WO1999040296A1 - Verfahren zum betrieb eines im viertakt arbeitenden verbrennungsmotors - Google Patents

Verfahren zum betrieb eines im viertakt arbeitenden verbrennungsmotors Download PDF

Info

Publication number
WO1999040296A1
WO1999040296A1 PCT/EP1999/000227 EP9900227W WO9940296A1 WO 1999040296 A1 WO1999040296 A1 WO 1999040296A1 EP 9900227 W EP9900227 W EP 9900227W WO 9940296 A1 WO9940296 A1 WO 9940296A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
fuel
air
combustion chamber
mixture
Prior art date
Application number
PCT/EP1999/000227
Other languages
English (en)
French (fr)
Inventor
Igor Gruden
Rolf-Günther Nieberding
Guido Vent
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to JP2000530690A priority Critical patent/JP2002502929A/ja
Priority to US09/601,742 priority patent/US6659082B1/en
Priority to EP99906136A priority patent/EP1053389B1/de
Publication of WO1999040296A1 publication Critical patent/WO1999040296A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • F02D13/0265Negative valve overlap for temporarily storing residual gas in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/021Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using an ionic current sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1405Neural network control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for operating a four-stroke internal combustion engine of the type specified in the preamble of claim 1.
  • compression ignition With compression ignition, the air / fuel mixture is ignited by compression heat. After the ignition has started, the energy released initiates a self-accelerating combustion process. A compression that is too low leads to delayed, incomplete combustion, a compression that is too high leads to impermissibly steep pressure increases and to gas vibrations in the combustion chamber (knocking combustion).
  • EP 0 709 562 A2 describes a method for controlling the valve characteristics and a fuel / air mixture of an internal combustion engine.
  • the inlet valves assigned to a cylinder can be coupled if necessary so that the fuel / air mixture can be either by or two intake valves can be sucked.
  • the mixture rate can be changed between a lower limit value with a relatively lean mixture and an upper limit value with a relatively rich mixture.
  • DE-A 195 19 663 describes a method for operating an internal combustion engine with compression ignition.
  • a homogeneous and lean air / fuel mixture generated with the formation of an external mixture is compressed to close to the ignition limit.
  • an additional amount of the same fuel is atomized and injected into the combustion chamber, avoiding contact with the wall.
  • the late injected fuel forms a mixture cloud that ignites because its ignition limit is below the compression temperature reached in the first stage due to the higher fuel content.
  • the invention has for its object to provide a method of the type specified in the preamble of claim 1, with which a rapid adaptation of the mixture formation to a desired combustion process is possible.
  • variable valve control system for the intake control of the combustion chamber, through which the Changing the amount of fuel / air mass in the combustion chamber is effected.
  • the variable valve control system is controlled by control electronics within one cycle of the reciprocating piston engine, regardless of the size of the combustion chamber.
  • the regulation of the combustion strives to bring about the maximum compression.
  • the filling is limited by the undesired increases in the combustion chamber pressure that ensue and the subsequent combustion chamber pressure oscillations.
  • this electronics In addition to the data monitoring the combustion, this electronics also takes into account the valve timing and the injection times as well as the derived values for excess air and residual gas content. The influence of the environment and the engine status is recorded with the intake air temperature and the cooling water temperature.
  • FIG. 1 shows a schematic illustration of an internal combustion engine with a control device and means for measuring the combustion process
  • Fig. 2 cylinder pressure diagram for the gas exchange with timing of the gas exchange elements.
  • the internal combustion engine shown schematically in FIGS. 1 and 2 has a cylinder block 1 with four cylinders 2, in which pistons 3 are sealingly guided and which are closed by a cylinder head 4. Cylinder 1, piston 3 and cylinder head 4 enclose a combustion chamber 5 in which the combustion takes place.
  • a control unit 10 controls the opening and closing of the gas exchange elements 7, 8 and the fuel injection valve 6 continuously.
  • an ion current sensor 11 is arranged in the form of a pair of electrical conductors (eg a spark plug) for measuring the electrical conductivity of the combustion gases.
  • an ionization measuring device 15 is provided, which is connected to the ion current sensor 11 and the control device 10.
  • a speed sensor 14 for measuring the rotational irregularity of the crankshaft, the signals of which are processed in a device 17 for torque evaluation.
  • Ion current sensor 11, knock sensor 12 and Speed sensor 14 provide real-time signals of the position and course of the combustion for the control unit 10.
  • FIG. 2 shows a cylinder pressure diagram with low-pressure curves of the gas exchange and with timing ranges of the gas exchange elements 7, 8.
  • FIG. 2 shows a cylinder pressure diagram with low-pressure curves of the gas exchange and with timing ranges of the gas exchange elements 7, 8.
  • variable compression By designing an internal combustion engine with variable, effective compression (for example, via the free control of the inlet and outlet elements 7, 8 for the stepless change in the work space volume), the variable compression can be formed with a mixture while retaining exhaust gas in the combustion chamber 5 to influence the next combustion process be combined.
  • rapidly reacting gas exchange elements 7, 8 and fuel injection valves 6 are required, which vary the filling of the individual combustion chambers 5 from work cycle to work cycle due to free control by means of an electronic control unit 10.
  • the strategy of this combustion control is aimed at maximum, knock-free compression, ie maximum possible filling of the combustion chambers 5.
  • the combustion is measured in real time according to the position and course by the ion current sensor 11 and / or the knock sensor 12 and / or the speed sensor 14. reproduced and assessed by the control logic of the control unit 10.
  • the control-technical comparison of the current values and their course in Dependence on the time with the symptoms of burns is evaluated by the control logic, which is based on the technology of neural networks.
  • the air / fuel ratio, the intake air temperature and the engine speed are also used as additional input parameters for training the logic.
  • the detection takes place by comparing "good" combustion with undesired combustion. Instead of using neural networks, control can also take place via values stored in characteristic maps.
  • a voltage is applied to a pair of electrical conductors in the combustion chamber, e.g. the spark plug, placed and the current flow through this pair of conductors monitored during combustion.
  • the combustion situation and the type of combustion are determined via the qualitative and quantitative course of the current flow during combustion, i.e. an occurrence of undesirable burns is recognized.
  • the detection of an undesired combustion cycle leads to a reduction in the effective compression for the next cycle in the same cylinder in which the undesired combustion was determined by the combustion monitoring described above.
  • the effective compression is reduced by reducing the amount of air and fuel supplied until there is no longer any undesirable combustion behavior.
  • the intake phase is not fully used, that is, the inlet element closes before bottom dead center is reached.
  • a combustion chamber 5 is formed Vacuum that supports the mixture formation especially in the case of an inner mixture formation.
  • the temperature increase can be brought about by geometric compression or by mixing the cold fresh gas with heat and exhaust gas.
  • the flow rate of the exhaust gas can be influenced with the variable control of the outlet member.
  • the amount of exhaust gas that is retained in the combustion chamber can be influenced.
  • the expansion phase of the internal combustion engine lasts for optimum efficiency up to the bottom dead center of the piston travel.
  • the outlet organ opens at the beginning of the extension stroke. Because of gas dynamic, speed-dependent effects, the opening time of the outlet element 8 can also be optimized.
  • the exhaust gas Due to the excess pressure in the combustion chamber 5, the exhaust gas is conveyed out of the same.
  • the overpressure in the combustion chamber 5 arises from the residual pressure of the combustion and from the reduction in the combustion chamber volume during the exhaust stroke.
  • the exhaust element 8 is closed again during the exhaust stroke, as a result of which the exhaust gas in the combustion chamber is not pushed out completely, but is compressed again.
  • the temperature of the residual gas is increased.
  • the regulation of the opening time of the inlet member 7 serves to optimize the mixture formation to the current temperature conditions of the transient operation.
  • the inlet member 7 opens at the point in time when the pressure in the combustion chamber 5 has fallen below the pressure level of the surroundings. If the inlet is opened earlier, the Exhaust gas flow undesirably into the intake line.
  • the inlet member 7 is always opened during the intake stroke after the position of the piston 3, which the piston 3 assumed during the extension stroke when the outlet member 8 was closed.
  • the new pressure mass is sucked in due to the pressure difference.
  • the closing time of the outlet member 8 determines the amount of residual gas and thus the mixture mass that can be sucked in for the next suction stroke.
  • the composition of the mixture of air and fuel determines the energy content of the mixture mass sucked in the next cycle. While optimizing the efficiency of an internal combustion engine operating with a constant load, the mixture composition should be kept constant in a first approximation.
  • the variation in the amount of mixture sucked in results from the given compression ratios and the residual gas fractions. Any necessary compensation for changes in load can be carried out with the injected fuel quantity in the event of internal and external mixture formation.
  • the inlet member 7 In order to have sufficient time for the mixture intake, the inlet member 7 must be open for a sufficiently long time.
  • the time delay of the opening of the inlet member 7 with respect to the end of the residual gas expansion shortens the time remaining for the charge to flow in, but increases the negative pressure in the combustion chamber 5 and thus the inflow speed of the fresh mixture. This leads to a good mixing of the air / fuel mixture with the warm residual gas from the previous combustion cycle.
  • the disadvantage of the increased negative pressure in the combustion chamber 5 is that the gas mass cools down. This cooling off stands the advantage of improved mixture formation due to the increased flow rate.
  • the better mixture formation reduces the average individual volume of the exhaust gas fraction.
  • the surface / volume ratio of the partial exhaust gas volume becomes so low that the heat conduction increasingly lowers the maximum temperature of the residual gas.
  • the maximum temperature in the partial exhaust volume determines the ignitability of the surrounding fresh mixture during compression.
  • the control times of the inlet member 7 must be optimized depending on the mixture and residual gas temperature and the composition of the air / fuel mixture. This can be done via values stored in characteristic maps or with the technology of the neural networks. When the engine is cold, high flow velocities with the resulting good mixture formation are more important than the associated filling losses. The cooling water temperature is taken into account as a further control variable.
  • the inlet swirl offers a further degree of freedom for optimizing the mixture formation due to asymmetrical inflow conditions.
  • the staggered activation of two independently controllable inlet elements 7 can be used for the optimization during operation by making minor changes.
  • the time course of the electrical conductivity of the fuel gases can be used to continuously optimize the combustion position during a stable and stationary combustion process.
  • the activation times of the inlet elements 7 are varied to a small extent and their effects on the combustion position and the operating behavior are checked. If they are improved, 10
  • Inlet opening late - long expansion due to the large amount of exhaust gas that is hot due to compression, which is overexpanded, leads to a good mixing of the fresh gas in the exhaust gas.
  • Inlet opening early - the high amount of incoming fresh gas ensures good mixing.
  • Inlet opening tends to be earlier because higher gas speed and speed lead to sufficiently good mixing.
  • Inlet closing tends to be later in order to compensate for the reaction time, which decreases with the speed, by means of longer suction and compression times and a higher compression temperature.

Abstract

Bei einem Verfahren zum Betrieb eines im Viertakt arbeitenden Verbrennungsmotors mit homogenem, mageren Grundgemisch von Luft und Kraftstoff und mit Kompressionszündung ist mittels eines steuerbaren Einlaßorgans das im Brennraum gebildete Kraftstoff/Luft-Verhältnis veränderbar. Um eine möglichst rasche Anpassung an veränderte Verbrennungsabläufe zu erreichen, erfolgt eine Messung der jeweiligen Verbrennung, und in Abhängigkeit des aus dieser Messung gewonnenen Signals wird der Zeitpunkt des Schließens des Einlaßorgans des Brennraums für den nächsten Zyklus geregelt.

Description

Vpr ahrpn y. vm Rp.t-.-H ph PIΠPR -im Vi prt-.akr. πr-hfi-i 1-p-nr.pn VPΓ- hrpnηiingsiTint.nrR
Die Erfindung betrifft ein Verfahren zum Betrieb eines im Viertakt arbeitenden Verbrennungsmotors der im Oberbegriff des Anspruchs 1 angegebenen Gattung.
Verbrennungsmotoren mit innerer Verbrennung bieten bei Kompressionszündung homogener, magerer Luft/Kraftstoff-Gemische die Möglichkeit einer geringen Stickoxidbildung und eines hohen thermischen Wirkungsgrades. Diese Vorteile stellen sich aber nur in einem engen Betriebsbereich ein, der von einer Vielzahl sich schnell ändernder Rahmenbedingungen abhängt .
Bei Kompressionszündung wird das Luft/Kraftstoffge isch durch Kompressionswärme zur Entzündung gebracht. Nach dem Beginn der Entzündung wird durch die dabei freigesetzte Energie ein selbstbeschleunigender Verbrennungsprozeß eingeleitet. Eine zu niedrige Kompression führt zu verzögerter, unvollständiger Verbrennung, eine zu hohe Kompression zu unzulässig steilen Druckanstiegen und zu GasSchwingungen im Brennraum (klopfende Verbrennung) .
In der EP 0 709 562 A2 ist ein Verfahren zur Steuerung der Ventilcharakteristik und eines Kraftstoff/Luft-Gemisches eines Verbrennungsmotors beschrieben. Dabei sind die einem Zylinder zugeordneten Einlaßventile bedarfsweise koppelbar, so daß das Kraftstoff/Luft-Gemisch wahlweise durch ein oder zwei Einlaßventile angesaugt werden kann. Dadurch kann die Gemischrate zwischen einem unteren Grenzwert mit relativ magerem Gemisch und einem oberen Grenzwert mit relativ fettem Gemisch verändert werden.
In der DE-A 195 19 663 ist ein Verfahren zum Betrieb eines Verbrennungsmotors mit Kompressionszündung beschrieben. Hier wird in einer ersten Stufe ein mit äußerer Gemischbildung erzeugtes homogenes und mageres Luft/Kraftstoff- Gemisch bis nahe an die Zündgrenze komprimiert . In einer zweiten Stufe wird eine Zusatzmenge des gleichen Kraftstoffs fein zerstäubt und unter Vermeidung von Wandberührung in den Brennraum eingespritzt. Der spät eingespritzte Kraftstoff bildet eine Gemischwolke, die sich entzündet, da deren Zündgrenze aufgrund des höheren Kraft- stoffgehalts unterhalb der in der ersten Stufe erreichten Kompressionstemperatur liegt .
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der im Oberbegriff des Anspruchs 1 angegebenen Gattung zu schaffen, mit dem eine rasche Anpassung der Gemischbildung an einen gewünschten Verbrennungsprozeß möglich ist .
Die Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst .
Durch die schnelle Einstellung der Steuer- und Einspritz- zeiten für jeden einzelnen Brennraum werden Schwankungen von Randbedingungen wie Gas- und Bauteiltemperaturen ausgeglichen und so eine optimale Verbrennung für jeden Arbeitszyklus in den Brennräumen verwirklicht.
Es ist ein variables Ventilsteuerungssystem für die Einlaßsteuerung des Brennraumes vorgesehen, durch welches die Veränderung der Menge der Kraftstoff/Luft-Masse im Brennraum bewirkt wird. Das variable VentilSteuerungssystem erhält innerhalb eines Zyklus der Hubkolbenmaschine seine An- steuerung von einer Steuerelektronik unabhängig von dem Größenzustand des Verbrennungsraumes . Die Regelung der Verbrennung ist bestrebt, die maximale Kompression herbeizuführen. Für die gegebene Volumenfunktion bei variabler Ausgangsmenge an Luft und Kraftstoff bedeutet dies, die maximale Füllung für den Brennraum anzustreben. Die Füllung wird begrenzt durch die sich einstellenden unerwünschten Brennraumdrucksteigerungen mit den sich anschließenden Brennraumdruckschwingungen. Diese unerwünschten Verbre - nungs- und Explosionsvorgänge können während eines Verbrennungszyklus über die Beurteilung der elektrischen Leitfähigkeit des Gemisches oder der Körperschallemission der Verbrennung über KörperschallSensoren, idealerweise Klopfsensoren, festgestellt werden.
Dieser Regeleingriff wird durch die Anwendung schneller, lernfähiger Elektronik unter Verwendung abgelegter Kennfelder oder neuronaler Netze ermöglicht .
Zusätzlich zu den die Verbrennung überwachenden Daten berücksichtigt diese Elektronik noch die Ventilsteuerzeiten und die Einspritzzeitpunkte sowie die daraus abgeleiteten Werte für Luftüberschuß und Restgasanteil . Der Einfluß der Umgebung und des Motorzustands wird mit der Ansauglufttemperatur und der Kühlwassertemperatur erfaßt.
Ein Ausführungsbeispiel der Erfindung ist nachstehend anhand der Zeichnung näher erläutert. In der Zeichnung zeigt: Fig. l eine schematische Darstellung eines Verbrennungsmotors mit einem Steuergerät und Mitteln zum Messen des Verbrennungsvorgangs,
Fig. 2 Zylinderdruckdiagramm für den Gaswechsel mit Steuerzeiten der Gaswechselorgane.
Der in den Fig. 1 und 2 schematisch dargestellte Verbrennungsmotor besitzt einen Zylinderblock 1 mit vier Zylindern 2, in denen Kolben 3 dichtend geführt sind und die durch einen Zylinderkopf 4 verschlossen sind. Zylinder 1, Kolben 3 und Zylinderkopf 4 umschließen einen Brennraum 5, in dem die Verbrennung stattfindet.
Im Zylinderkopf 4 finden sich pro Brennraum 5 ein Kraft- εtoffeinspritzventil 6, ein Einlaßorgan 7 und ein Auslaßorgan 8. Die Gaswechselorgane 7, 8 werden von einer Betätigungsvorrichtung 9 geöffnet und geschlossen. Ein Steuergerät 10 steuert das Öffnen und schließen der Gaswechsel- organe 7, 8 und des Kraftstoffeinspritzventils 6 stufenlos .
In jedem Zylinderkopf 4 ist ein Ionenstromsensor 11 in Gestalt eines elektrischen Leiterpaares (z.B. einer Zündkerze) zur Messung der elektrischen Leitfähigkeit der Verr brennungsgase angeordnet . Zur Verbrennungsanalyse ist ein Ionisationsmeßgerät 15 vorgesehen, das mit dem Ionenstromsensor 11 und dem Steuergerät 10 verbunden ist. Am Zylinderblock 1 ist ein Klopfsensor 12 zur Messung des verbrennungsrelevanten Körperschalls angeordnet, dem ein Körper- schallerfassungsgerät 16 zugeordnet ist. Im Bereich eines Schwungrads 13 befindet sich ein Drehzahlsensor 14 zum Messen der Drehungleichförmigkeit der Kurbelwelle, dessen Signale in einem Gerät 17 zur Drehmomentbeurteilung verarbeitet werden. Ionenstromsensor 11, Klopfsensor 12 und Drehzahlsensor 14 liefern Echtzeitsignale von Lage und Verlauf der Verbrennung für das Steuergerät 10.
Fig. 2 zeigt ein Zylinderdruckdiagramm mit Niederdruckkurven des Gaswechsels und mit Steuerzeitenbereichen der Gas- wechselorgane 7, 8. Im Rahmen der folgenden Funktionsbeschreibung des erfindungsgemäßen Verfahrens werden drei qualitative Beispiele vorgestellt, die anhand von Fig. 3 die Strategie der Verstellung der Steuerzeiten der Gas- wechselorgane 7, 8 zeigen.
Durch Gestaltung eines Verbrennungsmotors mit variabler, effektiver Verdichtung (beispielsweise über die freie An- steuerung der Einlaß- und Auslaßorgane 7, 8 zur stufenlosen Veränderung des Arbeitsraumvolumens) kann die variable Verdichtung mit einer Gemischbildung unter Rückhaltung von Abgas im Brennraum 5 zur Beeinflussung des nächsten Verbrennungsvorgangs kombiniert werden.
Zum Verhindern einer klopfenden Verbrennung durch eine variable, effektive Verdichtung sind rasch reagierende Gas- wechselorgane 7, 8 und Kraftstoffeinspritzventile 6 erforderlich, die durch freie Ansteuerung mittels eines elektronischen Steuergeräts 10 die Füllung der einzelnen Brennräume 5 von Arbeitszyklus zu Arbeitszyklus variieren.
Die Strategie dieser Verbrennungsregelung zielt auf maximale, klopffreie Verdichtung, d.h. auf maximal mögliche Füllung der Brennräume 5. Die Verbrennung wird nach Lage und Verlauf durch den Ionenstromsensor 11 und/oder den Klopf- sensor 12 und/oder den Drehzahlsensor 14 in Echtzeit gemessen bzw. wiedergegeben und durch die Regellogik des Steuergeräts 10 beurteilt. Der regelungstechnische Vergleich der sich einstellenden Stromwerte und deren Verlauf in Ab- hängigkeit von der Zeit mit den Verbrennungserscheinungen wird durch die Regellogik ausgewertet, die auf der Technologie neuronaler Netze basiert. Als zusätzliche Eingangsparameter zum Training der Logik werden noch das Luft/KraftstoffVerhältnis, die Ansauglufttemperatur und die Motordrehzahl herangezogen. Die Erkennung erfolgt dadurch, daß "gute" Verbrennung mit nicht erwünschter Verbrennung verglichen wird. Statt durch neuronale Netze kann die Steuerung auch über in Kennfeldern abgelegte Werte erfolgen.
Für die Messung der elektrischen Leitfähigkeit des Verbrennungsgases wird eine Spannung auf ein elektrisches Leiterpaar im Brennraum, z.B. die Zündkerze, gelegt und der Stromfluß über dieses Leiterpaar während der Verbrennung überwacht. Über den qualitativen und quantitativen Verlauf des Stromflusses während der Verbrennung wird die Verbrennungslage sowie die Art der Verbrennung bestimmt, d.h. ein Auftreten unerwünschter Verbrennungserscheinungen erkannt.
Die Erkennung eines unerwünschten Verbrennungszyklus führt zu einer Absenkung der effektiven Kompression für den nächsten Zyklus in eben jenem Zylinder, in dem die unerwünschte Verbrennung durch die oben beschriebene Verbrennungsüberwachung festgestellt wurde. Die effektive Kompression wird über die Verminderung der zugeführten Luft- und Kraf stoffmenge gerade so weit abgesenkt, bis sich kein unerwünschtes Verbrennungsverhalten mehr zeigt .
Zur Absenkung der effektiven Kompression wird die Ansaugphase nicht vollständig ausgenutzt, das heißt, das Einlaßorgan schließt vor Erreichen des unteren Totpunkts . Nach Schließen des Einlaßorgans entsteht im Brennraum 5 ein Unterdruck, der die Gemischbildung speziell im Fall einer inneren Gemischbildung unterstützt.
Zur Entzündung des Frischgemischs muß dessen Temperatur auf den minimal erforderlichen Wert gebracht werden. Die Temperaturerhöhung kann durch geometrische Kompression oder durch Vermischung des kalten Frischgases mit Wärme und Abgas herbeigeführt werden. Mit der variablen Steuerung des Auslaßorgans kann die abgeströmte Menge des Abgases beeinflußt werden.
Mit derselben Steuerung kann die Menge an Abgas, die im Brennraum zurückbehalten wird, beeinflußt werden. Die Expansionsphase des Verbrennungsmotors dauert für einen optimalen Wirkungsgrad bis zum unteren Totpunkt des Kolbenwegs . Das Auslaßorgan öffnet zu Beginn des Ausschubtaktes . Wegen gasdynamischer, drehzahlabhängiger Effekte kann auch der ÖffnungsZeitpunkt des Auslaßorgans 8 optimiert werden.
Durch den Überdruck im Brennraum 5 wird das Abgas aus demselben gefördert. Der Überdruck im Brennraum 5 entsteht durch den Restdruck der Verbrennung und durch die Verringerung des Brennraumvolumens beim Ausschubtakt. Das Auslaßorgan 8 wird während des Ausschubtakts wieder geschlossen, wodurch das Abgas im Brennraum nicht vollständig ausgeschoben, sondern wieder komprimiert wird. Dabei wird die Temperatur des Restgases erhöht .
Die Regelung des Öffnungszeitpunkts des Einlaßorgans 7 dient der Optimierung der Gemischbildung auf die aktuellen Temperaturbedingungen des instationären Betriebs . Während des Ansaughubs öffnet das Einlaßorgan 7 zu dem Zeitpunkt, wenn der Druck im Brennraum 5 unter das Druckniveau der Umgebung gefallen ist . Bei früherem Einlaßöffnen gelangt der Abgasstrom in unerwünschter Weise in die Ansaugleitung. Das Einlaßorgan 7 wird während des Ansaugtakts immer nach dem Zeitpunkt der Stellung des Kolbens 3 geöffnet, die dieser während des Ausschubtakts beim Schließen des Auslaßorganε 8 einnahm.
Während des Saughubs wird durch die sich einstellende Druckdifferenz neue Ladungsmasse angesaugt. Der Schließzeitpunkt des Auslaßorgans 8 legt die Restgasmenge und damit die ansaugbare Gemischmasse für den nächsten Ansaughub fest. Die Zusammensetzung des Gemischs aus Luft und Kraftstoff bestimmt den Energiegehalt der im nächsten Zyklus angesaugten Gemischmasse. Während der Optimierung des Wirkungsgrads eines mit konstanter Last arbeitenden Verbrennungsmotors sollte die Gemischzusammensetzung in erster Näherung konstant gehalten werden. Die Variation der angesaugten Gemischmenge ergibt sich aus den gegebenen Kompressionsverhältnissen und den Restgasanteilen. Eine eventuell notwendige Kompensation von Laständerungen kann bei innerer und äußerer Gemischbildung mit der eingespritzten Kraftstoffmenge vorgenommen werden.
Um ausreichend Zeit für die Gemischansaugung zu haben, muß das Einlaßorgan 7 genügend lange geöffnet sein. Die zeitliche Verzögerung der Öffnung des Einlaßorgans 7 gegenüber dem Ende der Restgasexpansion verkürzt die zum Einströmen der Ladung verbliebene Zeit, erhöht aber den Unterdruck im Brennraum 5 und damit die Einströmgeschwindigkeit des Frischgemischs . Dies führt zu einer guten Vermischung des Luft/Kraftstoffgemischs mit dem warmen Restgas des vorangegangenen Verbrennungszyklus .
Als Nachteil des erhöhten Unterdrucks im Brennraum 5 ergibt sich eine Abkühlung von dessen Gasmasse. Dieser Abkühlung steht der Vorteil verbesserter Gemischbildung durch die erhöhte Strömungsgeschwindigkeit gegenüber. Die bessere Gemischbildung verringert das durchschnittliche Einzelvolumen des Abgasanteils. Mit zunehmend feinerer Vermischung wird das Oberflächen/Volumenverhältnis des Abgasteilvolumens so gering, daß die Wärmeleitung die maximale Temperatur des Restgases zunehmend absenkt . Die maximale Temperatur im Abgasteilvolumen bestimmt die Zündwilligkeit des umgebenden Frischgemischs während der Kompression.
Die Steuerzeiten des Einlaßorgans 7 müssen in Abhängigkeit von der Gemisch- und Restgastemperatur und der Zusammensetzung des Luft/Kraftstoffgemischs optimiert werden. Dies kann über in Kennfeldern abgelegten Werten oder mit der Technologie der neuronalen Netze geschehen. Bei kaltem Motor sind hohe Strömungsgeschwindigkeiten mit daraus folgender guter Gemischbildung wichtiger als die damit verbundenen Füllungsverluste. Dabei wird die Kühlwassertemperatur als weitere Regelgröße berücksichtigt.
Einen weiteren Freiheitsgrad zur Optimierung der Gemischbildung bietet der Einlaßdrall aufgrund von unsymmetrischen Einströmbedingungen. Die zeitlich versetzte Ansteuerung von zwei unabhängig ansteuerbaren Einlaßorganen 7 kann für die Optimierung im Betrieb durch geringe Veränderungen herangezogen werden.
Zur kontinuierlichen Optimierung der Verbrennungslage während eines stabilen und stationären Verbrennungsvorgangs kann der zeitliche Verlauf der elektrischen Leitfähigkeit der Brenngase herangezogen werden. Dabei werden die Ansteuerzeiten der Einlaßorgane 7 in geringem Maße variiert und deren Auswirkungen auf die Verbrennungsläge und das Betriebsverhalten überprüft. Bei Verbesserung derselben wer- 10
den die veränderten Steuerzeiten für die gegebenen Umgebungsbedingungen abgelegt .
Als qualitative Beispiele einer Steuerzeiteinstellung werden folgende Fälle anhand von Fig. 2 beschrieben:
Fall der geringen Last, mageres Luft/Kraftstoffgemisch:
Auslaßschluß: früh - nur wenig Abgas wird aus dem Brennraum 5 herausgelassen.
Einlaßöffnung: spät - lange Expansion aufgrund der großen und durch Kompression heißen Abgasmenge, die überexpandiert wird, führt zu einer guten Vermischung des Frischgases im Abgas.
Einlaßschluß: spät - mageres Gemisch braucht hohe Kompression zur Entzündung.
Fall der hohen Last, fetteres Luft/Kraftstoffgemisch:
Auslaßschluß: spät - viel Abgas muß durch Frischgemisch ersetzt werden.
Einlaßöffnung: früh - die hohe Menge an einströmendem Frischgas sorgt für gute Vermischung.
Einlaßschluß: früh - fettes Gemisch zündet leichter und die Verbrennung soll nicht aufgrund zu hoher Verdichtung in unerwünschte Bereich umschlagen.
Fall der ansteigenden Drehzahl : 11
Auslaßschluß: tendenziell später, da mit zunehmender Drehzahl der Wandwärmeverlust abnimmt, der Kompressionsvorgang zu einer höheren Gastemperatur führt und weniger Restgas nötig ist.
Einlaßöffnung: tendenziell früher, da höhere Gasgeschwindigkeit und Drehzahl zu ausreichend guter Vermischung führen.
Einlaßschluß: tendenziell später, um die mit der Drehzahl abnehmende Reaktionszeit durch längere Ansaug- und Kompres- εionszeit und höhere Verdichtungsendtemperatur zu kompensieren.

Claims

12
Ar_ F.p-n _ .-hp
1. Verfahren zum Betrieb eines im Viertakt arbeitenden Verbrennungsmotors mit homogenem, mageren Grundgemisch von Luft und Kraftstoff und mit Kompressionszündung, wobei mittels eines steuerbaren Einlaßorgans (7) das im Brennraum (5) gebildete Kraftstoff/Luft-Gemisch-Verhältnis veränderbar ist, dadurch gekennzeichnet, daß eine Messung der jeweiligen Verbrennung erfolgt und in Abhängigkeit des aus dieser Messung gewonnenen Signals der Zeitpunkt des Schließens des Einlaßorgans (7) des Brennraums (5) für den nächsten Zyklus geregelt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine Detektion unerwünschter Verbrennungsvorgänge erfolgt und in Abhängigkeit eines entsprechenden Signals eine Absenkung der effektiven Kompression für den nächsten Zyklus in dem Zylinder (2) erfolgt, in dem die unerwünschte Verbrennung festgestellt wurde.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß Lage und Verlauf der Verbrennung durch Motor-Istwerte wie den Körperschall am Verbrennungsmotor, den Ionenstrom im Brennraum (5) und die Drehungleichförmigkeit der Kurbelwelle in Echtzeit gemessen werden. 13
Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß mittels einer in einem Steuergerät (10) enthaltenen Regellogik die Merkmale erwünschter und unerwünschter Verbrennungsbereiche aus in Kennfeldern abgelegten Parametern oder über die Mustererkennung durch neuronale Netze oder adaptive Regler erkannt werden und unter Verwendung der Motor- Istwerte die für die Verbrennungsoptimierung erforderlichen Sollwerte für die Gaswechselorgane (7, 8) und das Kraftstoffeinspritzventil (6) bestimmt werden.
Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Ermittlung der Sollwerte im Steuergerät (10) unter Berücksichtigung einiger oder sämtlicher der folgenden Motor-Istwerte erfolgt:
- Körperschallwerte von KlopfSensoren (12) ,
- Ionenstromwerte von Ionenstromsensoren (11) ,
- Motordrehzahl und deren Verlauf,
- Ventilsteuerzeiten,
- Einspritzzeitpunkte,
- Luftüberschuß und Restgasanteil,
- Ansauglufttemperatur,
- Kühlwassertemperatur.
Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß durch den Zeitpunkt des Schließens des Auslaßorgans (8) und das somit im Brennraum (5) verbleibende Abgas sowie die zugeführte Ge- mischmasse aus Kraftstoff und Frischgas (Luft) die Last des Motors gesteuert wird. 14
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Öffnungszeitpunkt des Einlaßorganε (7) nach den geforderten Bedingungen der Gemischbildung innerhalb des Brennraums (5) in Abhängigkeit von thermischen Einflüssen auf das Frischgas
(Luft) festgelegt wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß durch die Gemischbildung über das Oberflächen/Volumen-Verhältnis die jeweilige Temperatur des Abgasanteils und damit der Verbrennungs- beginn im nächsten Zyklus bestimmt wird.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Verbrennung auch bei stationären Betriebspunkten durch Variation von Verdichtung, Turbulenz und Einspritzung optimiert wird.
PCT/EP1999/000227 1998-02-07 1999-01-16 Verfahren zum betrieb eines im viertakt arbeitenden verbrennungsmotors WO1999040296A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000530690A JP2002502929A (ja) 1998-02-07 1999-01-16 4サイクル内燃機関を作動するための方法
US09/601,742 US6659082B1 (en) 1998-02-07 1999-01-16 Method for operating a four-stroke internal combustion engine
EP99906136A EP1053389B1 (de) 1998-02-07 1999-01-16 Verfahren zum betrieb eines im viertakt arbeitenden verbrennungsmotors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19804988A DE19804988C1 (de) 1998-02-07 1998-02-07 Verfahren zum Betrieb eines im Viertakt arbeitenden Verbrennungsmotors
DE19804988.9 1998-02-07

Publications (1)

Publication Number Publication Date
WO1999040296A1 true WO1999040296A1 (de) 1999-08-12

Family

ID=7857011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/000227 WO1999040296A1 (de) 1998-02-07 1999-01-16 Verfahren zum betrieb eines im viertakt arbeitenden verbrennungsmotors

Country Status (5)

Country Link
US (1) US6659082B1 (de)
EP (1) EP1053389B1 (de)
JP (1) JP2002502929A (de)
DE (1) DE19804988C1 (de)
WO (1) WO1999040296A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207290A2 (de) 2000-11-20 2002-05-22 Institut Francais Du Petrole Verfahrensweise zur Optimierung der Verbrennung eines selbstgezündeten Verbrennungsmotors
EP1213458A2 (de) * 2000-12-11 2002-06-12 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines magerlauffähigen Ottomotors
EP1298293A3 (de) * 2001-09-28 2004-05-12 AVL List GmbH Verfahren zum Geregelten Betrieb einer Brennkraftmaschine
US6742494B2 (en) 2001-08-27 2004-06-01 Avl List Gmbh Method of operating an internal combustion engine
DE10237496B4 (de) * 2001-09-06 2006-08-31 Avl List Gmbh Verfahren zum Betrieb einer Brennkraftmaschine

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6230683B1 (en) 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
DE69740148D1 (de) 1996-08-23 2011-04-21 Cummins Inc Verbrennungskraftmaschine mit Kompressionszündung und Kraftstoff-Luft Vormischung mit optimaler Verbrennungsregelung
EP0983433B1 (de) 1998-02-23 2007-05-16 Cummins Inc. Regelung einer verbrennungskraftmaschine mit kompressionszündung und kraftstoff-luftvormischung
DE19950682A1 (de) 1999-10-21 2001-04-26 Volkswagen Ag Verfahren zum Betreiben einer zumindest einen Arbeitskolben aufweisenden Brennkraftmaschine
DE19952096C2 (de) * 1999-10-29 2001-10-11 Daimler Chrysler Ag Brennkraftmaschine mit Kompressionszündung
WO2001067985A1 (en) * 2000-03-10 2001-09-20 Paracor Surgical, Inc. Expandable cardiac harness for treating congestive heart failure
DE10011621A1 (de) * 2000-03-10 2001-09-13 Delphi Tech Inc Verfahren zur Regelung der Mehrfacheinspritzung in einem Verbrennungsmotor
DE10233612B4 (de) * 2002-07-24 2008-07-10 Siemens Ag Verfahren und Vorrichtung zum Steuern des Verbrennungsvorganges einer HCCI-Brennkraftmaschine
DE10237328B4 (de) * 2002-08-14 2006-05-24 Siemens Ag Verfahren zum Regeln des Verbrennungsprozesses einer HCCI-Brennkraftmaschine
US7189203B2 (en) * 2002-11-15 2007-03-13 Paracor Medical, Inc. Cardiac harness delivery device and method
US6910449B2 (en) * 2002-12-30 2005-06-28 Ford Global Technologies, Llc Method for auto-ignition operation and computer readable storage device for use with an internal combustion engine
DE102004052742A1 (de) * 2004-10-30 2006-05-04 Daimlerchrysler Ag Verfahren zum Betrieb einer Brennkraftmaschine
US7367319B2 (en) * 2005-11-16 2008-05-06 Gm Global Technology Operations, Inc. Method and apparatus to determine magnitude of combustion chamber deposits
DE102007013119A1 (de) * 2007-03-13 2008-09-18 Fev Motorentechnik Gmbh Einspritzverfahren und zugehörige Verbrennungskraftmaschine
US7624627B2 (en) * 2007-11-19 2009-12-01 Caterpillar Inc. Ion-based triple sensor
US8150603B2 (en) * 2008-11-26 2012-04-03 Caterpillar Inc. Engine control system having fuel-based timing
CN101806240B (zh) * 2010-03-15 2011-12-28 清华大学 一种均质压燃发动机燃烧相位的检测装置及其检测方法
DE102015015345B4 (de) * 2015-11-26 2020-03-05 Audi Ag Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686759A1 (de) * 1994-06-07 1995-12-13 Toyota Jidosha Kabushiki Kaisha Verdichtungsentzündende Benzinbrennkraftmaschine mit Einspritzung in das Einlassrohr während des Auslasshubes
EP0709562A2 (de) 1994-09-28 1996-05-01 Honda Giken Kogyo Kabushiki Kaisha Verfahren zur Steuerung der Ventilbetriebscharakteristik und des Luft-Kraftstoffverhältnisses einer Brennkraftmaschine
DE19519663A1 (de) 1995-05-30 1996-05-15 Daimler Benz Ag Verfahren zum Betrieb eines Verbrennungsmotors mit Selbstzündung
JPH08296463A (ja) * 1995-04-27 1996-11-12 Yamaha Motor Co Ltd 筒内噴射エンジン
WO1998007973A1 (en) * 1996-08-23 1998-02-26 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5993939A (ja) * 1982-11-19 1984-05-30 Toyota Motor Corp 内燃機関のノツキング制御装置
US4621603A (en) 1985-10-29 1986-11-11 General Motors Corporation Engine combustion control with fuel balancing by pressure ratio management
US4945870A (en) 1988-07-29 1990-08-07 Magnavox Government And Industrial Electronics Company Vehicle management computer
JP2982581B2 (ja) * 1993-10-14 1999-11-22 日産自動車株式会社 内燃機関の可変動弁装置
JPH07133742A (ja) * 1993-11-08 1995-05-23 Nissan Motor Co Ltd 内燃機関の計測装置および制御装置
JPH09158810A (ja) * 1995-10-02 1997-06-17 Hino Motors Ltd ディーゼルエンジン
JPH09228882A (ja) * 1996-02-23 1997-09-02 Hino Motors Ltd 予混合圧縮着火式エンジン
JPH09256891A (ja) * 1996-03-25 1997-09-30 Nippon Soken Inc ディーゼルエンジンの制御装置
US6230683B1 (en) * 1997-08-22 2001-05-15 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0686759A1 (de) * 1994-06-07 1995-12-13 Toyota Jidosha Kabushiki Kaisha Verdichtungsentzündende Benzinbrennkraftmaschine mit Einspritzung in das Einlassrohr während des Auslasshubes
EP0709562A2 (de) 1994-09-28 1996-05-01 Honda Giken Kogyo Kabushiki Kaisha Verfahren zur Steuerung der Ventilbetriebscharakteristik und des Luft-Kraftstoffverhältnisses einer Brennkraftmaschine
JPH08296463A (ja) * 1995-04-27 1996-11-12 Yamaha Motor Co Ltd 筒内噴射エンジン
US5724927A (en) * 1995-04-27 1998-03-10 Yamaha Hatsudoki Kabushiki Kaisha Direct cylinder injected engine and method of operating same
DE19519663A1 (de) 1995-05-30 1996-05-15 Daimler Benz Ag Verfahren zum Betrieb eines Verbrennungsmotors mit Selbstzündung
WO1998007973A1 (en) * 1996-08-23 1998-02-26 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207290A2 (de) 2000-11-20 2002-05-22 Institut Francais Du Petrole Verfahrensweise zur Optimierung der Verbrennung eines selbstgezündeten Verbrennungsmotors
FR2816989A1 (fr) 2000-11-20 2002-05-24 Saime Sarl Procede d'optimisation de la combustion d'un moteur a combustion interne fonctionnant en auto-allumage
US6543418B2 (en) 2000-11-20 2003-04-08 Institut Francais Du Petrole Process for optimizing the combustion of an internal-combustion engine running under self-ignition conditions
EP1207290A3 (de) * 2000-11-20 2007-11-21 Institut Francais Du Petrole Verfahrensweise zur Optimierung der Verbrennung eines selbstgezündeten Verbrennungsmotors
EP1213458A2 (de) * 2000-12-11 2002-06-12 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines magerlauffähigen Ottomotors
EP1213458A3 (de) * 2000-12-11 2004-07-14 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines magerlauffähigen Ottomotors
US6742494B2 (en) 2001-08-27 2004-06-01 Avl List Gmbh Method of operating an internal combustion engine
DE10237496B4 (de) * 2001-09-06 2006-08-31 Avl List Gmbh Verfahren zum Betrieb einer Brennkraftmaschine
EP1298293A3 (de) * 2001-09-28 2004-05-12 AVL List GmbH Verfahren zum Geregelten Betrieb einer Brennkraftmaschine

Also Published As

Publication number Publication date
US6659082B1 (en) 2003-12-09
EP1053389B1 (de) 2005-08-17
JP2002502929A (ja) 2002-01-29
DE19804988C1 (de) 1999-06-10
EP1053389A1 (de) 2000-11-22

Similar Documents

Publication Publication Date Title
EP1053389B1 (de) Verfahren zum betrieb eines im viertakt arbeitenden verbrennungsmotors
DE60114932T2 (de) Verbesserte Mehrfacheinspritzung für eine selbstgezündete Benzin Brennkraftmaschine
DE19818596C5 (de) Verfahren zum Betrieb einer im Viertakt arbeitenden Hubkolbenbrennkraftmaschine
DE60117427T2 (de) Selbstentzündung eines Benzinmotors durch Verändern der Dauer des Zurückhaltens der Abgase
DE19780908B4 (de) Steuervorrichtung für einen Fremdzündungsmotor mit innerer Verbrennung und Direkteinspritzung
DE10032232B4 (de) Selbstzündungsmotor und Steuerverfahren desselben
DE19908454B4 (de) Brennkraftmaschine mit Kompressionszündung sowie Verfahren für ihre Steuerung
DE19927951B4 (de) Steuervorrichtung für einen Motor mit elektromagnetisch angetriebenen Einlaßventilen
DE60114713T2 (de) Regelung von selbstgezündeter Verbrennung im Verbrennungsmotor
DE69925502T2 (de) Verfahren zur regelung der verbrennung in einer brennkraftmaschine und motor mit vorrichtung zur regelung der gaswechselventile
DE19737375C2 (de) Steuergerät für einen Motor mit innerer Verbrennung, Direkt-Einspritzung und Funkenzündung
EP1001148B1 (de) Verfahren zum Betrieb eines im Viertakt arbeitenden Verbrennungsmotors
DE10239065A1 (de) Verfahren zum Betrieb einer Brennkraftmaschine
DE69734169T2 (de) Regler einer Brennkraftmaschinen im Magerbetrieb
DE102005019193A1 (de) Kraftmaschine mit Kompressionszündung einer homogenen Ladung und Verfahren zum Betreiben der Kraftmaschine mit Kompressionszündung einer homogenen Ladung
DE69929239T2 (de) Verfahren zur regelung der verbrennung in einer brennkraftmaschine und motor mit vorrichtung zur veränderung der effektiven verdichtung
DE19737399A1 (de) Steuergerät für einen Direkteinspritz-Funkenzündungs-Innenverbrennungsmotor
DE2951321C2 (de)
EP3599359B1 (de) Verfahren zum steuern und/oder regeln des betriebs eines verbrennungsmotors, insbesondere eines verbrennungsmotors eines kraftfahrzeugs, insbesondere zumindest teilweise arbeitend nach dem miller-verfahren
DE102009036169B4 (de) Verfahren zum Koordinieren der Drehung einer Nockenwelle eines Verbrennungsmotors zur maximalen Verringerung von Pumpverlusten
DE10344428B4 (de) Verfahren zum Betrieb einer Brennkraftmaschine
EP1075591B1 (de) Verfahren zum betrieb eines im viertakt arbeitenden verbrennungsmotors
EP1298293A2 (de) Verfahren zum Geregelten Betrieb einer Brennkraftmaschine
EP1492947A1 (de) Verfahren zum betrieb einer brennkraftmaschine
DE60209437T2 (de) Verbrennungskraftmaschine, Verfahren zu deren Betrieb mit Selbstzündung und Computer lesbares Speichermedium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999906136

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09601742

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999906136

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999906136

Country of ref document: EP