WO1999041776A1 - Semiconductor material epitaxial structures formed on thin-film substrates - Google Patents

Semiconductor material epitaxial structures formed on thin-film substrates Download PDF

Info

Publication number
WO1999041776A1
WO1999041776A1 PCT/FR1999/000309 FR9900309W WO9941776A1 WO 1999041776 A1 WO1999041776 A1 WO 1999041776A1 FR 9900309 W FR9900309 W FR 9900309W WO 9941776 A1 WO9941776 A1 WO 9941776A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film substrate
layer
substrate
thin
Prior art date
Application number
PCT/FR1999/000309
Other languages
French (fr)
Inventor
Linh T. Nuyen
Jean-Marc Chatelanaz
Original Assignee
Picogiga, Societe Anonyme
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Picogiga, Societe Anonyme filed Critical Picogiga, Societe Anonyme
Publication of WO1999041776A1 publication Critical patent/WO1999041776A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02463Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides

Definitions

  • the invention relates to a method of manufacturing thin film substrates of semiconductor material, as well as epitaxial structures of semiconductor material formed on such substrates, and of components obtained from these structures.
  • Epitaxy involves growing material in an orderly fashion from a crystalline substrate. An atomic layer by atomic layer crystallization is then observed, and deposits of controlled composition can thus be produced. Such a stack of epitaxial layers of different compositions makes it possible to create semiconductor structures on demand. Such a process is called "band structure engineering" or band gap engineering.
  • a solid substrate is used for epitaxy which is characterized by a thickness greater than 100 ⁇ m, so that it can be handled.
  • Si substrates used in production have a thickness of around 300 ⁇ m for a diameter of 3 inches (7.62 cm), while more fragile materials such as GaAs are more frequently available in thicknesses of 600 ⁇ m.
  • Another proposal consists in authorizing the displacement of the thin film substrate in its plane so that it can accommodate the deformations, while having a rigidity along the growth axis.
  • the thin film substrate is associated with a solid support which gives it rigidity perpendicular to the plane.
  • the elasticity of the thin film substrate is preserved if the latter is weakly linked to the mechanical support.
  • SOI silicon on insulator
  • the substrate of the epitaxial plate is removed, as well as the barrier layer, to leave only the thin film weakly connected to its support.
  • the substrate can be detached by llft-off if the sample is small (this is a technique of selective attack from the sides, which allows to detach two elements joined by a sacrificial layer at their interface - on may refer in this regard to US-A-4,883,561 (Gmitter et al., which describes this technique and discusses the difficulties of its implementation).
  • the substrate must necessarily be removed by coupling, for example chemical and mechanical attacks. The latter cannot therefore be reused.
  • Another problem is that certain materials have three-dimensional growth from the first monolayers and are difficult to obtain in the form of a thin layer. They can also be very expensive to synthesize in the form of solid substrates, such as SiC for example.
  • the aim of the present invention is to propose a process for the manufacture of deformable thin film substrates of semiconductor material, and this on an industrial scale and at reduced costs, as well as a structure (stacking of epitaxial layers) produced on such substrates, and a component obtained from such a structure.
  • Another object of the invention is to propose a process for manufacturing thin film substrates which makes it possible to reuse the base substrate of the epitaxial plate.
  • the manufacturing method according to the invention of thin film substrates of semiconductor material comprises the following steps: a) production of an epitaxial plate by heteroepitaxy on a substrate; b) transfer of a thin layer of the epitaxial plate onto a mechanical support via a weak bond between these two elements, and recovery of the substrate from the epitaxial plate; c) thinning of the transferred thin layer in order to obtain a thin film substrate with a thickness sufficiently small to allow the growth of detuned materials free from dislocation.
  • the substrate in an additional step d) is transformed into a thin film in its composition, over all or part of its thickness, into another semiconductor material having maximum affinity with the material to be epitaxial.
  • a thin film substrate before transformation composed of a binary or ternary III-V arsenide or phosphorus alloy, the transformed part being composed of a binary or ternary III-V alloy nitride.
  • the AlAs thin film substrate can be nitrated gradually in its thickness.
  • the thin film substrate before transformation is 6
  • the heteroepitaxy of step a) comprises a buffer layer of GaAs on a GaAs substrate, a barrier layer based on AlAs and a final layer of GaAs.
  • the final layer of GaAs is thicker than the desired thin film substrate.
  • the thickness of the final layer is less than 15 nm.
  • the mechanical support can consist of an Si plate or a GaAs plate, or a plate with a silica deposit on the surface.
  • step c) comprises the following steps: c1) selective removal of the buffer layer with respect to the barrier layer with a first etching solution chemical; c2) removal of the barrier layer by a second chemical attack sequence.
  • an amorphous layer preferably based on oxides, nitrides or conductive glasses, is interposed between the mechanical support and the thin film substrate.
  • bonding is obtained by a choice of suitable eutectics in order to allow mobility only around the epitaxy temperature.
  • the thin layer is bonded directly to a crystalline support whose atoms are not perfectly opposite.
  • the method according to the invention is characterized in that, in an additional step, one proceeds to the epitaxy of a semiconductor structure on the thin film substrate obtained previously.
  • a semiconductor structure according to the invention is characterized in that it is composed of a thin monocrystalline film substrate of semiconductor material disposed on a mechanical support to which it is weakly bonded, in that the thin film substrate has a suitable surface for industrial application, and in that the thin film substrate has a thickness sufficiently small to allow the growth of detuned materials free from dislocation. 7
  • the thin film substrate of the structure is composed of Si or of a binary IV-IV alloy, or of a binary or ternary III-V arsenide or phosphide alloy.
  • the thin film substrate is protected by a few atomic monolayers of another more stable material.
  • the thin film substrate is transformed in its composition, over all or part of its thickness, into another semiconductor material.
  • the invention also relates to a semiconductor component, characterized in that it is produced by epitaxy from a structure according to the invention.
  • the epitaxial layer of the component is composed of alloy IV-IV, in particular of SiC or composed of alloys III-V binary or ternary nitrides.
  • the method according to the invention it is possible to obtain thin film substrates having large surfaces whose maximum size is only fixed by the size of the substrates sold. These substrates, with standard dimensions, allow the preparation of components on mass production equipment. The substrates can be recycled, which represents an increasing economic advantage with the size of the substrates. There is immediate interest in expensive materials such as GaAs, GaP, InP, etc., but also in large diameter Si substrates.
  • FIG. 1 shows the realization of a heteroepitaxy on a substrate according to the invention.
  • Figure 2 shows the deposition and annealing of SiO 2 on the epitaxial plate.
  • Figure 3 shows the massive ion implantation on the entire epitaxial plate.
  • Figure 4 shows the bonding of the epitaxial plate on a support 8
  • FIG. 5 shows the heat treatment according to the invention in order to reinforce the bonding interface.
  • FIG. 6 shows the heat treatment according to the invention in order to obtain the fracture of the previously weakened area.
  • Figure 7 shows the polishing of the transferred layer.
  • FIG. 8 shows the selective removal of GaAs relative to the thin layer of AlAs by chemical attack.
  • Figure 9 shows a second chemical attack sequence for removing the AlAs layer.
  • Figure 10 shows the composition of the thin film substrate during its transformation into two even thinner films intimately linked to each other.
  • Figure 11 shows the fully transformed thin film substrate.
  • the invention will be explained below for a simple case which consists in obtaining a thin film substrate of GaAs.
  • various semiconductor materials including Si, of which a selectively attackable material is SiGe.
  • the thicknesses of the layers shown in the figures are not significant and are shown only as an example.
  • the invention combines the processes for transferring thin layers (approximately 1 ⁇ m) by ion implantation and the techniques for selective attacks on semiconductor layers.
  • Figure 1 shows a first step of the method according to the invention.
  • First, heteroepitaxy is carried out on a GaAs substrate 1.
  • Heteroepitaxy includes a first buffer layer 2 of GaAs which makes it possible to separate the important layers of heterogeneities from the surface of the substrate 1.
  • a second layer 3 based on AlAs serves as a stop layer before the final layer 4 of GaAs from which the thin film substrate is made.
  • the final layer 4 of GaAs is deliberately thicker than the desired thin film substrate because the various chemical and thermal treatments of the process are consumers 9
  • the thickness of the final layer 4 is less than 15 nm.
  • the selectivity of chemical treatments is not infinite. For example, hydrofluoric acid attacks AlAs much more than GaAs but still attacks GaAs.
  • the chemical or thermal treatment preceding the epitaxy also consumes GaAs. This consumption, which depends on time, temperature and treatment, can be of the order of a nanometer.
  • a thin layer preferably a little less than a micrometer thick, is transferred from the epitaxial plate, and it is transferred to a solid mechanical support using of a method as described, for example, in patent FR 2 641 472.
  • any other method of transfer of thin layer by ion implantation can be used in particular the method described in the US patent application 08 / 866.951 (1997) in the names of QY Tong and U. Gôsele.
  • FIG. 2 shows the deposition and annealing of a layer 5 of SiO 2 with a thickness of a few hundred nanometers on the epitaxial plate.
  • the weak bond of the thin layer is ensured in this case by the silica-GaAs interface (by “weak bond”, one will hear a bond which ensures the vertical rigidity of the thin film placed on a solid support, but which allows a degree of freedom in the horizontal plane at the film / mechanical support interface).
  • a massive ion implantation of H + ions is carried out at a depth of about one micrometer over the entire epitaxial plate 1 in order to weaken the crystal at a determined location. This ion implantation is shown at 6 in FIG. 3.
  • the epitaxial plate is cleaned and glued to a mechanical support, such as for example a Si or GaAs plate 7 with a silica deposit 8 on the surface (FIG. 4). Then one or more heat treatments are carried out in order to:
  • the thin film substrate is transferred to the mechanical support 7 to which it is weakly bonded, with an excess of crystal which remains to be removed.
  • the substrate 1 of the epitaxial plate is recovered. Repolished, it can be used again. Since the material removal is very low, it can be used a very large number of times. Its cost thus becomes marginal.
  • FIG. 8 shows the selective removal of GaAs with respect to layer 3 of AlAs with a first etching solution.
  • a second chemical attack sequence makes it possible to remove the AlAs layer 3 and to leave only the thin film substrate 4 of GaAs without dislocations.
  • Figure 9 A thin film was thus obtained which can serve as a substrate for the growth of epitaxial layers of detuned materials free from dislocations.
  • the corresponding thickness is estimated to be less than 5 nm. Nevertheless, the invention makes it possible to obtain films of thicknesses up to a few hundred nanometers.
  • epitaxy is carried out on the thin film substrate.
  • a surface deoxidation step removes, along with the native oxides, part of the GaAs film, as indicated above.
  • the exemplary embodiment according to the invention described above must obviously be generalized to the various semiconductor materials, including Si, of which a material which can be attacked selectively is SiGe.
  • the technical solutions chosen for the completion of each step are given for information only.
  • the weak bond between the mechanical support and the thin film substrate can be obtained in various ways, such as for example:
  • An amorphous layer in particular based on oxides, nitrides or conductive glasses, is interposed between the mechanical support and the thin layer;
  • the bonding interface contains a network of dislocations which are all weak links. This weak bonding can result from an assembly of two materials which are out of tune, or whose crystalline planes are deliberately disoriented.
  • the method described above can be improved by intercalating between the 3rd step and the 4th step (epitaxy step) an additional step. This can be done in order to offer optimal growth conditions for certain specific semiconductors.
  • the thin layer is transformed in all or part of its thickness in order to provide a thin layer without dislocations and having maximum affinity (chemical and geometric) with the material to be epitaxial.
  • it is the same material as the material to be epitaxied, but it can also be a binary of which one of the chemical species is common (AIN for the epitaxy of GaN for example).
  • AIN binary of which one of the chemical species is common
  • the very first stages in the growth of an epitaxy are decisive. At this stage, the affinity between chemical species of the epitaxial material and of the substrate is, like the mesh parameter, of very great importance.
  • Substrates are obtained in thin film and without dislocation in materials usually difficult to grow with good crystalline quality. This represents an additional degree of freedom in obtaining very high quality materials.
  • the crystalline GaAs film 4 is thus nitrided in a chemical transformation step progressively in its thickness.
  • the thin film substrate is composed of two even thinner films, closely linked to each other ( Figure 10). 12
  • the other 9 has the desired final composition.
  • the mesh mismatch therefore generates constraints.
  • the constraints appear from the start of the transformation.
  • the deformation energy passes through a maximum intensity during the transformation, then vanishes when the film 9 is completely transformed into GaN (FIG. 11).
  • the GaN film 9 thus obtained forms a substrate for which there is currently no massive equivalent.
  • this thin film substrate has the same composition as the first of the crystal layers to be grown.
  • the present invention makes it possible to produce a substrate with a thin film of AlN which will be relaxed without dislocation. From the main steps, a thin film AlAs substrate is obtained which is then nitrided.
  • the AlAs layer is protected from oxidation by a few GaAs monolayers.
  • the structure is transferred to the mechanical support.
  • the sequence of two selective attack sequences makes it possible to leave only the last three GaAs, AlAs and GaAs layers.
  • the latter serves for the first time as a stop layer after the elimination of the layer of Al ⁇ Ga 1 ⁇ As. It also makes it possible to protect the thin layer of AlAs from oxidation by ambient air.
  • This protective layer is removed in the epitaxy frame, just before the stages of transformation of the thin layer and the epitaxy. The elimination of this layer is done by raising the temperature sufficient to reach the desorption point of Ga.
  • the thin layer of AlAs is then nitrided over its entire thickness, in a thin layer of AlN. The latter is ready for GaN epitaxy.
  • binary or ternary III-V compounds based on phosphides can be used in place of nitrides, of which they are closer in lattice parameter than arsenides.

Abstract

The invention concerns a method comprising the following steps: a) producing a plate with epitaxial layer obtained by heteroepitaxy on a substrate; b) transferring a thin layer of the plate with epitaxial layer on a mechanical support via a weak connection between these two elements, and recovering the substrate of the plate with epitaxial layer; c) thinning out the thin layer to obtain a thin-film substrate sufficiently thin to enable the growth of dislocation-free untuned materials. Advantageously, in an additional step d), transforming the thin-film substrate in its composition, over all or part of its thickness, into another semiconductor material with maximum affinity with the material to be subjected to epitaxy; the thin-film substrate, before transformation, advantageously consists of a III-V binary or ternary arsenide or phosphide alloy, the transformed part consisting of a III-V binary or ternary nitride alloy.

Description

STRUCTURES EPITAXIALES DE MATERIAU SEMICONDUCTEUR FORMEES SUR DES SUBSTRATS EN FD M MINCEEPITAXIAL STRUCTURES OF SEMICONDUCTOR MATERIAL FORMED ON THIN FD M SUBSTRATES
L'invention concerne un procédé de fabrication de substrats en film mince de matériau semiconducteur, ainsi que des structures épitaxiales de matériau semiconducteur formées sur de tels substrats, et des composants obtenus à partir de ces structures. L'épitaxie consiste à faire croître un matériau de manière ordonnée à partir d'un substrat cristallin. On observe alors une cristallisation couche atomique par couche atomique, et l'on peut ainsi réaliser des dépôts de composition contrôlée. Un tel empilement de couches épitaxiées de compositions différentes permet de créer à la demande des structu- res semiconductrices. On appelle un tel procédé "ingénierie des structures de bandes" ou band gap engineering. Traditionnellement, on utilise pour l'épitaxie un substrat massif qui se caractérise par une épaisseur supérieure à 100 μm, pour pouvoir être manipulé. À titre d'exemple, les substrats de Si utilisés en production ont une épaisseur de l'ordre de 300 μm pour un diamètre de 3 pouces (7,62 cm), alors que des matériaux plus fragiles comme GaAs sont plus fréquemment disponibles dans des épaisseurs de 600 μm.The invention relates to a method of manufacturing thin film substrates of semiconductor material, as well as epitaxial structures of semiconductor material formed on such substrates, and of components obtained from these structures. Epitaxy involves growing material in an orderly fashion from a crystalline substrate. An atomic layer by atomic layer crystallization is then observed, and deposits of controlled composition can thus be produced. Such a stack of epitaxial layers of different compositions makes it possible to create semiconductor structures on demand. Such a process is called "band structure engineering" or band gap engineering. Traditionally, a solid substrate is used for epitaxy which is characterized by a thickness greater than 100 μm, so that it can be handled. For example, Si substrates used in production have a thickness of around 300 μm for a diameter of 3 inches (7.62 cm), while more fragile materials such as GaAs are more frequently available in thicknesses of 600 μm.
Cependant, la croissance cristalline d'un semiconducteur sur un autre semiconducteur de composition chimique différente n'est réalisa- ble que si leurs caractéristiques géométriques, c'est-à-dire leurs paramètres de maille cristalline, sont très proches. Ainsi, un grand nombre de semiconducteurs très recherchés pour leurs propriétés électroniques, comme par exemple une grande valeur de bande interdite ou un fonctionnement à haute température, ne disposent pas d'un substrat adéquat et ne peuvent donc pas être utilisés. Plus précisément, la croissance d'un semiconducteur dont les caractéristiques géométriques sont différentes de celles du substrat massif (on parle dans ce cas d'une "hétéro- épitaxie") génère des contraintes mécaniques, principalement dans la couche épitaxiée. Tant que l'épaisseur de la couche épitaxiée est inféri- eure à une valeur prédite par les lois de Matthews et Blakeslee (J.W. 2However, the crystal growth of a semiconductor over another semiconductor with a different chemical composition can only be achieved if their geometrical characteristics, that is to say their crystal lattice parameters, are very close. Thus, a large number of semiconductors which are highly sought after for their electronic properties, such as, for example, a large band gap value or operation at high temperature, do not have an adequate substrate and therefore cannot be used. More specifically, the growth of a semiconductor whose geometrical characteristics are different from those of the solid substrate (in this case we speak of "heteroepitaxy") generates mechanical stresses, mainly in the epitaxial layer. As long as the thickness of the epitaxial layer is less than a value predicted by the laws of Matthews and Blakeslee (JW 2
Matthews et A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974)) qui dépend de la différence de paramètre de maille entre le substrat massif et la couche épitaxiée, les contraintes sont contenues de manière élastique. Si l'épaisseur critique est dépassée, les contraintes sont relaxées par l'apparition de dislocations. Dans ces conditions, seules de très fines couches peuvent être réalisées sans faire apparaître de dislocations. Les dislocations sont un obstacle considérable à la réalisation de composants électroniques de hautes performances. Elles peuvent rendre impossible la réalisation de structures optoélectroniques (lasers, dio- des), car les dislocations sont autant de centres de recombinaison non radiative. On appellera ces très fines couches "substrats en film mince", ces substrats étant suffisamment minces pour absorber les contraintes de manière élastique.Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974)) which depends on the difference in mesh parameter between the solid substrate and the epitaxial layer, the stresses are contained in an elastic manner. If the critical thickness is exceeded, the constraints are relaxed by the appearance of dislocations. Under these conditions, only very thin layers can be produced without showing dislocations. Dislocations are a considerable obstacle to the production of high performance electronic components. They can make it impossible to produce optoelectronic structures (lasers, diodes), because dislocations are all centers of non-radiative recombination. These very thin layers will be called "thin film substrates", these substrates being thin enough to absorb the stresses in an elastic manner.
Une solution pour s'affranchir de cette limitation a été proposée par Y.H. Lo (Y.H. Lo, APL 59, 2311 (1991)), qui consiste à imaginer un substrat sous forme de film mince. Ce substrat en film mince absorbe alors les contraintes de manière élastique et permet la croissance de la couche épitaxiée sans limitation d'épaisseur. Par rapport au cas habituel, les rôles du substrat et de la couche épitaxiée se trouvent inversés vis-à-vis de l'accommodation des contraintes. Mais cette solution reste purement formelle puisqu'il est impossible de manipuler quelques monocouches atomiques. De plus, les contraintes induites à la surface de ce substrat engendreraient une courbure considérable. Une réalisation concrète d'un substrat sous forme de film mince est donc technique- ment très difficile.A solution to overcome this limitation has been proposed by Y.H. Lo (Y.H. Lo, APL 59, 2311 (1991)), which consists of imagining a substrate in the form of a thin film. This thin film substrate then absorbs the stresses in an elastic manner and allows the growth of the epitaxial layer without limitation of thickness. Compared to the usual case, the roles of the substrate and the epitaxial layer are reversed with respect to the accommodation of the constraints. But this solution remains purely formal since it is impossible to manipulate a few atomic monolayers. In addition, the stresses induced on the surface of this substrate would generate considerable curvature. Concrete production of a substrate in the form of a thin film is therefore technically very difficult.
On a aussi proposé, afin de résoudre le problème susmentionné, de réaliser des couches suspendues assez minces, généralement entre 100 et 200 nm (D. Teng et Y.H. Lo, APL 62, 43 (1993) Dynamic Model for Pseudomorphic Structures Grown on Compilant Substrates: an Appr- oach to Extend the Critical Thickness ; C. Carter-Coman, A.S. Brown, R. Bicknell-Tassius, N.M. Jokerst, F. Fournier et D.E. Dawson, J. Vac. Sci. Technol. B 14. 2170 (1996), Strain-Modulated Epitaxy: Modification of Growth Kinetics via Patterned Compilant Substrates). Ces réalisations obtenues par attaques chimiques sélectives se présentent sous la forme de membranes de faibles dimensions reliées à un substrat 3It has also been proposed, in order to solve the aforementioned problem, to produce fairly thin suspended layers, generally between 100 and 200 nm (D. Teng and YH Lo, APL 62, 43 (1993) Dynamic Model for Pseudomorphic Structures Grown on Compilant Substrates : an Appro- oach to Extend the Critical Thickness; C. Carter-Coman, AS Brown, R. Bicknell-Tassius, NM Jokerst, F. Fournier and DE Dawson, J. Vac. Sci. Technol. B 14. 2170 (1996 ), Strain-Modulated Epitaxy: Modification of Growth Kinetics via Patterned Compilant Substrates). These achievements obtained by selective chemical attacks are in the form of membranes of small dimensions connected to a substrate. 3
massif par leurs extrémités. Loin du substrat massif, elles peuvent se déformer assez librement et approchent le modèle précédent. Ces couches extrêmement fragiles ne peuvent guère être davantage amincies puisque, par exemple, la couche de 200 nm de GaAs s'effondre sous son propre poids (voir C. Carter-Coman et coll.). Elles ont cependant une épaisseur trop importante pour permettre l'accommodation de matériaux très désaccordés. De plus, leurs dimensions sont trop faibles pour pouvoir être utilisées de manière industrielle. Enfin, les contraintes induites à la surface de ces couches par la croissance d'un matériau désaccordé engendrent des courbures notables.massive by their ends. Far from the solid substrate, they can deform quite freely and approach the previous model. These extremely fragile layers can hardly be further thinned since, for example, the 200 nm layer of GaAs collapses under its own weight (see C. Carter-Coman et al.). However, they are too thick to allow the accommodation of very detuned materials. In addition, their dimensions are too small to be able to be used industrially. Finally, the stresses induced on the surface of these layers by the growth of a detuned material generate significant curvatures.
Une autre proposition consiste à autoriser le déplacement du substrat en film mince dans son plan pour qu'il puisse accommoder les déformations, tout en ayant une rigidité suivant l'axe de croissance. Pour atteindre cet objectif, le substrat en film mince est associé à un support massif qui lui procure la rigidité perpendiculaire au plan. L'élasticité du substrat en film mince est préservée si ce dernier est faiblement lié au support mécanique. Les plaques SOI (silicium sur isolant) ont fait l'objet de travaux destinés à mettre en évidence le caractère accommodant de la couche mince de Si (A.R. Powell, S.S. Iyer et F.K. LeGoues, APL 64, 1856 (1994), New Approach to the Growth of Low Dislocation Relaxed SIGe Material). La couche de Si superficielle peut éventuellement être amincie mécaniquement. Elle peut aussi être utilisée telle quelle (J. Cao, D. Pavlidis et Eisenbach, A. Philippe, C. Bru- Chevalier et G. Guillot, APL 7_1, 3880 (1997), Photoluminescent Propertles of GaN Grown on Compilant Slllcon-On-Insulator Substrates). Cependant, les couches de Si obtenues par ce procédé restent trop épaisses (> 50 nm) pour accommoder des matériaux très désaccordés.Another proposal consists in authorizing the displacement of the thin film substrate in its plane so that it can accommodate the deformations, while having a rigidity along the growth axis. To achieve this objective, the thin film substrate is associated with a solid support which gives it rigidity perpendicular to the plane. The elasticity of the thin film substrate is preserved if the latter is weakly linked to the mechanical support. SOI (silicon on insulator) plates have been the subject of work intended to demonstrate the accommodative nature of the thin layer of Si (AR Powell, SS Iyer and FK LeGoues, APL 64, 1856 (1994), New Approach to the Growth of Low Dislocation Relaxed SIGe Material). The surface Si layer can optionally be mechanically thinned. It can also be used as it is (J. Cao, D. Pavlidis and Eisenbach, A. Philippe, C. Bru- Chevalier and G. Guillot, APL 7_1, 3880 (1997), Photoluminescent Propertles of GaN Grown on Compilant Slllcon-On -Insulator Substrates). However, the Si layers obtained by this process remain too thick (> 50 nm) to accommodate very detuned materials.
Une autre proposition encore (F.E. Ejeckam, M.L. Seaford and Y.H. Lo, APL 71, 776 (1997), Dlslocatlon-Free InSb Grown on GaAs Compll- ant Uniυersal Substrates) consiste à réaliser une hétéroépitaxie contenant un film mince de GaAs en surface sur une couche d'arrêt d'AlAs. Cette plaque épitaxiée est faiblement collée sur un support massif en GaAs. La liaison faible du film mince de GaAs à son support mécanique de même composition a été obtenue en introduisant entre eux une déso- rientation volontaire. Celle-ci génère à l'interface un réseau de disloca- 4Yet another proposal (FE Ejeckam, ML Seaford and YH Lo, APL 71, 776 (1997), Dlslocatlon-Free InSb Grown on GaAs Compll- ant Uniυersal Substrates) consists in performing a heteroepitaxy containing a thin film of GaAs on the surface on a AlAs barrier layer. This epitaxial plate is weakly bonded to a solid GaAs support. The weak bond of the thin film of GaAs to its mechanical support of the same composition was obtained by introducing between them a voluntary disorientation. This generates at the interface a network of disloca- 4
tions qui sont autant de liaisons faibles. Après collage, le substrat de la plaque épitaxiée est retiré, ainsi que la couche d'arrêt, pour ne laisser que le film mince faiblement relié à son support. Le substrat peut être détaché par llft-off si l'échantillon est de dimensions réduites (il s'agit d'une technique d'attaque sélective par les côtés, qui permet de détacher deux éléments réunis par une couche sacrificielle à leur interface — on pourra se référer à cet égard au US-A-4 883 561 (Gmitter et coll.) qui décrit cette technique et évoque les difficultés de sa mise en œuvre). En revanche, si c'est l'obtention du film mince sur une plaque entière qui est visée, il faut nécessairement supprimer le substrat en couplant par exemple attaques chimiques et mécaniques. Ce dernier ne peut donc pas être réutilisé.which are all weak bonds. After bonding, the substrate of the epitaxial plate is removed, as well as the barrier layer, to leave only the thin film weakly connected to its support. The substrate can be detached by llft-off if the sample is small (this is a technique of selective attack from the sides, which allows to detach two elements joined by a sacrificial layer at their interface - on may refer in this regard to US-A-4,883,561 (Gmitter et al., which describes this technique and discusses the difficulties of its implementation). On the other hand, if it is the obtaining of the thin film on an entire plate which is targeted, the substrate must necessarily be removed by coupling, for example chemical and mechanical attacks. The latter cannot therefore be reused.
Cette méthode permet de réaliser des films réellement minces. Leur liaison avec le support mécanique est suffisamment faible pour leur permettre de se déformer lors de la croissance de matériaux en fort désaccord de paramètre de maille. Néanmoins, elle ne permet pas encore l'obtention de surfaces utiles de dimensions industrielles. La taille des échantillons ne dépasse que rarement le cm .This method makes really thin films. Their bond with the mechanical support is weak enough to allow them to deform during the growth of materials with strong disagreement of the mesh parameter. However, it does not yet make it possible to obtain useful surfaces of industrial dimensions. The sample size rarely exceeds cm.
Un autre problème tient au fait que certains matériaux ont une croissance tridimensionnelle dès les premières monocouches et sont difficiles à obtenir sous la forme de couche mince. Ils peuvent aussi être très coûteux à synthétiser sous forme de substrats massifs, comme SiC par exemple.Another problem is that certain materials have three-dimensional growth from the first monolayers and are difficult to obtain in the form of a thin layer. They can also be very expensive to synthesize in the form of solid substrates, such as SiC for example.
Dans le passé, certains travaux avaient pour but d'obtenir un subs- trat de SiC avantageux par son coût et ses dimensions notamment à partir de SOI (Z. Yang, F. Guarin, I. W. Tao et W. I. Wang, S. S. Iyer J. Vac. Sci. Technol. B 13, 789 (1995), Approach to Obtaln Hlgh Quallty GaN on SI and SIC-on-Slllcon-on Insulator Compilant Substrate by Molecular Beam Epltaxy ; A. J. Steckl et J. Devrajan, C. Tran et R.A. Stall, J. of Electron. Mat. 26, 217 (1997), Growth and Characterlzatlon of GaN Thin Films on SIC SOI Substrates). Néanmoins, les résultats de ces recherches ne font pas apparaître de gain par rapport au substrat SiC massif. Dans tous les cas, les couches considérées sont trop épaisses pour se déformer de manière élastique. Lors de leur transfor- mation, les contraintes induites génèrent des dislocations dans la cou- 5In the past, certain works aimed at obtaining an advantageous SiC substrate by its cost and its dimensions in particular from SOI (Z. Yang, F. Guarin, IW Tao and WI Wang, SS Iyer J. Vac Sci. Technol. B 13, 789 (1995), Approach to Obtaln Hlgh Quallty GaN on SI and SIC-on-Slllcon-on Insulator Compilant Substrate by Molecular Beam Epltaxy; AJ Steckl and J. Devrajan, C. Tran and RA Stall , J. of Electron, Mat. 26, 217 (1997), Growth and Characterlzatlon of GaN Thin Films on SIC SOI Substrates). However, the results of this research do not show any gain compared to the solid SiC substrate. In all cases, the layers considered are too thick to deform elastically. During their transformation, the induced stresses generate dislocations in the cou- 5
che de SiC. Lorsque ces couches minces ont été utilisées comme substrats pour la croissance du GaN, ces dislocations ne sont pas perceptibles au travers du GaN épitaxié, qui présente de toute façon une densité de dislocations très élevée sur SiC massif. Ceci ne permet pas la syn- thèse de nitrures de meilleure qualité et ne présente donc pas d'intérêt. On connaît aussi, selon le FR-A-2 681 472, un procédé concernant le report d'une couche mince de semiconducteur d'un substrat massif sur un support rigide par implantation ionique.che of SiC. When these thin layers were used as substrates for the growth of GaN, these dislocations are not perceptible through the epitaxial GaN, which in any case exhibits a very high density of dislocations on solid SiC. This does not allow the synthesis of better quality nitrides and is therefore of no interest. Also known, according to FR-A-2 681 472, is a method relating to the transfer of a thin layer of semiconductor from a solid substrate to a rigid support by ion implantation.
Le but de la présente invention est de proposer un procédé de fabri- cation de substrats en film mince déformable de matériau semiconducteur, et cela à l'échelle industrielle et à des coûts réduits, ainsi qu'une structure (empilement de couches épitaxiales) réalisée sur de tels substrats, et un composant obtenu à partir d'une telle structure.The aim of the present invention is to propose a process for the manufacture of deformable thin film substrates of semiconductor material, and this on an industrial scale and at reduced costs, as well as a structure (stacking of epitaxial layers) produced on such substrates, and a component obtained from such a structure.
Un autre but de l'invention est de proposer un procédé de fabrica- tion de substrats en film mince qui permet de réutiliser le substrat de base de la plaque épitaxiée.Another object of the invention is to propose a process for manufacturing thin film substrates which makes it possible to reuse the base substrate of the epitaxial plate.
Ces buts sont atteints par le procédé de fabrication selon l'invention de substrats en film mince de matériau semiconducteur, qui comprend les étapes suivantes : a) réalisation d'une plaque épitaxiée par hétéroépitaxie sur un substrat ; b) report d'une couche mince de la plaque épitaxiée sur un support mécanique via une liaison faible entre ces deux éléments, et récupération du substrat de la plaque épitaxiée ; c) a- mincissement de la couche mince reportée afin d'obtenir un substrat en film mince d'épaisseur suffisamment faible pour permettre la croissan- ce de matériaux désaccordés exempts de dislocation.These aims are achieved by the manufacturing method according to the invention of thin film substrates of semiconductor material, which comprises the following steps: a) production of an epitaxial plate by heteroepitaxy on a substrate; b) transfer of a thin layer of the epitaxial plate onto a mechanical support via a weak bond between these two elements, and recovery of the substrate from the epitaxial plate; c) thinning of the transferred thin layer in order to obtain a thin film substrate with a thickness sufficiently small to allow the growth of detuned materials free from dislocation.
Dans une mise en œuvre particulièrement avantageuse, dans une étape supplémentaire d) on transforme le substrat en film mince dans sa composition, sur tout ou partie de son épaisseur, en un autre matériau semiconducteur présentant une affinité maximale avec le matériau à épitaxier. On peut en particulier avoir un substrat en film mince avant transformation composé d'un alliage III-V arséniure ou phosphu- re binaire ou ternaire, la partie transformée étant composée d'un alliage III-V nitrure binaire ou ternaire. Plus généralement, on peut nitru- rer le substrat en film mince d'AlAs progressivement dans son épais- seur. En variante, le substrat en film mince avant transformation est 6In a particularly advantageous implementation, in an additional step d) the substrate is transformed into a thin film in its composition, over all or part of its thickness, into another semiconductor material having maximum affinity with the material to be epitaxial. In particular, it is possible to have a thin film substrate before transformation composed of a binary or ternary III-V arsenide or phosphorus alloy, the transformed part being composed of a binary or ternary III-V alloy nitride. More generally, the AlAs thin film substrate can be nitrated gradually in its thickness. Alternatively, the thin film substrate before transformation is 6
composé de Si ou d'un alliage IV- IV binaire, et la partie transformée est composée d'un alliage IV- IV binaire.composed of Si or a binary IV-IV alloy, and the transformed part is composed of a binary IV-IV alloy.
Selon une forme de réalisation avantageuse, l'hétéroépitaxie de l'étape a) comprend une couche tampon de GaAs sur un substrat de GaAs, une couche d'arrêt à base de AlAs et une couche finale de GaAs.According to an advantageous embodiment, the heteroepitaxy of step a) comprises a buffer layer of GaAs on a GaAs substrate, a barrier layer based on AlAs and a final layer of GaAs.
Selon une autre forme de réalisation préférée, la couche finale de GaAs est plus épaisse que le substrat en film mince désiré. D'une façon avantageuse, l'épaisseur de la couche finale est inférieure à 15 nm.According to another preferred embodiment, the final layer of GaAs is thicker than the desired thin film substrate. Advantageously, the thickness of the final layer is less than 15 nm.
Le support mécanique peut consister en une plaque de Si ou une plaque de GaAs, ou une plaque avec un dépôt de silice en surface.The mechanical support can consist of an Si plate or a GaAs plate, or a plate with a silica deposit on the surface.
Selon une forme de réalisation avantageuse le procédé selon l'invention est caractérisé en ce que l'étape c) comprend les étapes suivantes : cl) enlèvement sélectif de la couche tampon par rapport à la couche d'arrêt avec une première solution d'attaque chimique ; c2) retrait de la couche d'arrêt par une seconde séquence d'attaque chimique.According to an advantageous embodiment, the method according to the invention is characterized in that step c) comprises the following steps: c1) selective removal of the buffer layer with respect to the barrier layer with a first etching solution chemical; c2) removal of the barrier layer by a second chemical attack sequence.
Selon une autre variante de l'invention, une couche amorphe, de préférence à base d'oxydes, de nitrures ou de verres conducteurs, est intercalée entre le support mécanique et le substrat en film mince.According to another variant of the invention, an amorphous layer, preferably based on oxides, nitrides or conductive glasses, is interposed between the mechanical support and the thin film substrate.
De préférence, le collage est obtenu par un choix d'eutectiques ap- propriés pour n'autoriser une mobilité qu'aux alentours de la température d'épitaxie.Preferably, bonding is obtained by a choice of suitable eutectics in order to allow mobility only around the epitaxy temperature.
Selon une forme de mise en œuvre de l'invention, la couche mince est collée directement sur un support cristallin dont les atomes ne sont pas parfaitement en regard. Selon une forme préférée, le procédé selon l'invention est caractérisé en ce que, dans une étape supplémentaire, on procède à l'épitaxie d'une structure semiconductrice sur le substrat en film mince obtenu précédemment.According to one embodiment of the invention, the thin layer is bonded directly to a crystalline support whose atoms are not perfectly opposite. According to a preferred form, the method according to the invention is characterized in that, in an additional step, one proceeds to the epitaxy of a semiconductor structure on the thin film substrate obtained previously.
Une structure semiconductrice selon l'invention est caractérisée en ce qu'elle est composée d'un substrat en film mince monocristallin de matériau semiconducteur disposé sur un support mécanique auquel il est faiblement lié, en ce que le substrat en film mince a une surface convenant à une application industrielle , et en ce que le substrat en film mince a une épaisseur suffisamment faible pour permettre la croissance de matériaux désaccordés exempts de dislocation. 7A semiconductor structure according to the invention is characterized in that it is composed of a thin monocrystalline film substrate of semiconductor material disposed on a mechanical support to which it is weakly bonded, in that the thin film substrate has a suitable surface for industrial application, and in that the thin film substrate has a thickness sufficiently small to allow the growth of detuned materials free from dislocation. 7
De préférence, le substrat en film mince de la structure est composé de Si ou d'un alliage IV- IV binaire, ou d'un alliage III-V arséniure ou phosphure binaire ou ternaire.Preferably, the thin film substrate of the structure is composed of Si or of a binary IV-IV alloy, or of a binary or ternary III-V arsenide or phosphide alloy.
D'une façon avantageuse le substrat en film mince est protégé par quelques monocouches atomiques d'un autre matériau plus stable.Advantageously, the thin film substrate is protected by a few atomic monolayers of another more stable material.
Selon une forme de réalisation le substrat en film mince est transformé dans sa composition, sur tout ou partie de son épaisseur, en un autre matériau semiconducteur.According to one embodiment, the thin film substrate is transformed in its composition, over all or part of its thickness, into another semiconductor material.
D'une façon avantageuse, l'invention concerne aussi un composant semiconducteur, caractérisé en ce qu'il est réalisé par épitaxie à partir d'une structure selon l'invention. De préférence, la couche épitaxiée du composant est composée d'alliage IV-IV, en particulier de SiC ou composée d'alliages III-V nitrures binaires ou ternaires.Advantageously, the invention also relates to a semiconductor component, characterized in that it is produced by epitaxy from a structure according to the invention. Preferably, the epitaxial layer of the component is composed of alloy IV-IV, in particular of SiC or composed of alloys III-V binary or ternary nitrides.
Grâce au procédé selon l'invention on peut obtenir des substrats en film mince ayant des surfaces importantes dont la taille maximum est seulement fixée par la dimension des substrats commercialisés. Ces substrats, aux dimensions standard, permettent la préparation de composants sur des équipements de production de grande série. Les substrats peuvent être recyclés, ce qui représente un avantage économique croissant avec la taille des substrats. L'intérêt est immédiat pour des matériaux onéreux comme par exemple GaAs, GaP, InP, etc., mais aussi pour les substrats de Si de grand diamètre.Thanks to the method according to the invention it is possible to obtain thin film substrates having large surfaces whose maximum size is only fixed by the size of the substrates sold. These substrates, with standard dimensions, allow the preparation of components on mass production equipment. The substrates can be recycled, which represents an increasing economic advantage with the size of the substrates. There is immediate interest in expensive materials such as GaAs, GaP, InP, etc., but also in large diameter Si substrates.
00
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-dessous, faite en référence aux dessins annexés.Other characteristics and advantages of the invention will appear on reading the detailed description below, made with reference to the accompanying drawings.
La figure 1 montre la réalisation d'une hétéroépitaxie sur un subs- trat selon l'invention.FIG. 1 shows the realization of a heteroepitaxy on a substrate according to the invention.
La figure 2 montre le dépôt et le recuit de SiO2 sur la plaque épitaxiée.Figure 2 shows the deposition and annealing of SiO 2 on the epitaxial plate.
La figure 3 montre l'implantation ionique massive sur toute la plaque épitaxiée. La figure 4 montre le collage de la plaque épitaxiée sur un support 8Figure 3 shows the massive ion implantation on the entire epitaxial plate. Figure 4 shows the bonding of the epitaxial plate on a support 8
mécanique.mechanical.
La figure 5 montre le traitement thermique selon l'invention afin de renforcer l'interface de collage.FIG. 5 shows the heat treatment according to the invention in order to reinforce the bonding interface.
La figure 6 montre le traitement thermique selon l'invention afin d'obtenir la fracture de la zone préalablement fragilisée. La figure 7 montre le polissage de la couche reportée. La figure 8 montre l'enlèvement sélectif de GaAs par rapport à la couche mince d'AlAs par une attaque chimique.FIG. 6 shows the heat treatment according to the invention in order to obtain the fracture of the previously weakened area. Figure 7 shows the polishing of the transferred layer. FIG. 8 shows the selective removal of GaAs relative to the thin layer of AlAs by chemical attack.
La figure 9 montre une seconde séquence d'attaque chimique permettant de retirer la couche de AlAs.Figure 9 shows a second chemical attack sequence for removing the AlAs layer.
La figure 10 montre la composition du substrat en film mince au cours de sa transformation en deux films encore plus minces liés intimement l'un à l'autre.Figure 10 shows the composition of the thin film substrate during its transformation into two even thinner films intimately linked to each other.
La figure 11 montre le substrat en film mince entièrement trans- formé.Figure 11 shows the fully transformed thin film substrate.
00
L'invention sera explicitée par la suite pour un cas simple qui consiste à obtenir un substrat en film mince de GaAs. Mais, d'une façon générale, elle s'applique aux différents matériaux semiconducteurs, parmi lesquels le Si, dont un matériau attaquable sélectivement est SiGe. Les épaisseurs des couches montrées sur les figures ne sont pas significatives et ne sont montrées qu'à titre d'exemple.The invention will be explained below for a simple case which consists in obtaining a thin film substrate of GaAs. However, in general, it applies to the various semiconductor materials, including Si, of which a selectively attackable material is SiGe. The thicknesses of the layers shown in the figures are not significant and are shown only as an example.
Pour réaliser les couches minces, l'invention associe les procédés de report de couches minces (environ 1 μm) par implantation ionique et les techniques d'attaques sélectives de couches semiconductrices.To produce the thin layers, the invention combines the processes for transferring thin layers (approximately 1 μm) by ion implantation and the techniques for selective attacks on semiconductor layers.
La figure 1 montre une première étape du procédé selon l'invention. On réalise d'abord une hétéroépitaxie sur un substrat 1 de GaAs. L'hétéroépitaxie comprend une première couche tampon 2 de GaAs qui permet d'éloigner les couches importantes des hétérogénéités de la surface du substrat 1. Une seconde couche 3 à base d'AlAs sert de couche d'arrêt avant la couche finale 4 de GaAs à partir de laquelle le substrat en film mince est élaboré. La couche finale 4 de GaAs est volontairement plus épaisse que le substrat en film mince désiré car les différents traitements chimiques et thermiques du procédé sont consommateurs 9Figure 1 shows a first step of the method according to the invention. First, heteroepitaxy is carried out on a GaAs substrate 1. Heteroepitaxy includes a first buffer layer 2 of GaAs which makes it possible to separate the important layers of heterogeneities from the surface of the substrate 1. A second layer 3 based on AlAs serves as a stop layer before the final layer 4 of GaAs from which the thin film substrate is made. The final layer 4 of GaAs is deliberately thicker than the desired thin film substrate because the various chemical and thermal treatments of the process are consumers 9
de GaAs. Dans une forme de réalisation avantageuse, l'épaisseur de la couche finale 4 est inférieure à 15 nm. En effet, la sélectivité des traitements chimiques n'est pas infinie. Par exemple, l'acide fluorhydrique attaque beaucoup plus l'AlAs que le GaAs mais attaque quand même le GaAs. De la même manière, le traitement chimique ou thermique précédant l'épitaxie est aussi consommateur de GaAs. Cette consommation, qui dépend du temps, de la température et du traitement, peut être de l'ordre du nanomètre.of GaAs. In an advantageous embodiment, the thickness of the final layer 4 is less than 15 nm. Indeed, the selectivity of chemical treatments is not infinite. For example, hydrofluoric acid attacks AlAs much more than GaAs but still attacks GaAs. In the same way, the chemical or thermal treatment preceding the epitaxy also consumes GaAs. This consumption, which depends on time, temperature and treatment, can be of the order of a nanometer.
Dans une deuxième étape du procédé selon l'invention, on transfère une couche mince, de préférence d'un peu moins d'un micromètre d'épaisseur, de la plaque épitaxiée, et on la reporte sur un support mécanique massif à l'aide d'un procédé tel que décrit, par exemple, dans le brevet FR 2 641 472. Mais d'une façon générale, tout autre procédé de report de couche mince par implantation ionique peut être utilisée notamment le procédé décrit dans la demande de brevet US 08/866,951 (1997) aux noms de Q. Y. Tong et U. Gôsele.In a second step of the method according to the invention, a thin layer, preferably a little less than a micrometer thick, is transferred from the epitaxial plate, and it is transferred to a solid mechanical support using of a method as described, for example, in patent FR 2 641 472. But in general, any other method of transfer of thin layer by ion implantation can be used in particular the method described in the US patent application 08 / 866.951 (1997) in the names of QY Tong and U. Gôsele.
La figure 2 montre le dépôt et le recuit d'une couche 5 de SiO2 d'une épaisseur de quelques centaines de nanomètres sur la plaque épitaxiée. La liaison faible de la couche mince est assurée dans ce cas par l'interface silice-GaAs (par "liaison faible", on entendra une liaison qui assure la rigidité verticale du film mince posé sur un support massif, mais qui autorise un degré de liberté dans le plan horizontal à l'interface film/support mécanique). Ensuite, on procède à une implantation ionique massive d'ions H+ à une profondeur d'environ un micromètre sur toute la plaque épitaxiée 1 afin de fragiliser le cristal à un endroit déterminé. Cette implantation ionique est montrée en 6 sur la figure 3.FIG. 2 shows the deposition and annealing of a layer 5 of SiO 2 with a thickness of a few hundred nanometers on the epitaxial plate. The weak bond of the thin layer is ensured in this case by the silica-GaAs interface (by “weak bond”, one will hear a bond which ensures the vertical rigidity of the thin film placed on a solid support, but which allows a degree of freedom in the horizontal plane at the film / mechanical support interface). Then, a massive ion implantation of H + ions is carried out at a depth of about one micrometer over the entire epitaxial plate 1 in order to weaken the crystal at a determined location. This ion implantation is shown at 6 in FIG. 3.
Ensuite on nettoie la plaque épitaxiée et on la colle sur un support mécanique, comme par exemple une plaque 7 de Si ou de GaAs avec un dépôt de silice 8 en surface (figure 4). Puis on procède à un ou plusieurs traitements thermiques afin de :Then the epitaxial plate is cleaned and glued to a mechanical support, such as for example a Si or GaAs plate 7 with a silica deposit 8 on the surface (FIG. 4). Then one or more heat treatments are carried out in order to:
— renforcer l'interface de collage SiO2-SiO2 (figure 5) et- reinforce the bonding interface SiO 2 -SiO 2 (Figure 5) and
— obtenir la fracture de la zone préalablement fragilisée par le traitement thermique (figure 6).- obtain the fracture of the area previously weakened by the heat treatment (Figure 6).
Finalement, on procède au polissage de la couche reportée comme cela est montré sur la figure 7. 10Finally, the polished layer is polished as shown in FIG. 7. 10
A ce stade, le substrat en film mince est reporté sur le support mécanique 7 auquel il est faiblement lié, avec un surplus de cristal qu'il reste à faire disparaître. Le substrat 1 de la plaque épitaxiée est récupéré. Repoli, il peut servir à nouveau. Puisque l'enlèvement de matière est très faible, il peut servir un très grand nombre de fois. Son coût devient ainsi marginal.At this stage, the thin film substrate is transferred to the mechanical support 7 to which it is weakly bonded, with an excess of crystal which remains to be removed. The substrate 1 of the epitaxial plate is recovered. Repolished, it can be used again. Since the material removal is very low, it can be used a very large number of times. Its cost thus becomes marginal.
Dans une troisième étape, on procède à l'amincissement de la couche mince. La figure 8 montre l'enlèvement sélectif du GaAs par rapport à la couche 3 d'AlAs avec une première solution d'attaque chimi- que. Une seconde séquence d'attaque chimique permet de retirer la couche 3 d'AlAs et de ne laisser que le substrat en film mince 4 de GaAs sans dislocations. Cela est montré sur la figure 9. On a ainsi obtenu un film mince qui peut servir de substrat pour la croissance de couches épitaxiées de matériaux désaccordés exempts de dislocations. Selon l'invention, on ne laisse que le minimum de couches monoatomiques nécessaires à l'épitaxie. L'épaisseur correspondante est estimée inférieure à 5 nm. Néanmoins, l'invention permet l'obtention de films d'épaisseurs allant jusqu'à quelques centaines de nanomètres.In a third step, we thin the thin layer. FIG. 8 shows the selective removal of GaAs with respect to layer 3 of AlAs with a first etching solution. A second chemical attack sequence makes it possible to remove the AlAs layer 3 and to leave only the thin film substrate 4 of GaAs without dislocations. This is shown in Figure 9. A thin film was thus obtained which can serve as a substrate for the growth of epitaxial layers of detuned materials free from dislocations. According to the invention, only the minimum of monoatomic layers necessary for epitaxy are left. The corresponding thickness is estimated to be less than 5 nm. Nevertheless, the invention makes it possible to obtain films of thicknesses up to a few hundred nanometers.
Dans une autre étape on procède à l'épitaxie sur le substrat en film mince. Préalablement, une étape de désoxydation de la surface retire, en même temps que les oxydes natifs, une partie du film de GaAs, comme indiqué plus haut.In another step, epitaxy is carried out on the thin film substrate. Beforehand, a surface deoxidation step removes, along with the native oxides, part of the GaAs film, as indicated above.
L'exemple de réalisation selon l'invention décrit ci-dessus doit évidemment être généralisé aux différents matériaux semiconducteurs, parmi lesquels le Si, dont un matériau attaquable sélectivement est SiGe.The exemplary embodiment according to the invention described above must obviously be generalized to the various semiconductor materials, including Si, of which a material which can be attacked selectively is SiGe.
De plus, les solutions techniques retenues pour la réalisation de chaque étape ne sont données qu'à titre indicatif. En particulier, la liaison faible entre le support mécanique et le substrat en film mince peut être obtenue de diverses manières, comme par exemple :In addition, the technical solutions chosen for the completion of each step are given for information only. In particular, the weak bond between the mechanical support and the thin film substrate can be obtained in various ways, such as for example:
— une couche amorphe, notamment à base d'oxydes, de nitrures ou de verres conducteurs, est intercalée entre le support mécanique et la couche mince ;An amorphous layer, in particular based on oxides, nitrides or conductive glasses, is interposed between the mechanical support and the thin layer;
— le collage est obtenu par un choix d'eutectiques appropriés pour n'autoriser une mobilité qu'aux alentours de la température d'épi- 11- the bonding is obtained by a choice of appropriate eutectics to allow mobility only around the epi temperature 11
taxie ; — la couche mince est collée directement sur un support cristallin dont les atomes ne sont pas parfaitement en regard. L'interface de collage contient un réseau de dislocations qui sont autant de liai- sons faibles. Ce collage faible peut résulter d'un assemblage de deux matériaux désaccordés, ou dont les plans cristallins sont volontairement désorientés.taxie; - the thin layer is bonded directly to a crystalline support whose atoms are not perfectly opposite. The bonding interface contains a network of dislocations which are all weak links. This weak bonding can result from an assembly of two materials which are out of tune, or whose crystalline planes are deliberately disoriented.
Selon un autre mode préféré de mise en œuvre de l'invention, le procédé décrit ci-dessus peut être amélioré en intercalant entre la 3ème étape et la 4ème étape (étape d'épitaxie) une étape supplémentaire. Celle-ci peut être réalisée dans le but d'offrir des conditions de croissance optimales pour certains semiconducteurs spécifiques.According to another preferred embodiment of the invention, the method described above can be improved by intercalating between the 3rd step and the 4th step (epitaxy step) an additional step. This can be done in order to offer optimal growth conditions for certain specific semiconductors.
Selon cette forme de réalisation de l'invention, on transforme la couche mince dans toute ou partie de son épaisseur dans le but de dis- poser d'une couche mince sans dislocations et présentant une affinité maximale (chimique et géométrique) avec le matériau à épitaxier. De préférence, il s'agit du même matériau que le matériau à épitaxier, mais il peut s'agir aussi d'un binaire dont l'une des espèces chimiques est commune (AIN pour l'épitaxie de GaN par exemple). Les toutes pre- mières étapes de la croissance d'une épitaxie sont déterminantes. A ce stade, l'affinité entre espèces chimiques du matériau à épitaxier et du substrat revêt, comme le paramètre de maille, une très grande importance.According to this embodiment of the invention, the thin layer is transformed in all or part of its thickness in order to provide a thin layer without dislocations and having maximum affinity (chemical and geometric) with the material to be epitaxial. Preferably, it is the same material as the material to be epitaxied, but it can also be a binary of which one of the chemical species is common (AIN for the epitaxy of GaN for example). The very first stages in the growth of an epitaxy are decisive. At this stage, the affinity between chemical species of the epitaxial material and of the substrate is, like the mesh parameter, of very great importance.
On obtient ainsi des substrats en film mince et sans dislocation dans des matériaux habituellement difficiles à faire croître avec une bonne qualité cristalline. Cela représente un degré de liberté supplémentaire dans l'obtention de matériaux de très grande qualité.Substrates are obtained in thin film and without dislocation in materials usually difficult to grow with good crystalline quality. This represents an additional degree of freedom in obtaining very high quality materials.
Cette forme de réalisation avantageuse sera explicitée par la suite dans le cas particulier des composés III-V à base de nitrures. Le substrat en film mince 4 de GaAs obtenu précédemment (figureThis advantageous embodiment will be explained subsequently in the particular case of III-V compounds based on nitrides. The GaAs thin film substrate 4 obtained previously (FIG.
9) peut être transformé avantageusement préalablement à l'étape d'épitaxie. On nitrure ainsi dans une étape de transformation chimique le film de GaAs cristallin 4 progressivement dans son épaisseur. Au cours de sa transformation, le substrat en film mince est composé de deux films encore plus minces, liés intimement l'un à l'autre (figure 10). 129) can be advantageously transformed prior to the epitaxy step. The crystalline GaAs film 4 is thus nitrided in a chemical transformation step progressively in its thickness. During its transformation, the thin film substrate is composed of two even thinner films, closely linked to each other (Figure 10). 12
L'un est de composition identique au substrat en film mince 4 initial, l'autre 9 a la composition finale désirée. Le désaccord de maille génère donc des contraintes. Par un raisonnement identique à celui du premier mode de l'invention, les contraintes apparaissent dès le début de la transformation. L'énergie de déformation passe par un maximum d'intensité au cours de la transformation, puis s'annule lorsque le film 9 est entièrement transformé en GaN (figure 11). De plus, comme il est faiblement lié, il s'est relaxé de manière élastique, sans former de dislocation. Le film 9 de GaN ainsi obtenu forme un substrat dont il n'existe pas à l'heure actuelle d'équivalent massif. De préférence, ce substrat en film mince a la même composition que la première des couches cristallines à faire croître.One is identical in composition to the initial thin film substrate 4, the other 9 has the desired final composition. The mesh mismatch therefore generates constraints. By reasoning identical to that of the first mode of the invention, the constraints appear from the start of the transformation. The deformation energy passes through a maximum intensity during the transformation, then vanishes when the film 9 is completely transformed into GaN (FIG. 11). In addition, as it is weakly bound, it relaxed in an elastic manner, without forming a dislocation. The GaN film 9 thus obtained forms a substrate for which there is currently no massive equivalent. Preferably, this thin film substrate has the same composition as the first of the crystal layers to be grown.
Comme précédemment, cette transformation de substrat en film mince doit être étendue, notamment au SiC évoqué plus haut (par carburation sous flux d'hydrocarbures), ainsi qu'au SiGe.As before, this transformation of the substrate into a thin film must be extended, in particular to the SiC mentioned above (by carburetion under a stream of hydrocarbons), as well as to the SiGe.
On sait déjà qu'il est avantageux de réaliser la nitruration de la surface d'un substrat en Al2O3 préalablement à la croissance des matériaux, GaN notamment. La couche d'AlN formée lors de cette étape est très disloquée, puisqu'elle est complètement relaxée sur un substrat massif avec lequel elle est très désaccordée. Elle optimise pourtant la croissance du GaN, au point que l'étape de nitruration est devenue systématique.We already know that it is advantageous to carry out nitriding of the surface of an Al 2 O 3 substrate before the growth of the materials, GaN in particular. The AlN layer formed during this step is very dislocated, since it is completely relaxed on a solid substrate with which it is very detuned. However, it optimizes the growth of GaN, to the point that the nitriding step has become systematic.
La présente invention permet de réaliser un substrat avec un film mince d'AlN qui sera relaxé sans dislocation. A partir des étapes principales, on obtient un substrat en film mince d'AlAs qui est ensuite nitruré.The present invention makes it possible to produce a substrate with a thin film of AlN which will be relaxed without dislocation. From the main steps, a thin film AlAs substrate is obtained which is then nitrided.
Les étapes d'obtention sont plus nombreuses que dans le cas précédemment décrit, car l'AlAs s'oxyde très rapidement à l'air ambiant. Il convient donc de le protéger tout au long des étapes de réalisation.The production steps are more numerous than in the previously described case, because the AlAs oxidizes very quickly to ambient air. It should therefore be protected throughout the stages of production.
Un exemple d'une structure type à réaliser par épitaxie est la suivante (les épaisseurs sont données à titre indicatif) :An example of a typical structure to be produced by epitaxy is as follows (the thicknesses are given for information):
GaAs 1,5 nm AlAs 5 nm 13GaAs 1.5 nm AlAs 5 nm 13
GaAs 10 nmGaAs 10 nm
AlχGaι.χAs 10 nmAl χGaι . χ As 10 nm
GaAs 200 nm
Figure imgf000015_0001
GaAs (substrat)
GaAs 200 nm
Figure imgf000015_0001
GaAs (substrate)
La couche d'AlAs est protégée de l'oxydation par quelques monocouches de GaAs. La structure est transférée sur le support mécanique. L'enchaînement de deux séquences d'attaque sélective permet de ne laisser que les trois dernières couches GaAs, AlAs et GaAs. Cette dernière sert une première fois de couche d'arrêt après l'élimination de la couche d'AlχGa1 χAs. Elle permet aussi de protéger la fine couche d'AlAs de l'oxydation par l'air ambiant.The AlAs layer is protected from oxidation by a few GaAs monolayers. The structure is transferred to the mechanical support. The sequence of two selective attack sequences makes it possible to leave only the last three GaAs, AlAs and GaAs layers. The latter serves for the first time as a stop layer after the elimination of the layer of Al χ Ga 1 χ As. It also makes it possible to protect the thin layer of AlAs from oxidation by ambient air.
Cette couche protectrice est retirée dans le bâti d'épitaxie, juste avant les étapes de transformation de la couche mince et l'épitaxie. L'élimination de cette couche se fait par une élévation de la température suffisante pour atteindre le point de désorption du Ga. La couche mince de AlAs est ensuite nitrurée sur toute son épaisseur, en couche mince d'AlN. Cette dernière est prête pour l'épitaxie de GaN.This protective layer is removed in the epitaxy frame, just before the stages of transformation of the thin layer and the epitaxy. The elimination of this layer is done by raising the temperature sufficient to reach the desorption point of Ga. The thin layer of AlAs is then nitrided over its entire thickness, in a thin layer of AlN. The latter is ready for GaN epitaxy.
De la même manière, des composés III-V binaires ou ternaires à base de phosphures peuvent être utilisés à la place des nitrures, dont ils sont plus proches en paramètre de maille que les arséniures. Likewise, binary or ternary III-V compounds based on phosphides can be used in place of nitrides, of which they are closer in lattice parameter than arsenides.

Claims

14REVENDICATIONS 14 CLAIMS
1. Procédé de fabrication de substrats en film mince de matériau semiconducteur, comprenant les étapes suivantes : a) réalisation d'une plaque épitaxiée par hétéroépitaxie sur un substrat (1), b) report d'une couche mince de la plaque épitaxiée sur un support mécanique (7) via une liaison faible entre ces deux éléments, et récupération du substrat (1) de la plaque épitaxiée, c) amincissement de la couche mince reportée afin d'obtenir un substrat en film mince (4) d'épaisseur suffisamment faible pour permettre la croissance de matériaux désaccordés exempts de dislocation.1. A method of manufacturing thin film substrates of semiconductor material, comprising the following steps: a) production of an epitaxial plate by heteroepitaxy on a substrate (1), b) transfer of a thin layer of the epitaxial plate onto a mechanical support (7) via a weak bond between these two elements, and recovery of the substrate (1) from the epitaxial plate, c) thinning of the postponed thin layer in order to obtain a thin film substrate (4) of sufficiently thick weak to allow the growth of detuned materials free from dislocation.
2. Procédé selon la revendication 1, caractérisé en ce que, dans une étape supplémentaire d), on transforme le substrat en film mince (4) dans sa composition, sur tout ou partie de son épaisseur, en un autre matériau semiconducteur présentant une affinité maximale avec le matériau à épitaxier.2. Method according to claim 1, characterized in that, in an additional step d), the substrate is transformed into thin film (4) in its composition, over all or part of its thickness, into another semiconductor material having an affinity maximum with the epitaxial material.
3. Procédé selon la revendication 2, caractérisé en ce que le substrat en film mince (4), avant transformation, est composé d'un alliage III-V arséniure ou phosphure binaire ou ternaire et en ce que la partie transformée est composée d'un alliage III-V nitrure binaire ou ternaire.3. Method according to claim 2, characterized in that the thin film substrate (4), before transformation, is composed of a III-V arsenide or binary or ternary phosphide alloy and in that the transformed part is composed of a III-V binary or ternary nitride alloy.
4. Procédé selon la revendication 2, caractérisé en ce qu'on nitrure le substrat en film mince (4) d'AlAs progressivement dans son épaisseur.4. Method according to claim 2, characterized in that nitrides the thin film substrate (4) of AlAs gradually in its thickness.
5. Procédé selon la revendication 2, caractérisé en ce que le subs- trat en film mince (4), avant transformation, est composé de Si ou d'un alliage IV-IV binaire et en ce que la partie transformée est composée d'un alliage IV-IV binaire.5. Method according to claim 2, characterized in that the thin film substrate (4), before transformation, is composed of Si or a binary IV-IV alloy and in that the transformed part is composed of a binary IV-IV alloy.
6. Procédé selon la revendication 1, caractérisé en ce que l'hétéro- épitaxie réalisée à l'étape a) comprend une couche tampon (2) de GaAs 156. Method according to claim 1, characterized in that the hetero-epitaxy performed in step a) comprises a buffer layer (2) of GaAs 15
sur un substrat (1) de GaAs, une couche d'arrêt (3) à base de AlAs et une couche finale (4) de GaAs.on a substrate (1) of GaAs, a barrier layer (3) based on AlAs and a final layer (4) of GaAs.
7. Procédé selon la revendication 6, caractérisé en ce que la couche finale de GaAs est plus épaisse que le substrat en film mince désiré.7. Method according to claim 6, characterized in that the final layer of GaAs is thicker than the desired thin film substrate.
8. Procédé selon la revendication 6, caractérisé en ce que l'épaisseur de la couche finale est inférieure à 15 nm.8. Method according to claim 6, characterized in that the thickness of the final layer is less than 15 nm.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le support mécanique (7) consiste en une plaque de Si.9. Method according to one of the preceding claims, characterized in that the mechanical support (7) consists of an Si plate.
10. Procédé selon l'une des revendications 1 à 8, caractérisé en ce que le support mécanique (7) consiste en une plaque de GaAs.10. Method according to one of claims 1 to 8, characterized in that the mechanical support (7) consists of a GaAs plate.
11. Procédé selon l'une des revendications précédentes, caractérisé en ce que le support mécanique (7) consiste en une plaque avec un dépôt de silice (8) en surface.11. Method according to one of the preceding claims, characterized in that the mechanical support (7) consists of a plate with a deposit of silica (8) on the surface.
12. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'étape c) comprend les étapes suivantes : cl) enlèvement sélectif de la couche tampon (2) par rapport à la couche d'arrêt (3) avec une première solution d'attaque chimique. c2) retrait de la couche d'arrêt (3) par une seconde séquence d'attaque chimique.12. Method according to one of the preceding claims, characterized in that step c) comprises the following steps: c1) selective removal of the buffer layer (2) with respect to the barrier layer (3) with a first chemical attack solution. c2) removal of the barrier layer (3) by a second sequence of chemical attack.
13. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'une couche amorphe, de préférence à base d'oxydes, de nitrures ou de verres conducteurs, est intercalée entre le support mécanique (7) et le substrat en film mince (4).13. Method according to one of the preceding claims, characterized in that an amorphous layer, preferably based on oxides, nitrides or conductive glasses, is interposed between the mechanical support (7) and the thin film substrate (4).
14. Procédé selon l'une des revendications précédentes, caractérisé en ce que le collage est obtenu par un choix d'eutectiques appropriés pour n'autoriser une mobilité qu'aux alentours de la température d'épi- taxie. 1614. Method according to one of the preceding claims, characterized in that the bonding is obtained by a choice of appropriate eutectics so as to allow mobility only around the epitaxial temperature. 16
15. Procédé selon l'une des revendications précédentes, caractérisé en ce que la couche mince est collée directement sur un support cristallin dont les atomes ne sont pas parfaitement en regard.15. Method according to one of the preceding claims, characterized in that the thin layer is bonded directly to a crystalline support whose atoms are not perfectly opposite.
16. Procédé selon l'une des revendications précédentes, caractérisé en ce que, dans une étape supplémentaire, on procède à l'épitaxie d'une structure semiconductrice sur le substrat en film mince (4) obtenu précédemment.16. Method according to one of the preceding claims, characterized in that, in an additional step, one proceeds to the epitaxy of a semiconductor structure on the thin film substrate (4) obtained previously.
17. Structure semiconductrice, caractérisée en ce qu'elle est composée d'un substrat en film mince (4) monocristallin de matériau semiconducteur disposé sur un support mécanique auquel il est faiblement lié, en ce que le substrat en film mince (4) a une surface convenant à une application industrielle, et en ce que le substrat en film mince (4) a une épaisseur suffisamment faible pour permettre la croissance de matériaux désaccordés exempts de dislocation.17. Semiconductor structure, characterized in that it is composed of a thin film substrate (4) monocrystalline of semiconductor material disposed on a mechanical support to which it is weakly bonded, in that the thin film substrate (4) has a surface suitable for industrial application, and in that the thin film substrate (4) has a thickness sufficiently small to allow the growth of detuned materials free from dislocation.
18. Structure selon la revendication 17, caractérisée en ce que le substrat en film mince (4) est composé de Si ou d'un alliage IV-IV binaire.18. Structure according to claim 17, characterized in that the thin film substrate (4) is composed of Si or a binary IV-IV alloy.
19. Structure selon la revendication 17, caractérisée en ce que le substrat en film mince (4) est composé d'un alliage III-V arséniure ou phosphure binaire ou ternaire.19. Structure according to claim 17, characterized in that the thin film substrate (4) is composed of a III-V arsenide or binary or ternary phosphide alloy.
20. Structure selon l'une des revendications 17 à 19, caractérisée en ce que le substrat en film mince (4) est protégé par quelques monocouches atomiques d'un autre matériau plus stable.20. Structure according to one of claims 17 to 19, characterized in that the thin film substrate (4) is protected by a few atomic monolayers of another more stable material.
21. Structure selon la revendication 17, caractérisée en ce que le substrat en film mince (4) est transformé dans sa composition, sur tout ou partie de son épaisseur, en un autre matériau semiconducteur.21. Structure according to claim 17, characterized in that the thin film substrate (4) is transformed in its composition, over all or part of its thickness, into another semiconductor material.
22. Composant semiconducteur, caractérisé en ce qu'il est réalisé 17 par épitaxie à partir d'une structure selon l'une des revendications 17 à 21.22. Semiconductor component, characterized in that it is produced 17 by epitaxy from a structure according to one of claims 17 to 21.
23. Composant selon la revendication 22, dans lequel la couche épitaxiée est composée d'alliage IV-IV, en particulier de SiC.23. Component according to claim 22, in which the epitaxial layer is composed of alloy IV-IV, in particular of SiC.
24. Composant selon la revendication 22, dans lequel la couche épitaxiée est composée d'alliages III-V nitrures binaires ou ternaires. 24. Component according to claim 22, in which the epitaxial layer is composed of III-V alloys binary or ternary nitrides.
PCT/FR1999/000309 1998-02-13 1999-02-11 Semiconductor material epitaxial structures formed on thin-film substrates WO1999041776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9801790A FR2775121B1 (en) 1998-02-13 1998-02-13 METHOD FOR MANUFACTURING THIN FILM SUBSTRATES OF SEMICONDUCTOR MATERIAL, EPITAXIAL STRUCTURES OF SEMICONDUCTOR MATERIAL FORMED ON SUCH SUBSTRATES, AND COMPONENTS OBTAINED FROM SUCH STRUCTURES
FR98/01790 1998-02-13

Publications (1)

Publication Number Publication Date
WO1999041776A1 true WO1999041776A1 (en) 1999-08-19

Family

ID=9522974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/000309 WO1999041776A1 (en) 1998-02-13 1999-02-11 Semiconductor material epitaxial structures formed on thin-film substrates

Country Status (2)

Country Link
FR (1) FR2775121B1 (en)
WO (1) WO1999041776A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004519093A (en) * 2000-11-27 2004-06-24 エス オー イ テク シリコン オン インシュレータ テクノロジース Method for producing substrate, especially substrate for optics, electronics or electro-optics, and substrate obtained by this method
US6770542B2 (en) 2001-12-20 2004-08-03 Osram Opto Semiconductors Gmbh Method for fabricating semiconductor layers
US7256075B2 (en) 2003-01-07 2007-08-14 S.O.I.Tec Silicon On Insulator Technologies Recycling of a wafer comprising a multi-layer structure after taking-off a thin layer
EP1675189A3 (en) * 2004-12-23 2007-11-07 Osram Opto Semiconductors GmbH Method of manufacturing semiconductor chip
US7375008B2 (en) 2003-01-07 2008-05-20 S.O.I.Tec Silicon On Insulator Technologies Recycling by mechanical means of a wafer comprising a multilayer structure after taking-off a thin layer thereof
US8951809B2 (en) 2008-04-07 2015-02-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transfer by means of a ferroelectric substrate

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10223719C1 (en) * 2002-05-28 2003-11-27 Infineon Technologies Ag Layer arrangement comprises first substrate having first main surface containing first thermally dissolvable delamination layer, and second substrate having second main surface containing second thermally dissolvable delamination layer
FR2849715B1 (en) * 2003-01-07 2007-03-09 Soitec Silicon On Insulator RECYCLING A PLATE COMPRISING A MULTILAYER STRUCTURE AFTER REMOVING A THIN LAYER
FR2849714B1 (en) * 2003-01-07 2007-03-09 RECYCLING BY MECHANICAL MEANS OF A PLATE COMPRISING A MULTILAYER STRUCTURE AFTER SAMPLING A THIN LAYER
US7018909B2 (en) 2003-02-28 2006-03-28 S.O.I.Tec Silicon On Insulator Technologies S.A. Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
FR2855650B1 (en) * 2003-05-30 2006-03-03 Soitec Silicon On Insulator SUBSTRATES FOR CONSTRAINTS SYSTEMS AND METHOD FOR CRYSTALLINE GROWTH ON SUCH A SUBSTRATE
FR2931293B1 (en) 2008-05-15 2010-09-03 Soitec Silicon On Insulator PROCESS FOR MANUFACTURING AN EPITAXIA SUPPORT HETEROSTRUCTURE AND CORRESPONDING HETEROSTRUCTURE
EP2151852B1 (en) 2008-08-06 2020-01-15 Soitec Relaxation and transfer of strained layers
TWI457984B (en) 2008-08-06 2014-10-21 Soitec Silicon On Insulator Relaxation of strained layers
EP2151856A1 (en) 2008-08-06 2010-02-10 S.O.I. TEC Silicon Relaxation of strained layers
EP2151861A1 (en) 2008-08-06 2010-02-10 S.O.I. TEC Silicon Passivation of etched semiconductor structures
EP2159836B1 (en) 2008-08-25 2017-05-31 Soitec Stiffening layers for the relaxation of strained layers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371862A2 (en) * 1988-11-29 1990-06-06 The University Of North Carolina At Chapel Hill Method of forming a nonsilicon semiconductor on insulator structure
EP0533551A1 (en) * 1991-09-18 1993-03-24 Commissariat A L'energie Atomique Process for manufacturing thin film layers of semiconductor material
US5439843A (en) * 1992-01-31 1995-08-08 Canon Kabushiki Kaisha Method for preparing a semiconductor substrate using porous silicon
US5540785A (en) * 1991-06-28 1996-07-30 International Business Machines Corporation Fabrication of defect free silicon on an insulating substrate
WO1996027207A1 (en) * 1995-02-27 1996-09-06 Picogiga Iii-v semiconductor component and method for making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371862A2 (en) * 1988-11-29 1990-06-06 The University Of North Carolina At Chapel Hill Method of forming a nonsilicon semiconductor on insulator structure
US5540785A (en) * 1991-06-28 1996-07-30 International Business Machines Corporation Fabrication of defect free silicon on an insulating substrate
EP0533551A1 (en) * 1991-09-18 1993-03-24 Commissariat A L'energie Atomique Process for manufacturing thin film layers of semiconductor material
US5439843A (en) * 1992-01-31 1995-08-08 Canon Kabushiki Kaisha Method for preparing a semiconductor substrate using porous silicon
WO1996027207A1 (en) * 1995-02-27 1996-09-06 Picogiga Iii-v semiconductor component and method for making same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE INSPEC INSTITUTE OF ELECTRICAL ENGINEERS, STEVENAGE, GB; EJECKAM F ET AL: "Lattice constant engineering using compliant universal (CU) substrates", XP002081797 *
VENKATASUBRAMANIAN R: "HIGH-QUALITY EUTECTIC-METAL-BONDED ALGAAS-GAAS THIN FILMS ON SI SUBSTRATES", APPLIED PHYSICS LETTERS, vol. 60, no. 7, 17 February 1992 (1992-02-17), pages 886 - 888, XP000290448 *
WOCSDICE 97. 21ST WORKSHOP ON COMPOUND SEMICONDUCTOR DEVICES AND INTEGRATED CIRCUITS, PROCEEDINGS OF WOCSDICE 97. 21ST WORKSHOP ON COMPOUND SEMICONDUCTOR DEVICES AND INTEGRATED CIRCUITS, SCHEVENINGEN, NETHERLANDS, 25-28 MAY 1997, ISBN 90-9010-767-3, 1997, Eindhoven, Netherlands, Eindhoven Univ. Technol, Netherlands, pages 97 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622330B2 (en) 2000-11-27 2009-11-24 S.O.I.Tec Silicon On Insulator Technologies Semiconductor substrates having useful and transfer layers
US6867067B2 (en) 2000-11-27 2005-03-15 S.O.I. Tec Silicon On Insulator Technologies S.A. Methods for fabricating final substrates
US7071029B2 (en) 2000-11-27 2006-07-04 S.O.I.Tec Silicon On Insulator Technologies S.A. Methods for fabricating final substrates
US7741678B2 (en) 2000-11-27 2010-06-22 S.O.I.Tec Silicon On Insulator Technologies Semiconductor substrates having useful and transfer layers
US7655537B2 (en) 2000-11-27 2010-02-02 S.O.I.Tec Silicon On Insulator Technologies Semiconductor substrates having useful and transfer layers
JP2004519093A (en) * 2000-11-27 2004-06-24 エス オー イ テク シリコン オン インシュレータ テクノロジース Method for producing substrate, especially substrate for optics, electronics or electro-optics, and substrate obtained by this method
US7422957B2 (en) 2000-11-27 2008-09-09 S.O.I.Tec Silicon On Insulator Technologies Semiconductor substrates having useful and transfer layers
US7465991B2 (en) 2000-11-27 2008-12-16 S.O.I.Tec Silicon On Insulator Technologies Semiconductor substrates having useful and transfer layers
US6770542B2 (en) 2001-12-20 2004-08-03 Osram Opto Semiconductors Gmbh Method for fabricating semiconductor layers
US7375008B2 (en) 2003-01-07 2008-05-20 S.O.I.Tec Silicon On Insulator Technologies Recycling by mechanical means of a wafer comprising a multilayer structure after taking-off a thin layer thereof
US7602046B2 (en) 2003-01-07 2009-10-13 S.O.I.Tec Silicon On Insulator Technologies Recycling by mechanical means of a wafer comprising a multilayer structure after taking-off a thin layer thereof
US7256075B2 (en) 2003-01-07 2007-08-14 S.O.I.Tec Silicon On Insulator Technologies Recycling of a wafer comprising a multi-layer structure after taking-off a thin layer
US7524737B2 (en) 2004-12-23 2009-04-28 Osram Opto Semiconductors Gmbh Method of fabricating a semiconductor chip with a nitride compound semiconductor material
EP1675189A3 (en) * 2004-12-23 2007-11-07 Osram Opto Semiconductors GmbH Method of manufacturing semiconductor chip
US8951809B2 (en) 2008-04-07 2015-02-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transfer by means of a ferroelectric substrate

Also Published As

Publication number Publication date
FR2775121A1 (en) 1999-08-20
FR2775121B1 (en) 2000-05-05

Similar Documents

Publication Publication Date Title
WO1999041776A1 (en) Semiconductor material epitaxial structures formed on thin-film substrates
JP5031365B2 (en) Method for forming epitaxial growth layer
US7968909B2 (en) Reconditioned substrates for fabricating compound material wafers
JP5031364B2 (en) Method for forming epitaxial growth layer
KR100712042B1 (en) A method of manufacturing a wafer
KR100746179B1 (en) A method of preparation of an epitaxial substrate
KR20010021494A (en) Thermal mismatch compensation to produce free standing substrates by epitaxial deposition
WO2007036631A1 (en) Method for making a thin-film element
FR2995136A1 (en) PSEUDO-SUBSTRATE WITH IMPROVED EFFICIENCY OF USE OF MONOCRYSTALLINE MATERIAL
KR20100123846A (en) Method for fabricating a semiconductor on insulator type substrate
WO2010094371A2 (en) Relaxation and transfer of strained material layers
EP1476898B1 (en) Method for production of a layer of silicon carbide or a nitride of a group iii element on a suitable substrate
JP2010516602A (en) Semiconductor substrate suitable for the implementation of electronic and / or optoelectronic devices and related manufacturing processes
JP2010516602A5 (en)
US6607968B1 (en) Method for making a silicon substrate comprising a buried thin silicon oxide film
EP1973150A1 (en) A (110) oriented silicon substrate and a bonded pair of substrates comprising said (110) oriented silicon substrate and corresponding methods of fabricating same
JPH01244608A (en) Process of growing semiconductor crystal
JPH06333820A (en) Semiconductor device and manufacture of semiconductor device
JPH06208950A (en) Manufacture of compound semiconductor substrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase