WO1999023692A1 - Aligner and exposure method - Google Patents

Aligner and exposure method Download PDF

Info

Publication number
WO1999023692A1
WO1999023692A1 PCT/JP1998/004843 JP9804843W WO9923692A1 WO 1999023692 A1 WO1999023692 A1 WO 1999023692A1 JP 9804843 W JP9804843 W JP 9804843W WO 9923692 A1 WO9923692 A1 WO 9923692A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
exposure
measuring
optical system
measurement
Prior art date
Application number
PCT/JP1998/004843
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Taniguchi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU96481/98A priority Critical patent/AU9648198A/en
Publication of WO1999023692A1 publication Critical patent/WO1999023692A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages

Definitions

  • the present invention relates to an exposure apparatus used for transferring a mask pattern onto a photosensitive substrate during a lithographic process for producing, for example, a semiconductor device, a liquid crystal display device, or a thin-film magnetic head.
  • the exposure method is particularly suitable for use in an exposure apparatus provided with a measuring device g for measuring the state of an exposure beam, an imaging characteristic, and the like.
  • a reticle stage for positioning the reticle or a wafer stage for positioning the wafer is required.
  • a measuring device for measuring the state such as the illuminance of the exposure light and the imaging characteristics such as the projection magnification is provided.
  • the measurement device provided on the wafer stage includes a radiation dose monitor for measuring the incident energy of the exposure light to the projection optical system, and the position of the projected image.
  • an aerial image detection system for measuring contrast, etc.
  • a measuring device provided on the reticle stage for example, there is a reference plate on which an index mark used for measuring the imaging characteristics of the projection optical system is formed.
  • the exposure amount is optimized by using a measurement apparatus provided on a reticle stage or a wafer stage, and high imaging characteristics are maintained.
  • recent exposure apparatuses are also required to increase the throughput (productivity) of the exposure step when manufacturing semiconductor elements and the like.
  • the stage drive speed is increased. For molds, there is a method to shorten the time of stepping and the time of scanning exposure.
  • a driving motor with a larger output may be used, and conversely, a driving motor with the same output as the conventional one can reduce the driving speed.
  • a drive motor with a larger output is used as in the former case, the amount of heat generated from the drive motor increases. Such an increased amount of heat may cause delicate thermal deformation of the stage system, so that the high positioning accuracy required for the exposure apparatus may not be obtained. Therefore, in order to prevent the deterioration of positioning accuracy and increase the driving speed, it is desirable to make the stage system as small and light as possible as in the latter case.
  • the scanning exposure time is shortened due to the improvement of the driving speed, and the scanning exposure time is reduced.
  • the downsizing of the stage system also improves the synchronization accuracy between the reticle and the wafer, and has the major advantages of improving imaging performance and overlay accuracy.
  • the stage must be small. It is difficult to type.
  • the measuring device usually includes a heat source such as an amplifier and
  • the temperature of the measuring device gradually increases due to exposure light exposure.
  • the reticle stage or wafer stage may be slightly thermally deformed, and the positioning accuracy and the overlay accuracy may be degraded.
  • the deterioration of positioning accuracy and the like due to the temperature rise of the measuring device is slight, but in the future, as the circuit pattern of semiconductor elements etc. becomes finer, it is necessary to suppress the influence of the temperature rise of the measuring device. Expected to increase.
  • the present invention provides an exposure apparatus capable of miniaturizing a stage for positioning a reticle or a wafer while maintaining a state of exposure light or a function of measuring an imaging characteristic. This is the first purpose.
  • the present invention provides a light exposure device which includes a measurement device for measuring the state of exposure light or an imaging characteristic, and which can reduce an adverse effect of a rise in temperature when measuring using the measurement device. Is the second purpose.
  • the present invention provides an exposure method capable of miniaturizing a stage for positioning a reticle or a wafer while maintaining a state of exposure light or a function of measuring imaging characteristics.
  • the third purpose is a case of the exposure method.
  • the present invention provides a light exposure method that includes a measurement device for measuring the state of exposure light or an imaging characteristic and that can reduce an adverse effect of a rise in temperature when performing measurement using the measurement device.
  • a first exposure apparatus is an exposure apparatus that transfers a pattern formed on a mask onto a substrate by using an exposure beam.
  • a first stage that moves a predetermined area while holding one of them, a second stage that is independent of the first stage, and measures the state of the exposure beam that is attached to the second stage And a measuring device.
  • the size of the first stage is minimized by providing only the minimum function necessary for the exposure to the first stage used for the original exposure.
  • the stage can be made smaller and lighter.
  • the measuring device that is not directly required for exposure and measures the state of the illuminance of the exposure beam and the like is mounted on another second stage, the state of the exposure beam can also be measured.
  • an example of the measuring device is a photoelectric sensor that measures the entire power of the exposure beam, an uneven illuminance sensor that measures the illuminance distribution of the exposure beam, or the like.
  • the second stage is, for example, arranged so as to be movable independently of the first stage, for example, on a moving surface of the first stage. At this time, by arranging the second stage in place of the first stage, the state of the exposure beam in the vicinity of the surface where the mask or the substrate is actually arranged can be measured.
  • control device for moving the first stage between a position where the exposure beam is irradiated and a position where the exposure beam is not irradiated. At this time, at the time of measurement, the first stage is retracted from the irradiation position of the exposure beam.
  • the measurement device of the second stage moves to the irradiation position of the exposure beam.
  • control for positioning the second stage at a position where the exposure beam is not irradiated is performed. It is desirable to have a device. This allows the two stages to be used efficiently during exposure and measurement.
  • a second exposure apparatus is an exposure apparatus that projects a pattern formed on a mask onto a substrate via a projection optical system.
  • a first stage that moves through an area of the first stage, a second stage that is independent of the first stage, and a measurement that is arranged on the second stage and measures the imaging characteristics of the projection optical system And a device.
  • the present invention it is possible to reduce the size and weight of the first stage by giving the first stage only the minimum functions necessary for exposure.
  • a measuring device that is not directly required for exposure and measures imaging characteristics such as distortion is mounted on another second stage, the imaging characteristics can also be measured.
  • an example of the measuring device is a position sensor of a projected image, a measurement index mark, a measurement reference plane, or the like.
  • the second stage is, for example, arranged so as to be movable independently of the first stage, for example, on a moving surface of the first stage. At this time, by arranging the second stage in place of the first stage, the imaging characteristics on the surface where the substrate is actually arranged can be measured.
  • the first stage holds the substrate, and moves the first stage between a position within the exposure area by the projection optical system and a predetermined position outside the exposure area. It is desirable to have a control device. At this time, the first stage is retracted from the exposure area during measurement.
  • a measurement apparatus for measuring a state of the exposure beam is provided in the exposure apparatus for transferring a pattern formed on a mask onto a substrate using an exposure beam. A stage, and a cooling device provided on the stage to cool the measuring device.
  • the fourth exposure apparatus of the present invention projects the pattern formed on the mask onto the substrate via the projection optical system. It has a stage on which a measuring device for measuring characteristics is arranged, and a cooling device provided on this stage for cooling the measuring device.
  • the measurement device even when the temperature of the measurement device rises when measuring the imaging characteristics using the measurement device, the measurement device is cooled by the cooling device. impact of beyond 3
  • a fifth exposure apparatus of the present invention is an exposure apparatus for transferring a pattern formed on a mask onto a substrate by using an exposure beam, wherein one of the mask and the substrate is held.
  • a first stage that moves through a predetermined area, a second stage equipped with a measuring device that measures the state of the exposure beam, and an interposed space between the first stage and the second stage And a heat insulating member that blocks heat conducted from the second stage.
  • the measuring device includes a heat source, or the temperature of the measuring device increases when measuring the illumination of the exposure beam using the measuring device, Heat conduction is hindered by the heat insulating member, and the exposed area is not affected by the heat source or temperature rise.
  • one example of the heat insulating member is a solid material with low thermal conductivity or temperature control.
  • a sixth exposure apparatus of the present invention is directed to an exposure apparatus that projects a pattern formed on a mask onto a substrate via a projection optical system, wherein the first exposure apparatus holds the substrate and moves in a predetermined area.
  • a second stage equipped with a measuring device for measuring the imaging characteristics of the projection optical system, and a second stage disposed between the first stage and the second stage. And a heat insulation section that blocks the heat conducted from the stage.
  • the measurement device increases in temperature when measuring the imaging characteristics using the measurement device, or the measurement device includes a heat source, Therefore, the heat conduction is hindered, so that the exposed portion is not affected by the temperature rise or the like.
  • an example of the heat insulating member is a solid material having low thermal conductivity or a temperature-controlled gas.
  • a first exposure method is an exposure method for transferring a pattern formed on a mask onto a substrate using an exposure beam, wherein the first stage holds one of the mask and the substrate. And moving a predetermined area, and a step of measuring the state of the exposure beam by a measuring device attached to a second stage independent of the first stage.
  • the size of the first stage is minimized by providing only the minimum function necessary for the exposure to the first stage used for the original exposure.
  • the stage can be made smaller and lighter.
  • the measuring device that is not directly required for exposure and measures the state of the illuminance of the exposure beam and the like is mounted on another second stage, the state of the exposure beam can be measured.
  • an example of the measuring device is a light that measures the overall power of the exposure beam.
  • An electric sensor or an uneven illuminance sensor that measures the illuminance distribution of the exposure beam.
  • the second stage is, for example, arranged so as to be movable independently of the first stage, for example, on a moving surface of the first stage. At this time, by arranging the second stage in place of the first stage, the state of the exposure beam in the vicinity of the surface where the mask or the substrate is actually arranged can be measured.
  • the movement of the first stage is performed depending on a position where the exposure beam is irradiated and a position where the exposure beam is not irradiated. At this time, at the time of measurement, the first stage is retracted from the irradiation position of the exposure beam.
  • the second stage further includes a step of moving between a position where the exposure beam is irradiated and a position where the exposure beam is not irradiated.
  • the measurement device of the second stage moves to the irradiation position of the exposure beam.
  • the method further includes a step of positioning the second stage at a position where the exposure beam is not irradiated when the first stage is at the position irradiated with the exposure beam. This allows the two stages to be used efficiently during exposure and measurement.
  • the first stage in the exposure method for projecting a pattern formed on a mask onto a substrate via a projection optical system, the first stage may include any one of the mask and the substrate.
  • the present invention it is possible to reduce the size and weight of the first stage by providing only the minimum functions necessary for the exposure to the first stage used for the original exposure. become. On the other hand, there is no need for direct exposure and distortion Since the measuring device for measuring the imaging characteristics such as is mounted on another second stage, the imaging characteristics can also be measured.
  • an example of the measuring device is a position sensor of a projected image, a measurement index mark, a measurement reference plane, or the like.
  • the second stage is, for example, arranged so as to be movable independently of the first stage, for example, on a moving surface of the first stage. At this time, by arranging the second stage in place of the first stage, the imaging characteristics on the surface where the substrate is actually arranged can be measured.
  • the first stage holds the substrate, and the movement of the first stage moves between a position within the exposure area by the projection optical system and a predetermined position outside the exposure area. It is desirable that this be done. At this time, the first stage is retracted from the exposure area during measurement.
  • the second stage further includes a step of moving the position between the position within the exposure area by the projection optical system and a predetermined position outside the exposure area. At this time, at the time of measurement, the measurement device of the second stage moves to the exposure area.
  • a measuring device disposed on a stage is provided with a state of the exposure beam. And a step of cooling the measuring device by a cooling device provided in the stage.
  • the measurement device even when the temperature of the measurement device rises when measuring the illuminance of the exposure beam using the measurement device, the measurement device is cooled by the cooling device. Is not affected by the temperature rise.
  • a fourth exposure method of the present invention is directed to an exposure method for projecting a pattern formed on a mask onto a substrate via a projection optical system.
  • the apparatus includes a step of measuring an imaging characteristic of the projection optical system, and a step of cooling the measurement apparatus by a cooling device provided on the stage. According to the present invention, even when the temperature of the measurement device rises when measuring the imaging characteristics using the measurement device, the measurement device is cooled by the cooling device. Is not affected.
  • the first stage in the exposure method for transferring a pattern formed on a mask onto a substrate using an exposure beam, the first stage may include any one of the mask and the substrate. Moving a predetermined area while holding one of them, a measuring device attached to a second stage measures a state of the exposure beam, and a step of measuring the state of the first stage and the second stage. Cutting off heat conducted from the second stage by a heat insulating member arranged between the stage and the stage.
  • the heat insulating member is provided. As a result, heat conduction is hindered, and the exposed portion is not affected by the heat source or temperature rise.
  • an example of the heat insulating member is a solid material having low thermal conductivity or a gas whose temperature is adjusted. Air-conditioned gas is used as the temperature-adjusted gas.
  • the first stage holds the substrate and performs a predetermined operation.
  • Moving the area of the projection optical system, measuring the imaging characteristics of the projection optical system with the measuring device mounted on the second stage, and connecting the first stage with the second stage. the arrangement adiabatic member between, is intended to include a step of interrupting the heat conducted from the second stages c
  • the heat insulating member is used. Since heat conduction is hindered, the exposed portion is not affected by the temperature rise or the like.
  • an example of the heat insulating member is a solid material having low thermal conductivity or a temperature-controlled gas.
  • FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing reticle stage R ST and measurement stage 5 of FIG.
  • FIG. 3 is a plan view showing the wafer stage WST and the measurement stage 14 of FIG.
  • FIG. 4 is a plan view for describing a case where the state of exposure light or the like is measured using the measurement stage 14 in the first embodiment of the present invention.
  • FIG. 5 is a plan view showing a wafer stage and a measurement stage of a projection exposure apparatus according to a second embodiment of the present invention.
  • FIG. 6 is a front view showing a wafer stage and a measurement stage of a projection exposure apparatus according to a second embodiment of the present invention.
  • FIG. 7 is a schematic configuration diagram with a part cut away showing a projection exposure apparatus according to a third embodiment of the present invention.
  • FIG. 8 is a plan view showing a wafer stage of the projection exposure apparatus of FIG.
  • FIG. 9 is a plan view showing a wafer stage of a projection exposure apparatus according to a fourth embodiment of the present invention.
  • Fig. 1 shows the projection exposure apparatus of the step 'and' scan method used in this example.
  • the exposure light IL emitted from the illumination system 1 including the monitor, the variable aperture stop, the field stop, and the relay lens system passes through the mirror 1 and the condenser lens 3, and the pattern surface of the reticle R (lower surface). This illuminates the slit-shaped illumination area.
  • the exposure light IL is excimer laser light such as KrF (wavelength 248 nm) or ArF (wavelength 193 nm), harmonics of a YAG laser, or i-line of a mercury lamp.
  • variable aperture stop In the illumination system 1, it is possible to select a desired illumination method from among ordinary illumination, annular illumination, so-called deformed illumination, and illumination with a small coherence factor ( ⁇ value). It is configured.
  • the exposure light source is a laser light source, the light emission timing and the like are controlled via a laser power supply (not shown) by a main control system 10 that controls the overall operation of the apparatus.
  • the image of the pattern in the illuminated area 9 (see Fig. 2) of the reticle R by the exposure light IL is projected through the projection optical system PL at a projection magnification of
  • the ⁇ axis is taken in parallel with the optical axis ⁇ ⁇ of the projection optical system PL, and the non-scanning direction (that is, the The X axis is taken along the direction perpendicular to the plane of FIG. 1 and the ⁇ axis is taken along the scanning direction (that is, the direction parallel to the plane of FIG. 1).
  • An alignment sensor 16 is provided adjacent to the projection optical system PL, and a detection signal of the alignment sensor 16 is supplied to an alignment processing system in the main control system 10.
  • the alignment sensor 16 is used to detect the position of a positioning mark (wafer mark) formed on the wafer W.
  • the distance (baseline amount) between the detection center of the alignment sensor 16 and the center of the projected image of the reticle R by the projection optical system PL is obtained with high precision in advance and stored in the alignment processing system in the main control system 10.
  • the shot area of the wafer W and the projected image of the reticle R are superimposed on the basis of the detection result of the alignment sensor 16 and the baseline amount thereof with high accuracy.
  • a reticle alignment microscope for detecting an alignment mark on the reticle R is disposed above the reticle R.
  • reticle R is held on reticle stage RST by vacuum suction, and reticle stage RST is placed on two guides 4 A and 4 B arranged in parallel in the Y direction via an air bearing. It is mounted movably in the Y direction. Further, in this example, the measurement stage 5 is mounted on the guides 4A and 4B so as to be movable in the Y direction via an air bearing independently of the reticle stage RST.
  • FIG. 2 is a plan view showing the reticle stage RST and the measurement stage 5, which are not shown along the guides 4A and 4B extending in the Y direction (scanning direction).
  • a reticle stage RST and a measurement stage 5 are mounted so as to be driven in the Y direction by a linear motor or the like.
  • the lengths of the guides 4 A and 4 B are set to be at least longer than the moving stroke of the reticle stage RST at the time of the running exposure by at least the length of the measuring stage 5.
  • the reticle stage RST is configured by combining a coarse movement stage that moves in the Y direction and a fine movement stage that allows fine adjustment of the two-dimensional position on the coarse movement stage. ing.
  • a reference plate 6 made of a glass plate elongated in the X direction is fixed on the measurement stage 5, and a plurality of index marks IM for measuring the imaging characteristics of the projection optical system PL are formed on the reference plate 6 in a predetermined arrangement.
  • the reference plate 6 is large enough to cover the slit-shaped illumination area 9 of the exposure light for the reticle R, more precisely, the field of view of the projection optical system PL on the reticle R side.
  • the reference plate 6 there is no need to prepare a dedicated reticle for measuring the imaging characteristics, and it is not necessary to replace the reticle R for actual exposure with the dedicated reticle.
  • the image characteristics can be measured with high frequency, and it can accurately follow the temporal change of the projection optical system PL.
  • the measurement stage 5 for the reference plate 6 is provided independently, and no measurement member other than the reticle R is mounted on the original reticle stage R ST.
  • the reticle stage R ST need only have the minimum scanning and positioning functions required for scanning exposure, and thus the reticle stage R ST has been reduced in size and weight. Therefore, the reticle stage RST can be scanned at higher speed, so that the throughput of the exposure step is improved.
  • the running speed of the reticle stage RST is ⁇ ⁇ times the running speed of the wafer stage (for example, 4 times, 5 times, etc.), and the upper limit of the scanning speed is almost the same in the reticle stage. In some cases, the throughput is greatly improved in this example.
  • a laser beam is emitted from a laser interferometer 7 ⁇ installed in the + ⁇ direction to the guides 4 ⁇ and 4 ⁇ to a movable mirror on the + ⁇ direction side of the reticle stage RS ⁇ ,
  • the laser beam is irradiated from the two-axis laser interferometers 7 X 1 and 7 X 2 installed in the ⁇ direction to the moving mirror on the + X direction side of the reticle stage RS ⁇ , and the laser interferometers 7 ⁇ and 7
  • the X coordinate, ⁇ coordinate, and rotation angle of reticle stage RST are measured by X 1, 7 7 2, and the measured values are supplied to main control system 10 in FIG.
  • a laser beam is emitted from a laser interferometer 8Y installed in one Y direction to the guides 4A and 4B to a movable mirror on one side in the Y direction of the measurement stage 5, and the laser beam is irradiated.
  • the Y coordinate of the measurement stage 5 measured by the interferometer 8 Y is supplied to the main control system 10.
  • the optical axes of the laser interferometers 7 Y and 8 Y on the Y axis respectively pass through the center of the illumination area 9, that is, the optical axis AX of the projection optical system PL along the Y direction.
  • And 8Y constantly measure the positions of the reticle stage RST and the measurement stage 5 in the scanning direction, respectively.
  • the reticle stage RST is retracted in the + Y direction, and the measurement stage 5 is moved in the Y direction so that the reference plate 6 covers the illumination area 9.
  • the laser beams from X 1, 7 X 2 deviate from the side surface of reticle stage RST and irradiate the movable mirror on the + X direction side surface of measurement stage 5.
  • the main control system 10 controls the position of the measurement stage 5 with high precision via a reversing motor, etc., based on the measured values obtained from the laser interferometers 8Y and 7X1, 7X2. .
  • the wafer stage WS also incorporates a focus / leveling mechanism for controlling the position (focus position) of the wafer W in the vertical direction and the tilt angle.
  • a measurement stage 14 equipped with various measurement devices is mounted on the surface plate 13 separately from the wafer stage WS ⁇ through an air bearing so as to be movable in the X and ⁇ directions. ing.
  • the stage 14 for measurement also has a built-in mechanism to control the focus position on its upper surface.
  • FIG. 3 is a plan view showing the wafer stage WST and the measurement stage 14.
  • a coil row is embedded in a predetermined arrangement inside the surface of the surface plate 13.
  • a magnet row is embedded together with a yoke, and the coil row and the corresponding magnet row constitute a planar motor, respectively. Therefore, the positions of the wafer stage WST and the measurement stage 14 in the X and Y directions and the rotation angle are controlled independently of each other.
  • the flat motor is disclosed in more detail in, for example, Japanese Patent Application Laid-Open No. 8-51756.
  • the wafer stage WST of this example has only the minimum functions required for exposure.
  • the wafer stage WST has a focus and leveling mechanism, and a wafer holder (bottom side of wafer W) that holds the wafer W by suction and a position measurement of the wafer stage WST on the wafer stage WST.
  • the reference mark plate 17 and the two members are fixed.
  • a reference mark (not shown) serving as a position reference in the X direction and the Y direction is formed on the reference mark plate 17, and the position of the reference mark is detected by the alignment sensor 16.
  • the wafer stage WST 2 the positional relationship relative to the projection image, for example, reticle R (the wafer W) is discovered Further, the surface of measurement stage 14 is set at substantially the same height as the surface of wafer W on wafer stage WST.
  • the measurement stage 14 has an irradiation amount monitor 18 composed of a photoelectric sensor for measuring the total energy per unit time (incident energy) of the exposure light that has passed through the projection optical system PL.
  • System Irradiance unevenness sensor 19 consisting of photoelectric sensors for measuring the illuminance distribution in the slit-like exposure area 12 by the PL, and slits 21 X and 21 Y for measuring the imaging characteristics were measured. Plate 20 is fixed.
  • a condenser lens and a photoelectric sensor are arranged, respectively, from the measurement plate 20 and the photoelectric sensor.
  • An aerial image detection system is configured. Note that instead of the slits 2IX and 21Y, a rectangular opening edge may be used.
  • the light receiving surface of the irradiation amount monitor 18 is formed to have a size to cover the exposure area 12, and the light receiving portion of the uneven illuminance sensor 19 has a pinhole shape.
  • the detection signal of the unevenness sensor 19 is supplied to the main control system 10 shown in FIG.
  • the detection signal of the photoelectric sensor at the bottom of the measurement plate 20 is supplied to the imaging characteristic calculation system 11 in FIG.
  • the reference plate 6 on the measurement stage 5 on the reticle side in FIG. 2 is moved to the illumination area 9 and the index mark IM formed on the reference plate 6 is measured. Is projected on the wafer stage side, and the images are scanned in the X and Y directions by slits 21X and 21Y on the measurement plate 20, respectively, and the detection signal from the photoelectric sensor at the bottom is scanned. Captured by the imaging characteristics calculation system 1 1.
  • the imaging characteristic calculation system 11 processes the detection signal to detect the position, contrast, etc.
  • the main control system 10 is configured to correct the imaging characteristics of the projection optical system PL via this correction mechanism.
  • sensors such as an irradiation amount monitor 18 provided on the measurement stage 14, an uneven illuminance sensor 19, and a photoelectric sensor at the bottom of the measurement plate 20 are all provided with a heat source such as an amplifier. , And power and communication signal cables are connected. Therefore, if those sensors are mounted on the wafer stage WST for exposure, the positioning accuracy and the like may be deteriorated due to the heat source and the tension of the signal cable attached to the sensors. In addition, thermal energy due to exposure light exposure during measurement of imaging characteristics and the like may cause deterioration of positioning accuracy and the like.
  • the wafer stage WST can be reduced in size and weight, and the measurement stage 14 There is an advantage that a decrease in positioning accuracy due to a heat source of the sensor or heat energy of exposure light during measurement can be prevented.
  • the downsizing of the wafer stage WST improves the moving speed and controllability of the wafer stage WST, increasing the throughput of the exposure process and improving the positioning accuracy, etc.
  • a laser beam is irradiated from the laser interferometer 15 Y installed in the + Y direction to the moving mirror on the + Y direction side of the wafer stage WST, and the two-axis laser interference installed in the 1X direction
  • a laser beam is radiated from a total of 15X1, 15X2 to a moving mirror on one side in the X direction of the wafer stage WS T, and the wafer interferometers 15Y, 15X1, 15X2 are used to illuminate the wafer stage WS.
  • the X coordinate, Y coordinate, and rotation angle of T are measured, and the measured values are supplied to the main control system 10 shown in FIG. 1, and the main control system 10 sends the wafer stage through a planar motor based on the measured values. Control the speed and position of WST.
  • the position measuring laser beam is applied to the movable mirror of the measuring stage 14.
  • Fig. 4 shows the wafer stage WST and the measurement of the incident energy of the exposure light, etc.
  • An example of the arrangement of the measurement stage 14 is shown in FIG. 4.
  • the wafer stage WST is retracted away from the exposure region 12 as shown in FIG.
  • the laser beams from the laser interferometers 15Y, 15X1, and 15X2 move off the side of the wafer stage WS WS and the measurement stage 14 Irradiates the moving mirror on the side of the camera.
  • the main control system 10 moves the position of the measurement stage 14 via the plane motor. Control with high precision.
  • the position of the wafer stage WS 1 and the measurement stage 14 can be roughly controlled by driving the planar motor in an open loop. Therefore, when the laser beam is not irradiated, the main control system 10 The position of the wafer stage WST and the position of the measurement stage 14 are driven by an open loop method using a planar motor. However, in addition to the laser interferometers 15Y, 15X1, 15X2, a linear encoder, etc., for detecting the positions of the wafer stage WST and the measurement stage 14 with predetermined accuracy is provided. In the state where the laser beam is not irradiated, position measurement may be performed using such a linear encoder or the like.
  • a slit image is obliquely projected onto a plurality of measurement points on the surface of the wafer W on the side surface of the projection optical system PL, and is re-imaged by the reflected light.
  • An oblique incidence type focus position detection system (AF sensor) that detects the focus position of the corresponding measurement point based on the amount of lateral shift of the slit image is provided. Based on the detection result of the focus position detection system, the surface of the wafer W during the scanning exposure is focused on the image plane of the projection optical system P.
  • a reference member having a reference surface for the focal position detection system is also mounted on the measurement stage 14.
  • the reticle R for exposure is loaded on the reticle stage RST, and the reticle R is placed on the illumination area of the exposure light IL.
  • the wafer stage WST is retracted on the surface plate 13 in, for example, the + Y direction, and the measurement stage 14 moves toward the exposure area 12 by the projection optical system PL. .
  • the measurement stage 14 stops at a position where the light receiving surface of the irradiation amount monitor 18 on the measurement stage 14 covers the exposure area 12, and in this state, the exposure light IL passes through the irradiation amount monitor 18. The light quantity is measured.
  • the main control system 10 supplies the measured light amount to the imaging characteristic calculation system 11.
  • a measurement value obtained by detecting a light beam obtained by branching from the exposure light IL in the illumination system 1 is also supplied to the imaging characteristic calculation system 11.
  • a coefficient for indirectly calculating the amount of light incident on the projection optical system PL from the amount of light monitored in the illumination system 1 is calculated and stored.
  • the wafer W is loaded on the wafer stage WST.
  • the measurement stage 14 is retracted away from the exposure area 12 so that the center of the wafer W on the wafer stage WST is aligned with the optical axis AX (exposure area) of the projection optical system PL.
  • the wafer stage WST is moved so as to be located near (center of 12).
  • the wafer stage WST is retracted, as shown in Fig. 4, the laser beams from the laser interferometers 15Y, 15X1, and 15X2 are not irradiated.
  • Position control is performed by driving in an open loop system.
  • the measurement stage 14 is retracted from the exposure area 12 and the wafer stage WST is irradiated with laser beams from the laser interferometers 15Y, 15X1, and 15X2. Then, the position of the wafer stage WST will be controlled based on the measurements of those laser interferometers- Using a reticle alignment microscope (not shown), the amount of misalignment between a predetermined alignment mark on reticle R and a predetermined reference mark on reference mark member 17 in FIG. 3 is set to a predetermined target value. Then, reticle R is aligned by driving reticle stage RST. At about the same time, the position of another fiducial mark on the fiducial mark member 17 is detected by the alignment sensor 16 in FIG. 1, whereby the positional relationship with respect to the projected image of the reticle R of the wafer stage WST is obtained. (Baseline amount) is accurately detected.
  • the array coordinates of each shot area of the wafer W are detected by detecting the position of a wafer mark attached to a predetermined shot area (sample shot) on the wafer W via the alignment sensor 16. Desired. After that, based on the arrangement coordinates and the known baseline amount of the alignment sensor 16, scanning exposure is performed while aligning the shot area of the wafer W to be exposed with the pattern image of the reticle R. Is performed.
  • a reticle R is scanned at a speed VR in the + Y direction (or one Y direction) via a reticle stage RST with respect to an illumination area 9 (see FIG. 2) of the exposure light IL.
  • the wafer W is scanned in the -X direction (or + X direction) at a speed of; 3-VR ( ⁇ is a projection magnification) with respect to the exposure area 12 via the ⁇ ⁇ Hast WST. .
  • the opposite of the scanning direction is due to the projection optical system PL projecting a reverse image.
  • the exposure to each shot area is performed by the step-and-scan method.
  • the step-and-scan method are sequentially performed.
  • the measurement stage 14 on the wafer stage side and the measurement stage 5 on the reticle stage side are respectively retracted outside the exposure area. .
  • the light amount of the luminous flux branched from the exposure light IL in the illumination system 1 Is constantly measured and supplied to the imaging characteristic calculation system 11.
  • the imaging characteristic calculation system 11 calculates the exposure amount incident on the projection optical system PL based on the measured value of the supplied light amount and the coefficient obtained in advance.
  • the amount of light IL is calculated, the amount of change in the imaging characteristics (projection magnification, distortion, etc.) of the projection optical system PL caused by the absorption of the exposure light IL is calculated, and the calculation result is supplied to the main control system 10. I do.
  • the main control system 10 corrects the image forming characteristics by, for example, driving a predetermined lens in the projection optical system PL.
  • the measurement stage 14 is moved to the exposure area 12 to perform the measurement.
  • the uneven illuminance sensor 19 is moved in the X direction and the Y direction in the exposure area 12.
  • the illuminance distribution is measured while moving slightly.
  • a reference mark member equivalent to the reference mark member 17 is provided on the measurement stage 14 similarly to the wafer stage WST.
  • the alignment sensor 16 may measure the position of the reference mark in the reference mark member.
  • the reticle stage R ST retracts in the + Y direction, and the reference plate 6 on the measurement stage 5 moves into the illumination area 9.
  • the measurement stage 5 is also irradiated with laser beams from the laser interferometers 7 X 1 and 7 X 2 in the non-scanning direction, so that the laser interferometers 8 Y, 7 X 1 and 7 X
  • the position of the measurement stage 5 can be positioned with high accuracy based on the measurement value of 2.
  • the images of the plurality of index marks I ⁇ are projected on the wafer stage side through the projection optical system PL.
  • FIG. Driving the index mark I with the slit on the measuring plate 20
  • the image of M is scanned in the X and Y directions, and the detection signal of the photoelectric sensor at the bottom of the measurement plate 20 is processed by the imaging characteristic calculation system 11 to obtain the position and contrast of those images.
  • the imaging characteristic calculation system 11 can be Further, while changing the focus position of the measuring plate 20 by a predetermined amount, the positions of the images and the contrast are obtained.
  • the imaging characteristic calculation system 1] calculates the amount of variation in the imaging characteristics such as the best focus position, field curvature, and distortion (including a magnification error) of the projection image of the projection optical system PL. .
  • This variation is supplied to the main control system 10. If the variation exceeds the allowable range, the main control system 10 corrects the imaging characteristics of the projection optical system PL.
  • wafer stage WST and measurement stage 14 are each driven by a flat motor on surface plate 13.
  • a configuration in which the wafer stage WST and the measurement stage 14 are two-dimensionally driven by a combination of a one-dimensional motor is also possible.
  • FIGS. 5 and 6 a second embodiment in which the wafer stage and the measurement stage are each driven by a mechanism combining a one-dimensional motor will be described with reference to FIGS. 5 and 6. Also in this example, the present invention is applied to a step-and-scan type projection exposure apparatus.
  • FIGS. 5 and 6 parts corresponding to FIGS. 1 and 3 are denoted by the same reference numerals. The detailed description is omitted.
  • FIG. 5 is a plan view showing the wafer stage side of the projection exposure apparatus of this example
  • FIG. 6 is a front view thereof.
  • two X-axis linear guides 34 A and 34 B are installed on the upper surface of the surface plate 33 in parallel along the X direction, and the X-axis linear guides 34 A and 34 A are provided.
  • An elongated Y-axis linear guide 32 is installed in the Y direction (running direction) to connect 34B.
  • the Y-axis linear guide 32 is driven in the X direction along the X-axis linear guides 34 A and 34 B by a linear motor (not shown).
  • a wafer stage 31 and a measurement stage 35 are arranged independently, a wafer W is sucked and held on a wafer stage 31 via a wafer holder (not shown), and a dose is irradiated on the measurement stage 35.
  • the monitor 18, the uneven illuminance sensor 19, and the measurement plate 20 are fixed, and a photoelectric sensor is incorporated at the bottom of the measurement plate 20.
  • the bottom surfaces of the wafer stage 31 and the measurement stage 35 are placed on the surface plate 33 via air bearings, respectively, and the wafer stage 31 and the measurement stage 35 are independently independent.
  • the wafer stage 31 and the measurement stage 35 are independently driven two-dimensionally along the Y-axis linear guide 32 and the X-axis linear guides 34A and 34B.
  • the wafer stage 31 and the measurement stage were measured using a 4-axis laser interferometer similar to the laser interferometer 7Y, 7X1, 7X2, 8Y on the reticle stage side in FIG.
  • the two-dimensional position of the stage 35 is measured, and the position and the driving speed of the wafer stage 31 and the measurement stage 35 are controlled based on the measurement result.
  • Other configurations are the same as those of the first embodiment.
  • the wafer stage 31 when measuring the irradiation energy of the exposure light or the imaging characteristics of the projection optical system, the wafer stage 31 is evacuated to a position away from the exposure area by the exposure light in one Y direction.
  • the measurement stage 35 moves to the exposure area.
  • the measurement stage 35 is evacuated to a position separated in the + Y direction from the exposure area by the exposure light.
  • the wafer stage 31 is stepped in the X and Y directions to move the exposure target shot area on the wafer W to the scanning start position for the exposure area, and then the wafer stage 31 is moved to the Y-axis linear guide. By moving at a constant speed in the Y direction along 32, scanning exposure is performed on the shot area.
  • the measurement stage is moved along the Y-axis linear guide 32.
  • Reference numeral 35 is arranged independently of the wafer stage 31.
  • the measurement stage 35 is simultaneously driven in the non-scanning direction (X direction), so that the load on the driving mechanism increases.
  • X direction non-scanning direction
  • much higher control accuracy is not required than in the scanning direction, so the effect of such an increase in load is small.
  • the measurement stage 35 as a heat source is separated from the wafer stage 31, a decrease in the positioning accuracy and the like of the wafer stage 31 is prevented.
  • a second Y-axis linear guide 36 is arranged in parallel with the Y-axis linear guide 32 so as to be movable in the X direction.
  • the measurement stage 35 may be arranged on the Y-axis linear guide 32 so as to be movable in the Y direction.
  • the reticle stage RST and the measurement stage 5 are arranged along the same guides 4A and 4B. As shown on the wafer stage side in the figure, the reticle stage RS ⁇ and the measurement stage 5 may be independently movable two-dimensionally.
  • one wafer stage WST, 31 on which wafer W is mounted is provided, but a plurality of wafer stages on which wafer W is mounted may be provided.
  • a plurality of reticle stages on which the reticle R is mounted are provided on the reticle stage side, and these reticle stages are different.
  • the reticle is placed on the wafer, and these reticles are sequentially exposed to the same shot area on the wafer by changing the exposure conditions (focus position, exposure amount, illumination conditions, etc.).
  • FIGS. 7 and 8 In this example, a cooling device for cooling a measuring device provided on a wafer stage is provided.
  • parts corresponding to FIGS. 1 and 3 are denoted by the same reference numerals. The detailed description is omitted.
  • FIG. 7 shows the projection exposure apparatus of this example.
  • a wafer W is arranged on the side of the exposure area 12 by the projection optical system PL, and the wafer W is placed on a wafer stage via a wafer holder (not shown).
  • the wafer stage 41 is held on the surface plate 13 so as to be driven in, for example, the X and Y directions by a plane motor.
  • a mechanism for controlling the focus position and the tilt angle of the wafer W is incorporated in the wafer stage 41.
  • the wafer stage 41 incorporates a mechanism for measuring the exposure light IL and the imaging characteristics so as to cover the wafer W.
  • FIG. 8 is a plan view of the wafer stage 41 of FIG. 7. In FIG.
  • a measurement plate 20 on which an uneven illuminance sensor 19 and slits 21X and 21Y are formed is arranged.
  • a concave portion 47 for installing a portable reference illuminometer is formed in the vicinity of the irradiation amount monitor 18 on the wafer stage 41, and the reference illuminometer is installed in the concave portion 47 to expose the exposure light.
  • a reference member 46 having a reference plane serving as a reference for flatness or the like formed at one corner of the wafer stage 41 is also fixed.
  • a cooling device for cooling the heat sources of these measurement mechanisms is provided.
  • the slit 21 Y A condenser lens 42 and a photoelectric sensor 43 are arranged at the bottom of the device, and although not shown, an amplifier and the like are also connected to the photoelectric sensor 43. Therefore, a cooling pipe 44 is installed inside the wafer stage 41 so as to pass in the vicinity of the photoelectric sensor 43, and the cooling pipe 44 is connected to the external via a highly flexible pipe 45A. A refrigerant made of a low-temperature liquid is supplied from the cooling device, and the refrigerant that has passed through the pipe 45A is returned to the cooling device via a pipe 45B having great flexibility.
  • the cooling pipe 44 is provided in the vicinity of the irradiation amount monitor 18 and the uneven illuminance sensor 19 shown in FIG. 8, and the bottom of the reference illuminometer concave portion 47, the reference mark member 17 and the reference member 46. Has also passed.
  • heat energy from a heat source such as an amplifier of these measuring devices is discharged through the refrigerant in the cooling pipe 44, the positioning accuracy of the wafer W is not deteriorated by the heat energy. .
  • the irradiation energy is transmitted through the refrigerant in the cooling pipe 44. Since it is discharged, the irradiation energy does not deteriorate the positioning accuracy of the wafer W.
  • the measuring device is cooled by using a liquid refrigerant.However, for example, air for air conditioning may be intensively blown to the vicinity of the measuring device to perform cooling. .
  • the piping configuration of the cooling pipes 4 and the arrangement of the measuring members are as follows. However, various forms can be adopted as long as the members for measurement can be sufficiently cooled. Further, a plurality of cooling pipes 44 may be provided (or the cooling pipes 44 may be branched) to cool the respective measurement members in parallel.
  • FIG. 9 portions corresponding to those in FIG. 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 9 shows a wafer stage 41 A driven in the X and Y directions on the surface plate in the same manner as the wafer stage 41 of FIG. 8.
  • the upper part of the wafer stage 41 A is shown.
  • a heat insulating plate 48 made of a material having a lower thermal conductivity than the wafer stage 41 A. Liquid in the case of using a metal or ceramics such as iron as the wafer stage 4 1 A, the resin as the insulating plate 4 8, glass, 3 further as possible out the use of vacuum insulation pack, which is temperature control as a heat insulating plate 4 8 You can make it flow.
  • a wafer w is placed on the latter area via a wafer holder (not shown), and a reference mark member 17 serving as a position reference is installed, and the former measuring apparatus installation area 41 A a
  • a reference mark member 17 A with a mark serving as a position reference is formed, a dose monitor 18, an uneven illuminance sensor 19, a reference member 46 having a reference plane, and a slit are formed.
  • Measuring plate 20 is disposed. Further, a concave portion 47 for installing a reference illuminometer is formed on the measuring device installation area 41 Aa.
  • measurement devices in the measurement device installation area 41 Aa are used when measuring the exposure light and the imaging characteristics, but the heat energy generated by the amplifiers and the like of these measurement devices is a heat insulating plate 4. 8 does not easily diffuse to the wafer W side, so that the positioning accuracy of the wafer W does not deteriorate. Similarly, there is an advantage that the irradiation energy given by the exposure light at the time of measurement is not easily diffused to the wafer W side by the heat insulating plate 48.
  • the air-conditioned air between the wafer stage WST and the measurement stage 14 is used as a heat insulating member. Can be considered. Also, on the reticle stage side, there is a difference between the area where the reticle is placed and the area where the measuring device is installed. Place a heat insulating member between them
  • the present invention is applied to a step-and-scan type projection exposure apparatus.
  • the present invention can be applied to a batch exposure type projection exposure apparatus (stepper).
  • the present invention can also be applied to a proximity type exposure apparatus that does not use a projection optical system.
  • the present invention may be used not only for an exposure apparatus, but also for an inspection apparatus using a stage for positioning a wafer or the like, a repair apparatus, or the like.
  • the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the gist of the present invention. Industrial applicability
  • the first stage for moving the mask or the substrate is independently provided with the second stage including the measuring device. Therefore, there is an advantage that the stage for positioning the mask or substrate can be reduced in size and weight while maintaining the state of the exposure beam (exposure light) or the function of measuring the imaging characteristics of the projection optical system. . Therefore, the control performance of these stages can be improved, the throughput of the exposure process can be improved, and the heat source such as the photoelectric sensor or the amplifier that constitutes the measurement device can be separated from the exposure stage. Thus, the overlay accuracy and the like are improved.
  • the present invention is applied to a scanning exposure type exposure apparatus such as a step-and-scan method, the effect of the present invention is particularly large since the throughput is greatly improved by the improvement of the scanning speed.
  • the first stage when the second stage is movably arranged independently of the first stage, the first stage can be quickly moved to the measurement area.
  • a control device is provided to move the first stage between the position where the exposure beam is irradiated (exposure area) and the position where the exposure beam is not irradiated (non-exposure area)
  • the control device can quickly move the first stage during measurement. You can save the first stage.
  • a control device is provided for moving the second stage between a position where the exposure beam is irradiated (exposure area) and a position where the exposure beam is not irradiated (non-exposure area)
  • the control device can quickly move the second stage during the exposure. You can save the second stage.
  • the two stages are moved to the position where the exposure beam is not irradiated. They can be used efficiently.
  • the second stage having the measuring device is provided independently of the first stage for moving the mask or the substrate.
  • the stage for positioning the mask or the substrate can be reduced in size and weight while maintaining the state of the exposure beam (exposure light) or the function of measuring the imaging characteristics of the projection optical system. Therefore, the control performance of these stages can be improved, the throughput of the exposure process can be improved, and a heat source such as a photoelectric sensor or a pump constituting the measuring device is separated from the exposure stage.
  • the overlay accuracy is improved.
  • the present invention is applied to a scanning exposure type exposure method such as a step 'and' scan method, the effect of the present invention is particularly large since the throughput is greatly improved by the improvement of the scanning speed.
  • the first stage when the second stage is movably arranged independently of the first stage, the first stage can be quickly moved to the measurement area.
  • the first stage When the first stage is moved between a position where the exposure beam is irradiated (exposure area) and a position where the exposure beam is not irradiated (non-exposure area), the first stage is quickly moved during measurement. You can evacuate.
  • the second stage When the second stage is moved between a position where the exposure beam is irradiated (exposure area) and a position where the exposure beam is not irradiated (non-exposure area), the second stage is quickly moved during the exposure. You can evacuate.
  • the two stages can be used efficiently.
  • the cooling device for cooling the measurement device since the cooling device for cooling the measurement device is provided, the state of the exposure beam, Alternatively, there is an advantage that the adverse effect of a rise in temperature when measuring the imaging characteristics of the projection optical system can be reduced, and positioning accuracy and overlay accuracy are improved.
  • the heat insulating member is provided between the two stages, the state of the exposure beam.
  • the adverse effect of a temperature rise when measuring the imaging characteristics of the projection optical system can be reduced, and positioning accuracy and overlay accuracy are improved.
  • the two stages can be driven integrally, while when the heat insulating member is a gas whose temperature is adjusted, the first stage can be downsized. The effect is also obtained.

Abstract

A wafer is put on a wafer stage which is placed on a surface plate transferably in an X-direction and a Y-direction. The pattern image of a reticle is exposed in an exposure region on the wafer and the reticle and the wafer are scanned in the Y-direction to perform exposure. A measurement stage is placed on the surface plate transferably in the X-direction and the Y-direction independently of the wafer stage. A space image detection system which includes a dose monitor, an illuminance unevenness sensor and a measurement plate in which a slit is formed is set up on the measurement stage. As the wafer stage may have only minimum functions necessary for exposure, the size and weight of the wafer stage can be reduced. With this constitution, the size of a stage for the alignment of a reticle or a wafer can be reduced while the function of measuring the state of an exposing light or image forming characteristics is maintained.

Description

明 細 書  Specification
露光装置および露光方法 技術分野 Exposure apparatus and exposure method
本発明は、 例えば半導体素子、 液晶表示素子、 又は薄膜磁気へッド等を製造 するためのリソグラフイエ程中で、 マスクパターンを感光性の基板上に転写す るために使用される露光装置および露光方法に関し、 特に露光ビームの状態、 又は結像特性等を計測するための計測装 gを備えた露光装置に使用して好適な ものである。  The present invention relates to an exposure apparatus used for transferring a mask pattern onto a photosensitive substrate during a lithographic process for producing, for example, a semiconductor device, a liquid crystal display device, or a thin-film magnetic head. The exposure method is particularly suitable for use in an exposure apparatus provided with a measuring device g for measuring the state of an exposure beam, an imaging characteristic, and the like.
背景技術 Background art
半導体素子等を製造する際に、 所定の露光光のもとでマスクとしてのレチク ルのパターンを投影光学系を介してレジストの塗布されたウェハ (又はガラス プレート等) 上に転写する工程で、 従来は一括露光型の投影露光装置 (ステツ パー) が多用されていた。 最近では、 投影光学系を大型化することなく大面稻 のレチクルのパターンを高精度に転写するために、 レチクル及びウェハを投影 光学系に対して同期走査して露光を行うステップ 'アンド 'スキャン方式のよ うな走査露光型の投影露光装置 (走査型露光装置) も注目されている。  In manufacturing semiconductor devices, etc., in a process of transferring a reticle pattern as a mask under a predetermined exposure light onto a wafer (or a glass plate or the like) coated with a resist through a projection optical system, In the past, a batch exposure type projection exposure apparatus (stepper) was often used. Recently, in order to transfer the pattern of a large-sized rice reticle with high precision without increasing the size of the projection optical system, the 'and' scan step in which exposure is performed by synchronously scanning the reticle and wafer with respect to the projection optical system Attention is also focused on scanning exposure type projection exposure apparatuses (scanning exposure apparatuses).
これらの露光装置では、 常に適正な露光量で、 且つ高い結像特性を維持した 状態で露光を行う必要があるため、 レチクルの位置決めを行うレチクルステー ジ、 又はウェハの位置決めを行うウェハステージには、 露光光の照度等の状態、 及び投影倍率等の結像特性を計測するための計測装置が備えられている。 例え ばウェハステージに備えられている計測装置としては、 投影光学系に対する露 光光の入射エネルギーを計測するための照射量モニタ、 及び投影像の位置ゃコ ントラス ト等を計測するための空間像検出系等がある。 一方、 レチクルステー ジ上に備えられている計測装置としては、 例えば投影光学系の結像特性計測用 に用いられる指標マークが形成された基準板がある。 In these exposure apparatuses, it is necessary to always perform exposure with an appropriate exposure amount and high image forming characteristics, so that a reticle stage for positioning the reticle or a wafer stage for positioning the wafer is required. There is provided a measuring device for measuring the state such as the illuminance of the exposure light and the imaging characteristics such as the projection magnification. For example, the measurement device provided on the wafer stage includes a radiation dose monitor for measuring the incident energy of the exposure light to the projection optical system, and the position of the projected image. There is an aerial image detection system for measuring contrast, etc. On the other hand, as a measuring device provided on the reticle stage, for example, there is a reference plate on which an index mark used for measuring the imaging characteristics of the projection optical system is formed.
上記の如き従来の露光装置においては、 レチクルステージ、 又はウェハステ —ジに設けられた計測装置を用いて、 露光量の適正化が図られると共に、 高い 結像特性が維持されていた。 これに対して、 最近の露光装置には、 半導体素子 等を製造する際の露光工程のスループット (生産性) を高めることも要求され ている。 スループッ トを向上させるための方法としては、 単位時問当たりの露 光エネルギーを増加させる方法の他に、 ステージの駆動速度を大きく して、 一 括露光型ではステツビング時問を短縮し、 走査露光型ではステッビング時問及 び走査露光時問を短縮する方法がある。  In the conventional exposure apparatus as described above, the exposure amount is optimized by using a measurement apparatus provided on a reticle stage or a wafer stage, and high imaging characteristics are maintained. On the other hand, recent exposure apparatuses are also required to increase the throughput (productivity) of the exposure step when manufacturing semiconductor elements and the like. In order to improve throughput, in addition to increasing the exposure energy per unit time, the stage drive speed is increased. For molds, there is a method to shorten the time of stepping and the time of scanning exposure.
このようにステージの駆動速度を向上させるには、 ステージ系が同じ大きさ である場合にはより大きい出力の駆動モータを使用すればよく、 逆に従来と同 じ出力の駆動モータで駆動速度を向上させるには、 ステージ系を小型化、 怪量 化する必要がある。 ところが、 前者のようにより大きい出力の駆動モータを使 用すると、 その駆動モータから発生する熱量が増大する。 このように増大する 熱量は、 ステージ系の微妙な熱変形を生じて、 露光装置で要求されている高い 位置決め精度が得られなくなる恐れがある。 そこで、 位置決め精度の劣化を防 止して、 駆動速度を向上するには、 後者のようにステージ系をできるだけ小型 化、 軽量化することが望まれる。  In order to improve the driving speed of the stage in this way, when the stage system has the same size, a driving motor with a larger output may be used, and conversely, a driving motor with the same output as the conventional one can reduce the driving speed. To improve it, it is necessary to reduce the size of the stage system and make it more suspicious. However, if a drive motor with a larger output is used as in the former case, the amount of heat generated from the drive motor increases. Such an increased amount of heat may cause delicate thermal deformation of the stage system, so that the high positioning accuracy required for the exposure apparatus may not be obtained. Therefore, in order to prevent the deterioration of positioning accuracy and increase the driving speed, it is desirable to make the stage system as small and light as possible as in the latter case.
特に、 走査露光型の露光装置では、 駆動速度の向上によって走査露光時問も 短縮されてスゾ! ^一ブッ 卜が大きく改善されると共に、 ステージ系の小型化によ つてレチクルとウェハとの同期精度も向上して、 結像性能や重ね合わせ精度も 向上するという大きな利点がある。 ところが、 従来のようにレチクルステージ、 又はウェハステージに各種計測装置が備えられている場合には、 ステージを小 型化するのは困難である。 In particular, in scanning exposure type exposure equipment, the scanning exposure time is shortened due to the improvement of the driving speed, and the scanning exposure time is reduced. In addition to greatly improving the size of the stage, the downsizing of the stage system also improves the synchronization accuracy between the reticle and the wafer, and has the major advantages of improving imaging performance and overlay accuracy. However, if various measuring devices are provided on the reticle stage or wafer stage as in the past, the stage must be small. It is difficult to type.
更に、 レチクルステージ、 又はウェハステージに露光光の状態、 又は結像特 性等を計測するための計測装置が備えられている場合、 その計測装置には通常 アンプ等の熱源が付属していると共に、 計測中に露光光の照射によってその計 測装置の温度が次第に上昇する。 その結果、 レチクルステージ、 又はウェハス テ一ジが微妙に熱変形して、 位置決め精度や重ね合わせ精度等が劣化する恐れ もある。 現状では、 計測装置の温度上昇による位置決め精度等の劣化は僅かな ものであるが、 今後、 半導体素子等の回路パターンが一層微細化するにつれて、 計測装置の温度上昇の影響を抑制する必要性が高まると予想される。  Furthermore, if the reticle stage or wafer stage is equipped with a measuring device to measure the state of the exposure light or the imaging characteristics, the measuring device usually includes a heat source such as an amplifier and However, during measurement, the temperature of the measuring device gradually increases due to exposure light exposure. As a result, the reticle stage or wafer stage may be slightly thermally deformed, and the positioning accuracy and the overlay accuracy may be degraded. At present, the deterioration of positioning accuracy and the like due to the temperature rise of the measuring device is slight, but in the future, as the circuit pattern of semiconductor elements etc. becomes finer, it is necessary to suppress the influence of the temperature rise of the measuring device. Expected to increase.
本発明は斯かる点に鑑み、 露光光の状態、 又は結像特性を計測する機能を維 持した状態で、 レチクル、 又はウェハを位置決めするためのステージを小型化 できる露光装置を提供することを第 1の目的とする。  In view of the above, the present invention provides an exposure apparatus capable of miniaturizing a stage for positioning a reticle or a wafer while maintaining a state of exposure light or a function of measuring an imaging characteristic. This is the first purpose.
更に本発明は、 露光光の状態、 又は結像特性を計測する計測装置を備えると 共に、 その計測装置を使用して計測する際の温度上昇の悪影響を蛏減できる露 光装置を提供することを第 2の目的とする。  Further, the present invention provides a light exposure device which includes a measurement device for measuring the state of exposure light or an imaging characteristic, and which can reduce an adverse effect of a rise in temperature when measuring using the measurement device. Is the second purpose.
本発明は斯かる点に鑑み、 露光光の状態、 又は結像特性を計測する機能を維 持した状態で、 レチクル、 又はウェハを位置決めするためのステージを小型化 できる露光方法を提供することを第 3の目的とする。  In view of the above, the present invention provides an exposure method capable of miniaturizing a stage for positioning a reticle or a wafer while maintaining a state of exposure light or a function of measuring imaging characteristics. The third purpose.
更に本発明は、 露光光の状態、 又は結像特性を計測する計測装置を備えると 共に、 その計測装置を使用して計測する際の温度上昇の悪影響を軽減できる露 光方法を提供することを第 4の目的とする。 発明の開示  Further, the present invention provides a light exposure method that includes a measurement device for measuring the state of exposure light or an imaging characteristic and that can reduce an adverse effect of a rise in temperature when performing measurement using the measurement device. The fourth purpose. Disclosure of the invention
本発明による第 1の露光装置は、 マスクに形成されたパターンを露光ビーム を用いて基板上に転写する露光装置において、 そのマスクとその基板との何れ か一方を保持して所定の領域を移動する第 1のステージと、 その第 1のステー ジとは独立した第 2のステージと、 この第 2のステージに取り付けられてその 露光ビームの状態を計測する計測装置と、 を備えたものである。 A first exposure apparatus according to the present invention is an exposure apparatus that transfers a pattern formed on a mask onto a substrate by using an exposure beam. A first stage that moves a predetermined area while holding one of them, a second stage that is independent of the first stage, and measures the state of the exposure beam that is attached to the second stage And a measuring device.
斯かる本発明によれば、 本来の露光に使用するその第 1のステージには露光 に必要な最小限の機能のみを持たせることによって、 その第 1のステージの大 きさは必要最小限にできるため、 ステージの小型化、 軽量化が可能になる。 一 方、 露光に直接必要がなく、 露光ビームの照度等の状態を計測する計測装置は、 別の第 2のステージに搭載されるため、 露光ビームの状態も計測できる。  According to the present invention, the size of the first stage is minimized by providing only the minimum function necessary for the exposure to the first stage used for the original exposure. The stage can be made smaller and lighter. On the other hand, since the measuring device that is not directly required for exposure and measures the state of the illuminance of the exposure beam and the like is mounted on another second stage, the state of the exposure beam can also be measured.
この場合、 その計測装置の一例は、 露光ビームの全体のパヮ一を計測する光 電センサ、 又はその露光ビームの照度分布を計測する照度むらセンサ等である。 また、 その第 2のステージは、 一例として例えばその第 1のステージの移動 面上で、 その第 1のステージとは独立に移動自在に配置されているものである。 このとき、 その第 1のステージの代わりにその第 2のステージを配置すること によって、 マスク、 又は基板が実際に配置される面の近傍での露光ビームの状 態が計測できる。  In this case, an example of the measuring device is a photoelectric sensor that measures the entire power of the exposure beam, an uneven illuminance sensor that measures the illuminance distribution of the exposure beam, or the like. Further, the second stage is, for example, arranged so as to be movable independently of the first stage, for example, on a moving surface of the first stage. At this time, by arranging the second stage in place of the first stage, the state of the exposure beam in the vicinity of the surface where the mask or the substrate is actually arranged can be measured.
また、 その露光ビームが照射される位置とその露光ビームが照射されなレ、位 置との間でその第 1のステージを移動させる制御装置を備えることが望ましい。 このとき、 計測時にはその第 1のステージが露光ビームの照射位置から待避さ れる。  Further, it is desirable to have a control device for moving the first stage between a position where the exposure beam is irradiated and a position where the exposure beam is not irradiated. At this time, at the time of measurement, the first stage is retracted from the irradiation position of the exposure beam.
また、 その露光ビームが照射される位置とその露光ビームが照射されない位 置との間でその第 2のステージを移動させる制御装置を備えることが望ましい。 これによつて、 計測時にはその第 2のステージの計測装置が露光ビームの照射 位置に移動する。  Further, it is desirable to have a control device for moving the second stage between a position where the exposure beam is irradiated and a position where the exposure beam is not irradiated. Thus, at the time of measurement, the measurement device of the second stage moves to the irradiation position of the exposure beam.
また、 その第 1のステージがその露光ビームを照射される位置に有るときに、 その第 2のステージをその露光ビームが照射されなレ、位置に位置決めする制御 装置を備えることが望ましい。 これによつて、 露光時、 及び計測時で 2つのス テージを効率的に使い分けられる。 In addition, when the first stage is at a position where the exposure beam is irradiated, control for positioning the second stage at a position where the exposure beam is not irradiated is performed. It is desirable to have a device. This allows the two stages to be used efficiently during exposure and measurement.
次に、 本発明による第 2の露光装置は、 マスクに形成されたパターンを投影 光学系を介して基板上に投影する露光装置において、 そのマスクと基板との何 れか一方を保持して所定の領域を移動する第 1のステージと、 その第 1のステ 一ジとは独立した第 2のステージと、 この第 2のステージ上に配置されてその 投影光学系の結像特性を計測する計測装置と、 を備えたものである。  Next, a second exposure apparatus according to the present invention is an exposure apparatus that projects a pattern formed on a mask onto a substrate via a projection optical system. A first stage that moves through an area of the first stage, a second stage that is independent of the first stage, and a measurement that is arranged on the second stage and measures the imaging characteristics of the projection optical system And a device.
斯かる本発明によれば、 その第 1のステージには露光に必要な最小限の機能 のみを持たせることによって、 その第 1のステージの小型化、 軽量化が可能に なる。 一方、 露光に直接必要がなく、 ディストーション等の結像特性を計測す る計測装置は、 別の第 2のステージに搭載されるため、 結像特性も計測できる。 この場合、 その計測装置の一例は、 投影像の位置センサ、 計測用指標マーク、 又は計測用基準面等である。  According to the present invention, it is possible to reduce the size and weight of the first stage by giving the first stage only the minimum functions necessary for exposure. On the other hand, since a measuring device that is not directly required for exposure and measures imaging characteristics such as distortion is mounted on another second stage, the imaging characteristics can also be measured. In this case, an example of the measuring device is a position sensor of a projected image, a measurement index mark, a measurement reference plane, or the like.
また、 その第 2のステージは、 一例として例えばその第 1のステージの移動 面上で、 その第 1のステージとは独立に移動自在に配置されているものである。 このとき、 その第 1のステージの代わりにその第 2のステージを配置すること によって、 その基板が実際に配置される面での結像特性が計測できる。  Further, the second stage is, for example, arranged so as to be movable independently of the first stage, for example, on a moving surface of the first stage. At this time, by arranging the second stage in place of the first stage, the imaging characteristics on the surface where the substrate is actually arranged can be measured.
また、 その第 1のステージではその基板を保持しており、 その投影光学系に よる露光領域内の位置と、 この露光領域の外側の所定の位置との間でその第 1 のステージを移動させる制御装置を備えることが望ましい。 このとき、 計測時 にはその第 1のステージが露光領域から待避される。  The first stage holds the substrate, and moves the first stage between a position within the exposure area by the projection optical system and a predetermined position outside the exposure area. It is desirable to have a control device. At this time, the first stage is retracted from the exposure area during measurement.
同様に、 その投影光学系による露光領域内の位置と、 この露光領域の外側の 所定の位置との間でその第 2のステージを移動させる制御装置を備えることが 望ましい。 このとき、 計測時にはその第 2のステージの計測装置が露光領域に 移動する。 次に、 本発明の第 3の露光装置は、 マスクに形成されたパターンを露光ビ一 ムを用いて基板上に転写する露光装置において、 その露光ビームの状態を計測 する計測装置が配置されたステージと、 このステージに備えられてその計測装 置を冷却する冷却装置と、 を有するものである。 Similarly, it is desirable to have a control device for moving the second stage between a position within the exposure area by the projection optical system and a predetermined position outside the exposure area. At this time, at the time of measurement, the measurement device of the second stage moves to the exposure area. Next, in a third exposure apparatus of the present invention, in the exposure apparatus for transferring a pattern formed on a mask onto a substrate using an exposure beam, a measurement apparatus for measuring a state of the exposure beam is provided. A stage, and a cooling device provided on the stage to cool the measuring device.
斯かる本発明によれば、 その計測装置を使用して露光ビームの照度等を計測 する際にその計測装置が温度上昇しても、 その冷却装置によって冷却されるた め、 露光部にはその温度上昇の影響が及ばない- 次に、 本発明の第 4の露光装置は、 マスクに形成されたパターンを投影光学 系を介して基板上に投影する露光装置において、 その投影光学系の結像特性を 計測する計測装置が配置されたステージと、 このステージに備えられてその計 測装置を冷却する冷却装置と、 を有するものである。  According to the present invention, even when the temperature of the measurement device rises when measuring the illuminance of the exposure beam using the measurement device, the measurement device is cooled by the cooling device. The fourth exposure apparatus of the present invention projects the pattern formed on the mask onto the substrate via the projection optical system. It has a stage on which a measuring device for measuring characteristics is arranged, and a cooling device provided on this stage for cooling the measuring device.
斯かる本発明によれば、 その計測装置を使用して結像特性を計測する際にそ の計測装置が温度上昇しても、 その冷却装置によって冷却されるため、 露光部 にはその温度上昇の影響が及ばない 3 According to the present invention, even when the temperature of the measurement device rises when measuring the imaging characteristics using the measurement device, the measurement device is cooled by the cooling device. impact of beyond 3
次に、 本発明の第 5の露光装置は、 マスクに形成されたパターンを露光ビ一 ムを用いて基板上に転写する露光装置において、 そのマスクとその基板との何 れか一方を保持して所定の領域を移動する第 1のステージと、 その露光ビーム の状態を計測する計測装置が搭載された第 2のステージと、 その第 1のステー ジとその第 2のステージとの間に配置され、 その第 2のステージから伝導する 熱を遮断する断熱部材と、 を備えたものである。  Next, a fifth exposure apparatus of the present invention is an exposure apparatus for transferring a pattern formed on a mask onto a substrate by using an exposure beam, wherein one of the mask and the substrate is held. A first stage that moves through a predetermined area, a second stage equipped with a measuring device that measures the state of the exposure beam, and an interposed space between the first stage and the second stage And a heat insulating member that blocks heat conducted from the second stage.
斯かる本発明によれば、 その計測装置が熱源を含んでいても、 又はその計測 装置を使用して露光ビームの照]^等を計測する際にその計測装置が温度上昇し ても、 その断熱部材によって熱伝導が阻害され、 露光部にはその熱源や温度上 昇の影響が及ばない。  According to the present invention, even if the measuring device includes a heat source, or the temperature of the measuring device increases when measuring the illumination of the exposure beam using the measuring device, Heat conduction is hindered by the heat insulating member, and the exposed area is not affected by the heat source or temperature rise.
この場合、 その断熱部材の一例は、 熱伝導率の低い固体材料、 又は温度調整 された気体である。 温度調整された気体としては、 空調されている気体等が使 用される。 In this case, one example of the heat insulating member is a solid material with low thermal conductivity or temperature control. Gas. Air-conditioned gas is used as the temperature-adjusted gas.
次に、 本発明の第 6の露光装置は、 マスクに形成されたパターンを投影光学 系を介して基板上に投影する露光装置において、 その基板を保持して所定の領 域を移動する第 1のステージと、 その投影光学系の結像特性を計測する計測装 置が搭載された第 2のステージと、 その第 1のステージとその第 2のステージ との間に配置され、 その第 2のステージから伝導する熱を遮断する断熱部村と、 を備えたものである。  Next, a sixth exposure apparatus of the present invention is directed to an exposure apparatus that projects a pattern formed on a mask onto a substrate via a projection optical system, wherein the first exposure apparatus holds the substrate and moves in a predetermined area. A second stage equipped with a measuring device for measuring the imaging characteristics of the projection optical system, and a second stage disposed between the first stage and the second stage. And a heat insulation section that blocks the heat conducted from the stage.
斯かる本発明によれば、 その計測装置を使用して結像特性を計測する際にそ の計測装置が温度上昇しても、 又はその計測装置が熱源を含んでいても、 その 断熱部材によつて熱伝導が阻害されるため、 露光部にはその温度上昇等の影響 が及ばない。  According to the present invention, even when the measurement device increases in temperature when measuring the imaging characteristics using the measurement device, or the measurement device includes a heat source, Therefore, the heat conduction is hindered, so that the exposed portion is not affected by the temperature rise or the like.
この場合も、 その断熱部材の一例は、 熱伝導率の低い固体材料、 又は温度調 整された気体である。  Also in this case, an example of the heat insulating member is a solid material having low thermal conductivity or a temperature-controlled gas.
本発明による第 1の露光方法は、 マスクに形成されたパターンを露光ビーム を用いて基板上に転写する露光方法において、 第 1のステージが、 そのマスク とその基板との何れか一方を保持して所定の領域を移動するステップと、 その 第 1のステージとは独立した第 2のステージに取り付けられた計測装置が、 そ の露光ビームの状態を計測するステップとを含むものである。  A first exposure method according to the present invention is an exposure method for transferring a pattern formed on a mask onto a substrate using an exposure beam, wherein the first stage holds one of the mask and the substrate. And moving a predetermined area, and a step of measuring the state of the exposure beam by a measuring device attached to a second stage independent of the first stage.
斯かる本発明によれば、 本来の露光に使用するその第 1のステージには露光 に必要な最小限の機能のみを持たせることによって、 その第 1のステージの大 きさは必要最小限にできるため、 ステージの小型化、 軽量化が可能になる。 一 方、 露光に直接必要がなく、 露光ビームの照度等の状態を計測する計測装置は、 別の第 2のステージに搭載されるため、 露光ビームの状態も計測できる。  According to the present invention, the size of the first stage is minimized by providing only the minimum function necessary for the exposure to the first stage used for the original exposure. The stage can be made smaller and lighter. On the other hand, since the measuring device that is not directly required for exposure and measures the state of the illuminance of the exposure beam and the like is mounted on another second stage, the state of the exposure beam can be measured.
この場合、 その計測装置の一例は、 露光ビームの全体のパワーを計測する光 電センサ、 又はその露光ビームの照度分布を計測する照度むらセンサ等である。 また、 その第 2のステージは、 一例として例えばその第 1のステージの移動 面上で、 その第 1のステージとは独立に移動自在に配置されているものである。 このとき、 その第 1のステージの代わりにその第 2のステージを配置すること によって、 マスク、 又は基板が実際に配置される面の近傍での露光ビームの状 態が計測できる。 In this case, an example of the measuring device is a light that measures the overall power of the exposure beam. An electric sensor or an uneven illuminance sensor that measures the illuminance distribution of the exposure beam. Further, the second stage is, for example, arranged so as to be movable independently of the first stage, for example, on a moving surface of the first stage. At this time, by arranging the second stage in place of the first stage, the state of the exposure beam in the vicinity of the surface where the mask or the substrate is actually arranged can be measured.
また、 その第 1のステージの移動は、 その露光ビームが照射される位置とそ の露光ビームが照射されない位置との問で行われることが望ましい。 このとき、 計測時にはその第 1のステージが露光ビームの照射位置から待避される。  Further, it is desirable that the movement of the first stage is performed depending on a position where the exposure beam is irradiated and a position where the exposure beam is not irradiated. At this time, at the time of measurement, the first stage is retracted from the irradiation position of the exposure beam.
また、 その第 2のステージが、 その露光ビームが照射される位置とその露光 ビームが照射されない位置との問で移動するステップとをさらに含むことが望 ましい。 これによつて、 計測時にはその第 2のステージの計測装置が露光ビー ムの照射位置に移動する。  It is also desirable that the second stage further includes a step of moving between a position where the exposure beam is irradiated and a position where the exposure beam is not irradiated. Thus, at the time of measurement, the measurement device of the second stage moves to the irradiation position of the exposure beam.
また、 その第 1のステージがその露光ビームを照射される位置に有るときに、 その第 2のステージをその露光ビームが照射されなレ、位置に位置決めするステ ップをさらに含むことが望ましい。 これによつて、 露光時、 及び計測時で 2つ のステージを効率的に使い分けられる。  Further, it is preferable that the method further includes a step of positioning the second stage at a position where the exposure beam is not irradiated when the first stage is at the position irradiated with the exposure beam. This allows the two stages to be used efficiently during exposure and measurement.
次に、 本発明による第 2の露光方法は、 マスクに形成されたパターンを投影 光学系を介して基板上に投影する露光方法において、 第 1のステージが、 その マスクとその基板との何れか一方を保持して所定の領域を移動するステップと、 その第 1のステージとは独立した第 2のステージ上に配置された計測装置が、 その投影光学系の結像特性を計測するステップとを含むものである。  Next, in a second exposure method according to the present invention, in the exposure method for projecting a pattern formed on a mask onto a substrate via a projection optical system, the first stage may include any one of the mask and the substrate. A step of moving a predetermined area while holding one of them, and a step of measuring an imaging characteristic of the projection optical system by a measuring device arranged on a second stage independent of the first stage. Including.
斯かる本発明によれば、 本来の露光に使用するその第 1のステージには露光 に必要な最小限の機能のみを持たせることによって、 その第 1のステージの小 型化、 軽量化が可能になる。 一方、 露光に直接必要がなく、 ディス トーション 等の結像特性を計測する計測装置は、 別の第 2のステージに搭載されるため、 結像特性も計測できる。 According to the present invention, it is possible to reduce the size and weight of the first stage by providing only the minimum functions necessary for the exposure to the first stage used for the original exposure. become. On the other hand, there is no need for direct exposure and distortion Since the measuring device for measuring the imaging characteristics such as is mounted on another second stage, the imaging characteristics can also be measured.
この場合、 その計測装置の一例は、 投影像の位置センサ、 計測用指標マーク、 又は計測用基準面等である。  In this case, an example of the measuring device is a position sensor of a projected image, a measurement index mark, a measurement reference plane, or the like.
また、 その第 2のステージは、 一例として例えばその第 1のステージの移動 面上で、 その第 1のステージとは独立に移動自在に配置されているものである。 このとき、 その第 1のステージの代わりにその第 2のステージを配置すること によって、 その基板が実際に配置される面での結像特性が計測できる。  Further, the second stage is, for example, arranged so as to be movable independently of the first stage, for example, on a moving surface of the first stage. At this time, by arranging the second stage in place of the first stage, the imaging characteristics on the surface where the substrate is actually arranged can be measured.
また、 その第 1のステージはその基板を保持しており、 その第 1のステージ の移動は、 その投影光学系による露光領域内の位置とこの露光領域の外側の所 定の位置との間で行われることが望ましい。 このとき、 計測時にはその第 1の ステージが露光領域から待避される。  The first stage holds the substrate, and the movement of the first stage moves between a position within the exposure area by the projection optical system and a predetermined position outside the exposure area. It is desirable that this be done. At this time, the first stage is retracted from the exposure area during measurement.
同様に、 その第 2のステージが、 その投影光学系による露光領域内の位置と この露光領域の外側の所定の位置との問で移動するステップとをさらに含むこ とが望ましい。 このとき、 計測時にはその第 2のステージの計測装置が露光領 域に移動する。  Similarly, it is preferable that the second stage further includes a step of moving the position between the position within the exposure area by the projection optical system and a predetermined position outside the exposure area. At this time, at the time of measurement, the measurement device of the second stage moves to the exposure area.
次に、 本発明の第 3の露光方法は、 マスクに形成されたパターンを露光ビー ムを用いて基板上に転写する露光方法において、 ステージに配置された計測装 置が、 その露光ビームの状態を計測するステップと、 このステージに備えられ た冷却装置が、 その計測装置を冷却するステップとを含むものである。  Next, in a third exposure method of the present invention, in the exposure method in which a pattern formed on a mask is transferred onto a substrate using an exposure beam, a measuring device disposed on a stage is provided with a state of the exposure beam. And a step of cooling the measuring device by a cooling device provided in the stage.
斯かる本発明によれば、 その計測装置を使用して露光ビームの照度等を計測 する際にその計測装置が温度上昇しても、 その冷却装置によつて冷却されるた め、 露光部にはその温度上昇の影響が及ばない。  According to the present invention, even when the temperature of the measurement device rises when measuring the illuminance of the exposure beam using the measurement device, the measurement device is cooled by the cooling device. Is not affected by the temperature rise.
次に、 本発明の第 4の露光方法は、 マスクに形成されたパターンを投影光学 系を介して基板上に投影する露光方法において、 ステージに配置された計測装 置が、 その投影光学系の結像特性を計測するステップと、 このステージに備え られた冷却装置が、 その計測装置を冷却するステップとを含むものである。 斯かる本発明によれば、 その計測装置を使用して結像特性を計測する際にそ の計測装置が温度上昇しても、 その冷却装置によって冷却されるため、 露光部 にはその温度上昇の影響が及ばない。 Next, a fourth exposure method of the present invention is directed to an exposure method for projecting a pattern formed on a mask onto a substrate via a projection optical system. The apparatus includes a step of measuring an imaging characteristic of the projection optical system, and a step of cooling the measurement apparatus by a cooling device provided on the stage. According to the present invention, even when the temperature of the measurement device rises when measuring the imaging characteristics using the measurement device, the measurement device is cooled by the cooling device. Is not affected.
次に、 本発明の第 5の露光方法は、 マスクに形成されたパターンを露光ビー ムを用いて基板上に転写する露光方法において、 第 1のステージが、 そのマス クとその基板との何れか一方を保持して所定の領域を移動するステップと、 第 2のステージに取り付けられた計測装置が、 その露光ビ一ムの状態を計測する ステップと、 その第 1のステージとその第 2のステージとの間に配置された断 熱部材により、 その第 2のステージから伝導する熱を遮断するステップとを含 むものである。  Next, in a fifth exposure method according to the present invention, in the exposure method for transferring a pattern formed on a mask onto a substrate using an exposure beam, the first stage may include any one of the mask and the substrate. Moving a predetermined area while holding one of them, a measuring device attached to a second stage measures a state of the exposure beam, and a step of measuring the state of the first stage and the second stage. Cutting off heat conducted from the second stage by a heat insulating member arranged between the stage and the stage.
斯かる本発明によれば、 その計測装置が熱源を含んでいても、 又はその計測 装置を使用して露光ビームの照度等を計測する際にその計測装置が温度上昇し ても、 その断熱部材によって熱伝導が阻害され、 露光部にはその熱源や温度上 昇の影響が及ばない。  According to the present invention, even when the measuring device includes a heat source, or when the temperature of the measuring device rises when measuring the illuminance or the like of the exposure beam using the measuring device, the heat insulating member is provided. As a result, heat conduction is hindered, and the exposed portion is not affected by the heat source or temperature rise.
この場合、 その断熱部材の一例は、 熱伝導率の低い固体材料、 又は温度調整 された気体である。 温度調整された気体としては、 空調されている気体等が使 用される。  In this case, an example of the heat insulating member is a solid material having low thermal conductivity or a gas whose temperature is adjusted. Air-conditioned gas is used as the temperature-adjusted gas.
次に、 本発明の第 6の露光方法は、 マスクに形成されたパタ一ンを投影光学 系を介して基板上に投影する露光方法において、 第 1のステージが、 その基板 を保持して所定の領域を移動するステップと、 第 2のステージに搭載された計 測装置が、 その投影光学系の結像特性を計測するステップと、 その第 1のステ —ジとその第 2のステージとの間に配置された断熱部材により、 その第 2のス テージから伝導する熱を遮断するステップとを含むものである c 斯かる本発明によれば、 その計測装置を使用して結像特性を計測する際にそ の計測装置が温度上昇しても、 又はその計測装置が熱源を含んでいても、 その 断熱部材によって熱伝導が阻害されるため、 露光部にはその温度上昇等の影響 が及ばない。 Next, in a sixth exposure method according to the present invention, in the exposure method for projecting a pattern formed on a mask onto a substrate via a projection optical system, the first stage holds the substrate and performs a predetermined operation. Moving the area of the projection optical system, measuring the imaging characteristics of the projection optical system with the measuring device mounted on the second stage, and connecting the first stage with the second stage. the arrangement adiabatic member between, is intended to include a step of interrupting the heat conducted from the second stages c According to the present invention, even when the measurement device rises in temperature when measuring the imaging characteristics using the measurement device, or even when the measurement device includes a heat source, the heat insulating member is used. Since heat conduction is hindered, the exposed portion is not affected by the temperature rise or the like.
この場合も、 その断熱部材の一例は、 熱伝導率の低い固体材料、 又は温度調 整された気体である。 図面の簡単な説明  Also in this case, an example of the heat insulating member is a solid material having low thermal conductivity or a temperature-controlled gas. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施の形態の投影露光装置を示す概略構成図であ る。  FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus according to a first embodiment of the present invention.
第 2図は、 第 1図のレチクルステージ R S T、 及び計測用ステージ 5を示す 平面図である。  FIG. 2 is a plan view showing reticle stage R ST and measurement stage 5 of FIG.
第 3図は、 第 1図のウェハステージ W S T、 及び計測用ステージ 1 4を示す 平面図である。  FIG. 3 is a plan view showing the wafer stage WST and the measurement stage 14 of FIG.
第 4図は、 本発明の第 1の実施の形態において、 計測用ステージ 1 4を用い て露光光の状態等を計測する場合の説明に供する平面図である。  FIG. 4 is a plan view for describing a case where the state of exposure light or the like is measured using the measurement stage 14 in the first embodiment of the present invention.
第 5図は、 本発明の第 2の実施の形態の投影露光装置のウェハステージ、 及 び計測用ステージを示す平面図である。  FIG. 5 is a plan view showing a wafer stage and a measurement stage of a projection exposure apparatus according to a second embodiment of the present invention.
第 6図は、 本発明の第 2の実施の形態の投影露光装置のウェハステージ、 及 び計測用ステージを示す正面図である。  FIG. 6 is a front view showing a wafer stage and a measurement stage of a projection exposure apparatus according to a second embodiment of the present invention.
第 7図は、 本発明の第 3の実施の形態の投影露光装置を示す一部を切り欠い た概略構成図である。  FIG. 7 is a schematic configuration diagram with a part cut away showing a projection exposure apparatus according to a third embodiment of the present invention.
第 8図は、 第 7図の投影露光装置のウェハステージを示す平面図である。 第 9図は、 本発明の第 4の実施の形態の投影露光装置のウェハステージを示 す平面図である。 発明を実施するための最良の形態 FIG. 8 is a plan view showing a wafer stage of the projection exposure apparatus of FIG. FIG. 9 is a plan view showing a wafer stage of a projection exposure apparatus according to a fourth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の第 1の実施の形態につき第 1図乃至第 4図を参照して説明す る。  Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 to 4.
第 1図は本例で使用されるステップ 'アンド ' スキャン方式の投影露光装置 を示し、 この第 1図において露光時には、 露光光源、 ビーム整形光学系、 照度 分布均一化用のフライアイレンズ、 光量モニタ、 可変開口絞り、 視野絞り、 及 びリ レ一レンズ系等を含む照明系 1から射出された露光光 I Lは、 ミラ一 2、 及びコンデンサレンズ 3を介してレチクル Rのパターン面 (下面) のスリ ッ ト 状の照明領域を照明する。 露光光 I Lとしては、 K r F (波長 2 4 8 n m)、 若しくは A r F (波長 1 9 3 n m) 等のエキシマレ一ザ光、 Y A Gレ一ザの高 調波、 又は水銀ランプの i線 (波長 3 6 5 n m) 等が使用できる。 照明系 1内 の可変開口絞りを切り換えることによって、 通常の照明方法、 輪帯照明、 いわ ゆる変形照明、 及び小さいコヒーレンスファクタ (σ値) の照明等の内の所望 の照明方法を選択できるように構成されている。 露光光源がレーザ光源である 場合には、 その発光タイミング等は装置全体の動作を統轄制御する主制御系 1 0が、 不図示のレーザ電源を介して制御する。  Fig. 1 shows the projection exposure apparatus of the step 'and' scan method used in this example. In Fig. 1, the exposure light source, beam shaping optical system, fly-eye lens for uniformizing the illuminance distribution, and light intensity The exposure light IL emitted from the illumination system 1 including the monitor, the variable aperture stop, the field stop, and the relay lens system passes through the mirror 1 and the condenser lens 3, and the pattern surface of the reticle R (lower surface). This illuminates the slit-shaped illumination area. The exposure light IL is excimer laser light such as KrF (wavelength 248 nm) or ArF (wavelength 193 nm), harmonics of a YAG laser, or i-line of a mercury lamp. (Wavelength 365 nm) can be used. By switching the variable aperture stop in the illumination system 1, it is possible to select a desired illumination method from among ordinary illumination, annular illumination, so-called deformed illumination, and illumination with a small coherence factor (σ value). It is configured. When the exposure light source is a laser light source, the light emission timing and the like are controlled via a laser power supply (not shown) by a main control system 10 that controls the overall operation of the apparatus.
レチクル Rのその露光光 I Lによる照明領域 9 (第 2図参照) 内のパターン の像は、 投影光学系 P Lを介して投影倍率 |3 ( ]3は、 1 Z 4倍、 又は 1ノ5倍 等) で縮小されて、 フォ トレジス トが塗布されたウェハ W上のスリ ッ ト状の露 光領域 1 2に投影される。 以下、 投影光学系 P Lの光軸 Α Χに平行に Ζ軸を取 り、 Ζ軸に垂直な平面内で走査露光時のレチクル R及びウェハ Wの走査方向に 直交する非走査方向 (即ち、 第 1図の紙面に垂直な方向) に沿って X軸を取り、 走査方向 (即ち、 第 1図の紙面に平行な方向) に沿って Υ軸を取って説明する。 先ず、 ウェハ Wのァライメン ト用のオフ ' ァクシス方式で画像処理方式のァ ライメントセンサ 1 6が投影光学系 P Lに隣接して設けられており、 ァライメ ントセンサ 1 6の検出信号が主制御系 1 0内のァライメント処理系に供給され ている。 ァライメントセンサ 1 6は、 ウェハ W上に形成されている位置合わせ 用のマーク (ウェハマーク) 等の位置検出を行うために使用される。 ァライメ ントセンサ 1 6の検出中心と投影光学系 P Lによるレチクル Rの投影像の中心 との間隔 (ベースライン量) は予め高精度に求められて、 主制御系 1 0内のァ ライメント処理系に記憶されており、 ァライメントセンサ 1 6の検出結果、 及 びそのベースライン量よりウェハ Wの各ショッ ト領域とレチクル Rの投影像と が高精度に重ね合わせられる。 不図示であるが、 レチクル Rの上方にはレチク ノレ R上のァライメントマークを検出するためのレチクルァライメント顕微鏡が 配置されている。 The image of the pattern in the illuminated area 9 (see Fig. 2) of the reticle R by the exposure light IL is projected through the projection optical system PL at a projection magnification of | 3 (] 3 is 1 × 4 or 1 × 5 , Etc.) and projected onto a slit-like exposed area 12 on the wafer W coated with the photo resist. Hereinafter, the Ζ axis is taken in parallel with the optical axis Α の of the projection optical system PL, and the non-scanning direction (that is, the The X axis is taken along the direction perpendicular to the plane of FIG. 1 and the Υ axis is taken along the scanning direction (that is, the direction parallel to the plane of FIG. 1). First, an off-axis system for wafer W alignment and an image processing system An alignment sensor 16 is provided adjacent to the projection optical system PL, and a detection signal of the alignment sensor 16 is supplied to an alignment processing system in the main control system 10. The alignment sensor 16 is used to detect the position of a positioning mark (wafer mark) formed on the wafer W. The distance (baseline amount) between the detection center of the alignment sensor 16 and the center of the projected image of the reticle R by the projection optical system PL is obtained with high precision in advance and stored in the alignment processing system in the main control system 10. The shot area of the wafer W and the projected image of the reticle R are superimposed on the basis of the detection result of the alignment sensor 16 and the baseline amount thereof with high accuracy. Although not shown, a reticle alignment microscope for detecting an alignment mark on the reticle R is disposed above the reticle R.
次に、 レチクル Rは、 レチクルステージ R S T上に真空吸着によって保持さ れ、 レチクルステージ R S Tは、 Y方向に平行に配置された 2本のガイ ド 4 A 及び 4 B上にエア一ベアリングを介して Y方向に移動自在に載置されている。 更に本例では、 ガイ ド 4 A及び 4 B上に、 レチクルステージ R S Tとは独立に エアーベアリングを介して Y方向に移動自在に計測用ステージ 5が載置されて いる。  Next, reticle R is held on reticle stage RST by vacuum suction, and reticle stage RST is placed on two guides 4 A and 4 B arranged in parallel in the Y direction via an air bearing. It is mounted movably in the Y direction. Further, in this example, the measurement stage 5 is mounted on the guides 4A and 4B so as to be movable in the Y direction via an air bearing independently of the reticle stage RST.
第 2図は、 レチクルステージ R S T及び計測用ステージ 5を示す平面図であ り、 この第 2図において、 Y方向 (走査方向) に伸びたガイ ド 4 A及び 4 Bに 沿って、 それぞれ不図示のリニアモータ等によって Y方向に駆動されるように レチクルステージ R S T、 及び計測用ステージ 5が載置されている。 ガイ ド 4 A, 4 Bの長さは、 走查露光時のレチクルステージ R S Tの移動ス トロークよ りも、 少なくとも計測用ステージ 5の蝠分だけ長く設定されている。 また、 レ チクルステージ R S Tは、 Y方向に移動する粗動ステージと、 この粗動ステー ジ上で 2次元的な位置が微調整できる微動ステージとを組み合わせて構成され ている。 FIG. 2 is a plan view showing the reticle stage RST and the measurement stage 5, which are not shown along the guides 4A and 4B extending in the Y direction (scanning direction). A reticle stage RST and a measurement stage 5 are mounted so as to be driven in the Y direction by a linear motor or the like. The lengths of the guides 4 A and 4 B are set to be at least longer than the moving stroke of the reticle stage RST at the time of the running exposure by at least the length of the measuring stage 5. The reticle stage RST is configured by combining a coarse movement stage that moves in the Y direction and a fine movement stage that allows fine adjustment of the two-dimensional position on the coarse movement stage. ing.
そして、 計測用ステージ 5上に X方向に細長いガラス板よりなる基準板 6が 固定され、 基準板 6上に投影光学系 P Lの結像特性計測用の複数の指標マーク I Mが所定の配置で形成されている。 基準板 6は、 レチクル Rに対する露光光 のスリット状の照明領域 9、 より正確には投影光学系 P Lのレチクル R側の視 野を覆うことができるだけの大きさを備えている。 基準板 6を使用することで、 結像特性計測用の専用レチクルを用意しておく必要がなく、 且つ、 実露光用の レチクル Rとその専用レチクルとの交換時問も不要となるため、 結像特性を高 頻度に計測でき、 投影光学系 P Lの経時変化に正確に追従することができる。 このように本例では、 基準板 6用の計測用ステージ 5が独立に設けられ、 本 来のレチクルステージ R S T上には、 レチクル Rの他に計測用の部材は搭載さ れていない。 即ち、 レチクルステージ R S Tは、 走査露光のために必要最小限 の走査、 及び位置決め機能のみを備えればよいため、 レチクルステージ R S T の小型化、 軽量化が実現されている。 従って、 レチクルステージ R S Tをより 高速に走査できるため、 露光工程のスループッ トが向上する。 特に縮小投影の 場合には、 レチクルステージ R S Tの走查速度はウェハステージの走查速度の ΐ Ζ β倍 (例えば 4倍、 5倍等) になるため、 走査速度の上限はレチクルステ ージでほぼ決定されることがあり、 この場合には本例では特にスループッ トが 大きく向上する。  A reference plate 6 made of a glass plate elongated in the X direction is fixed on the measurement stage 5, and a plurality of index marks IM for measuring the imaging characteristics of the projection optical system PL are formed on the reference plate 6 in a predetermined arrangement. Have been. The reference plate 6 is large enough to cover the slit-shaped illumination area 9 of the exposure light for the reticle R, more precisely, the field of view of the projection optical system PL on the reticle R side. By using the reference plate 6, there is no need to prepare a dedicated reticle for measuring the imaging characteristics, and it is not necessary to replace the reticle R for actual exposure with the dedicated reticle. The image characteristics can be measured with high frequency, and it can accurately follow the temporal change of the projection optical system PL. Thus, in this example, the measurement stage 5 for the reference plate 6 is provided independently, and no measurement member other than the reticle R is mounted on the original reticle stage R ST. In other words, the reticle stage R ST need only have the minimum scanning and positioning functions required for scanning exposure, and thus the reticle stage R ST has been reduced in size and weight. Therefore, the reticle stage RST can be scanned at higher speed, so that the throughput of the exposure step is improved. In particular, in the case of reduced projection, the running speed of the reticle stage RST is Ζ β times the running speed of the wafer stage (for example, 4 times, 5 times, etc.), and the upper limit of the scanning speed is almost the same in the reticle stage. In some cases, the throughput is greatly improved in this example.
また、 ガイ ド 4 Α, 4 Βに対して + Υ方向に設置されたレーザ干渉計 7 Υか らレチクルステ一ジ R S Τの + Υ方向の側面の移動鏡にレ一ザビームが照射さ れ、 + Χ方向に設置された 2軸のレーザ干渉計 7 X 1, 7 X 2からレチクルス テ一ジ R S Τの + X方向の側面の移動鏡にレーザビームが照射され、 レーザ干 渉計 7 Υ, 7 X 1 , 7 Χ 2によってレチクルステージ R S Tの X座標、 Υ座標、 及び回転角が計測され、 計測値が第 1図の主制御系 1 0に供給され、 主制御系 1 0はその計測値に基づいてリニァモータ等を介してレチクルステージ R S T の速度や位置を制御する。 また、 ガイ ド 4 A, 4 Bに対して一 Y方向に設置さ れたレーザ干渉計 8 Yから計測用ステージ 5の一 Y方向の側面の移動鏡にレ一 ザビームが照射され、 レ一ザ干渉計 8 Yによって計測される計測用ステージ 5 の Y座標が主制御系 1 0に供給されている。 Y軸のレ一ザ干渉計 7 Y及び 8 Y の光軸は、 それぞれ Y方向に沿って照明領域 9の中心、 即ち投影光学系 P Lの 光軸 A Xを通過しており、 レーザ干渉計 7 Y及び 8 Yは、 それぞれ常時レチク ルステージ R S T及び計測用ステージ 5の走査方向の位置を計測している。 そして、 結像特性の計測時に、 レチクルステージ R S Tを + Y方向に待避さ せて、 基準板 6が照明領域 9を覆うように計測用ステージ 5を Y方向に移動す ると、 レーザ干渉計 7 X 1, 7 X 2からのレーザビームがレチクルステージ R S Tの側面から外れて計測用ステージ 5の + X方向の側面の移動鏡に照射され るようになる。 このときにレーザ干渉計 8 Y及び 7 X 1, 7 X 2力、ら得られる 計測値に基づいて、 主制御系 1 0はリユアモータ等を介して計測用ステージ 5 の位置を高精度に制御する。 なお、 この際に基準板 6を照明領域 9に対してよ り高精度に位置合わせしたい場合には、 基準板 6上にァライメントマークを形 成しておき、 このマークの位置をレチクルァライメント顕微鏡を用いて検出す ればよい。 In addition, a laser beam is emitted from a laser interferometer 7 設置 installed in the + Υ direction to the guides 4 Α and 4 に to a movable mirror on the + Υ direction side of the reticle stage RS 、, The laser beam is irradiated from the two-axis laser interferometers 7 X 1 and 7 X 2 installed in the Χ direction to the moving mirror on the + X direction side of the reticle stage RS 、, and the laser interferometers 7 Υ and 7 The X coordinate, Χ coordinate, and rotation angle of reticle stage RST are measured by X 1, 7 7 2, and the measured values are supplied to main control system 10 in FIG. 10 controls the speed and position of the reticle stage RST via a linear motor or the like based on the measured value. In addition, a laser beam is emitted from a laser interferometer 8Y installed in one Y direction to the guides 4A and 4B to a movable mirror on one side in the Y direction of the measurement stage 5, and the laser beam is irradiated. The Y coordinate of the measurement stage 5 measured by the interferometer 8 Y is supplied to the main control system 10. The optical axes of the laser interferometers 7 Y and 8 Y on the Y axis respectively pass through the center of the illumination area 9, that is, the optical axis AX of the projection optical system PL along the Y direction. And 8Y constantly measure the positions of the reticle stage RST and the measurement stage 5 in the scanning direction, respectively. When measuring the imaging characteristics, the reticle stage RST is retracted in the + Y direction, and the measurement stage 5 is moved in the Y direction so that the reference plate 6 covers the illumination area 9. The laser beams from X 1, 7 X 2 deviate from the side surface of reticle stage RST and irradiate the movable mirror on the + X direction side surface of measurement stage 5. At this time, the main control system 10 controls the position of the measurement stage 5 with high precision via a reversing motor, etc., based on the measured values obtained from the laser interferometers 8Y and 7X1, 7X2. . In this case, if it is desired to align the reference plate 6 with respect to the illumination area 9 with higher accuracy, an alignment mark is formed on the reference plate 6 and the position of this mark is determined by a reticle alignment. What is necessary is just to detect using a microscope.
一方、 計測中には、 レチクルステージ R S Tの非走査方向の位置は計測され ないが、 露光のためにレチクルステージ R S Tが照明領域 9下に達すれば、 再 びレーザ干渉計 7 X 1, 7 X 2からのレーザビームがレチクルステージ R S T の移動鏡に照射されるようになる。 そして、 最終的な位置合わせはレチクルァ ライメント顕微鏡を用いて行われるため、 レーザ干渉計 7 X 1, 7 X 2からの レーザビームが途切れることの不都合は無い- 第 1図に戻り、 ウェハ Wは不図示のウェハホルダを介してウェハステージ W S T上に保持され、 ウェハステージ W S Tは定盤 1 3上にエアーベアリングを 介して X方向、 Υ方向に移動自在に載置されている。 ウェハステージ W S丁に は、 ウェハ Wの Ζ方向の位置 (フォーカス位置)、 及び傾斜角を制御するフォ 一カス . レべリング機構も組み込まれている。 また、 定盤 1 3上にウェハステ —ジ W S Τとは別体でエア一ベアリングを介して X方向、 Υ方向に移動自在に 各種の計測装置が備えられた計測用ステージ 1 4が載置されている。 計測用ス テージ 1 4にも、 その上面のフォーカス位置を制御する機構が組み込まれてい cJ。 On the other hand, during measurement, the position of reticle stage RST in the non-scanning direction is not measured. However, if reticle stage RST reaches below illumination area 9 for exposure, laser interferometers 7 X 1 and 7 X 2 From the reticle stage RST. Since the final alignment is performed using a reticle alignment microscope, there is no inconvenience that the laser beams from the laser interferometers 7X1 and 7X2 are interrupted. Wafer stage W via the wafer holder shown The wafer stage WST is held on the ST, and is mounted on the surface plate 13 via an air bearing so as to be movable in the X and Υ directions. The wafer stage WS also incorporates a focus / leveling mechanism for controlling the position (focus position) of the wafer W in the vertical direction and the tilt angle. In addition, a measurement stage 14 equipped with various measurement devices is mounted on the surface plate 13 separately from the wafer stage WS に through an air bearing so as to be movable in the X and Υ directions. ing. The stage 14 for measurement also has a built-in mechanism to control the focus position on its upper surface.
第 3図は、 ウェハステージ W S T、 及び計測用ステージ 1 4を示す平面図で あり、 この第 3図において、 定盤 1 3の表面の内部には例えば所定の配列でコ ィル列が埋め込まれ、 ウェハステージ W S Tの底面、 及び計測用ステージ 1 4 の底面にはそれぞれヨークと共に磁石列が埋め込まれ、 そのコイル列、 及び対 応する磁石列によつてそれぞれ平面モータが構成され、 この平面モータによつ てウェハステージ W S T、 及び計測用ステージ 1 4の X方向、 Y方向の位置、 及び回転角が互いに独立に制御されている。 なお、 平面モータについては、 例 えば特開平 8— 5 1 7 5 6号公報においてより詳細に開示されている。  FIG. 3 is a plan view showing the wafer stage WST and the measurement stage 14. In FIG. 3, for example, a coil row is embedded in a predetermined arrangement inside the surface of the surface plate 13. On the bottom surface of the wafer stage WST and the bottom surface of the measurement stage 14, a magnet row is embedded together with a yoke, and the coil row and the corresponding magnet row constitute a planar motor, respectively. Therefore, the positions of the wafer stage WST and the measurement stage 14 in the X and Y directions and the rotation angle are controlled independently of each other. The flat motor is disclosed in more detail in, for example, Japanese Patent Application Laid-Open No. 8-51756.
本例のウェハステージ W S Tは、 露光に必要な最小限の機能のみを備えてい る。 即ち、 ウェハステージ W S Tは、 フォーカス ' レべリング機構を備えると 共に、 ウェハステージ W S T上には、 ウェハ Wを吸着保持するウェハホルダ(ゥ ェハ Wの底面側) と、 ウェハステージ W S Tの位置計測用の基準マ一ク板 1 7 との 2つの部材が固定されている。 基準マーク板 1 7上には、 X方向、 及び Y 方向の位置基準となる基準マーク (不図示) が形成されており、 この基準マ一 クの位置をァライメントセンサ 1 6で検出することによって、 ウェハステージ W S T (ウェハ W) の例えばレチクル Rの投影像に対する位置関係が検出され る 2 また、 計測用ステージ 1 4の表面は、 ウェハステージ W S T上のウェハ Wの 表面とほぼ同じ高さに設定されている。 そして、 計測用ステージ 1 4には、 投 影光学系 P Lを通過した露光光の全部の単位時間当たりのエネルギー (入射ェ ネルギー) を計測するための光電センサよりなる照射量モニタ 1 8、 投影光学 系 P Lによるスリツト状の露光領域 1 2内での照度分布を計測するための光電 センサよりなる照度むらセンサ 1 9、 及び結像特性測定用のスリット 2 1 X, 2 1 Yが形成された測定板 2 0が固定されている。 測定板 2 0の X軸のスリッ ト 2 1 X、 及び Y軸のスリッ ト 2 1 Yの底面側にはそれぞれ集光レンズ、 及び 光電センサが配置され、 測定板 2 0、 及び光電センサ等より空問像検出系が構 成されている。 なお、 そのスリ ッ ト 2 I X , 2 1 Yの代わりに、 矩形開口のェ ッジを使用してもよい。 そして、 照射量モニタ 1 8の受光面は、 露光領域 1 2 を覆う大きさに形成されると共に、 照度むらセンサ 1 9の受光部はピンホール 状となっており、 照射量モニタ 1 8及び照度むらセンサ 1 9の検出信号は第 1 図の主制御系 1 0に供給されている。 The wafer stage WST of this example has only the minimum functions required for exposure. In other words, the wafer stage WST has a focus and leveling mechanism, and a wafer holder (bottom side of wafer W) that holds the wafer W by suction and a position measurement of the wafer stage WST on the wafer stage WST. The reference mark plate 17 and the two members are fixed. A reference mark (not shown) serving as a position reference in the X direction and the Y direction is formed on the reference mark plate 17, and the position of the reference mark is detected by the alignment sensor 16. , the wafer stage WST 2 the positional relationship relative to the projection image, for example, reticle R (the wafer W) is discovered Further, the surface of measurement stage 14 is set at substantially the same height as the surface of wafer W on wafer stage WST. The measurement stage 14 has an irradiation amount monitor 18 composed of a photoelectric sensor for measuring the total energy per unit time (incident energy) of the exposure light that has passed through the projection optical system PL. System Irradiance unevenness sensor 19 consisting of photoelectric sensors for measuring the illuminance distribution in the slit-like exposure area 12 by the PL, and slits 21 X and 21 Y for measuring the imaging characteristics were measured. Plate 20 is fixed. On the bottom side of the X-axis slit 21 X and the Y-axis slit 21 Y of the measurement plate 20, a condenser lens and a photoelectric sensor are arranged, respectively, from the measurement plate 20 and the photoelectric sensor. An aerial image detection system is configured. Note that instead of the slits 2IX and 21Y, a rectangular opening edge may be used. The light receiving surface of the irradiation amount monitor 18 is formed to have a size to cover the exposure area 12, and the light receiving portion of the uneven illuminance sensor 19 has a pinhole shape. The detection signal of the unevenness sensor 19 is supplied to the main control system 10 shown in FIG.
また、 測定板 2 0の底部の光電センサの検出信号は第 1図の結像特性演算系 1 1に供給されている。 この場合、 投影光学系 P Lの結像特性の計測時には、 第 2図のレチクル側の計測用ステージ 5上の基準板 6が照明領域 9に移動され、 基準板 6に形成されている指標マーク I Mの像がウェハステージ側に投影され、 その像を計測板 2 0上のスリ ッ ト 2 1 X, 2 1 Yでそれぞれ X方向、 Y方向に 走査しつつ、 底部の光電センサからの検出信号を結像特性演算系 1 1で取り込 む。 結像特性演算系 1 1では、 その検出信号を処理してその指標マーク I Mの 像の位置、 及びコントラスト等を検出し、 この検出結果より投影像の像面湾曲、 デイストーシヨン、 べス トフォ一カス位置等の結像特性を求めて主制御系 1 0 に出力する。 更に、 不図示であるが、 投影光学系 P L内の所定のレンズを駆動 して所定のデイスト一シヨン等の結像特性を補正する機構も設けられており、 主制御系 1 0はこの補正機構を介して投影光学系 P Lの結像特性を補正できる ように†»成されている。 The detection signal of the photoelectric sensor at the bottom of the measurement plate 20 is supplied to the imaging characteristic calculation system 11 in FIG. In this case, when measuring the imaging characteristics of the projection optical system PL, the reference plate 6 on the measurement stage 5 on the reticle side in FIG. 2 is moved to the illumination area 9 and the index mark IM formed on the reference plate 6 is measured. Is projected on the wafer stage side, and the images are scanned in the X and Y directions by slits 21X and 21Y on the measurement plate 20, respectively, and the detection signal from the photoelectric sensor at the bottom is scanned. Captured by the imaging characteristics calculation system 1 1. The imaging characteristic calculation system 11 processes the detection signal to detect the position, contrast, etc. of the image of the index mark IM, and from this detection result, the curvature of field of the projected image, distortion, and best focus. An image forming characteristic such as one spot position is obtained and output to the main control system 10. Further, although not shown, a mechanism for driving a predetermined lens in the projection optical system PL to correct an imaging characteristic such as a predetermined disposition is also provided. The main control system 10 is configured to correct the imaging characteristics of the projection optical system PL via this correction mechanism.
第 3図において、 計測用ステージ 1 4に備えられている照射量モニタ 1 8、 照度むらセンサ 1 9、 及び測定板 20の底部の光電センサ等のセンサには、 何 れもアンプ等の発熱源、 及び電源や通信用の信号ケーブルが接続されている。 従って、 それらのセンサが露光用のウェハステージ WS Tに搭載されていると、 センサに付随する熱源や信号ケーブルの張力によって位置決め精度等が劣化す る恐れがある。 また、 結像特性等の計測中の露光光の照射による熱エネルギー も位置決め精度の悪化等を招く恐れがある。 これに対して本例では、 それらの センサが露光用のウェハステージ WSTから分離された計測用ステージ 1 4に 設けられているため、 ウェハステージ WS Tを小型化、 軽量化できると共に、 計測用のセンサの熱源や計測中の露光光の熱エネルギーによる位置決め精度の 低下が防止できる利点がある。 ウェハステージ WS Tの小型化によって、 ゥェ ハステージ WS Tの移動速度や制御性が向上し、 露光工程のスループッ 卜が高 まると共に、 位置決め精度等がより向上する- また、 定盤 1 3に対して + Y方向に設置されたレーザ干渉計 1 5 Yからゥェ ハステージ WS Tの + Y方向の側面の移動鏡にレーザビームが照射され、 一X 方向に設置された 2軸のレーザ干渉計 1 5X 1, 1 5X 2からウェハステージ WS Tの一 X方向の側面の移動鏡にレ一ザビームが照射され、 レーザ干渉計 1 5 Y, 1 5 X 1 , 1 5 X 2によってウェハステージ WS Tの X座標、 Y座標、 及び回転角が計測され、 計測値が第 1図の主制御系 1 0に供給され、 主制御系 1 0はその計測値に基づいて平面モータを介してウェハステージ WS Tの速度 や位置を制御する。 また、 露光光の入射エネルギー等の計測時には、 それらの 位置計測用のレーザビームは計測用ステージ 14の移動鏡に照射される。  In FIG. 3, sensors such as an irradiation amount monitor 18 provided on the measurement stage 14, an uneven illuminance sensor 19, and a photoelectric sensor at the bottom of the measurement plate 20 are all provided with a heat source such as an amplifier. , And power and communication signal cables are connected. Therefore, if those sensors are mounted on the wafer stage WST for exposure, the positioning accuracy and the like may be deteriorated due to the heat source and the tension of the signal cable attached to the sensors. In addition, thermal energy due to exposure light exposure during measurement of imaging characteristics and the like may cause deterioration of positioning accuracy and the like. On the other hand, in this example, since those sensors are provided on the measurement stage 14 separated from the exposure wafer stage WST, the wafer stage WST can be reduced in size and weight, and the measurement stage 14 There is an advantage that a decrease in positioning accuracy due to a heat source of the sensor or heat energy of exposure light during measurement can be prevented. The downsizing of the wafer stage WST improves the moving speed and controllability of the wafer stage WST, increasing the throughput of the exposure process and improving the positioning accuracy, etc. A laser beam is irradiated from the laser interferometer 15 Y installed in the + Y direction to the moving mirror on the + Y direction side of the wafer stage WST, and the two-axis laser interference installed in the 1X direction A laser beam is radiated from a total of 15X1, 15X2 to a moving mirror on one side in the X direction of the wafer stage WS T, and the wafer interferometers 15Y, 15X1, 15X2 are used to illuminate the wafer stage WS. The X coordinate, Y coordinate, and rotation angle of T are measured, and the measured values are supplied to the main control system 10 shown in FIG. 1, and the main control system 10 sends the wafer stage through a planar motor based on the measured values. Control the speed and position of WST. When measuring the incident energy of the exposure light and the like, the position measuring laser beam is applied to the movable mirror of the measuring stage 14.
第 4図は、 露光光の入射エネルギー等の計測時のウェハステージ WS T、 及 び計測用ステージ 1 4の配置の一例を示し、 この第 4図に示すようにウェハス テージ WS Tを露光領域 1 2から離れた位置に待避させて、 露光領域 1 2が計 測用ステージ 1 4上にかかるように計測用ステージ 1 4を移動すると、 レーザ 干渉計 1 5 Y, 1 5 X 1, 1 5 X 2からのレーザビームが、 ウェハステージ W S Τの側面から外れて計測用ステージ 1 4の側面の移動鏡に照射されるように なる。 このときにレーザ干渉計 1 5 Υ及び 1 5 X 1, 1 5 X 2から得られる計 測^ Sに基づいて、 主制御系 1 0は平面モータを介して計測用ステージ 1 4の位 置を高精度に制御する。 なお、 平面モータをオープンループで駆動することに よってもウェハステージ WS Τ、 及び計測用ステージ 1 4の位置は大まかに制 御できるため、 レーザビームが照射されていない状態では、 主制御系 1 0はゥ ェハステージ WST、 及び計測用ステージ 1 4の位置を平面モータを用いてォ —プンループ方式で駆動する。 但し、 レーザ干渉計 1 5 Y, 1 5 X 1 , 1 5 X 2の他に、 ウェハステージ WS T、 及び計測用ステージ 1 4の位置を所定精度 で検出するためのリニアエンコーダ等を設けておき、 レ一ザビームが照射され ていない状態では、 それらのリニアエンコーダ等を用いて位置計測を行っても よい。 Fig. 4 shows the wafer stage WST and the measurement of the incident energy of the exposure light, etc. An example of the arrangement of the measurement stage 14 is shown in FIG. 4. The wafer stage WST is retracted away from the exposure region 12 as shown in FIG. When the measurement stage 14 is moved upward, the laser beams from the laser interferometers 15Y, 15X1, and 15X2 move off the side of the wafer stage WS WS and the measurement stage 14 Irradiates the moving mirror on the side of the camera. At this time, based on the measurement ^ S obtained from the laser interferometers 15Υ and 15X1, 15X2, the main control system 10 moves the position of the measurement stage 14 via the plane motor. Control with high precision. It should be noted that the position of the wafer stage WS 1 and the measurement stage 14 can be roughly controlled by driving the planar motor in an open loop. Therefore, when the laser beam is not irradiated, the main control system 10 The position of the wafer stage WST and the position of the measurement stage 14 are driven by an open loop method using a planar motor. However, in addition to the laser interferometers 15Y, 15X1, 15X2, a linear encoder, etc., for detecting the positions of the wafer stage WST and the measurement stage 14 with predetermined accuracy is provided. In the state where the laser beam is not irradiated, position measurement may be performed using such a linear encoder or the like.
第 1図に戻り、 不図示であるが、 投影光学系 P Lの側面には、 ウェハ Wの表 面の複数の計測点にスリツ ト像を斜めに投影し、 その反射光によって再結像さ れるスリッ ト像の横ずれ量から対応する計測点のフォーカス位置を検出する斜 入射方式の焦点位置検出系 (AFセンサ) が配置されている。 その焦点位置検 出系の検出結果に基づいて、 走査露光中のウェハ Wの表面が投影光学系 Pしの 像面に合焦される。 なお、 第 3図では省略しているが、 計測用ステージ 1 4上 にはその焦点位置検出系用の基準面を有する基準部材も搭載されている。  Referring back to FIG. 1, although not shown, a slit image is obliquely projected onto a plurality of measurement points on the surface of the wafer W on the side surface of the projection optical system PL, and is re-imaged by the reflected light. An oblique incidence type focus position detection system (AF sensor) that detects the focus position of the corresponding measurement point based on the amount of lateral shift of the slit image is provided. Based on the detection result of the focus position detection system, the surface of the wafer W during the scanning exposure is focused on the image plane of the projection optical system P. Although not shown in FIG. 3, a reference member having a reference surface for the focal position detection system is also mounted on the measurement stage 14.
次に、 本例の投影露光装置の動作につき説明する。 先ず、 ウェハステージ侧 の計測用ステージ 1 4を用いて投影光学系 P Lに対する露光光 I Lの入射光量 を計測する。 この場合、 レチクル Rがロードされた状態での入射光量を計測す るために、 第 1図において、 レチクルステージ RST上に露光用のレチクル R がロードされ、 レチクル Rが露光光 I Lの照明領域上に移動する。 その後、 第 4図に示すように、 ウェハステージ WS Tは定盤 1 3上で例えば +Y方向に待 避し、 計測用ステージ 14が投影光学系 P Lによる露光領域 1 2に向かって移 動する。 その後、 計測用ステージ 14上の照射量モニタ 1 8の受光面が露光領 域 1 2を覆う位置で計測用ステージ 1 4が停止し、 この状態で照射量モニタ 1 8を介して露光光 I Lの光量が計測される。 Next, the operation of the projection exposure apparatus of this embodiment will be described. First, the incident light amount of the exposure light IL to the projection optical system PL using the measurement stage 14 of the wafer stage 侧 Is measured. In this case, in order to measure the amount of incident light with the reticle R loaded, in FIG. 1, the reticle R for exposure is loaded on the reticle stage RST, and the reticle R is placed on the illumination area of the exposure light IL. Go to Thereafter, as shown in FIG. 4, the wafer stage WST is retracted on the surface plate 13 in, for example, the + Y direction, and the measurement stage 14 moves toward the exposure area 12 by the projection optical system PL. . Thereafter, the measurement stage 14 stops at a position where the light receiving surface of the irradiation amount monitor 18 on the measurement stage 14 covers the exposure area 12, and in this state, the exposure light IL passes through the irradiation amount monitor 18. The light quantity is measured.
主制御系 1 0では、 その計測された光量を結像特性演算系 1 1に供給する。 この際に、 例えば照明系 1内で露光光 I Lから分岐して得られる光束を検出し て得られる計測値も結像特性演算系 1 1に供給されており、 結像特性演算系 1 1では、 2つの計測値に基づいて、 照明系 1内でモニタされる光量から投影光 学系 P Lに入射する光量を間接的に演算するための係数を算出して記憶する。 この間に、 ウェハステージ WS Tにはウェハ Wがロードされる。 その後、 第 3 図に示すように、 計測用ステージ 1 4は露光領域 1 2から離れた位置に待避し、 ウェハステージ WS T上のウェハ Wの中心が投影光学系 P Lの光軸 AX (露光 領域 1 2の中心) 付近に位置するように、 ウェハステージ WS Tの移動が行わ れる。 ウェハステージ WS Tが待避中であるときには、 第 4図に示すように、 レ一ザ干渉計 1 5 Y, 1 5 X 1 , 1 5 X 2からのレーザビームは照射されない ため、 例えば平面モータをオープンループ方式で駆動することによって位置制 御が行われている。  The main control system 10 supplies the measured light amount to the imaging characteristic calculation system 11. At this time, for example, a measurement value obtained by detecting a light beam obtained by branching from the exposure light IL in the illumination system 1 is also supplied to the imaging characteristic calculation system 11. Based on the two measured values, a coefficient for indirectly calculating the amount of light incident on the projection optical system PL from the amount of light monitored in the illumination system 1 is calculated and stored. During this time, the wafer W is loaded on the wafer stage WST. Then, as shown in FIG. 3, the measurement stage 14 is retracted away from the exposure area 12 so that the center of the wafer W on the wafer stage WST is aligned with the optical axis AX (exposure area) of the projection optical system PL. The wafer stage WST is moved so as to be located near (center of 12). When the wafer stage WST is retracted, as shown in Fig. 4, the laser beams from the laser interferometers 15Y, 15X1, and 15X2 are not irradiated. Position control is performed by driving in an open loop system.
その後、 計測用ステージ 14が露光領域 1 2から待避して、 ウェハステージ WS Tにレーザ干渉計 1 5 Y, 1 5 X 1, 1 5 X 2からのレーザビームが照射 されるようになった時点で、 ウェハステージ WS Tの位置はそれらのレーザ干 渉計の計測値に基づいて制御されるようになる- その後、 レチクル Rの上方の 不図示のレチクルァライメント顕微鏡を用いて、 レチクル R上の所定のァライ メン トマークと、 第 3図の基準マーク部材 1 7上の所定の基準マークとの位置 ずれ量を所定の目標値にするように、 レチクルステージ R S Tを駆動すること によって、 レチクル Rのァライメントが行われる。 これとほぼ同時に、 その基 準マーク部材 1 7上の別の基準マークの位置を第 1図のァライメントセンサ 1 6で検出することによって、 ウェハステージ W S Tのレチクル Rの投影像に対 する位置関係 (ベースライン量) が正確に検出される。 After that, the measurement stage 14 is retracted from the exposure area 12 and the wafer stage WST is irradiated with laser beams from the laser interferometers 15Y, 15X1, and 15X2. Then, the position of the wafer stage WST will be controlled based on the measurements of those laser interferometers- Using a reticle alignment microscope (not shown), the amount of misalignment between a predetermined alignment mark on reticle R and a predetermined reference mark on reference mark member 17 in FIG. 3 is set to a predetermined target value. Then, reticle R is aligned by driving reticle stage RST. At about the same time, the position of another fiducial mark on the fiducial mark member 17 is detected by the alignment sensor 16 in FIG. 1, whereby the positional relationship with respect to the projected image of the reticle R of the wafer stage WST is obtained. (Baseline amount) is accurately detected.
次に、ァライメントセンサ 1 6を介してウェハ W上の所定のショッ 卜領域(サ ンブルショッ ト) に付設されたウェハマークの位置を検出することによって、 ウェハ Wの各ショッ ト領域の配列座標が求められる。 その後、 その配列座標、 及びァライメントセンサ 1 6の既知のベースライン量に基づいて、 ウェハ Wの 露光対象のショッ ト領城とレチクル Rのパターン像との位置合わせを行いなが ら、 走査露光が行われる。  Next, the array coordinates of each shot area of the wafer W are detected by detecting the position of a wafer mark attached to a predetermined shot area (sample shot) on the wafer W via the alignment sensor 16. Desired. After that, based on the arrangement coordinates and the known baseline amount of the alignment sensor 16, scanning exposure is performed while aligning the shot area of the wafer W to be exposed with the pattern image of the reticle R. Is performed.
走査露光時には、 第 1図において、 露光光 I Lの照明領域 9 (第 2図参照) に対して、 レチクルステージ R S Tを介してレチクル Rが + Y方向 (又は一 Y 方向) に速度 V Rで走査されるのに同期して、 露光領域 1 2に対してゥヱハス テ一ジ W S Tを介してウェハ Wがー X方向 (又は + X方向) に速度 ;3 - V R ( β は投影倍率) で走査される。 走査方向が逆であるのは、 投影光学系 P Lが反転 像を投影することによる。 そして、 1つのショット領域への露光が終了すると、 ウェハステージ W S Tのステッピングによって次のショッ ト領域が走查開始位 置に移動し、 以下、 ステップ .アンド .スキャン方式で各ショット領域への露 光が順次行われる。 この走査露光中には、 第 2図及び第 3図に示すように、 ゥ ェハステージ側の計測用ステージ 1 4、 及びレチクルステージ側の計測用ステ ージ 5はそれぞれ露光領域外に待避している。  At the time of scanning exposure, in FIG. 1, a reticle R is scanned at a speed VR in the + Y direction (or one Y direction) via a reticle stage RST with respect to an illumination area 9 (see FIG. 2) of the exposure light IL. In synchronism with this, the wafer W is scanned in the -X direction (or + X direction) at a speed of; 3-VR (β is a projection magnification) with respect to the exposure area 12 via the ゥ ヱ Hast WST. . The opposite of the scanning direction is due to the projection optical system PL projecting a reverse image. When the exposure of one shot area is completed, the next shot area moves to the run start position by the stepping of the wafer stage WST. Thereafter, the exposure to each shot area is performed by the step-and-scan method. Are sequentially performed. During this scanning exposure, as shown in FIGS. 2 and 3, the measurement stage 14 on the wafer stage side and the measurement stage 5 on the reticle stage side are respectively retracted outside the exposure area. .
また、 露光中には、 例えば照明系 1内で露光光 I Lから分岐した光束の光量 が常時計測されて結像特性演算系 1 1に供給され、 結像特性演算系 1 1では、 供給される光量の計測値、 及び予め求めてある係数に基づいて投影光学系 P L に入射する露光光 I Lの光量を算出し、 露光光 I Lの吸収によって発生する投 影光学系 P Lの結像特性 (投影倍率、 ディストーション等) の変化量を計算し、 この計算結果を主制御系 1 0に供給する。 主制御系 1 0では、 例えば投影光学 系 P L内の所定のレンズを駆動することによって、 その結像特性の補正を行う。 以上が、 通常の露光であるが、 本例の投影露光装置のメンテナンス等で装置 状態を計測するときには、 計測用ステージ 1 4を露光領域 1 2側に移動して計 測を行う。 例えば、 露光領域 1 2内の照度均一性を測定するときは、 レチクル Rをレチクルステージ R S Tから除いた後、 第 4図において、 照度むらセンサ 1 9を露光領域 1 2内で X方向、 Y方向に微動しながら照度分布を計測する。 この際に、 計測用ステージ 1 4の位置をより正確に求める必要があれば、 ゥェ ハステージ W S Tと同様に基準マーク部材 1 7に相当する基準マーク部材を計 測用ステージ 1 4上に設け、 ァライメントセンサ 1 6でその基準マ一ク部材内 の基準マークの位置を測定するようにしてもよい。 Also, during the exposure, for example, the light amount of the luminous flux branched from the exposure light IL in the illumination system 1 Is constantly measured and supplied to the imaging characteristic calculation system 11. The imaging characteristic calculation system 11 calculates the exposure amount incident on the projection optical system PL based on the measured value of the supplied light amount and the coefficient obtained in advance. The amount of light IL is calculated, the amount of change in the imaging characteristics (projection magnification, distortion, etc.) of the projection optical system PL caused by the absorption of the exposure light IL is calculated, and the calculation result is supplied to the main control system 10. I do. The main control system 10 corrects the image forming characteristics by, for example, driving a predetermined lens in the projection optical system PL. The above is the normal exposure, but when measuring the state of the projection exposure apparatus of the present example for maintenance or the like, the measurement stage 14 is moved to the exposure area 12 to perform the measurement. For example, when measuring the illuminance uniformity in the exposure area 12, after removing the reticle R from the reticle stage RST, in FIG. 4, the uneven illuminance sensor 19 is moved in the X direction and the Y direction in the exposure area 12. The illuminance distribution is measured while moving slightly. At this time, if it is necessary to more accurately determine the position of the measurement stage 14, a reference mark member equivalent to the reference mark member 17 is provided on the measurement stage 14 similarly to the wafer stage WST. Alternatively, the alignment sensor 16 may measure the position of the reference mark in the reference mark member.
次に、 レチクルステージ侧の計測用ステージ 5、 及びウェハステージ側の計 測用ステージ 1 4を用いて、 投影光学系 P Lの結像測定を測定する動作につき 説明する。 この場合、 第 2図において、 レチクルステージ R S Tは + Y方向に 待避して、 計測用ステージ 5上の基準板 6が照明領域 9内に移動する。 このと き、 計測用ステージ 5には非走査方向のレーザ干渉計 7 X 1, 7 X 2からのレ —ザビームも照射されるようになるため、 レーザ干渉計 8 Y, 7 X 1, 7 X 2 の計測値に基づいて計測用ステージ 5の位置は高精度に位置決めできる。  Next, an operation of measuring the image formation measurement of the projection optical system PL using the measurement stage 5 of the reticle stage I and the measurement stage 14 on the wafer stage side will be described. In this case, in FIG. 2, the reticle stage R ST retracts in the + Y direction, and the reference plate 6 on the measurement stage 5 moves into the illumination area 9. At this time, the measurement stage 5 is also irradiated with laser beams from the laser interferometers 7 X 1 and 7 X 2 in the non-scanning direction, so that the laser interferometers 8 Y, 7 X 1 and 7 X The position of the measurement stage 5 can be positioned with high accuracy based on the measurement value of 2.
このときに、 既に説明したように、 ウェハステージ側には複数の指標マーク I Μの像が投影光学系 P Lを介して投影される- この状態で、 第 4図において、 計測用ステージ 1 4を駆動して、 測定板 2 0上のスリットでその指標マーク I Mの像を X方向、 Y方向に走査し、 測定板 2 0の底部の光電センサの検出信号 を結像特性演算系 1 1で処理することによって、 それらの像の位置、 及びコン トラストが求められる。 また、 測定板 2 0のフォーカス位置を所定量ずつ変え ながら、 それらの像の位置、 及びコン トラス トが求められる。 これらの測定結 果より、 結像特性演算系 1 ] は、 投影光学系 P Lの投影像のベス トフォーカス 位置、 像面湾曲、 ディス トーション (倍率誤差を含む) といった結像特性の変 動量を求める。 この変動量は主制御系 1 0に供給され、 その変動量が許容範囲 を超える場合には、 主制御系 1 0は投影光学系 P Lの結像特性を補正する。 上記の実施の形態では、 第 3図に示すように、 ウェハステージ W S T及び計 測用ステージ 1 4は、 それぞれ定盤 1 3上で平面モータによって駆動されてい る。 しかしながら、 1次元モータの組み合わせによってウェハステージ W S T 及び計測用ステージ 1 4を 2次元的に駆動する構成も可能である。 At this time, as described above, the images of the plurality of index marks I 投影 are projected on the wafer stage side through the projection optical system PL. In this state, in FIG. Driving, the index mark I with the slit on the measuring plate 20 The image of M is scanned in the X and Y directions, and the detection signal of the photoelectric sensor at the bottom of the measurement plate 20 is processed by the imaging characteristic calculation system 11 to obtain the position and contrast of those images. Can be Further, while changing the focus position of the measuring plate 20 by a predetermined amount, the positions of the images and the contrast are obtained. From these measurement results, the imaging characteristic calculation system 1] calculates the amount of variation in the imaging characteristics such as the best focus position, field curvature, and distortion (including a magnification error) of the projection image of the projection optical system PL. . This variation is supplied to the main control system 10. If the variation exceeds the allowable range, the main control system 10 corrects the imaging characteristics of the projection optical system PL. In the above embodiment, as shown in FIG. 3, wafer stage WST and measurement stage 14 are each driven by a flat motor on surface plate 13. However, a configuration in which the wafer stage WST and the measurement stage 14 are two-dimensionally driven by a combination of a one-dimensional motor is also possible.
そこで、 次に、 ウェハステージ、 及び計測用ステージをそれぞれ 1次元モー タを組み合わせた機構で駆動する第 2の実施の形態につき、 第 5図及び第 6図 を参照して説明する。 本例も、 ステップ ·アンド ·スキャン方式の投影露光装 置に本発明を適用したものであり、 第 5図及び第 6図において第 1図及び第 3 図に対応する部分には同一符号を付してその詳細説明を省略する。  Therefore, a second embodiment in which the wafer stage and the measurement stage are each driven by a mechanism combining a one-dimensional motor will be described with reference to FIGS. 5 and 6. Also in this example, the present invention is applied to a step-and-scan type projection exposure apparatus. In FIGS. 5 and 6, parts corresponding to FIGS. 1 and 3 are denoted by the same reference numerals. The detailed description is omitted.
第 5図は本例の投影露光装置のウェハステージ側を示す平面図であり、 第 6 図は、 その正面図である。 第 5図及び第 6図において、 定盤 3 3の上面に X方 向に沿って平行に 2本の X軸リニアガイ ド 3 4 A及び 3 4 Bが設置され、 X軸 リニアガイ ド 3 4 A及び 3 4 Bを連結するように、 Y方向 (走查方向) に細長 い Y軸リニアガイ ド 3 2が設置されている。 Y軸リニアガイ ド 3 2は、 不図示 のリニアモータによって X軸リニアガイ ド 3 4 A , 3 4 Bに沿って X方向に駆 動される。  FIG. 5 is a plan view showing the wafer stage side of the projection exposure apparatus of this example, and FIG. 6 is a front view thereof. In FIGS. 5 and 6, two X-axis linear guides 34 A and 34 B are installed on the upper surface of the surface plate 33 in parallel along the X direction, and the X-axis linear guides 34 A and 34 A are provided. An elongated Y-axis linear guide 32 is installed in the Y direction (running direction) to connect 34B. The Y-axis linear guide 32 is driven in the X direction along the X-axis linear guides 34 A and 34 B by a linear motor (not shown).
また、 Y軸リニアガイ ド 3 2に沿ってそれぞれ Y方向に移動自在に、 且つ互 いに独立にウェハステージ 3 1、 及び計測用ステージ 3 5が配置され、 ウェハ ステージ 3 1上に不図示のウェハホルダを介してウェハ Wが吸着保持され、 計 測用ステージ 3 5上には照射量モニタ 1 8、 照度むらセンサ 1 9、 及び測定板 2 0が固定され、 測定板 2 0の底部には光電センサが組み込まれている。 この 場合、 ウェハステージ 3 1、 及び計測用ステージ 3 5の底面はそれぞれエア一 ベアリングを介して定盤 3 3上に載置され、 ウェハステージ 3 1、 及び計測用 ステージ 3 5はそれぞれ独立に不図示のリニァモータを介して Y軸リニアガイ ド 3 2に沿って Y方向に駆動される。 即ち、 ウェハステージ 3 1、 及び計測用 ステージ 3 5はそれぞれ独立に Y軸リニアガイ ド 3 2、 及び X軸リニアガイ ド 3 4 A, 3 4 Bに沿って 2次元的に駆動される。 そして、 本例においても、 第 2図のレチクルステージ側のレーザ干渉計 7 Y , 7 X 1 , 7 X 2 , 8 Yと同様 な 4軸のレーザ干渉計によって、 ウェハステージ 3 1、 及び計測用ステージ 3 5の 2次元的な位置が計測され、 この計測結果に基づいてウェハステージ 3 1、 及び計測用ステージ 3 5の位置や駆動速度が制御されている。 その他の構成は 第 1の実施の形態と同様である。 In addition, they can move in the Y direction along the Y-axis linear guides 32, and Independently, a wafer stage 31 and a measurement stage 35 are arranged independently, a wafer W is sucked and held on a wafer stage 31 via a wafer holder (not shown), and a dose is irradiated on the measurement stage 35. The monitor 18, the uneven illuminance sensor 19, and the measurement plate 20 are fixed, and a photoelectric sensor is incorporated at the bottom of the measurement plate 20. In this case, the bottom surfaces of the wafer stage 31 and the measurement stage 35 are placed on the surface plate 33 via air bearings, respectively, and the wafer stage 31 and the measurement stage 35 are independently independent. It is driven in the Y direction along the Y-axis linear guide 32 via the illustrated linear motor. That is, the wafer stage 31 and the measurement stage 35 are independently driven two-dimensionally along the Y-axis linear guide 32 and the X-axis linear guides 34A and 34B. Also in this example, the wafer stage 31 and the measurement stage were measured using a 4-axis laser interferometer similar to the laser interferometer 7Y, 7X1, 7X2, 8Y on the reticle stage side in FIG. The two-dimensional position of the stage 35 is measured, and the position and the driving speed of the wafer stage 31 and the measurement stage 35 are controlled based on the measurement result. Other configurations are the same as those of the first embodiment.
本例において、 露光光の照射エネルギー、 又は投影光学系の結像特性を計測 する際には、 露光光による露光領域に対して一 Y方向に離れた位置にウェハス テージ 3 1が待避して、 その露光領域に計測用ステージ 3 5が移動する。 一方、 露光時には、 露光光による露光領域に対して + Y方向に離れた位置に計測用ス テ一ジ 3 5が待避する。 その後、 ウェハステージ 3 1を X方向、 Y方向にステ ッビングさせて、 ウェハ W上の露光対象のショッ ト領域を露光領域に対する走 査開始位置に移動した後、 ウェハステージ 3 1を Y軸リニアガイ ド 3 2に沿つ て Y方向に定速移動することによって、 当該ショット領域への走査露光が行わ れる。  In this example, when measuring the irradiation energy of the exposure light or the imaging characteristics of the projection optical system, the wafer stage 31 is evacuated to a position away from the exposure area by the exposure light in one Y direction. The measurement stage 35 moves to the exposure area. On the other hand, at the time of exposure, the measurement stage 35 is evacuated to a position separated in the + Y direction from the exposure area by the exposure light. Then, the wafer stage 31 is stepped in the X and Y directions to move the exposure target shot area on the wafer W to the scanning start position for the exposure area, and then the wafer stage 31 is moved to the Y-axis linear guide. By moving at a constant speed in the Y direction along 32, scanning exposure is performed on the shot area.
上述のように本例によれば、 Y軸リニアガイ ド 3 2に沿って計測用ステージ 3 5がウェハステージ 3 1 とは独立に配置されている。 この構成によって、 よ り高いステージの制御精度が要求される走査方向 (Y方向) の駆動では、 計測 用ステージ 3 5を駆動する必要がないと共に、 ウェハステージ 3 1は小型化、 軽量化されているため、 走査速度が向上でき、 走査露光時の同期精度等も向上 している。 一方、 非走査方向 (X方向) に対しては計測用ステージ 3 5も同時 に駆動されるため、 駆動機構に対する負荷は大きくなる。 しかしながら、 非走 査方向では走査方向に比べてそれ程高い制御精度が要求されないため、 そのよ うな負荷の増加の影響は小さい。 更に、 発熱源としての計測用ステージ 3 5が ウェハステージ 3 1から分離されているため、 ウェハステージ 3 1の位置決め 精度等の低下が防止されている。 According to this example as described above, the measurement stage is moved along the Y-axis linear guide 32. Reference numeral 35 is arranged independently of the wafer stage 31. With this configuration, it is not necessary to drive the measurement stage 35 in driving in the scanning direction (Y direction) where higher stage control accuracy is required, and the wafer stage 31 is reduced in size and weight. Therefore, the scanning speed can be improved, and the synchronization accuracy during scanning exposure has also been improved. On the other hand, the measurement stage 35 is simultaneously driven in the non-scanning direction (X direction), so that the load on the driving mechanism increases. However, in the non-scanning direction, much higher control accuracy is not required than in the scanning direction, so the effect of such an increase in load is small. Furthermore, since the measurement stage 35 as a heat source is separated from the wafer stage 31, a decrease in the positioning accuracy and the like of the wafer stage 31 is prevented.
なお、 本例において、 第 5図及び第 6図に 2点鎖線で示すように Y軸リニア ガイ ド 3 2と並列に第 2の Y軸リニアガイ ド 3 6を X方向に移動自在に配置し、 この Y軸リニアガイ ド 3 2に計測用ステージ 3 5を Y方向に移動自在に配置し てもよい。 これによつて、 ウェハステージ 3 1を X方向へ駆動する際の制御精 度も向上する。  In this example, as shown by a two-dot chain line in FIGS. 5 and 6, a second Y-axis linear guide 36 is arranged in parallel with the Y-axis linear guide 32 so as to be movable in the X direction. The measurement stage 35 may be arranged on the Y-axis linear guide 32 so as to be movable in the Y direction. Thereby, the control accuracy when driving wafer stage 31 in the X direction is also improved.
また、 上記の第 1の実施の形態では、 第 2図に示すように、 同一のガイ ド 4 A, 4 Bに沿ってレチクルステージ R S T、 及び計測用ステージ 5が配置され ているが、 第 3図のウェハステ一ジ側のようにレチクルステージ R S Τ、 及び 計測用ステージ 5が独立に 2次元的に動けるようにしてもよレ、。  In the first embodiment, as shown in FIG. 2, the reticle stage RST and the measurement stage 5 are arranged along the same guides 4A and 4B. As shown on the wafer stage side in the figure, the reticle stage RS Τ and the measurement stage 5 may be independently movable two-dimensionally.
更に、 上記の実施の形態では、 ウェハ Wが载置されるウェハステージ W S T , 3 1はそれぞれ 1つ設けられているが、 ウェハ Wが載置されるウェハステージ を複数個設けても良い。 この場合、 1つのウェハステージで露光を行い、 他方 のウェハステージでァライメント用の計測、 あるいはウェハ交換を行う方法を 使用することもできる。 同様に、 レチクルステージ側にもレチクル Rが載置さ れる複数のレチクルステージを設け、 これら複数のレチクルステージに異なる レチクルを載置して、 これらのレチクルを順次ウェハ上の同一のショッ ト領域 に露光条件 (フォーカス位置、 露光量、 照明条件等) を変えて露光するように 次に、 本発明の第 3の実施の形態につき第 7図及び第 8図を参照して説明す る。 本例は、 ウェハステージに設けられた計測装置を冷却する冷却装置を設け たものであり、 第 7図及び第 8図において第 1図及び第 3図に対応する部分に は同一符号を付してその詳細説明を省略する。 Further, in the above embodiment, one wafer stage WST, 31 on which wafer W is mounted is provided, but a plurality of wafer stages on which wafer W is mounted may be provided. In this case, it is also possible to use a method in which exposure is performed on one wafer stage and measurement for alignment or wafer replacement is performed on the other wafer stage. Similarly, a plurality of reticle stages on which the reticle R is mounted are provided on the reticle stage side, and these reticle stages are different. The reticle is placed on the wafer, and these reticles are sequentially exposed to the same shot area on the wafer by changing the exposure conditions (focus position, exposure amount, illumination conditions, etc.). The embodiment will be described with reference to FIGS. 7 and 8. In this example, a cooling device for cooling a measuring device provided on a wafer stage is provided. In FIGS. 7 and 8, parts corresponding to FIGS. 1 and 3 are denoted by the same reference numerals. The detailed description is omitted.
第 7図は、 本例の投影露光装置を示し、 この第 7図において、 投影光学系 P Lによる露光領域 1 2側にウェハ Wが配置され、 ウェハ Wは不図示のウェハホ ルダを介してウェハステージ 4 1上に保持され、 ウェハステージ 4 1は定盤 1 3上に例えば平面モータによって X方向、 Y方向に駆動されるように載置され ている。 不図示であるがウェハステージ 4 1内にはウェハ Wのフォーカス位置、 及び傾斜角を制御する機構も組み込まれている。 更に、 ウェハステージ 4 1に はウェハ Wを团むように露光光 I Lや結像特性の計測機構が組み込まれている。 第 8図は、 第 7図のウェハステージ 4 1の平面図を示し、 この第 8図におい て、 ウェハ W (ウェハホルダ) の近傍には、 S準マーク部材 1 7、 照射量モニ タ 1 8、 照度むらセンサ 1 9、 スリッ ト 2 1 X, 2 1 Yが形成された測定板 2 0が配置されている。 また、 ウェハステージ 4 1上で照射量モニタ 1 8の近傍 には、 持ち運びできる基準照度計を設置するための凹部 4 7が形成されており、 凹部 4 7に基準照度計を設置して露光光 I Lの入射エネルギーを計測すること によって、 異なる投影露光装置間の照度のマッチングを取れるようになってい る。 更に、 ウェハステージ 4 1上の一隅に平坦度等の基準となる基準平面が形 成された基準部材 4 6も固定されている。 本例では、 これらの計測機構の熱源 を冷却するための冷却装置が設けられている。  FIG. 7 shows the projection exposure apparatus of this example. In FIG. 7, a wafer W is arranged on the side of the exposure area 12 by the projection optical system PL, and the wafer W is placed on a wafer stage via a wafer holder (not shown). The wafer stage 41 is held on the surface plate 13 so as to be driven in, for example, the X and Y directions by a plane motor. Although not shown, a mechanism for controlling the focus position and the tilt angle of the wafer W is incorporated in the wafer stage 41. Further, the wafer stage 41 incorporates a mechanism for measuring the exposure light IL and the imaging characteristics so as to cover the wafer W. FIG. 8 is a plan view of the wafer stage 41 of FIG. 7. In FIG. 8, near the wafer W (wafer holder), the S quasi-mark member 17, the irradiation amount monitor 18, A measurement plate 20 on which an uneven illuminance sensor 19 and slits 21X and 21Y are formed is arranged. A concave portion 47 for installing a portable reference illuminometer is formed in the vicinity of the irradiation amount monitor 18 on the wafer stage 41, and the reference illuminometer is installed in the concave portion 47 to expose the exposure light. By measuring the incident energy of IL, it is possible to match the illuminance between different projection exposure apparatuses. Further, a reference member 46 having a reference plane serving as a reference for flatness or the like formed at one corner of the wafer stage 41 is also fixed. In this example, a cooling device for cooling the heat sources of these measurement mechanisms is provided.
即ち、 第 7図に一部を切り欠いて示すように、 測定板 2 0のスリ ッ ト 2 1 Y の底部に集光レンズ 4 2、 及び光電センサ 4 3が配置され、 不図示であるが光 電センサ 4 3にはアンプ等も接続されている。 そこで、 ウェハステージ 4 1の 内部に光電センサ 4 3の近傍を通過するように冷却管 4 4が設置され、 冷却管 4 4には大きな可撓性を有する配管 4 5 Aを介して、 外部の冷却装置より低温 の液体よりなる冷媒が供給され、 配管 4 5 A内を通過した冷媒は大きな可撓性 を有する配管 4 5 Bを介してその冷却装置に戻されている。 また、 その冷却管 4 4は、 第 8図の照射量モニタ 1 8、 照度むらセンサ 1 9の近傍、 並びに基準 照度計用の凹部 4 7、 基準マーク部材 1 7、 基準部材 4 6の底部をも通過して いる。 本例では、 これらの計測装置のアンプ等の熱源からの熱エネルギーが冷 却管 4 4内の冷媒を介して排出されるため、 その熱エネルギーによってウェハ Wの位置決め精度等が悪化することがない。 また、 露光光 I Lの入射エネルギ 一等の計測時に、 照射量モニタ 1 8や照度むらセンサ 1 9に露光光 I Lが照射 された場合でも、 その照射エネルギーは冷却管 4 4内の冷媒を介して排出され るため、 その照射エネルギーによってウェハ Wの位置決め精度等が悪化するこ とがない。 That is, as shown in FIG. 7 with a part cut away, the slit 21 Y A condenser lens 42 and a photoelectric sensor 43 are arranged at the bottom of the device, and although not shown, an amplifier and the like are also connected to the photoelectric sensor 43. Therefore, a cooling pipe 44 is installed inside the wafer stage 41 so as to pass in the vicinity of the photoelectric sensor 43, and the cooling pipe 44 is connected to the external via a highly flexible pipe 45A. A refrigerant made of a low-temperature liquid is supplied from the cooling device, and the refrigerant that has passed through the pipe 45A is returned to the cooling device via a pipe 45B having great flexibility. In addition, the cooling pipe 44 is provided in the vicinity of the irradiation amount monitor 18 and the uneven illuminance sensor 19 shown in FIG. 8, and the bottom of the reference illuminometer concave portion 47, the reference mark member 17 and the reference member 46. Has also passed. In this example, since heat energy from a heat source such as an amplifier of these measuring devices is discharged through the refrigerant in the cooling pipe 44, the positioning accuracy of the wafer W is not deteriorated by the heat energy. . Also, when measuring the incident energy of the exposure light IL and the like, even when the exposure light IL is irradiated on the irradiation amount monitor 18 or the uneven illuminance sensor 19, the irradiation energy is transmitted through the refrigerant in the cooling pipe 44. Since it is discharged, the irradiation energy does not deteriorate the positioning accuracy of the wafer W.
なお、 本例では液体よりなる冷媒を使用して計測装置を冷却しているが、 例 えば空調用の空気等をそれらの計測装置の近傍に集中的に送風して冷却を行つ てもよい。  In this example, the measuring device is cooled by using a liquid refrigerant.However, for example, air for air conditioning may be intensively blown to the vicinity of the measuring device to perform cooling. .
また、 冷却管 4 4の配管形態や各測定用部材 (基準マ一ク部材 1 7、 照射量 モニタ 1 8、 照度むらセンサ 1 9、 測定板 2 0等) の配置形態は、 冷却管 4 4 が各測定用部材を十分に冷却可能な範囲内で様々な形態を採ることができる。 更に、 冷却管 4 4を複数設けて (もしくは冷却管 4 4を分岐して) 各測定用 部材を並列的に冷却してもよい。  The piping configuration of the cooling pipes 4 and the arrangement of the measuring members (reference mark member 17, irradiation dose monitor 18, illuminance unevenness sensor 19, measuring plate 20, etc.) are as follows. However, various forms can be adopted as long as the members for measurement can be sufficiently cooled. Further, a plurality of cooling pipes 44 may be provided (or the cooling pipes 44 may be branched) to cool the respective measurement members in parallel.
次に、 本発明の第 4の実施の形態につき第 9図を参照して説明する。 本例は、 ウェハステージ上でウェハの配置領域 (第 1のステージ) と計測装置の配置領 域 (第 2のステージ) との間に断熱部材を設けたものであり、 第 9図において 第 8図に対応する部分には同一符号を付してその詳細説明を省略する。 Next, a fourth embodiment of the present invention will be described with reference to FIG. In this example, the arrangement area of the wafer (first stage) and the arrangement area of the measurement device on the wafer stage A heat insulating member is provided between the first and second regions (the second stage). In FIG. 9, portions corresponding to those in FIG. 8 are denoted by the same reference numerals, and detailed description thereof is omitted.
第 9図は、 第 8図のウェハステージ 4 1 と同様に定盤上を X方向、 Y方向に 駆動されるウェハステージ 4 1 Aを示し、 この第 9図において、 ウェハステー ジ 4 1 Aの上部は、 ウェハステージ 4 1 Aよりも熱伝導率の低い材料よりなる 断熱板 4 8によって、 計測装置設置領域 4 1 A aと、 それ以外の領域とに分か れている。 ウェハステージ 4 1 Aとして鉄などの金属やセラミックスを用いた 場合には、 断熱板 4 8として樹脂、 ガラス、 真空断熱パックを用いることがで きる 3 更に、 断熱板 4 8として温調された液体を流すようにしてもよレ、。 そし て、 後者の領域上にウェハホルダ (不図示) を介してウェハ wが載置されると 共に、 位置基準となる基準マーク部材 1 7が設置され、 前者の計測装置設置領 域 4 1 A a内に、 位置基準となるマークが形成された基準マ一ク部材 1 7 A、 照射量モニタ 1 8、 照度むらセンサ 1 9、 基準平面を有する基準部材 4 6、 及 びスリ ッ トが形成された測定板 2 0が配置されている。 更に、 計測装置設置領 域 4 1 A a上には、 基準照度計を設置するための凹部 4 7が形成されている。 本例においても、 露光光や結像特性の計測時に計測装置設置領域 4 1 A a内 の計測装置が使用されるが、 これらの計測装置のアンプ等で発生する熱ェネル ギ一は断熱板 4 8によってウェハ W側には拡散しにくいため、 ウェハ Wの位置 決め精度等が悪化することがない。 同様に、 計測時に露光光によって与えられ る照射エネルギーも断熱板 4 8によってウェハ W側には拡散しにくい利点があ る。 FIG. 9 shows a wafer stage 41 A driven in the X and Y directions on the surface plate in the same manner as the wafer stage 41 of FIG. 8. In FIG. 9, the upper part of the wafer stage 41 A is shown. Is divided into a measurement device installation area 41 Aa and other areas by a heat insulating plate 48 made of a material having a lower thermal conductivity than the wafer stage 41 A. Liquid in the case of using a metal or ceramics such as iron as the wafer stage 4 1 A, the resin as the insulating plate 4 8, glass, 3 further as possible out the use of vacuum insulation pack, which is temperature control as a heat insulating plate 4 8 You can make it flow. Then, a wafer w is placed on the latter area via a wafer holder (not shown), and a reference mark member 17 serving as a position reference is installed, and the former measuring apparatus installation area 41 A a Inside, a reference mark member 17 A with a mark serving as a position reference is formed, a dose monitor 18, an uneven illuminance sensor 19, a reference member 46 having a reference plane, and a slit are formed. Measuring plate 20 is disposed. Further, a concave portion 47 for installing a reference illuminometer is formed on the measuring device installation area 41 Aa. In this example as well, measurement devices in the measurement device installation area 41 Aa are used when measuring the exposure light and the imaging characteristics, but the heat energy generated by the amplifiers and the like of these measurement devices is a heat insulating plate 4. 8 does not easily diffuse to the wafer W side, so that the positioning accuracy of the wafer W does not deteriorate. Similarly, there is an advantage that the irradiation energy given by the exposure light at the time of measurement is not easily diffused to the wafer W side by the heat insulating plate 48.
なお、 例えば第 3図に示すように、 ウェハステージ W S Tと計測用ステージ 1 4とが分離している構成でも、 ウェハステージ W S Tと計測用ステージ 1 4 との間の空調された空気を断熱部材とみなすことができる。 また、 レチクルス テージ側でも、 レチクルが載置される領域と、 計測装置が設置される領域との 間に断熱部材を配置するよう Note that, for example, as shown in FIG. 3, even in a configuration in which the wafer stage WST and the measurement stage 14 are separated, the air-conditioned air between the wafer stage WST and the measurement stage 14 is used as a heat insulating member. Can be considered. Also, on the reticle stage side, there is a difference between the area where the reticle is placed and the area where the measuring device is installed. Place a heat insulating member between them
また、 上記の実施の形態は本発明をステップ ·アンド 'スキャン方式の投影 露光装置に適用したものであるが、 本発明は一括露光型の投影露光装置 (ステ ツバ一) にも適用できると共に、 投影光学系を使用しないプロキシミティ方式 の露光装置にも適用できる。 また、 露光装置のみならず、 ウェハ等を位置決め するためのステージを使用する検査装置、 又はリペア装置等に用いてもよい。 このように、 本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱 しなレ、範囲で種々の構成を取り得る。 産業上の利用可能性  In the above embodiments, the present invention is applied to a step-and-scan type projection exposure apparatus. However, the present invention can be applied to a batch exposure type projection exposure apparatus (stepper). The present invention can also be applied to a proximity type exposure apparatus that does not use a projection optical system. Further, the present invention may be used not only for an exposure apparatus, but also for an inspection apparatus using a stage for positioning a wafer or the like, a repair apparatus, or the like. As described above, the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the gist of the present invention. Industrial applicability
本発明の第 1、 又は第 2の露光装置によれば、 マスク又は基板を移動するた めの第 1のステージに対して計測装置を備えた第 2のステ一ジが独立に設けら れているため、 それぞれ露光ビーム (露光光) の状態、 又は投影光学系の結像 特性を計測する機能を維持した状態で、 マスク又は基板を位置決めするための ステージを小型化、 軽量化できる利点がある。 従って、 これらのステージの制 御性能を向上でき、 露光工程のスループッ トも向上すると共に、 計測装置を構 成する光電センサ、 又はアンプ等の熱源が露光用のステージから分離されるこ とになって、 重ね合わせ精度等が向上する。 特に本発明をステップ 'アンド ' スキヤン方式のような走査露光型の露光装置に適用すると、 走査速度の向上に よってスループットが大きく向上するため、 本発明の効果は特に大きい。  According to the first or second exposure apparatus of the present invention, the first stage for moving the mask or the substrate is independently provided with the second stage including the measuring device. Therefore, there is an advantage that the stage for positioning the mask or substrate can be reduced in size and weight while maintaining the state of the exposure beam (exposure light) or the function of measuring the imaging characteristics of the projection optical system. . Therefore, the control performance of these stages can be improved, the throughput of the exposure process can be improved, and the heat source such as the photoelectric sensor or the amplifier that constitutes the measurement device can be separated from the exposure stage. Thus, the overlay accuracy and the like are improved. In particular, when the present invention is applied to a scanning exposure type exposure apparatus such as a step-and-scan method, the effect of the present invention is particularly large since the throughput is greatly improved by the improvement of the scanning speed.
これらの場合、 第 2のステージは、 第 1のステージとは独立に移動自在に配 置されているときには、 その第 1のステージを迅速に計測領域に移動できる。 また、 露光ビームが照射される位置 (露光領域) と、 露光ビームが照射され ない位置 (非露光領域) との間で第 1のステージを移動させる制御装置を備え たときには、 計測時に迅速にその第 1のステージを待避できる。 また、 露光ビームが照射される位置 (露光領域) と、 露光ビームが照射され ない位置 (非露光領域) との間で第 2のステージを移動させる制御装置を備え たときには、 露光時に迅速にその第 2のステージを待避できる。 In these cases, when the second stage is movably arranged independently of the first stage, the first stage can be quickly moved to the measurement area. When a control device is provided to move the first stage between the position where the exposure beam is irradiated (exposure area) and the position where the exposure beam is not irradiated (non-exposure area), the control device can quickly move the first stage during measurement. You can save the first stage. Further, when a control device is provided for moving the second stage between a position where the exposure beam is irradiated (exposure area) and a position where the exposure beam is not irradiated (non-exposure area), the control device can quickly move the second stage during the exposure. You can save the second stage.
また、 第 1のステージが露光ビームを照射される位置に有るときに、 第 2の ステージを露光ビームが照射されなレ、位置に位置決めする制御装置を備えたと きには、 それら 2つのステージを効率的に使い分けることができる。  Also, if the first stage is at the position where the exposure beam is irradiated, and if a control device for positioning the second stage at the position where the exposure beam is not irradiated is provided, the two stages are moved to the position where the exposure beam is not irradiated. They can be used efficiently.
本発明の第 1、 又は第 2の露光方法によれば、 マスク又は基板を移動するた めの第 1のステージに対して計測装置を備えた第 2のステージが独立に設けら れているため、 それぞれ露光ビーム (露光光) の状態、 又は投影光学系の結像 特性を計測する機能を維持した状態で、 マスク又は基板を位置決めするための ステージを小型化、 軽量化できる利点がある。 従って、 これらのステージの制 御性能を向上でき、 露光工程のスループットも向上すると共に、 計測装置を構 成する光電センサ、 又はァンプ等の熱源が露光用のステージから分離されるこ とになって、 重ね合わせ精度等が向上する。 特に本発明をステップ 'アンド ' スキャン方式のような走查露光式の露光方法に適用すると、 走査速度の向上に よってスループットが大きく向上するため、 本発明の効果は特に大きい。  According to the first or second exposure method of the present invention, the second stage having the measuring device is provided independently of the first stage for moving the mask or the substrate. There is an advantage that the stage for positioning the mask or the substrate can be reduced in size and weight while maintaining the state of the exposure beam (exposure light) or the function of measuring the imaging characteristics of the projection optical system. Therefore, the control performance of these stages can be improved, the throughput of the exposure process can be improved, and a heat source such as a photoelectric sensor or a pump constituting the measuring device is separated from the exposure stage. The overlay accuracy is improved. In particular, when the present invention is applied to a scanning exposure type exposure method such as a step 'and' scan method, the effect of the present invention is particularly large since the throughput is greatly improved by the improvement of the scanning speed.
これらの場合、 第 2のステージは、 第 1のステージとは独立に移動自在に配 置されているときには、 その第 1のステージを迅速に計測領域に移動できる。 また、 露光ビームが照射される位置 (露光領域) と、 露光ビームが照射され ない位置 (非露光領域) との間で第 1のステージを移動させるときには、 計測 時に迅速にその第 1のステージを待避できる。  In these cases, when the second stage is movably arranged independently of the first stage, the first stage can be quickly moved to the measurement area. When the first stage is moved between a position where the exposure beam is irradiated (exposure area) and a position where the exposure beam is not irradiated (non-exposure area), the first stage is quickly moved during measurement. You can evacuate.
また、 露光ビームが照射される位置 (露光領域) と、 露光ビームが照射され ない位置 (非露光領域) との間で第 2のステージを移動させるときには、 露光 時に迅速にその第 2のステージを待避できる。  When the second stage is moved between a position where the exposure beam is irradiated (exposure area) and a position where the exposure beam is not irradiated (non-exposure area), the second stage is quickly moved during the exposure. You can evacuate.
また、 第 1のステージが露光ビームを照射される位置に有るときに、 第 2の ステージを露光ビームが照射されない位置に位置決めするときには、 それら 2 つのステージを効率的に使い分けることができる。 When the first stage is at the position where the exposure beam is irradiated, When positioning the stage in a position where the exposure beam is not irradiated, the two stages can be used efficiently.
次に、 本発明の第 3、 又は第 4の露光装置、 若しくは、 第 3、 または第 4の 露光方法によれば、 計測装置を冷却する冷却装置が備えられているため、 露光 ビームの状態、 又は投影光学系の結像特性を計測する際の温度上昇の悪影響を 軽減でき、 位置決め精度や重ね合わせ精度が向上する利点がある。  Next, according to the third or fourth exposure apparatus of the present invention, or according to the third or fourth exposure method, since the cooling device for cooling the measurement device is provided, the state of the exposure beam, Alternatively, there is an advantage that the adverse effect of a rise in temperature when measuring the imaging characteristics of the projection optical system can be reduced, and positioning accuracy and overlay accuracy are improved.
また、 本発明の第 5、 又は第 6の露光装置、 若しくは、 第 5、 または第 6の 露光方法によれば、 2つのステージの問に断熱部材が備えられているため、 露 光ビームの状態、 又は投影光学系の結像特性を計測する際の温度上昇の悪影響 を軽減でき、 位置決め精度や重ね合わせ精度が向上する利点がある。  According to the fifth or sixth exposure apparatus or the fifth or sixth exposure method of the present invention, since the heat insulating member is provided between the two stages, the state of the exposure beam In addition, there is an advantage that the adverse effect of a temperature rise when measuring the imaging characteristics of the projection optical system can be reduced, and positioning accuracy and overlay accuracy are improved.
また、 その断熱部材が熱伝導率の低い固体材料であるときには、 それら 2つ のステージを一体として駆動できる一方、 その断熱部材が温度調整された気体 であるときには、 第 1のステージの小型化の効果も得られる。  Also, when the heat insulating member is a solid material having a low thermal conductivity, the two stages can be driven integrally, while when the heat insulating member is a gas whose temperature is adjusted, the first stage can be downsized. The effect is also obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . マスクに形成されたパターンを露光ビームを用いて基板上に転写する露光 装置において、 1. In an exposure apparatus that transfers a pattern formed on a mask onto a substrate using an exposure beam,
前記マスクと前記基板との何れか一方を保持して所定の領域を移動する第 1 のステージと、  A first stage that moves a predetermined area while holding one of the mask and the substrate;
前記第 1のステージとは独立した第 2のステージと、  A second stage independent of the first stage;
該第 2のステージに取り付けられて前記露光ビ一ムの状態を計測する計測装 置と、 を備えたことを特徴とする露光装置。  A measuring device attached to the second stage for measuring a state of the exposure beam.
2 . 請求項 1記載の露光装置であって、  2. The exposure apparatus according to claim 1, wherein
前記第 2のステージは、 前記第 1のステージとは独立に移動自在に配置され ていることを特徴とする露光装置。  An exposure apparatus, wherein the second stage is movably arranged independently of the first stage.
3 . 請求項 1記載の露光装置であって、  3. The exposure apparatus according to claim 1, wherein
前記露光ビームが照射される位置と前記露光ビームが照射されない位置との 間で前記第 1のステージを移動させる制御装置を備えたことを特徴とする露光  An exposure apparatus comprising: a control device for moving the first stage between a position where the exposure beam is irradiated and a position where the exposure beam is not irradiated.
4 . 請求項 2記載の露光装置であって、 4. The exposure apparatus according to claim 2, wherein
前記露光ビームが照射される位置と前記露光ビ一ムが照射されなレ、位置との 間で前記第 2のステージを移動させる制御装置を備えたことを特徴とする露光 装置。  An exposure apparatus, comprising: a controller that moves the second stage between a position where the exposure beam is irradiated and a position where the exposure beam is not irradiated.
5 . 請求項 1記載の露光装置であって、  5. The exposure apparatus according to claim 1, wherein
前記第 1のステージが前記露光ビームを照射される位置に有るときに、 前記 第 2のステージを前記露光ビームが照射されない位置に位置決めする制御装置 を備えたことを特徴とする露光装置。  An exposure apparatus, comprising: a control device for positioning the second stage to a position where the exposure beam is not irradiated when the first stage is at a position where the exposure beam is irradiated.
6 . マスクに形成されたパターンを投影光学系を介して基板上に投影する露光 装置において、 6. Exposure to project the pattern formed on the mask onto the substrate via the projection optical system In the device,
前記マスクと前記基板との何れか一方を保持して所定の領域を移動する第 1 のステージと、  A first stage that moves a predetermined area while holding one of the mask and the substrate;
前記第 1のステージとは独立した第 2のステージと、  A second stage independent of the first stage;
該第 2のステージ上に配置されて前記投影光学系の結像特性を計測する計測 装置と、 を備えたことを特徴とする露光装置。  An exposure device, comprising: a measurement device arranged on the second stage to measure an imaging characteristic of the projection optical system.
7 . 請求項 6記載の露光装置であって、  7. The exposure apparatus according to claim 6, wherein
前記第 2のステージは、 前記第 1のステージとは独立に移動自在に配置され ていることを特徴とする露光装置。  An exposure apparatus, wherein the second stage is movably arranged independently of the first stage.
8 . 請求項 6記載の露光装置であって、  8. The exposure apparatus according to claim 6, wherein
前記第 1のステージでは前記基板を保持しており、  The first stage holds the substrate,
前記投影光学系による露光領域内の位置と、 該露光領域の外側の所定の位置 との間で前記第 1のステージを移動させる制御装置を備えたことを特徴とする  A control device for moving the first stage between a position in an exposure area by the projection optical system and a predetermined position outside the exposure area.
9 . 請求項 6記載の露光装置であって、 9. The exposure apparatus according to claim 6, wherein
前記投影光学系による露光領域内の位置と、 該露光領域の外側の所定の位置 との間で前記第 2のステージを移動させる制御装置を備えたことを特徴とする  A control device for moving the second stage between a position in an exposure area by the projection optical system and a predetermined position outside the exposure area.
1 0 . マスクに形成されたパターンを露光ビームを用いて基板上に転写する露 光装置において、 10. In an exposure device that transfers a pattern formed on a mask onto a substrate using an exposure beam,
前記露光ビームの状態を計測する計測装置が配置されたステージと、 該ステージに備えられ前記計測装置を冷却する冷却装置と、 を有することを 特徴とする露光装置。  An exposure apparatus, comprising: a stage on which a measurement device for measuring the state of the exposure beam is arranged; and a cooling device provided on the stage for cooling the measurement device.
1 1 . マスクに形成されたパターンを投影光学系を介して基板上に投影する露 光装置において、 前記投影光学系の結像特性を計測する計測装置が配置されたステ 1 1. In an exposure apparatus that projects a pattern formed on a mask onto a substrate via a projection optical system, A stage in which a measuring device for measuring the imaging characteristics of the projection optical system is arranged.
該ステージに備えられ前記計測装置を冷却する冷却装置と、 を有することを 特徴とする露光装置。  An exposure apparatus, comprising: a cooling device provided on the stage for cooling the measurement device.
1 2 . マスクに形成されたパターンを露光ビームを用いて基板上に転写する露 光装置において、  1 2. In an exposure device that transfers a pattern formed on a mask onto a substrate using an exposure beam,
前記マスクと前記基板との何れか一方を保持して所定の領域を移動する第 1 のステージと、  A first stage that moves a predetermined area while holding one of the mask and the substrate;
前記露光ビームの状態を計測する計測装置が搭載された第 2のステージと、 前記第 1のステージと前記第 2のステージとの問に配置され、 前記第 2のス テージから伝導する熱を遮断する断熱部材と、 を備えたことを特徴とする露光  A second stage on which a measuring device for measuring the state of the exposure beam is mounted; and a second stage disposed between the first stage and the second stage to block heat conducted from the second stage. Exposure characterized by comprising: a heat insulating member;
1 3 . 請求項 1 2記載の露光装置であって、 13. The exposure apparatus according to claim 12, wherein
前記断熱部材は、 熱伝導率の低い固体材料、 又は温度調整された気体である ことを特徴とする露光装置。  An exposure apparatus, wherein the heat insulating member is a solid material having a low thermal conductivity or a temperature-adjusted gas.
1 4 . マスクに形成されたパターンを投影光学系を介して基板上に投影する露 光装置において、  14. An exposure apparatus that projects a pattern formed on a mask onto a substrate via a projection optical system.
前記基板を保持して所定の領域を移動する第 1のステージと、  A first stage for holding the substrate and moving a predetermined area,
前記投影光学系の結像特性を計測する計測装置が搭載された第 2のステージ と、  A second stage equipped with a measuring device for measuring the imaging characteristics of the projection optical system,
前記第 1のステージと前記第 2のステージとの間に配置され、 前記第 2のス テージから伝導する熱を遮断する断熱部材と、 を備えたことを特徴とする露光  A heat insulating member disposed between the first stage and the second stage, and configured to block heat conducted from the second stage.
1 5 . 請求項 1 4記載の露光装置であって、 15. The exposure apparatus according to claim 14, wherein
前記断熱部材は、 熱伝導率の低い固体材料、 又は温度調整された気体である ことを特徴とする露光装置。 An exposure apparatus, wherein the heat insulating member is a solid material having a low thermal conductivity or a temperature-adjusted gas.
1 6 . マスクに形成されたパターンを露光ビームを用いて基板上に転写する露 光方法において、 16. An exposure method for transferring a pattern formed on a mask onto a substrate using an exposure beam,
第 1のステージが、 前記マスクと前記基板との何れか一方を保持して所定の 領域を移動するステップと、  A first stage for moving a predetermined area while holding one of the mask and the substrate;
前記第 1のステージとは独立した第 2のステージに取り付けられた計測装置 力 前記露光ビームの状態を計測するステップとを含むことを特徴とする露光 方法。  A measuring device attached to a second stage independent of the first stage, and a step of measuring a state of the exposure beam.
1 7 . 請求項 1 6記載の露光方法であって、  17. The exposure method according to claim 16, wherein
前記計測ステップで用いる前記第 2のステージは、 前記移励ステップで用い る前記第 1のステージとは独立に移動自在に配置されていることを特徴とする 露光方法。  The exposure method according to claim 1, wherein the second stage used in the measurement step is movably arranged independently of the first stage used in the transfer step.
1 8 . 請求項 1 6記載の露光方法であって、  18. The exposure method according to claim 16, wherein
前記移動ステップは、 前記露光ビームが照射される位置と前記露光ビームが 照射されなレ、位置との問で前記第 1のステージが移動することを特徴とする露 光方法。  The exposure method according to claim 1, wherein, in the moving step, the first stage moves depending on a position where the exposure beam is irradiated and a position where the exposure beam is not irradiated.
1 9 . 請求項 1 7記載の露光方法であって、  19. The exposure method according to claim 17, wherein
前記第 2ステージが、 前記露光ビームが照射される位置と前記露光ビームが 照射されない位置との問で移動するステップとをさらに含むことを特徴とする 露光方法。  An exposure method, further comprising the step of: moving the second stage depending on a position where the exposure beam is irradiated and a position where the exposure beam is not irradiated.
2 0 . 請求項 1 6記載の露光方法であって、 20. The exposure method according to claim 16, wherein
前記第 1のステージが前記露光ビームを照射される位置に有るときに、 前記 第 2のステージを前記露光ビームが照射されなレ、位置に位置決めするステツプ をさらに含むことを特徴とする露光方法。  An exposure method, further comprising the step of: positioning the second stage at a position where the exposure beam is not irradiated when the first stage is at the position irradiated with the exposure beam.
2 1 . マスクに形成されたパターンを投影光学系を介して基板上に投影する露 光方法において、 第 1のステージが、 前記マスクと前記基板との何れか一方を保持して所定の 領域を移動するステップと、 21. In an exposure method of projecting a pattern formed on a mask onto a substrate via a projection optical system, A first stage for moving a predetermined area while holding one of the mask and the substrate;
前記第 1のステージとは独立した第 2のステージ上に配置された計測装置が、 前記投影光学系の結像特性を計測するステツブとを含むことを特徴とする露光 方法。  An exposure method, characterized in that a measuring device arranged on a second stage independent of the first stage includes a step of measuring an imaging characteristic of the projection optical system.
2 2 . 請求項 2 1記載の露光方法であって、  22. The exposure method according to claim 21, wherein
前記計測ステップで用いる前記第 2のステージは、 前記移動ステップで用い る前記第 1のステージとは独立に移動自在に配置されていることを特徴とする 露光方法。  The exposure method according to claim 1, wherein the second stage used in the measuring step is movably arranged independently of the first stage used in the moving step.
2 3 . 請求項 2 1記載の露光方法であって、 23. The exposure method according to claim 21, wherein
前記第 1のステージでは前記基板を保持しており、  The first stage holds the substrate,
前記移動ステップは、 前記投影光学系による露光領域内の位置と該露光領域 の外側の所定の位置との間で前記第 Γのステージが移動することを特徴とする 露光方法。  The exposure method according to claim 1, wherein, in the moving step, the first stage moves between a position in an exposure area by the projection optical system and a predetermined position outside the exposure area.
2 4 . 請求項 2 1記載の露光方法であつて、 24. The exposure method according to claim 21, wherein:
前記第 2ステージが、 前記投影光学系による露光領域内の位置と該露光領域 の外側の所定の位置との間で移動するステップとをさらに含むことを特徴とす る露光方法。  An exposure method, further comprising the step of: moving the second stage between a position within an exposure area by the projection optical system and a predetermined position outside the exposure area.
2 5 . マスクに形成されたパターンを露光ビームを用いて基板上に転写する露 光方法において、  25. In an exposure method of transferring a pattern formed on a mask onto a substrate using an exposure beam,
ステージに配置された計測装置が、 前記露光ビームの状態を計測するステツ プと、  A measuring device disposed on the stage, for measuring a state of the exposure beam;
該ステージに備えられた冷却装置が、 前記計測装置を冷却するステツプとを 含むことを特徴とする露光方法。  An exposure method, wherein the cooling device provided on the stage includes a step of cooling the measuring device.
2 6 . マスクに形成されたパターンを投影光学系を介して基板上に投影する露 光方法において、 26. Exposure to project the pattern formed on the mask onto the substrate via the projection optical system In the optical method,
ステージに配置された計測装置が、 前記投影光学系の結像特性を計測するス テツプと、  A measuring device arranged on the stage, for measuring an imaging characteristic of the projection optical system;
該ステージに備えられた冷却装置が、 前記計測装置を冷却するステップとを 含むことを特徴とする露光方法。  A cooling device provided on the stage, comprising: cooling the measuring device.
2 7 . マスクに形成されたパターンを露光ビームを用いて基板上に転写する露 光方法において、  27. In an exposure method for transferring a pattern formed on a mask onto a substrate using an exposure beam,
第 1のステージが、 前記マスクと前記基板との何れか一方を保持して所定の 領域を移動するステップと、  A first stage for moving a predetermined area while holding one of the mask and the substrate;
第 2のステージに取り付けられた計測装置が、 前記露光ビームの状態を計測 するステップと、  Measuring a state of the exposure beam by a measuring device attached to the second stage;
前記第 1のステージと前記第 2のステージとの問に配置された断熱部材によ り、 前記第 2のステージから伝導する熱を遮断するステップとを含むことを特 徴とする露光方法。  An exposure member disposed between the first stage and the second stage to cut off heat conducted from the second stage.
2 8 . 請求項 2 7記載の露光方法であって、 28. The exposure method according to claim 27, wherein
前記熱遮断ステップで用いる前記断熱部材は、 熱伝導率の低い固体材料、 又 は温度調整された気体であることを特徴とする露光方法。  The exposure method, wherein the heat insulating member used in the heat blocking step is a solid material having a low thermal conductivity or a gas whose temperature is adjusted.
2 9 . マスクに形成されたパターンを投影光学系を介して基板上に投影する露 光方法において、  29. In an exposure method for projecting a pattern formed on a mask onto a substrate via a projection optical system,
第 1のステージが、 前記基板を保持して所定の領域を移動するステップと、 第 2のステージに搭載された計測装置が、 前記投影光学系の結像特性を計測 するステップと、  A first stage for moving the predetermined area while holding the substrate; a measuring device mounted on the second stage for measuring an imaging characteristic of the projection optical system;
前記第 1のステージと前記第 2のステージとの間に配置された断熱部材によ り、 前記第 2のステージから伝導する熱を遮断するステップとを含むことを特 徴とする露光方法。 An exposure member disposed between the first stage and the second stage to block heat conducted from the second stage.
3 0 . 請求項 2 9記載の露光方法であって、 30. The exposure method according to claim 29, wherein
前記熱遮断ステップで用いる前記断熱部材は、 熱伝導率の低い固体材料、 又 は温度調整された気体であることを特徴とする露光方法  The exposure method, wherein the heat insulating member used in the heat blocking step is a solid material having a low thermal conductivity or a gas whose temperature is adjusted.
PCT/JP1998/004843 1997-10-31 1998-10-26 Aligner and exposure method WO1999023692A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU96481/98A AU9648198A (en) 1997-10-31 1998-10-26 Aligner and exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/299775 1997-10-31
JP29977597A JP4210871B2 (en) 1997-10-31 1997-10-31 Exposure equipment

Publications (1)

Publication Number Publication Date
WO1999023692A1 true WO1999023692A1 (en) 1999-05-14

Family

ID=17876815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/004843 WO1999023692A1 (en) 1997-10-31 1998-10-26 Aligner and exposure method

Country Status (3)

Country Link
JP (1) JP4210871B2 (en)
AU (1) AU9648198A (en)
WO (1) WO1999023692A1 (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351041B1 (en) 1999-07-29 2002-02-26 Nikon Corporation Stage apparatus and inspection apparatus having stage apparatus
WO2006137410A1 (en) 2005-06-21 2006-12-28 Nikon Corporation Exposure apparatus, exposure method, maintenance method and device manufacturing method
WO2007004552A1 (en) 2005-06-30 2007-01-11 Nikon Corporation Exposure apparatus and method, exposure apparatus maintenance method, and device manufacturing method
WO2007023813A1 (en) 2005-08-23 2007-03-01 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007034838A1 (en) 2005-09-21 2007-03-29 Nikon Corporation Exposure device, exposure method, and device fabrication method
EP1713113A4 (en) * 2004-02-02 2007-05-02 Nikon Corp Stage drive method and stage drive apparatus, exposure apparatus, and device producing method
WO2007055199A1 (en) 2005-11-09 2007-05-18 Nikon Corporation Exposure apparatus and method, and method for manufacturing device
WO2007058240A1 (en) 2005-11-16 2007-05-24 Nikon Corporation Substrate processing method, photomask manufacturing method, photomask and device manufacturing method
WO2007077925A1 (en) 2005-12-28 2007-07-12 Nikon Corporation Pattern formation method, pattern formation device, and device fabrication method
WO2007083758A1 (en) 2006-01-19 2007-07-26 Nikon Corporation Moving body drive method, moving body drive system, pattern formation method, pattern formation device, exposure method, exposure device, and device fabrication method
WO2007100087A1 (en) 2006-03-03 2007-09-07 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007108415A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007108414A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device production method
WO2007116752A1 (en) 2006-04-05 2007-10-18 Nikon Corporation Stage apparatus, exposure apparatus, stage control method, exposure method and device manufacturing method
WO2007119501A1 (en) 2006-03-23 2007-10-25 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007129753A1 (en) 2006-05-10 2007-11-15 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007136052A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method, and device manufacturing method
WO2007136089A1 (en) 2006-05-23 2007-11-29 Nikon Corporation Maintenance method, exposure method and apparatus, and device manufacturing method
CN100422856C (en) * 2001-04-27 2008-10-01 株式会社东芝 Measuring method and correction method for illumination irregularity of exposure device
US7573052B2 (en) 2005-11-15 2009-08-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7714982B2 (en) 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US7830046B2 (en) 2007-03-16 2010-11-09 Nikon Corporation Damper for a stage assembly
EP2275869A2 (en) 2003-06-19 2011-01-19 Nikon Corporation Exposure apparatus and device manufacturing method
US7875418B2 (en) 2004-03-16 2011-01-25 Carl Zeiss Smt Ag Method for a multiple exposure, microlithography projection exposure installation and a projection system
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US8027020B2 (en) 2006-02-16 2011-09-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8035800B2 (en) 2006-03-13 2011-10-11 Nikon Corporation Exposure apparatus, maintenance method, exposure method, and method for producing device
EP2392971A1 (en) 2006-11-16 2011-12-07 Nikon Corporation Surface treatment method and surface treatment apparatus, exposure method and exposure apparatus, and device manufacturing method
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
US8159650B2 (en) 2006-03-07 2012-04-17 Nikon Corporation Device manufacturing method, device manufacturing system, and measurement/inspection apparatus
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8233137B2 (en) 2004-12-20 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8236467B2 (en) 2005-04-28 2012-08-07 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US8300207B2 (en) 2007-05-17 2012-10-30 Nikon Corporation Exposure apparatus, immersion system, exposing method, and device fabricating method
US8343693B2 (en) 2009-11-05 2013-01-01 Nikon Corporation Focus test mask, focus measurement method, exposure method and exposure apparatus
CN102866591A (en) * 2006-02-21 2013-01-09 株式会社尼康 Exposing device and method, and device fabricating method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8384875B2 (en) 2008-09-29 2013-02-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8390779B2 (en) 2006-02-16 2013-03-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8400614B2 (en) 2005-12-28 2013-03-19 Nikon Corporation Pattern formation method and pattern formation apparatus, exposure method and exposure apparatus, and device manufacturing method
US8435723B2 (en) 2008-09-11 2013-05-07 Nikon Corporation Pattern forming method and device production method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8497980B2 (en) 2007-03-19 2013-07-30 Nikon Corporation Holding apparatus, exposure apparatus, exposure method, and device manufacturing method
US8514366B2 (en) 2006-05-18 2013-08-20 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8547522B2 (en) 2005-03-03 2013-10-01 Asml Netherlands B.V. Dedicated metrology stage for lithography applications
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8609301B2 (en) 2006-09-08 2013-12-17 Nikon Corporation Mask, exposure apparatus and device manufacturing method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8681314B2 (en) 2005-10-24 2014-03-25 Nikon Corporation Stage device and coordinate correction method for the same, exposure apparatus, and device manufacturing method
US8693006B2 (en) 2005-06-28 2014-04-08 Nikon Corporation Reflector, optical element, interferometer system, stage device, exposure apparatus, and device fabricating method
US8699014B2 (en) 2007-06-11 2014-04-15 Nikon Corporation Measuring member, sensor, measuring method, exposure apparatus, exposure method, and device producing method
US8721803B2 (en) 2006-12-05 2014-05-13 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
US8780326B2 (en) 2005-09-09 2014-07-15 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8848168B2 (en) 2003-04-11 2014-09-30 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
US8902401B2 (en) 2006-05-09 2014-12-02 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US8953148B2 (en) 2005-12-28 2015-02-10 Nikon Corporation Exposure apparatus and making method thereof
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9176393B2 (en) 2008-05-28 2015-11-03 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US9239524B2 (en) 2005-03-30 2016-01-19 Nikon Corporation Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
US9316921B2 (en) 2004-02-04 2016-04-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9436095B2 (en) 2004-01-20 2016-09-06 Carl Zeiss Smt Gmbh Exposure apparatus and measuring device for a projection lens
EP3428723A1 (en) 2005-08-31 2019-01-16 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method and method for producing microdevice

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3062152B1 (en) 2003-04-10 2017-12-20 Nikon Corporation Environmental system including vaccum scavenge for an immersion lithography apparatus
SG2012050829A (en) 2003-04-10 2015-07-30 Nippon Kogaku Kk Environmental system including vacuum scavange for an immersion lithography apparatus
KR101324818B1 (en) 2003-04-11 2013-11-01 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
TW201806001A (en) 2003-05-23 2018-02-16 尼康股份有限公司 Exposure device and device manufacturing method
TW200511388A (en) 2003-06-13 2005-03-16 Nikon Corp Exposure method, substrate stage, exposure apparatus and method for manufacturing device
CN102043350B (en) 2003-07-28 2014-01-29 株式会社尼康 Exposure apparatus, device manufacturing method, and control method of exposure apparatus
KR101288632B1 (en) 2003-08-21 2013-07-22 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
KR101162527B1 (en) 2003-09-03 2012-07-09 가부시키가이샤 니콘 Exposure apparatus and device producing method
EP1670040B1 (en) 2003-09-29 2012-08-08 Nikon Corporation Projection exposure apparatus, projection exposure method, and device manufacturing method
KR101441840B1 (en) 2003-09-29 2014-11-04 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device manufacturing method
TW201738932A (en) 2003-10-09 2017-11-01 Nippon Kogaku Kk Exposure apparatus, exposure method, and device producing method
WO2005041276A1 (en) 2003-10-28 2005-05-06 Nikon Corporation Exposure apparatus, exposure method, and device producing method
CN100461336C (en) 2003-10-31 2009-02-11 株式会社尼康 Exposure apparatus and device producing method
TWI605315B (en) 2003-12-03 2017-11-11 Nippon Kogaku Kk Exposure device, exposure method, and device manufacturing method
WO2005067013A1 (en) 2004-01-05 2005-07-21 Nikon Corporation Exposure apparatus, exposure method, and device producing method
JP4319189B2 (en) 2004-01-26 2009-08-26 株式会社ニコン Exposure apparatus and device manufacturing method
KR101377815B1 (en) 2004-02-03 2014-03-26 가부시키가이샤 니콘 Exposure apparatus and method of producing device
KR101166007B1 (en) 2004-02-10 2012-07-17 가부시키가이샤 니콘 Aligner, device manufacturing method, maintenance method and aligning method
KR101106497B1 (en) 2004-02-20 2012-01-20 가부시키가이샤 니콘 Exposure apparatus, supply method and recovery method, exposure method, and device producing method
TW201816844A (en) 2004-03-25 2018-05-01 日商尼康股份有限公司 Exposure apparatus, exposure method, and device manufacturing method
JP4671051B2 (en) * 2004-03-25 2011-04-13 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
WO2005104195A1 (en) 2004-04-19 2005-11-03 Nikon Corporation Exposure apparatus and device producing method
US7486381B2 (en) 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7796274B2 (en) 2004-06-04 2010-09-14 Carl Zeiss Smt Ag System for measuring the image quality of an optical imaging system
KR101421915B1 (en) 2004-06-09 2014-07-22 가부시키가이샤 니콘 Exposure system and device production method
US8508713B2 (en) 2004-06-10 2013-08-13 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8373843B2 (en) 2004-06-10 2013-02-12 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8717533B2 (en) 2004-06-10 2014-05-06 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
KR101556454B1 (en) 2004-06-10 2015-10-13 가부시키가이샤 니콘 Exposure equipment, exposure method and device manufacturing method
US8698998B2 (en) 2004-06-21 2014-04-15 Nikon Corporation Exposure apparatus, method for cleaning member thereof, maintenance method for exposure apparatus, maintenance device, and method for producing device
EP3462241A1 (en) 2004-06-21 2019-04-03 Nikon Corporation Exposure apparatus, exposure method and method for producing a device
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101433491B1 (en) 2004-07-12 2014-08-22 가부시키가이샤 니콘 Exposure equipment and device manufacturing method
KR101202231B1 (en) 2004-07-21 2012-11-16 가부시키가이샤 니콘 Exposure method and method for producing device
ATE470235T1 (en) 2004-08-03 2010-06-15 Nikon Corp EXPOSURE DEVICES, EXPOSURE PROCESSES AND COMPONENT PRODUCTION PROCESSES
KR101618493B1 (en) 2004-09-17 2016-05-04 가부시키가이샤 니콘 Exposure apparatus, exposure method, and method for manufacturing device
SG10201801998TA (en) 2004-09-17 2018-04-27 Nikon Corp Substrate holding device, exposure apparatus, and device manufacturing method
JP4613910B2 (en) * 2004-10-08 2011-01-19 株式会社ニコン Exposure apparatus and device manufacturing method
WO2006041083A1 (en) 2004-10-13 2006-04-20 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
CN101044594B (en) 2004-10-26 2010-05-12 株式会社尼康 Substrate processing method, exposure apparatus, and method for producing device
KR20070085214A (en) 2004-11-11 2007-08-27 가부시키가이샤 니콘 Exposure method, device manufacturing method, and substrate
TWI654661B (en) * 2004-11-18 2019-03-21 日商尼康股份有限公司 Position measurement method, position control method, measurement method, loading method, exposure method and exposure device, and element manufacturing method
WO2006059634A1 (en) * 2004-12-01 2006-06-08 Nikon Corporation Stage device and exposure apparatus
JP4752473B2 (en) 2004-12-09 2011-08-17 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
EP2995997B1 (en) 2004-12-15 2017-08-30 Nikon Corporation Exposure apparatus, exposure method, and device fabricating method
US7450217B2 (en) 2005-01-12 2008-11-11 Asml Netherlands B.V. Exposure apparatus, coatings for exposure apparatus, lithographic apparatus, device manufacturing method, and device manufactured thereby
KR101427056B1 (en) 2005-01-31 2014-08-05 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
JP2006295146A (en) * 2005-03-18 2006-10-26 Canon Inc Positioning device, aligner, and device manufacturing method
JP4946109B2 (en) 2005-03-18 2012-06-06 株式会社ニコン Exposure method, exposure apparatus, and device manufacturing method
JP4844186B2 (en) 2005-03-18 2011-12-28 株式会社ニコン Plate member, substrate holding apparatus, exposure apparatus and exposure method, and device manufacturing method
CN100459039C (en) 2005-03-25 2009-02-04 尼康股份有限公司 Shot shape measuring method, mask
US8089608B2 (en) 2005-04-18 2012-01-03 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
JP3997245B2 (en) * 2005-10-04 2007-10-24 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2007123334A (en) * 2005-10-25 2007-05-17 Nikon Corp Stage apparatus, aligner, and manufacturing method of device
EP1950795A4 (en) 2005-11-01 2010-06-02 Nikon Corp Exposure apparatus, exposure method and device manufacturing method
JPWO2007055373A1 (en) 2005-11-14 2009-04-30 株式会社ニコン Liquid recovery member, exposure apparatus, exposure method, and device manufacturing method
JP2007165869A (en) 2005-11-21 2007-06-28 Nikon Corp Exposure method and method for manufacturing device using same, exposure device, and method and device of processing substrate
US8125610B2 (en) 2005-12-02 2012-02-28 ASML Metherlands B.V. Method for preventing or reducing contamination of an immersion type projection apparatus and an immersion type lithographic apparatus
KR20080071555A (en) 2005-12-06 2008-08-04 가부시키가이샤 니콘 Exposure apparatus, exposure method, projection optical system and device manufacturing method
EP1965414A4 (en) 2005-12-06 2010-08-25 Nikon Corp Exposure method, exposure apparatus, and method for manufacturing device
KR101704310B1 (en) 2005-12-08 2017-02-07 가부시키가이샤 니콘 Substrate holding device, exposure device, exposure method, and device fabrication method
WO2007077875A1 (en) 2005-12-28 2007-07-12 Nikon Corporation Exposure apparatus, exposure method, and device production method
US8411271B2 (en) 2005-12-28 2013-04-02 Nikon Corporation Pattern forming method, pattern forming apparatus, and device manufacturing method
WO2007094431A1 (en) 2006-02-16 2007-08-23 Nikon Corporation Exposure apparatus, exposing method, and device manufacturing method
US8908145B2 (en) * 2006-02-21 2014-12-09 Nikon Corporation Pattern forming apparatus and pattern forming method, movable body drive system and movable body drive method, exposure apparatus and exposure method, and device manufacturing method
SG178791A1 (en) 2006-02-21 2012-03-29 Nikon Corp Pattern forming apparatus, mark detecting apparatus, exposure apparatus, pattern forming method, exposure method and device manufacturing method
EP1993120A1 (en) 2006-03-03 2008-11-19 Nikon Corporation Exposure method and apparatus, and device manufacturing method
TW200746259A (en) 2006-04-27 2007-12-16 Nikon Corp Measuring and/or inspecting method, measuring and/or inspecting apparatus, exposure method, device manufacturing method, and device manufacturing apparatus
US7728462B2 (en) 2006-05-18 2010-06-01 Nikon Corporation Monolithic stage devices providing motion in six degrees of freedom
TWI439814B (en) * 2006-06-12 2014-06-01 尼康股份有限公司 A mounting apparatus, an exposure apparatus, and an element manufacturing method
EP2043134A4 (en) 2006-06-30 2012-01-25 Nikon Corp Maintenance method, exposure method and apparatus and device manufacturing method
US20080073563A1 (en) 2006-07-01 2008-03-27 Nikon Corporation Exposure apparatus that includes a phase change circulation system for movers
US8570484B2 (en) 2006-08-30 2013-10-29 Nikon Corporation Immersion exposure apparatus, device manufacturing method, cleaning method, and cleaning member to remove foreign substance using liquid
TWI653511B (en) * 2006-08-31 2019-03-11 日商尼康股份有限公司 Exposure apparatus, exposure method, and component manufacturing method
KR101452524B1 (en) * 2006-09-01 2014-10-21 가부시키가이샤 니콘 Mobile body driving method, mobile body driving system, pattern forming method and apparatus, exposure method and apparatus and device manufacturing method
WO2008029884A1 (en) 2006-09-08 2008-03-13 Nikon Corporation Cleaning member, cleaning method and device manufacturing method
KR101419196B1 (en) 2006-09-29 2014-07-15 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device manufacturing method
EP2109133A4 (en) 2006-12-27 2011-12-28 Nikon Corp Stage apparatus, exposure apparatus and device manufacturing method
JP5505584B2 (en) * 2006-12-28 2014-05-28 株式会社ニコン Exposure equipment
US8004651B2 (en) 2007-01-23 2011-08-23 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
KR101531426B1 (en) 2007-03-01 2015-06-24 가부시키가이샤 니콘 Pellicle frame apparatus, mask, exposure method, exposure apparatus, and device manufacturing method
US8134685B2 (en) 2007-03-23 2012-03-13 Nikon Corporation Liquid recovery system, immersion exposure apparatus, immersion exposing method, and device fabricating method
NL2003363A (en) 2008-09-10 2010-03-15 Asml Netherlands Bv Lithographic apparatus, method of manufacturing an article for a lithographic apparatus and device manufacturing method.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175098A (en) * 1991-12-26 1993-07-13 Nikon Corp Exposure system
JPH0851069A (en) * 1994-06-17 1996-02-20 Internatl Business Mach Corp <Ibm> Step and repeat device
JPH09199413A (en) * 1996-01-23 1997-07-31 Nikon Corp Method and apparatus for exposure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05175098A (en) * 1991-12-26 1993-07-13 Nikon Corp Exposure system
JPH0851069A (en) * 1994-06-17 1996-02-20 Internatl Business Mach Corp <Ibm> Step and repeat device
JPH09199413A (en) * 1996-01-23 1997-07-31 Nikon Corp Method and apparatus for exposure

Cited By (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6351041B1 (en) 1999-07-29 2002-02-26 Nikon Corporation Stage apparatus and inspection apparatus having stage apparatus
CN100422856C (en) * 2001-04-27 2008-10-01 株式会社东芝 Measuring method and correction method for illumination irregularity of exposure device
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US8848166B2 (en) 2003-04-11 2014-09-30 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9081298B2 (en) 2003-04-11 2015-07-14 Nikon Corporation Apparatus for maintaining immersion fluid in the gap under the projection lens during wafer exchange using a co-planar member in an immersion lithography machine
US9500960B2 (en) 2003-04-11 2016-11-22 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9329493B2 (en) 2003-04-11 2016-05-03 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8879047B2 (en) 2003-04-11 2014-11-04 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens using a pad member or second stage during wafer exchange in an immersion lithography machine
US9946163B2 (en) 2003-04-11 2018-04-17 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US8848168B2 (en) 2003-04-11 2014-09-30 Nikon Corporation Apparatus and method for maintaining immersion fluid in the gap under the projection lens during wafer exchange in an immersion lithography machine
US9001307B2 (en) 2003-06-19 2015-04-07 Nikon Corporation Exposure apparatus and device manufacturing method
US10191388B2 (en) 2003-06-19 2019-01-29 Nikon Corporation Exposure apparatus, and device manufacturing method
US9019473B2 (en) 2003-06-19 2015-04-28 Nikon Corporation Exposure apparatus and device manufacturing method
US10007188B2 (en) 2003-06-19 2018-06-26 Nikon Corporation Exposure apparatus and device manufacturing method
US8692976B2 (en) 2003-06-19 2014-04-08 Nikon Corporation Exposure apparatus, and device manufacturing method
US9025129B2 (en) 2003-06-19 2015-05-05 Nikon Corporation Exposure apparatus, and device manufacturing method
US9810995B2 (en) 2003-06-19 2017-11-07 Nikon Corporation Exposure apparatus and device manufacturing method
US9551943B2 (en) 2003-06-19 2017-01-24 Nikon Corporation Exposure apparatus and device manufacturing method
EP2278401A2 (en) 2003-06-19 2011-01-26 Nikon Corporation Exposure apparatus and device manufacturing method
EP2275869A2 (en) 2003-06-19 2011-01-19 Nikon Corporation Exposure apparatus and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10345710B2 (en) 2004-01-20 2019-07-09 Carl Zeiss Smt Gmbh Microlithographic projection exposure apparatus and measuring device for a projection lens
US9436095B2 (en) 2004-01-20 2016-09-06 Carl Zeiss Smt Gmbh Exposure apparatus and measuring device for a projection lens
US9665016B2 (en) 2004-02-02 2017-05-30 Nikon Corporation Lithographic apparatus and method having substrate table and sensor table to hold immersion liquid
US10139737B2 (en) 2004-02-02 2018-11-27 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US10007196B2 (en) 2004-02-02 2018-06-26 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
EP1713113A4 (en) * 2004-02-02 2007-05-02 Nikon Corp Stage drive method and stage drive apparatus, exposure apparatus, and device producing method
US9632431B2 (en) 2004-02-02 2017-04-25 Nikon Corporation Lithographic apparatus and method having substrate and sensor tables
US9684248B2 (en) 2004-02-02 2017-06-20 Nikon Corporation Lithographic apparatus having substrate table and sensor table to measure a patterned beam
US9316921B2 (en) 2004-02-04 2016-04-19 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10048602B2 (en) 2004-02-04 2018-08-14 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US7875418B2 (en) 2004-03-16 2011-01-25 Carl Zeiss Smt Ag Method for a multiple exposure, microlithography projection exposure installation and a projection system
US8634060B2 (en) 2004-03-16 2014-01-21 Carl Zeiss Smt Gmbh Method for a multiple exposure, microlithography projection exposure installation and a projection system
US9116443B2 (en) 2004-12-20 2015-08-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8462312B2 (en) 2004-12-20 2013-06-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8233137B2 (en) 2004-12-20 2012-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10248035B2 (en) 2004-12-20 2019-04-02 Asml Netherlands B.V. Lithographic apparatus
US9835960B2 (en) 2004-12-20 2017-12-05 Asml Netherlands B.V. Lithographic apparatus
US8547522B2 (en) 2005-03-03 2013-10-01 Asml Netherlands B.V. Dedicated metrology stage for lithography applications
US9239524B2 (en) 2005-03-30 2016-01-19 Nikon Corporation Exposure condition determination method, exposure method, exposure apparatus, and device manufacturing method involving detection of the situation of a liquid immersion region
USRE45576E1 (en) 2005-04-08 2015-06-23 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
USRE44446E1 (en) 2005-04-08 2013-08-20 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
USRE46933E1 (en) 2005-04-08 2018-07-03 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
USRE47943E1 (en) 2005-04-08 2020-04-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
US8236467B2 (en) 2005-04-28 2012-08-07 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
EP2527921A2 (en) 2005-04-28 2012-11-28 Nikon Corporation Exposure method and exposure apparatus
US8941812B2 (en) 2005-04-28 2015-01-27 Nikon Corporation Exposure method, exposure apparatus, and device manufacturing method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
WO2006137410A1 (en) 2005-06-21 2006-12-28 Nikon Corporation Exposure apparatus, exposure method, maintenance method and device manufacturing method
US7924416B2 (en) 2005-06-22 2011-04-12 Nikon Corporation Measurement apparatus, exposure apparatus, and device manufacturing method
US8693006B2 (en) 2005-06-28 2014-04-08 Nikon Corporation Reflector, optical element, interferometer system, stage device, exposure apparatus, and device fabricating method
US8179517B2 (en) 2005-06-30 2012-05-15 Nikon Corporation Exposure apparatus and method, maintenance method for exposure apparatus, and device manufacturing method
WO2007004552A1 (en) 2005-06-30 2007-01-11 Nikon Corporation Exposure apparatus and method, exposure apparatus maintenance method, and device manufacturing method
US8018571B2 (en) 2005-08-23 2011-09-13 Nikon Corporation Exposure apparatus and exposure method, and device manufacturing method
WO2007023813A1 (en) 2005-08-23 2007-03-01 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP3428723A1 (en) 2005-08-31 2019-01-16 Nikon Corporation Optical element, exposure apparatus based on the use of the same, exposure method and method for producing microdevice
US8111374B2 (en) 2005-09-09 2012-02-07 Nikon Corporation Analysis method, exposure method, and device manufacturing method
US8780326B2 (en) 2005-09-09 2014-07-15 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007034838A1 (en) 2005-09-21 2007-03-29 Nikon Corporation Exposure device, exposure method, and device fabrication method
US8681314B2 (en) 2005-10-24 2014-03-25 Nikon Corporation Stage device and coordinate correction method for the same, exposure apparatus, and device manufacturing method
WO2007055199A1 (en) 2005-11-09 2007-05-18 Nikon Corporation Exposure apparatus and method, and method for manufacturing device
US7573052B2 (en) 2005-11-15 2009-08-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8605249B2 (en) 2005-11-15 2013-12-10 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
WO2007058240A1 (en) 2005-11-16 2007-05-24 Nikon Corporation Substrate processing method, photomask manufacturing method, photomask and device manufacturing method
US7803516B2 (en) 2005-11-21 2010-09-28 Nikon Corporation Exposure method, device manufacturing method using the same, exposure apparatus, and substrate processing method and apparatus
US7782442B2 (en) 2005-12-06 2010-08-24 Nikon Corporation Exposure apparatus, exposure method, projection optical system and device producing method
US8400614B2 (en) 2005-12-28 2013-03-19 Nikon Corporation Pattern formation method and pattern formation apparatus, exposure method and exposure apparatus, and device manufacturing method
WO2007077925A1 (en) 2005-12-28 2007-07-12 Nikon Corporation Pattern formation method, pattern formation device, and device fabrication method
US8953148B2 (en) 2005-12-28 2015-02-10 Nikon Corporation Exposure apparatus and making method thereof
EP3043208A1 (en) 2006-01-19 2016-07-13 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
US10203613B2 (en) 2006-01-19 2019-02-12 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
EP2765458A2 (en) 2006-01-19 2014-08-13 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10133195B2 (en) 2006-01-19 2018-11-20 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
EP3147710A1 (en) 2006-01-19 2017-03-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9423703B2 (en) 2006-01-19 2016-08-23 Nikon Corporation Exposure apparatus and device manufacturing method measuring position of substrate stage using at least three of four encoder heads
EP2801864A2 (en) 2006-01-19 2014-11-12 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
EP2857902A1 (en) 2006-01-19 2015-04-08 Nikon Corporation Immersion exposure apparatus, immersion exposure method, and device fabricating method
US9372414B2 (en) 2006-01-19 2016-06-21 Nikon Corporation Exposure method and device manufacturing method measuring position of substrate stage using at least three of four encoder heads
EP3171220A1 (en) 2006-01-19 2017-05-24 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
EP2963498A1 (en) 2006-01-19 2016-01-06 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US9423702B2 (en) 2006-01-19 2016-08-23 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method measuring position of substrate stage by switching between encoder and interferometer
WO2007083758A1 (en) 2006-01-19 2007-07-26 Nikon Corporation Moving body drive method, moving body drive system, pattern formation method, pattern formation device, exposure method, exposure device, and device fabrication method
US10185228B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US10185227B2 (en) 2006-01-19 2019-01-22 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US7839485B2 (en) 2006-01-19 2010-11-23 Nikon Corporation Movable body drive method, movable body drive system, pattern formation method, pattern forming apparatus, exposure method, exposure apparatus, and device manufacturing method
US7714982B2 (en) 2006-02-16 2010-05-11 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8027020B2 (en) 2006-02-16 2011-09-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8390779B2 (en) 2006-02-16 2013-03-05 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
CN102866591B (en) * 2006-02-21 2015-08-19 株式会社尼康 Exposure device and method and manufacturing method
CN102866591A (en) * 2006-02-21 2013-01-09 株式会社尼康 Exposing device and method, and device fabricating method
WO2007100087A1 (en) 2006-03-03 2007-09-07 Nikon Corporation Exposure apparatus and device manufacturing method
US7916270B2 (en) 2006-03-03 2011-03-29 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
US8159650B2 (en) 2006-03-07 2012-04-17 Nikon Corporation Device manufacturing method, device manufacturing system, and measurement/inspection apparatus
US8035800B2 (en) 2006-03-13 2011-10-11 Nikon Corporation Exposure apparatus, maintenance method, exposure method, and method for producing device
US8982322B2 (en) 2006-03-17 2015-03-17 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007108414A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device production method
WO2007108415A1 (en) 2006-03-17 2007-09-27 Nikon Corporation Exposure apparatus and device manufacturing method
WO2007119501A1 (en) 2006-03-23 2007-10-25 Nikon Corporation Exposure apparatus, exposure method and device manufacturing method
WO2007116752A1 (en) 2006-04-05 2007-10-18 Nikon Corporation Stage apparatus, exposure apparatus, stage control method, exposure method and device manufacturing method
US9810996B2 (en) 2006-05-09 2017-11-07 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
US8902401B2 (en) 2006-05-09 2014-12-02 Carl Zeiss Smt Gmbh Optical imaging device with thermal attenuation
WO2007129753A1 (en) 2006-05-10 2007-11-15 Nikon Corporation Exposure apparatus and device manufacturing method
US8477283B2 (en) 2006-05-10 2013-07-02 Nikon Corporation Exposure apparatus and device manufacturing method
US8514366B2 (en) 2006-05-18 2013-08-20 Nikon Corporation Exposure method and apparatus, maintenance method and device manufacturing method
WO2007136052A1 (en) 2006-05-22 2007-11-29 Nikon Corporation Exposure method and apparatus, maintenance method, and device manufacturing method
WO2007136089A1 (en) 2006-05-23 2007-11-29 Nikon Corporation Maintenance method, exposure method and apparatus, and device manufacturing method
US8891056B2 (en) 2006-07-14 2014-11-18 Nikon Corporation Stage apparatus and exposure apparatus
US9563116B2 (en) 2006-09-08 2017-02-07 Nikon Corporation Mask, exposure apparatus and device manufacturing method
US8609301B2 (en) 2006-09-08 2013-12-17 Nikon Corporation Mask, exposure apparatus and device manufacturing method
EP2392971A1 (en) 2006-11-16 2011-12-07 Nikon Corporation Surface treatment method and surface treatment apparatus, exposure method and exposure apparatus, and device manufacturing method
US8721803B2 (en) 2006-12-05 2014-05-13 Nikon Corporation Cleaning liquid, cleaning method, liquid generating apparatus, exposure apparatus, and device fabricating method
US7830046B2 (en) 2007-03-16 2010-11-09 Nikon Corporation Damper for a stage assembly
US8497980B2 (en) 2007-03-19 2013-07-30 Nikon Corporation Holding apparatus, exposure apparatus, exposure method, and device manufacturing method
US8300207B2 (en) 2007-05-17 2012-10-30 Nikon Corporation Exposure apparatus, immersion system, exposing method, and device fabricating method
US8164736B2 (en) 2007-05-29 2012-04-24 Nikon Corporation Exposure method, exposure apparatus, and method for producing device
US8699014B2 (en) 2007-06-11 2014-04-15 Nikon Corporation Measuring member, sensor, measuring method, exposure apparatus, exposure method, and device producing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US9176393B2 (en) 2008-05-28 2015-11-03 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US11187991B2 (en) 2008-05-28 2021-11-30 Asml Netherlands B.V. Lithographic apparatus and a method of operating the apparatus
US8435723B2 (en) 2008-09-11 2013-05-07 Nikon Corporation Pattern forming method and device production method
US8384875B2 (en) 2008-09-29 2013-02-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8343693B2 (en) 2009-11-05 2013-01-01 Nikon Corporation Focus test mask, focus measurement method, exposure method and exposure apparatus

Also Published As

Publication number Publication date
JP4210871B2 (en) 2009-01-21
JPH11135400A (en) 1999-05-21
AU9648198A (en) 1999-05-24

Similar Documents

Publication Publication Date Title
JP4210871B2 (en) Exposure equipment
JP4264676B2 (en) Exposure apparatus and exposure method
JP3387075B2 (en) Scanning exposure method, exposure apparatus, and scanning exposure apparatus
US20010055117A1 (en) Alignment method, exposure method, exposure apparatus and device manufacturing method
US6597434B2 (en) Lithographic apparatus, device manufacturing method, and device manufactured thereby
WO1999039375A1 (en) Illumination meter and exposure system
JP2001274080A (en) Scanning projection aligner and positioning method thereof
US20030090661A1 (en) Focusing method, position-measuring method, exposure method, method for producing device, and exposure apparatus
JP2002190438A (en) Projection aligner
US20040156026A1 (en) Exposure apparatus and exposure method
US7474381B2 (en) Exposure apparatus and device manufacturing method
JP2001093808A (en) Exposure method and aligner
US7130024B2 (en) Exposure apparatus
JP4214849B2 (en) Exposure method and exposure apparatus
JP2001257157A (en) Device and method for alignment and device and method for exposure
JP2000100697A (en) Aligner and method for adjusting it
JP2004087593A (en) Stage device and exposure device
US6545284B1 (en) Face position detection method and apparatus, and exposure method and exposure apparatus, a production method for an exposure apparatus and a production method for a semiconductor device
JP2010192744A (en) Exposure apparatus, exposure method and device manufacturing method
JP2002170757A (en) Method and instrument for measuring position, method and device for exposure, and method of manufacturing device
EP1139176B1 (en) Lithographic apparatus and mask table
JP2002057095A (en) Aligner
JP2003173960A (en) Exposure device
JP3919387B2 (en) Exposure equipment
JPH1064808A (en) Mask aligning method and projection exposing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HR HU ID IL IS KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA