WO1999031716A1 - Aligner, exposure method and method of manufacturing device - Google Patents

Aligner, exposure method and method of manufacturing device Download PDF

Info

Publication number
WO1999031716A1
WO1999031716A1 PCT/JP1998/005567 JP9805567W WO9931716A1 WO 1999031716 A1 WO1999031716 A1 WO 1999031716A1 JP 9805567 W JP9805567 W JP 9805567W WO 9931716 A1 WO9931716 A1 WO 9931716A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
mask
thermal deformation
substrate
physical quantity
Prior art date
Application number
PCT/JP1998/005567
Other languages
French (fr)
Japanese (ja)
Inventor
Kousuke Suzuki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU15047/99A priority Critical patent/AU1504799A/en
Publication of WO1999031716A1 publication Critical patent/WO1999031716A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70783Handling stress or warp of chucks, masks or workpieces, e.g. to compensate for imaging errors or considerations related to warpage of masks or workpieces due to their own weight

Definitions

  • the present invention relates to an exposure apparatus, an exposure method, and a device manufacturing method. More specifically, the present invention relates to an exposure apparatus and an exposure method for irradiating a mask with an exposure beam and transferring a pattern formed on the mask onto a substrate. And a device manufacturing method using the exposure apparatus or the exposure method. Background art
  • reticle photomasks or reticle
  • Projection exposure apparatus for transferring the above pattern onto a substrate such as a wafer or a glass plate having a surface coated with a photosensitive agent such as a thin resist through a projection optical system, for example, a so-called step-and-repeat method.
  • a small projection exposure system (so-called stepper) is used. This stepper is also called a static exposure apparatus because the exposure of each shot area is performed with the reticle and the substrate stationary.
  • the reticle is illuminated with rectangular or arc-shaped illumination light, and the reticle and the substrate are synchronously scanned in a one-dimensional direction with respect to the projection optical system, so that the reticle pattern is projected on the substrate via the projection optical system.
  • Scanning exposure apparatuses such as a so-called slit-scan method for sequentially transferring images onto the top or a so-called step-and-scan method, have been developed.
  • the reticle pattern can be transferred using only a part (central part) of the effective exposure field of the projection optical system having the least aberration. Fine patterns can be exposed with higher precision.
  • the exposure field can be expanded in the scanning direction without being restricted by the projection optical system, so that a large area exposure is possible.
  • relative scanning of the reticle and wafer has an averaging effect, and has the advantage that distortion and depth of focus can be expected.
  • the projection magnification of the projection optical system used in the projection exposure apparatus is subject to slight temperature changes in the apparatus, slight pressure fluctuations in the atmosphere in the clean room where the projection exposure apparatus is placed, temperature changes, and changes in the projection optical system. It fluctuates near a predetermined magnification due to the irradiation history of the irradiation energy by the exposure light and the like.
  • an imaging characteristic correction mechanism for finely adjusting the imaging characteristics of the projection optical system in order to maintain desired imaging characteristics.
  • the imaging characteristic correction mechanism include a mechanism that changes the distance between the reticle and the projection optical system, a mechanism that drives a specific lens element that forms the projection optical system in the optical axis direction, and a mechanism that drives the lens element in the tilt direction. Or a mechanism for adjusting the pressure in a predetermined closed chamber provided in the projection optical system.
  • the temperature distribution in the reticle plane and the reticle It is known to calculate thermal deformation and drive or tilt some of the lens groups in the projection lens in the optical axis direction.
  • the correction method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 4-192317 is sufficient in a static exposure apparatus (collective exposure apparatus) such as the above-described stepper to obtain a correction effect.
  • a static exposure apparatus such as the above-described stepper
  • the reticle is thermally deformed by the exposure light exposure, and this deformation depends on the in-plane temperature distribution of the reticle, and this in-plane temperature is higher in the central part than in the peripheral part.
  • the amount of deformation between the center position and the end position is different, and a so-called barrel-shaped distortion occurs.
  • the lens group is driven in the optical axis direction by using the above-described imaging characteristic correction mechanism, thereby distorting the pattern image due to the reticle thermal deformation.
  • One shot can be corrected.
  • the exposure light and the reticle move in phase, and more specifically, the reticle is scanned in an elongated illumination area (illumination spot) formed by illuminating the reticle with the exposure light. Therefore, the deformed shape or the degree of deformation of the reticle existing in the illumination area during scanning differs depending on the position in the scanning direction. In particular, when the illumination area is located at the center in the scanning direction of the reticle and when the illumination area is located at the end in the scanning direction of the reticle (the latter is the scanning start position or scanning end position), The deformed shape or degree of deformation of the reticle is large ⁇ different.
  • the distortion of the pattern image due to the thermal deformation of the reticle is corrected to some extent in the non-scanning direction by correcting the magnification by the correction mechanism described above. It is possible to do.
  • the amount of reticle deformation differs for each scanning position, and the amount of reticle deformation at the center of the reticle in the illumination area is large. It is difficult to correct the distortion of the pattern image no matter how they are combined.
  • the above-described distortion of the pattern image is a factor of exposure failure, and has been a factor of lowering the yield of the product when manufacturing a micro-port device such as an integrated circuit.
  • a first object of the present invention is to provide an exposure apparatus capable of preventing a decrease in exposure accuracy due to thermal deformation of a mask and a method of manufacturing the same. is there.
  • a second object of the present invention is to provide an exposure method that can prevent a decrease in exposure accuracy due to thermal deformation of a mask.
  • a third object of the present invention is to provide a device manufacturing method capable of improving the productivity of a highly integrated device.
  • An exposure device comprising a control device (21) for monitoring a change in a physical quantity related to the deformation of the mask (R) and temporarily interrupting the exposure operation when the physical quantity becomes equal to or more than a first predetermined value.
  • An apparatus is provided. According to this, the change in the physical quantity related to the deformation of the mask is monitored, and when the physical quantity becomes equal to or more than the first predetermined value, the exposure operation is temporarily stopped, the mask is naturally cooled for a predetermined time, and the physical quantity is reduced. After decreasing the value to less than the first predetermined value, the control device restarts the exposure operation. Therefore, if the physical quantity related to the deformation of the mask becomes large ⁇ the allowable limit value (first predetermined value), the exposure operation is automatically interrupted.
  • the distortion of the image of the mask can be suppressed within an allowable range, thereby making it possible to prevent a decrease in exposure accuracy due to thermal deformation of the mask.
  • the processes performed by an ordinary exposure apparatus include loading a substrate into an exposure device, aligning the substrate, exposing a substrate or a plurality of shot areas (areas that will later become chips) partitioned on the board, and exposing the shot. It includes various process steps such as stepping movement between process areas and unloading for substrate exchange.Before stepping movement or unloading for substrate exchange, the exposure operation must be completed. ing.
  • the term "interrupting the exposure operation” does not include interrupting the exposure operation when initiating a process step in which such exposure is not performed.
  • the term “interruption of the exposure operation” means that the mask is actively stopped during the process steps included in the exposure process or between subsequent process steps to reduce thermal deformation due to mask irradiation. Or means to cool. However, as described below, this active mask pause or cooling time may overlap with process steps such as substrate replacement.
  • the control device (21) may restart the exposure operation when the physical quantity becomes equal to or less than a second predetermined value or after a predetermined time has elapsed. In such a case, when the physical quantity related to the deformation of the mask reaches a second predetermined value (for example, a value suitable for restarting the exposure operation), the control device automatically restarts the exposure operation.
  • a second predetermined value for example, a value suitable for restarting the exposure operation
  • the exposure operation is not interrupted for a longer time, and the distortion of the pattern image due to the thermal deformation of the mask is maintained at a constant value.
  • the following can be controlled automatically. Therefore, it is possible to prevent a decrease in exposure accuracy due to the thermal deformation of the mask without significantly lowering the throughput.
  • the control device (21) interrupts the exposure operation in synchronization with the exposure operation of the predetermined number of substrates (W), that is, every time the exposure operation of the predetermined number of substrates (W) ends. And restart may be performed.
  • the control device (21) interrupts the exposure operation in synchronization with the exposure operation of the predetermined number of substrates (W), that is, every time the exposure operation of the predetermined number of substrates (W) ends. And restart may be performed.
  • the time required for substrate replacement and the time required for natural cooling of the mask can be greatly overlapped, so that exposure caused by thermal deformation of the mask can be achieved.
  • various physical quantities can be considered as the physical quantity.
  • the physical quantity may be an amount related to energy absorption by irradiation of the mask (R) with the exposure beam.
  • the exposure apparatus further includes an imaging characteristic correction device that corrects an imaging characteristic of a pattern image of the mask (R), wherein the control device (21) is configured such that the physical quantity is less than the first predetermined value.
  • the imaging characteristic correction device (14) can be controlled so as to cancel the influence of the deformation of the mask (R).
  • the control unit controls the imaging characteristic correction apparatus so as to cancel the influence of the mask deformation. Distortion of the image of the pattern due to the deformation of the mask during the exposure while it is less than the predetermined value Can be prevented.
  • the imaging characteristic correcting device For example, a driving device (21, 41, 42) that synchronously moves the mask (R) and the substrate (W) in a predetermined scanning direction. ), The imaging characteristic correction device may adjust a speed ratio of synchronous movement between the mask and the substrate.
  • the imaging characteristic correcting device by adjusting the speed ratio of the synchronous movement between the mask and the substrate by the imaging characteristic correcting device, it is possible to correct a magnification error in the scanning direction of the pattern image of the mask in the scanning direction.
  • the imaging characteristic correction apparatus (14) It may adjust the imaging characteristics of the projection optical system.
  • the exposure apparatus further includes a driving device (21, 41, 42) that synchronously moves the mask (R) and the substrate (W) in a predetermined scanning direction, and the physical quantity of the monitored object includes the mask (R) a barrel-shaped distortion in the scanning direction may be included.
  • a barrel-type distortion in a scanning direction of a mask which is particularly difficult to correct, is a physical quantity to be monitored. Therefore, even in the case of a scanning exposure apparatus, it is possible to suppress the image distortion of the pattern due to the thermal deformation of the mask to a certain value or less.
  • a pattern in consideration of deformation due to absorption of the exposure beam is drawn on the mask (R), and the control device (21) causes the pattern of the mask (R) to have a predetermined shape. The dummy exposure operation can be performed until the change occurs.
  • the pattern has a predetermined shape at the end of the dummy exposure
  • the dummy exposure is not performed on the predetermined shape, immediately before the interruption of the exposure (when the physical quantity is By setting the shape to a shape symmetric to the shape of the pattern (at the first predetermined value)
  • the interval between the first predetermined value and the second predetermined value is set to be approximately double as compared with the case of the above embodiment.
  • the ratio of the time during which the exposure is interrupted to the time during which the exposure is performed can be reduced, thereby substantially reducing the waiting time and minimizing the deterioration of throughput. It can be stopped (see Figures 5 and 6).
  • An exposure apparatus comprising: a first step of temporarily stopping an exposure operation when a physical quantity related to the deformation of the mask (R) is equal to or more than a first predetermined value; and a second step of restarting exposure.
  • the exposure operation is temporarily interrupted when the physical quantity related to the deformation of the mask becomes equal to or more than the first predetermined value, and after the interruption, preferably after the mask is naturally cooled for a predetermined time, Exposure is resumed.
  • the exposure operation is interrupted, and the image distortion of the pattern due to the thermal deformation of the mask is caused. Can be suppressed to within an allowable range, thereby making it possible to prevent a decrease in exposure accuracy due to thermal deformation of the mask.
  • the restart of the exposure operation in the second step may be performed when the physical quantity becomes equal to or less than a second predetermined value. In such a case, when the physical quantity related to the deformation of the mask reaches a second predetermined value (for example, a value suitable for restarting the exposure operation), the exposure operation can be automatically restarted, and the throughput is considerably reduced.
  • the physical quantity may be a measured value such as a temperature, but, for example, the physical quantity is calculated based on the measured predetermined physical quantity.
  • various physical quantities can be considered as the physical quantity.
  • the physical quantity may be an amount related to energy absorption by irradiation of the mask (R) with the exposure beam (IL). .
  • An exposure method wherein the exposure operation is interrupted (paused) and restarted every time the exposure operation of a predetermined number of substrates (W) is completed.
  • the time required for substrate replacement and the time required for natural cooling of the mask can be substantially overlapped, so that exposure accuracy caused by thermal deformation of the mask can be achieved.
  • An exposure method comprising: detecting information on an energy absorption amount of the mask by the irradiation of the energy beam; and limiting irradiation of the energy beam to the mask based on the detected information on the energy absorption amount.
  • information on the energy absorption amount of the mask due to the irradiation of the energy beam is detected, and the mask is detected based on the detected information on the energy absorption amount.
  • the irradiation of the energy beam to the mask can be limited, for example, before the mask absorbs more than an acceptable level of energy, thereby reducing the image of the pattern due to thermal deformation of the mask. Distortion can be suppressed within an allowable range, and a decrease in exposure accuracy due to thermal deformation of the mask can be prevented.
  • limiting the irradiation of the energy beam includes not only adjusting the power of the energy beam, for example, the exposure beam, but also interrupting the irradiation of the exposure beam.
  • the exposure time and the like may be appropriately adjusted in order to maintain a desired amount of exposure to the substrate, particularly to a substrate coated with a photosensitive material such as a photo resist. .
  • the moving speed of the substrate with respect to the energy beam may be appropriately adjusted according to the power of the exposure beam.
  • the exposure operation may be interrupted. In such a case, the time required for substrate replacement and the time required for natural cooling of the mask can be overlapped, so that exposure accuracy can be prevented from lowering due to thermal deformation of the mask and throughput can be improved. become.
  • various methods for limiting the irradiation of the energy beam can be considered.
  • the restriction may include stopping beam irradiation from the beam source, or may include blocking a beam path of the energy beam, or the mask (R) This may include reducing the intensity of the energy beam irradiated on the substrate.
  • the beam irradiation can be stopped by stopping the laser oscillation of a beam source such as a laser light source, and the beam path can be blocked, for example, by shutting down a beam or a blind placed in the beam path.
  • the intensity of the energy beam can be reduced by using a dimming filter, a light amount aperture, or the like.
  • a device manufacturing method including the exposure method according to the second aspect.
  • An exposure method is provided that monitors a physical quantity related to the deformation of the mask and detects that the physical quantity has exceeded a predetermined value. According to this, since the physical quantity related to the deformation of the mask is monitored and it is detected that the physical quantity has exceeded a predetermined value, the deformation of the mask can be kept within an allowable value.
  • the exposure operation may be interrupted when the physical quantity has exceeded a predetermined value, or the mask has been cooled when the physical quantity has reached a predetermined value.
  • the cooling of the mask includes both natural cooling and forced cooling by an appropriate cooling device.
  • the irradiation of the exposure beam from the light source may be stopped when the physical quantity has reached a predetermined value or more, or the exposure may be performed when the physical quantity has reached a predetermined value or more.
  • the intensity of the beam may be reduced, or the beam path of the exposure beam may be cut off when the physical quantity has reached a predetermined value or more.
  • the physical quantity includes various ones, but the physical quantity may be an energy absorption amount of the mask, or may be a distortion amount of the pattern of the mask. good.
  • an exposure operation of irradiating a mask on which a predetermined pattern is formed with an exposure beam to expose a substrate or a region partitioned in the substrate with an image of the pattern is performed.
  • An exposure apparatus that sequentially executes a plurality of substrates or a plurality of regions partitioned on the substrate,
  • the exposure apparatus includes a measuring device for measuring the amount of thermal deformation of the mask or a factor causing the thermal deformation, the amount of thermal deformation of the mask or the factor is, for example,
  • the exposure operation of the next substrate or the next shot region in the substrate can be temporarily interrupted before exceeding the first value corresponding to the allowable upper limit of thermal deformation.
  • the exposure operation can be restarted when the mask is cooled and the amount of thermal deformation decreases to a preset second value.
  • the amount of thermal deformation of the mask or a factor causing the thermal deformation can be determined by the measuring instrument.
  • the amount of thermal deformation of the mask can be obtained by using a model calculation formula showing the amount of thermal deformation with respect to the elapsed time t from the start of irradiation of the mask as shown in the specific example of the present invention.
  • the thermal deformation at the center and at the edge of the mask is obtained using a model calculation formula, and the difference between them is calculated. Seeking By doing so, the degree of distortion can be estimated.
  • the temperature of the mask for example, the temperature difference between the center and the end of the mask or the temperature distribution of the mask is measured with a temperature sensor or the like, and from the obtained temperature distribution, for example, The amount of thermal deformation of the mask can be obtained by using the calculation method disclosed in Japanese Patent Application Laid-Open No. 4-192173.
  • the amount of thermal deformation of the mask can be indirectly measured by measuring a factor or a parameter that causes thermal deformation of the mask, such as the mask temperature or the thermal energy absorbed by the mask.
  • the measuring device may be a computing device that calculates thermal deformation based on the model calculation formula.
  • the measuring device may include not only a computing device but also a temperature sensor.
  • the measuring device can also function as a timer that measures the elapsed time from the start of mask irradiation.
  • the control device not only controls interruption and start of the exposure operation, but also functions as the computing unit.
  • the exposure apparatus of this aspect can be a scanning type exposure apparatus that moves a mask and a substrate in synchronization in a scanning direction.
  • the arithmetic unit as the measuring device calculates the thermal deformation amount M 1 (t) at the center of the mask in the non-scanning direction with respect to the elapsed time t from the start of irradiation on the mask based on the thermal deformation model calculation formula of the mask. And the thermal deformation amount M 2 (t) at the mask edge and their difference can be calculated.
  • an exposure operation of irradiating a mask on which a predetermined pattern is formed with an exposure beam and exposing a substrate or a region partitioned in the substrate with an image of the pattern is performed.
  • An exposure method is provided in which, when the thermal deformation amount of the mask becomes equal to or larger than a preset value, the exposure operation for the next substrate or area is interrupted.
  • the exposure method according to the ninth aspect of the present invention since the thermal deformation of the mask from the start of irradiation of the mask is known, when the thermal deformation exceeds a reference value, the thermal deformation returns to a predetermined value. The exposure of the next substrate to be exposed or the next shot area defined in the substrate can be temporarily stopped. As a result, it is possible to prevent a mask pattern image from being distorted due to mask distortion, and to maintain good imaging characteristics.
  • the amount of thermal deformation of the mask can be calculated from the start of irradiation of the mask, based on a model formula relating to the thermal deformation of the mask with respect to the elapsed time t from the start of irradiation of the mask.
  • a time schedule for a change in the amount of thermal deformation of the mask with respect to an elapsed time from the start of irradiation of the mask is obtained based on a model formula for thermal deformation of the mask.
  • the exposure operation for the next substrate or area can be interrupted at a time when the value reaches or exceeds the set value.
  • Such a time schedule may be stored in the control device or a separately provided memory in advance.
  • the model equation may include a thermal deformation time constant and a thermal deformation saturation value as parameters.
  • an exposure operation of irradiating a mask on which a predetermined pattern is formed and exposing a substrate or a region partitioned in the substrate with an image of the pattern is performed by a plurality of substrates.
  • the exposure method which is sequentially performed over a plurality of partitioned areas in the substrate,
  • the exposure apparatus can be manufactured by the following manufacturing method. According to a eleventh aspect of the present invention, there is provided a method for manufacturing an exposure apparatus for irradiating a mask with an exposure beam and transferring a pattern formed on the mask onto a substrate,
  • a method of manufacturing an exposure apparatus comprising: monitoring a change in a physical quantity associated with the deformation of the mask, and providing a control device for temporarily stopping the exposure operation when the physical quantity becomes equal to or more than a first predetermined value.
  • the method further comprises providing a projection optical system between the mask and the substrate for projecting a pattern formed on the mask onto the substrate at a predetermined projection magnification; and synchronizing the mask, the substrate, and the exposure beam. And providing a stage system for moving.
  • the exposure operation of irradiating a mask on which a predetermined pattern is formed and exposing a substrate or a region partitioned in the substrate with an image of the pattern includes a plurality of exposure operations.
  • a method of manufacturing an exposure apparatus that sequentially executes over a substrate or a plurality of partitioned areas in the substrate,
  • a measuring device for measuring an amount of thermal deformation of the mask due to irradiation of the mask or a factor causing thermal deformation of the mask ;
  • the method may further include the step of providing a memory storing a thermal deformation model calculation formula for calculating a thermal deformation amount of the mask.
  • FIG. 1 is a diagram showing a schematic configuration of an exposure apparatus according to one embodiment.
  • FIG. 2 is a diagram showing the projection optical system partially cut away for explaining the configuration of the imaging performance correcting mechanism of FIG.
  • FIG. 3 is a plan view showing the points used to determine the amount of deformation of the reticle.
  • FIG. 4 is a diagram showing how the thermal deformation of the reticle changes over time.
  • FIG. 5 is a diagram showing how the physical quantity changes when the exposure method according to the present invention in which the exposure operation is interrupted and resumed according to the physical quantity corresponding to the corrected residual error is adopted.
  • FIG. 6 is a diagram showing how the physical quantity changes when the exposure method according to the present invention in which a pattern that cancels the thermal deformation of the reticle is drawn on the reticle and dummy heating is performed in advance is employed.
  • FIG. 7 is a flowchart for explaining an embodiment of the device manufacturing method according to the present invention.
  • FIG. 8 is a flowchart showing the processing in step 204 of FIG.
  • FIG. 1 shows a schematic configuration of an exposure apparatus 100 according to one embodiment.
  • the exposure apparatus 100 is a so-called step-and-scan type scanning exposure apparatus.
  • the exposure apparatus 100 includes an illumination system including a light source 1 and an illumination optical system (2 to 9).
  • a reticle stage RST that holds a reticle R as a disc, a projection optical system P, and an imaging performance correction mechanism that is provided in the projection optical system PL and corrects imaging performance such as magnification 1
  • the lens controller 15 that controls the imaging performance correction mechanism 14, the wafer stage WST that holds the wafer W as a substrate, and moves two-dimensionally in the XY plane while holding the wafer W, and the control system for these.
  • the illumination system includes a light source 1, a first fly-eye lens 2, a vibration mirror _3, a second fly-eye lens 4, a half mirror 5, an integrator lens sensor 6, a reticle blind 7, a bending mirror 8, and a condenser single lens system 9. And so on.
  • Illumination light IL as exposure light generated by the light source 1 passes through a shutter (not shown), and is then illuminated by a first fly-eye lens 2 (intensity distribution).
  • illumination light IL for example K r F excimer one laser light (wavelength 248 eta m) and A r F excimer laser beam (wavelength 1 93 nm), or F 2 excimer Ichizako (Wavelength 1 57 nm) or the like is used
  • K r F excimer one laser light wavelength 248 eta m
  • a r F excimer laser beam wavelength 1 93 nm
  • F 2 excimer Ichizako Wavelength 1 57 nm
  • JP-A-1-259533 corresponding U.S. Pat. No. 5,307,207
  • Examples of an exposure apparatus using an excimer laser light source for step-and-scan exposure include: Disclosed in JP-A-6-132195 (corresponding U.S. Patent No. 5,477,304), JP-A-7-142354 (corresponding U.S. Patent No. 5,534,970), etc. Have been. Therefore, also in the exposure apparatus of FIG. 1, it is possible to apply the technology relating to the excimer laser and the exposure apparatus disclosed in each of the above-mentioned patent publications as they are, or to partially modify them.
  • the light beam emitted from the first fly-eye lens 2 is bent in a horizontal direction via a vibration mirror 13 for smoothing interference fringes and weak speckles generated on the irradiated surface (reticle surface or wafer surface).
  • the illuminance distribution is further made uniform by the second fly-eye lens 4 and reaches the half mirror 15.
  • Most of this light flux (pulse illumination light) IL (about 97%) passes through the half mirror 15 to illuminate the reticle blind 7 with uniform illuminance.
  • the reticle blind 7 is composed of two movable blinds and a fixed blind disposed near the movable blind and having a fixed opening shape.
  • the arrangement surface of the movable blind is conjugate to the reticle R pattern surface.
  • the fixed blind is, for example, a field stop in which a rectangular aperture is surrounded by four knife edges, and the vertical width of the rectangular aperture is defined by a movable blind, thereby illuminating the reticle R.
  • the width of the slit-shaped illumination area I can be set to a desired size.
  • the movable blind is driven in the opening and closing direction by a movable blind drive mechanism (not shown) so that its operation is controlled by the main controller 21 in accordance with masking information called a process program. Has become.
  • the luminous flux that has passed through the reticle blind 7 reaches the bending mirror 8, where it is bent vertically downward, and illuminates the illumination area IAR of the reticle R on which the circuit butter, etc., is drawn via the condenser lens system 9. .
  • the remaining pulse illumination light IL (about 3%) is reflected by the half mirror 5 and received by the integrator sensor 6.
  • the amount of illumination light on the reticle R can be detected by the integer sensor 6.
  • the light amount signal from the integrator sensor 6 is transmitted to the main controller 2 1 Is supplied to A reticle R force is fixed on the reticle stage RST by, for example, vacuum suction.
  • the material used for the reticle R must be properly used depending on the light source used. That is, when a light source K r F excimer one laser light and A r F excimer one The light can be used synthetic quartz, F 2 excimer - When using a laser light, must be formed of fluorite There is.
  • the reticle stage RST is driven on a reticle base (not shown) by a reticle driving unit 41 composed of a linear motor or the like, and is perpendicular to an optical axis IX of an illumination optical system (coincides with an optical axis AX of a projection optical system PL described later). It is movable in a predetermined scanning direction (here, the Y-axis direction) within a predetermined stroke within a predetermined plane.
  • the reticle stage RST has a movement stroke that allows the entire surface of the reticle R to cross at least the optical axis IX of the illumination optical system.
  • reticle stage RST is configured to be finely driven in the X-axis direction and the rotation direction around the Z-axis orthogonal to the XY plane in order to position reticle R.
  • the position of the reticle stage RST is constantly measured at a resolution of, for example, several nm to 1 nm or less by a reticle laser interferometer system (not shown).
  • the position information of the reticle stage RST from the interferometer system is transmitted to the main controller 2.
  • the main controller 21 controls the reticle stage RST via the reticle drive system 41 based on the positional information of the reticle stage RS.
  • the measuring axis of the reticle laser interferometer system is, for example, Two axes are provided in the scanning direction, and one axis is provided in the non-scanning direction.
  • the reticle stage is positioned by a reticle alignment system (not shown) so that the reticle R is accurately positioned at a predetermined reference position.
  • the position of the reticle R is measured with sufficiently high accuracy only by measuring the position of the reflection surface (not shown) provided on the reticle stage RST by the reticle interferometer system.
  • the projection optical system PL is disposed below the reticle stage RST in FIG.
  • the direction of the optical axis AX (coincident with the optical axis IX of the illumination optical system) is the Z-axis direction.
  • the projection optical system PL here, a refraction optical system including a plurality of lens elements arranged at predetermined intervals along the optical axis AX direction so as to have a telecentric optical arrangement on both sides is used.
  • This projection optical system PL is a reduction optical system having a predetermined projection magnification, for example, 1/4 (or 1/5).
  • the imaging performance correcting mechanism 14 is provided inside the projection optical system P as described above.
  • a specific plural (here, five) lenses of the plural lens elements constituting the projection optical system PL are used as the imaging performance correcting mechanism 14.
  • Each of groups 2, 2, 3, 24, 25, and 26 is independently moved in the optical axis AX direction using piezoelectric elements 27, 28, 29, 30, and 31 such as piezo elements. (Z direction) and a mechanism that can be driven in the tilt direction with respect to the XY plane are used.
  • the lens groups 22, 23, 24, 25, and 26 are respectively connected to the lens barrel PP by three piezo elements 27, 28, 29, 30, and 31 via respective holders. It is supported by three points. Therefore, by independently driving each of the three piezo elements 27, 28, 29, 30 and 31, each lens group 22 23 23 24 24 25 26 Can be driven in the optical axis AX direction (Z direction) and the tilt direction with respect to the XY plane.
  • the imaging performance correction mechanism is, for example, Kaihei No. 4-127515 and No.
  • the imaging performance correcting mechanism 14 corrects five aberrations, specifically, curvature of field, magnification, distortion, coma, and spherical aberration.
  • the imaging performance correction mechanism 14 and the lens controller 15 constitute an imaging characteristic correction device that corrects the imaging characteristics of the pattern image of the reticle R. The specific contents of the imaging characteristic correction by the imaging characteristic correction device will be described later in detail.
  • the wafer stage WST moves on a base (not shown) in the Y-axis direction (left-right direction in FIG. 1), which is the scanning direction, and in the X-axis direction (perpendicular to the paper plane in FIG. 1).
  • a possible XY stage 18 and a Z stage 17 provided on the XY stage 18 are provided.
  • the XY stage 18 is actually driven in the XY two-dimensional direction on the base by a two-dimensional planar motor or the like, and the Z stage 17 is moved in the Z direction by a driving mechanism (not shown).
  • these two-dimensional planar motors, drive mechanisms, and the like are represented as a wafer drive unit 42 as a representative example, while being driven within a predetermined range (for example, a range of 100 m).
  • a wafer W is suction-held on a Z stage 17 via a wafer holder (not shown).
  • an irradiation amount sensor 20 for detecting an irradiation amount that passes through the reticle R and the projection optical system PL and reaches the wafer surface.
  • the detection value of the irradiation amount sensor 20 is supplied to the main controller 21.
  • the position of the Z stage 17 (i.e., wafer W) in the XY plane is constantly measured, for example, with a resolution of several nm to 1 nm or less by a wafer laser interferometer system (not shown).
  • the Z stage RST position information is sent to the main controller 21, and the main controller 21 sends the wafer W in the XY plane via the wafer driving device 42 based on the Z stage 17 position information.
  • the wafer laser interferometer system has, for example, one axis in the scanning direction and two axes in the non-scanning direction.
  • the two focus detection systems ie, reticle sensors, which are integrally attached to the projection optical system PL via a holding member (not shown), are provided.
  • a focus detection system (hereinafter, referred to as “reticle AF system”) 12 and a wafer focus detection system (hereinafter, referred to as “wafer AF system”) 19 are provided.
  • the wafer AF system 19 includes an irradiation optical system 19a that irradiates the wafer W with a detection beam obliquely, and a light-receiving optical system 19b that receives the reflected light of this detection beam from the wafer W surface.
  • this wafer AF system 1 9 Japanese Patent Publication No. 215303 and U.S. Pat. No. 4,801,977 corresponding thereto, and Japanese Patent Application Laid-Open Nos. 5-2755313 and 5-190423 And the corresponding focus position detection systems disclosed in US Pat. Nos. 5,502,311.
  • the above US patents are hereby incorporated by reference, with the disclosure incorporated by reference, to the extent allowed by the national laws of the designated or elected country of this international application.
  • the reticle AF system 12 includes an irradiation optical system 12a for irradiating the pattern surface of the reticle R with a detection beam obliquely, and a light receiving optical system 12b for receiving the reflected light of the detection beam from the reticle surface.
  • An oblique incident light type focus position detection system having the following is used.
  • the reticle AF system 12 is for detecting the optical axis IX of the pattern surface of the reticle R and the position in the Z direction of a region near the optical axis IX.
  • the reticle AF system 12 may have the same configuration as that disclosed in Japanese Patent Publication No. 8-21531 and the corresponding US patent.
  • the AF system is not limited to the obliquely incident light type.
  • an interferometer that measures the Z position of the wafer surface or reticle surface, or a direct focus that directly measures the distance between the projection optical system and the wafer or reticle.
  • a sensor may be employed.
  • the exposure apparatus 100 of the present embodiment is provided with an off-axis type alignment system for detecting alignment marks (not shown) attached to each shot area on the wafer W.
  • the main controller 21 detects the position of the alignment mark on the wafer W using an alignment system prior to the scanning exposure described below, and based on the detection result, the reticle driving system 41 and The wafer driving device 42 aligns the reticle R with the wafer W (alignment).
  • the principle of scanning exposure in the exposure apparatus 100 of the present embodiment will be briefly described. explain.
  • the reticle R is illuminated by a rectangular (slit-shaped) illumination area IAR having a longitudinal direction perpendicular to the scanning direction of the reticle R (Y-axis direction). Is scanned with.
  • the illumination area IAR (the center is substantially coincident with the optical axis AX) is projected onto the wafer W via the projection optical system PL, and a slit-shaped projection area conjugate to the illumination area IAR, that is, an exposure area IA is formed. Since the wafer W has an inverted image relationship with the reticle R, the wafer W is scanned at the speed VW in the direction opposite to the direction of the speed VR (+ Y direction) in synchronization with the reticle R, and The entire shot area can be exposed.
  • the reticle R and the wafer W are accurately adjusted by the reticle drive unit 41, the drive unit 42, and the main controller 21 to the reduction magnification of the projection optical system PL.
  • Synchronous movement is performed at the corresponding speed ratio VW / VR, and the pattern in the butter area of the reticle R is accurately reduced and transferred onto the shot area on the wafer W.
  • the entire area of the pattern area on the reticle R is illuminated by scanning, and the entire area of the pattern area of the reticle R is sequentially transferred onto the wafer W.
  • the reticle driving system 41, the wafer driving device 42, and the main controller 21 constitute a driving device for synchronously moving the reticle R and the wafer W.
  • the main controller based on the detection signals of the wafer AF system 19 and the reticle AF system 12 so that the pattern surface of the reticle R and the surface of the wafer W become conjugate with respect to the projection optical system PL.
  • the Z stage 17 is driven and controlled in the Z-axis direction by the controller 21 via the wafer driving device 42 to perform focus correction. The focus correction will be further described later.
  • the transfer of the reticle pattern by the scanning exposure to the shot area on the wafer W as described above and the stepping operation to the scanning start position of the next shot area are repeatedly performed. Accordingly, step-and-scan exposure is performed, and a reticle pattern is transferred to all shot areas on the wafer W.
  • the illumination optical system composed of multiple optical members, the projection optical system, and the reticle stage and wafer stage composed of many mechanical parts were assembled electrically, mechanically and optically, and assembled.
  • the exposure apparatus 100 of the present embodiment can be manufactured by comprehensively adjusting the exposure apparatus (adjustment of the optical path, stage speed, synchronization timing, operation confirmation, etc.).
  • imaging performance in the exposure apparatus 100 specifically, methods of correcting focus, curvature of field, magnification, distortion, coma, and spherical aberration will be described.
  • the imaging performance change coefficient may be an optically calculated value.
  • a five-element simultaneous linear equation can be established using the five types of imaging performance change coefficients excluding focus and the movement amounts (drive amounts) of the five lens groups. It can.
  • the focus is removed because when the lens group is driven to correct other imaging performance such as magnification, the focus fluctuates accordingly, so the focus must be corrected by another device. Because there is. This This will be described later.
  • the five-way simultaneous linear equation established above for example, when it is desired to change the magnification to a predetermined magnification, a certain amount is put in the imaging performance change coefficient of the magnification of the above simultaneous equation, and the other four types are set.
  • the position of the reference Z stage 17 is obtained. Specifically, a measurement reticle on which a predetermined measurement mark is drawn is mounted on a predetermined position of the reticle stage RST, and the photosensitive mark is applied to the measurement mark while step-moving the Z stage 17 in the Z direction. After being transferred (baked) onto the coated wafer W, the wafer W is developed by a developing device. Next, the wafer W is observed with an optical microscope to find the position of the Z stage 17 having the best burned mark shape.
  • the Z position of Z stage 17 at this time is set as the reference position, and the outputs of reticle AF system 12 and wafer A ⁇ system 19 '' when Z stage 17 is at that reference position are stored in memory as the respective AF reference positions.
  • the following focus fluctuation correction is managed by the displacement from this reference position, that is, the main controller 21 outputs the outputs of the reticle AF system 12 and the wafer AF 19 as described above. Make sure that it does not fluctuate from each AF reference position. That is, the Z stage 17 is driven and controlled in the optical axis direction so that the optical distance between the reticle R and the wafer W is kept constant.
  • the focus correction is performed in this manner. More specifically, assuming that the displacement on the reticle R and the wafer W side detected from the AF reference position are Rz and Wz, respectively, and the projection magnification is ML, the focus displacement ⁇ F is
  • the conjugate relationship between the reticle R and the wafer W is maintained.
  • the projection magnification of the projection optical system PL is not limited to 1/4, but it can be handled by multiplying the square of the projection magnification by the displacement amount on the reticle side.
  • the lens groups 22 to 26 are driven in order to correct other imaging performance such as the above-mentioned magnification, the amount of focus change that occurs as a side effect due to this is changed by the above-described imaging performance change coefficient and each lens.
  • the calculation is made based on the drive amounts of groups 22 to 26.
  • the calculated focus change amount is added to the output of the wafer AF system 19 as an offset at the time of the above-described focus correction, so that the optical distance between the reticle R and the wafer W becomes a predetermined value. Can be kept.
  • FIG. 3 shows a plan view of the reticle R. As shown in FIG. 3, at least two points M 1 (the center of the reticle) and M 2 (the end of the reticle R) for which magnification is to be determined along the scanning direction of the reticle R are selected. The position and number of selected points are not limited to those shown in Fig.
  • the main controller 21 drives the wafer stage 18 via the wafer driving device 42 to move the irradiation amount sensor 20 directly below the projection optical system PL.
  • the main controller 21 turns on the light source 1, illuminates the illuminance sensor 20 with the illumination light IL via the projection optical system PL, and outputs the output of the illuminance sensor 20 at that time. It is stored in memory (not shown). At this time, the main controller 21 measures the output of the irradiation amount sensor 20 over the entire scanning range while scanning the reticle stage RST via the reticle driving system 41 so that the same conditions as the actual exposure are obtained. Then, the total is stored in the memory.
  • the reticle R is set on the reticle stage RST by a reticle loader (not shown), and in this state, the main controller 21 scans the reticle stage RST in the same manner as described above while scanning the irradiation amount sensor 20 over the entire scanning range.
  • the outputs are measured and summed, and the reticle R is calculated by calculating the ratio of the total value of the outputs of the dose sensors 20 to the total value of the outputs of the dose sensors 20 stored in the memory above. Can be determined.
  • the irradiation amount is measured while scanning the reticle stage RST.
  • the measurement may be performed while repeating the step movement of the reticle R for each range in which the illumination area covers.
  • the output of the irradiation amount sensor 20 may be represented as a function corresponding to the scanning coordinates of the reticle R, and the function may be stored in the memory.
  • M (t) M (t - ⁇ t) X e ⁇ ⁇ (- ⁇ t / T) + K xWx (1 ⁇ 7?) X (1-r) x [1 -exp (- ⁇ t / T) ] ⁇ ⁇ ⁇ (1)
  • T is the time constant of thermal deformation at the measurement point
  • is the thermal deformation saturation value at the measurement point
  • At is the measurement interval
  • W is the irradiation power of reticle R
  • 7 is the transmittance of reticle R
  • r is the reticle The reflectance of R.
  • the value obtained above is used for the transmittance 7? Of the reticle R.
  • the reflectance r of the reticle R is obtained in advance. Then, a predetermined experiment is performed, and the relationship between the illumination energy and the irradiation expansion of the reticle R is obtained at points ⁇ 1 and ⁇ 2 at the measurement interval ⁇ .
  • the reticle irradiation power W during this experiment is calculated based on the output of the integrator sensor 6 at that time. Relationship between integre overnight sensor 6 and reticle irradiation power W Are proportional to each other, the ratio ⁇ between the two is determined in advance by experiment, this is stored in memory, and the ratio is multiplied by the output I of the integrator sensor 6 to calculate the reticle irradiation power W described above. I do.
  • the time constants of thermal deformation at points ⁇ 1 and ⁇ 2, ⁇ 1, ⁇ 2, and points ⁇ 1, ⁇ 2 Equations (2) and (3) can be obtained by finding the thermal deformation saturation values ⁇ 1 and ⁇ 2 of, and substituting them into D and ⁇ in the above equation.
  • ⁇ 1 (t) ⁇ 1 (t - ⁇ t) xe ⁇ ⁇ (- ⁇ t / T 1) + K 1 xWx (1 ⁇ 7?) X (1-r) x [1 -exp (- ⁇ / ⁇ 1)] ⁇ ⁇ ⁇ (2)
  • M2 (t) M2 (t - ⁇ t) X exp (- ⁇ t / T 2) + K 2 XWx (1-77) x (1-r) x [1 -exp (- ⁇ / ⁇ 2)] (3)
  • the output of the integrator sensor 6 at that time is multiplied by the above ratio ⁇ to calculate the reticle irradiation power W.
  • the thermal deformation amounts 1 ⁇ 11 (t) and M 2 (t) of M 1 and 2 at time t are calculated.
  • the calculation interval At may be determined based on the amount of change in the points M1 and M2 per unit time and the required accuracy. In practice, a value of 10 msec or less is often selected.
  • the reticle irradiation power W is calculated based on the output of the integrator sensor 6 at the time of exposure, even when the power of the light source 1 fluctuates or the amount of illumination light is intentionally reduced, It is possible to calculate the reticle irradiation power W accurately.
  • the linear expansion of the material of reticle R Energy from coefficient The amount of thermal deformation for lugi absorption may be determined from thermal simulation.
  • the reticle reflectivity is obtained in advance and stored in a memory.However, there is a variation in the reflectivity among a plurality of reticles, and a calculation error can be ignored by using a uniform reflectivity. If it disappears, the reticle reflectivity may be registered with a resolution that can be neglected so that the calculation error can be ignored, and the reticle reflectance may be selected according to the reticle R to be used.
  • M 1 A (t) M 1 A (t - ⁇ t) xexp (- ⁇ t / T A ) + K A x Wx (1-7?)
  • M 1 B (t) M 1 B (t - ⁇ t) xexp (- ⁇ t / T B ) + K B x Wx (1-7?)
  • the time constant is not limited to the above two, but can be easily extended to three time constants, and furthermore, there is a time delay between irradiation and appearance of a change in magnification (in terms of control). If there is so-called "dead time", It is not limited to the above calculation model.
  • a magnification correction method in the non-scanning direction will be described.
  • the above M1 (t) and M2 (t) are thermal deformations of the reticle in the scanning direction of each point, however, it is usually safe to assume that the reticle fluctuates by the same amount in the non-scanning direction.
  • t) and M 2 (t) are corrected by giving an offset to the magnification correction.
  • the offset value of the magnification according to the coordinates is approximated by, for example, approximation with a quadratic function so that the magnification changes smoothly from M 1 (t) and M 2 (t).
  • the magnification change in the non-scanning direction is separately calculated in the same manner as in the above M 1 (t) and M 2 (t). May be.
  • an average of M1 (t) and M2 (t) is calculated as an offset value of the magnification, and a constant value is obtained without depending on the coordinates of reticle R.
  • Magnification correction may be performed. Next, a method of correcting the magnification in the scanning direction will be described.
  • the magnification in the scanning direction can be corrected by calculating the average value of M1 (t) and M2 (t) as a magnification error and changing the relative speed ratio between the reticle R and the wafer W accordingly.
  • the magnification correction in the scanning direction has no choice but to correct the intermediate value between M1 (t) and M2 (t) as a magnification error.
  • the above-described step 'and' scan exposure is sequentially repeated for a plurality of wafers.
  • the pattern of the reticle R is transferred to the wafer W.
  • the thermal deformation amounts M 1 (t) and M 2 (t) of the reticle R bottles M 1 and M 2 are constantly calculated using the above equations (2) and (3). Calculated at intervals of t. While these amounts of thermal deformation are small, as described above, other imaging performances of the projection optical system PL, such as curvature of field, coma, Without affecting aberrations, etc., the magnification and distortion of the projected image of the reticle pattern due to the thermal deformation of the reticle are corrected, and the Z stage 17 is driven and controlled in consideration of the effects of these corrections to focus. Correction has been performed.
  • the irradiation energy of the illumination light IL is accumulated in the reticle R, and the thermal deformation amount of the reticle R gradually decreases.
  • the situation of this change in thermal deformation differs for each point of reticle R.
  • the difference ⁇ M1 (t) between the thermal deformation amounts M1 (t) and M2 (t) of points M1 and M2 of reticle R t) — M2 (t) ⁇ gradually increases, and barrel distortion occurs in the projected image (transfer image) of the reticle pattern.
  • the magnification correction in the scanning direction is performed using the average value of M1 (t) and M2 (t) as a magnification error. (t) -M2 (t) ⁇ , and if left unchecked, at some point it will be unacceptable.
  • the main controller 21 calculates the difference (M1 (t) -M 2 ( t) ⁇ and monitor this change.
  • the rectangular pattern changes into a barrel-shaped distortion shape due to the thermal deformation of the reticle R
  • monitoring the change of the above difference ⁇ M 1 (t) -M 2 (t) ⁇ as a physical quantity is This is nothing less than monitoring the barrel type physical quantity as a physical quantity.
  • the above difference is a difference between thermal deformation amounts at different points on the reticle, and thus is a kind of information regarding an energy absorption amount of the reticle R due to irradiation of the illumination light (energy beam) IL.
  • the main controller 21 suspends the exposure operation once, the reticle R is naturally cooled, and reaches the second predetermined value LL. Wait until it becomes. Thereafter, when the difference ⁇ M1 (t) -M2 (t) ⁇ becomes smaller than the second predetermined value LL, the main controller 21 resumes the exposure operation, and again executes the difference ⁇ M1 (t) —M2 (t) ⁇ until the first predetermined value LH is reached.
  • Fig. 5 shows how the difference ⁇ M 1 (t)-M2 (t) ⁇ changes with time when the exposure operation is repeatedly performed in this manner. .
  • the dotted line shows how the difference ⁇ M 1 (t) -M2 (t) ⁇ changes with time when the exposure is not interrupted.
  • the first predetermined value LH may be determined based on required accuracy (exposure accuracy, overlay accuracy, etc.).
  • the exposure interruption time (waiting time) can be set for a lot with relatively low required accuracy. Time) can be reduced, so that the throughput can be improved as a result.
  • the time during which the difference ⁇ M 1 (t) -M 2 (t) ⁇ changes from the second predetermined value LL to the first predetermined value LH is set to the exposure time for one wafer W.
  • the exchange time after the exposure of one wafer W is completed for cooling the reticle. It may be used as a waiting time (Saiichi Burlap).
  • the time required for the difference ⁇ M1 (t) -M2 (t) ⁇ to change from the second predetermined value LL to the first predetermined value LH is exactly the time required for exposure of a plurality of wafers W ( (Including an exchange time on the way), and in such a case, the pure waiting time is reduced for the same reason, and the deterioration of the throughput can be suppressed accordingly.
  • the rectangular pattern changes into a barrel-shaped disposition shape due to the thermal deformation of the reticle R.
  • a thread-wound distortion shape is preliminarily provided on the reticle.
  • the reticle on which the pin-shaped distortion-shaped pattern is drawn is referred to as a reticle R 'for convenience.
  • the reticle R ′ is thermally deformed by the irradiation of the illumination light, and gradually changes into a barrel-shaped dissection shape as the irradiation energy is absorbed.
  • the above-mentioned predetermined shape is, for example, a shape (the barrel at that time) symmetric to the shape of the pattern immediately before the interruption of the exposure when the above-described dummy exposure is not performed (when the physical quantity is the first predetermined value LH).
  • the value of the difference ⁇ M 1 (t) ⁇ M 2 (t) ⁇ at which the pattern of the reticle R, has the above-mentioned predetermined shape is set as a second predetermined value LL ′.
  • the main controller 21 starts exposure of the actual wafer when the difference ⁇ M 1 (t) ⁇ M 2 (t) ⁇ reaches the second predetermined value LL ′.
  • the exposure operation is performed such that the difference ⁇ M 1 (t) —M 2 (t) ⁇ is maintained between the first predetermined value LH, and the second predetermined value LL, Is repeated alternately.
  • the corrected residual error determined according to the physical quantity ⁇ M 1 (t) — M 2 (t) ⁇ within the allowable range becomes positive or negative, so comparing Fig. 5 and Fig. 6
  • the width between the first predetermined value LH 'and the second predetermined value LL' can be set to almost twice the width between LH and LL in FIG. 5, and the exposure is interrupted.
  • the main controller 21 uses the physical quantity (M 1 (t) described above as the physical quantity related to the deformation of the reticle R (or R ′). -M 2 (t) ⁇ , and when the physical quantity exceeds the first predetermined value LH, the exposure operation is temporarily stopped, the reticle is naturally cooled for a predetermined time, and the physical quantity resumes the exposure operation.
  • the exposure operation is automatically restarted, so that the interruption time is prevented from becoming unnecessarily long, and the pattern caused by thermal deformation of the reticle R is prevented.
  • Constant image distortion It can be controlled automatically below the value. Therefore, it is possible to prevent a decrease in exposure accuracy due to thermal deformation of the reticle R without significantly lowering the throughput. This is particularly effective when the reticle R is made of a material that is easily affected by heat, such as fluorite.
  • the thermal deformation of the reticle R has been described, but the thermal deformation of the projection optical system (projection lens) PL is also calculated at the same time, and these are combined so as to be reflected in the magnification correction in the scanning direction and the non-scanning direction. But of course it is good. In such a case, it is possible to correct the imaging performance with higher accuracy.
  • Many examples of the calculation and correction of the thermal deformation of the projection optical system (projection lens) PL are already known, and those methods can be adopted. Such calculations and corrections are disclosed, for example, in Japanese Patent Application Laid-Open No. 7-94339 and corresponding US Patent Nos.
  • magnification correction mechanism is indispensable, but it is only necessary to judge whether or not to adopt other corrections of imaging performance based on the required accuracy.
  • the case where the barrel-shaped distortion has occurred in the reticle has been described. However, even when other distortions have occurred, the same processing can be performed to effectively cope with the distortion.
  • the reticle is deformed by thermal deformation due to the exposure light, and the physical quantity ⁇ M 1 (t) —M 2 (t) ⁇ corresponding to the corrected residual error that cannot be corrected is equal to the first predetermined value LH
  • the exposure operation is interrupted to start cooling the reticle, and the exposure operation is restarted when the value falls below the second predetermined value LL.
  • the exposure operation may be restarted after a certain period of time required for natural cooling has elapsed without checking whether or not the exposure operation has been performed.
  • thermal deformation of the reticle may be obtained in consideration of the cooling function.
  • the reticle R may be forcibly cooled using a cooling device such as a water-cooled cooling device, a Peltier device, or a heat pipe.
  • a light-reducing filter such as an ND filter or a light-amount stop is arranged at a position in the illumination optical system conjugate with the pupil of the projection optical system PL, for example, at the exit end face of the second fly-eye lens 4, and irradiates the reticle R with these.
  • the intensity of the pulsed illumination light IL may be reduced.
  • the physical quantity to be monitored is a calculated value
  • the present invention is not limited to this.
  • two or three or more points having different reticle R as the physical quantity are used. These temperatures may be selected, and these temperatures may be measured at predetermined time intervals using a temperature sensor. From the relationship between the temperatures of two or more points of the mask, that is, the temperature distribution of the mask, for example, refer to The amount of thermal deformation can be determined using the calculation method disclosed in No. 17.
  • the exposure operation can be interrupted when the amount of thermal deformation is equal to or more than a predetermined value, using the amount of thermal deformation obtained in this manner, as in the above-described embodiment.
  • the relationship between the temperature distribution of the mask and the amount of thermal deformation can be determined in advance, and the exposure operation can be interrupted when the temperature distribution becomes a predetermined distribution based on the relationship. In the latter case, the mask pattern distortion is monitored indirectly through the measured temperature.
  • the disclosure of the aforementioned Japanese Patent Application Laid-Open No. 4-192173 is incorporated herein by reference.
  • the physical quantity ⁇ M 1 (t) —M 2 (t) ⁇ corresponding to the thermal deformation of the reticle R due to the exposure light is monitored as the physical quantity related to the deformation of the reticle R.
  • the present invention is not limited to this.
  • information on the amount of energy absorbed by the reticle R due to irradiation of the illumination light (energy beam) IL from the light source (beam source) 1 for example, the time integrated value of the output of the integrate sensor 6 or the time integrated value and the ratio It is also possible to limit the irradiation of the reticle R with the energy beam based on the detected information on the energy absorption.
  • the laser oscillation of the light source (excimer laser) 1 as a beam source is stopped to stop the irradiation of the pulse illumination light (energy beam) IL.
  • the beam path (optical path) of the pulsed illumination light IL may be blocked by the movable blind, or the voltage applied to the light source (charging current) may be adjusted, or the position in the illumination optical system conjugate with the pupil of the projection optical system PL.
  • a light-reducing filter such as an ND filter, a light-amount aperture, or the like may be arranged on the exit end face of the second fly-eye lens 4 to reduce the intensity of the pulse illumination light IL applied to the reticle R.
  • the amount of illumination on the reticle R the amount of light irradiation (integrated exposure) on a photosensitive material such as a photoresist applied on the substrate is adjusted to a desired value.
  • the movement speed of the mask and the substrate at the time of scanning exposure may be adjusted according to the amount of illumination light that has been set. Further, the width of the projection area IA in the scanning direction may be changed, or the oscillation cycle of the pulsed illumination light may be changed.
  • a shirt, a reticle movable blind, a dimming filter, a light amount aperture, and a control method thereof for restricting the irradiation of the energy beam are disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 2-169917. To the extent permitted by the designated or designated elected States in the application, these disclosures are incorporated by reference and are incorporated herein by reference.
  • the amount of thermal deformation represented by M 1 (t) —M 2 (t) is calculated in real time based on the model formulas (1) to (3) using the output data from the integrator sensor.
  • M 1 (t) —M 2 (t) by substituting the illumination light pattern preset for use in actual exposure into the model formula, M 1 (t) —M 2 (t) with respect to the elapsed time t from the start of mask illumination, that is, heat
  • a time schedule of the deformation amount may be obtained in advance.
  • the obtained time schedule is stored in the control device or a memory provided separately, and only the time from the start of illumination is measured at the time of actual exposure, and M 1 (t) —M 2 (t ) Can be controlled to interrupt the exposure operation when a time has been reached that is greater than or equal to a first predetermined value.
  • M 1 (t) —M 2 (t ) Can be controlled to interrupt the exposure operation when a time has been reached that is greater than or equal to a first predetermined value.
  • a plurality of shots may be included in one substrate.
  • the exposure operation may be temporarily interrupted each time one or more shot exposure operations are completed.
  • Illumination light for exposure is, for example, 5 to 15 nm.
  • ultra-high pressure mercury lamp instead of such as an excimer laser, or F 2 laser, infrared region oscillated from the DFB semiconductor laser or fiber one laser, or a single wavelength laser in the visible range, for example, erbium (or erbium and Germany Toribiumu Both may be amplified by a doped fiber amplifier, and a harmonic converted to ultraviolet light using a nonlinear optical crystal may be used.
  • the oscillation wavelength of a single-wavelength laser is in the range of 1.51 to 1.59 ⁇
  • the 8th harmonic whose generation wavelength is in the range of 189 to 199 nm, or the generated wavelength is The 10th harmonic within the range of 151-159 nm is output.
  • the oscillation wavelength is in the range of 1.544 to 1.553 yum
  • the 8th harmonic in the range of 193 to 194 nm, that is, ultraviolet light having almost the same wavelength as the ArF excimer laser
  • the 10th harmonic within the range of 157 to 158 ⁇ [ ⁇ , that is, almost the same wavelength as the F 2 laser Ultraviolet light is obtained.
  • the oscillation wavelength is in the range of 1.03 to 1.12 ⁇
  • the 7th harmonic whose emission wavelength is in the range of 147 to 160 nm will be output, and Assuming that the wavelength is in the range of 0.909 to 1.106 / m, the generated wavelength is the seventh harmonic within the range of 157 to 158 ⁇ , that is, the wavelength is almost the same as that of the F 2 laser. Is obtained.
  • the single-wavelength oscillation laser a laser made of yttrium-doped fiber is used as the single-wavelength oscillation laser.
  • a reflective reticle is used, and the optical path from the laser light source to the wafer is usually kept in a vacuum, so that heat of the reticle is not released to the outside. Therefore, even in a projection exposure apparatus using EUV light, a decrease in exposure accuracy can be prevented by monitoring information on reticle deformation and information on heat (energy) absorption of the reticle as in the present invention.
  • a beam splitter is arranged between the reticle and the projection optical system, and the reticle is irradiated with illumination light for exposure through the beam splitter, so that the illumination optical system Can be arranged on the same side of the reticle as the projection optical system.
  • the EUV light can be adjusted so that its principal ray is inclined with respect to the direction orthogonal to the reticle and enters the reticle.
  • the projection optical system may be constituted by only a plurality of reflection optical elements, and the reticle side may be a non-telecentric optical system.
  • the exposure beam is not limited to ultraviolet light including EUV light, visible light, and infrared light, and may be radiation such as X-rays or particle beams such as electron beams.
  • Fig. 7 shows a flowchart of an example of manufacturing devices (semiconductor chips such as ICs and LSIs, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.).
  • a device function / performance design for example, a circuit design of a semiconductor device
  • a pattern design for realizing the function is performed.
  • step 202 mask manufacturing step
  • step 203 wafer manufacturing step
  • step 204 wafer processing step
  • step 204 wafer processing step
  • step 205 device assembly step
  • step 205 includes, as necessary, processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation).
  • step 206 inspection step
  • an operation check test, a durability test, and the like of the device manufactured in step 205 are performed.
  • FIG. 8 shows a detailed example of the step 204 in the case of a semiconductor device.
  • step 211 oxidation step
  • step 2 1 CVD step
  • step 2 1 3 Electrode formation step
  • step 2 14 ion implantation step
  • ions are implanted into the wafer.
  • the post-processing step is executed as follows.
  • step 2 15 register forming step
  • a photosensitive agent is applied to the wafer.
  • step 211 exposure step
  • the circuit pattern of the mask is transferred to the wafer by the above-described exposure apparatus and exposure method.
  • Step 217 development step
  • Step 218 etching step
  • step 219 registration removal step
  • the above-described exposure apparatus 100 and its exposure method are used in the exposure step (step 2 16), so that exposure defects due to thermal deformation of the reticle can be prevented. Generation can be prevented, the device yield can be improved, and the productivity of highly integrated devices can be improved.
  • the exposure process, the exposure apparatus, and the device manufacturing method used in the semiconductor device manufacturing process have been described as examples.
  • Exposure apparatus and method for transferring onto a plate, device used for manufacturing thin-film magnetic head The present invention can also be applied to an exposure apparatus and method for transferring a semiconductor pattern onto a ceramic wafer, and an exposure apparatus and method used for manufacturing an imaging device (such as a CCD).
  • an imaging device such as a CCD
  • micro devices such as semiconductor devices, glass substrates or silicon wafers are used to manufacture reticles or masks used in optical exposure equipment, EUV exposure equipment, X-ray exposure equipment, electron beam exposure equipment, etc.
  • the present invention can also be applied to an exposure apparatus and a method for transferring a circuit pattern to the same. Industrial applicability
  • the exposure apparatus and the exposure method of the present invention it is possible to prevent a decrease in exposure accuracy due to thermal deformation of a mask during exposure, and to achieve high accuracy even for a highly integrated pattern of an integrated circuit. Exposure becomes possible. Further, according to the device manufacturing method of the present invention, a highly integrated and highly reliable device such as a semiconductor chip can be obtained.

Abstract

In an aligner (100), the heat deformation of a mask (R) which is caused by the exposure beam application is measured while a plurality of photosensitive wafers (W) are exposed with the pattern of the mask (R) and, if the heat deformation exceeds a predetermined value, the exposure of the next wafers is suspended or stopped. After the mask (R) is cooled during the suspension or stop of the exposure and the heat deformation of the mask is lowered, the exposure is resumed. The suspension or stop of the exposure is controlled by a controller (21). In the case of scanning exposure, the difference in heat deformation between the central part and edge part in a non-scanning direction of the mask is measured and the exposure is controlled so that the difference may not exceed a predetermined value. Thus the distortion of the mask pattern image formed on the wafer (W) is prevented. The decline of the exposure precision which is caused by the heat deformation of the mask can be avoided.

Description

明細書 露光装置及び露光方法並びにデバイス製造方法 技術分野  Description Exposure apparatus, exposure method, and device manufacturing method
本発明は、 露光装置及び露光方法並びにデバイス製造方法に係り、 更に詳し 〈は、 露光ビ一厶によりマスクを照射し、 該マスクに形成されたパターンを基 板上に転写する露光装置及び露光方法並びにその露光装置又は露光方法を用い たデバイス製造方法に関する。 背景技術  The present invention relates to an exposure apparatus, an exposure method, and a device manufacturing method. More specifically, the present invention relates to an exposure apparatus and an exposure method for irradiating a mask with an exposure beam and transferring a pattern formed on the mask onto a substrate. And a device manufacturing method using the exposure apparatus or the exposure method. Background art
従来、 半導体素子又は液晶表示素子等をフォ卜リソグラフイエ程で製造する 際に、 種々の露光装置が使用されており、 現在では、 フォ卜マスク又はレチク ル (以下、 「レチクル」 と総称する) のパターンを、 投影光学系を介して表面 にフ才卜レジス 卜等の感光剤が塗布されたウェハ又はガラスプレー卜等の基板 上に転写する投影露光装置、 例えば所謂ステップ ·アンド ' リピ—卜方式の縮 小投影露光装置 (いわゆるステツバ) が用いられている。 このステツパは、 各 ショッ 卜領域の露光がレチクルと基板とを静止させた状態で行われるため、 静 止型露光装置とも呼ばれる。 かかる露光装置を用いて半導体素子等を製造する場合には、 異なる回路パ夕 ーンを基板上に幾層にも積み重ねて形成する必要があるため、 回路パターンが 描画されたレチクルと、 基板上の各ショッ 卜領域に既に形成されたパターンと を精確に重ね合わせることが重要である。 このため、 投影露光装置に用いられ る投影光学系は、 倍率、 デイストーシヨン等の諸収差 (結像性能) が良好であ ることが要求される。 さらに、 集積回路等は年々高集積化しており、 これに伴 つて回路パターンの最小線幅 (デバイスルール) も年々微細化の傾向を強め、 重ね合わせ精度を含む露光精度に対する要求も厳しくなつてきた。 かかる背景の下、 矩形又は円弧状の照明光によりレチクルを照明し、 レチク ル及び基板を投影光学系に対して 1次元方向に同期走査することにより、 レチ クルパターンを投影光学系を介して基板上に逐次転写する所謂スリッ 卜 ·スキ ヤン方式、 あるいは、 所謂ステップ 'アンド ■スキャン方式などの走査型露光 装置が開発されるようになってきた。 かかる走査型露光装置によれば、 収差の 最も少ない投影光学系の有効露光フィールドの一部 (中央部) のみを使用して レチクルパターンの転写が可能となるため、 静止型露光装置に比べてより微細 なパターンをより高精度に露光することが可能になる。 また、 走査型露光装置 によれば、 走査方向には投影光学系の制限を受けずに露光フィ一ルドを拡大す ることができるので、 大面積露光が可能であり、 また、 投影光学系に対してレ チクル及びウェハを相対走査することで平均化効果があり、 ディストーション や焦点深度の向上が期待出来る等のメリッ 卜がある。 ところで、 投影露光装置に用いられる投影光学系の投影倍率は、 装置の僅か な温度変化や、 投影露光装置の置かれたクリーンルーム内の大気の僅かな気圧 変動、 温度変化、 及び投影光学系への露光光による照射エネルギの照射履歴等 により、 所定の倍率の近傍で変動する。 また、 レチクル等の熱膨張などにより デイス卜一シヨンが発生することがあった。 このため、 近年の投影露光装置では、 所望の結像特性を維持するため投影光 学系の結像特性を微調整する結像特性補正機構が設けられている。 この結像特 性補正機構としては、 例えば、 レチクルと投影光学系との間隔を変化させる機 構、 投影光学系を構成する特定のレンズェレメン卜を光軸方向に駆動したり、 傾斜方向に駆動したりする機構、 あるいは投影光学系中に設けた所定の密閉室 内の圧力を調整する機構等が知られている。 また、 レチクルの熱変形 (照射変動とも呼ばれる) を補正するものとして、 例えば、 特開平 4一 1 9 2 3 1 7号公報に開示されるように、 レチクル面内の 温度分布とそれによるレチクルの熱変形を計算で求め、 投影レンズの中の一部 のレンズ群を光軸方向に駆動したり傾斜させるものが知られている。 しかしながら、上記特開平 4— 1 9 2 3 1 7号公報に開示される補正方法は、 上記したステツバのような静止型露光装置 (一括露光装置) では、 十分に補正 効果が得られるが、 以下に示す理由により走査型露光装置にそのまま採用して も十分な補正効果は得られないという不都合があつた。 レチクルは露光光の照射によつて熱変形するが、 この変形はそのレチクルの 面内温度分布に依存し、この面内温度は中央部が周辺部に比べて高くなるので、 結果的にレチクルの中央位置と端部位置の変形量は異なり、 所謂樽型のディス 卜一シヨンが発生する。 かかる場合に、 ステツパ等の一括露光装置であれば、 上述した結像特性補正機構を用いて、 レンズ群を光軸方向に駆動することによ り、 上記のレチクル熱変形によるパターン像のディス卜一シヨンを補正するこ とができる。 しかしながら、 走査型露光装置では、 露光光とレチクルとを相体 移動し、 より詳細には、 露光光でレチクルが照明されることによって形成され る細長い照明領域 (照明スポッ 卜) でレチクルを走査しているため、 走査中に 照明領域内に存在しているレチクルの変形形状または変形度合いが走査方向位 置により異なることになる。 特に、 照明領域がレチクルの走査方向における中 央部に位置している場合と照明領域がレチクルの走査方向における端部に位置 している場合 (後者は走査開始位置または走査終了位置) とでは、 レチクルの 変形形状または変形度合いが大き〈異なる。 上述のようにレチクルが樽型に大 きく変形した場合に、 非走査方向については上記の補正機構により倍率を補正 することによりレチクルの熱変形に起因するパターン像の歪みをある程度補正 することは可能である。 しかしながら、 走査方向については、 前述のように、 走査位置ごとにレチクル変形量が異なると共に、 照明領域内のレチクルの中央 部のレチクル変形量が大きいために、 レンズ群の光軸方向駆動と傾斜駆動とを いかに組み合わせてもパターン像の歪みを補正することは困難となる。 また、 上記のパターン像の歪みは露光不良の要因となり、 集積回路等のマイ ク口デバイスの製造に際してその製品の歩留まりを低下させる一因となってい た。 本発明は、 かかる事情の下になされたもので、 その第 1の目的は、 マスクの 熱変形に起因する露光精度の低下を防止することができる露光装置及びその製 造方法を提供することにある。 本発明の第 2の目的は、 マスクの熱変形に起因する露光精度の低下を防止す ることができる露光方法を提供することにある。 本発明の第 3の目的は、 高集積度のデバイスの生産性を向上させることがで きるデバイス製造方法を提供することにある。 発明の開示 本発明の第 1の態様に従えば、 露光ビームによりマスク (R ) を照射し、 前 記マスク ( R ) に形成されたパターン (P A ) を基板 (W ) 上に転写する露光 装置であって、 前記マスク ( R ) の変形に関連する物理量の変化を監視し、 そ の物理量が第 1 の所定値以上になったとき露光動作を一旦中断する制御装置 ( 2 1 ) を備える露光装置が提供される。 これによれば、 マスクの変形に関連する物理量の変化を監視し、 その物理量 が第 1の所定値以上になったときに露光動作を一旦中断し、 マスクを所定時間 自然冷却して前記物理量を第 1の所定値未満に低下させた後、 制御装置により 露光動作が再開される。 このため、 マスクの変形に関連する物理量が大き〈な つて許容限界の値 (第 1の所定値) になると、 露光動作が自動的に中断される ことから、 マスクの熱変形に起因するバタ一ンの像の歪みを許容範囲内に抑制 することができ、 これによりマスクの熱変形に起因する露光精度の低下を防止 することが可能になる。 なお、 通常の露光装置が行うプロセスには、 基板の露 光装置へのロード、 基板のァライメン卜、 基板または基板上に区画された複数 のショッ 卜領域 (後にチップとなる領域) の露光、 ショッ 卜領域間のステツピ ング移動、 基板の交換のためのアン口一ドという種々のプロセスステップが含 まれており、 ステッピング移動や基板の交換のためのアンロードの前には必ず 露光動作が終了されている。 本明細書において使用される用語 「露光動作の中 断」 には、 かかる露光が行われないプロセスステップを開始するときに露光動 作を中断することは含まれない。 すなわち、 用語 「露光動作の中断」 とは、 マ スクの照射による熱変形を緩和するために、 露光プロセスに含まれるプロセス ステップ中または続けて行われるプロセスステップの間に積極的にマスクを休 止または冷却させることを意味する。 しかしながら、 後述するように、 この積 極的なマスクの休止または冷却時間が基板の交換などのプロセスステップと重 複していてもかまわない。 この場合において、 前記制御装置 ( 2 1 ) は、 前記物理量が第 2の所定値以 下になつたとき、 または所定時間経過後に前記露光動作を再開するようにして も良い。 かかる場合には、 マスクの変形に関連する物理量が第 2の所定値 (例 えば露光動作を再開するのに適した値) になると、 制御装置により露光動作が 自動的に再開されるため、 必要以上に長い時間に渡って露光動作が中断される ことがなくなるとともにマスクの熱変形に起因するパターン像の歪みを一定値 以下に自動的に制御することができる。 従って、 スループッ 卜をあまり低下さ せることなく、 マスクの熱変形に起因する露光精度の低下を防止することが可 育 になる。 あるいは、 前記制御装置 ( 2 1 ) は、 所定枚数の基板 (W ) の露光動作に同 期して、 すなわち、 所定枚数の基板 (W ) の露光動作が終了する毎に、 前記露 光動作の中断及び再開を行うようにしても良い。 かかる場合には、 複数の基板 を順次露光するような場合に、 基板の交換時間とマスクの自然冷却のための時 間とを才一バーラップさせることができるので、 マスクの熱変形に起因する露 光精度の低下防止に加え、 スループッ 卜の悪化をより抑制することが可能にな る o 上記露光装置において、前記物理量は温度等の計測値であっても勿論良いが、 例えば、 前記物理量は、 計測された所定の物理量に基いて演算処理された量に し 1=g=る。 また、上記露光装置において、前記物理量としては種々の量が考えられるが、 例えば、 前記物理量は、 前記マスク ( R ) の前記露光ビームの照射によるエネ ルギ吸収に関する量であっても良い。 上記露光装置において、 前記マスク (R ) のパターン像の結像特性を補正す る結像特性補正装置をさらに備え、 前記制御装置 ( 2 1 ) は、 前記物理量が前 記第 1の所定値未満である間は、 前記マスク (R ) の変形の影響をキャンセル するように前記結像特性補正装置 ( 1 4 ) を制御し得る。 これによれば、 制御 装置により、 物理量が第 1の所定値未満である間は、 マスクの変形の影響をキ ヤンセルするように結像特性補正装置が制御されるので、 かかる物理量が第 1 の所定値未満である間の露光中に、 マスクの変形に起因するパターンの像の歪 みの発生を防止することができる。 上記結像特性補正装置としては種々の構成が考えられるが、 例えば、 前記マ スク ( R) と前記基板 (W) とを所定の走査方向に同期移動する駆動装置 ( 2 1、 4 1、 42 ) を更に備えた走査型露光装置の場合には、 前記結像特性補正 装置は、 前記マスクと前記基板との同期移動の速度比を調整するものであって も良い。 かかる場合には、 結像特性補正装置によりマスクと基板との同期移動 の速度比を調整することにより、 マスクのパターン像の走査方向の倍率誤差等 を補正することができる。 あるいは、 露光装置が前記マスク (R) のパターン の像を前記基板上に投影する投影光学系 (P L) を更に備えた投影露光装置の 場合には、 前記結像特性補正装置 ( 1 4) は、 前記投影光学系の結像特性を調 整するものであっても良い。 上記露光装置において、 前記マスク (R) と前記基板 (W) とを所定の走査 方向に同期移動する駆動装置 ( 2 1、 41、 42 ) を更に備え、 前記監視対象 の物理量には、 前記マスク ( R ) の前記走査方向の樽型ディストーションが含 まれ得る。 これによれば、 マスクと基板とを所定の走査方向に同期移動させる 駆動装置を備えた走査型露光装置において、 特に補正が困難なマスクの走査方 向の樽型デイス卜ーシヨンを監視対象の物理量としたため、 走査型露光装置に ついてもマスクの熱変形に起因するパターンの像の歪みを一定値以下に抑制す ることができる。 上記露光装置において、 前記マスク (R) には、 前記露光ビームの吸収によ る変形を考慮したパターンが描画され、 前記制御装置 (2 1 ) は、 前記マスク (R) のパターンが所定形状に変化するまでダミー露光動作を行い得る。 これ によれば、 ダミー露光の終了段階で前記パターンが所定形状になるので、 この 所定形状をダミー露光が行われない場合の、 上記露光中断直前 (前記物理量が 第 1の所定値のとき)のパターンの形状と対称的な形状に設定することにより、 第 1の所定値と第 2の所定値との間隔を前記態様の場合に比べてほぼ倍に設定 することができ、 これにより露光が中断される時間の露光が行われる時間に対 する比率を小さくすることが可能になり、 実質的な待ち時間を短縮して、 スル ープッ 卜の悪化を最小限に止めることが可能になる (図 5及び図 6参照)。 本発明の第 2の態様に従えば、 露光ビーム ( I L ) によりマスク (R ) を照 射し、 前記マスク (R ) に形成されたパターンを基板 (W ) 上に転写する露光 方法であって、 前記マスク ( R ) の変形に関連する物理量が第 1の所定値以上 になったとき露光動作を一旦中断する第 1工程と ;露光を再開する第 2工程と を含む露光装置が提供される。 この態様の露光方法によれば、 マスクの変形に関連する物理量が第 1の所定 値以上になったときに露光動作が一旦中断され、 その中断から、 望ましくは、 マスクを所定時間自然冷却した後、 露光が再開される。 このため、 マスクの変 形に関連する物理量が大き〈なって許容限界の値 (第 1の所定値) になると、 露光動作が中断されるので、 マスクの熱変形に起因するパターンの像の歪みを 許容範囲内に抑制することができ、 これによりマスクの熱変形に起因する露光 精度の低下を防止することが可能になる。 この露光方法において、 前記第 2工程における露光動作の再開は、 前記物理 量が第 2の所定値以下になつたとき行われるようにしても良い。 かかる場合に は、 マスクの変形に関連する物理量が第 2の所定値 (例えば露光動作を再開す るのに適した値) になると露光動作を自動的に再開でき、 スループッ トをあま り低下させることなく、 マスクの熱変形に起因するパターン像の歪みを許容範 囲内に自動的に制御することが可能になる。 上記露光方法において、 前記物理量は温度等の計測値であっても勿論良い が、 例えば、 前記物理量は、 計測された所定の物理量に基いて演算処理された 至にし る。 また、上記露光方法において、前記物理量としては種々の量が考えられるが、 例えば、 前記物理量は、 前記マスク (R) の前記露光ビーム (I L) の照射に よるエネルギ吸収に関する量であっても良い。 本発明の第 3の態様に従えば、 露光ビーム (I L) によりマスク (R) を照 射し、 前記マスク (R) に形成されたパターンを基板 (W)上に転写する露光 方法であって、 所定枚数の基板 (W) の露光動作が終了する毎に、 露光動作の —時中断 (休止) 及び再開を行うことを特徴とする露光方法が提供される。 これによれば、 複数の基板を順次露光するような場合に、 基板の交換時間と マスクの自然冷却のための時間とを才一バーラップさせることができるので、 マスクの熱変形に起因する露光精度の低下防止に加え、 スループッ 卜の向上が 可能になる。 本発明の第 4の態様に従えば、 ビーム源からのエネルギビーム (I L) をマ スク (R) に照射し、 前記マスクに形成されたパターンを基板 (W)上に転写 する露光方法において、 前記エネルギビームの照射による前記マスクのェネル ギ吸収量に関する情報を検出し、 前記検出されたエネルギ吸収量に関する情報 に基づいて、 前記マスクに対するエネルギビームの照射を制限することを特徴 とする露光方法が提供される。 これによれば、 エネルギビームの照射によるマスクのエネルギ吸収量に関す る情報を検出し、 検出されたエネルギ吸収量に関する情報に基づいてマスクに 対するエネルギビームの照射を制限するので、 例えばマスクが許容レベルを超 えるエネルギを吸収する前にマスクに対するエネルギビームの照射を制限する ことができ、 これによりマスクの熱変形に起因するパターンの像の歪みを許容 範囲内に抑制することができ、 マスクの熱変形に起因する露光精度の低下を防 止することが可能になる。 ここで、 エネルギビームの照射を制限するとは、 ェ ネルギビーム、 例えば、 露光ビームのパワーを調節することのみならず、 露光 ビームの照射を中断する意味をも含む。 エネルギビームの照射を制限する場合 には、 基板、 特にフォ卜レジス卜などの感光性材料が塗布された基板への露光 量を所望の量に保っために、 露光時間などを適宜調節すればよい。 例えば、 走 査型露光を行う場合には、 露光ビームのパワーに応じて、 エネルギビームに対 する基板の移動速度を適宜調整すればよい。 第 4の態様において、 前記マスク (R ) のパターンが転写される基板 (W ) を交換するときに、 露光動作を中断しても良い。 かかる場合には、 基板の交換 時間とマスクの自然冷却のための時間とをオーバ一ラップさせることができる ので、 マスクの熱変形に起因する露光精度の低下防止に加え、 スループッ トの 向上が可能になる。 上記露光方法において、 エネルギビームの照射の制限方法は、 種々考えられ る。 例えば、 前記制限は、 前記ビーム源からのビーム照射を停止することを含 んでいても良く、 あるいは、 前記エネルギビームのビーム路を遮断することを 含んでいても良く、 あるいは、 前記マスク ( R ) に照射されるエネルギビーム の強度を小さくすることを含んでいても良い。 ビーム照射の停止は、 ビ一厶源 であるレーザ光源等のレーザ発振を停止すること等により実現され、 ビ一厶路 の遮断は、 例えばビーム路に配置されたシャツタ、 あるいはブラインド等のビ —ム路開閉手段を閉じることにより実現され、 また、 減光フィル夕、 光量絞り 等を用いることによりエネルギビームの強度を小さくすることができる。 本発明の第 5の態様に従えば、 第 1の態様に従う露光装置を用いてデバイス を製造するデバイス製造方法が提供される。 また、 本発明の第 6の態様に従えば、 第 2の態様に従う露光方法を含むデバ イスの製造方法が提供される。 本発明の第 7の態様に従えば、 光源 ( 1 ) からの露光ビーム ( I L ) により マスク (R ) を照射し、 前記マスクに形成されたパターンを基板 (W ) 上に転 写する露光方法であって、 前記マスクの変形に関連する物理量を監視し、 該物 理量が所定値以上になったことを検出する露光方法が提供される。 これによれ ば、 マスクの変形に関連する物理量を監視して該物理量が所定値以上になった ことを検出するので、 マスクの変形を許容値内に収めることが可能となる。 そ のための手段は、 種々考えられ、 例えば、 前記物理量が所定値以上になったと きに露光動作を中断しても良く、 あるいは、 前記物理量が所定値以上になった ときに前記マスクを冷却しても良い。 ここで、 マスクの冷却には、 自然冷却及 び適宜な冷却装置による強制冷却の両者を含む。 第 7の態様に従う露光方法において、 前記物理量が所定値以上になつたとき に前記光源からの露光ビームの照射を停止しても良く、 あるいは、 前記物理量 が所定値以上になったときに前記露光ビームの強度を小さく しても良く、 ある いは前記物理量が所定値以上になつたときに前記露光ビームのビー厶路を遮断 しても良い。 第 7の態様に従う露光方法において、 前記物理量には種々のものが含まれる が、 前記物理量は、 前記マスクのエネルギ吸収量であっても良く、 あるいは前 記マスクのパターンの歪量であっても良い。 本発明の第 8の態様に従えば、 所定のパターンが形成されたマスクを露光ビ ー厶で照射して、 該パターンの像で基板または基板中に区画された領域を露光 する露光動作を、 複数の基板または前記基板上に区画された複数の領域に渡つ て順次実行する露光装置において、 2. Description of the Related Art Conventionally, various exposure apparatuses have been used to manufacture semiconductor elements or liquid crystal display elements by photolithography, and at present, photomasks or reticle (hereinafter collectively referred to as “reticle”) are used. Projection exposure apparatus for transferring the above pattern onto a substrate such as a wafer or a glass plate having a surface coated with a photosensitive agent such as a thin resist through a projection optical system, for example, a so-called step-and-repeat method. A small projection exposure system (so-called stepper) is used. This stepper is also called a static exposure apparatus because the exposure of each shot area is performed with the reticle and the substrate stationary. When a semiconductor device or the like is manufactured by using such an exposure apparatus, it is necessary to form different circuit patterns on the substrate in a number of layers, so that the reticle on which the circuit pattern is drawn and the reticle on the substrate are used. It is important to accurately overlap the pattern already formed in each shot area. For this reason, the projection optical system used in the projection exposure apparatus is required to have good aberrations (imaging performance) such as magnification and distortion. Furthermore, integrated circuits and the like are becoming more and more highly integrated year by year, and accordingly, the minimum line width (device rule) of a circuit pattern is becoming increasingly finer year by year. The demand for exposure accuracy including overlay accuracy has also become strict. Under such a background, the reticle is illuminated with rectangular or arc-shaped illumination light, and the reticle and the substrate are synchronously scanned in a one-dimensional direction with respect to the projection optical system, so that the reticle pattern is projected on the substrate via the projection optical system. Scanning exposure apparatuses, such as a so-called slit-scan method for sequentially transferring images onto the top or a so-called step-and-scan method, have been developed. According to such a scanning type exposure apparatus, the reticle pattern can be transferred using only a part (central part) of the effective exposure field of the projection optical system having the least aberration. Fine patterns can be exposed with higher precision. Further, according to the scanning type exposure apparatus, the exposure field can be expanded in the scanning direction without being restricted by the projection optical system, so that a large area exposure is possible. On the other hand, relative scanning of the reticle and wafer has an averaging effect, and has the advantage that distortion and depth of focus can be expected. By the way, the projection magnification of the projection optical system used in the projection exposure apparatus is subject to slight temperature changes in the apparatus, slight pressure fluctuations in the atmosphere in the clean room where the projection exposure apparatus is placed, temperature changes, and changes in the projection optical system. It fluctuates near a predetermined magnification due to the irradiation history of the irradiation energy by the exposure light and the like. In addition, due to thermal expansion of a reticle or the like, a portion may be generated. For this reason, recent projection exposure apparatuses are provided with an imaging characteristic correction mechanism for finely adjusting the imaging characteristics of the projection optical system in order to maintain desired imaging characteristics. Examples of the imaging characteristic correction mechanism include a mechanism that changes the distance between the reticle and the projection optical system, a mechanism that drives a specific lens element that forms the projection optical system in the optical axis direction, and a mechanism that drives the lens element in the tilt direction. Or a mechanism for adjusting the pressure in a predetermined closed chamber provided in the projection optical system. In order to correct thermal deformation (also referred to as irradiation variation) of the reticle, for example, as disclosed in Japanese Patent Application Laid-Open No. HEI 4-192173, the temperature distribution in the reticle plane and the reticle It is known to calculate thermal deformation and drive or tilt some of the lens groups in the projection lens in the optical axis direction. However, the correction method disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 4-192317 is sufficient in a static exposure apparatus (collective exposure apparatus) such as the above-described stepper to obtain a correction effect. For the reasons described in (1), there is an inconvenience that a sufficient correction effect cannot be obtained even when employed directly in a scanning exposure apparatus. The reticle is thermally deformed by the exposure light exposure, and this deformation depends on the in-plane temperature distribution of the reticle, and this in-plane temperature is higher in the central part than in the peripheral part. The amount of deformation between the center position and the end position is different, and a so-called barrel-shaped distortion occurs. In such a case, if a batch exposure apparatus such as a stepper is used, the lens group is driven in the optical axis direction by using the above-described imaging characteristic correction mechanism, thereby distorting the pattern image due to the reticle thermal deformation. One shot can be corrected. However, in a scanning exposure apparatus, the exposure light and the reticle move in phase, and more specifically, the reticle is scanned in an elongated illumination area (illumination spot) formed by illuminating the reticle with the exposure light. Therefore, the deformed shape or the degree of deformation of the reticle existing in the illumination area during scanning differs depending on the position in the scanning direction. In particular, when the illumination area is located at the center in the scanning direction of the reticle and when the illumination area is located at the end in the scanning direction of the reticle (the latter is the scanning start position or scanning end position), The deformed shape or degree of deformation of the reticle is large <different. As described above, when the reticle is greatly deformed into a barrel shape, the distortion of the pattern image due to the thermal deformation of the reticle is corrected to some extent in the non-scanning direction by correcting the magnification by the correction mechanism described above. It is possible to do. However, in the scanning direction, as described above, the amount of reticle deformation differs for each scanning position, and the amount of reticle deformation at the center of the reticle in the illumination area is large. It is difficult to correct the distortion of the pattern image no matter how they are combined. In addition, the above-described distortion of the pattern image is a factor of exposure failure, and has been a factor of lowering the yield of the product when manufacturing a micro-port device such as an integrated circuit. The present invention has been made under such circumstances, and a first object of the present invention is to provide an exposure apparatus capable of preventing a decrease in exposure accuracy due to thermal deformation of a mask and a method of manufacturing the same. is there. A second object of the present invention is to provide an exposure method that can prevent a decrease in exposure accuracy due to thermal deformation of a mask. A third object of the present invention is to provide a device manufacturing method capable of improving the productivity of a highly integrated device. DISCLOSURE OF THE INVENTION According to a first aspect of the present invention, an exposure apparatus for irradiating a mask (R) with an exposure beam and transferring a pattern (PA) formed on the mask (R) onto a substrate (W). An exposure device comprising a control device (21) for monitoring a change in a physical quantity related to the deformation of the mask (R) and temporarily interrupting the exposure operation when the physical quantity becomes equal to or more than a first predetermined value. An apparatus is provided. According to this, the change in the physical quantity related to the deformation of the mask is monitored, and when the physical quantity becomes equal to or more than the first predetermined value, the exposure operation is temporarily stopped, the mask is naturally cooled for a predetermined time, and the physical quantity is reduced. After decreasing the value to less than the first predetermined value, the control device restarts the exposure operation. Therefore, if the physical quantity related to the deformation of the mask becomes large <the allowable limit value (first predetermined value), the exposure operation is automatically interrupted. The distortion of the image of the mask can be suppressed within an allowable range, thereby making it possible to prevent a decrease in exposure accuracy due to thermal deformation of the mask. The processes performed by an ordinary exposure apparatus include loading a substrate into an exposure device, aligning the substrate, exposing a substrate or a plurality of shot areas (areas that will later become chips) partitioned on the board, and exposing the shot. It includes various process steps such as stepping movement between process areas and unloading for substrate exchange.Before stepping movement or unloading for substrate exchange, the exposure operation must be completed. ing. As used herein, the term "interrupting the exposure operation" does not include interrupting the exposure operation when initiating a process step in which such exposure is not performed. In other words, the term “interruption of the exposure operation” means that the mask is actively stopped during the process steps included in the exposure process or between subsequent process steps to reduce thermal deformation due to mask irradiation. Or means to cool. However, as described below, this active mask pause or cooling time may overlap with process steps such as substrate replacement. In this case, the control device (21) may restart the exposure operation when the physical quantity becomes equal to or less than a second predetermined value or after a predetermined time has elapsed. In such a case, when the physical quantity related to the deformation of the mask reaches a second predetermined value (for example, a value suitable for restarting the exposure operation), the control device automatically restarts the exposure operation. The exposure operation is not interrupted for a longer time, and the distortion of the pattern image due to the thermal deformation of the mask is maintained at a constant value. The following can be controlled automatically. Therefore, it is possible to prevent a decrease in exposure accuracy due to the thermal deformation of the mask without significantly lowering the throughput. Alternatively, the control device (21) interrupts the exposure operation in synchronization with the exposure operation of the predetermined number of substrates (W), that is, every time the exposure operation of the predetermined number of substrates (W) ends. And restart may be performed. In such a case, when exposing a plurality of substrates sequentially, the time required for substrate replacement and the time required for natural cooling of the mask can be greatly overlapped, so that exposure caused by thermal deformation of the mask can be achieved. In addition to preventing a decrease in optical accuracy, it is possible to further suppress the deterioration of throughput.o In the above-described exposure apparatus, the physical quantity may be a measured value such as a temperature. 1 = g = based on the amount calculated based on the measured physical quantity. In the above exposure apparatus, various physical quantities can be considered as the physical quantity. For example, the physical quantity may be an amount related to energy absorption by irradiation of the mask (R) with the exposure beam. The exposure apparatus further includes an imaging characteristic correction device that corrects an imaging characteristic of a pattern image of the mask (R), wherein the control device (21) is configured such that the physical quantity is less than the first predetermined value. During this period, the imaging characteristic correction device (14) can be controlled so as to cancel the influence of the deformation of the mask (R). According to this, while the physical quantity is less than the first predetermined value, the control unit controls the imaging characteristic correction apparatus so as to cancel the influence of the mask deformation. Distortion of the image of the pattern due to the deformation of the mask during the exposure while it is less than the predetermined value Can be prevented. Various configurations are conceivable as the imaging characteristic correcting device. For example, a driving device (21, 41, 42) that synchronously moves the mask (R) and the substrate (W) in a predetermined scanning direction. ), The imaging characteristic correction device may adjust a speed ratio of synchronous movement between the mask and the substrate. In such a case, by adjusting the speed ratio of the synchronous movement between the mask and the substrate by the imaging characteristic correcting device, it is possible to correct a magnification error in the scanning direction of the pattern image of the mask in the scanning direction. Alternatively, in a case where the exposure apparatus further includes a projection optical system (PL) for projecting an image of the pattern of the mask (R) onto the substrate, the imaging characteristic correction apparatus (14) It may adjust the imaging characteristics of the projection optical system. The exposure apparatus further includes a driving device (21, 41, 42) that synchronously moves the mask (R) and the substrate (W) in a predetermined scanning direction, and the physical quantity of the monitored object includes the mask (R) a barrel-shaped distortion in the scanning direction may be included. According to this, in a scanning exposure apparatus including a driving device that synchronously moves a mask and a substrate in a predetermined scanning direction, a barrel-type distortion in a scanning direction of a mask, which is particularly difficult to correct, is a physical quantity to be monitored. Therefore, even in the case of a scanning exposure apparatus, it is possible to suppress the image distortion of the pattern due to the thermal deformation of the mask to a certain value or less. In the above exposure apparatus, a pattern in consideration of deformation due to absorption of the exposure beam is drawn on the mask (R), and the control device (21) causes the pattern of the mask (R) to have a predetermined shape. The dummy exposure operation can be performed until the change occurs. According to this, since the pattern has a predetermined shape at the end of the dummy exposure, when the dummy exposure is not performed on the predetermined shape, immediately before the interruption of the exposure (when the physical quantity is By setting the shape to a shape symmetric to the shape of the pattern (at the first predetermined value), the interval between the first predetermined value and the second predetermined value is set to be approximately double as compared with the case of the above embodiment. As a result, the ratio of the time during which the exposure is interrupted to the time during which the exposure is performed can be reduced, thereby substantially reducing the waiting time and minimizing the deterioration of throughput. It can be stopped (see Figures 5 and 6). According to a second aspect of the present invention, there is provided an exposure method for irradiating a mask (R) with an exposure beam (IL) and transferring a pattern formed on the mask (R) onto a substrate (W). An exposure apparatus comprising: a first step of temporarily stopping an exposure operation when a physical quantity related to the deformation of the mask (R) is equal to or more than a first predetermined value; and a second step of restarting exposure. . According to the exposure method of this aspect, the exposure operation is temporarily interrupted when the physical quantity related to the deformation of the mask becomes equal to or more than the first predetermined value, and after the interruption, preferably after the mask is naturally cooled for a predetermined time, Exposure is resumed. For this reason, if the physical quantity related to the deformation of the mask becomes large and reaches the allowable limit value (first predetermined value), the exposure operation is interrupted, and the image distortion of the pattern due to the thermal deformation of the mask is caused. Can be suppressed to within an allowable range, thereby making it possible to prevent a decrease in exposure accuracy due to thermal deformation of the mask. In this exposure method, the restart of the exposure operation in the second step may be performed when the physical quantity becomes equal to or less than a second predetermined value. In such a case, when the physical quantity related to the deformation of the mask reaches a second predetermined value (for example, a value suitable for restarting the exposure operation), the exposure operation can be automatically restarted, and the throughput is considerably reduced. Without this, it becomes possible to automatically control the distortion of the pattern image due to the thermal deformation of the mask within an allowable range. In the above-described exposure method, the physical quantity may be a measured value such as a temperature, but, for example, the physical quantity is calculated based on the measured predetermined physical quantity. In the above-described exposure method, various physical quantities can be considered as the physical quantity. For example, the physical quantity may be an amount related to energy absorption by irradiation of the mask (R) with the exposure beam (IL). . According to a third aspect of the present invention, there is provided an exposure method for irradiating a mask (R) with an exposure beam (IL) and transferring a pattern formed on the mask (R) onto a substrate (W). An exposure method is provided, wherein the exposure operation is interrupted (paused) and restarted every time the exposure operation of a predetermined number of substrates (W) is completed. According to this method, when exposing a plurality of substrates sequentially, the time required for substrate replacement and the time required for natural cooling of the mask can be substantially overlapped, so that exposure accuracy caused by thermal deformation of the mask can be achieved. In addition to preventing a decrease in the output, it is possible to improve the throughput. According to a fourth aspect of the present invention, in an exposure method for irradiating a mask (R) with an energy beam (IL) from a beam source and transferring a pattern formed on the mask onto a substrate (W), An exposure method comprising: detecting information on an energy absorption amount of the mask by the irradiation of the energy beam; and limiting irradiation of the energy beam to the mask based on the detected information on the energy absorption amount. Provided. According to this, information on the energy absorption amount of the mask due to the irradiation of the energy beam is detected, and the mask is detected based on the detected information on the energy absorption amount. The irradiation of the energy beam to the mask can be limited, for example, before the mask absorbs more than an acceptable level of energy, thereby reducing the image of the pattern due to thermal deformation of the mask. Distortion can be suppressed within an allowable range, and a decrease in exposure accuracy due to thermal deformation of the mask can be prevented. Here, limiting the irradiation of the energy beam includes not only adjusting the power of the energy beam, for example, the exposure beam, but also interrupting the irradiation of the exposure beam. When the irradiation of the energy beam is restricted, the exposure time and the like may be appropriately adjusted in order to maintain a desired amount of exposure to the substrate, particularly to a substrate coated with a photosensitive material such as a photo resist. . For example, when scanning exposure is performed, the moving speed of the substrate with respect to the energy beam may be appropriately adjusted according to the power of the exposure beam. In the fourth aspect, when exchanging the substrate (W) onto which the pattern of the mask (R) is transferred, the exposure operation may be interrupted. In such a case, the time required for substrate replacement and the time required for natural cooling of the mask can be overlapped, so that exposure accuracy can be prevented from lowering due to thermal deformation of the mask and throughput can be improved. become. In the above exposure method, various methods for limiting the irradiation of the energy beam can be considered. For example, the restriction may include stopping beam irradiation from the beam source, or may include blocking a beam path of the energy beam, or the mask (R) This may include reducing the intensity of the energy beam irradiated on the substrate. The beam irradiation can be stopped by stopping the laser oscillation of a beam source such as a laser light source, and the beam path can be blocked, for example, by shutting down a beam or a blind placed in the beam path. The intensity of the energy beam can be reduced by using a dimming filter, a light amount aperture, or the like. According to a fifth aspect of the present invention, there is provided a device manufacturing method for manufacturing a device using the exposure apparatus according to the first aspect. According to a sixth aspect of the present invention, there is provided a device manufacturing method including the exposure method according to the second aspect. According to a seventh aspect of the present invention, there is provided an exposure method for irradiating a mask (R) with an exposure beam (IL) from a light source (1) and transferring a pattern formed on the mask onto a substrate (W). An exposure method is provided that monitors a physical quantity related to the deformation of the mask and detects that the physical quantity has exceeded a predetermined value. According to this, since the physical quantity related to the deformation of the mask is monitored and it is detected that the physical quantity has exceeded a predetermined value, the deformation of the mask can be kept within an allowable value. Various means may be used for this purpose.For example, the exposure operation may be interrupted when the physical quantity has exceeded a predetermined value, or the mask has been cooled when the physical quantity has reached a predetermined value. You may. Here, the cooling of the mask includes both natural cooling and forced cooling by an appropriate cooling device. In the exposure method according to the seventh aspect, the irradiation of the exposure beam from the light source may be stopped when the physical quantity has reached a predetermined value or more, or the exposure may be performed when the physical quantity has reached a predetermined value or more. The intensity of the beam may be reduced, or the beam path of the exposure beam may be cut off when the physical quantity has reached a predetermined value or more. In the exposure method according to the seventh aspect, the physical quantity includes various ones, but the physical quantity may be an energy absorption amount of the mask, or may be a distortion amount of the pattern of the mask. good. According to the eighth aspect of the present invention, an exposure operation of irradiating a mask on which a predetermined pattern is formed with an exposure beam to expose a substrate or a region partitioned in the substrate with an image of the pattern is performed. An exposure apparatus that sequentially executes a plurality of substrates or a plurality of regions partitioned on the substrate,
前記マスクを照射することによるマスクの熱変形量またはマスクの熱変形を もたらす因子を計測するための計測器と ;  A measuring device for measuring a thermal deformation amount of the mask or a factor causing the thermal deformation of the mask by irradiating the mask;
前記熱変形量または因子が予め設定した第 1の値以上になったときに、 次の 露光動作を中断する制御装置と ; を備えることを特徴とする露光装置が提供さ れ 。 本発明の第 8の態様に従う露光装置によれば、 マスクの熱変形量または熱変 形をもたらす因子を計測するための計測器を備えるため、 マスクの熱変形量ま たは因子が、 例えば、 熱変形量許容上限に相当する第 1の値を超える前に、 次 の基板はまたは基板中の次のショッ ト領域の露光動作を一時的に中断すること ができる。 露光動作は、 マスクが冷却されて熱変形量が予め設定した第 2の値 にまで低下したときに露光動作を再開させることができる。 これにより、 熱変 形によるマスクのパターンの歪みを防止して所望の結像特性を維持することが できる。 熱変形をもたらす因子は、 例えば、 マスクの温度、 マスクが露光ビ一 ムから吸収した熱エネルギである。 本発明によれば、 マスクの熱変形量または熱変形をもたらす因子は、 計測器 により求めることができる。 例えば、 マスクの熱変形量を本発明の具体例で示 したようにマスクの照射開始からの経過時間 tに関する熱変形量を示すモデル 計算式を用いて求めることができる。 例えば、 マスクの熱変形による基板上の 投影像の (樽型) ディストーションを有効に防止するには、 マスクの中央部と 端部における熱変形量をモデル計算式を用いてそれぞれ求め、 それらの差を求 めることにより、 ディストーションの度合いを見積もることができる。 あるい は、 熱変形をもたらす因子として、 マスクの温度、 例えば、 マスクの中央部と 端部における温度差あるいはマスクの温度分布を温度センサなどで計測して、 得られた温度分布から、 例えば、 特開平 4— 1 9 2 3 1 7号に開示された計算 方法を用いてマスクの熱変形量を求めることができる。 すなわち、 本発明にお いて、 マスク温度やマスクの吸収した熱エネルギなどのマスクの熱変形をもら す因子またはパラメータを計測することでマスクの熱変形量を間接的に計測す ることもできる。 前記計測器は、前記モデル計算式に基いて熱変形を計算する演算器にし得る。 また、 マスクの温度分布から熱変形量を求める場合には、 計測器には演算器の みならず、 温度センサなどを含み得る。 また、 計測器は、 マスクの照射開始か らの経過時間を計測するタイマとしても機能し得る。 なお、 前記制御装置は、 露光動作の中断及び開始を制御するのみならず、 前記演算器として機能させて ちょい。 この態様の露光装置は、 走査方向にマスクと基板を同期して移動する走査型 露光装置にし得る。 この場合、 前記計測器として演算器は、 マスクの熱変形モ デル計算式に基いて、 マスクに対する照射開始からの経過時間 tに関する非走 査方向におけるマスク中央部における熱変形量 M 1 ( t ) 及びマスク端部にお ける熱変形量 M 2 ( t ) 並びにそれらの差を演算し得る。 本発明の第 9の態様に従えば、 所定のパターンが形成されたマスクを露光ビ —ムで照射して、 該パターンの像で基板または基板中に区画された領域を露光 する露光動作を、 複数の基板または前記基板中の区画された複数の領域に渡つ て順次実行する露光方法において、 And a control device for interrupting the next exposure operation when the thermal deformation amount or the factor becomes equal to or larger than a first value set in advance. According to the exposure apparatus according to the eighth aspect of the present invention, since the exposure apparatus includes a measuring device for measuring the amount of thermal deformation of the mask or a factor causing the thermal deformation, the amount of thermal deformation of the mask or the factor is, for example, The exposure operation of the next substrate or the next shot region in the substrate can be temporarily interrupted before exceeding the first value corresponding to the allowable upper limit of thermal deformation. In the exposure operation, the exposure operation can be restarted when the mask is cooled and the amount of thermal deformation decreases to a preset second value. As a result, it is possible to prevent the mask pattern from being distorted due to thermal deformation and to maintain desired imaging characteristics. Factors that cause thermal deformation are, for example, the temperature of the mask and the thermal energy absorbed by the mask from the exposure beam. According to the present invention, the amount of thermal deformation of the mask or a factor causing the thermal deformation can be determined by the measuring instrument. For example, the amount of thermal deformation of the mask can be obtained by using a model calculation formula showing the amount of thermal deformation with respect to the elapsed time t from the start of irradiation of the mask as shown in the specific example of the present invention. For example, to effectively prevent (barrel-shaped) distortion of the projected image on the substrate due to the thermal deformation of the mask, the thermal deformation at the center and at the edge of the mask is obtained using a model calculation formula, and the difference between them is calculated. Seeking By doing so, the degree of distortion can be estimated. Alternatively, as a factor that causes thermal deformation, the temperature of the mask, for example, the temperature difference between the center and the end of the mask or the temperature distribution of the mask is measured with a temperature sensor or the like, and from the obtained temperature distribution, for example, The amount of thermal deformation of the mask can be obtained by using the calculation method disclosed in Japanese Patent Application Laid-Open No. 4-192173. That is, in the present invention, the amount of thermal deformation of the mask can be indirectly measured by measuring a factor or a parameter that causes thermal deformation of the mask, such as the mask temperature or the thermal energy absorbed by the mask. The measuring device may be a computing device that calculates thermal deformation based on the model calculation formula. When calculating the amount of thermal deformation from the temperature distribution of the mask, the measuring device may include not only a computing device but also a temperature sensor. The measuring device can also function as a timer that measures the elapsed time from the start of mask irradiation. The control device not only controls interruption and start of the exposure operation, but also functions as the computing unit. The exposure apparatus of this aspect can be a scanning type exposure apparatus that moves a mask and a substrate in synchronization in a scanning direction. In this case, the arithmetic unit as the measuring device calculates the thermal deformation amount M 1 (t) at the center of the mask in the non-scanning direction with respect to the elapsed time t from the start of irradiation on the mask based on the thermal deformation model calculation formula of the mask. And the thermal deformation amount M 2 (t) at the mask edge and their difference can be calculated. According to a ninth aspect of the present invention, an exposure operation of irradiating a mask on which a predetermined pattern is formed with an exposure beam and exposing a substrate or a region partitioned in the substrate with an image of the pattern is performed. An exposure method that is sequentially executed over a plurality of substrates or a plurality of partitioned regions in the substrate,
マスクの熱変形量を求め; マスクの熱変形量が予め設定した値以上になつたときに、 次の基板または領 域に対する露光動作を中断することを特徴とする露光方法が提供される。 本発明の第 9の態様に従う露光方法によれば、 マスクの照射開始時点からの マスクの熱変形がわかるため、 熱変形量が基準値を超えた場合に、 熱変形量が 所定の値に戻るまで、 次に露光すべき基板または基板中に区画された次のショ ッ トエリアの露光を一時中断することができる。 これにより、 マスクの歪みに よるマスクパターン像のディス卜一シヨン等の発生を防止し、 良好な結像特性 を維持することができる。 この態様の露光方法において、 マスクの照射開始からの経過時間 tに対する マスクの熱変形に関するモデル式に基いて、 マスクの照射開始からマスクの熱 変形量を計算し得る。 この場合、 露光開始前に、 マスクの熱変形に関するモデ ル式に基いて、 マスクの照射開始からの経過時間に対するマスクの熱変形量の 変化に関するタイムスケジュールを求めておき、 該熱変形量が予め設定した値 以上に達する時刻に、 次の基板または領域に対する露光動作を中断し得る。 か かるタイムスケジュールは予め制御装置や別途設けたメモリに記憶させておい てもよい。 前記モデル式は、 熱変形の時定数及び熱変形飽和値をパラメータと して含み得る。 本発明の第 1 0の態様に従えば、 所定のパターンが形成されたマスクを照射 して、 該パターンの像で基板または基板中に区画された領域を露光する露光動 作を、 複数の基板または前記基板中の区画された複数の領域に渡って順次実行 する露光方法において、 Determining the thermal deformation of the mask; An exposure method is provided in which, when the thermal deformation amount of the mask becomes equal to or larger than a preset value, the exposure operation for the next substrate or area is interrupted. According to the exposure method according to the ninth aspect of the present invention, since the thermal deformation of the mask from the start of irradiation of the mask is known, when the thermal deformation exceeds a reference value, the thermal deformation returns to a predetermined value. The exposure of the next substrate to be exposed or the next shot area defined in the substrate can be temporarily stopped. As a result, it is possible to prevent a mask pattern image from being distorted due to mask distortion, and to maintain good imaging characteristics. In the exposure method according to this aspect, the amount of thermal deformation of the mask can be calculated from the start of irradiation of the mask, based on a model formula relating to the thermal deformation of the mask with respect to the elapsed time t from the start of irradiation of the mask. In this case, before the start of exposure, a time schedule for a change in the amount of thermal deformation of the mask with respect to an elapsed time from the start of irradiation of the mask is obtained based on a model formula for thermal deformation of the mask. The exposure operation for the next substrate or area can be interrupted at a time when the value reaches or exceeds the set value. Such a time schedule may be stored in the control device or a separately provided memory in advance. The model equation may include a thermal deformation time constant and a thermal deformation saturation value as parameters. According to a tenth aspect of the present invention, an exposure operation of irradiating a mask on which a predetermined pattern is formed and exposing a substrate or a region partitioned in the substrate with an image of the pattern is performed by a plurality of substrates. Alternatively, in the exposure method, which is sequentially performed over a plurality of partitioned areas in the substrate,
マスクの温度分布を測定し ;  Measuring the temperature distribution of the mask;
マスクの温度分布に基いて熱変形量を求め;  Determining the amount of thermal deformation based on the temperature distribution of the mask;
熱変形量が予め設定した値以上になったときに、 次の基板または領域に対す る露光動作を中断することを特徴とする露光方法が提供される。 この態様の露光方法では、マスクの温度分布から熱変形量を間接的に求めて、 マスクの熱膨張による結像特性の劣化を防止することができる。 マスクの温度 分布から熱変形量を求めるには、 例えば、 特開平 4— 1 9 2 3 1 7号に開示さ れた計算方法を用い得る。 本発明に従う露光装置は、 以下の態様の製造方法により製造され得る。 本発 明の第 1 1の態様に従えば、 露光ビームによりマスクを照射し、 前記マスクに 形成されたパターンを基板上に転写する露光装置の製造方法であって、 When the amount of thermal deformation exceeds a preset value, the next substrate or area The exposure operation is interrupted. According to the exposure method of this aspect, the amount of thermal deformation is indirectly obtained from the temperature distribution of the mask, so that deterioration of the imaging characteristics due to thermal expansion of the mask can be prevented. In order to determine the amount of thermal deformation from the temperature distribution of the mask, for example, a calculation method disclosed in Japanese Patent Application Laid-Open No. 4-192173 may be used. The exposure apparatus according to the present invention can be manufactured by the following manufacturing method. According to a eleventh aspect of the present invention, there is provided a method for manufacturing an exposure apparatus for irradiating a mask with an exposure beam and transferring a pattern formed on the mask onto a substrate,
前記マスクに露光ビームを照射するための照射系を設け;  Providing an irradiation system for irradiating the mask with an exposure beam;
前記マスクの変形に関連する物理量の変化を監視し、 その物理量が第 1の所定 値以上になつたとき露光動作を一旦中断する制御装置を設けることを含む露光 装置の製造方法が提供される。 この方法は、 さらに、 マスクと基板との間に、 マスクに形成されたパターンを所定の投影倍率で基板上に投影するための投影 光学系を設け; マスクと基板と露光ビームに対して同期して移動するためのス テ一ジ系を設ける工程を含み得る。 また、 本発明の第 1 2の態様に従えば、 所定のパターンが形成されたマスク を照射して、 該パターンの像で基板または基板中に区画された領域を露光する 露光動作を、 複数の基板または前記基板中の区画された複数の領域に渡って順 次実行する露光装置の製造であって、 There is provided a method of manufacturing an exposure apparatus, comprising: monitoring a change in a physical quantity associated with the deformation of the mask, and providing a control device for temporarily stopping the exposure operation when the physical quantity becomes equal to or more than a first predetermined value. The method further comprises providing a projection optical system between the mask and the substrate for projecting a pattern formed on the mask onto the substrate at a predetermined projection magnification; and synchronizing the mask, the substrate, and the exposure beam. And providing a stage system for moving. Further, according to the 12th aspect of the present invention, the exposure operation of irradiating a mask on which a predetermined pattern is formed and exposing a substrate or a region partitioned in the substrate with an image of the pattern includes a plurality of exposure operations. A method of manufacturing an exposure apparatus that sequentially executes over a substrate or a plurality of partitioned areas in the substrate,
前記マスクを露光ビームで照射するための照射系を設け;  Providing an irradiation system for irradiating the mask with an exposure beam;
前記マスクを照射することによるマスクの熱変形量またはマスクの熱変形を もたらす因子を計測するための計測器を設け;  A measuring device for measuring an amount of thermal deformation of the mask due to irradiation of the mask or a factor causing thermal deformation of the mask;
前記熱変形量または因子が予め設定した値以上になったときに、 次の露光動作 を中断する制御装置を設ける ; ことを含む露光装置の製造方法が提供される。 この方法は、 さらに、 マスクの熱変形量を計算するための熱変形モデル計算式 を記憶したメモリを設ける工程を含み得る。 図面の簡単な説明 Providing a control device for interrupting the next exposure operation when the thermal deformation amount or the factor becomes equal to or more than a preset value; and a method of manufacturing an exposure device. The method may further include the step of providing a memory storing a thermal deformation model calculation formula for calculating a thermal deformation amount of the mask. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 一実施形態に係る露光装置の概略構成を示す図である。  FIG. 1 is a diagram showing a schematic configuration of an exposure apparatus according to one embodiment.
図 2は、 図 1の結像性能補正機構の構成を説明するため投影光学系を一部破 断して示す図である。  FIG. 2 is a diagram showing the projection optical system partially cut away for explaining the configuration of the imaging performance correcting mechanism of FIG.
図 3は、 レチクルの変形量を求める際のボイン卜を示す平面図である。  FIG. 3 is a plan view showing the points used to determine the amount of deformation of the reticle.
図 4は、 レチクルの熱変形の時間変化の様子を示す線図である。  FIG. 4 is a diagram showing how the thermal deformation of the reticle changes over time.
図 5は、 露光動作の中断と再開とを補正残留誤差に対応した物理量に応じて 行う本発明に係る露光方法を採用した場合の前記物理量の変化の様子を示す図 'あ 。  FIG. 5 is a diagram showing how the physical quantity changes when the exposure method according to the present invention in which the exposure operation is interrupted and resumed according to the physical quantity corresponding to the corrected residual error is adopted.
図 6は、 レチクルの熱変形をキャンセルするようなパターンをレチクル上に 描画して予めダミーヒー卜を行う本発明に係る露光方法を採用した場合の前記 物理量の変化の様子を示す図である。  FIG. 6 is a diagram showing how the physical quantity changes when the exposure method according to the present invention in which a pattern that cancels the thermal deformation of the reticle is drawn on the reticle and dummy heating is performed in advance is employed.
図 7は、 本発明に係るデバイス製造方法の実施形態を説明するためのフロー チヤ一 卜である。  FIG. 7 is a flowchart for explaining an embodiment of the device manufacturing method according to the present invention.
図 8は、 図 7のステップ 2 0 4における処理を示すフローチヤ一卜である。  FIG. 8 is a flowchart showing the processing in step 204 of FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の一実施形態を図 1ないし図 6に基づいて説明する。図 1には、 一実施形態に係る露光装置 1 0 0の概略的な構成が示されている。 この露光装 置 1 0 0は、 いわゆるステップ · アンド · スキャン方式の走査型露光装置であ る この露光装置 1 0 0は、 光源 1及び照明光学系 (2〜9 ) を含む照明系、 マ スクとしてのレチクル Rを保持するレチクルステージ R S T、投影光学系 Pし、 投影光学系 P L内に設けられ倍率等の結像性能を補正する結像性能補正機構 1Hereinafter, an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration of an exposure apparatus 100 according to one embodiment. The exposure apparatus 100 is a so-called step-and-scan type scanning exposure apparatus. The exposure apparatus 100 includes an illumination system including a light source 1 and an illumination optical system (2 to 9). A reticle stage RST that holds a reticle R as a disc, a projection optical system P, and an imaging performance correction mechanism that is provided in the projection optical system PL and corrects imaging performance such as magnification 1
4、 結像性能補正機構 1 4を制御するレンズコン 卜ローラ 1 5、 基板としての ウェハ Wを保持して XY面内を 2次元移動するウェハステージ WS T、 及びこ れらの制御系等を備えている。 前記照明系は、 光源 1、 第 1フライアイレンズ 2、 振動ミラ _ 3、 第 2フラ ィアイ レンズ 4、 ハーフミラ一 5、 インテグレー夕センサ 6、 レチクルブライ ンド 7、 折り曲げミラー 8及びコンデンサ一レンズ系 9等を含んで構成されて いる。 ここで、 この照明系の構成各部についてその作用とともに説明すると、 光源 1で発生した露光光としての照明光 I Lは不図示のシャッターを通過した後、 第 1フライアイレンズ 2により照度分布 (強度分布) がほぼ均一な光束に変換 される。 照明光 I Lとしては、 例えば K r Fエキシマレ一ザ光 (波長 248 η m) や A r Fエキシマレーザ光 (波長 1 93 nm)、 あるいは F2エキシマレ 一ザ光 (波長 1 57 nm) 等が用いられる。 エキシマレ一ザを光源とする露光 装置の一例は、 特開昭 57- 1 98631号公報 (対応する米国特許第 4, 44.The lens controller 15 that controls the imaging performance correction mechanism 14, the wafer stage WST that holds the wafer W as a substrate, and moves two-dimensionally in the XY plane while holding the wafer W, and the control system for these. Have. The illumination system includes a light source 1, a first fly-eye lens 2, a vibration mirror _3, a second fly-eye lens 4, a half mirror 5, an integrator lens sensor 6, a reticle blind 7, a bending mirror 8, and a condenser single lens system 9. And so on. Here, the components of the illumination system will be described together with the operation. Illumination light IL as exposure light generated by the light source 1 passes through a shutter (not shown), and is then illuminated by a first fly-eye lens 2 (intensity distribution). ) Is converted to a nearly uniform light flux. As illumination light IL, for example K r F excimer one laser light (wavelength 248 eta m) and A r F excimer laser beam (wavelength 1 93 nm), or F 2 excimer Ichizako (Wavelength 1 57 nm) or the like is used Can be An example of an exposure apparatus using an excimer laser as a light source is disclosed in Japanese Patent Application Laid-Open No. 57-198631 (corresponding US Pat.
58, 994号)、 特開平 1 — 259533号公報 (対応する米国特許第 5, 307, 207号) 等に開示され、 エキシマレーザ光源をステップ . アンド - スキャン露光に利用した露光装置の一例は、特開平 6— 1 32 1 95号公報 (対 応する米国特許第 5, 477 , 304号)、特開平 7— 1 42354号公報(対 応する米国特許第 5, 534, 970号) 等に開示されている。 従って図 1の 露光装置においても、 上記の各特許公報に開示されたエキシマレーザ及び露光 装置に関する技術をそのまま、 或いは部分的に変更して適用することが可能で ある。 本国際出願で指定した指定国または選択した選択国の国内法令が認める 限りにおいて、 上記公報及び米国特許を援用して本文の記載の一部とする。 第 1 フライアイレンズ 2から射出された光束は、 被照射面 (レチクル面又は ウェハ面) に生じる干渉縞や微弱なスペックルを平滑化するための振動ミラ一 3を介して水平方向に折り曲げられ、 第 2フライアイレンズ 4によって照度分 布が更に均一な光束とされ、 ハーフミラ一 5に至る。 そして、 この光束 (パル ス照明光) I Lの大部分 ( 9 7 %程度) は、 ハーフミラ一 5を透過してレチク ルブラインド 7を均一な照度で照明する。 ここで、 レチクルブラインド 7は、 2枚の可動ブラインドとその近傍に配置 された開口形状が固定された固定ブラインドとから構成されている。 可動ブラ インドの配置面は、 レチクル Rのパターン面と共役となっている。 固定ブライ ンドは、例えば 4個のナイフエッジにより矩形の開口を囲んだ視野絞りであり、 その矩形開口の上下方向の幅が可動ブラインドによって規定されるようになつ ており、 これによりレチクル Rを照明する際のスリツ 卜状の照明領域 I の 幅を所望の大きさに設定できるようになつている。 可動ブラインドは、 不図示 の可動ブラィンド駆動機構によつて開閉方向に駆動されるようになつており、 その動作がプロセスプログラムと呼ばれるマスキング情報に応じてメインコン 卜ローラ 2 1により制御されるようになっている。 レチクルブラインド 7を通過した光束は、 折り曲げミラ一 8に至り、 ここで 鉛直下方に折り曲げられ、 コンデンサレンズ系 9を介して回路バタ一ン等が描 かれたレチクル Rの照明領域 I A R部分を照明する。 58, 994), and JP-A-1-259533 (corresponding U.S. Pat. No. 5,307,207). Examples of an exposure apparatus using an excimer laser light source for step-and-scan exposure include: Disclosed in JP-A-6-132195 (corresponding U.S. Patent No. 5,477,304), JP-A-7-142354 (corresponding U.S. Patent No. 5,534,970), etc. Have been. Therefore, also in the exposure apparatus of FIG. 1, it is possible to apply the technology relating to the excimer laser and the exposure apparatus disclosed in each of the above-mentioned patent publications as they are, or to partially modify them. To the extent permitted by the national laws of the designated country or selected elected country in this international application, the above publications and US patents will be incorporated by reference. The light beam emitted from the first fly-eye lens 2 is bent in a horizontal direction via a vibration mirror 13 for smoothing interference fringes and weak speckles generated on the irradiated surface (reticle surface or wafer surface). The illuminance distribution is further made uniform by the second fly-eye lens 4 and reaches the half mirror 15. Most of this light flux (pulse illumination light) IL (about 97%) passes through the half mirror 15 to illuminate the reticle blind 7 with uniform illuminance. Here, the reticle blind 7 is composed of two movable blinds and a fixed blind disposed near the movable blind and having a fixed opening shape. The arrangement surface of the movable blind is conjugate to the reticle R pattern surface. The fixed blind is, for example, a field stop in which a rectangular aperture is surrounded by four knife edges, and the vertical width of the rectangular aperture is defined by a movable blind, thereby illuminating the reticle R. The width of the slit-shaped illumination area I can be set to a desired size. The movable blind is driven in the opening and closing direction by a movable blind drive mechanism (not shown) so that its operation is controlled by the main controller 21 in accordance with masking information called a process program. Has become. The luminous flux that has passed through the reticle blind 7 reaches the bending mirror 8, where it is bent vertically downward, and illuminates the illumination area IAR of the reticle R on which the circuit butter, etc., is drawn via the condenser lens system 9. .
—方、 前記残り ( 3 %程度) のパルス照明光 I Lは、 ハーフミラ— 5で反射 され、 インテグレータセンサ 6によって受光されるようになっている。 このィ ンテグレ一タセンサ 6によりレチクル Rに対する照明光量を検出することがで きる。 このインテグレ一タセンサ 6からの光量信号がメインコントローラ 2 1 に供給されている。 前記レチクルステージ R S T上にはレチクル R力 例えば真空吸着により固 定されている。 なお、 レチクル Rに用いる材質は、 使用する光源によって使い 分ける必要がある。 すなわち、 K r Fエキシマレ一ザ光や A r Fエキシマレ一 ザ光を光源とする場合は、 合成石英を用いることができるが、 F 2 エキシマレ —ザ光を用いる場合は、 ホタル石で形成する必要がある。 レチクルステージ R S Tは、 不図示のレチクルベース上をリニァモータ等で 構成されたレチクル駆動部 4 1により駆動され、 照明光学系の光軸 I X (後述 する投影光学系 P Lの光軸 A Xに一致) に垂直な平面内で所定の走査方向 (こ こでは Y軸方向とする) に所定ス卜ロークの範囲内で移動可能となっている。 このレチクルステージ R S Tは、 レチクル Rの全面が少なくとも照明光学系の 光軸 I Xを横切ることができるだけの移動ストロークを有している。 また、 レ チクルステージ R S Tは、 レチクル Rを位置決めするため、 X軸方向及び X Y 平面に直交する Z軸回りの回転方向にも微少駆動可能に構成されている。 レチクルステージ R S Tの位置は、 不図示のレチクルレ一ザ干渉計システム によって例えば数 n m〜1 n m以下の分解能で常時計測されており、 この干渉 計システムからのレチクルステージ R S Tの位置情報は、 メインコントローラ 2 1に送られ、 メインコントローラ 2 1ではレチクルステージ R S丁の位置情 報に基づいてレチクル駆動系 4 1 を介してレチクルステージ R S Tを制御する ( なお、 レチクルレーザ干渉計システムの測長軸は、 例えば走査方向に 2軸、 非 走査方向には 1軸設けられる。 また、 この場合、 不図示のレチクルァライメン卜系により所定の基準位置に レチクル Rが精度良〈位置決めされるように、 レチクルステージ R S Tの初期 位置が決定されるため、 レチクルステージ R S T上に設けられた不図示の反射 面の位置をレチクル干渉計システムにより計測するだけでレチクル Rの位置を 十分高精度に計測したことになる。 前記投影光学系 P Lは、 レチクルステージ R S Tの図 1 における下方に配置 され、 その光軸 A X (照明光学系の光軸 I Xに一致) の方向が Z軸方向とされ ている。 この投影光学系 P Lは、 ここでは両側テレセン卜リックな光学配置と なるように光軸 A X方向に沿って所定間隔で配置された複数枚のレンズエレメ ントから成る屈折光学系が使用されている。 この投影光学系 P Lは所定の投影 倍率、例えば 1 / 4 (あるいは 1 / 5 ) を有する縮小光学系である。 このため、 照明光学系からの照明光 I Lによってレチクル Rの照明領域 I A Rが照明され ると、 このレチクル Rを通過した照明光 I Lにより、 投影光学系 P Lを介して レチクル Rの回路パターンの一部が表面にフォ卜レジス卜が塗布されたウェハ W上に縮小投影される。 また、 投影光学系 Pしの内部には、 前記の如く、 結像性能補正機構 1 4が設 けられている。 この結像性能補正機構 1 4としては、 本実施形態では、 図 2に 示されるように、 投影光学系 P Lを構成する複数のレンズエレメントの内、 特 定の複数 (ここでは 5つ) のレンズ群 2 2、 2 3、 2 4、 2 5、 2 6のそれぞ れを、 ピエゾ素子などの圧電素子 2 7、 2 8、 2 9、 3 0、 3 1 を用いて独立 に光軸 A X方向 (Z方向) 及び X Y面に対する傾斜方向に駆動可能とした機構 が用いられている。 前記レンズ群 2 2、 2 3、 2 4、 2 5、 2 6は、 それぞれ のホルダを介して各 3つのピエゾ素子 2 7、 2 8、 2 9、 3 0、 3 1 によって 鏡筒 P Pに対して 3点で支持されている。このため、各 3つのピエゾ素子 2 7、 2 8、 2 9、 3 0、 3 1のそれぞれを独立して駆動することにより、 各レンズ 群 2 2、 2 3、 2 4、 2 5、 2 6を光軸 A X方向 (Z方向) 及び X Y面に対す る傾斜方向に駆動できるようになつている。 結像性能補正機構は、 例えば、 特 開平 4— 1 2 7 5 1 4号及び 4— 1 3 4 8 1 3号並びにそれらに対応する米国 特許第 5 , 1 1 7 , 2 5 5号に開示されており、 本国際出願で指定された指定 国または選択された選択国の国内法令の許す限りにおいてそれらの開示を援用 して本文の記載の一部とする。 本実施形態では、 後述するように、 上記結像性能補正機構 1 4によって、 5 つの収差、 具体的には像面湾曲、 倍率、 デイストーシヨン、 コマ収差、 球面収 差を補正するようになっており、 この結像性能補正機構 1 4とレンズコント口 ーラ 1 5とによって、 レチクル Rのパターン像の結像特性を補正する結像特性 補正装置が構成されている。 この結像特性補正装置による結像特性補正の具体 的な内容については後に詳述する。 なお、 照明光 I Lとして K r Fエキシマレ一ザ光や A r Fエキシマレ一ザ光 を用いる場合には、 投影光学系 P Lを構成する各レンズエレメントとしては合 成石英等を用いることができるが、 F 2 エキシマレ一ザ光を用いる場合には、 この投影光学系 P Lに使用されるレンズの材質は、全てホタル石が用いられる。 図 1 に戻り、 前記ウェハステージ W S Tは、 不図示のベース上を走査方向で ある Y軸方向 (図 1 における左右方向) 及びこれに直交する X軸方向 (図 1 に おける紙面直交方向) に移動可能な X Yステージ 1 8と、 この X Yステージ 1 8上に設けられた Zステージ 1 7とを備えている。 On the other hand, the remaining pulse illumination light IL (about 3%) is reflected by the half mirror 5 and received by the integrator sensor 6. The amount of illumination light on the reticle R can be detected by the integer sensor 6. The light amount signal from the integrator sensor 6 is transmitted to the main controller 2 1 Is supplied to A reticle R force is fixed on the reticle stage RST by, for example, vacuum suction. The material used for the reticle R must be properly used depending on the light source used. That is, when a light source K r F excimer one laser light and A r F excimer one The light can be used synthetic quartz, F 2 excimer - When using a laser light, must be formed of fluorite There is. The reticle stage RST is driven on a reticle base (not shown) by a reticle driving unit 41 composed of a linear motor or the like, and is perpendicular to an optical axis IX of an illumination optical system (coincides with an optical axis AX of a projection optical system PL described later). It is movable in a predetermined scanning direction (here, the Y-axis direction) within a predetermined stroke within a predetermined plane. The reticle stage RST has a movement stroke that allows the entire surface of the reticle R to cross at least the optical axis IX of the illumination optical system. Further, reticle stage RST is configured to be finely driven in the X-axis direction and the rotation direction around the Z-axis orthogonal to the XY plane in order to position reticle R. The position of the reticle stage RST is constantly measured at a resolution of, for example, several nm to 1 nm or less by a reticle laser interferometer system (not shown). The position information of the reticle stage RST from the interferometer system is transmitted to the main controller 2. The main controller 21 controls the reticle stage RST via the reticle drive system 41 based on the positional information of the reticle stage RS. ( Note that the measuring axis of the reticle laser interferometer system is, for example, Two axes are provided in the scanning direction, and one axis is provided in the non-scanning direction.In this case, the reticle stage is positioned by a reticle alignment system (not shown) so that the reticle R is accurately positioned at a predetermined reference position. Early RST Since the position is determined, the position of the reticle R is measured with sufficiently high accuracy only by measuring the position of the reflection surface (not shown) provided on the reticle stage RST by the reticle interferometer system. The projection optical system PL is disposed below the reticle stage RST in FIG. 1, and the direction of the optical axis AX (coincident with the optical axis IX of the illumination optical system) is the Z-axis direction. As the projection optical system PL, here, a refraction optical system including a plurality of lens elements arranged at predetermined intervals along the optical axis AX direction so as to have a telecentric optical arrangement on both sides is used. This projection optical system PL is a reduction optical system having a predetermined projection magnification, for example, 1/4 (or 1/5). Therefore, when the illumination area IAR of the reticle R is illuminated by the illumination light IL from the illumination optical system, a part of the circuit pattern of the reticle R is transmitted through the projection optical system PL by the illumination light IL passing through the reticle R. Is reduced and projected on a wafer W coated with a photo resist on the surface. Further, the imaging performance correcting mechanism 14 is provided inside the projection optical system P as described above. In the present embodiment, as shown in FIG. 2, a specific plural (here, five) lenses of the plural lens elements constituting the projection optical system PL are used as the imaging performance correcting mechanism 14. Each of groups 2, 2, 3, 24, 25, and 26 is independently moved in the optical axis AX direction using piezoelectric elements 27, 28, 29, 30, and 31 such as piezo elements. (Z direction) and a mechanism that can be driven in the tilt direction with respect to the XY plane are used. The lens groups 22, 23, 24, 25, and 26 are respectively connected to the lens barrel PP by three piezo elements 27, 28, 29, 30, and 31 via respective holders. It is supported by three points. Therefore, by independently driving each of the three piezo elements 27, 28, 29, 30 and 31, each lens group 22 23 23 24 24 25 26 Can be driven in the optical axis AX direction (Z direction) and the tilt direction with respect to the XY plane. The imaging performance correction mechanism is, for example, Kaihei No. 4-127515 and No. 4-134813 and their corresponding U.S. Patent Nos. 5,117,255, which are designated in this international application. To the extent permitted by the laws of the designated designated country or the selected elected country, their disclosure shall be incorporated as a part of the text. In the present embodiment, as will be described later, the imaging performance correcting mechanism 14 corrects five aberrations, specifically, curvature of field, magnification, distortion, coma, and spherical aberration. The imaging performance correction mechanism 14 and the lens controller 15 constitute an imaging characteristic correction device that corrects the imaging characteristics of the pattern image of the reticle R. The specific contents of the imaging characteristic correction by the imaging characteristic correction device will be described later in detail. When KrF excimer laser light or ArF excimer laser light is used as the illumination light IL, synthetic quartz or the like can be used as each lens element constituting the projection optical system PL. When using F 2 excimer laser light, fluorite is used as the material of the lenses used in the projection optical system PL. Returning to FIG. 1, the wafer stage WST moves on a base (not shown) in the Y-axis direction (left-right direction in FIG. 1), which is the scanning direction, and in the X-axis direction (perpendicular to the paper plane in FIG. 1). A possible XY stage 18 and a Z stage 17 provided on the XY stage 18 are provided.
X Yステージ 1 8は、 実際には、 2次元平面モータ等によって前記ベース上 で X Y 2次元方向に駆動されるようになっており、 また、 Zステージ 1 7は、 不図示の駆動機構により Z方向に所定範囲 (例えば 1 0 0 mの範囲) 内で駆 動されるなつているが、 図 1ではこれらの 2次元平面モータ、 駆動機構等が代 表してウェハ駆動装置 4 2として図示されている。 Zステージ 1 7上に不図示のウェハホルダを介してウェハ Wが吸着保持され ている。 また、 Zステージ 1 7上には、 レチクル R及び投影光学系 P Lを透過 してウェハ面に達する照射量を検出する照射量センサ 2 0が設けられている。 この照射量センサ 2 0の検出値はメインコン卜ローラ 2 1に供給されるように なっている。 前記 Zステージ 1 7 (即ちウェハ W ) の X Y面内の位置は、 不図示のウェハ レ―ザ干渉計システムによって例えば数 n m〜 1 n m以下の分解能で常時計測 されており、 この干渉計システムからの Zステージ R S Tの位置情報は、 メイ ンコントローラ 2 1に送られ、 メインコント口一ラ 2 1では Zステージ 1 7の 位置情報に基づいてウェハ駆動装置 4 2を介してウェハ Wを X Y面内で位置制 御する。 なお、 ウェハレーザ干渉計システムの測長軸は、 例えば走査方向に 1軸、 非 走査方向には 2軸設けられる。 更に、 本実施形態の露光装置 1 0 0では、 不図示の保持部材を介して投影光 学系 P Lに一体的に取り付けられた、 2つの才一卜フォーカス検出系、 すなわ ち、 レチクル才一卜フォーカス検出系 (以下、 「レチクル A F系」 という) 1 2及びウェハ才一卜フォーカス検出系 (以下、 「ウェハ A F系」 という) 1 9 が設けられている。 ウェハ A F系 1 9としては、 ウェハ Wに斜めから検出ビームを照射する照射 光学系 1 9 aと、 この検出ビームのウェハ W面からの反射光を受光する受光光 学系 1 9 bとを備え、 ウェハ Wの Z方向の位置を検出する斜入射光式の焦点位 置検出系が用いられている。 このウェハ A F系 1 9としては、 例えば特公平 8 一 2 1 5 3 1号公報及びこれに対応する米国特許第 4 , 8 0 1 , 9 7 7号や、 特開平 5— 2 7 5 3 1 3号及び特開平 5— 1 9 0 4 2 3号並びにそれらに対応 する米国特許第 5 , 5 0 2 , 3 1 1号に開示された焦点位置検出系が用いられ る。 上記米国特許を、 本国際出願の指定国または選択国の国内法令の許す限り においてそれらの開示を援用して本文の記載の一部とする。 また、 レチクル A F系 1 2は、 レチクル Rのパターン面に斜めから検出ビー 厶を照射する照射光学系 1 2 aと、 この検出ビームのレチクル面からの反射光 を受光する受光光学系 1 2 bとを備えた斜入射光式の焦点位置検出系が用いら れている。 レチクル A F系 1 2は、 レチクル Rのパターン面の光軸 I X及びそ の近傍の領域の Z方向の位置を検出するためのものである。 このレチクル A F 系 1 2としても上記特公平 8— 2 1 5 3 1号公報及びそれに対応する上記米国 特許に開示されたものと同様の構成のものを用いることができる。 なお、 A F系としては、 斜入射光式に限らず、 例えば、 ウェハ面、 レチクル 面の Z位置を計測する干渉計や投影光学系とウェハ又はレチクルとの間隔を直 接測定する才一卜フォーカスセンサを採用しても良い。 この他、 本実施形態の露光装置 1 0 0では、 ウェハ W上の各ショッ 卜領域に 付設された不図示のァライメン卜マークを検出するためのオファクシス方式の ァライメン卜系等も設けられている。 メインコン卜ローラ 2 1では、 次に説明 する走査露光に先立ってァライメン卜系を用いてウェハ W上のァライメン卜マ —クの位置検出を行い、 この検出結果に基づいてレチクル駆動系 4 1及びゥェ ハ駆動装置 4 2によりレチクル Rとウェハ Wとの位置合わせ (ァライメン卜) を行うようになつている。 次に、 本実施形態の露光装置 1 0 0における走査露光の原理について簡単に 説明する。 レチクル Rの走査方向 (Y軸方向) に対して垂直な方向に長手方向 を有する長方形 (スリツ 卜状) の照明領域 I A Rでレチクル Rが照明され、 レ チクル Rは露光時に— Y方向に速度 V R で走査 (スキャン) される。 照明領域 I A R (中心は光軸 A Xとほぼ一致) は投影光学系 P Lを介してウェハ W上に 投影され、 照明領域 I A Rに共役なスリツ 卜状の投影領域、 すなわち露光領域 I Aが形成される。 ウェハ Wはレチクル Rとは倒立結像関係にあるため、 ゥェ ハ Wは速度 V R の方向とは反対方向 (+ Y方向) にレチクル Rに同期して速度 VW で走査され、 ウェハ W上のショッ 卜領域の全面が露光可能となっている。 この走査露光の際の、 レチクル Rとウェハ W、 すなわちレチクルステージ R S Tとウェハステージ W S Tとがレチクル駆動部 4 1、 駆動装置 4 2及びメイン コントローラ 2 1によって、 正確に投影光学系 P Lの縮小倍率に応じた速度比 VW /V R で同期移動されるようになっており、 レチクル Rのバタ一ン領域の パターンがウェハ W上のショッ 卜領域上に正確に縮小転写される。 また、 走査 (スキャン) することによりレチクル R上のパターン領域全面が照明され、 レ チクル Rのパターン領域の全面がウェハ W上に逐次転写されるようになってい る。 上記の説明で明らかなように、 本実施形態ではレチクル駆動系 4 1、 ウェハ 駆動装置 4 2及びメインコントローラ 2 1によって、 レチクル Rとウェハ Wを 同期移動させる駆動装置が構成されている。 また、 上記の走査露光中に、 ウェハ A F系 1 9、 レチクル A F系 1 2の検出 信号に基づいて、 レチクル Rのパターン面とウェハ W表面とが投影光学系 P L に関して共役となるようにメインコン卜ローラ 2 1によりウェハ駆動装置 4 2 を介して Zステージ 1 7が Z軸方向に駆動制御され、 フォーカス補正が実行さ れる。 なお、 このフォーカス補正についても更に後述する。 本実施形態の露光装置 1 0 0では、 上記のようなウェハ W上のショッ 卜領域 に対する走査露光によるレチクルパターンの転写と、 次ショッ 卜領域の走査開 始位置へのステッピング動作とを繰り返し行うことにより、ステップ'アンド ■ スキャン方式の露光が行われ、 ウェハ W上の全ショッ 卜領域にレチクルパター ンが転写されるようになっている。 以上のように、 複数の光学部材から構成される照明光学系、 投影光学系、 多 数の機械部品からなるレチクルステージやウェハステージなどを、 電気的、 機 械的及び光学的に組み立て、 組み立てた露光装置を総合的に調整 (光路、 ステ —ジ速度、 同期タイミングの調節や動作確認など) することによって本実施形 態の露光装置 1 0 0を製造することができる。 次に、 露光装置 1 0 0における 6種類の結像性能、 具体的にはフォーカス、 像面湾曲、 倍率、 ディストーション、 コマ収差、 球面収差の補正方法について 説明する。 まず、 初期調整の段階で、 結像性能補正機構 1 4を構成する 5個のレンズ群 2 2〜2 6を 1個づっ駆動しながら、 フォーカス、 像面湾曲、 倍率、 ディスト ーシヨン、 コマ収差、 球面収差の 6種類の結像性能について測定を行い、 各レ ンズ群 2 2〜2 6における上記 6種類の結像性能変化係数を求めてお〈。なお、 この結像性能変化係数は、光学的な計算値を採用するものであっても勿論良い。 そして、 上記の結像性能変化係数の内、 フォーカスを除く 5種類の結像性能 変化係数と 5個のレンズ群の移動量 (駆動量) とを用いて 5元連立 1次方程式 を立てることができる。 ここで、 フォーカスを除〈のは、 倍率等の他の結像性 能を補正するためにレンズ群を駆動すると、 それに付随してフォーカスが変動 するので、 フォーカスの補正は別の装置により行う必要があるからである。 こ れについては、 後述する。 そして、 上で立てた 5元連立 1次方程式を用いることにより、 例えば、 所定 の倍率に変化させたい場合は、 上記連立方程式の倍率の結像性能変化係数に所 定量を入れ、 他の 4種類の結像性能変化係数に 「0」 を入れた新たな連立方程 式を立て、 この連立方程式を解いて各レンズ群の駆動量を求め、 この駆動量に 応じて各レンズ群を駆動することにより、 像面湾曲、 デイス卜ーシヨン、 コマ 収差、 球面収差に影響を与えることなく、 倍率のみを所定の値に制御すること が可能となる。 ここでは、 倍率を変化させる場合について説明したが、 像面湾 曲、 ディストーション、 コマ収差、 及び球面収差についても上記と同様であつ て、 他に影響を与えずに個別に値を変化させることができる。 次に、 フォーカスの補正方法について説明する。 まず、 レチクル Rとウェハ Wの共役関係を出すために、 基準となる Zステ一 ジ 1 7の位置を求める。 具体的には、 所定の計測用マークが描かれた計測用レ チクルをレチクルステージ R S Tの所定の場所に搭載して Zステージ 1 7を Z 方向にステップ送りしながら前記計測用マークを感光剤が塗布されたウェハ W 上に転写した (焼き付けた)後、 このウェハ Wを現像装置で現像する。次いで、 このウェハ Wを光学顕微鏡で観察して焼き付けたマーク形状が最も良好な Zス テ一ジ 1 7の位置を見つける。 このときの Zステージ 1 7の Z位置を基準位置 とし、 その基準位置に Zステージ 1 7がある時のレチクル A F系 1 2、 ウェハ A「系 1 9の出力をそれぞれの A F基準位置としてメモリに記憶しておく。 以 降のフォーカス変動補正はこの基準位置からの変位で管理することとなる。 すなわち、 メインコントローラ 2 1では、 レチクル A F系 1 2とウェハ系 A F 1 9との出力が上述したそれぞれの A F基準位置から変動しないように (す なわち、 レチクル Rとウェハ Wとの光学的な距離を一定の値に保つように) Z ステージ 1 7を光軸方向に駆動制御する。 このようにしてフォーカスの補正が 実行される。 これを更に詳述すると、 A F基準位置から検出されたレチクル R、 ウェハ W 側の変位を各々 R z、 Wz、投影倍率を MLとすると、フォーカス変位△ Fは、The XY stage 18 is actually driven in the XY two-dimensional direction on the base by a two-dimensional planar motor or the like, and the Z stage 17 is moved in the Z direction by a driving mechanism (not shown). In FIG. 1, these two-dimensional planar motors, drive mechanisms, and the like are represented as a wafer drive unit 42 as a representative example, while being driven within a predetermined range (for example, a range of 100 m). . A wafer W is suction-held on a Z stage 17 via a wafer holder (not shown). Further, on the Z stage 17, there is provided an irradiation amount sensor 20 for detecting an irradiation amount that passes through the reticle R and the projection optical system PL and reaches the wafer surface. The detection value of the irradiation amount sensor 20 is supplied to the main controller 21. The position of the Z stage 17 (i.e., wafer W) in the XY plane is constantly measured, for example, with a resolution of several nm to 1 nm or less by a wafer laser interferometer system (not shown). The Z stage RST position information is sent to the main controller 21, and the main controller 21 sends the wafer W in the XY plane via the wafer driving device 42 based on the Z stage 17 position information. To control the position. Note that the wafer laser interferometer system has, for example, one axis in the scanning direction and two axes in the non-scanning direction. Further, in the exposure apparatus 100 of the present embodiment, the two focus detection systems, ie, reticle sensors, which are integrally attached to the projection optical system PL via a holding member (not shown), are provided. A focus detection system (hereinafter, referred to as “reticle AF system”) 12 and a wafer focus detection system (hereinafter, referred to as “wafer AF system”) 19 are provided. The wafer AF system 19 includes an irradiation optical system 19a that irradiates the wafer W with a detection beam obliquely, and a light-receiving optical system 19b that receives the reflected light of this detection beam from the wafer W surface. An oblique incident light type focus position detection system that detects the position of the wafer W in the Z direction is used. For example, this wafer AF system 1 9 Japanese Patent Publication No. 215303 and U.S. Pat. No. 4,801,977 corresponding thereto, and Japanese Patent Application Laid-Open Nos. 5-2755313 and 5-190423 And the corresponding focus position detection systems disclosed in US Pat. Nos. 5,502,311. The above US patents are hereby incorporated by reference, with the disclosure incorporated by reference, to the extent allowed by the national laws of the designated or elected country of this international application. The reticle AF system 12 includes an irradiation optical system 12a for irradiating the pattern surface of the reticle R with a detection beam obliquely, and a light receiving optical system 12b for receiving the reflected light of the detection beam from the reticle surface. An oblique incident light type focus position detection system having the following is used. The reticle AF system 12 is for detecting the optical axis IX of the pattern surface of the reticle R and the position in the Z direction of a region near the optical axis IX. The reticle AF system 12 may have the same configuration as that disclosed in Japanese Patent Publication No. 8-21531 and the corresponding US patent. The AF system is not limited to the obliquely incident light type. For example, an interferometer that measures the Z position of the wafer surface or reticle surface, or a direct focus that directly measures the distance between the projection optical system and the wafer or reticle. A sensor may be employed. In addition, the exposure apparatus 100 of the present embodiment is provided with an off-axis type alignment system for detecting alignment marks (not shown) attached to each shot area on the wafer W. The main controller 21 detects the position of the alignment mark on the wafer W using an alignment system prior to the scanning exposure described below, and based on the detection result, the reticle driving system 41 and The wafer driving device 42 aligns the reticle R with the wafer W (alignment). Next, the principle of scanning exposure in the exposure apparatus 100 of the present embodiment will be briefly described. explain. The reticle R is illuminated by a rectangular (slit-shaped) illumination area IAR having a longitudinal direction perpendicular to the scanning direction of the reticle R (Y-axis direction). Is scanned with. The illumination area IAR (the center is substantially coincident with the optical axis AX) is projected onto the wafer W via the projection optical system PL, and a slit-shaped projection area conjugate to the illumination area IAR, that is, an exposure area IA is formed. Since the wafer W has an inverted image relationship with the reticle R, the wafer W is scanned at the speed VW in the direction opposite to the direction of the speed VR (+ Y direction) in synchronization with the reticle R, and The entire shot area can be exposed. At the time of this scanning exposure, the reticle R and the wafer W, that is, the reticle stage RST and the wafer stage WST are accurately adjusted by the reticle drive unit 41, the drive unit 42, and the main controller 21 to the reduction magnification of the projection optical system PL. Synchronous movement is performed at the corresponding speed ratio VW / VR, and the pattern in the butter area of the reticle R is accurately reduced and transferred onto the shot area on the wafer W. Further, the entire area of the pattern area on the reticle R is illuminated by scanning, and the entire area of the pattern area of the reticle R is sequentially transferred onto the wafer W. As is apparent from the above description, in the present embodiment, the reticle driving system 41, the wafer driving device 42, and the main controller 21 constitute a driving device for synchronously moving the reticle R and the wafer W. In addition, during the above scanning exposure, the main controller based on the detection signals of the wafer AF system 19 and the reticle AF system 12 so that the pattern surface of the reticle R and the surface of the wafer W become conjugate with respect to the projection optical system PL. The Z stage 17 is driven and controlled in the Z-axis direction by the controller 21 via the wafer driving device 42 to perform focus correction. The focus correction will be further described later. In the exposure apparatus 100 of the present embodiment, the transfer of the reticle pattern by the scanning exposure to the shot area on the wafer W as described above and the stepping operation to the scanning start position of the next shot area are repeatedly performed. Accordingly, step-and-scan exposure is performed, and a reticle pattern is transferred to all shot areas on the wafer W. As described above, the illumination optical system composed of multiple optical members, the projection optical system, and the reticle stage and wafer stage composed of many mechanical parts were assembled electrically, mechanically and optically, and assembled. The exposure apparatus 100 of the present embodiment can be manufactured by comprehensively adjusting the exposure apparatus (adjustment of the optical path, stage speed, synchronization timing, operation confirmation, etc.). Next, six types of imaging performance in the exposure apparatus 100, specifically, methods of correcting focus, curvature of field, magnification, distortion, coma, and spherical aberration will be described. First, in the initial adjustment stage, while driving the five lens groups 22 to 26 constituting the imaging performance correction mechanism 14 one by one, focus, field curvature, magnification, distortion, coma, We measured six types of imaging performance of spherical aberration, and obtained the above-mentioned six types of imaging performance change coefficients in each lens group 22-26. The imaging performance change coefficient may be an optically calculated value. Of the above-mentioned imaging performance change coefficients, a five-element simultaneous linear equation can be established using the five types of imaging performance change coefficients excluding focus and the movement amounts (drive amounts) of the five lens groups. it can. Here, the focus is removed because when the lens group is driven to correct other imaging performance such as magnification, the focus fluctuates accordingly, so the focus must be corrected by another device. Because there is. This This will be described later. Then, by using the five-way simultaneous linear equation established above, for example, when it is desired to change the magnification to a predetermined magnification, a certain amount is put in the imaging performance change coefficient of the magnification of the above simultaneous equation, and the other four types are set. By establishing a new simultaneous equation with the imaging performance change coefficient of `` 0 '' added, solving this simultaneous equation to obtain the drive amount of each lens group, and driving each lens group according to this drive amount It is possible to control only the magnification to a predetermined value without affecting the field curvature, the distortion, the coma, and the spherical aberration. Here, the case where the magnification is changed has been described, but the curvature of field, distortion, coma aberration, and spherical aberration are the same as above, and the values can be individually changed without affecting other factors. it can. Next, a focus correction method will be described. First, in order to obtain the conjugate relationship between the reticle R and the wafer W, the position of the reference Z stage 17 is obtained. Specifically, a measurement reticle on which a predetermined measurement mark is drawn is mounted on a predetermined position of the reticle stage RST, and the photosensitive mark is applied to the measurement mark while step-moving the Z stage 17 in the Z direction. After being transferred (baked) onto the coated wafer W, the wafer W is developed by a developing device. Next, the wafer W is observed with an optical microscope to find the position of the Z stage 17 having the best burned mark shape. The Z position of Z stage 17 at this time is set as the reference position, and the outputs of reticle AF system 12 and wafer A `` system 19 '' when Z stage 17 is at that reference position are stored in memory as the respective AF reference positions. The following focus fluctuation correction is managed by the displacement from this reference position, that is, the main controller 21 outputs the outputs of the reticle AF system 12 and the wafer AF 19 as described above. Make sure that it does not fluctuate from each AF reference position. That is, the Z stage 17 is driven and controlled in the optical axis direction so that the optical distance between the reticle R and the wafer W is kept constant. The focus correction is performed in this manner. More specifically, assuming that the displacement on the reticle R and the wafer W side detected from the AF reference position are Rz and Wz, respectively, and the projection magnification is ML, the focus displacement △ F is
△ F二 R z xM L2 — Wz △ F2 R z xM L 2 — Wz
と表される。 が 0となるように Zステージ 1 7を Z軸方向に移動すること で、 レチクル Rとウェハ Wの共役関係が保たれる。 具体例を挙げると、 レチク ル Rが走査中に Z軸方向に 1 mずれたとすると、 投影倍率が 0. 25倍 ( 1 /4倍) の時にウェハ W面では ( 1 /4) 2 =0. 06 25>umの変 位となって現れる。 この時、 意図的にウェハ Wを Z軸方向に 0. 6 25 xm変 位させること、 すなわち前記式中の Wz = 0. 625yumとなるようにするこ とで AFを 0とすることができ、 レチクル Rとウェハ Wとの光学的な距離を保 つことができる。 勿論、 投影光学系 P Lの投影倍率が 1 /4倍に限定されるも のではなく、 投影倍率の 2乗をレチクル側の変位量にかけることで対応するこ とができる。 また、 前述した倍率等の他の結像性能を補正するためにレンズ群 22〜26 を駆動した場合は、 これにより副作用的に発生するフォーカス変化量を上述し た結像性能変化係数と各レンズ群 22〜26の駆動量とに基づいて計算してお く。 この算出されたフォーカス変化量は、 上述したフォーカス補正の際にオフ セヅ 卜としてウェハ A F系 1 9の出力に加算することにより、 レチクル Rとゥ ェハ Wの光学的な距離を所定の値に保つことができる。 次に、 レチクル Rの熱変形を計算する方法、 及びこの熱変形に起因する投影 光学系 P Lによるウェハ W上へのレチクルパターンの投影像の倍率 (又はディ スト一シヨン) を補正する方法について詳述する。 まず、 レチクル Rの熱変形を計算するポイントを選定する。 図 3には、 レチ クル Rの平面図が示されている。 この図 3に示されるように、 レチクル Rの走 査方向に沿って倍率を求める少なくとも 2ケ所のボイン卜 M 1 (レチクル の 中央)、 M 2 (レチクル Rの端部) を選定する。 ポイントの選定位置や選定数 は、 図 3の場合に限定されるものではなく、 レチクル Rの非走査方向の辺の歪 み (レチクル面内の走査方向の変位の分布) が求められるものであれば良い。 次に、 熱変形計算の前提となるレチクル透過率の求め方について説明する。 まず、 レチクルステージ R S Tにレチクル Rを載置しない状態で、 メインコ ン卜ローラ 2 1はウェハ駆動装置 4 2を介してウェハステージ 1 8を駆動し照 射量センサ 2 0を投影光学系 P Lの直下に移動する。 次に、 メインコント□_ ラ 2 1では、 光源 1 を発光させ、 照明光 I Lにより投影光学系 P Lを介して照 射量センサ 2 0を照明し、 そのときの照射量センサ 2 0の出力を不図示のメモ リに記憶する。 なお、 この時、 メインコントローラ 2 1では実際の露光と同じ 条件になるように、 レチクル駆動系 4 1 を介してレチクルステージ R S Tを走 査しながら全走査範囲で照射量センサ 2 0の出力を測定し、 それを合計したも のをメモリに記憶する。 次いで、 レチクル Rが不図示のレチクルローダによりレチクルステージ R S T上に設置され、 この状態で、 メインコントローラ 2 1では上記と同様にレチ クルステージ R S Tを走査しながら全走査範囲で照射量センサ 2 0の出力を測 定して合計し、 その照射量センサ 2 0の出力の合計値と上でメモリに記憶して いた照射量センサ 2 0の出力の合計値との比を演算することにより、 レチクル Rの透過率を求めることができる。 なお、 上記 2回の照射量測定時の各々において、 インテグレ―タセンサ 6の 出力を測定して照射量センサ 20の出力を規格化することが望ましい。 かかる 場合には、 光源 1のパワーが変動しても、 それに影響されることな〈正確にレ チクル Rの透過率を求めることができる。 また、 上の説明では、 レチクルステ —ジ R S Tを走査しながら照射量を測定することとしたが、 照明領域がカバ一 する範囲毎にレチクル Rのステップ移動を繰り返しながら測定しても良い。 あ るいは、 上記照射量センサ 20の出力をレチクル Rの走査座標に応じた関数と して表し、 これをメモリに記憶するようにしても良い。 次に、 レチクル Rのボイン卜 M 1、 M 2の熱変形 M 1 ( t )、 M 2 ( t ) の 算出方法について説明する。 まず、 次の式 ( 1 ) ようなレチクル Rの熱変形のモデル式を立てる。 It is expressed as By moving the Z stage 17 in the Z-axis direction such that the value becomes 0, the conjugate relationship between the reticle R and the wafer W is maintained. As a specific example, if the reticle R is displaced by 1 m in the Z-axis direction during scanning, (1/4) 2 = 0 on the wafer W surface when the projection magnification is 0.25 times (1/4 times). 06 25> um. At this time, the AF can be set to 0 by intentionally displacing the wafer W by 0.625 xm in the Z-axis direction, that is, by setting Wz = 0.625yum in the above equation, The optical distance between the reticle R and the wafer W can be maintained. Of course, the projection magnification of the projection optical system PL is not limited to 1/4, but it can be handled by multiplying the square of the projection magnification by the displacement amount on the reticle side. When the lens groups 22 to 26 are driven in order to correct other imaging performance such as the above-mentioned magnification, the amount of focus change that occurs as a side effect due to this is changed by the above-described imaging performance change coefficient and each lens. The calculation is made based on the drive amounts of groups 22 to 26. The calculated focus change amount is added to the output of the wafer AF system 19 as an offset at the time of the above-described focus correction, so that the optical distance between the reticle R and the wafer W becomes a predetermined value. Can be kept. Next, a method for calculating the thermal deformation of the reticle R, and the magnification (or the magnification) of the projected image of the reticle pattern onto the wafer W by the projection optical system PL caused by this thermal deformation The method for correcting the (stiction) will be described in detail. First, a point for calculating the thermal deformation of reticle R is selected. FIG. 3 shows a plan view of the reticle R. As shown in FIG. 3, at least two points M 1 (the center of the reticle) and M 2 (the end of the reticle R) for which magnification is to be determined along the scanning direction of the reticle R are selected. The position and number of selected points are not limited to those shown in Fig. 3, but may be those that require the distortion of the side of the reticle R in the non-scanning direction (distribution of displacement in the reticle plane in the scanning direction). Good. Next, a method of obtaining the reticle transmittance, which is a premise of the thermal deformation calculation, will be described. First, in a state where the reticle R is not placed on the reticle stage RST, the main controller 21 drives the wafer stage 18 via the wafer driving device 42 to move the irradiation amount sensor 20 directly below the projection optical system PL. Go to Next, the main controller 21 turns on the light source 1, illuminates the illuminance sensor 20 with the illumination light IL via the projection optical system PL, and outputs the output of the illuminance sensor 20 at that time. It is stored in memory (not shown). At this time, the main controller 21 measures the output of the irradiation amount sensor 20 over the entire scanning range while scanning the reticle stage RST via the reticle driving system 41 so that the same conditions as the actual exposure are obtained. Then, the total is stored in the memory. Next, the reticle R is set on the reticle stage RST by a reticle loader (not shown), and in this state, the main controller 21 scans the reticle stage RST in the same manner as described above while scanning the irradiation amount sensor 20 over the entire scanning range. The outputs are measured and summed, and the reticle R is calculated by calculating the ratio of the total value of the outputs of the dose sensors 20 to the total value of the outputs of the dose sensors 20 stored in the memory above. Can be determined. In each of the above two dose measurements, it is desirable to measure the output of the integrator sensor 6 and normalize the output of the dose sensor 20. In such a case, even if the power of the light source 1 fluctuates, the transmittance of the reticle R can be accurately obtained without being affected by the fluctuation. Further, in the above description, the irradiation amount is measured while scanning the reticle stage RST. However, the measurement may be performed while repeating the step movement of the reticle R for each range in which the illumination area covers. Alternatively, the output of the irradiation amount sensor 20 may be represented as a function corresponding to the scanning coordinates of the reticle R, and the function may be stored in the memory. Next, a method of calculating the thermal deformations M 1 (t) and M 2 (t) of the points M 1 and M 2 of the reticle R will be described. First, a model equation for the thermal deformation of the reticle R as shown in the following equation (1) is established.
M( t) = M ( t -Δ t ) X e χ ρ (-Δ t/T) + K xWx ( 1—7?) x ( 1 - r ) x [1 -e x p (-Δ t/T)] · · · ( 1 ) M (t) = M (t -Δ t) X e ρ ρ (-Δ t / T) + K xWx (1−7?) X (1-r) x [1 -exp (-Δ t / T) ] · · · (1)
上式において、 Tは計測ポイントの熱変形の時定数、 Κは計測ポイントの熱 変形飽和値、 Atは計測間隔、 Wはレチクル Rの照射パワー、 7?はレチクル R の透過率、 rはレチクル Rの反射率である。 この内、 レチクル Rの透過率 7?は、 上で求めた値を用いる。 また、 レチクル Rの反射率 rは予め求めておく。 そして、 所定の実験を行い、 上記計測間隔 Δ ΐで、 照明エネルギとレチクル Rの照射膨張との関係を、 ポイント Μ 1、 Μ 2のそれぞれで求める。 この実験 中のレチクル照射パワー Wは、 その時々のィンテグレータセンサ 6の出力に基 づいて計算される。 ィンテグレ一夕センサ 6とレチクル照射パワー Wとの関係 は、 比例関係にあるため、 予め実験により両者間の比 αを求め、 これをメモリ に記憶しておき、 比ひをインテグレ一タセンサ 6の出力 Iに乗じて上記のレチ クル照射パワー Wを計算する。 この実験結果により得られたそれぞれのボイン卜でのデータに力一ブフィッ 卜を施すことにより、 ポイント Μ 1、 Μ 2での熱変形の時定数 Τ 1、 Τ 2及び ポイント Μ 1、 Μ 2での熱変形飽和値 Κ 1、 Κ 2を求め、 上式の丁、 Κにそれ それ代入することにより、 以下の式 ( 2)、 (3) が得られる。 In the above equation, T is the time constant of thermal deformation at the measurement point, Κ is the thermal deformation saturation value at the measurement point, At is the measurement interval, W is the irradiation power of reticle R, 7 is the transmittance of reticle R, and r is the reticle The reflectance of R. Among them, the value obtained above is used for the transmittance 7? Of the reticle R. In addition, the reflectance r of the reticle R is obtained in advance. Then, a predetermined experiment is performed, and the relationship between the illumination energy and the irradiation expansion of the reticle R is obtained at points Μ1 and Μ2 at the measurement interval Δΐ. The reticle irradiation power W during this experiment is calculated based on the output of the integrator sensor 6 at that time. Relationship between integre overnight sensor 6 and reticle irradiation power W Are proportional to each other, the ratio α between the two is determined in advance by experiment, this is stored in memory, and the ratio is multiplied by the output I of the integrator sensor 6 to calculate the reticle irradiation power W described above. I do. By applying force fitting to the data at each point obtained from the experimental results, the time constants of thermal deformation at points Μ1 and Μ2, Τ1, Τ2, and points Μ1, Μ2 Equations (2) and (3) can be obtained by finding the thermal deformation saturation values Κ 1 and Κ 2 of, and substituting them into D and の in the above equation.
Μ 1 ( t ) = Μ 1 ( t -Δ t ) x e χ ρ (-Δ t/T 1 ) + K 1 xWx ( 1—7? ) x ( 1 - r ) x [1 -e x p (-Δΐ/Τ 1 )] · · · (2) Μ 1 (t) = Μ 1 (t -Δ t) xe ρ ρ (-Δ t / T 1) + K 1 xWx (1−7?) X (1-r) x [1 -exp (-Δΐ / Τ 1)] · · · (2)
M2(t) = M2 ( t -Δ t ) X e x p (-Δ t/T 2 ) + K 2 XWx ( 1 - 77 ) x ( 1 - r ) x [1 -e x p (-ΔΪ/Τ 2)] · · · (3) そして、 露光時には、 その時々のインテグレ一タセンサ 6の出力に上記比 α を乗じてレチクル照射パワー Wを計算しながら、 上 2式を用いて計算機の計算 間隔 A t毎に、 計算により時刻 tにおける M 1 、 2の熱変形量1^11 ( t)、 M 2 ( t) を求める。 前記計算間隔 Atは、 ポイント M 1、 M2の時間当たり の変化量と必要な精度から決定すれば良く、 実際には 1 0ms e c以下が選ば れることが多い。 この場合、 露光時のインテグレ一タセンサ 6の出力に基づい てレチクル照射パワー Wを計算しているので、 光源 1のパワーが変動したり、 照明光量を意識的に落とすような場合であっても、 精度良くレチクル照射パヮ 一 Wを計算することが可能となる。 なお、 上記の M 1、 M 2の熱変形の時定数 T 1、 T 2と、 M 1、 M 2の熱変 形飽和値 K 1、 Κ 2とを求めるため、 レチクル Rの材質の線膨張係数からエネ ルギ吸収に対する熱変形量を熱シミュレーションから決定するようにしても良 い。 前記レチクル反射率「は、 予め求めてメモリに記憶しておけば足りるが、 複 数のレチクルの間で反射率にバラツキがあり、 画一的な反射率を使用すること により計算誤差が無視できなくなる場合には、 計算誤差が無視できるぼどの分 解能でレチクル反射率を登録しておいて、 使用するレチクル Rに応じて選択す るようにしても良い。 なお、 上記の熱変形計算のモデル式 (2), (3) において、 1次遅れ系 (= 1階微分方程式) を仮定しているが、 更に高精度に計算するためには、 複数の 時定数成分を採用しても良い。 M 1のみに時定数 2個のモデルを適用した場合 は、 次式 (4), (5) のようになる。 この (4), (5)式では、 熱変形の時定 数と、 熱変形飽和値に添え字 A、 Bを付して各成分を示している。 M2 (t) = M2 (t -Δ t) X exp (-Δ t / T 2) + K 2 XWx (1-77) x (1-r) x [1 -exp (-ΔΪ / Τ 2)] (3) Then, at the time of exposure, the output of the integrator sensor 6 at that time is multiplied by the above ratio α to calculate the reticle irradiation power W. Then, the thermal deformation amounts 1 ^ 11 (t) and M 2 (t) of M 1 and 2 at time t are calculated. The calculation interval At may be determined based on the amount of change in the points M1 and M2 per unit time and the required accuracy. In practice, a value of 10 msec or less is often selected. In this case, since the reticle irradiation power W is calculated based on the output of the integrator sensor 6 at the time of exposure, even when the power of the light source 1 fluctuates or the amount of illumination light is intentionally reduced, It is possible to calculate the reticle irradiation power W accurately. In order to obtain the time constants T 1 and T 2 for thermal deformation of M 1 and M 2 and the saturation values K 1 and Κ 2 for thermal deformation of M 1 and M 2, the linear expansion of the material of reticle R Energy from coefficient The amount of thermal deformation for lugi absorption may be determined from thermal simulation. It is sufficient that the reticle reflectivity is obtained in advance and stored in a memory.However, there is a variation in the reflectivity among a plurality of reticles, and a calculation error can be ignored by using a uniform reflectivity. If it disappears, the reticle reflectivity may be registered with a resolution that can be neglected so that the calculation error can be ignored, and the reticle reflectance may be selected according to the reticle R to be used. In the model formulas (2) and (3), a first-order lag system (= first-order differential equation) is assumed, but multiple time-constant components may be used for more accurate calculations. If two time constant models are applied only to M1, the following equations (4) and (5) are obtained: In equations (4) and (5), the time constant of thermal deformation and Each component is indicated by suffixes A and B added to the thermal deformation saturation value.
M 1 A( t ) = M 1 A ( t -Δ t ) x e x p (-Δ t/TA) + KAx Wx ( 1 - 7? ) x ( -r) x [1 -ex p (-At/TA)] · · · (4) M 1 A (t) = M 1 A (t -Δ t) xexp (-Δ t / T A ) + K A x Wx (1-7?) X (-r) x [1 -ex p (-At / T A )] · · · (4)
M 1 B( t ) = M 1 B ( t -Δ t ) x e x p (-Δ t/TB) + KBx Wx ( 1 - 7? ) x (1— r) x [1— exp (—厶 t/TB)] · · ■ (5) M 1 B (t) = M 1 B (t -Δ t) xexp (-Δ t / T B ) + K B x Wx (1-7?) X (1— r) x [1—exp (— t / T B )] · · ■ (5)
M 1 ( t) = M 1 A( t)+M 1 B(t M 1 (t) = M 1 A (t) + M 1 B (t
もちろん、 時定数は上記 2個に限られるものではなく、 時定数 3個に容易に 拡張することが可能であり、 更には照射してから倍率変化となって現れるまで に時間遅れ (制御で言ういわゆる 「むだ時間」) がある場合にはむだ時間を導 入しても良く、 上記の計算モデルに限定されるものではない。 次に、 非走査方向の倍率補正方法について説明する。 上記の M1 (t)、 M 2 ( t )は、それぞれのボイン卜の走査方向に関するレチクル熱変形であるが、 通常は非走査方向についても同量変動すると考えて差し支え無いため、 その M 1 (t)、 M 2 ( t ) を前記倍率補正にオフセッ トを与える形で補正するよう にする。 すなわち、 投影光学系 P Lの投影倍率をレチクルの走査方向の座標に 応じて意識的にずらすことにより、 レチクル熱変形による非走査方向倍率の変 化を補正する。 ①レチクル Rの走査方向の端部が照明領域 I A Rにあるときに は M2 ( t ) が、 ②レチクル Rの中心付近が照明領域 I A Rにあるときには M 1 (t) が倍率のオフセッ 卜値となる。 また、 上記①、 ②の中間の状態では M 1 (t)、 M 2 ( t ) から滑らかな倍率変化となるように、 例えば 2次関数で 近似して座標に応じた倍率のオフセッ 卜値を求めて補正するようにする。 なお、 レチクル Rの熱変形が走査方向と非走査方向とで異なる場合には、 別 途非走査方向の倍率変化を前記 M 1 (t)、 M 2 (t) と同様にして計算する ようにしても良い。 また、 計算時間を短縮するための簡便な補正方法としては、 M1 (t) と M 2 (t) の平均を倍率のオフセッ ト値として算出し、 レチクル Rの座標に応じ ることなく、 一定の倍率補正を行っても良い。 次に、 走査方向の倍率補正方法について説明する。 走査方向の倍率は、 M1 (t ) と M2 ( t) の平均値を倍率誤差として算出して、 それに応じてレチク ル Rとウェハ Wの相対速度比を変更することにより補正することができる。 走 査方向の倍率補正は、非走査方向の倍率補正とは異なり、 M1 (t)と M2 (t) の中間値を倍率誤差として補正するしかない。 本実施形態の露光装置 1 00におけるメインコントローラ 21では、 前述し たステップ ' アンド 'スキャン方式の露光を、 複数枚のウェハに対し順次繰り 返し、 この際、 レチクル Rのパターンがウェハ Wに転写される露光中は、常時、 上記の ( 2 )、 ( 3 ) 式を用いて、 レチクル Rのボイン卜 M 1、 M 2の熱変形量 M 1 (t)、 M 2 ( t ) を前記時間△ tの間隔で算出している。 これらの熱変 形量が小さい間は、 前述した結像性能補正機構 1 4を用いて、 前述した如く し て、 投影光学系 P Lの他の結像性能、 例えば像面湾曲、 コマ収差、 球面収差等 に影響を与えることなく、 レチクルの熱変形に起因するレチクルパターンの投 影像の倍率、 ディストーションを補正し、 かつこれらの補正による影響を考慮 して Zステージ 1 7を駆動制御してフォーカスの補正を行っている。 上記のようにして各種結像性能を補正しながら同じレチクル Rを使って露光 動作が繰り返し行われると、 レチクル Rに照明光 I Lによる照射エネルギが蓄 積され、 徐々にレチクル Rの熱変形量が大きくなるが、 この熱変形の変化の状 況はレチクル Rのポイント毎に異なる。 その結果、 図 4に示されるように、 照 射エネルギの蓄積 (時間の経過) に伴い、 レチクル Rのポイント M 1、 M2の 熱変形量 M1 (t)、 M2 (t) の差 {M1 (t) — M2 (t)} が、 徐々に大 き〈なり、 レチクルパターンの投影像 (転写像) に樽型ディストーションが発 生する。 しかるに、 先に説明した如く、 走査方向の倍率補正は、 M 1 (t) と M2 (t) の平均値を倍率誤差として倍率補正を行うことから、 その補正残留 分の誤差が上記差 {M1 ( t) -M2 (t )} に応じて徐々に大きくなり、 こ れを放置すると、 ある時点で許容できないレベルになってしまう。 そこで、 本実施形態の露光装置 1 00では、 メインコン卜ローラ 21が上記 の熱変形量 M1 ( t )s M2 ( t ) の算出の度毎に、 上記差 {M1 (t) -M 2 ( t )} を算出し、 この変化を監視している。 この場合、 図 4から容易に想 像されるように、 レチクル Rの熱変形により矩形のパターンは樽型デイストー シヨン形状に変化するので、 物理量として上記差 {M 1 ( t ) -M 2 ( t)} の変化を監視することは、 物理量として樽型ディス卜一シヨンを監視している ことに他ならない。 また、 上記差は、 レチクル上の異なるポイントの熱変形量 の差であるから、 照明光 (エネルギビーム) I Lの照射によるレチクル Rのェ ネルギ吸収量に関する情報の一種である。 そして、 メインコントローラ 21で は差 {M1 (t) -M2 ( t)} が第 1の所定値 L Hになったら一旦露光動作 を中断し、 レチクル Rが自然冷却されて第 2の所定値 L Lになるまで待つ。 そ の後、 上記差 {M1 (t) -M2 (t)} が第 2の所定値 L L未満になると、 メインコントローラ 21では露光動作を再開し、 再び上記差 {M 1 ( t ) — M 2 (t)} が第 1の所定値 L Hになるまで露光を行う。 以降、 この動作を繰り 返すことにより、 差 {M 1 ( t ) 一 M2 (t )} に応じて定まる走査方向の倍 率の補正残留誤差が許容値を超えないようにすることができる。 図 5には、 こ のようにして露光 露光中断 待ち 露光の動作が繰り返し行われた際の、 上 記差 {M 1 (t) -M2 (t)} の時間変化の様子が示されている。 この図 5 において、点線は露光中断を行わなかった場合の上記差 {M 1 (t)-M2(t)} の時間変化の様子を示す。 上記第 1の所定値 LHは、 必要とされる精度 (露光精度、 重ね合わせ精度な ど) に基づいて定めれば良い。 また、 必要とされる精度がロッ 卜毎に異なる場 合などには、 ロッ 卜毎に別の第 1の所定値を設定することにより、 比較的要求 精度の緩いロッ 卜では露光中断時間 (待ち時間) を少なくすることができるの で、 結果的にスループッ 卜を向上させることが可能となる。 また、 上記差 {M 1 ( t ) -M 2 ( t)} が第 2の所定値 L Lから第 1の所 定値 L Hまで変化する時間を、 丁度ウェハ W 1枚分の露光時間に設定すること により、 その 1枚のウェハ Wの露光終了後の交換時間をレチクル冷却のための 待ち時間と兼用 (才一バーラップ) させるようにしても良い。 具体的には、 1 枚のウェハ W内のショッ 卜数と 1 ショウ 卜の露光時間からウェハ 1枚の露光中 における M 1 ( t )、 M 2 ( t ) を上記式からある程度予測することが可能で ある。 このようにすることで、 純粋な待ち時間が減少し、 その分スループッ 卜 の悪化を更に抑えることができる。 勿論、 上記差 { M 1 ( t ) - M 2 ( t )} が第 2の所定値 L Lから第 1の所定値 L Hまで変化する時間を、 丁度ウェハ W の複数枚分の露光に要する時間 (途中の交換時間も含む) に設定しても良く、 かかる場合にも同様の理由により純粋な待ち時間が減少し、 その分スループッ 卜の悪化を抑えることができる。 別の形態として、 予めレチクルの熱変形をキャンセルするように、 パターン 描画時に考慮しておく方法もある。 この場合、 図 4から容易に想像されるよう に、 レチクル Rの熱変形により矩形のパターンは樽型デイス卜一シヨン形状に 変化するので、 これを考慮して、 レチクルに予め糸巻き型のディストーション 形状のパターンを描画すれば良い。 以下、 この糸巻き型ディストーション形状 のパターンが描かれたレチクルを便宜上レチクル R ' と呼ぶ。 このレチクル R ' は照明光の照射により熱変形が生じ、 照射エネルギの吸収 と伴に徐々に樽型デイス卜一シヨン形状に変化していく。 すなわち、 このレチ クル R ' は、 糸巻き形状の度合いが徐々に弱くなり、 途中で糸巻き型のディス トーシヨンがキャンセルされて適正な矩形パターン形状となり、 その後、 樽型 デイストーシヨン形状に変化して、 その樽型の度合いが徐々に強くなるような 変化をする。 従って、 このレチクル R ' を用いて所定枚数のウェハ Wの露光を連続的に行 う場合には、 メインコントローラ 2 1では、 実際のウェハに対する露光を開始 するのに先立って、 レチクル R ' のパターンが所定形状になるまでダミー露光 を行ってレチクル Rに照明光を照射する。 このダミー露光による照明光の照射 によりレチクル Rに熱が加えられるので、 以下これをダミーヒ一卜 (Dummy Heat) と呼ぶ。 上記の所定形状は、 例えば上で説明したダミー露光が行われな い場合の露光中断直前 (前記物理量が第 1の所定値 L Hのとき) のパターンの 形状と対称的な形状 (そのときの樽型デイス卜ーシヨンをキャンセルするよう な糸巻き型ディストーションの形状) に定める。 この場合、 レチクル R, のパ ターンが上記所定形状になる前記差 {M 1 ( t) -M 2 (t)} の値を第 2の 所定値 L L' として設定しておくものとする。 そして、 メインコントローラ 2 1では、 この差 {M 1 (t) -M 2 ( t)} が第 2の所定値 L L' に達した時 点から実際のウェハに対する露光を開始し、それ以後は、図 5の場合と同様に、 差 {M 1 ( t) — M 2 ( t)} が第 1の所定値 L H, と第 2の所定値 L L, と の間に保たれるように、 露光動作の中断と再開を交互に繰り返す。 この様子が 図 6に示されている。 このようにすれば、 許容範囲内の物理量 {M 1 (t) — M 2 ( t )}に応じて定まる補正残留誤差がプラスマイナスで振分になるので、 図 5と図 6とを比較すると明らかなように、 第 1の所定値 L H' と第 2の所定 値 L L' との幅を、 図 5の L Hと L Lとの幅のほぼ倍に設定することが可能と なり、 露光が中断される時間の露光が行われる時間に対する比率を小さ〈する ことが可能になり、 レチクル R' を冷却するための待ち時間を実質的に短縮し て、 スループッ 卜の悪化を最小限に止めることができる。 以上説明したように、 本実施形態に係る露光装置 1 00によると、 メインコ ン卜ローラ 2 1が、 レチクル R (又は R') の変形に関連する物理量として前 述した物理量 {M 1 (t) -M 2 (t)} の変化を監視し、 その物理量が第 1 の所定値 L H以上になったときに露光動作を一旦中断し、 レチクルを所定時間 自然冷却して前記物理量が露光動作を再開するのに適した値である第 2の所定 値 L Lになると、 露光動作を自動的に再開するので、 中断時間が必要以上に長 くなるのが防止され、 レチクル Rの熱変形に起因するパターン像の歪みを一定 値以下に自動的に制御することができる。 従って、 レチクル Rの熱変形に起因 する露光精度の低下をスループッ 卜をあまり低下させることな〈防止すること が可能になる。 特にホタル石のように熱の影響を受け易い材質でレチクル Rが 形成されている場合には有効である。 なお、 上記実施形態では、 レチクル Rの熱変形について述べたが、 同時に投影 光学系 (投影レンズ) P Lの熱変形も計算し、 これらを合わせて走査方向及び 非走査方向の倍率補正に反映させるようにしても勿論良い。 その場合には、 さ らに高精度な結像性能の補正を行うことが可能になる。 この投影光学系 (投影 レンズ) P Lの熱変形の計算と補正については、既に多くの例が知られており、 それらの方法を採用することができる。 かかる計算及び補正は、 例えば、 特開 平 7— 9 4 3 9 3号及びこれに対応する米国特許第 5 , 6 6 1 , 5 4 6号に開 示されており、 本国際出願の指定国または選択国の国内法令の許す限りにおい てそれらの開示を援用して本文の記載の一部とする。 また、 環境の変動 (気圧、 温度、 湿度の変化) による投影光学系 (投影レン ズ) P Lの結像性能の変化についても計算を行い、 これを合わせて補正するよ うにすれば、 より一層露光精度を向上させることができる。 さらに、上記実施形態では 6種類の結像性能を計算して 6種類の補正手段( 5 個のレンズ郡 2 2〜2 6及び Zステージ 1 7 ) で補正するように構成したが、 その変化量が無視できる程度のものであれば補正する結像性能を減らして実施 しても勿論良い。 逆に、 露光精度を一層高精度にするには、 補正を行う結像性 能の種類を本実施の形態の場合より増やしても良い。 即ち、 倍率補正機構は必 須としても、 それ以外の結像性能の補正については、 要求精度から採用するか 否かを判断すれば良い。 なお、 上記実施形態では、 レチクルに樽型ディストーションが発生した場合 について説明したが、 これ以外のディストーションが発生した場合でも同様に 処理することにより、 有効に対処することができる。 また、 上記実施形態では、 露光光による熱変形によりレチクルが変形し、 補 正できなつた補正残留誤差に対応する物理量 { M 1 ( t ) — M 2 ( t ) } が第 1の所定値 L Hを越えた場合に、露光動作を中断してレチクルの冷却を開始し、 第 2の所定値 L L以下になつた場合に露光動作を再開するようにしたが、 第 2 の所定値し Lになったか否かを見ることなく、 自然冷却に必要な一定時間が経 過した後、 露光動作を再開するようにしても勿論良い。 また、 レチクル Rの冷 却装置が別途設けられている場合には、 その冷却作用も考慮してレチクルの熱 変形を求めれば良い。 重要なことは、 レチクル Rの変形に関連する物理量を監視し、 所定値以上に なったことを検出することである。 これにより、 レチクル Rの変形を許容値内 に収めることが可能となる。上記物理量が所定値以上になった場合に、例えば、 レチクル Rを水冷冷却装置、 ペルチェ素子、 あるいはヒ一卜パイプ等の冷却装 置を用いて強制冷却しても良い。 あるいは、 投影光学系 P Lの瞳と共役な照明 光学系内の位置、 例えば第 2フライアイレンズ 4の射出端面に N Dフィルタ等 の減光フィルタや光量絞りなどを配置し、 これらによってレチクル Rに照射さ れるパルス照明光 I Lの強度を低減させても良い。 なお、 上記実施形態では監視対象となる物理量が計算値である場合について説 明したが、 本発明がこれに限定されることはなく、 例えば、 物理量としてレチ クル Rの異なる 2点あるいは 3点以上の温度を選択し、 これらの温度を所定時 間間隔で温度センサを用いて計測するようにしても良い。 マスクの 2点以上の 温度の関係、 すなわち、 マスクの温度分布から、 例えば、 特開平 4— 1 9 2 3 1 7号に開示された計算方法を用いて熱変形量を求めることができる。 こうし て得られた熱変形量を用いて、 前述の実施形態と同様にして、 熱変形量が所定 の値以上になったときに露光動作を中断させることができる。 あるいは、 マス クの温度分布と熱変形量との関係を予め求めておき、 かかる関係に基いて温度 分布が所定の分布なつたときに、 露光動作を中断させることも可能である。 後 者の場合には、 計測された温度を通じて間接的にマスクのパターンの歪量を監 視することになる。 本国際出願で指定した指定国または選択した選択国の国内 法令が許す限り、 前述の特開平 4— 1 9 2 3 1 7号の開示を援用して本文の記 載の一部とする。 また、 上記実施形態では、 レチクル Rの変形に関連する物理量として露光光 によるレチクル Rの熱変形に対応する物理量 {M 1 ( t ) — M 2 ( t )} を監 視し、 この物理量が第 1の所定値 L Hを超えた場合に露光動作を中断する場合 について説明したが、 本発明がこれに限定されるものではない。 例えば、 光源 (ビーム源) 1 からの照明光 (エネルギビ一厶) I Lの照射によるレチクル R のエネルギ吸収量に関する情報 (例えばィンテグレー夕センサ 6の出力の時間 積分値、 あるいはこの時間積分値と前記比ひとの積等) を検出し、 検出された ェネルギ吸収量に関する情報に基づいて、 レチクル Rに対するエネルギビーム の照射を制限するようにしても良い。 このようにすると、 例えばレチクル Rが 許容レベルを超えるエネルギを吸収する前にレチクル Rに対するエネルギビー 厶 I Lの照射を制限することができ、 これによりレチクル Rの熱変形に起因す るパターンの像の歪みを許容範囲内に抑制することができ、 レチクル Rの熱変 形に起因する露光精度の低下を防止することが可能になる。 ここで、エネルギビ一厶の照射の制限方法として、ビーム源としての光源(ェ キシマレ一ザ) 1のレーザ発振を停止してパルス照明光 (エネルギビ一厶) I Lの照射を停止する他、 照明光学系内の不図示のシャツタ、 あるいはレチクル 可動ブラインドによりパルス照明光 I Lのビーム路(光路)を遮断しても良く、 あるいは、 光源に対する印加電圧 (充電電流) を調整したり、 投影光学系 P L の瞳と共役な照明光学系内の位置、 例えば第 2フライアイレンズ 4の射出端面 に N Dフィルタ等の減光フィルタや光量絞りなどを配置し、 これらによってレ チクル Rに照射されるパルス照明光 I Lの強度を低減させても良い。 なお、 レ チクル Rへの照明光量を調節する場合には、 基板上に塗布されたフォトレジス 卜などの感光性材料への光照射量 (積算露光量) を所望の値に保っために、 調 節した照明光量に応じて、 走査露光時のマスク及び基板の移動速度を調節すれ ばよい。 また、 投影領域 I Aの走査方向の幅を変えてもよいし、 パルス照明光 の発振周期を変えてもよい。 エネルギビームの照射を制限するためのシャツタ、レチクル可動ブラインド、 減光フィルタ、 光量絞り並びにそれらの制御方法については、 例えば、 特開平 2 - 1 0 6 9 1 7号に開示されており、 本国際出願で指定された指定国または 選択された選択国の許す限りにおいてこれらの開示を援用して本文の記載の一 部とする。 さらに、 上記実施形態では、 インテグレー夕センサからの出力データを用い てモデル式 ( 1 ) ~ ( 3 ) に基きリアルタイムで M 1 ( t ) — M 2 ( t ) で表 される熱変形量を計算したが、 予め実露光で用いるために設定された照明光パ ヮ一をモデル式に代入してマスクの照明開始からの経過時間 tに対する M 1 ( t )— M 2 ( t )、 すなわち、 熱変形量のタイムスケジュールを予め求めて おいてもよい。 この場合、 求めたタイムスケジュールは、 制御装置または別途 設けたメモリに記憶させておき、 実露光の際には照明開始からの時間だけを計 測して、 M 1 ( t )— M 2 ( t ) が第 1の所定の値以上にあるであろう時間に 達したならば、 露光動作を中断させるように制御することができる。 このよう にすれば、 複数の基板を連続露光する場合に露光装置の稼動時間の管理が容易 となる。 特に、 露光装置が、 後述するようなデバイス製造プロセスを用いて半 導体回路チップ等のデバイスを量産する製造ラィンに組み込まれているときに おいて製造ラインの制御及び管理が容易になる。 さらに上記実施例では、 マスクの冷却のための露光動作の中断を一枚の基板 毎にまたは所定の枚数の基板の露光終了毎に、 実施したが、 一枚の基板中に複 数のショッ 卜エリア (チップが形成される単位) が区画されている場合には、 一または複数のショッ 卜の露光動作の終了毎に、 露光動作を一時的に中断させ てもよい。 なお、 上記実施形態では、 露光用の照明光としてエキシマレ—ザ光を用いる 場合について説明したが、 本発明がこれに限定されることはなく、 露光用照明 光としては、 例えば 5〜1 5 nm (軟 X線領域) に発振スペク トルを有する E U V (Extreme Ultra violet) 光 (例えば、 え = 1 3. 4 n m ) を用いてもよ い。 さらに、 超高圧水銀灯、 エキシマレーザ、 又は F 2レーザなどの代わりに、 D F B半導体レーザ又はファイバ一レーザから発振される赤外域、 又は可視域 の単一波長レーザを、 例えばエルビウム (又はエルビウムとイツ トリビゥムの 両方) がド一プされたファイバーアンプで増幅し、 非線形光学結晶を用いて紫 外光に波長変換した高調波を用いてもよい。 例えば、 単一波長レーザの発振波長を 1 . 5 1〜1 . 59μΓτιの範囲内とす ると、 発生波長が 1 89〜1 99 nmの範囲内である 8倍高調波、 又は発生波 長が 1 5 1〜1 59 nmの範囲内である 1 0倍高調波が出力される。 特に発振 波長を 1 . 544〜 1 . 5 53 yumの範囲内とすると、 1 93〜1 94 nm の範囲内の 8倍高調波、 即ち A r Fエキシマレ一ザとほぼ同一波長となる紫外 光が得られ、 発振波長を 1 . 57〜 1 . 58 xmの範囲内とすると、 1 57 〜1 58门 [^の範囲内の 1 0倍高調波、 即ち F2レーザとほぼ同一波長となる 紫外光が得られる。 また、 発振波長を 1 . 0 3〜1 . 1 2 μ πιの範囲内とする と、 発生波長が 1 4 7〜1 6 0 n mの範囲内である 7倍高調波が出力され、 特 に発振波長を 1 . 0 9 9 ~ 1 . 1 0 6 / mの範囲内とすると、 発生波長が 1 5 7〜1 5 8 μ ηηの範囲内の 7倍高調波、 即ち F 2レーザとほぼ同一波長とな る紫外光が得られる。 なお、 単一波長発振レーザとしてはイツ トリピウム · ド ープ ' ファイバ一レーザを用いる。 前述の E U V光を用いる投影露光装置では、 反射型レチクルが用いられると ともに、 通常、 レーザ光源からウェハまでの光路が真空に保たれるため、 レチ クルの熱が外部に放出されない。従って、 E U V光を用いる投影露光装置でも、 本発明のようにレチクルの変形に関する情報ゃレチクルの熱 (エネルギ) 吸収 量に関する情報を監視することによって露光精度の低下を防止することができ る ο 反射型レチクルを用いる場合には、 レチクルと投影光学系との間にビ一ムス プリッタを配置し、 そのビ一ムスプリッタを介して露光用照明光がレチクルに 照射されるようにして、 照明光学系をレチクルに対して投影光学系と同一側に 配置するように構成することができる。 そして、 E U V光はその主光線がレチ クルと直交する方向に対して傾けられてレチクルに入射するように調整するこ とができる。 なお、 投影光学系は複数の反射光学素子のみから構成され、 かつ レチクル側が非テレセン卜リックな光学系にし得る。 また、 本発明では、 露光ビームは、 E U V光を含む紫外線、 可視光、 赤外線 に限らず、 X線などの放射線や電子ビームのような粒子線であつてもよい。 Of course, the time constant is not limited to the above two, but can be easily extended to three time constants, and furthermore, there is a time delay between irradiation and appearance of a change in magnification (in terms of control). If there is so-called "dead time", It is not limited to the above calculation model. Next, a magnification correction method in the non-scanning direction will be described. The above M1 (t) and M2 (t) are thermal deformations of the reticle in the scanning direction of each point, however, it is usually safe to assume that the reticle fluctuates by the same amount in the non-scanning direction. t) and M 2 (t) are corrected by giving an offset to the magnification correction. That is, by changing the projection magnification of the projection optical system PL consciously according to the coordinates of the reticle in the scanning direction, a change in magnification in the non-scanning direction due to thermal deformation of the reticle is corrected. (1) When the end of the reticle R in the scanning direction is in the illumination area IAR, M2 (t) is the offset value of the magnification, and when the center of the reticle R is in the illumination area IAR, M1 (t) is the offset value of the magnification. . In the intermediate state between ① and ② above, the offset value of the magnification according to the coordinates is approximated by, for example, approximation with a quadratic function so that the magnification changes smoothly from M 1 (t) and M 2 (t). Find and correct. When the thermal deformation of the reticle R is different between the scanning direction and the non-scanning direction, the magnification change in the non-scanning direction is separately calculated in the same manner as in the above M 1 (t) and M 2 (t). May be. As a simple correction method to reduce the calculation time, an average of M1 (t) and M2 (t) is calculated as an offset value of the magnification, and a constant value is obtained without depending on the coordinates of reticle R. Magnification correction may be performed. Next, a method of correcting the magnification in the scanning direction will be described. The magnification in the scanning direction can be corrected by calculating the average value of M1 (t) and M2 (t) as a magnification error and changing the relative speed ratio between the reticle R and the wafer W accordingly. Unlike the magnification correction in the non-scanning direction, the magnification correction in the scanning direction has no choice but to correct the intermediate value between M1 (t) and M2 (t) as a magnification error. In the main controller 21 of the exposure apparatus 100 of this embodiment, the above-described step 'and' scan exposure is sequentially repeated for a plurality of wafers. At this time, the pattern of the reticle R is transferred to the wafer W. During exposure, the thermal deformation amounts M 1 (t) and M 2 (t) of the reticle R bottles M 1 and M 2 are constantly calculated using the above equations (2) and (3). Calculated at intervals of t. While these amounts of thermal deformation are small, as described above, other imaging performances of the projection optical system PL, such as curvature of field, coma, Without affecting aberrations, etc., the magnification and distortion of the projected image of the reticle pattern due to the thermal deformation of the reticle are corrected, and the Z stage 17 is driven and controlled in consideration of the effects of these corrections to focus. Correction has been performed. When the exposure operation is repeatedly performed using the same reticle R while correcting various imaging performances as described above, the irradiation energy of the illumination light IL is accumulated in the reticle R, and the thermal deformation amount of the reticle R gradually decreases. However, the situation of this change in thermal deformation differs for each point of reticle R. As a result, as shown in Fig. 4, as the irradiation energy accumulates (time elapses), the difference {M1 (t) between the thermal deformation amounts M1 (t) and M2 (t) of points M1 and M2 of reticle R t) — M2 (t)} gradually increases, and barrel distortion occurs in the projected image (transfer image) of the reticle pattern. However, as described above, the magnification correction in the scanning direction is performed using the average value of M1 (t) and M2 (t) as a magnification error. (t) -M2 (t)}, and if left unchecked, at some point it will be unacceptable. Thus, in the exposure apparatus 100 of the present embodiment, the main controller 21 calculates the difference (M1 (t) -M 2 ( t)} and monitor this change. In this case, we can easily think of As can be seen, since the rectangular pattern changes into a barrel-shaped distortion shape due to the thermal deformation of the reticle R, monitoring the change of the above difference {M 1 (t) -M 2 (t)} as a physical quantity is This is nothing less than monitoring the barrel type physical quantity as a physical quantity. Further, the above difference is a difference between thermal deformation amounts at different points on the reticle, and thus is a kind of information regarding an energy absorption amount of the reticle R due to irradiation of the illumination light (energy beam) IL. Then, when the difference {M1 (t) -M2 (t)} reaches the first predetermined value LH, the main controller 21 suspends the exposure operation once, the reticle R is naturally cooled, and reaches the second predetermined value LL. Wait until it becomes. Thereafter, when the difference {M1 (t) -M2 (t)} becomes smaller than the second predetermined value LL, the main controller 21 resumes the exposure operation, and again executes the difference {M1 (t) —M2 (t)} until the first predetermined value LH is reached. Thereafter, by repeating this operation, it is possible to prevent the correction residual error of the magnification in the scanning direction determined according to the difference {M 1 (t) -M2 (t)} from exceeding the allowable value. Fig. 5 shows how the difference {M 1 (t)-M2 (t)} changes with time when the exposure operation is repeatedly performed in this manner. . In FIG. 5, the dotted line shows how the difference {M 1 (t) -M2 (t)} changes with time when the exposure is not interrupted. The first predetermined value LH may be determined based on required accuracy (exposure accuracy, overlay accuracy, etc.). When the required accuracy differs for each lot, a different first predetermined value is set for each lot, so that the exposure interruption time (waiting time) can be set for a lot with relatively low required accuracy. Time) can be reduced, so that the throughput can be improved as a result. Also, the time during which the difference {M 1 (t) -M 2 (t)} changes from the second predetermined value LL to the first predetermined value LH is set to the exposure time for one wafer W. As a result, the exchange time after the exposure of one wafer W is completed for cooling the reticle. It may be used as a waiting time (Saiichi Burlap). Specifically, from the number of shots in one wafer W and the exposure time of one shot, it is possible to predict M 1 (t) and M 2 (t) during the exposure of one wafer from the above equation to some extent. It is possible. By doing so, the pure waiting time is reduced, and the deterioration of the throughput can be further suppressed. Of course, the time required for the difference {M1 (t) -M2 (t)} to change from the second predetermined value LL to the first predetermined value LH is exactly the time required for exposure of a plurality of wafers W ( (Including an exchange time on the way), and in such a case, the pure waiting time is reduced for the same reason, and the deterioration of the throughput can be suppressed accordingly. As another form, there is a method in which thermal deformation of the reticle is canceled beforehand when drawing a pattern. In this case, as can be easily imagined from FIG. 4, the rectangular pattern changes into a barrel-shaped disposition shape due to the thermal deformation of the reticle R. In consideration of this, a thread-wound distortion shape is preliminarily provided on the reticle. Should be drawn. Hereinafter, the reticle on which the pin-shaped distortion-shaped pattern is drawn is referred to as a reticle R 'for convenience. The reticle R ′ is thermally deformed by the irradiation of the illumination light, and gradually changes into a barrel-shaped dissection shape as the irradiation energy is absorbed. In other words, the reticle R 'gradually decreases in the degree of the pincushion shape, cancels the pincushion-type distortion on the way, and has an appropriate rectangular pattern shape. It changes so that the barrel shape gradually becomes stronger. Therefore, when a predetermined number of wafers W are continuously exposed using the reticle R ′, the main controller 21 executes the patterning of the reticle R ′ prior to starting the exposure on the actual wafer. Dummy exposure until To irradiate the reticle R with illumination light. Since the reticle R is heated by the irradiation of the illumination light by the dummy exposure, it is hereinafter referred to as a dummy heat. The above-mentioned predetermined shape is, for example, a shape (the barrel at that time) symmetric to the shape of the pattern immediately before the interruption of the exposure when the above-described dummy exposure is not performed (when the physical quantity is the first predetermined value LH). The shape of a thread-wound distortion that cancels the mold distortion). In this case, the value of the difference {M 1 (t) −M 2 (t)} at which the pattern of the reticle R, has the above-mentioned predetermined shape is set as a second predetermined value LL ′. Then, the main controller 21 starts exposure of the actual wafer when the difference {M 1 (t) −M 2 (t)} reaches the second predetermined value LL ′. As in the case of FIG. 5, the exposure operation is performed such that the difference {M 1 (t) —M 2 (t)} is maintained between the first predetermined value LH, and the second predetermined value LL, Is repeated alternately. This is shown in Figure 6. In this way, the corrected residual error determined according to the physical quantity {M 1 (t) — M 2 (t)} within the allowable range becomes positive or negative, so comparing Fig. 5 and Fig. 6 As is apparent, the width between the first predetermined value LH 'and the second predetermined value LL' can be set to almost twice the width between LH and LL in FIG. 5, and the exposure is interrupted. The ratio of time to the exposure time can be reduced, the waiting time for cooling the reticle R 'can be substantially reduced, and the deterioration of the throughput can be minimized. . As described above, according to the exposure apparatus 100 of the present embodiment, the main controller 21 uses the physical quantity (M 1 (t) described above as the physical quantity related to the deformation of the reticle R (or R ′). -M 2 (t)}, and when the physical quantity exceeds the first predetermined value LH, the exposure operation is temporarily stopped, the reticle is naturally cooled for a predetermined time, and the physical quantity resumes the exposure operation. When the value reaches the second predetermined value LL, which is a value suitable for performing exposure, the exposure operation is automatically restarted, so that the interruption time is prevented from becoming unnecessarily long, and the pattern caused by thermal deformation of the reticle R is prevented. Constant image distortion It can be controlled automatically below the value. Therefore, it is possible to prevent a decrease in exposure accuracy due to thermal deformation of the reticle R without significantly lowering the throughput. This is particularly effective when the reticle R is made of a material that is easily affected by heat, such as fluorite. In the above embodiment, the thermal deformation of the reticle R has been described, but the thermal deformation of the projection optical system (projection lens) PL is also calculated at the same time, and these are combined so as to be reflected in the magnification correction in the scanning direction and the non-scanning direction. But of course it is good. In such a case, it is possible to correct the imaging performance with higher accuracy. Many examples of the calculation and correction of the thermal deformation of the projection optical system (projection lens) PL are already known, and those methods can be adopted. Such calculations and corrections are disclosed, for example, in Japanese Patent Application Laid-Open No. 7-94339 and corresponding US Patent Nos. 5,661,546, and Or, to the extent permitted by the national laws of the selected country, these disclosures may be incorporated and incorporated as part of the text. In addition, the calculation of the change in the imaging performance of the projection optical system (projection lens) PL due to environmental fluctuations (changes in atmospheric pressure, temperature, and humidity) is performed. Accuracy can be improved. Further, in the above embodiment, the configuration is such that six types of imaging performance are calculated and corrected by six types of correction means (five lens groups 22 to 26 and a Z stage 17). Of course, if n is negligible, the imaging performance to be corrected may be reduced for implementation. Conversely, in order to further increase the exposure accuracy, the number of types of imaging performance to be corrected may be increased as compared with the case of the present embodiment. In other words, the magnification correction mechanism is indispensable, but it is only necessary to judge whether or not to adopt other corrections of imaging performance based on the required accuracy. In the above-described embodiment, the case where the barrel-shaped distortion has occurred in the reticle has been described. However, even when other distortions have occurred, the same processing can be performed to effectively cope with the distortion. In the above embodiment, the reticle is deformed by thermal deformation due to the exposure light, and the physical quantity {M 1 (t) —M 2 (t)} corresponding to the corrected residual error that cannot be corrected is equal to the first predetermined value LH When the exposure time exceeds the limit, the exposure operation is interrupted to start cooling the reticle, and the exposure operation is restarted when the value falls below the second predetermined value LL. Of course, the exposure operation may be restarted after a certain period of time required for natural cooling has elapsed without checking whether or not the exposure operation has been performed. In addition, when a cooling device for reticle R is separately provided, thermal deformation of the reticle may be obtained in consideration of the cooling function. What is important is to monitor the physical quantity related to the deformation of the reticle R and detect that the value has exceeded a predetermined value. This makes it possible to keep the deformation of reticle R within an allowable value. When the physical quantity becomes equal to or more than a predetermined value, for example, the reticle R may be forcibly cooled using a cooling device such as a water-cooled cooling device, a Peltier device, or a heat pipe. Alternatively, a light-reducing filter such as an ND filter or a light-amount stop is arranged at a position in the illumination optical system conjugate with the pupil of the projection optical system PL, for example, at the exit end face of the second fly-eye lens 4, and irradiates the reticle R with these. The intensity of the pulsed illumination light IL may be reduced. In the above embodiment, the case where the physical quantity to be monitored is a calculated value has been described, but the present invention is not limited to this. For example, two or three or more points having different reticle R as the physical quantity are used. These temperatures may be selected, and these temperatures may be measured at predetermined time intervals using a temperature sensor. From the relationship between the temperatures of two or more points of the mask, that is, the temperature distribution of the mask, for example, refer to The amount of thermal deformation can be determined using the calculation method disclosed in No. 17. The exposure operation can be interrupted when the amount of thermal deformation is equal to or more than a predetermined value, using the amount of thermal deformation obtained in this manner, as in the above-described embodiment. Alternatively, the relationship between the temperature distribution of the mask and the amount of thermal deformation can be determined in advance, and the exposure operation can be interrupted when the temperature distribution becomes a predetermined distribution based on the relationship. In the latter case, the mask pattern distortion is monitored indirectly through the measured temperature. As far as the national laws of the designated country designated in this international application or the selected elected country permit, the disclosure of the aforementioned Japanese Patent Application Laid-Open No. 4-192173 is incorporated herein by reference. In the above embodiment, the physical quantity {M 1 (t) —M 2 (t)} corresponding to the thermal deformation of the reticle R due to the exposure light is monitored as the physical quantity related to the deformation of the reticle R. The case where the exposure operation is interrupted when the predetermined value LH exceeds 1 has been described, but the present invention is not limited to this. For example, information on the amount of energy absorbed by the reticle R due to irradiation of the illumination light (energy beam) IL from the light source (beam source) 1 (for example, the time integrated value of the output of the integrate sensor 6 or the time integrated value and the ratio It is also possible to limit the irradiation of the reticle R with the energy beam based on the detected information on the energy absorption. In this way, for example, it is possible to limit the irradiation of the reticle R with the energy beam IL before the reticle R absorbs an energy exceeding an allowable level, thereby forming an image of a pattern caused by thermal deformation of the reticle R. The distortion can be suppressed within an allowable range, and it becomes possible to prevent a decrease in exposure accuracy due to thermal deformation of the reticle R. Here, as a method of limiting the irradiation of the energy beam, the laser oscillation of the light source (excimer laser) 1 as a beam source is stopped to stop the irradiation of the pulse illumination light (energy beam) IL. Not shown shirt or reticle in the system The beam path (optical path) of the pulsed illumination light IL may be blocked by the movable blind, or the voltage applied to the light source (charging current) may be adjusted, or the position in the illumination optical system conjugate with the pupil of the projection optical system PL. For example, a light-reducing filter such as an ND filter, a light-amount aperture, or the like may be arranged on the exit end face of the second fly-eye lens 4 to reduce the intensity of the pulse illumination light IL applied to the reticle R. When adjusting the amount of illumination on the reticle R, the amount of light irradiation (integrated exposure) on a photosensitive material such as a photoresist applied on the substrate is adjusted to a desired value. The movement speed of the mask and the substrate at the time of scanning exposure may be adjusted according to the amount of illumination light that has been set. Further, the width of the projection area IA in the scanning direction may be changed, or the oscillation cycle of the pulsed illumination light may be changed. A shirt, a reticle movable blind, a dimming filter, a light amount aperture, and a control method thereof for restricting the irradiation of the energy beam are disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 2-169917. To the extent permitted by the designated or designated elected States in the application, these disclosures are incorporated by reference and are incorporated herein by reference. Further, in the above embodiment, the amount of thermal deformation represented by M 1 (t) —M 2 (t) is calculated in real time based on the model formulas (1) to (3) using the output data from the integrator sensor. However, by substituting the illumination light pattern preset for use in actual exposure into the model formula, M 1 (t) —M 2 (t) with respect to the elapsed time t from the start of mask illumination, that is, heat A time schedule of the deformation amount may be obtained in advance. In this case, the obtained time schedule is stored in the control device or a memory provided separately, and only the time from the start of illumination is measured at the time of actual exposure, and M 1 (t) —M 2 (t ) Can be controlled to interrupt the exposure operation when a time has been reached that is greater than or equal to a first predetermined value. This makes it easy to manage the operation time of the exposure apparatus when continuously exposing a plurality of substrates. Becomes In particular, when the exposure apparatus is incorporated in a manufacturing line for mass-producing devices such as semiconductor circuit chips using a device manufacturing process described later, control and management of the manufacturing line are facilitated. Further, in the above embodiment, the exposure operation for cooling the mask was interrupted for each substrate or each time a predetermined number of substrates were exposed. However, a plurality of shots may be included in one substrate. When an area (a unit in which a chip is formed) is partitioned, the exposure operation may be temporarily interrupted each time one or more shot exposure operations are completed. In the above embodiment, the case where excimer laser light is used as the illumination light for exposure has been described. However, the present invention is not limited to this. Illumination light for exposure is, for example, 5 to 15 nm. EUV (Extreme Ultra violet) light (eg, = 13.4 nm) having an oscillation spectrum in the (soft X-ray region) may be used. Furthermore, ultra-high pressure mercury lamp, instead of such as an excimer laser, or F 2 laser, infrared region oscillated from the DFB semiconductor laser or fiber one laser, or a single wavelength laser in the visible range, for example, erbium (or erbium and Germany Toribiumu Both may be amplified by a doped fiber amplifier, and a harmonic converted to ultraviolet light using a nonlinear optical crystal may be used. For example, if the oscillation wavelength of a single-wavelength laser is in the range of 1.51 to 1.59 μΓτι, the 8th harmonic whose generation wavelength is in the range of 189 to 199 nm, or the generated wavelength is The 10th harmonic within the range of 151-159 nm is output. In particular, if the oscillation wavelength is in the range of 1.544 to 1.553 yum, the 8th harmonic in the range of 193 to 194 nm, that is, ultraviolet light having almost the same wavelength as the ArF excimer laser, Assuming that the oscillation wavelength is in the range of 1.57 to 1.58 xm, the 10th harmonic within the range of 157 to 158 门 [^, that is, almost the same wavelength as the F 2 laser Ultraviolet light is obtained. If the oscillation wavelength is in the range of 1.03 to 1.12 μπι, the 7th harmonic whose emission wavelength is in the range of 147 to 160 nm will be output, and Assuming that the wavelength is in the range of 0.909 to 1.106 / m, the generated wavelength is the seventh harmonic within the range of 157 to 158 μηη, that is, the wavelength is almost the same as that of the F 2 laser. Is obtained. It should be noted that, as the single-wavelength oscillation laser, a laser made of yttrium-doped fiber is used. In the above-described projection exposure apparatus using EUV light, a reflective reticle is used, and the optical path from the laser light source to the wafer is usually kept in a vacuum, so that heat of the reticle is not released to the outside. Therefore, even in a projection exposure apparatus using EUV light, a decrease in exposure accuracy can be prevented by monitoring information on reticle deformation and information on heat (energy) absorption of the reticle as in the present invention. When a mold reticle is used, a beam splitter is arranged between the reticle and the projection optical system, and the reticle is irradiated with illumination light for exposure through the beam splitter, so that the illumination optical system Can be arranged on the same side of the reticle as the projection optical system. The EUV light can be adjusted so that its principal ray is inclined with respect to the direction orthogonal to the reticle and enters the reticle. Incidentally, the projection optical system may be constituted by only a plurality of reflection optical elements, and the reticle side may be a non-telecentric optical system. In the present invention, the exposure beam is not limited to ultraviolet light including EUV light, visible light, and infrared light, and may be radiation such as X-rays or particle beams such as electron beams.
[デバイス製造方法] [Device manufacturing method]
次に、 上述した露光装置及び露光方法をリソグラフイエ程で使用したデバィ スの製造方法の実施形態について説明する。 図 7には、デバイス ( I Cや L S I等の半導体チップ、液晶パネル、 C C D、 薄膜磁気ヘッ ド、 マイクロマシン等) の製造例のフローチヤ一卜が示されてい る。 図 7に示されるように、 まず、 ステップ 2 0 1 (設計ステップ) において、 デバイスの機能 ·性能設計 (例えば、 半導体デバイスの回路設計等) を行い、 その機能を実現するためのパターン設計を行う。引き続き、ステップ 2 0 2 (マ スク製作ステップ) において、 設計した回路パターンを形成したマスクを製作 する。 一方、 ステップ 2 0 3 (ウェハ製造ステップ) において、 シリコン等の 材料を用いてウェハを製造する。 次に、 ステップ 2 0 4 (ウェハ処理ステップ) において、 ステップ 2 0 1〜 ステップ 2 0 3で用意したマスクとウェハを使用して、 後述するように、 リソ グラフィ技術等によってウェハ上に実際の回路等を形成する。 次いで、 ステツ プ 2 0 5 (デバイス組立ステップ) において、 ステップ 2 0 4で処理されたゥ ェハを用いてデバイス組立を行う。このステップ 2 0 5には、ダイシング工程、 ボンディング工程、 及びパッケージング工程 (チップ封入) 等の工程が必要に 応じて含まれる。 最後に、 ステップ 2 0 6 (検査ステップ) において、 ステップ 2 0 5で作製 されたデバイスの動作確認テス卜、 耐久性テス卜等の検査を行う。 こうしたェ 程を経た後にデバイスが完成し、 これが出荷される。 図 8には、 半導体デバイスの場合における、 上記ステップ 2 0 4の詳細なフ 口一例が示されている。 図 8において、 ステップ 2 1 1 (酸化ステップ) にお いてはウェハの表面を酸化させる。 ステップ 2 1 2 ( C V Dステップ) におい てはウェハ表面に絶縁膜を形成する。 ステップ 2 1 3 (電極形成ステップ) に おいてはウェハ上に電極を蒸着によって形成する。 ステップ 2 1 4 (イオン打 込みステップ) においてはウェハにイオンを打ち込む。 以上のステップ 2 1 1 〜ステップ 2 1 4それぞれは、 ウェハ処理の各段階の前処理工程を構成してお り、 各段階において必要な処理に応じて選択されて実行される。 ウェハプロセスの各段階において、 上述の前処理工程が終了すると、 以下の ようにして後処理工程が実行される。 この後処理工程では、 まず、 ステップ 2 1 5 (レジス卜形成ステップ) において、 ウェハに感光剤を塗布する。 引き続 き、 ステップ 2 1 6 (露光ステップ) において、 上記説明した露光装置及び露 光方法によってマスクの回路パターンをウェハに転写する。 次に、 ステップ 2 1 7 (現像ステップ) においては露光されたウェハを現像し、 ステップ 2 1 8 (エッチングステップ) において、 レジス卜が残存している部分以外の部分の 露出部材をエッチングにより取り去る。 そして、 ステップ 2 1 9 (レジス卜除 去ステップ)において、エツチングが済んで不要となったレジス卜を取り除く。 これらの前処理工程と後処理工程とを繰り返し行うことによって、 ウェハ上に 多重に回路パターンが形成される。 以上説明した本実施形態のデバイス製造方法を用いれば、 露光工程 (ステツ プ 2 1 6 )において上記の露光装置 1 0 0及びその露光方法が用いられるので、 レチクルの熱変形に起因する露光不良の発生を防止することができ、 デバイス の歩留まりを向上させることができ、 高集積度のデバイスの生産性を向上させ ることができる。 上記実施例では、 半導体素子の製造プロセスに用いられる露光プロセス、 露 光装置及びデバイス製造方法を例に挙げて説明してきたが、 液晶表示素子など を含むディスプレイの製造に用いられる、 デパイスパターンをガラスプレー卜 上に転写する露光装置及び方法、 薄膜磁気へッ ドの製造に用いられる、 デバイ スパターンをセラミックウェハ上に転写する露光装置及び方法、 並びに撮像素 子 (C C Dなど) の製造に用いられる露光装置及び方法などにも適用すること ができる。 また、半導体素子などのマイクロデバイスだけでなく、光露光装置、 E U V露光装置、 X線露光装置、 及び電子線露光装置などで使用されるレチク ル又はマスクを製造するために、 ガラス基板又はシリコンウェハなどに回路パ ターンを転写する露光装置及び方法にも本発明を適用できる。 産業上の利用可能性 Next, a device using the above-described exposure apparatus and exposure method in a lithographic process. An embodiment of a method for manufacturing a metal will be described. Fig. 7 shows a flowchart of an example of manufacturing devices (semiconductor chips such as ICs and LSIs, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.). As shown in FIG. 7, first, in step 201 (design step), a device function / performance design (for example, a circuit design of a semiconductor device) is performed, and a pattern design for realizing the function is performed. . Subsequently, in step 202 (mask manufacturing step), a mask on which the designed circuit pattern is formed is manufactured. On the other hand, in step 203 (wafer manufacturing step), a wafer is manufactured using a material such as silicon. Next, in step 204 (wafer processing step), using the mask and wafer prepared in steps 201 to 203, an actual circuit is formed on the wafer by lithography technology or the like as described later. Etc. are formed. Next, in step 205 (device assembling step), device assembly is performed using the wafer processed in step 204. Step 205 includes, as necessary, processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation). Finally, in step 206 (inspection step), an operation check test, a durability test, and the like of the device manufactured in step 205 are performed. After these steps, the device is completed and shipped. FIG. 8 shows a detailed example of the step 204 in the case of a semiconductor device. In FIG. 8, in step 211 (oxidation step), the surface of the wafer is oxidized. In step 2 1 (CVD step), an insulating film is formed on the wafer surface. Step 2 1 3 (Electrode formation step) In this case, electrodes are formed on the wafer by vapor deposition. In step 2 14 (ion implantation step), ions are implanted into the wafer. Each of the above-mentioned steps 211 to 214 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to a necessary process in each stage. In each stage of the wafer process, when the above-mentioned pre-processing step is completed, the post-processing step is executed as follows. In this post-processing step, first, in step 2 15 (register forming step), a photosensitive agent is applied to the wafer. Subsequently, in step 211 (exposure step), the circuit pattern of the mask is transferred to the wafer by the above-described exposure apparatus and exposure method. Next, in Step 217 (development step), the exposed wafer is developed, and in Step 218 (etching step), the exposed members other than the portion where the resist remains are removed by etching. Then, in step 219 (registry removal step), unnecessary resists after etching are removed. By repeating these pre-processing and post-processing steps, multiple circuit patterns are formed on the wafer. If the device manufacturing method of the present embodiment described above is used, the above-described exposure apparatus 100 and its exposure method are used in the exposure step (step 2 16), so that exposure defects due to thermal deformation of the reticle can be prevented. Generation can be prevented, the device yield can be improved, and the productivity of highly integrated devices can be improved. In the above embodiments, the exposure process, the exposure apparatus, and the device manufacturing method used in the semiconductor device manufacturing process have been described as examples. Exposure apparatus and method for transferring onto a plate, device used for manufacturing thin-film magnetic head The present invention can also be applied to an exposure apparatus and method for transferring a semiconductor pattern onto a ceramic wafer, and an exposure apparatus and method used for manufacturing an imaging device (such as a CCD). In addition to micro devices such as semiconductor devices, glass substrates or silicon wafers are used to manufacture reticles or masks used in optical exposure equipment, EUV exposure equipment, X-ray exposure equipment, electron beam exposure equipment, etc. The present invention can also be applied to an exposure apparatus and a method for transferring a circuit pattern to the same. Industrial applicability
本発明の露光装置及び露光方法によれば、 露光中のマスクの熱変形に起因す る露光精度の低下を防止することができ、 高集積化された集積回路のパターン であっても高精度で露光することが可能となる。 また、 本発明のデバイス製造 方法によれば、 高集積度で且つ信頼性の高い半導体チップ等のデバイスを得る ことができる。  According to the exposure apparatus and the exposure method of the present invention, it is possible to prevent a decrease in exposure accuracy due to thermal deformation of a mask during exposure, and to achieve high accuracy even for a highly integrated pattern of an integrated circuit. Exposure becomes possible. Further, according to the device manufacturing method of the present invention, a highly integrated and highly reliable device such as a semiconductor chip can be obtained.

Claims

請求の範囲 The scope of the claims
1 . 露光ビ一厶によりマスクを照射し、 前記マスクに形成されたパターンを 基板上に転写する露光装置であって、 1. An exposure apparatus that irradiates a mask with an exposure beam and transfers a pattern formed on the mask onto a substrate,
前記マスクの変形に関連する物理量の変化を監視し、 その物理量が第 1の所 定値以上になったとき露光動作を一旦中断する制御装置を備えることを特徴と する路兀^ ΙΛ。  A control device for monitoring a change in a physical quantity associated with the deformation of the mask and temporarily interrupting an exposure operation when the physical quantity becomes equal to or more than a first predetermined value.
2 . 前記制御装置は、 露光動作の中断後、 所定時間経過後に露光を再開する ことを特徴とする請求項 1に記載の露光装置。 2. The exposure apparatus according to claim 1, wherein the control device restarts the exposure after a predetermined time has elapsed after the interruption of the exposure operation.
3 . 前記制御装置は、 前記物理量が第 2の所定値以下になったとき、 前記露 光動作を再開することを特徴とする請求項 1 に記載の露光装置。 3. The exposure apparatus according to claim 1, wherein the control device restarts the exposure operation when the physical quantity becomes equal to or less than a second predetermined value.
4 . 前記制御装置は、 所定枚数の基板の露光動作が終了する毎に、 前記露光 動作を中断することを特徴とする請求項 1に記載の露光装置。 4. The exposure apparatus according to claim 1, wherein the control device interrupts the exposure operation each time the exposure operation of a predetermined number of substrates is completed.
5 . 前記物理量は、 計測された所定の物理量に基いて演算処理された量であ ることを特徴とする請求項 1 に記載の露光装置。 5. The exposure apparatus according to claim 1, wherein the physical quantity is a quantity calculated based on a measured predetermined physical quantity.
6 . 前記物理量は、 前記マスクの前記露光ビームの照射によるエネルギ吸収 に関する量であることを特徴とする請求項 1 に記載の露光装置。 6. The exposure apparatus according to claim 1, wherein the physical quantity is a quantity related to energy absorption by irradiation of the mask with the exposure beam.
7 . 前記物理量は、 マスクの中央と端部とにおける、 露光ビームの照射によ るエネルギ吸収量の差に基〈量である請求項 6に記載の露光装置。 7. The exposure apparatus according to claim 6, wherein the physical quantity is a quantity based on a difference in energy absorption between the center and the end of the mask due to exposure of the exposure beam.
8 . 前記物理量は、 前記マスクの温度分布であることを特徴とする請求項 1 に記載の露光装置。 8. The physical quantity is a temperature distribution of the mask. 3. The exposure apparatus according to claim 1.
9 . 前記物理量を直接または間接的に検出する検出器を備えることを特徴と する請求項 1に記載の露光装置。 9. The exposure apparatus according to claim 1, further comprising a detector for directly or indirectly detecting the physical quantity.
1 0 . 前記マスクのパターン像の結像特性を補正する結像特性補正装置をさ らに備え、 10. An imaging characteristic correction device for correcting the imaging characteristic of the pattern image of the mask is further provided,
前記制御装置は、 前記物理量が前記第 1の所定値未満である間は、 前記マス クの変形の影響をキャンセルするように前記結像特性補正装置を制御すること を特徴とする請求項 1〜8のいずれか一項に記載の露光装置。  The control device controls the imaging characteristic correction device so as to cancel the influence of the deformation of the mask while the physical quantity is less than the first predetermined value. 9. The exposure apparatus according to claim 8.
1 1 . 前記マスクと前記基板とを所定の走査方向に同期移動する駆動装置を 更に備え、 11. A drive device for synchronously moving the mask and the substrate in a predetermined scanning direction,
前記結像特性補正装置は、 前記マスクと前記基板との同期移動の速度比を調 整することを特徴とする請求項 1 0に記載の露光装置。  10. The exposure apparatus according to claim 10, wherein the imaging characteristic correction device adjusts a speed ratio of a synchronous movement between the mask and the substrate.
1 2 . 前記マスクのパターンの像を前記基板上に投影する投影光学系を更に 1厢え、 12. A projection optical system for projecting an image of the pattern of the mask onto the substrate is further provided.
前記結像特性補正装置は、 前記投影光学系の結像特性を調整することを特徴 とする請求項 1 0に記載の露光装置。  The exposure apparatus according to claim 10, wherein the imaging characteristic correction device adjusts an imaging characteristic of the projection optical system.
1 3 . 前記マスクと前記基板とを所定の走査方向に同期移動する駆動装置を 更に備え、 13. A drive device for synchronously moving the mask and the substrate in a predetermined scanning direction,
前記物理量には、 前記マスクの前記走査方向の樽型デイスト一ジョンが含ま れることを特徴とする請求項 1〜8のいずれか一項に記載の露光装置。  9. The exposure apparatus according to claim 1, wherein the physical quantity includes a barrel-shaped region of the mask in the scanning direction. 10.
1 4 . 前記物理量が、 マスクの非走査方向における中央部と端部とにおける マスクの変形に関連する物理量である請求項 1 3に記載の露光装置。 14. The physical quantity is at the center and the end in the non-scanning direction of the mask. 14. The exposure apparatus according to claim 13, wherein the exposure apparatus is a physical quantity related to deformation of the mask.
1 5 . 前記マスクには、 前記露光ビームの吸収による変形を考慮したパター ンが描画され、 15. A pattern is drawn on the mask in consideration of the deformation due to the absorption of the exposure beam,
前記制御装置は、 前記マスクのパターンが所定形状に変化するまでダミー露 光動作を行うことを特徴とする請求項 3に記載の露光装置。  4. The exposure apparatus according to claim 3, wherein the control device performs a dummy exposure operation until the pattern of the mask changes to a predetermined shape.
1 6 . 所定のパターンが形成されたマスクを露光ビームで照射して、 該パタ ーンの像で基板または基板中に区画された領域を露光する露光動作を、 複数の 基板または前記基板上に区画された複数の領域に渡って順次実行する露光装置 において、 16. An exposure operation of irradiating a mask on which a predetermined pattern is formed with an exposure beam to expose a substrate or a region partitioned in the substrate with an image of the pattern is performed on a plurality of substrates or the substrate. An exposure apparatus for sequentially executing a plurality of partitioned areas,
前記マスクを露光ビームで照射することによるマスクの熱変形量またはマス クの熱変形をもたらす因子を計測するための計測器と ;  A measuring instrument for measuring an amount of thermal deformation of the mask or a factor causing thermal deformation of the mask by irradiating the mask with an exposure beam;
前記熱変形量または因子が予め設定した第 1の値以上になったときに、 次の 露光動作を中断する制御装置と ; を備えることを特徴とする露光装置。  And a control device for interrupting the next exposure operation when the thermal deformation amount or the factor becomes equal to or greater than a first value set in advance.
1 7 . 走査方向にマスクと基板を同期して移動する走査型露光装置である請 求項 1 6に記載の露光装置。 17. The exposure apparatus according to claim 16, wherein the exposure apparatus is a scanning exposure apparatus that synchronously moves a mask and a substrate in a scanning direction.
1 8 . 前記計測器が、 マスクの熱変形モデル計算式に基いて、 マスクに対す る照射開始からの経過時間 tに対する非走査方向におけるマスク中央部におけ る熱変形量 M 1 ( t ) 及びマスク端部における熱変形量 M 2 ( t ) 並びにそれ らの差を演算する演算器であり、 該差が予め設定した第 1の値以上になったと きに、 制御装置は次の露光動作を中断することを特徴とする請求項 1 7に記載 の露光装置。 18. The measuring instrument calculates the thermal deformation amount M 1 (t) and the thermal deformation amount M 1 (t) at the center of the mask in the non-scanning direction with respect to the elapsed time t from the start of irradiation on the mask, based on the mask thermal deformation model calculation formula A computing unit that computes the thermal deformation amount M 2 (t) at the end of the mask and a difference between them, and when the difference becomes equal to or greater than a first value set in advance, the control device performs the next exposure operation. The exposure apparatus according to claim 17, wherein the exposure is interrupted.
1 9 . さらに、 前記マスクの熱変形モデル計算式を記憶したメモリを備える ことを特徴とする請求項 1 8記載の露光装置。 1 9. Further, a memory for storing a thermal deformation model calculation formula of the mask is provided. 19. The exposure apparatus according to claim 18, wherein:
2 0 . 前記因子が温度であり、 前記計測器は、 温度センサを含み、 且つ、 該 温度センサにより測定した非走査方向におけるマスク中央部とマスク端部にお ける温度の差に基いて熱変形量を求めることを特徴とする請求項 1 7に記載の sl^t装 lAo 20. The factor is temperature, and the measuring device includes a temperature sensor, and is thermally deformed based on a difference between a temperature at a mask central portion and a temperature at a mask edge in a non-scanning direction measured by the temperature sensor. The sl ^ t device lAo according to claim 17, wherein the amount is obtained.
2 1 . 前記制御装置は、 露光動作の中断後、 熱変形量が設定した第 2の値以 下になつたときに露光動作を再開することを特徴とする請求項 1 6に記載の露 光装置。 21. The exposure device according to claim 16, wherein the control device restarts the exposure operation when the amount of thermal deformation falls below a set second value after the interruption of the exposure operation. apparatus.
2 2 . 露光ビ一厶によりマスクを照射し、 前記マスクに形成されたパターン を基板上に転写する露光方法であって、 22. An exposure method for irradiating a mask with an exposure beam and transferring a pattern formed on the mask onto a substrate,
前記マスクの変形に関連する物理量が第 1の所定値以上になつたとき露光動 作を一旦中断する第 1工程と ;  A first step of temporarily suspending the exposure operation when a physical quantity related to the deformation of the mask becomes equal to or more than a first predetermined value;
露光を再開する第 2工程とを含む露光方法。  A second step of restarting the exposure.
2 3 . 前記第 2工程における露光動作の再開は、 前記物理量が第 2の所定値 以下になつたとき行われることを特徴とする請求項 2 2に記載の露光方法。 23. The exposure method according to claim 22, wherein the restart of the exposure operation in the second step is performed when the physical quantity becomes equal to or less than a second predetermined value.
2 4 . 前記物理量は、 所定の計算値であることを特徴とする請求項 2 2又は 2 3に記載の露光方法。 24. The exposure method according to claim 22, wherein the physical quantity is a predetermined calculated value.
2 5 . 前記物理量は、 前記マスクの前記露光ビームの照射によるエネルギ吸 収に関する量であることを特徴とする請求項 2 2又は 2 3に記載の露光方法。 25. The exposure method according to claim 22, wherein the physical quantity is a quantity related to energy absorption by irradiation of the mask with the exposure beam.
2 6 . 露光ビームによりマスクを照射し、 前記マスクに形成されたパターン を基板上に転写する露光方法であって、 26. The mask is irradiated with the exposure beam, and the pattern formed on the mask is An exposure method for transferring
所定枚数の基板の露光動作が終了する毎に、 露光動作を一旦中断し、 そして 再開することを特徴とする露光方法。  An exposure method, wherein the exposure operation is temporarily stopped and restarted each time the exposure operation of a predetermined number of substrates is completed.
2 7 . ビーム源からのエネルギビ一厶をマスクに照射し、 前記マスクに形成 されたパターンを基板上に転写する露光方法において、 27. An exposure method for irradiating a mask with an energy beam from a beam source and transferring a pattern formed on the mask onto a substrate,
前記エネルギビームの照射による前記マスクのエネルギ吸収量に関する情報 を検出し、  Detecting information on the amount of energy absorption of the mask by the irradiation of the energy beam;
前記検出されたエネルギ吸収量に関する情報に基づいて前記マスクに対する エネルギビームの照射を制限することを特徴とする露光方法。  An exposure method, comprising: limiting irradiation of an energy beam to the mask based on information on the detected amount of energy absorption.
2 8 . エネルギ吸収量に関する情報が予定した値以上になったときにマスク に対するエネルギビームの照射を中断し、 該中断のタイミングと、 基板の交換 夕イミングとを一致させることを特徴とする請求項 2 7に記載の露光方法。 28. When the information on the amount of energy absorption exceeds a predetermined value, the irradiation of the energy beam to the mask is interrupted, and the timing of the interruption and the timing of replacing the substrate are matched. 27. The exposure method according to 27.
2 9 . 前記エネルギビ—厶の照射制限は、 前記ビーム源からのビーム照射を 停止することを含む請求項 2 7に記載の露光方法。 29. The exposure method according to claim 27, wherein limiting the irradiation of the energy beam includes stopping beam irradiation from the beam source.
3 0 . 前記エネルギビームの照射制限は、 前記エネルギビームのビー厶路を 遮断することを含む請求項 2 7に記載の露光方法。 30. The exposure method according to claim 27, wherein limiting the irradiation of the energy beam includes blocking a beam path of the energy beam.
3 1 . 前記エネルギビームの照射制限は、 前記マスクに照射されるエネルギ ビームの強度を小さくすることを含む請求項 2 7に記載の露光方法。 31. The exposure method according to claim 27, wherein limiting the irradiation of the energy beam includes reducing the intensity of the energy beam applied to the mask.
3 2 . 請求項 1〜9及び 1 6のいずれか一項に記載の露光装置を用いてデバ イスを製造することを特徴とするデバイス製造方法。 32. A device manufacturing method for manufacturing a device using the exposure apparatus according to any one of claims 1 to 9 and 16.
3 3 . 請求項 2 2、 2 6及び 2 7のいずれか一項に記載の露光方法を含むこ とを特徴とするデバイス製造方法。 33. A device manufacturing method comprising the exposure method according to any one of claims 22, 26 and 27.
3 4 . 光源からの露光ビームによりマスクを照射し、 前記マスクに形成され たパターンを基板上に転写する露光方法であって、 34. An exposure method for irradiating a mask with an exposure beam from a light source and transferring a pattern formed on the mask onto a substrate,
前記マスクの変形に関連する物理量を監視し、 該物理量が所定値以上になつ たことを検出することを含むことを特徴とする露光方法。  An exposure method comprising: monitoring a physical quantity related to the deformation of the mask, and detecting that the physical quantity has exceeded a predetermined value.
3 5 . さらに、 前記物理量が所定値以上になったときに、 露光動作を中断す ることを含む請求項 3 4に記載の露光方法。 35. The exposure method according to claim 34, further comprising interrupting the exposure operation when the physical quantity becomes equal to or more than a predetermined value.
3 6 . さらに、 前記物理量が所定値以上になったときに、 前記マスクを冷却 することを含む請求項 3 4に記載の露光方法。 36. The exposure method according to claim 34, further comprising cooling the mask when the physical quantity becomes equal to or more than a predetermined value.
3 7 . さらに、 前記物理量が所定値以上になったときに、 前記光源からの露 光ビームの照射を停止することを含む請求項 3 4に記載の露光方法。 37. The exposure method according to claim 34, further comprising: stopping irradiation of an exposure beam from the light source when the physical quantity becomes equal to or more than a predetermined value.
3 8 . さらに、 前記物理量が所定値以上になったときに、 前記露光ビームの 強度を小さ〈することを含む請求項 3 4に記載の露光方法。 38. The exposure method according to claim 34, further comprising: decreasing the intensity of the exposure beam when the physical quantity becomes equal to or more than a predetermined value.
3 9 . 前記物理量が所定値以上になったときに、 前記露光ビームのビ—厶路 を遮断することを含む請求項 3 4に記載の露光方法。 39. The exposure method according to claim 34, comprising blocking a beam path of the exposure beam when the physical quantity becomes equal to or more than a predetermined value.
4 0 . 前記物理量は、 前記マスクのエネルギ吸収量を含む請求項 3 4に記載 の路光万法。 40. The method according to claim 34, wherein the physical quantity includes an energy absorption amount of the mask.
4 1 . 前記物理量は、 前記マスクのパターンの歪量を含む請求項 3 4に記載 の露光方法。 41. The physical quantity according to claim 34, wherein the physical quantity includes a distortion quantity of the mask pattern. Exposure method.
4 2 . 所定のパターンが形成されたマスクを露光ビームで照射して、 該パタ ーンの像で基板または基板中に区画された領域を露光する露光動作を、 複数の 基板または前記基板中の区画された複数の領域に渡って順次実行する露光方法 において、 42. Exposure operation of irradiating a mask on which a predetermined pattern is formed with an exposure beam and exposing a substrate or a region partitioned in the substrate by an image of the pattern is performed by a plurality of substrates or a plurality of substrates. An exposure method that sequentially executes over a plurality of partitioned areas,
マスクの熱変形量を求め;  Determining the thermal deformation of the mask;
マスクの熱変形量が予め設定した値以上になつたときに、 次の基板または領 域に対する露光動作を中断することを特徴とする露光方法。  An exposure method, wherein the exposure operation for the next substrate or area is interrupted when the amount of thermal deformation of the mask becomes equal to or greater than a preset value.
4 3 . マスクの照射開始からの経過時間 tに対するマスクの熱変形に関する モデル式に基いて、 マスクの照射開始からマスクの熱変形量を計算することを 特徴とする請求項 4 2に記載の露光方法。 43. The exposure according to claim 42, wherein the amount of thermal deformation of the mask is calculated from the start of irradiation of the mask, based on a model formula relating to the thermal deformation of the mask with respect to an elapsed time t from the start of irradiation of the mask. Method.
4 4 . 露光開始前に、 マスクの熱変形に関するモデル式に基いて、 マスクの 照射開始からの経過時間に対するマスクの熱変形量の変化に関するタイ厶スケ ジュールを求めておき、 該熱変形量が予め設定した値以上に達する時刻に、 次 の基板または領域に対する露光動作を中断することを特徴とする請求項 4 2に 記載の露光方法。 4 4. Before the start of exposure, a time schedule for the change in the amount of thermal deformation of the mask with respect to the elapsed time from the start of irradiation of the mask is obtained based on a model formula for the thermal deformation of the mask. 43. The exposure method according to claim 42, wherein the exposure operation for the next substrate or region is interrupted at a time when the predetermined value or more is reached.
4 5 . 走査方向にマスクと基板を同期して移動しながら露光動作を行うこと を特徴とする請求項 4 3または 4 4に記載の露光方法。 45. The exposure method according to claim 43, wherein the exposure operation is performed while moving the mask and the substrate synchronously in the scanning direction.
4 6 . 前記マスクの熱変形モデル計算式に基いて、 マスクに対する照射開始 からの経過時間 tに対する非走査方向におけるマスク中央部における熱変形量 の変化 M 1 ( t ) 及びマスク端部における熱変形量の変化 M 2 ( t ) 並びにそ れらの差を計算し、 該差が予め設定した値以上になったときに、 次の露光動作 を中断することを特徴とする請求項 4 5に記載の露光方法。 46. Based on the thermal deformation model calculation formula of the mask, the change M 1 (t) of the thermal deformation amount at the center of the mask in the non-scanning direction with respect to the elapsed time t from the start of irradiation on the mask and the thermal deformation at the end of the mask The amount change M 2 (t) and their difference are calculated, and when the difference exceeds a preset value, the next exposure operation The exposure method according to claim 45, wherein the step is interrupted.
4 7 . 前記モデル式が、 熱変形の時定数及び熱変形飽和値をパラメータとし て含むことを特徴とする請求項 4 3に記載の露光方法。 47. The exposure method according to claim 43, wherein the model formula includes a thermal deformation time constant and a thermal deformation saturation value as parameters.
4 8 . 所定のパターンが形成されたマスクを露光ビームで照射して、 該パタ ーンの像で基板または基板中に区画された領域を露光する露光動作を、 複数の 基板または前記基板中の区画された複数の領域に渡って順次実行する露光方法 において、 48. An exposure operation of irradiating a mask on which a predetermined pattern is formed with an exposure beam and exposing a substrate or a region partitioned in the substrate by an image of the pattern is performed on a plurality of substrates or a plurality of substrates in the substrate. An exposure method that sequentially executes over a plurality of partitioned areas,
マスクの温度分布を測定し ;  Measuring the temperature distribution of the mask;
マスクの温度分布に基いて熱変形量を求め;  Determining the amount of thermal deformation based on the temperature distribution of the mask;
熱変形量が予め設定した第 1の値以上になったときに、 次の基板または領域 に対する露光動作を中断することを特徴とする露光方法。  An exposure method, wherein the exposure operation for the next substrate or region is interrupted when the amount of thermal deformation becomes equal to or greater than a preset first value.
4 9 . 露光動作の中断後、 熱変形量が設定した第 2の値以下になったときに 露光動作を再開することを特徴とする請求項 4 2に記載の露光方法。 49. The exposure method according to claim 42, wherein after the exposure operation is interrupted, the exposure operation is restarted when the amount of thermal deformation becomes equal to or less than the set second value.
5 0 . 露光ビームによりマスクを照射し、 前記マスクに形成されたパターン を基板上に転写する露光装置の製造方法であって、 50. A method for manufacturing an exposure apparatus that irradiates a mask with an exposure beam and transfers a pattern formed on the mask onto a substrate,
前記マスクに露光ビームを照射するための照射系を設け;  Providing an irradiation system for irradiating the mask with an exposure beam;
前記マスクの変形に関連する物理量の変化を監視し、 その物理量が第 1の所 定値以上になったとき露光動作を一旦中断する制御装置を設けることを含む露 光装置の製造方法。  A method for manufacturing an exposure apparatus, comprising: monitoring a change in a physical quantity associated with the deformation of the mask, and providing a control device for temporarily stopping the exposure operation when the physical quantity becomes equal to or more than a first predetermined value.
5 1 . さらに、 マスクと基板との間に、 マスクに形成されたパターンを所定 の投影倍率で基板上に投影するための投影光学系を設け; 51. Further, a projection optical system for projecting a pattern formed on the mask onto the substrate at a predetermined projection magnification is provided between the mask and the substrate;
マスクと基板と露光ビームに対して同期して移動するためのステージ系を設 けることを含む請求項 5 0に記載の露光装置の製造方法。 A stage system for moving the mask, substrate and exposure beam in synchronization The method for manufacturing an exposure apparatus according to claim 50, further comprising:
5 2 . 所定のパターンが形成されたマスクを露光ビームで照射して、 該パ夕 ーンの像で基板または基板中に区画された領域を露光する露光動作を、 複数の 基板または前記基板中の区画された複数の領域に渡って順次実行する露光装置 の製造であって、 52. Exposure operation of irradiating a mask on which a predetermined pattern is formed with an exposure beam and exposing a substrate or a region partitioned in the substrate with an image of the pattern is performed on a plurality of substrates or the substrate. Manufacturing of an exposure apparatus which is sequentially executed over a plurality of divided areas,
前記マスクを露光ビー厶で照射するための照射系を設け;  Providing an irradiation system for irradiating the mask with an exposure beam;
前記マスクを照射することによるマスクの熱変形量またはマスクの熱変形を もたらす因子を計測するための計測器を設け;  A measuring device for measuring an amount of thermal deformation of the mask due to irradiation of the mask or a factor causing thermal deformation of the mask;
前記熱変形量または因子が予め設定した値以上になったときに、 次の露光動 作を中断する制御装置を設ける ; ことを含む露光装置の製造方法。  Providing a control device for interrupting the next exposure operation when the amount of thermal deformation or the factor exceeds a preset value.
5 3 . 前記計測器が、 マスクの熱変形モデル計算式に基いて、 マスクに対す る照射開始からの経過時間 tに対する非走査方向におけるマスク中央部におけ る熱変形量の変化 M 1 ( t )及びマスク端部における熱変形量の変化 M 2 ( t ) 並びにそれらの差を演算する演算器である請求項 5 2に記載の露光装置の製造 方法。 5 3. Based on the thermal deformation model calculation formula for the mask, the measuring device calculates the change in the thermal deformation amount M 1 (t in the non-scanning direction with respect to the elapsed time t from the start of irradiation on the mask in the non-scanning direction. 53. The method of manufacturing an exposure apparatus according to claim 52, wherein the calculator is a computing unit that computes a change M 2 (t) in the amount of thermal deformation at the end of the mask and a difference therebetween.
5 4 . さらに、 前記マスクの熱変形モデル計算式を記憶したメモリを設ける ことを含む請求項 5 3に記載の露光装置の製造方法。 54. The method of manufacturing an exposure apparatus according to claim 53, further comprising: providing a memory storing a thermal deformation model calculation formula of the mask.
PCT/JP1998/005567 1997-12-16 1998-12-09 Aligner, exposure method and method of manufacturing device WO1999031716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU15047/99A AU1504799A (en) 1997-12-16 1998-12-09 Aligner, exposure method and method of manufacturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP36346197 1997-12-16
JP9/363461 1997-12-16

Publications (1)

Publication Number Publication Date
WO1999031716A1 true WO1999031716A1 (en) 1999-06-24

Family

ID=18479373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/005567 WO1999031716A1 (en) 1997-12-16 1998-12-09 Aligner, exposure method and method of manufacturing device

Country Status (2)

Country Link
AU (1) AU1504799A (en)
WO (1) WO1999031716A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005006417A1 (en) * 2003-07-09 2006-08-24 株式会社ニコン Exposure apparatus and device manufacturing method
JP2010010695A (en) * 2003-11-05 2010-01-14 Asml Netherlands Bv Lithographic apparatus and article support structure
JP2011061163A (en) * 2009-09-14 2011-03-24 Canon Inc Management apparatus, exposure method, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286417A (en) * 1988-05-13 1989-11-17 Nikon Corp Projection aligner
JPH05251299A (en) * 1992-03-04 1993-09-28 Nikon Corp Projection light exposure device
JPH0645217A (en) * 1991-10-08 1994-02-18 Nikon Corp Projection aligner
JPH0888164A (en) * 1994-09-20 1996-04-02 Nikon Corp Projection aligner
JPH0922860A (en) * 1995-07-07 1997-01-21 Nikon Corp Projection exposure device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286417A (en) * 1988-05-13 1989-11-17 Nikon Corp Projection aligner
JPH0645217A (en) * 1991-10-08 1994-02-18 Nikon Corp Projection aligner
JPH05251299A (en) * 1992-03-04 1993-09-28 Nikon Corp Projection light exposure device
JPH0888164A (en) * 1994-09-20 1996-04-02 Nikon Corp Projection aligner
JPH0922860A (en) * 1995-07-07 1997-01-21 Nikon Corp Projection exposure device

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
JP4835155B2 (en) * 2003-07-09 2011-12-14 株式会社ニコン Exposure apparatus and device manufacturing method
JPWO2005006417A1 (en) * 2003-07-09 2006-08-24 株式会社ニコン Exposure apparatus and device manufacturing method
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2010010695A (en) * 2003-11-05 2010-01-14 Asml Netherlands Bv Lithographic apparatus and article support structure
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
JP2011061163A (en) * 2009-09-14 2011-03-24 Canon Inc Management apparatus, exposure method, and device manufacturing method

Also Published As

Publication number Publication date
AU1504799A (en) 1999-07-05

Similar Documents

Publication Publication Date Title
JP4345098B2 (en) Exposure apparatus, exposure method, and device manufacturing method
TWI387855B (en) A variable slit device, a lighting device, an exposure device, an exposure method, and an element manufacturing method
EP1347501A1 (en) Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing microdevice
JP2001274080A (en) Scanning projection aligner and positioning method thereof
WO2006085626A1 (en) Exposure method and system, and method for fabricating device
WO1999031716A1 (en) Aligner, exposure method and method of manufacturing device
JP2007207821A (en) Variable slit device, lighting device, aligner, exposure method, and method of manufacturing device
WO1999052130A1 (en) Exposure method, exposure apparatus, method of producing the same, device, and method of fabricating the same
US20140218703A1 (en) Illumination method, illumination optical device, and exposure device
TW583515B (en) Exposure apparatus
JP2003068622A (en) Aligner, control method thereof, and method of manufacturing device
JPH11251239A (en) Method for measuring illuminance distribution, exposure method, and manufacture of device
JPH11258498A (en) Projective lens and scanning exposure device
WO2013094733A1 (en) Measurement method and device, and maintenance method and device
WO1999026279A1 (en) Exposure method and aligner
JP2006030021A (en) Position detection apparatus and position detection method
JP3787531B2 (en) Exposure method and apparatus
JP2003318095A (en) Flame measuring method and flare measuring device, aligning method and aligner, and method for adjusting aligner
JP2002231611A (en) Aligner and method of manufacturing device
JP2010080511A (en) Exposure method and device manufacturing method
JP5354339B2 (en) Exposure method, exposure apparatus, and device manufacturing method
JP2011060799A (en) Exposure apparatus, exposure method and device manufacturing method
JPH10256150A (en) Method and device for scanning exposure
JP2003045794A (en) Optical characteristics measurement method, adjustment method of projection optical system, exposure method, manufacturing method of projection aligner, and mask inspection method
JP2003045795A (en) Optical characteristics measurement method, adjustment and exposure method of projection optical system, and manufacturing method of aligner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GD GE HR HU ID IL IN IS JP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA