WO1999018541A1 - Procede de fabrication de cartes a puce aptes a assurer un fonctionnement a contact, et sans contact - Google Patents

Procede de fabrication de cartes a puce aptes a assurer un fonctionnement a contact, et sans contact Download PDF

Info

Publication number
WO1999018541A1
WO1999018541A1 PCT/FR1998/002147 FR9802147W WO9918541A1 WO 1999018541 A1 WO1999018541 A1 WO 1999018541A1 FR 9802147 W FR9802147 W FR 9802147W WO 9918541 A1 WO9918541 A1 WO 9918541A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
manufacturing
connection
cavity
module
Prior art date
Application number
PCT/FR1998/002147
Other languages
English (en)
Inventor
Stéphane AYALA
Gérard BOURNEIX
Christine Beausoleil
David Martin
Laurent Oddou
Philippe Patrice
Michael Zafrany
Original Assignee
Gemplus S.C.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020007003748A priority Critical patent/KR20010030980A/ko
Priority to CA002306407A priority patent/CA2306407A1/fr
Priority to DE69839276T priority patent/DE69839276T2/de
Priority to JP2000515254A priority patent/JP2001519574A/ja
Priority to AU94475/98A priority patent/AU9447598A/en
Priority to EP98947625A priority patent/EP1021792B1/fr
Application filed by Gemplus S.C.A. filed Critical Gemplus S.C.A.
Priority to BR9812884-1A priority patent/BR9812884A/pt
Publication of WO1999018541A1 publication Critical patent/WO1999018541A1/fr
Priority to US09/545,288 priority patent/US7958622B1/en
Priority to HK01105074A priority patent/HK1034590A1/xx
Priority to US11/882,871 priority patent/US7663564B2/en
Priority to US11/882,870 priority patent/US7740180B2/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07766Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement
    • G06K19/07769Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card comprising at least a second communication arrangement in addition to a first non-contact communication arrangement the further communication means being a galvanic interface, e.g. hybrid or mixed smart cards having a contact and a non-contact interface
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/0775Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for connecting the integrated circuit to the antenna
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07777Antenna details the antenna being of the inductive type
    • G06K19/07779Antenna details the antenna being of the inductive type the inductive antenna being a coil
    • G06K19/07783Antenna details the antenna being of the inductive type the inductive antenna being a coil the coil being planar
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49016Antenna or wave energy "plumbing" making

Definitions

  • the invention relates to the manufacture of smart cards, capable of ensuring a contact operating mode and a contactless operating mode.
  • These cards are provided with an antenna integrated in the card and with a micromodule connected to the antenna.
  • the exchange of information with the outside is done either by the antenna (therefore without contact), or by the contacts flush with the surface of the card.
  • this type of card will be referred to as a mixed operation card or a mixed chip card.
  • the manufacturing process also relates to contactless smart cards, that is to say smart cards capable of ensuring contactless operation, the exchange of information to the outside being done only by the antenna.
  • Mixed smart cards are intended to carry out various operations, such as, for example, banking operations, telephone communications, identification operations, debit operations or recharging of account units, and all kinds of operations which can be carried out either by inserting the card in a reader, or remotely by electromagnetic coupling (in principle of the inductive type) between a transmission-reception terminal and a card placed in the zone of action of this terminal.
  • Mixed cards must have standardized dimensions identical to those of conventional smart cards with contacts. This is desirable for cards operating only contactless.
  • the contact cards are defined by the usual standard ISO 7810, this definition being: a card 85 mm long, 54 mm wide, and 0.76 mm thick.
  • the contacts are flush with well-defined positions on the surface of the card.
  • the antenna generally consists of a conductive element deposited in a thin layer on a plastic support sheet. There are connection pads at the ends of the antenna which must be updated in order to be able to connect them to the contacts of the electronic module.
  • the conductive element forming the antenna will be referred to below as the antenna wire since it may depending on the technology used, either a wire embedded in the manufacturing support sheet, or printed tracks.
  • a recommended solution for manufacturing mixed smart cards consists of using pre-drilled plastic sheets at the antenna connection pads formed by the two ends of the antenna wire, to superimpose them on the sheet supporting the antenna. and to assemble them by hot or cold rolling.
  • the position of the antenna connection pads is limited by the position of the electronic module, which is itself defined by ISO standards.
  • the antenna wire generally comprises several turns. These turns pass between the connection pads, so that they can be connected to these connection pads which are located in the region of the micromodule.
  • turns can be damaged during machining of the cavity. Indeed, the turns can even be destroyed during this step if the antenna is not positioned very precisely relative to the position of the cavity.
  • the invention makes it possible to solve this first problem of risks of damage to the antenna or even of destruction.
  • the invention proposes a method of manufacturing a smart card, said smart card comprising an antenna at the ends of which are provided pads for connection with an electronic module, characterized in that it comprises at least one step consisting in producing the antenna comprising at least two turns, on a support sheet, said antenna having its turns placed outside the connection pads, and an insulating bridge so as to be able to connect each of the ends of the antenna respectively to a connection pad.
  • This step of the manufacturing process makes it possible to obtain a free space between the connection pads of the antenna, in which it is possible to dig a cavity for the module without risking damaging the turns of the antenna.
  • the insulating bridge is made by covering, over an area, the turns of the antenna with an insulating layer, then by depositing, on this insulating layer, a conductive element so as to be able to connect an outer end of the antenna to a pad of connection.
  • Another way of making the insulating bridge consists in forming the antenna on either side of the support sheet, the connection pads being produced on the same face of the support sheet.
  • the perforations made in each sheet must overlap.
  • the geometry of the perforations is not controlled and may fluctuate.
  • the pressure becomes zero below the perforations while it is high on the card body. This pressure difference creates a fault on the surface of the cards.
  • the invention further proposes to assemble all the plastic sheets intended to form the card body and then to machine the card body to form the cavity reserved for the electronic module and the wells. connection intended to update the antenna connection areas. This machining will preferably be done in a single step, this being made possible by precise control of the position of the antenna relative to the position of the cavity.
  • the invention proposes a second solution to the problem of risk of damage to the antenna, or even of destruction. It indeed proposes a method of manufacturing a smart card, said smart card comprising an antenna at the ends of which are provided pads for connection with an electronic module, characterized in that it comprises at least one step consisting in machine a cavity and connection wells in an upper face of the card body, so that the machining plane of the bottom of the cavity is located above the antenna plane and the connection wells are located at - above the antenna connection areas and allow them to be updated.
  • the connection elements between the module and the antenna which will be referred to hereinafter as interconnection, can be damaged during the testing of the cards in bending and in torsion.
  • the invention proposes to place the antenna at a location on the card where the stresses are the lowest.
  • the sheet supporting the antenna is placed at the neutral fiber of the card.
  • the neutral fiber of a card is defined as the layer located in the middle of the thickness of the card.
  • connection of the antenna to the electronic module is generally made by filling the connection wells with a conductive adhesive.
  • the heating time is too short to ensure correct polymerization of the adhesive.
  • the cards must remain in an oven for a long time.
  • the maximum temperature supported by the card body is generally less than 100 ° C., it is very difficult to ensure good interconnection without deforming the card body. Consequently, under these conditions, the manufacture of the cards is long and difficult and cannot be adapted to mass production.
  • the invention provides various solutions to this interconnection problem. It proposes in particular to use a solder paste at low melting temperature, that is to say at a melting temperature much lower than 180 ° C., to make the connection between the connection pads of the antenna and the module electronic.
  • the solder paste has a alloy based on indium and tin, or based on bismuth, tin and lead, or based on bismuth, indium and tin.
  • connection pads of the antenna and the electronic module is produced by means of a conductive grease, or by means of a silicone gasket loaded with metallic particles.
  • FIG. 1 a diagram of a perspective view of a smart card antenna produced on a support sheet
  • FIG. 2 a diagram of a sectional view of an insulating bridge of the antenna of FIG. 1,
  • FIG. 3 a diagram of a perspective view in 2.0 of another embodiment of a smart card antenna
  • FIG. 4 a diagram of a perspective view of another embodiment of a smart card antenna
  • FIGS. 5A to 5C sectional views of a card during different stages of a manufacturing method according to the invention
  • FIG. 7A a top view of the flush contacts of a single-sided module
  • FIG. 7B a perspective view illustrating the position of the connection wells relative to a cavity formed in a card body
  • FIGS. 7C and 7D two views of inner face contacts of double-sided modules
  • FIG. 7E a perspective view illustrating the position of the connection wells in the cavity.
  • mixed smart cards will be produced by gluing (hot or cold rolling) of plastic sheets in which the antenna conductor has been inserted or inserted; then opening a cavity in the assembled sheets, between the connection pads provided at the ends of the antenna conductor, to create there a housing intended to receive the electronic integrated circuit module; and positioning of this module so that two conductive pads of the module come into electrical contact with the connection pads of the antenna conductor, either directly or most often via a conductive connecting element.
  • FIG. 1 represents a first embodiment of an antenna 11 comprising at least two turns and intended to be enclosed in the body of a contactless smart card.
  • Connection pads 12 are provided at the ends of the antenna wire 11.
  • An important step in a method of manufacturing such a contactless smart card consists in producing the antenna 11, on a support sheet 10, so to precisely define its position in the card body relative to the position of a cavity to be machined and intended to receive the electronic module.
  • the turns of this antenna 11 are placed outside the connection pads 12, and an insulating bridge 13 is made so as to be able to connect each of the ends of the antenna respectively to a connection pad 12 without creating a short circuit.
  • This embodiment frees up the space between the connection pads 12 of the antenna 11 since no turn passes there. This space being freed, the antenna tracks are not likely to be damaged, during a subsequent step of machining the cavity reserved for the micromodule, and the positioning tolerances are greatly enlarged.
  • FIG. 2 illustrates a sectional view along AA of FIG. 1 and represents the insulating bridge 13 of the antenna 11.
  • This insulating bridge 13 is produced by covering, on a zone Z, the turns of the antenna 11 by a layer insulating 14, then by depositing, on this insulating layer 14, a conductive element 15 making it possible to connect the end of a turn, and in particular the end of the last turn located furthest from the support sheet 10, to one of the connection pads 12 of the antenna.
  • connection via (metal holes) 16, 17 are made in the support sheet.
  • the connection pads 12 of the antenna are produced on the same face.
  • the insulating bridge 13 is therefore produced by means of metal holes to ensure the connection between the antenna wires located on either side of the support sheet 12, as shown diagrammatically in dotted lines in FIGS. 3 and 4.
  • the insulating bridge 13 thus makes it possible to cross the turns of the antenna without them directly overlapping and therefore without creating a short circuit.
  • this support sheet 10 After having made this antenna on the support sheet 10, made of plastic, this support sheet 10 is assembled with other plastic sheets 20, 30, 40, 50 and they are glued by hot or cold rolling. This assembly step is illustrated in FIG. 5A.
  • the sheets 20 and 40 correspond to sheets, possibly printed, upper and lower of the card body.
  • the sheets 30 and 50 are respectively upper and lower protective sheets intended to close the card body and to protect the printed sheets 20 and 40.
  • a subsequent step illustrated in .figure 5B, consists in machining a cavity 61 and connection wells 62 in an upper face of the card body formed by the assembly of sheets 10, 20, 30, 40 and 50. This machining can for example be done in a single step.
  • the machining plane of the cavity 61 is located below the connection pads 12 of the antenna 11.
  • the connection wells 62 are located above the connection pads 12 of the antenna and allow to update these.
  • the machining of the cavity and the connection wells is carried out by means of a cutter, the descent of which is controlled.
  • the last step of the process represented in FIG. 5C, then consists in fixing an electronic module M in the cavity 61.
  • the module M has on its underside, turned towards the inside of the cavity, conductive pads 72 in electrical contact with the connection pads 12 of the antenna by means of a conductive connecting element 66 placed in the connection wells 62.
  • the manner in which the connection is established between the module and the antenna is explained in more detail below. .
  • a method of manufacturing a mixed chip card according to another embodiment, and illustrated in FIG. 6, can also be envisaged for precisely positioning the antenna relative to the cavity of the module.
  • the antenna 11 is produced in a conventional manner on a support sheet, that is to say that the turns of the antenna pass between the connection pads 12.
  • the sheet supporting the antenna is then assembled with the other plastic sheets; then the cavity 61 and the connection wells 62 are machined on the upper surface of the card body formed by the assembly of sheets. This step is carried out so that the machining plane of the bottom of the cavity 61 is located above the plane of the tracks of the antenna 11 and that the connection wells 62 are located above the connection pads 12 antenna and allow them to be updated.
  • the electronic module M is then fixed in the cavity and its conductive pads 72 are electrically connected to the connection pads 12 of the antenna through the connection wells 62.
  • the antenna 11 can be produced by inlaying on a plastic support sheet.
  • the inlay is carried out in a known manner by an ultrasonic process.
  • the invention proposes placing the antenna on the neutral fiber of the card.
  • the neutral fiber of a card is defined as being placed in the middle of the thickness of the card.
  • connection pads 12 of the antenna it is possible to carry out the machining so that the connection wells pass through the connection pads 12 of the antenna.
  • the connection with the electronic module is made laterally, that is to say by the edge of the connection pads, by applying a conductive connecting element in the connection wells and on the lateral edges of the connection pads.
  • the contact surface of the antenna connection pads is small because it is of the same order of magnitude as the width of the conductive wire used to form the antenna (that is to say a few tens of ⁇ m) . Consequently, interconnection with the electronic module is difficult to implement because it requires a lot of precision.
  • connection pads 12 it is therefore preferable to make the connection pads 12 so that they have a zigzag pattern in order to increase their contact surface. This zigzag pattern is made by twisting the antenna wire (see Figures 1, 3, 4).
  • Module M can be a single-sided printed circuit module or a double-sided printed-circuit module, and in the latter case it can have two possible configurations to which we will return later.
  • a module M is shown in FIGS. 5 and 6 above the cavity 61.
  • it is a double-sided printed circuit module comprising upper conductors 70 on the face which will be turned towards the outside. of the cavity and of the lower conductors 72 on the face which will be turned towards the interior of the cavity.
  • the conductors are formed on an insulating sheet 80 and via conductors which can connect the upper 70 and lower 72 conductors.
  • a chip embedded in a protective resin 74 is mounted on the underside and connected to the conductors 72 (and thereby to the conductors 70).
  • the module fits in the cavity 61 which has been machined to its dimensions.
  • the module consists of a double-sided printed circuit carrying the integrated circuit chip, but this double-sided circuit is produced without a conductor between the conductors of the two faces, which makes it less expensive.
  • the double-sided circuit comprises an insulating sheet 80 bearing on one side of the first conductive pads 70 intended to serve as access contacts for the smart card and on the other face of the second conductive pads 72 intended to be connected on air. Connecting wires are welded between the chip and the first conductive pads through openwork areas of the insulating sheet and other connecting wires are soldered between the chip and the second conductive pads without passing through the insulating sheet.
  • the definition of a single-sided module for a mixed card consists in finding the position of the contacts for the antenna, which presents the following difficulties:
  • the chip and bonding protection resin eliminates the central area of the module
  • the flexural strength performance of the card requires the presence of a preferential deformation line without showing any zones of embrittlement of the metal on the contact side.
  • FIG. 7A shows diagrammatically a top view of the flush contacts of a smart card in the case of a single-sided module and responding to these problems.
  • the module has contact areas 1, 2, 3, 4, 5 and l ', 2', 3 ', 4', and 5 ', the position of which is standardized by ISO and AFNOR standards. These contact pads are connected to the chip to ensure the operation of the module.
  • the position of the contact zones to be used to connect the module and the antenna can only be located in the high zones 6 and 7 and low zones 8 and 9 on either side of an axis 65 of the module, this is i.e. outside the contact areas defined by the ISO standard.
  • the position of the antenna connection pads as well as the position of the connection wells in the card body are limited by the standardized position of the contact areas of the module. electronic and by the position of this module in the card body which is itself defined by ISO standards.
  • FIG. 7B illustrates the case in which the connection wells 62, and therefore the corresponding connection pads, are located side by side and on either side of the perpendicular bisector 65 of the cavity 61. This case corresponds to the case where this are the contact zones 6 and 7 of the module of FIG. 7A which are electrically connected to the connection pads of the antenna.
  • These two embodiments of contacts for a double-sided module include at least one track with an edge parallel to the chip, connected to contact areas 110 and 120. These areas 110 and 120 represent the possible contact areas with the antenna.
  • FIG. 7E illustrates the case according to which the connection wells 62, and therefore the connection pads of the antenna, are diametrically opposite and located on a perpendicular bisector 65 of the cavity. This case corresponds to the case where these are the contact areas 110 and 120 of the module of FIG. 7C which are electrically connected to the connection pads of the antenna.
  • Figures 7B and 7E illustrate connection wells made in continuity with the cavity which gives them the particular shape visible in these diagrams.
  • these wells may not beings in continuity of the cavity and be in the form of holes of any shape from the moment their positioning is as defined above.
  • the interconnection between the electronic module and the antenna can be done using a solder paste type conductive connecting element.
  • solder paste type conductive connecting element In general the reflow temperatures of these products are very high. They are around 180 ° C. These temperatures are incompatible with the plastic materials used to form the card bodies which do not withstand temperatures much higher than 100 ° C.
  • the invention proposes to use solder pastes with a low melting point in order to ensure good compatibility with the card body.
  • a solder paste comprising an alloy based on indium and tin, or based on bismuth, tin and lead, or else based on bismuth, tin and indium.
  • the solder paste contains at most 52% by weight of indium and 48% by weight of tin. With this composition, the melting temperature of the solder paste is equal to 118 ° C.
  • the solder paste contains at most 46% by weight of bismuth and 34% by weight of tin and 20% by weight of lead. With this composition, the melting temperature of the solder paste is equal to 100 ° C. In the case of an alloy of bismuth, indium and tin, the solder paste contains at most 57% by weight of bismuth, 26% by weight of indium and 17% by weight of tin. With this composition, the melting temperature of the solder paste is equal to 79 ° C.
  • Another solution for making the interconnection consists in depositing conductive grease loaded with metallic particles in the connection wells. Contact is then made by friction and ensures electrical conduction between the antenna and the module, regardless of the mechanical stresses applied to the card.
  • a third solution for making the interconnection consists in using a silicone seal loaded with metallic particles.
  • This solution offers the advantage of great flexibility in the conductive joint.
  • the dimensions of the silicone seal are greater than the height of the connection wells so as to compress the silicone and bring the metal particles into contact.
  • the reliability of the interconnection between the antenna and the module can be increased by using gold beads deposited on the conductive pads 72 of the module. These gold beads do not provide the connection but increase the bonding surface and modify the distribution of stresses in the conductive joint when the card is subjected to mechanical stresses. These balls are deposited by thermo-compression. They can also be stacked to increase the height of the contact surface.

Abstract

L'invention concerne un procédé de fabrication de cartes à puces aptes à assurer un fonctionnement à contact et sans contact dites cartes mixtes et de cartes à puce sans contact. Pour éviter les risques de détérioration de l'antenne le procédé consiste à réaliser une antenne comprenant au moins deux spires, sur une feuille support, ladite antenne ayant ses spires placées à l'extérieur des plages de connexion, et à prévoir un pont isolant afin de pouvoir relier chacune des extrémités de l'antenne respectivement à une plage de connexion.

Description

PROCEDE DE FABRICATION DE CARTES A PUCE APTES A ASSURER UN FONCTIONNEMENT A CONTACT ET SANS CONTACT
L'invention concerne la fabrication des cartes à puce, aptes à assurer un mode de fonctionnement à contact et un mode de fonctionnement sans contact. Ces cartes sont munies d'une antenne intégrée dans la carte et d'un micromodule relié à l'antenne. Les échanges d'informations avec l'extérieur se font soit par l'antenne (donc sans contact), soit par les contacts affleurant à la surface de la carte.
On appellera dans toute la suite de la description ce type de carte par carte à fonctionnement mixte ou carte à puce mixte.
Le procédé de fabrication concerne également les cartes à puce sans contact, c'est-à-dire les cartes à puce aptes à assurer un fonctionnement sans contact, les échanges d'informations vers l'extérieur se faisant uniquement par l'antenne.
Cependant, pour simplifier l'exposé gui va suivre on ne parlera dans la suite que de cartes mixtes, le procédé s 'étendant, comme cela vient d'être dit, également aux cartes à puce sans contact.
Les cartes à puce mixtes sont destinées à réaliser diverses opérations, telles que, par exemple, des opérations bancaires, des communications téléphoniques, des opérations d'identification, des opérations de débit ou de rechargement d'unités de compte, et toutes sortes d'opérations qui peuvent s'effectuer soit en insérant la carte dans un lecteur, soit à distance par couplage électromagnétique (en principe de type inductif) entre une borne d'émission-réception et une carte placée dans la zone d'action de cette borne. Les cartes mixtes doivent avoir obligatoirement des dimensions normalisées identiques à celles des cartes à puces classiques pourvues de contacts. Ceci est souhaitable pour les cartes fonctionnant uniquement sans contact.
On rappelle que les cartes à contact sont définies par la norme usuelle ISO 7810, cette définition étant : une carte de 85 mm de long, 54 mm de large, et 0,76 mm d'épaisseur. Les contacts affleurent à des positions bien définies à la surface de la carte.
Ces normes imposent des contraintes sévères pour la fabrication. L'épaisseur très faible de la carte (800 μ ) est en particulier une contrainte majeure, plus sévère encore pour les cartes mixtes que pour les cartes simplement munies de contacts, car il faut prévoir l'incorporation d'une antenne dans la carte.
Les problèmes techniques qui se posent sont des problèmes de positionnement de l'antenne par rapport à la carte, car l'antenne occupe presque toute la surface de la carte, des problèmes de positionnement du module de circuit intégré (comprenant la puce et ses contacts) qui assure le fonctionnement électronique de la carte, et des problèmes de précision et de fiabilité de la connexion entre le module et l'antenne; enfin, des contraintes de tenue mécanique, de fiabilité et de coût de fabrication doivent être prises en compte.
L'antenne est généralement constituée d'un élément conducteur déposé en couche mince sur une feuille support en plastique. Aux extrémités de l'antenne sont prévues des plages de connexion qui doivent être mises à jour afin de pouvoir les connecter aux contacts du module électronique.
L'élément conducteur formant l'antenne sera dénommé dans la suite fil d'antenne étant donné qu'il pourra s'agir selon la technologie employée soit d'un fil incrusté dans la feuille support de fabrication, soit de pistes imprimées.
Une solution préconisée pour fabriquer les cartes à puce mixtes consiste à utiliser des feuilles plastiques pré-percées au niveau des plages de connexion de l'antenne formées par les deux extrémités du fil d'antenne, à les superposer sur la feuille supportant l'antenne et à les assembler par laminage à chaud ou à froid. La position des plages de connexion de l'antenne est limitée par la position du module électronique qui est elle-même définie par les normes ISO.
Il faut ensuite usiner une cavité dans le corps de carte, entre les plages de connexion de l'antenne et au-dessus des perforations prévues dans les feuilles plastiques recouvrant l'antenne, pour y placer le module électronique, puis connecter les contacts du module électronique aux plages de connexion de l'antenne en déposant une colle conductrice dans les perforations. Le fil d'antenne comporte en général plusieurs spires. Ces spires passent entre les plages de connexion, de manière à pouvoir être reliées à ces plages de connexion qui se trouvent dans la région du micromodule.
Un premier problème se pose alors du fait de cette structure. Les spires peuvent être endommagées lors de l'usinage de la cavité. En effet, les spires peuvent même être détruites au cours de cette étape si l'antenne n'est pas positionnée de manière très précise par rapport à la position de la cavité.
L'invention permet de résoudre ce premier problème de risques d'endommagement de l'antenne voire même de destruction. A cette fin, l'invention propose un procédé de fabrication de carte à puce, ladite carte à puce comportant une antenne aux extrémités de laquelle sont prévues des plages de connexion avec un module électronique, caractérisé en ce qu'il comprend au moins une étape consistant à réaliser l'antenne comprenant au moins deux spires, sur une feuille support, ladite antenne ayant ses spires placées à l'extérieur des plages de connexion, et un pont isolant afin de pouvoir relier chacune des extrémités de l'antenne respectivement à une plage de connexion.
Cette étape du procédé de fabrication permet d'obtenir un espace libre entre les plages de connexion de l'antenne, dans lequel il est possible de creuser une cavité pour le module sans risquer d'endommager les spires de l'antenne.
Le pont isolant est réalisé en recouvrant, sur une zone, les spires de l'antenne par une couche isolante, puis en déposant, sur cette couche isolante, un élément conducteur de manière à pouvoir relier une extrémité extérieure de l'antenne à une plage de connexion.
Une autre manière de réaliser le pont isolant consiste à former l'antenne de part et d'autre de la feuille support, les plages de connexion étant réalisées sur une même face de la feuille support.
De plus, dans la solution préconisée par l'art antérieur, le corps de carte étant constitué d'un empilement de plusieurs feuilles, les perforations pratiquées dans chaque feuille doivent se superposer. Or, lors de l'étape de laminage, la géométrie des perforations n'est pas contrôlée et peut fluctuer. D'autre part, au cours de cette étape de laminage, la pression devient nulle à l'aplomb des perforations alors qu'elle est élevée sur le corps de carte. Cette différence de pression entraîne la création d'un défaut à la surface des cartes.
Pour éviter ce problème de déformation de la carte, l'invention propose en outre d'assembler toutes les feuilles plastiques destinées à former le corps de carte puis d'usiner le corps de carte pour former la cavité réservée au module électronique et les puits de connexion destinés à mettre à jour les plages de connexion de l'antenne. Cet usinage sera fait de préférence en une seule étape, ceci étant rendu possible grâce au contrôle précis de la position de l'antenne par rapport à la position de la cavité.
Le fait d'usiner simultanément la cavité et les puits de connexion simplifie et accélère grandement le procédé de fabrication.
Par ailleurs, l'invention propose une deuxième solution au problème de risque d ' endommagement de l'antenne, voire même de destruction. Elle propose en effet un procédé de fabrication d'une carte à puce, ladite carte à puce comportant une antenne aux extrémités de laquelle sont prévues des plages de connexion avec un module électronique, caractérisé en ce qu'il comporte au moins une étape consistant à usiner une cavité et des puits de connexion dans une face supérieure du corps de carte, de manière que le plan d'usinage du fond de la cavité soit situé au- dessus du plan de l'antenne et que les puits de connexion soient situés au-dessus des plages de connexion de l'antenne et permettent de les mettre à jour. En outre, les éléments de connexion entre le module et l'antenne, que l'on dénommera dans la suite interconnexion, peuvent être endommagés lors des tests des cartes en flexion et en torsion. Pour minimiser les contraintes subies à l'interconnexion lors de ces tests, l'invention propose de placer l'antenne à un endroit de la carte où les contraintes sont les moins élevées. Ainsi, la feuille supportant l'antenne est placée au niveau de la fibre neutre de la carte. La fibre neutre d'une carte est définie comme étant la couche située au milieu de l'épaisseur de la carte.
En outre, après l'usinage de la cavité, la connexion de l'antenne au module électronique se fait généralement par remplissage des puits de connexion à l'aide d'une colle conductrice. Lorsque le module est encarté, le temps de chauffage est trop court pour assurer une polymérisation correcte de la colle. Dans ces conditions les cartes doivent séjourner longtemps dans une étuve. De plus, étant donné que la température maximum supportée par le corps de carte est en général inférieure à 100°C, il est très difficile d'assurer une bonne interconnexion sans déformer le corps de carte. Par conséquent, dans ces conditions la fabrication des cartes est longue et difficile et ne peut pas être adaptée à une production en masse.
L'invention apporte différentes solutions à ce problème d'interconnexion. Elle propose notamment d'utiliser une pâte à braser à basse température de fusion, c'est-à-dire à température de fusion très inférieure à 180 °C, pour réaliser la connexion entre les plages de connexion de l'antenne et le module électronique. Pour cela la pâte à braser comporte un alliage à base d'indium et d'étain, ou à base de bismuth, d'étain et de plomb, ou à base de bismuth, d'indium et d'étain.
Selon d'autres caractéristiques, la connexion entre
5 les plages de connexion de l'antenne et le module électronique est réalisée au moyen d'une graisse conductrice, ou au moyen d'un joint en silicone chargé de particules métalliques.
10 D'autres particularités et avantages de l'invention apparaîtront à la lecture de la description donnée à titre d'exemple illustratif et non limitatif, et faite en référence aux figures annexées qui représentent :
- la figure 1, un schéma d'une vue en 15 perspective d'une antenne de carte à puce réalisée sur une feuille support,
- la figure 2, un schéma d'une vue en coupe d'un pont isolant de l'antenne de la figure 1,
- la figure 3, un schéma d'une vue en 2.0 perspective d'un autre mode de réalisation d'une antenne de carte à puce,
- la figure 4, un schéma d'une vue en perspective d'un autre mode de réalisation d'une antenne de carte à puce,
25 - les figures 5A à 5C, des vues en coupe d'une carte au cours de différentes étapes d'un procédé de fabrication selon l'invention,
- la figure 6, un schéma d'une carte vue en coupe réalisée selon un autre procédé de fabrication
30 selon l'invention,
- la figure 7A, une vue de dessus des contacts affleurants d'un module simple face, - la figure 7B, une vue en perspective illustrant la position des puits de connexion par rapport à une cavité pratiquée dans un corps de carte,
- les figures 7C et 7D, deux vues de contacts face intérieure de modules double face,
- la figure 7E, une vue de perspective illustrant la position des puits de connexion dans la cavité.
D'une manière générale, les cartes à puce mixtes seront réalisées par collage (laminage à chaud ou à froid) de feuilles de matière plastique dans lesquelles on aura inséré ou intercalé le conducteur d'antenne; puis ouverture d'une cavité dans les feuilles assemblées, entre les plages de connexion prévues aux extrémités du conducteur d'antenne, pour y créer un logement destiné à recevoir le module électronique de circuit intégré; et mise en place de ce module de manière que deux plages conductrices du module viennent en contact électrique avec les plages de connexion du conducteur d'antenne, soit directement, soit le plus souvent par l'intermédiaire d'un élément de liaison conducteur .
La figure 1 représente un premier mode de réalisation d'une antenne 11 comportant au moins deux spires et destinée à être enfermée dans le corps d'une carte à puce sans contact. Aux extrémités du fil d'antenne 11 sont prévues des plages de connexion 12. Une étape importante d'un procédé de fabrication d'une telle carte à puce sans contact consiste à réaliser l'antenne 11, sur une feuille support 10, de manière à définir précisément sa position dans le corps de carte par rapport à la position d'une cavité à usiner et destinée à recevoir le module électronique. Selon un premier mode de réalisation les spires de cette antenne 11 sont placées à l'extérieur des plages de connexion 12, et un pont isolant 13 est réalisé de manière à pouvoir relier chacune des extrémités de l'antenne respectivement à une plage de connexion 12 sans création de court-circuit. Ce mode de réalisation permet de libérer l'espace situé entre les plages de connexion 12 de l'antenne 11 puisqu' aucune spire n'y passe. Cet espace étant libéré, les pistes de l'antenne ne risquent pas d'être endommagées , lors d'une étape ultérieure d'usinage de la cavité réservée au micromodule, et les tolérances de positionnement sont grandement élargies.
La figure 2 illustre une vue en coupe selon A-A de la figure 1 et représente le pont isolant 13 de l'antenne 11. Ce pont isolant 13 est réalisé en recouvrant, sur une zone Z, les spires de l'antenne 11 par une couche isolante 14, puis en déposant, sur cette couche isolante 14 , un élément conducteur 15 permettant de relier l'extrémité d'une spire, et notamment l'extrémité de la dernière spire située la plus à l'extérieur de la feuille support 10, à l'une des plages de connexion 12 de l'antenne.
Selon un autre mode de réalisation, illustré sur les figures 3 et 4 l'antenne 11 est réalisée de part et d'autre de la feuille support 10. Dans ce cas, des via de connexion (trous métalliques) 16, 17 sont pratiqués dans la feuille support. Les plages de connexion 12 de l'antenne sont réalisées sur une même face. Le pont isolant 13 est donc réalisé au moyen de trous métalliques pour assurer la liaison entre les fils d'antenne se trouvant de part et d'autre de la feuille support 12, tel que schématisé en traits pointillés sur les figures 3 et 4. Le pont isolant 13 permet ainsi de croiser les spires de l'antenne sans qu'elles se chevauchent directement et donc sans créer de court-circuit.
Après avoir réalisé cette antenne sur la feuille support 10, en matière plastique, on assemble cette feuille support 10 à d'autres feuilles plastiques 20, 30, 40, 50 et on les colle par laminage à chaud ou à froid. Cette étape d'assemblage est illustrée sur la figure 5A. Les feuilles 20 et 40 correspondent à des feuilles, éventuellement imprimées, supérieure et inférieure du corps de carte. Les feuilles 30 et 50 sont des feuilles de protection respectivement supérieure et inférieure destinées à fermer le corps de carte et à protéger les feuilles imprimées 20 et 40.
Dans une variante de réalisation, il est possible de rajouter une sixième feuille plastique et de la positionner juste au-dessus de la feuille support 10 afin d'enfermer l'antenne il. "Une étape ultérieure, illustrée sur la .figure 5B, consiste à usiner une cavité 61 et des puits de connexion 62 dans une face supérieure du corps de carte formé par l'assemblage de feuilles 10, 20, 30, 40 et 50. Cet usinage pourra par exemple être fait en une seule étape.
Le plan d'usinage de la cavité 61 est situé au- dessous des plages de connexion 12 de l'antenne 11. Les puits de connexion 62, quant à eux, sont situés au- dessus des plages de connexion 12 de l'antenne et permettent de mettre ces-dernières à jour.
L'usinage de la cavité et des puits de connexion est réalisé au moyen d'une fraise dont la descente est contrôlée. La dernière étape du procédé, représentée en figure 5C, consiste ensuite à fixer un module électronique M dans la cavité 61. Le module M comporte sur sa face inférieure, tournée vers l'intérieur de la cavité, des plages conductrices 72 en contact électrique avec les plages de connexion 12 de l'antenne au moyen d'un élément de liaison conducteur 66 placé dans les puits de connexion 62. La manière dont la connexion est établie entre le module et l'antenne est expliquée plus en détail dans ce qui suit.
Un procédé de fabrication de carte à puce mixte selon un autre mode de réalisation, et illustré par la figure 6, peut en outre être envisagé pour positionner de manière précise l'antenne par rapport à la cavité du module.
Selon cet autre mode de réalisation, l'antenne 11 est réalisée de manière classique sur une feuille support, c'est-à-dire que les spires de l'antenne passent entre les plages de connexion 12. La feuille supportant l'antenne est ensuite assemblée aux autres feuilles plastiques; puis la cavité 61 et les puits de connexion 62 sont usinés sur la surface supérieure du corps de carte formé par l'assemblage de feuilles. Cette étape est réalisée de telle sorte que le plan d'usinage du fond de la cavité 61 soit situé au-dessus du plan des pistes de l'antenne 11 et que les puits de connexion 62 soient situés au-dessus des plages de connexion 12 de l'antenne et permettent de les mettre à jour. Le module électronique M est ensuite fixé dans la cavité et ses plages conductrices 72 sont électriquement reliées aux plages de connexion 12 de l'antenne à travers les puits de connexion 62.
Dans tous les cas, l'antenne 11 peut être réalisée par incrustation sur une feuille support en plastique. L'incrustation est effectuée de manière connue par un procédé à ultra-son.
D'autre part, pour minimiser les contraintes subies à l'interconnexion, notamment lors de tests des cartes en flexion ou en torsion, l'invention propose de placer l'antenne sur la fibre neutre de la carte. Ainsi, on prévoit de placer la feuille 10 supportant l'antenne de telle sorte qu'elle forme la fibre neutre de la carte. La fibre neutre d'une carte est définie comme étant placée au milieu de l'épaisseur de la carte.
De plus, dans une variante de réalisation du procédé selon l'invention il est possible de réaliser l'usinage de telle sorte que les puits de connexion traversent les plages de connexion 12 de l'antenne. Dans ce cas, la connexion avec le module électronique se fait latéralement, c'est-à-dire par la tranche des plages de connexion, en appliquant un élément de liaison conducteur dans les puits de connexion et sur les bords latéraux des plages de connexion. En général, la surface de contact des plages de connexion de l'antenne est faible car elle est du même ordre de grandeur que la largeur du fil conducteur utilisé pour former l'antenne (c'est-à-dire quelques dizaine de μm) . Par conséquent, l'interconnexion avec le module électronique est difficile à mettre en oeuvre car elle exige beaucoup de précision. Il est donc préférable de réaliser les plages de connexion 12 de telle sorte qu'elles présentent un motif en zigzag afin d'accroître leur surface de contact. Ce motif en zigzag est effectué par torsions du fil d'antenne (voir figures 1, 3, 4) .
Le module M peut être un module à circuit imprimé simple face ou un module à circuit-imprimé double face, et dans ce dernier cas il peut avoir deux configurations possibles sur lesquelles on reviendra plus loin.
Un module M est représenté sur les figures 5 et 6 au-dessus de la cavité 61. Dans ces exemples il s'agit d'un module à circuit imprimé double face comportant des conducteurs supérieurs 70 sur la face qui sera tournée vers l'extérieur de la cavité et des conducteurs inférieurs 72 sur la face qui sera tournée vers l'intérieur de la cavité. Les conducteurs sont formés sur une feuille isolante 80 et des via conducteurs qui peuvent relier les conducteurs supérieurs 70 et inférieurs 72. Une puce noyée dans une résine de protection 74 est montée sur la face inférieure et connectée aux conducteurs 72 (et par là aux conducteurs 70) .
Le module s'adapte dans la cavité 61 qui a été usinée à ses dimensions. Deux plages conductrices de la face inférieure du module, disposées juste au-dessus des plages de connexion 12 de l'antenne, sont reliées électriquement à ces deux plages de connexion grâce à un élément de liaison conducteur 66.
Dans une variante de réalisation particulièrement intéressante, le module est constitué par un circuit imprimé double face portant la puce de circuit intégré, mais ce circuit double face est réalisé sans via conducteur entre les conducteurs des deux faces, ce qui le rend moins coûteux. Dans ce cas, le circuit double face comporte une feuille isolante 80 portant sur une face des premières plages conductrices 70 destinées à servir de contacts d'accès de la carte à puce et sur l'autre face des secondes plages conductrices 72 destinées à être reliées à l'antenne. Des fils de liaison sont soudés entre la puce et les premières plages conductrices à travers des zones ajourées de la feuille isolante et d'autres fils de liaison sont soudés entre la puce et les secondes plages conductrices sans passer à travers la feuille isolante. La définition d'un module simple face pour carte mixte consiste à trouver la position des contacts pour l'antenne, ce qui présente les difficultés suivantes :
- les zones de contact définies par les normes ISO et AFNOR ne peuvent pas accueillir les contacts de l'antenne sous peine de mettre le lecteur en court- circuit,
- coté assemblage, la résine de protection de la puce et des bondings élimine la zone centrale du module,
- les performances de résistance à la flexion de la carte impose la présence de ligne de déformation préférentielle sans faire apparaître de zones de fragilisation du métal coté contact.
La figure 7A schématise une vue de dessus des contacts affleurants d'une carte à puce dans le cas d'un module simple face et répondant à ces problèmes. Le module comporte des plages de contacts 1, 2, 3, 4, 5 et l', 2', 3', 4', et 5', dont la position est normalisée par les normes ISO et AFNOR. Ces plages de contact sont connectées à la puce pour assurer le fonctionnement du module. La position des zones de contact à utiliser pour connecter le module et l'antenne ne peut se situer que dans les zones hautes 6 et 7 et basses 8 et 9 de part et d'autre d'un axe 65 du module, c'est-à-dire en dehors des zones de contact définis par la norme ISO.
Dans ces conditions donc, la position des plages de connexion de l'antenne ainsi que la position des puits de connexion dans le corps de carte sont limitées par la position normalisée des zones de contact du module électronique et par la position de ce module dans le corps de carte qui est elle-même définie par les normes ISO.
La figure 7B illustre le cas selon lequel les puits de connexion 62, et donc les plages de connexion correspondantes, sont situés côte à côte et de part et d'autre de la médiatrice 65 de la cavité 61. Ce cas correspond au cas où ce sont les zones de contacts 6 et 7 du module de la figure 7A qui sont électriquement reliées aux plages de connexion de l'antenne.
D'autre part, l'utilisation d'un module double face doit également pouvoir répondre aux inconvénients mentionnés à propos du module simple face.
Les contacts représentés sur les figures 7C et 7D offrent une solution à ces problèmes. En particulier la présence de deux pistes 100, 101, de part et d'autre du circuit permet de connecter différentes configurations de puces avec le même module.
Ceux deux modes de réalisation de contacts pour module double face comportent au moins une piste à bord parallèle à la puce, reliée à des zones de contacts 110 et 120. Ces zones 110 et 120 représentent les zones de contacts possible avec l'antenne.
La figure 7E illustre le cas selon lequel les puits de connexion 62, et donc les plages de connexion de l'antenne, sont diamétralement opposés et situés sur une médiatrice 65 de la cavité. Ce cas correspond au cas où ce sont les zones de contacts 110 et 120 du module de la figure 7C gui sont électriquement reliées aux plages de connexion de l'antenne.
Les figures 7B et 7E illustrent des puits de connexion réalisés en continuité avec la cavité ce qui leur procure la forme particulière visible sur ces schémas. Bien entendu, ces puits pourraient ne pas êtres en continuité de la cavité et se présenter sous la forme de trous de forme quelconque dès l'instant où leur positionnement est tel que défini précédemment.
L'interconnexion entre le module électronique et l'antenne peut se faire à l'aide d'un élément de liaison conducteur de type pâte à braser. Cependant, en général les température de refusion de ces produits sont très élevées. Elles se situent autour de 180°C. Ces températures sont incompatibles avec les matériaux plastiques utilisés pour former les corps de carte qui ne supportent pas des températures très supérieures à 100°C.
L'invention propose d'utiliser des pâtes à braser à bas point de fusion pour permettre d'assurer une bonne compatibilité avec le corps de carte. Pour cela, il est préférable d'utiliser une pâte à braser comportant un alliage à base d'indium et d'étain, ou à base de bismuth, d'étain et de plomb, ou encore à base de bismuth, d'étain et d'indium. Dans le cas d'un alliage d'indium et d'étain, la pâte à braser comporte au plus 52% en poids d'indium et 48% en poids d'étain. A cette composition, la température de fusion de la pâte à braser est égale à 118°C. Dans le cas d'un alliage de bismuth, d'étain et de plomb, la pâte à braser comporte au plus 46% en poids de bismuth et 34% en poids d'étain et 20% en poids de plomb. A cette composition, la température de fusion de la pâte à braser est égale à 100°C. Dans le cas d'un alliage de bismuth, d'indium et d'étain, la pâte à braser comporte au plus 57% en poids de bismuth, 26% en poids d'indium et 17% en poids d'étain. A cette composition, la température de fusion de la pâte à braser est égale à 79°C. Une autre solution pour réaliser l'interconnexion consiste à déposer de la graisse conductrice chargée en particules métalliques dans les puits de connexion. Le contact s'effectue alors par friction et assure la conduction électrique entre l'antenne et le module, et ce quelles que soient les sollicitations mécaniques appliquées sur la carte.
Une troisième solution pour réaliser l'interconnexion consiste à utiliser un joint en silicone chargé en particules métalliques. Cette solution offre l'avantage d'une très grande souplesse du joint conducteur. Dans ce cas, les dimensions du joint en silicone sont supérieures à la hauteur des puits de connexion de façon à comprimer le silicone et mettre les particules métalliques en contact.
Quelle que soit la solution retenue, la fiabilité de l'interconnexion entre l'antenne et le module peut être augmentée en utilisant des billes d'or déposées sur les plages conductrices 72 du module. Ces billes d'or n'assurent pas la connexion mais augmentent la surface de collage et modifient la répartition des contraintes dans le joint conducteur lorsque la carte est soumise à des sollicitations mécaniques. Ces billes sont déposées par thermo-compression. Elles peuvent en outre être empilées pour augmenter la hauteur de la surface de contact.

Claims

REVENDICATIONS
1. Procédé de fabrication de carte à puce, ladite carte à puce comportant une antenne (11) aux extrémités de laquelle sont prévues des plages de connexion (12) avec un module électronique, caractérisé en ce qu'il comprend au moins une étape consistant à réaliser l'antenne (11) comprenant au moins deux spires, sur une feuille support (10) , ladite antenne ayant ses spires placées à l'extérieur des plages de connexion (12), et un pont isolant (13) afin de pouvoir relier chacune des extrémités de l'antenne respectivement à une plage de connexion.
2. Procédé de fabrication selon la revendication 1, caractérisé en ce que le pont isolant (13) est réalisé en recouvrant, sur une zone (Z) , les spires de l'antenne (11) par une couche isolante (14) , puis en déposant, sur cette couche isolante, un élément conducteur (15) de manière à pouvoir relier une extrémité extérieure de l'antenne à une plage de connexion (12) .
3. Procédé de fabrication selon la revendication 1, caractérisé en ce que, pour réaliser le pont isolant (13), l'antenne (11) est formée de part et d'autre de la feuille support (10) , les plages de connexion (12) étant réalisées sur une même face de la feuille support.
4. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce qu'il consiste en outre à: - assembler la feuille support (10) à des feuilles plastiques (20, 30, 40, 50) pour former un corps de carte,
- usiner une cavité (61) et des puits de connexion (62) dans une face supérieure du corps de carte, le plan d'usinage de la cavité (61) étant situé en dessous du plan des plages de connexion (12) de l'antenne (11) et les puits de connexion (62) étant situés au-dessus des plages de connexion (12) de l'antenne pour les mettre à jour,
- fixer un module électronique (K) dans la cavité (61) , le module ayant sur sa face inférieure, tournée vers l'intérieur de la cavité, des plages conductrices (72) en contact électrique avec les plages de connexion (12) de l'antenne au moyen d'un élément de liaison conducteur (66) placé dans les puits de connexion (62) .
5. Procédé de fabrication d'une carte à puce, ladite carte à puce comportant une antenne (11) auχ extrémités de laquelle sont prévues des plages de connexion (12) avec un module électronique, caractérisé en ce qu'il comporte au moins une étape consistant à usiner une cavité (61) et des puits de connexion (62) dans une face supérieure du corps de carte, de manière que le plan d'usinage du fond de la cavité soit situé au-dessus du plan de l'antenne (11) et que les puits de connexion (62) soient situés au-dessus des plages de connexion de l'antenne (12) et permettent de les mettre à jour.
6. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que la feuille support (10) est placée entre des feuilles plastiques de manière à former la fibre neutre de la carte.
7. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que l'antenne (11) est réalisée par incrustation sur la feuille support (10) .
8. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que les plages de connexion (12) sont réalisées selon un motif en zigzag.
9. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que l'usinage des puits de connexion (62) est réalisé à travers les plages de connexion (12) de l'antenne (11).
10. Procédé de fabrication selon l'une des revendications précédentes, caractérisé, en ce que les puits de connexion (62) sont diamétralement opposés et situés sur une médiatrice (65) de la cavité (61) .
11. Procédé de fabrication selon l'une des revendications 1 à 8, caractérisé en ce que les puits de connexion (62) sont situés côte à côte et de part et d'autre d'une médiatrice (65) de la cavité (61) .
12. Procédé de fabrication selon l'une des revendications 1 à 10, dans lequel le module électronique (7) comporte une puce de circuit intégré et un circuit imprimé simple face comportant les zones de contacts affleurants définis par la norme ISO, caractérisé en ce que les plages de contact avec l'antenne sont en dehors des zones de contacts définis par la norme ISO.
13. Procédé de fabrication selon l'une des revendications 1 à 12, dans lequel le module électronique (M) comporte une puce de circuit intégré et un circuit imprimé double face sans via conducteurs entre les deux faces, le circuit double face comportant une feuille isolante (80) portant sur une face des premières plages conductrices (70) destinées à servir de contacts d'accès de la carte à puce et sur l'autre face des secondes plages conductrices (72) destinées à être reliées à l'antenne, ledites plages comportant des zones de contacts placées d'un même coté de cavité de part et d'autre d'une médiatrice de cette cavité, ou sur une médiatrice de la cavité sur deux cotés opposés, ledites zone de contact se prolongeant par une piste à bord parallèle au module électronique.
14. Procédé de fabrication selon l'une des revendications précédentes, caractérisé en ce que la connexion entre les plages de connexion (12) de l'antenne (11) et les plages conductrices (72) du module (M) est réalisée au moyen d'une pâte à braser à basse température de fusion.
15. Procédé de fabrication selon la revendication 14, caractérisé en ce que la pâte à braser utilisée comporte un alliage à base d'indium et d'étain.
16. Procédé de fabrication selon l'une des revendications 14 ou 15, caractérisé en ce que la pâte à braser utilisée comporte au plus 52% en poids d'indium et 48% en poids d'étain.
17. Procédé de fabrication selon la revendication 14, caractérisé en ce que la pâte à braser utilisée comporte un alliage à base de bismuth, d'étain et de plomb.
18. Procédé de fabrication selon la revendication 17 , caractérisé en ce que la pâte à braser comporte au plus 46% en poids de bismuth, 34% en pois d'étain et 20% en poids de plomb.
19. Procédé de fabrication selon la revendication 14, caractérisé en ce que la pâte à braser utilisée comporte un alliage à base de bismuth, d'étain et de d'indium.
20. Procédé de fabrication selon la revendication 19, caractérisé en ce que la pâte à braser comporte au plus 57% en poids de bismuth, 26% en poids d'indium et 17% en pois d'étain.
21. Procédé de fabrication selon l'une des revendications 1 à 13 , caractérisé en ce que la connexion entre les plages de connexion (12) de l'antenne (11) et les plages conductrices (72) du module (M) est réalisée au moyen d'une graisse chargée de particules métalliques.
22. Procédé de fabrication selon l'une des revendications 1 à 13, caractérisé en ce que la connexion entre les plages de connexion (12) de l'antenne (11) et les plages conductrices (72) du module (M) est réalisée au moyen d'un joint en silicone chargé de particules métalliques.
23. Procédé de fabrication selon l'une des revendications 1 à 13 , caractérisé en ce que des billes d'or sont en outre déposées par thermo-compression sur les plages conductrices (72) du module (M) pour augmenter la surface de collage entre le module et 1' antenne.
PCT/FR1998/002147 1997-10-08 1998-10-08 Procede de fabrication de cartes a puce aptes a assurer un fonctionnement a contact, et sans contact WO1999018541A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA002306407A CA2306407A1 (fr) 1997-10-08 1998-10-08 Procede de fabrication de cartes a puce aptes a assurer un fonctionnement a contact, et sans contact
DE69839276T DE69839276T2 (de) 1997-10-08 1998-10-08 Verfahren zum herstellen einer chipkarte, geeignet zum kontaktbehafteten oder kontaktlosen betrieb
JP2000515254A JP2001519574A (ja) 1997-10-08 1998-10-08 接触型および非接触型作動を保証するのに適したチップカードの製造方法
AU94475/98A AU9447598A (en) 1997-10-08 1998-10-08 Method for making smart cards capable of operating with and without contact
EP98947625A EP1021792B1 (fr) 1997-10-08 1998-10-08 Procede de fabrication de cartes a puce aptes a assurer un fonctionnement a contact, et sans contact
KR1020007003748A KR20010030980A (ko) 1997-10-08 1998-10-08 접촉부를 가지거나 가지지 않고 동작할 수 있는스마트카드 제조 방법
BR9812884-1A BR9812884A (pt) 1997-10-08 1998-10-08 Método para a fabricação de cartões de microplaqueta capazes de funcionar com e sem contato
US09/545,288 US7958622B1 (en) 1997-10-08 2000-04-07 Method for making smart cards
HK01105074A HK1034590A1 (en) 1997-10-08 2001-07-19 Method for making smart cards capable of operatingwith and without contact.
US11/882,871 US7663564B2 (en) 1997-10-08 2007-08-06 Method for making smart cards capable of operating with and without contact
US11/882,870 US7740180B2 (en) 1997-10-08 2007-08-06 Method for making smart cards capable of operating with and without contact

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/12530 1997-10-08
FR9712530A FR2769390B1 (fr) 1997-10-08 1997-10-08 Procede de fabrication de cartes a puce aptes a assurer un fonctionnement a contact et sans contact, et de cartes a puce sans contact

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/545,288 Continuation US7958622B1 (en) 1997-10-08 2000-04-07 Method for making smart cards

Publications (1)

Publication Number Publication Date
WO1999018541A1 true WO1999018541A1 (fr) 1999-04-15

Family

ID=9511956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/002147 WO1999018541A1 (fr) 1997-10-08 1998-10-08 Procede de fabrication de cartes a puce aptes a assurer un fonctionnement a contact, et sans contact

Country Status (13)

Country Link
US (3) US7958622B1 (fr)
EP (2) EP1927941A1 (fr)
JP (1) JP2001519574A (fr)
KR (1) KR20010030980A (fr)
CN (2) CN100437636C (fr)
AU (1) AU9447598A (fr)
BR (1) BR9812884A (fr)
CA (1) CA2306407A1 (fr)
DE (1) DE69839276T2 (fr)
ES (1) ES2306479T3 (fr)
FR (1) FR2769390B1 (fr)
HK (1) HK1034590A1 (fr)
WO (1) WO1999018541A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515850A (ja) * 1999-11-29 2003-05-07 アエスカ エス.ア. 不正行為の危険性を制限する非接触もしくは非接触ハイブリッド式スマートカード
JP2003515849A (ja) * 1999-11-29 2003-05-07 アエスカ エス.ア. 繊維材料からなるアンテナ支持体を備えた非接触ハイブリッド型スマートカードの製造方法

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2769390B1 (fr) * 1997-10-08 2003-02-14 Gemplus Card Int Procede de fabrication de cartes a puce aptes a assurer un fonctionnement a contact et sans contact, et de cartes a puce sans contact
US6147662A (en) * 1999-09-10 2000-11-14 Moore North America, Inc. Radio frequency identification tags and labels
DE10105069C2 (de) * 2001-02-05 2003-02-20 Gemplus Gmbh Kopplungselement für Dual-Interface-Karte
AU2003257688A1 (en) 2002-08-26 2004-03-11 Dai Nippon Printing Co., Ltd. Sim, sim holder, ic module, ic card and ic card holder
DE10257111B4 (de) * 2002-12-05 2005-12-22 Mühlbauer Ag Chipkarte und Verfahren zur Herstellung einer Chipkarte
JP2007041629A (ja) * 2003-11-04 2007-02-15 Renesas Technology Corp メモリカード及び半導体装置
FR2880160B1 (fr) * 2004-12-28 2007-03-30 K Sa As Module electronique double face pour carte a puce hybride
FR2886466B1 (fr) 2005-05-25 2012-06-15 Oberthur Card Syst Sa Entite electronique a antenne magnetique
FR2886467B1 (fr) 2005-05-25 2010-10-22 Oberthur Card Syst Sa Entite electronique a antenne magnetique
FR2887665B1 (fr) 2005-06-27 2007-10-12 Oberthur Card Syst Sa Entite electronique a antenne magnetique
FR2888367B1 (fr) 2005-07-07 2007-10-19 Oberthur Card Syst Sa Document a dispositif electronique sans contact integre a resonateur.
FR2888368B1 (fr) * 2005-07-07 2007-10-05 Oberthur Card Syst Sa Document pliable a dispositif electronique sans contact a perturbateur
US7586193B2 (en) * 2005-10-07 2009-09-08 Nhew R&D Pty Ltd Mm-wave antenna using conventional IC packaging
FR2893163B1 (fr) 2005-11-08 2008-02-01 Oberthur Card Syst Sa Procede de fabrication d'une carte a microcircuit et carte a microcircuit, notamment a antenne magnetique.
DE602005013807D1 (de) * 2005-12-30 2009-05-20 Incard Sa IC Karte mit verbesserter Leiterplatine
HK1109708A2 (en) * 2007-04-24 2008-06-13 On Track Innovations Ltd Interface card and apparatus and process for the formation thereof
US7980477B2 (en) * 2007-05-17 2011-07-19 Féinics Amatech Teoranta Dual interface inlays
EP2001077A1 (fr) * 2007-05-21 2008-12-10 Gemplus Procédé de réalisation d'un dispositif comportant une antenne de transpondeur connectée à des plages de contact et dispositif obtenu
TW200905574A (en) * 2007-07-03 2009-02-01 Textilma Ag Rfid transponder chip module with connecting means for an antenna, textile tag with an rfid transponder chip module, and use of an rfid transponder chip module
EP2034429A1 (fr) * 2007-09-05 2009-03-11 Assa Abloy AB Procédé de fabrication d'une carte et carte obtenue selon ledit procédé
GB0805780D0 (en) * 2008-03-31 2008-04-30 Royal Bank Of Scotland Plc The Processor card arrangement
US8758241B2 (en) 2008-07-15 2014-06-24 The Johns Hopkins University Electronic module with keyed connection to a wearable garment for monitoring physiological functions and method of use
DE102008035522A1 (de) * 2008-07-30 2010-02-04 Mühlbauer Ag Verfahren zur Herstellung einer Vorrichtung zur drahtlosen Kommunikation bzw. eines Prelaminats für eine solche Vorrichtung
DE102009017290A1 (de) 2009-04-11 2010-10-21 Cardag Deutschland Gmbh Chipkarte und Verfahren zu deren Herstellung
EP2296109B8 (fr) * 2009-09-04 2014-08-27 STMicroelectronics International N.V. Carte de circuit imprimé à interface double et procédé pour fabriquer une telle carte
DE102010015659A1 (de) 2010-04-20 2011-10-20 Giesecke & Devrient Gmbh Transferverfahren zur Herstellung von Leiterstrukturen mittels Nanotinten
FR2964487B1 (fr) * 2010-09-02 2013-07-12 Oberthur Technologies Carte a microcircuit comprenant un moyen lumineux
EP2426627B1 (fr) * 2010-09-02 2016-10-12 Oberthur Technologies Module lumineux pour dispositif à microcircuit
CN102063637B (zh) * 2010-11-12 2012-11-28 王莉萍 一种智能双界面卡及其焊接封装工艺
CN102789589B (zh) * 2011-05-17 2015-02-11 上海芯坤电子技术有限公司 一种智能双界面卡及其焊接封装工艺
US8649820B2 (en) 2011-11-07 2014-02-11 Blackberry Limited Universal integrated circuit card apparatus and related methods
DE102011056326B4 (de) * 2011-12-13 2019-04-04 Infineon Technologies Ag Chipkarten-Kontaktfeld-Anordnung
CN102867210B (zh) * 2012-02-16 2015-11-18 上海一芯智能科技有限公司 一种智能双界面卡焊接封装方法
USD703208S1 (en) 2012-04-13 2014-04-22 Blackberry Limited UICC apparatus
US8936199B2 (en) 2012-04-13 2015-01-20 Blackberry Limited UICC apparatus and related methods
USD701864S1 (en) * 2012-04-23 2014-04-01 Blackberry Limited UICC apparatus
DE102012211546B4 (de) * 2012-07-03 2017-02-16 Morpho Cards Gmbh Chipkarte mit bei Raumtemperatur pastenförmiger oder flüssiger Kontaktierung
EP2779029B1 (fr) 2013-03-13 2017-07-26 SES RFID Solutions GmbH Implant de carte à puce pour des cartes à puce à réaction par contact et sans contact
JP6168394B2 (ja) * 2013-05-02 2017-07-26 三菱マテリアル株式会社 アンテナ装置
FR3015733B1 (fr) 2013-12-23 2017-08-25 Oberthur Technologies Dispositif electronique, tel qu'une carte, comportant des moyens de contact agences en lacets et procede de fabrication d'un tel dispositif
FR3023419B1 (fr) 2014-07-01 2016-07-15 Oberthur Technologies Support d'antenne destine a etre integre dans un document electronique
FR3026529B1 (fr) * 2014-09-30 2017-12-29 Linxens Holding Procede de fabrication de carte a puce et carte a puce obtenue par ce procede.
FR3026530B1 (fr) * 2014-09-30 2017-12-22 Oberthur Technologies Document electronique a extremites d'antenne inclinees, support d'antenne pour un tel document electronique et procede de fabrication d'un tel document
FR3034552B1 (fr) * 2015-04-02 2017-05-05 Oberthur Technologies Module dual pour carte duale a microcircuit
GB2548638A (en) * 2016-03-24 2017-09-27 Zwipe As Method of manufacturing a smartcard
DE102016106698A1 (de) * 2016-04-12 2017-10-12 Infineon Technologies Ag Chipkarte und Verfahren zum Herstellen einer Chipkarte
US10321590B2 (en) 2016-09-06 2019-06-11 Apple Inc. Interlock features of a portable electronic device
FR3062225B1 (fr) * 2017-01-20 2021-11-19 Oberthur Technologies Document electronique et procede de fabrication d'un tel document electronique
SE541653C2 (en) * 2017-11-03 2019-11-19 Stora Enso Oyj Method for manufacturing an RFID tag and an RFID tag comprising an IC and an antenna
FR3073307B1 (fr) * 2017-11-08 2021-05-28 Oberthur Technologies Dispositif de securite tel qu'une carte a puce
FR3079645B1 (fr) * 2018-04-03 2021-09-24 Idemia France Document electronique dont une liaison electrique entre un port de puce et une plage externe de contact electrique est etablie via un inlay
FR3083892B1 (fr) 2018-07-16 2020-07-03 Smart Packaging Solutions Carte a puce a double interface de communication et son procede de fabrication
WO2021241656A1 (fr) * 2020-05-28 2021-12-02 サトーホールディングス株式会社 Étiquette rfid et procédé d'utilisation d'une étiquette rfid

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2523335A1 (fr) * 1982-03-10 1983-09-16 Flonic Sa Procede pour surelever les plages de contact electrique d'une carte a memoire
EP0682321A2 (fr) * 1994-05-11 1995-11-15 Giesecke & Devrient GmbH Porteur d'information à puce
US5528222A (en) * 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
EP0723244A2 (fr) * 1994-12-23 1996-07-24 Giesecke & Devrient GmbH Support d'information à module électronique
EP0737935A2 (fr) * 1995-04-13 1996-10-16 Sony Chemicals Corporation Carte à puce sans contact et méthode de production
US5598032A (en) * 1994-02-14 1997-01-28 Gemplus Card International Hybrid chip card capable of both contact and contact-free operation and having antenna contacts situated in a cavity for an electronic module
EP0756244A2 (fr) * 1995-07-26 1997-01-29 Giesecke & Devrient GmbH Unité électronique et procédé de fabrication de cette unité
WO1997034247A2 (fr) * 1996-03-14 1997-09-18 Pav Card Gmbh Carte a puce, systeme de connexion et procede de production d'une carte a puce

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818855A (en) 1985-01-11 1989-04-04 Indala Corporation Identification system
US4689636A (en) * 1985-03-15 1987-08-25 Minnesota Mining And Manufacturing Company Deactivatable resonant marker for use in RF electronic article surveillance system
DE3723547C2 (de) * 1987-07-16 1996-09-26 Gao Ges Automation Org Trägerelement zum Einbau in Ausweiskarten
US5208450A (en) * 1988-04-20 1993-05-04 Matsushita Electric Industrial Co., Ltd. IC card and a method for the manufacture of the same
JPH04321190A (ja) 1991-04-22 1992-11-11 Mitsubishi Electric Corp 非接触型携帯記憶装置のアンテナ回路
US5488380A (en) 1991-05-24 1996-01-30 The Boeing Company Packaging architecture for phased arrays
US5779839A (en) 1992-06-17 1998-07-14 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
US6045652A (en) 1992-06-17 2000-04-04 Micron Communications, Inc. Method of manufacturing an enclosed transceiver
US5751256A (en) * 1994-03-04 1998-05-12 Flexcon Company Inc. Resonant tag labels and method of making same
DE4410732C2 (de) 1994-03-28 1997-05-07 Amatech Gmbh & Co Kg Verfahren zur Anordnung einer zumindest einen Chip und eine Drahtspule aufweisenden Transpondereinheit auf einem Substrat sowie Chipkarte mit entsprechend angeordneter Transpondereinheit
FR2721732B1 (fr) * 1994-06-22 1996-08-30 Solaic Sa Carte à mémoire sans contact dont le circuit électronique comporte un module.
DE4431605C2 (de) * 1994-09-05 1998-06-04 Siemens Ag Verfahren zur Herstellung eines Chipkartenmoduls für kontaktlose Chipkarten
WO1996009175A1 (fr) 1994-09-22 1996-03-28 Rohm Co., Ltd. Carte de ci du type sans contact et procede de fabrication de cette carte
US5671525A (en) 1995-02-13 1997-09-30 Gemplus Card International Method of manufacturing a hybrid chip card
CN1200185A (zh) 1995-08-01 1998-11-25 奥地利塑料卡及证件系统股份有限公司 具有一个构件和一个无接触应用的传输装置的无接触应用的卡片型数据载体和用于制造一种
FR2743649B1 (fr) 1996-01-17 1998-04-03 Gemplus Card Int Module electronique sans contact, carte etiquette electronique l'incorporant, et leurs procedes de fabrication
JP3721520B2 (ja) 1996-02-12 2005-11-30 フィン,ダーヴィト ワイヤ導体を接触させるための方法
DE19701167A1 (de) * 1997-01-15 1998-07-23 Siemens Ag Chipkarte
FR2769389B1 (fr) * 1997-10-07 2000-01-28 Rue Cartes Et Systemes De Carte a microcircuit combinant des plages de contact exterieur et une antenne, et procede de fabrication d'une telle carte
FR2769390B1 (fr) * 1997-10-08 2003-02-14 Gemplus Card Int Procede de fabrication de cartes a puce aptes a assurer un fonctionnement a contact et sans contact, et de cartes a puce sans contact
US6164551A (en) 1997-10-29 2000-12-26 Meto International Gmbh Radio frequency identification transponder having non-encapsulated IC chip
FR2775810B1 (fr) * 1998-03-09 2000-04-28 Gemplus Card Int Procede de fabrication de cartes sans contact
US6404643B1 (en) * 1998-10-15 2002-06-11 Amerasia International Technology, Inc. Article having an embedded electronic device, and method of making same
FR2787609B1 (fr) * 1998-12-21 2001-02-09 Gemplus Card Int Procede de fabrication de carte a puce sans contact
US6476775B1 (en) * 2000-03-13 2002-11-05 Rcd Technology Corporation Method for forming radio frequency antenna
GB2371264A (en) * 2001-01-18 2002-07-24 Pioneer Oriental Engineering L Smart card with embedded antenna
US6665193B1 (en) * 2002-07-09 2003-12-16 Amerasia International Technology, Inc. Electronic circuit construction, as for a wireless RF tag

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2523335A1 (fr) * 1982-03-10 1983-09-16 Flonic Sa Procede pour surelever les plages de contact electrique d'une carte a memoire
US5598032A (en) * 1994-02-14 1997-01-28 Gemplus Card International Hybrid chip card capable of both contact and contact-free operation and having antenna contacts situated in a cavity for an electronic module
EP0682321A2 (fr) * 1994-05-11 1995-11-15 Giesecke & Devrient GmbH Porteur d'information à puce
US5528222A (en) * 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
EP0723244A2 (fr) * 1994-12-23 1996-07-24 Giesecke & Devrient GmbH Support d'information à module électronique
EP0737935A2 (fr) * 1995-04-13 1996-10-16 Sony Chemicals Corporation Carte à puce sans contact et méthode de production
EP0756244A2 (fr) * 1995-07-26 1997-01-29 Giesecke & Devrient GmbH Unité électronique et procédé de fabrication de cette unité
WO1997034247A2 (fr) * 1996-03-14 1997-09-18 Pav Card Gmbh Carte a puce, systeme de connexion et procede de production d'une carte a puce

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515850A (ja) * 1999-11-29 2003-05-07 アエスカ エス.ア. 不正行為の危険性を制限する非接触もしくは非接触ハイブリッド式スマートカード
JP2003515849A (ja) * 1999-11-29 2003-05-07 アエスカ エス.ア. 繊維材料からなるアンテナ支持体を備えた非接触ハイブリッド型スマートカードの製造方法
JP4731780B2 (ja) * 1999-11-29 2011-07-27 アエスカ エス.ア. 不正行為の危険性を制限する非接触もしくは非接触ハイブリッド式スマートカード
JP4875271B2 (ja) * 1999-11-29 2012-02-15 アエスカ エス.ア. 繊維材料からなるアンテナ支持体を備えた非接触ハイブリッド型スマートカードの製造方法

Also Published As

Publication number Publication date
ES2306479T3 (es) 2008-11-01
KR20010030980A (ko) 2001-04-16
CA2306407A1 (fr) 1999-04-15
US20100133347A9 (en) 2010-06-03
CN1281568A (zh) 2001-01-24
HK1034590A1 (en) 2001-10-26
CN1664856A (zh) 2005-09-07
US7740180B2 (en) 2010-06-22
CN100437636C (zh) 2008-11-26
US20070271467A1 (en) 2007-11-22
DE69839276T2 (de) 2009-04-02
EP1021792B1 (fr) 2008-03-19
EP1021792A1 (fr) 2000-07-26
CN1201265C (zh) 2005-05-11
FR2769390A1 (fr) 1999-04-09
JP2001519574A (ja) 2001-10-23
AU9447598A (en) 1999-04-27
FR2769390B1 (fr) 2003-02-14
DE69839276D1 (de) 2008-04-30
US7958622B1 (en) 2011-06-14
EP1927941A1 (fr) 2008-06-04
US20100011223A9 (en) 2010-01-14
US7663564B2 (en) 2010-02-16
BR9812884A (pt) 2000-08-08
US20070272761A1 (en) 2007-11-29

Similar Documents

Publication Publication Date Title
EP1021792A1 (fr) Procede de fabrication de cartes a puce aptes a assurer un fonctionnement a contact, et sans contact
EP0917688B1 (fr) Carte a circuit integre a connexion mixte
EP3201843B1 (fr) Procédé de fabrication de carte à puce et carte à puce obtenue par ce procédé.
WO1998026372A1 (fr) Procede de realisation d'une carte a memoire electronique sans contact
EP1428258B1 (fr) Procede de fabrication d'une etiquette electronique de faible epaisseur
EP1141887B1 (fr) Procede de fabrication de carte a puce sans contact
EP1673715B1 (fr) Procede de fabrication d'une carte a double interface, et carte a microcircuit ainsi obtenue
EP2636000A1 (fr) Procede d'interconnexion par ressort de plage conductrice avec un contact electrique et dispositif correspondant
CA2646813A1 (fr) Dispositif radiofrequence
EP1724712A1 (fr) Micromodule, notamment pour carte à puce
FR2794266A1 (fr) Procede de fabrication de dispositif electronique portable a circuit integre comportant un dielectrique bas cout
EP1084482B1 (fr) Procede de fabrication d'une carte a circuit integre et carte obtenue
WO2000025265A1 (fr) Procede de fabrication d'une carte a puce et d'un module electronique destine a etre insere dans une telle carte
EP0115460B1 (fr) Carte souple de circuit imprimé, procédé de modification d'une carte de circuit imprimé, et carte modifiée de circuit imprimé
FR2810768A1 (fr) Procede de fabrication de cartes a puce hybrides et cartes a puce obtenues par ledit procede
EP0969410B1 (fr) Carte à microcircuit incluant une antenne
WO2020099279A1 (fr) Procede de realisation d'un insert electronique pour support portable multi-composants et insert obtenu
FR2694139A1 (fr) Substrat d'interconnexion pour composants électroniques et son procédé de fabrication.
FR3083892A1 (fr) Carte a puce a double interface de communication et son procede de fabrication
FR2745931A1 (fr) Carte a puce
WO2005064533A1 (fr) Procedes de fabrication d'une carte du type sans contacts externes, et carte ainsi obtenue
FR2938380A1 (fr) Couche support d'antenne filaire et/ou d'elements de connexion filaire pour carte a microcircuit
WO2001015266A1 (fr) Procede de fabrication de micromodules electroniques comprenant une antenne et micromodules obtenus par le procede
WO2001015504A1 (fr) Procede de fabrication de cartes a puce hybrides et cartes a puce obtenues par ledit procede
FR2741010A1 (fr) Carte comprenant une unite electronique et procede de fabrication d'une telle carte

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98811933.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN ID JP KR MX RU SG US VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2306407

Country of ref document: CA

Ref document number: 2306407

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2000/003366

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020007003748

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998947625

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998947625

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007003748

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1020007003748

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998947625

Country of ref document: EP