ド膜 1 8 0 を形成, 加 ェを して磁気抵抗効果型磁気へッ ドの製造を完了する。 Further, Cu, Rh, Pd, Ag, IrPt, Au, etc. having a crystal structure of F.CC, or these elements as main components, The magnetic characteristics of the magnetoresistive effect film 140 can be improved by forming the nonmagnetic film 177 with a metal film or an alloy film formed by adding at least one kind of at least one of them. The magnetoresistive film 140 is usually composed of a NiFe alloy film, a NiCo alloy film, and the like, and these films have an F.CC crystal structure. Therefore, when the nonmagnetic film 177 has the crystal structure of FCC, the magnetoresistance effect film 140 can be epitaxially grown on the nonmagnetic film 177. This is because the magnetic properties of the magnetoresistive effect film 140 are improved when the magnetoresistive effect film 140 is epitaxially grown. Next, a method of manufacturing a magnetoresistive effect type magnetic head according to the present invention will be described. . First, the noise from the recording medium is placed above the non-magnetic substrate 1. The lower shield film 110 provided for absorbing unnecessary signals is formed by a technique such as a sputtering method. Next, an insulating film such as alumina is formed on the lower shield film 110 by the same method as the lower gap film 120. Next, an oxide antiferromagnetic film 144 is formed on the lower gap film 120 by a similar method. Then, the lower shield film 110, the lower gap film 120, and the oxide antiferromagnetic film 144 are processed into a predetermined shape. Here, the end of the lower magnetic shield film 110 is processed so as to be inclined with respect to the substrate surface. This is to prevent disconnection at the end of the lower magnetic shield layer 110. Next, a resist frame is formed on the oxide antiferromagnetic film 144 so that the nonmagnetic film 177 is arranged at least in the magneto-sensitive portion of the magnetoresistive effect film 140. . Then, a non-magnetic film 177 is formed thereon by a method such as a sputtering method. After the formation of the non-magnetic film 177, the resist frame is removed using an organic solvent or the like, and the non-magnetic film 177 is arranged at a predetermined position of the magneto-sensitive portion of the magneto-resistance effect film 140. . The magnetoresistive film 140 is also placed at a predetermined position above the nonmagnetic film 177 and at a predetermined position of the oxide antiferromagnetic film 145 where the nonmagnetic film 177 is not disposed. A shunt film 150 and a soft film 155 are formed by a similar method above the magnetoresistive effect film 140, and these films are formed by the same method. After processing into a predetermined shape using a technique such as photolithography, a signal detection electrode 160 is formed above the soft film 155, and after processing into a predetermined shape, an upper gap is formed. The film 170 and the upper shield film 180 are formed and processed to complete the manufacture of the magnetoresistive head.
酸化物反強磁性膜 1 4 5 は、 酸化物反強磁性膜 1 4 5 を形成後、 下部 ギャ ップ膜 1 2 0 と同じ形状に加工して配置したが酸化物反強磁性膜 1 5 を磁気抵抗効果膜 1 4 0加工時に磁気抵抗効果 1 4 0 と同じ形状 に加工してもよい。 After forming the oxide antiferromagnetic film 144, the oxide antiferromagnetic film 144 was processed and arranged in the same shape as the lower gap film 120. The same shape as the magnetoresistive effect 1400 when machining the magnetoresistive effect film 1400 May be processed.
磁気抵抗効果型磁気ヘッ ドは、 上方に、 記録ヘッ ドと して誘導型薄膜 磁気へッ ドを形成し、 記録再生分離型薄膜磁気へッ ドを構成し、 たとえ ば大型コ ンピュータ用外部磁気記憶装置に搭載して使用される。 このた め、 バルクハウゼンノ イズは低減できるものの再生感度が低下し、 S Z N比が低下するが、 本発明では、 バルクハウゼンノ イズを低減できる範 囲で磁気抵抗効果膜 1 4 0 に付与される縦バイアス磁界を極力小さ く す るため、 Nを小さ く し、 S を極力大き く する層構成に している。 このた め、 本発明の磁気抵抗効果型磁気へッ ドでは大きな S Z N比を確保でき , これによ り 、 従来では実現できなかった面記録密度 2 0 0 M b / i n 2 以上を有する大容量磁気ディ スク装置の製造が可能になる。 The magnetoresistive head has an inductive thin-film magnetic head as the recording head above it, and forms a separate read / write thin-film magnetic head.For example, an external magnetic head for a large computer It is used by mounting it on a storage device. For this reason, although the Barkhausen noise can be reduced, the reproduction sensitivity is lowered and the SZN ratio is lowered. However, in the present invention, the magnetoresistance effect film 140 is provided to the extent that Barkhausen noise can be reduced. In order to minimize the longitudinal bias magnetic field, N is made small and S is made as large as possible. For this reason, a large SZN ratio can be secured in the magnetoresistive head of the present invention, and as a result, a large capacity having an areal recording density of 200 Mb / in 2 or more, which could not be realized conventionally, can be obtained. It becomes possible to manufacture magnetic disk devices.
以上の如く 、 本発明に係る磁気抵抗効果型磁気ヘッ ドでは、 磁区制御 用の材料と して酸化物反強磁性膜 1 4 5 を用い、 磁気抵抗効果膜 1 4 0 と酸化物反強磁性膜 1 4 5 の中間に、 感磁部に非磁性膜 1 7 7 を介在さ せている。 これによ り 、 バルクハウゼンノ イズの低減できる範囲で、 磁 気応答特性を充分に高めた最適の縦バイアス磁界を感磁部に付与できる 磁気抵抗効果型磁気へッ ドの提供が可能となる。  As described above, in the magnetoresistive head according to the present invention, the oxide antiferromagnetic film 144 is used as the material for controlling the magnetic domain, and the magnetoresistance effect film 140 and the oxide antiferromagnetic film are used. A non-magnetic film 177 is interposed in the magnetic sensing part between the films 145 and 145. As a result, it is possible to provide a magnetoresistive head capable of applying an optimum longitudinal bias magnetic field with sufficiently enhanced magnetic response characteristics to the magnetic sensing portion within a range where Barkhausen noise can be reduced. .
さ らに、 酸化物反強磁性膜 1 4 5上、 少なく とも感磁部に極めて薄い 非磁性膜 1 7 7 を形成し、 その上方に、 磁気抵抗効果膜 1 4 0 を形成す る こ とによ り 、 磁気抵抗効果膜 1 4 0 には段切れなど発生する こ となく . 安定性よ く磁区制御層、 および磁気抵抗効果膜 1 4 0が形成できるとい う利点もある。 この場合、 さ らに磁区制御層の性能のばらつきによって 発生する複数の磁気へッ ド間の性能のばらつきを極力小さ く する ことが できる。  In addition, a very thin non-magnetic film 177 is formed on the oxide antiferromagnetic film 145 at least on the magneto-sensitive portion, and a magnetoresistive film 140 is formed thereon. Accordingly, the magnetoresistive film 140 has no advantage that the step is not generated. There is also an advantage that the magnetic domain control layer and the magnetoresistive film 140 can be formed with good stability. In this case, it is possible to further minimize variations in performance among a plurality of magnetic heads caused by variations in performance of the magnetic domain control layer.
さ らに、 本発明の磁気抵抗効果型磁気へッ ドを磁気ディ スク装置に搭 載する ことによ り 、 高い S Z N比が確保できる。 このため、 大容量磁気 デイ スク装置が可能となる。 産業上の利用可能性 Further, the magnetoresistive head of the present invention is mounted on a magnetic disk drive. By mounting, a high SZN ratio can be secured. For this reason, a large-capacity magnetic disk device becomes possible. Industrial applicability
本発明の薄膜磁気へッ ドによれば、 トラ ック部分を確定するフ レーム の露光する レジス ト膜厚を薄く できるため、 高精度にフ レームをパター ン形成でき、 かつ、 フ レームの形状の垂直性がよいため、 高精度かつ垂 直な形状の トラ ック部分をもち、 読みに じみ及び書きに じみのないもの が得られる。 また、 それを記録へッ ドと し、 再生へッ ドに磁気抵抗効果 型へッ ドを一体に した記録再生分離型へッ ドを用いる ことができ、 1 ギ ガビッ ト Z i n 2 以上の面記録密度を有する大容量磁気ディ スク装置が 得られるものである。 According to the thin-film magnetic head of the present invention, the thickness of the resist for exposing the frame defining the track portion can be reduced, so that the frame can be formed with high precision and the shape of the frame can be improved. Because of its good verticality, it has a track portion with a high-precision and vertical shape, and can be read and read. In addition, it can be used as a recording head, and a recording / reproducing separation type head in which a magnetoresistive head is integrated with the reproducing head can be used, and a surface of 1 gigabit Z in 2 or more can be used. A large-capacity magnetic disk device having a recording density can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 下部磁気コアと、 該下部磁気コア上に積層され一端が前記下部磁気 コアの一端に連らなり他端が前記下部磁気コアの他端に磁気ギャップを 介して対向し、 前記下部磁気コアと共に磁気回路を形成する上部磁気コ ァと、 前記下部磁気コアと上部磁気コアとの間に設けられた導体コイル と、 前記下部磁気コア, 上部磁気コア及び導体コイルを互いに電気的に 絶縁する絶縁膜とを具備する薄膜磁気へッ ドにおいて、 前記上部磁気コ ァはその先端が四角形を有し、 その トラック幅が 1 . 5 m 以下であり、 前記上部磁気コアの厚さが前記トラック幅よ り大きいこ とを特徴とする 薄膜磁気へッ ド。 1. a lower magnetic core, the lower magnetic core being stacked on the lower magnetic core, having one end connected to one end of the lower magnetic core, and the other end facing the other end of the lower magnetic core via a magnetic gap; An upper magnetic core that forms a magnetic circuit with the lower magnetic core, a conductor coil provided between the lower magnetic core and the upper magnetic core, and an insulator that electrically insulates the lower magnetic core, the upper magnetic core, and the conductor coil from each other. A top end of the upper magnetic core having a square shape, a track width of 1.5 m or less, and a thickness of the upper magnetic core being smaller than the track width. A thin-film magnetic head characterized by its large size.
2 . 下部磁気コアと、 該下部磁気コア上に積層され一端が前記下部磁気 コアの一端に連らなリ他端が前記下部磁気コアの他端に磁気ギヤ ヅプを 介して対向し、 前記下部磁気コアと共に磁気回路を形成する上部磁気コ ァと、 前記下部磁気コアと上部磁気コアとの間に設けられた導体コイル と、 前記下部磁気コア, 上部磁気コア及び導体コイルを互いに電気的に 絶縁する絶縁膜とを具備する薄膜磁気へッ ドにおいて、 前記上部磁気コ ァの先端は トラック幅 ( w l ) とその上部の幅 ( w 2 ) との比 ( w 2ノ w 1 ) が 1 . 3 以下及び前記トラック幅が 1 . 5 μ m 以下であり、 前記 上部磁気コアの厚さが前記トラック幅よ り大きいことを特徴とする薄膜 磁気へッ ド。  2. a lower magnetic core, and a lower end laminated on the lower magnetic core, one end of which is connected to one end of the lower magnetic core, the other end of which faces the other end of the lower magnetic core via a magnetic gap; An upper magnetic core that forms a magnetic circuit with the lower magnetic core; a conductor coil provided between the lower magnetic core and the upper magnetic core; and an electrical connection between the lower magnetic core, the upper magnetic core, and the conductor coil. In a thin-film magnetic head having an insulating film to be insulated, the tip of the upper magnetic core has a ratio (w 2 ww 1) of a track width (wl) to an upper width (w 2) of 1. 3 or less, and the track width is 1.5 μm or less, and the thickness of the upper magnetic core is larger than the track width.
3 . 下部磁気コアと、 該下部磁気コア上に積層され一端が前記下部磁気 コアの一端に連らなり他端が前記下部磁気コアの他端に磁気ギャップを 介して対向し、 前記下部磁気コアと共に磁気回路を形成する上部磁気コ ァと、 前記下部磁気コアと上部磁気コアとの間に設けられた導体コイル と、 前記下部磁気コア, 上部磁気コア及び導体コイルを互いに電気的に 絶縁する絶縁膜とを具備する薄膜磁気へッ ドにおいて、 前記上部磁気コ ァは全体が実質的に同一の厚さを有し、 トラック幅が 1 . 5 μ m 以下で あることを特徴とする薄膜磁気へッ ド。 3. a lower magnetic core, wherein the lower magnetic core is stacked on the lower magnetic core, one end of which is connected to one end of the lower magnetic core, and the other end of which faces the other end of the lower magnetic core via a magnetic gap; An upper magnetic core that forms a magnetic circuit together with the first magnetic core; a conductor coil provided between the lower magnetic core and the upper magnetic core; and an electrical connection between the lower magnetic core, the upper magnetic core, and the conductor coil. A thin-film magnetic head comprising an insulating film to be insulated, wherein the upper magnetic core has substantially the same thickness as a whole and has a track width of 1.5 μm or less. Thin-film magnetic head.
4 . 下部磁気コアと、 該下部磁気コア上に積層され一端が前記下部磁気 コアの一端に連らなり他端が前記下部磁気コアの他端に磁気ギャップを 介して対向し、 前記下部磁気コアと共に磁気回路を形成する上部磁気コ ァと、 前記下部磁気コアと上部磁気コアとの間に設けられた導体コイル と、 前記下部磁気コア, 上部磁気コア及び導体コイルを互いに電気的に 絶縁する絶縁膜とを具備する薄膜磁気へッ ドにおいて、 前記上部磁気コ ァはその先端がトラック幅よ りその厚さが大きく 、 且つ全体が実質的に 同一の厚さを有し、 前記トラック幅が 1 . 5 t m 以下であることを特徴 とする薄膜磁気へッ ド。  4. a lower magnetic core, the lower magnetic core being stacked on the lower magnetic core, having one end connected to one end of the lower magnetic core, and the other end facing the other end of the lower magnetic core via a magnetic gap; An upper magnetic core that forms a magnetic circuit with the lower magnetic core, a conductor coil provided between the lower magnetic core and the upper magnetic core, and an insulator that electrically insulates the lower magnetic core, the upper magnetic core, and the conductor coil from each other. A top end of the upper magnetic core has a thickness larger than a track width, and the whole magnetic core has substantially the same thickness, and the track width is equal to one. A thin-film magnetic head characterized by being less than 5 tm.
5 . 前記上部磁気コアの厚さは前記トラック幅の 1 . 5 〜 5倍である請 求項 1 ~ 4のいずれかに記載の薄膜磁気へッ ド。  5. The thin-film magnetic head according to claim 1, wherein the thickness of the upper magnetic core is 1.5 to 5 times the track width.
6 . 誘導型記録へッ ドと磁気抵抗効果型再生へッ ドとがー体に形成され た記録再生分離型へッ ドにおいて、 前記記録へッ ド及び再生へッ ドの ト ラック幅がいずれも 1 . 5 β m 以下であることを特徴とする記録再生分 離型へッ ド。  6. In the recording / reproducing separation type head in which the inductive recording head and the magnetoresistive effect reproducing head are formed on the body, the track width of the recording head and the reproducing head are both different. The recording / reproducing separation type head is also characterized by having a diameter of 1.5 βm or less.
7 . 前記記録へッ ドの トラック幅が前記再生へッ ドの トラック幅よリサ ブミクロンオーダーで若干大きい請求項 6記載の記録再生分離型ヘッ ド 7. The separated recording / reproducing head according to claim 6, wherein a track width of the recording head is slightly larger than a track width of the reproducing head in a submicron order.
8 . 誘導型記録へッ ドと磁気抵抗効果型再生へッ ドとが一体に形成され た記録再生分離型へッ ドにおいて、 8. In a separate read / write head in which an inductive write head and a magnetoresistive read head are integrally formed,
前記記録へッ ドは下部磁気コアと、 該下部磁気コア上に積層され一端 が前記下部磁気コァの一端に連らなリ他端が前記下部磁気コアの他端に 磁気ギャップを介して対向し、 前記下部磁気コアと共に磁気回路を形成 する上部磁気コアと、 前記下部磁気コアと上部磁気コアとの間に設けら れた導体コイルと、 前記下部磁気コア, 上部磁気コア及び導体コイルを 互いに電気的に絶縁する絶縁膜とを具備し、 且つ前記上部磁気コアの厚 さがトラ ック幅よ り大き く 、 The recording head is disposed on the lower magnetic core, and the other end of the recording head is stacked on the lower magnetic core and has one end connected to one end of the lower magnetic core, and the other end faces the other end of the lower magnetic core via a magnetic gap. Forming a magnetic circuit with the lower magnetic core An upper magnetic core, a conductive coil provided between the lower magnetic core and the upper magnetic core, and an insulating film for electrically insulating the lower magnetic core, the upper magnetic core, and the conductive coil from each other. And the thickness of the upper magnetic core is larger than the track width,
前記再生へッ ドは、 非磁性金属層によつて仕切られた強磁性体の第 1 及び第 2磁性層と該磁性層のいずれかに接して設けられた反強磁性層と を有し、 記録媒体からの印加磁界がゼロである場合に前記強磁性体の第 1磁性層の磁化方向が前記第 2層の磁化方向に対し直交する方法である ことを特徴とする記録再生分離型へッ ド。  The reproducing head includes first and second ferromagnetic layers separated by a non-magnetic metal layer and an antiferromagnetic layer provided in contact with one of the magnetic layers. A recording / reproducing separation type head wherein the magnetization direction of the first magnetic layer of the ferromagnetic material is orthogonal to the magnetization direction of the second layer when the magnetic field applied from the recording medium is zero. De.
9 . 誘導型記録ヘッ ドと磁気抵抗効果型再生へッ ドとが一体に形成され た記録再生分離型へッ ドにおいて、  9. In a separate read / write head in which an inductive write head and a magnetoresistive read head are integrally formed,
前記記録ヘッ ドは、 下部磁気コアと、 該下部磁気コア上に積層され一 端が前記下部磁気コアの一端に連らなり他端が前記下部磁気コアの他端 に磁気ギャ ップを介して対向し、 前記下部磁気コアと共に磁気回路を形 成する上部磁気コアと、 前記下部磁気コアと上部磁気コアとの間に設け られた導体コイルと、 前記下部磁気コア, 上部磁気コア及び導体コイル を互いに電気的に絶縁する絶縁膜とを具備し、 且つ前記上部磁気コアの 厚さがトラック幅よ り大きく 、  The recording head has a lower magnetic core, and is stacked on the lower magnetic core, one end is connected to one end of the lower magnetic core, and the other end is connected to the other end of the lower magnetic core via a magnetic gap. An upper magnetic core facing the lower magnetic core to form a magnetic circuit with the lower magnetic core; a conductive coil provided between the lower magnetic core and the upper magnetic core; and a lower magnetic core, an upper magnetic core, and a conductive coil. An insulating film electrically insulating each other, and wherein a thickness of the upper magnetic core is larger than a track width;
前記再生ヘッ ドは、 軟磁性層, 非磁性層, 強磁性層及び反強磁性層を 順次構成した薄膜を有し、 前記薄膜が外部の磁界に応じて前記軟磁性層 の磁化が回転し前記強磁性層の磁化との相対角度が変わって磁気抵抗効 果作用を有し、 前記強磁性層が互いに非磁性層を介して第一の強磁性層 第二の強磁性層及び第三の強磁性層の積層体を有する、  The reproducing head has a thin film in which a soft magnetic layer, a non-magnetic layer, a ferromagnetic layer and an antiferromagnetic layer are sequentially formed, and the thin film rotates in accordance with an external magnetic field to rotate the soft magnetic layer. The relative angle with respect to the magnetization of the ferromagnetic layer is changed to have a magnetoresistive effect, and the ferromagnetic layers mutually interpose a non-magnetic layer to form a first ferromagnetic layer, a second ferromagnetic layer, and a third ferromagnetic layer. Having a laminate of magnetic layers,
ことを特徴とする記録再生分離型へッ ド。  A recording / reproducing separation type head characterized by the following.
1 0 . 誘導型記録へッ ドと磁気抵抗効果型再生へッ ドとが一体に形成さ れた記録再生分離型へッ ドにおいて、 10. The inductive recording head and the magnetoresistive head are integrally formed. With a separate recording and playback head,
前記記録へッ ドは、 下部磁気コアと、 該下部磁気コア上に積層され一 端が前記下部磁気コアの一端に連らなり他端が前記下部磁気コアの他端 に磁気ギャ ップを介して対向し、 前記下部磁気コアと共に磁気回路を形 成する上部磁気コアと、 前記下部磁気コアと上部磁気コアとの間に設け られた導体コイルと、 前記下部磁気コア, 上部磁気コア及び導体コイル を互いに電気的に絶縁する絶縁膜とを具備し、 且つ前記上部磁気コアの 厚さがトラック幅よ り大きく、  The recording head has a lower magnetic core, and is stacked on the lower magnetic core. One end is connected to one end of the lower magnetic core, and the other end is connected to the other end of the lower magnetic core via a magnetic gap. An upper magnetic core facing the lower magnetic core to form a magnetic circuit with the lower magnetic core; a conductor coil provided between the lower magnetic core and the upper magnetic core; a lower magnetic core, an upper magnetic core, and a conductor coil An insulating film electrically insulating the upper magnetic core from each other, and a thickness of the upper magnetic core is larger than a track width;
前記再生へッ ドは、 磁気抵抗効果を用いて磁気的信号を電気的信号に 変換する磁気抵抗効果膜と、 前記磁気抵抗効果膜に信号検出電流を流す ための一対の電極と、 前記磁気抵抗効果膜の下側に配置された酸化物反 強磁性膜と、 前記磁気抵抗効果膜と前記酸化物反強磁性膜の中間の少な く とも前記磁気抵抗効果膜の感磁部に非磁性膜を少なく とも 1層有する. ことを特徴とする記録再生分離型磁気へッ ド。  The read head comprises: a magnetoresistive film for converting a magnetic signal into an electric signal using a magnetoresistive effect; a pair of electrodes for flowing a signal detection current through the magnetoresistive film; An oxide antiferromagnetic film disposed below the effect film; and a nonmagnetic film in at least a magnetically sensitive portion of the magnetoresistive effect film between the magnetoresistive effect film and the oxide antiferromagnetic film. A recording / reproducing separated type magnetic head having at least one layer.
1 1 . 情報を記録する磁気ディスクと、 該磁気ディスクに前記情報を書 き込みを行う誘導型記録へッ ド及び前記磁気ディスクに書き込まれた情 報を再生する磁気抵抗効果型ヘッ ドがスライダーに一体に形成された記 録再生分離型へッ ドと、 前記ディスクを回転させる駆動手段とを備えた へッ ド · ディスク · アセンブリ において、 前記記録へッ ドは請求項 1〜 5のいずれかに記載の薄膜磁気へッ ドからなることを特徴とするへッ ド ' ディスク ' アセンブリ。  11. A magnetic disk for recording information, an inductive recording head for writing the information on the magnetic disk, and a magnetoresistive head for reproducing the information written on the magnetic disk are sliders. A head / disc assembly comprising: a recording / reproducing separation type head integrally formed with a head; and a drive unit for rotating the disk, wherein the recording head is any one of claims 1 to 5. A head 'disk' assembly comprising a thin-film magnetic head according to claim 1.
1 2 . 情報を記録する磁気ディスクと、 該磁気ディスクに前記情報を書 き込みを行う誘導型記録ヘッ ド及び前記磁気ディスクに書き込まれた情 報を再生する磁気抵抗効果型ヘッ ドがスライダーに一体に形成された記 録再生分離型へッ ドと、 前記ディスクを回転させる駆動手段とを備えた へッ ド · ディ スク · アセンブリ を複数個有する磁気ディ スク装置におい て、 前記記録へッ ドが請求項 1 ~ 5 のいずれかに記載の薄膜磁気へッ ド からなる こ と を特徴とする磁気ディ スク装置。 12. A slider is provided with a magnetic disk for recording information, an inductive recording head for writing the information on the magnetic disk, and a magnetoresistive head for reproducing the information written on the magnetic disk. A recording / playback separation type head integrally formed, and drive means for rotating the disk A magnetic disk device having a plurality of head disk assemblies, wherein the recording head comprises the thin-film magnetic head according to any one of claims 1 to 5. Disk device.
1 3 . 情報を記録する磁気ディ スク と、 該磁気ディ スク に前記情報を書 き込みを行う誘導型記録ヘッ ド及び前記磁気ディ スク に書き込まれた情 報を再生する磁気抵抗効果型ヘッ ドがスライ ダーに一体に形成された記 録再生分離型へッ ドと、 前記ディ スク を回転させる駆動手段と を備えた へッ ド · ディ スク · アセンブリ を複数個有する磁気ディ スク装置におい て、 前記記録再生分離型へッ ドが請求項 6 〜 1 0 のいずれかに記載の記 録再生分離型ヘッ ドからなる こ と を特徴とする磁気ディ スク装置。 13. A magnetic disk for recording information, an inductive recording head for writing the information on the magnetic disk, and a magnetoresistive head for reproducing the information written on the magnetic disk In a magnetic disk device having a plurality of head disk assemblies each including a recording / reproducing separation type head integrally formed with a slider and driving means for rotating the disk, A magnetic disk device, characterized in that the recording / reproducing separation type head comprises the recording / reproducing separation type head according to any one of claims 6 to 10.
1 4 . 情報を記録する磁気ディ スク と、 該磁気ディ スク に前記情報を書 き込みを行う誘導型記録ヘッ ド及び前記磁気ディ スク に書き込まれた情 報を再生する磁気抵抗効果型ヘッ ドがスライ ダーに一体に形成された記 録再生分離型へッ ドと、 前記ディ スク を回転させる駆動手段と を備えた ヘッ ド · ディ スク · アセンブリ において、 前記記録再生分離型へッ ドは 請求項 6 ~ 1 0 のいずれかに記載の記録へッ ドからなる こと を特徴とす るへッ ド · ディ スク · アセンブリ 。 14. A magnetic disk for recording information, an inductive recording head for writing the information on the magnetic disk, and a magnetoresistive head for reproducing the information written on the magnetic disk Wherein the recording / reproducing separation type head is formed integrally with a slider, and a drive means for rotating the disk is provided. A head disk assembly comprising a recording head according to any one of Items 6 to 10.
1 5 . 下部磁気コアと、 該下部磁気コア上に積層され一端が前記下部磁 気コアの一端に連らな り他端が前記下部磁気コアの他端に磁気ギャ ップ を介して対向 し、 前記下部磁気コアと共に磁気回路を形成する上部磁気 コアと、 前記下部磁気コアと上部磁気コアとの間に設けられた導体コィ ルと、 前記下部磁気コア, 上部磁気コア及び導体コイルを互いに電気的 に絶縁する絶縁膜と を具備する薄膜磁気へッ ドの製造方法において、 前 記上部磁気コァは全体が実質的に同一の厚さ を有し、 トラ ック幅が 1. 5 μ πι以下であ り 、 前記下部磁気コア, 磁気ギャ ップ, 導体コイル及び絶 縁膜を有する基板上にフ レームを形成した後、 前記上部磁気コアとなる めつ き膜を形成し、 次いで前記フ レームで囲まれる領域にマスク を して 前記めつ き膜をエッチングし、 前記上部磁気コアを形成する こ と を特徴 とする薄膜磁気へッ ドの製造方法。 15. Lower magnetic core, laminated on the lower magnetic core, one end is connected to one end of the lower magnetic core, and the other end is opposed to the other end of the lower magnetic core via a magnetic gap. An upper magnetic core that forms a magnetic circuit with the lower magnetic core; a conductor coil provided between the lower magnetic core and the upper magnetic core; and an electric motor that electrically connects the lower magnetic core, the upper magnetic core, and the conductor coil to each other. In the method of manufacturing a thin-film magnetic head having an insulating film that is electrically insulated, the upper magnetic core has substantially the same thickness as a whole and has a track width of 1.5 μπι or less. The lower magnetic core, the magnetic gap, the conductor coil and the magnetic core. After forming a frame on a substrate having an edge film, a plating film to be the upper magnetic core is formed, and then the plating film is etched by using a mask in a region surrounded by the frame, A method for manufacturing a thin-film magnetic head, comprising forming the upper magnetic core.
1 6 . 下部磁気コアと、 該下部磁気コア上に積層され一端が前記下部磁 気コアの一端に連らな り他端が前記下部磁気コアの他端に磁気ギャ ップ を介して対向 し、 前記下部磁気コアと共に磁気回路を形成する上部磁気 コアと、 前記下部磁気コアと上部磁気コ アとの間に設けられた導体コィ ルと、 前記下部磁気コア, 上部磁気コア及び導体コイルを互いに電気的 に絶縁する絶縁膜と を具備し、 前記上部磁気コアは全体が実質的に同一 の厚さ を有し、 トラ ック幅が 1 . 5 m 以下であ リ 、 前記下部磁気コア , 磁気ギャ ップ, 導体コィル及び絶縁膜を有する基板上にフ レームを形成 した後、 前記上部磁気コアとなるめっ き膜を形成し、 次いで前記フ レー ムで囲まれる領域にマスク を して前記めつ き膜をエッチングし、 前記上 部磁気コアを形成する薄膜磁気ヘッ ドの製造方法であって、  16. Lower magnetic core, one end of the lower magnetic core laminated on the lower magnetic core, one end being connected to one end of the lower magnetic core, and the other end facing the other end of the lower magnetic core via a magnetic gap. An upper magnetic core that forms a magnetic circuit with the lower magnetic core; a conductor coil provided between the lower magnetic core and the upper magnetic core; and a lower magnetic core, an upper magnetic core, and a conductor coil. An insulating film for electrically insulating the lower magnetic core, the upper magnetic core having substantially the same thickness as a whole, and having a track width of 1.5 m or less. After forming a frame on a substrate having a gap, a conductor coil, and an insulating film, a plating film to be the upper magnetic core is formed, and then, a mask is formed in a region surrounded by the frame. Etch the plating film and remove the upper magnetic A method for manufacturing a thin-film magnetic head forming a core, comprising:
前記基板上に、 最上層と してレジス ト層をもつ 2層以上の多層膜を、 薄膜磁気へッ ドの磁気ギヤ ップが形成される前記基板の先端部領域で所 望の厚みとなるよ う に形成し、 前記多層膜の最上層レジス ト を少なく と も前記上部磁気コアの前記先端部領域に対応する形状にパターニングし た後、 前記パターニングされたレジス トをマスク にレジス ト層以下の下 層部をエッチングして前記上部磁気コアの前記先端部領域に対応する第 一のフ レームを形成する第一の工程と、  On the substrate, a multilayer film having two or more layers having a resist layer as an uppermost layer has a desired thickness in a leading end region of the substrate where a magnetic gap of a thin-film magnetic head is formed. After forming the uppermost layer resist of the multilayer film into a shape corresponding to at least the tip end region of the upper magnetic core, the patterned resist is used as a mask to form a resist layer or lower. A first step of etching a lower layer portion to form a first frame corresponding to the tip region of the upper magnetic core;
前記第一のフ レームが形成された基板上に、 レジス 卜を前記導体コィ ル及び前記導体コィルの絶縁膜が形成された前記基板の後部領域に前記 フ レームが所望の厚みとなるよ う に塗布し、 次いで前記レジス トをパタ 一二ングして、 上部磁気コアの前記後部領域に形成される部分に対応す る第二のフ レームを、 前記第一のフ レームと一体となるよ う に形成する 工程を有する こ と を特徴とする薄膜磁気へッ ドの製造方法。 On the substrate on which the first frame is formed, a resist is formed in a rear region of the substrate on which the conductor coil and the insulating film of the conductor coil are formed so that the frame has a desired thickness. Then apply the resist Forming a second frame corresponding to a portion formed in the rear region of the upper magnetic core so as to be integral with the first frame. A method for manufacturing thin-film magnetic heads.
1 7 . 下部磁気コアと、 該下部磁気コア上に積層され一端が前記下部磁 気コアの一端に連らな り他端が前記下部磁気コアの他端に磁気ギャ ップ を介して対向 し、 前記下部磁気コアと共に磁気回路を形成する上部磁気 コアと、 前記下部磁気コアと上部磁気コアとの間に設けられた導体コィ ルと、 前記下部磁気コア, 上部磁気コア及び導体コイルを互いに電気的 に絶縁する絶縁膜とを具備する薄膜磁気へッ ドにおいて、 前記上部磁気 コアは全体が実質的に同一の厚さ を有し、 トラ ック幅が 1 . 5 以下 であ り 、 前記下部磁気コア, 磁気ギャ ップ, 導体コイル及び絶縁膜を有 する基板上にフ レームを形成した後、 前記上部磁気コアとなるめっ き膜 を形成し、 次いで前記フ レームで囲まれる領域にマスク を して前記めつ き膜をエッチングし、 前記上部磁気コアを形成する薄膜磁気へッ ドの製 造方法であって、  17. Lower magnetic core, laminated on the lower magnetic core, with one end connected to one end of the lower magnetic core and the other end facing the other end of the lower magnetic core via a magnetic gap. An upper magnetic core that forms a magnetic circuit with the lower magnetic core; a conductor coil provided between the lower magnetic core and the upper magnetic core; and an electric motor that electrically connects the lower magnetic core, the upper magnetic core, and the conductor coil to each other. A thin-film magnetic head comprising: an insulating film for electrically insulating the upper magnetic core, the upper magnetic core as a whole having substantially the same thickness, a track width of 1.5 or less, and After forming a frame on a substrate having a magnetic core, a magnetic gap, a conductor coil and an insulating film, a plating film to be the upper magnetic core is formed, and then a mask is formed in a region surrounded by the frame. To remove the plating film. A method of manufacturing a thin-film magnetic head for forming the upper magnetic core, comprising:
前記基板上に、 前記導体コィル及び前記導体コィルの絶縁膜が形成さ れた前記基板の前記後部領域に有機物パターンを形成後、  After forming an organic pattern in the rear region of the substrate on which the conductor coil and the insulating film of the conductor coil are formed,
最上層と してレジス ト層をもつ 2層以上の多層膜を、 薄膜磁気へヅ ド の磁気ギャ ップが形成される前記基板の先端部領域で所望の厚みとなる よ う に形成し、 前記多層膜の最上層レジス トを前記フ レームに対応する 形状にパターニングした後、 前記パターニングされたレジス トをマスク にレジス ト層以下の下層部及び前記後部領域の該有機物パターンをエツ チングして前記フ レームを形成する こと を特徴とする薄膜磁気ヘッ ドの 製造方法。  A multilayer film having two or more layers having a resist layer as an uppermost layer is formed so as to have a desired thickness in a front end region of the substrate where a thin-film magnetic head magnetic gap is formed, After patterning the uppermost layer resist of the multilayer film into a shape corresponding to the frame, the organic material pattern in the lower layer portion below the resist layer and the rear region is etched using the patterned resist as a mask. A method for manufacturing a thin-film magnetic head, comprising forming the frame.
PCT/JP1997/000412 1997-02-17 1997-02-17 Thin film magnetic head, recording/reproduction separation type head, magnetic disk apparatus and process for producing thin film magnetic head WO1998036410A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000412 WO1998036410A1 (en) 1997-02-17 1997-02-17 Thin film magnetic head, recording/reproduction separation type head, magnetic disk apparatus and process for producing thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000412 WO1998036410A1 (en) 1997-02-17 1997-02-17 Thin film magnetic head, recording/reproduction separation type head, magnetic disk apparatus and process for producing thin film magnetic head

Publications (1)

Publication Number Publication Date
WO1998036410A1 true WO1998036410A1 (en) 1998-08-20

Family

ID=14180066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000412 WO1998036410A1 (en) 1997-02-17 1997-02-17 Thin film magnetic head, recording/reproduction separation type head, magnetic disk apparatus and process for producing thin film magnetic head

Country Status (1)

Country Link
WO (1) WO1998036410A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206166B2 (en) 2002-08-29 2007-04-17 Tdk Corporation Thin film magnetic head and method of manufacturing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121611A (en) * 1982-12-28 1984-07-13 Fujitsu Ltd Magnetic head
JPS6339110A (en) * 1986-08-01 1988-02-19 Seiko Epson Corp Production of thin film magnetic head
JPH03185601A (en) * 1989-12-13 1991-08-13 Hitachi Ltd Magnetic disk device and method for recording and reproducing information
JPH03296907A (en) * 1990-04-16 1991-12-27 Hitachi Ltd Magnetic head and production thereof
JPH0554331A (en) * 1991-08-22 1993-03-05 Yamaha Corp Production of thin-film magnetic head
JPH05166132A (en) * 1991-12-19 1993-07-02 Mitsubishi Electric Corp Thin film magnetic head
JPH0644526A (en) * 1992-07-24 1994-02-18 Yamaha Corp Production of thin-film magnetic head
JPH07176016A (en) * 1993-12-17 1995-07-14 Riide Raito S M I Kk Production of thin film magnetic head

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121611A (en) * 1982-12-28 1984-07-13 Fujitsu Ltd Magnetic head
JPS6339110A (en) * 1986-08-01 1988-02-19 Seiko Epson Corp Production of thin film magnetic head
JPH03185601A (en) * 1989-12-13 1991-08-13 Hitachi Ltd Magnetic disk device and method for recording and reproducing information
JPH03296907A (en) * 1990-04-16 1991-12-27 Hitachi Ltd Magnetic head and production thereof
JPH0554331A (en) * 1991-08-22 1993-03-05 Yamaha Corp Production of thin-film magnetic head
JPH05166132A (en) * 1991-12-19 1993-07-02 Mitsubishi Electric Corp Thin film magnetic head
JPH0644526A (en) * 1992-07-24 1994-02-18 Yamaha Corp Production of thin-film magnetic head
JPH07176016A (en) * 1993-12-17 1995-07-14 Riide Raito S M I Kk Production of thin film magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206166B2 (en) 2002-08-29 2007-04-17 Tdk Corporation Thin film magnetic head and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP3180027B2 (en) Spin valve magnetoresistive sensor and magnetic recording system using this sensor
JP3947727B2 (en) A vertical writer with a main pole of magnetically soft and stable high magnetic moment
US7072155B2 (en) Magnetoresistive sensor including magnetic domain control layers having high electric resistivity, magnetic head and magnetic disk apparatus
KR100319035B1 (en) Thin film magnetic head and recording reproducing separate type magnetic head, and magnetic recording reproducing apparatus using them
US6606225B1 (en) Yoke-type magnetic head and device having a granular structure in which a non-magnetic and electrical insulating material surrounds magnetic particles
JP2004199816A (en) Magnetic head
JP5570757B2 (en) Magnetoresistive head and magnetic recording / reproducing apparatus
JP2004281023A (en) Thin film perpendicular magnetic recording head, its fabrication process, and magnetic disk drive using same
JP2001291214A (en) Magneto-resistive sensor, magnetic head using the same and magnetic recording and reproducing device
JP2004086961A (en) Magnetic head and magnetic recorder
JP4146818B2 (en) Thin film magnetic head, head gimbal assembly, and hard disk drive
JPH04285713A (en) Magneto-resistance effect type head and production thereof
JP2006286669A (en) Method of manufacturing magnetoresistance effect element
JPH10241125A (en) Thin film magnetic head and recording/reproducing separation type magnetic head and magnetic recording/ reproducing apparatus using the same
JP3872958B2 (en) Magnetoresistive element and manufacturing method thereof
JPH117609A (en) Thin film magnetic head, and recording and reproducing separation type head, and magnetic storing and reproducing device using it
WO1998036410A1 (en) Thin film magnetic head, recording/reproduction separation type head, magnetic disk apparatus and process for producing thin film magnetic head
JP3730976B2 (en) Thin film magnetic head, head gimbal assembly, and hard disk drive
JP3325853B2 (en) Spin valve thin film magnetic element, thin film magnetic head, and method of manufacturing spin valve thin film magnetic element
JP2002032904A (en) Magnetic head and magnetic information recording/ reproducing device using the same
JP3932587B2 (en) Magnetic laminate, magnetic sensor, magnetic recording medium, and magnetic recording / reproducing apparatus
JP4387923B2 (en) Magnetoresistive element, thin film magnetic head, head gimbal assembly, head arm assembly, and magnetic disk apparatus
KR19980081615A (en) Thin film magnetic head, recording / reproducing separate head and magnetic recording and reproducing apparatus using the same
JP3971721B2 (en) Thin film magnetic head
JP2005235396A (en) Thin film magnetic head, recording/reproducing separation type head and magnetic storage/reproducing device using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase