WO1999050903A1 - Semiconductor integrated circuit device and method for manufacturing the same - Google Patents

Semiconductor integrated circuit device and method for manufacturing the same Download PDF

Info

Publication number
WO1999050903A1
WO1999050903A1 PCT/JP1998/001434 JP9801434W WO9950903A1 WO 1999050903 A1 WO1999050903 A1 WO 1999050903A1 JP 9801434 W JP9801434 W JP 9801434W WO 9950903 A1 WO9950903 A1 WO 9950903A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
insulating film
integrated circuit
circuit device
semiconductor integrated
Prior art date
Application number
PCT/JP1998/001434
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Fukada
Haruo Akahoshi
Kenichi Takeda
Takuya Fukuda
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1998/001434 priority Critical patent/WO1999050903A1/en
Publication of WO1999050903A1 publication Critical patent/WO1999050903A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures

Definitions

  • the present invention relates to the field of semiconductor technology, and more particularly to a semiconductor integrated circuit device capable of operating at high speed and a method of manufacturing the same.
  • Copper-based interconnects have lower specific resistance, higher electromigration resistance and higher allowable current density in fine patterns than aluminum-based interconnects.
  • Japanese Patent Application Laid-Open No. 8-78410 discloses a problem that the Cu wiring is inferior in oxidation resistance, and oxidizes the surface of the Cu wiring so that the Cu wiring is not exposed. , Alsi, Au, Ag or alloys mainly composed of Ag) are disclosed.
  • Japanese Patent Application Laid-Open No. 9-55429 discloses a method for manufacturing a multilayer wiring structure in which the interlayer insulating film has a low dielectric constant to reduce the capacitance between wirings in a small number of steps.
  • a wiring groove is formed in the interlayer insulating film using a low dielectric constant material such as polyimide, and embedded in the groove.
  • a technology in which only wiring is formed is formed. According to this publication, the underlying wiring is buried in a groove of a silicon oxide film on a semiconductor substrate.
  • an A1 wiring is formed, and a first buried wiring and a second buried Cu wiring are formed in an interlayer insulating film (photosensitive polyimide film) groove on the A1 wiring.
  • JP-A-5-206065 discloses that Cu is selectively deposited only on a desired region by using an electroless deposition process in forming a Cu wiring. More specifically, it discloses that a Cu wiring is formed by electroless Cu plating only on a specific surface using palladium silicide as a catalyst.
  • Japanese Patent Application Laid-Open No. 6-29246 discloses a Cu wiring technique in which metal is electrolessly plated in a relatively deep and narrow trench in a dielectric substrate.
  • the inventors of the present invention it is effective to use the A1 wiring for the first layer wiring and the Cu wiring above the second layer from the viewpoint of reliability, cost, etc. in the multilayer wiring using Cu wiring.
  • a plating method that is more advantageous in terms of embedding and cost than the sputtering method and the CVD method will be used as the method for forming the Cu wiring. The details are described below.
  • the Cu wiring process is more expensive than the A1 wiring process, and it is considered necessary to use the A1 wiring layer and the Cu wiring layer separately for multi-layer wiring depending on the application. Especially multiple semiconductor devices
  • the first layer wiring (so-called local wiring), which is closest to the (elements) and connects the elements, has a short wiring length and low resistance, and prevents Cu contamination of semiconductor elements.
  • A1 It is considered effective to use Cu wiring for the wiring on the second layer or higher (so-called global wiring).
  • Known techniques for selectively using the A1 wiring and the Cu wiring include the techniques disclosed in the aforementioned Japanese Patent Application Laid-Open Nos. 8-78410 and 9-55429.
  • Japanese Patent Application Laid-Open No. 8-78410 discloses a technique of providing a wiring such as A1 on a Cu wiring, and there is no idea to apply A1 to a first-layer wiring closest to a semiconductor element. That is, in the invention disclosed in this publication, in order to improve the bonding property with the wire in the pad region, the upper part of the Cu wiring is made of Al, Alsi, Au, Ag or an alloy mainly composed of Ag in addition to AlSiCu. In this way, oxidation of the Cu wiring is suppressed during bonding. That is, the invention disclosed in this publication addresses the problem of the upper surface of the Cu wiring, and there is no idea to apply a wiring material different from Cu as the lower wiring of the Cu wiring.
  • JP-A-9-55429 discloses a technique in which a Cu wiring is provided on an A1 wiring.
  • local wiring is formed by forming a vertical connection hole (through hole) and a wiring groove in a silicon oxide film, forming a film of A1 by a high-temperature sputtering method, and This is achieved by forming vertical connection wiring and embedded A1 wiring by removing the A1 film on the silicon oxide film by chemical mechanical polishing.
  • the global wiring on the local wiring is formed by forming wiring grooves and vertical connection holes in an interlayer insulating film made of a low dielectric constant resin (specifically, benzocyclobutene). Vertical connection by polishing Cu on low dielectric constant resin film by chemical mechanical polishing method This is achieved by forming wiring and embedded Cii wiring.
  • the technique disclosed in this publication merely provides a method for forming both the lower layer A1 wiring and the upper Cu wiring including the via wiring by the trench filling wiring technique.
  • the sputter method it is difficult to embed in a wiring formation groove having a depth of 400 nm (0.4 ⁇ m) or 400 nm or more and a via hole diameter of 0.5 ⁇ m or less or a width of 0.35 ⁇ m or less. there were. This is because a cavity is formed in the trench due to the overhang of the Cu film. Therefore, there is a limit to miniaturization of wiring.
  • the CVD method uses an expensive organic compound gas, so it is difficult to reduce the process cost. For the above reasons, it is effective to use the plating method for fine Cu wiring, especially for multilayer wiring.
  • the method of forming the Cu wiring itself using the plating technique is based on the electroless Cu plating only on a specific surface using a palladium silicide as a catalyst described in JP-A-5-206065.
  • There is a method of forming a wiring a method of forming a Cu wiring in a deep and narrow wrench by electroless plating, as described in JP-A-6-29246.
  • the inventors have clarified that there is a problem that has not been assumed in the past when forming a Cu film by the plating method.
  • the lower wiring is made of Al (or A1 alloy) and a via wiring is to be formed on the lower wiring by the Cu plating method, the A1 wiring will be corroded.
  • a strong aqueous solution is used for forming a Cu film by electroless Cu plating.
  • A1 is a material that easily corrodes in both acidic and alkaline conditions. Therefore, in the case of Cu plating, A1 corrosion prevention measures are indispensable. However, in practice, it is impossible to completely cover the A 1 surface with a chemically stable conductive film and eliminate the possibility of corrosion at all with fine wiring that allows “missing” . In particular, in order to improve the adhesion between the lower wiring and the Cu plating film, a step of simultaneously performing Cu plating while etching the underlying conductive film is required.
  • FIG. 37 it is attempted to form a Cu electroless plating film in the via hole (127) provided in the insulating film (126).
  • FIG. 37 It is sectional drawing which shows wiring connection.
  • the figure shows a state in which a reaction prevention barrier TiN layer (129) for Cu electroless plating has been formed in the via hole (127) prior to the formation of the Cu electroless plating film.
  • a TiN film (122), a 0.5% Cu film (123), and a TiN film (124) are stacked via an oxide film (not shown).
  • the layered A1 wiring (125) is formed by dry etching.
  • an insulating film (126) is formed on the A1 wiring (125).
  • holes (128 ) are easily generated in the wiring side walls due to overetching when forming via holes, and the side walls are exposed.
  • no barrier film formation technology has been established to cover these sidewalls with good coverage, leaving a major problem as in the next MECIE.
  • An object of the present invention is to provide a semiconductor integrated circuit device having a fine wiring pattern capable of operating at high speed and having improved reliability.
  • Another object of the present invention Tonime ⁇ > 0 to provide a method of manufacturing a high-speed operable has a fine wiring pattern, and a semiconductor integrated circuit device having improved reliability
  • Another object of the present invention is to realize a semiconductor integrated circuit device having a fine wiring pattern capable of operating at high speed at low cost.
  • Another object of the present invention is to provide a semiconductor integrated circuit device having a multilayer wiring structure including a wiring mainly composed of aluminum (A1) and a wiring mainly composed of copper (Cu).
  • a typical configuration of the present invention has a first wiring on a main surface of a semiconductor substrate, a first interlayer insulating film so as to cover the first wiring, and a first interlayer insulating film formed on the first interlayer insulating film.
  • a first via wiring connected to a part of the first wiring via the provided via hole, a wiring provided in the second interlayer insulating film on the first interlayer insulating film;
  • a second wiring made of a material different from that of the via wiring and the first wiring, the second wiring being embedded in the groove for use and connected to the first via wiring.
  • a semiconductor element is provided in a semiconductor substrate, and a first wiring mainly composed of aluminum is provided on the main surface of the semiconductor substrate as a local wiring near the main surface of the substrate.
  • a second wiring made of copper as the main material is provided as a global wiring on the first wiring, and the via wiring connected to the first wiring is made of a conductor material different from Cu It is characterized by the following.
  • the via wiring and the third wiring formed on the second wiring are made of a conductive material mainly composed of Cu having a lower specific resistance than A1.
  • the present invention it is possible to prevent contamination of the semiconductor element with Cu, and the CU wiring (second wiring) in the upper layer is excellent in migration resistance and has a low resistance, so that it can be operated at a high speed because of its small size.
  • a semiconductor integrated circuit device having a wiring pattern and having improved reliability can be obtained.
  • FIG. 1 is a sectional view showing a manufacturing process of a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
  • FIG. 3 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
  • FIG. 4 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
  • FIG. 5 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
  • FIG. 6 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
  • FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
  • FIG. 8 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
  • FIG. 9 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
  • FIG. 10 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
  • FIG. 11 is a sectional view showing a manufacturing process of a semiconductor integrated circuit device according to a second embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 13 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 14 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 15 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 16 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 17 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 18 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 19 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 20 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
  • FIG. 21 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 22 shows a semiconductor integrated circuit device according to a third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a manufacturing process of the second embodiment.
  • FIG. 23 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 24 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG. 23.
  • FIG. 25 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 24.
  • FIG. 26 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 25.
  • FIG. 27 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 28 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 27.
  • FIG. 29 is a cross-sectional view showing a manufacturing process of the semiconductor integrated circuit device according to the fourth embodiment of the present invention.
  • FIG. 30 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 29.
  • FIG. 31 is a cross-sectional view showing a manufacturing step of the device following FIG. 30.
  • FIG. 32 is a cross-sectional view showing a manufacturing step of the device following FIG. 31.
  • FIG. 33 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 32.
  • FIG. 34 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 33.
  • FIG. 35 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
  • FIG. 36 is a sectional view showing a semiconductor integrated circuit device according to the fifth embodiment.
  • FIG. 37 is a sectional view showing a semiconductor integrated circuit device according to a sixth embodiment of the present invention.
  • FIG. 38 shows a partial cross-sectional view of a multilayer wiring structure which has been a problem of the present inventors.
  • FIGS. 1-10 A method for manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention will be described with reference to FIGS.
  • the wiring (103) is formed.
  • the first wiring (103) is, in order from the bottom, Ti 30nra to improve adhesion to the Si02 film, TiN 70 nm as the barrier layer, Al-0.5 0Cu 300 nm with A1 as the main wiring material, anti-reflection It is composed of laminated wiring in which TiN 50 nm as a layer is sequentially formed by a sputtering method.
  • the first wiring (103) is patterned by a known photolithography technique.
  • a wiring pattern is formed on the laminated conductor layer deposited on the Si02 film (102) by the sputtering method using a resist (photoresis t lm), transferred to the laminated conductor layer by a dry etching technique, and then transferred to the laminated conductor layer. Then, the first wiring (103) is obtained.
  • This second The first wiring (103) has a shorter wiring length than an upper wiring described later and is a wiring (local wiring) for connecting adjacent elements, for example, about 50 to 60 m.
  • a pair of a P-channel MISFET (PM ⁇ S) and an N-channel MISFET (NM 0 S) is provided in the main surface of the semiconductor substrate (101) as semiconductor elements constituting a circuit.
  • Multiple CMOS transistors composed of transistors are formed.
  • a plug such as polycrystalline silicon or tungsten is connected to the source / drain region of these CM0S transistors through contact through holes provided in the Si02 film (102). I have.
  • the first wiring (103) is connected to this plug.
  • the semiconductor substrate (101) is a semiconductor substrate in the claims.
  • the semiconductor substrate includes, in addition to the semiconductor substrate (101), a semiconductor substrate having a surface on which an epitaxial layer (for example, a thickness of 1 ⁇ m to 4 ⁇ m) is formed, that is, a so-called epitaxy wafer.
  • an epitaxial layer for example, a thickness of 1 ⁇ m to 4 ⁇ m
  • a U02 nm Si02 film (104) is formed on the first wiring (103) by a plasma CVD method.
  • a step is formed on the surface of the Si02 film (104) deposited on the Si02 film (102) where the first wiring is not formed.
  • the surface of the above-mentioned Si02 film (104) is polished and flattened by chemical mechanical polishing (hereinafter, abbreviated as CMP), and an interconnect having a thickness of 800 on the first wiring (103) is formed.
  • An insulating film that is, an interlayer insulating film (105) is formed.
  • a via hole (106) is formed in the interlayer insulating film (105) by the FI technology.
  • a via hole pattern is formed by a resist (not shown) on the interlayer insulating film (105) by a photolithography technique.
  • the via hole pattern is transferred to the interlayer insulating film (105) by a dry etching technique to form a via hole (106), and then the above-mentioned resist is removed.
  • a first via wiring (107) is formed in the via hole (106).
  • the connection of the first wiring made of A1 (or A1 alloy) to the via wiring using Cu (or Cu alloy) is avoided from the recognition of the above-described problem.
  • Cu should be avoided as a material for via wiring (107) that electrically connects the first wiring (oral wiring) made of A1 and the second wiring (global wiring) made of Cu.
  • a high melting point metal such as W is applied.
  • Ti 30 nm was formed as an adhesive layer for improving the adhesion to the first wiring and reducing the contact resistance
  • TiN 50 nm was formed as a barrier layer for preventing the reaction between the first wiring and the via wiring.
  • a W film is formed to a thickness of 500 nm on the entire surface by CVD.
  • the ff film, the TiN film and the Ti film in the flat portion of the interlayer insulating film (105) are polished and removed by a CMP method to form a via wiring (107).
  • a 100 nm SiN film (108) is formed on the entire surface of the interlayer insulating film (105) on which the via wiring (107) is formed by a plasma CVD method, and a Si02 film is formed on the SiN film (108). (109) is deposited to a thickness of 300 nm to form an interlayer insulating film.
  • This inter-wiring insulating film is formed by photolithography technology.
  • a wiring pattern is formed on (108, 109) by a resist (not shown).
  • the Si02 film (109) is etched by dry etching using the resist as a mask. At this time, the lower SiN film (108) acts as an etching stopper.
  • an etching gas for etching the Si02 film (109) is used.
  • the SiN film (108) is not etched by the etching gas for the Si02 film (109). Therefore, the etching of the Si02 film (109) stops at the surface of the SiN film (108). Since the SiN film (108) becomes an etch stop, the lower interlayer insulating film (105) is not etched. Subsequently, by switching the etching gas and etching the SiN film (108), the wiring pattern is transferred to the interlayer insulating film to form a wiring forming groove (wiring groove), and then the above-mentioned resist is removed. .
  • a second wiring (110) is formed in a wiring forming groove (wiring groove) formed in the interlayer insulating film (108, 109).
  • Ti 30 nm and TiN 70 are sequentially formed as an adhesive layer on the main surface of the semiconductor substrate on which the wiring groove is formed, and a Cu film is formed on the TiN by 50 mn by an electroless plating method. Subsequently, a Cu film is further formed to a thickness of 250 nm on the Cu film by an electrolytic plating method. The Cu film and the adhesive layer in the flat portion are polished and removed by the CMP method to form a second wiring (110).
  • Cu electroless plating is used as a plating solution, 5 mol / l copper sulfate (CuS04) as a copper source, 0.03 ⁇ 1 / 1 / formaldehyde (HCH0) as a reducing agent, and 0.1 mol / l as a chelating agent.
  • CuS04 copper sulfate
  • HCH0 formaldehyde
  • 0.1 mol / l as a chelating agent.
  • EDTA ethylenediaminetetraacetic acid
  • I 1 of 2,2'-bipyridyl adjust the viscosity by adding poly (ethylene glycol), pH 13, and liquid temperature 80 ° C. so This is performed by immersing the substrate in this Mek's solution.
  • the Cu electroplating is performed using a 0.3 mol I 1 copper sulfate (CuS04) solution as a plating solution.
  • the thickness of the formed Cu film is controlled by the plating time.
  • a second via wiring (114) is formed in the via hole (113).
  • Ti 30 nm and TiN 70 mn are formed as adhesive layers on the entire surface of the interlayer insulating film (111, 112) in which the via hole (113) is formed, and a 50 nm Cu film is formed on the TiN by electroless plating.
  • a Cu film is further formed to a thickness of 250 nm by the electrolytic plating method, and the Cu film and the adhesive layer in the flat portion are polished and removed by the CMP method to form a second via wiring (114).
  • the same plating solution as used in the formation of the second wiring (110) is used as the plating solution used for forming the Cu film.
  • Step (i) As shown in Fig. 9, a 100 nm SiN film (115) and a 300 nm Si02 film (116) are deposited on the entire surface of the interlayer insulating film (111, 112) with via wiring (114) formed by plasma CVD. An insulating film is formed. A wiring pattern is formed on this interlayer insulating film (115, 116) by photolithography using a resist. Next, using the resist as a mask, the Si02 film (116) is etched by dry etching technology. At this time, the lower SiN film (115) acts as an etching stopper. Subsequently, by switching the etching gas and etching the SiN film (115), the wiring pattern is transferred to the interlayer insulating film to form a wiring groove, and then the resist is removed.
  • a third wiring (117) is formed in a wiring groove formed in the interlayer insulating film (115, 116).
  • a Ti film of 30 nm and a TiN of 70 ⁇ are formed on the entire surface of the interlayer insulating film (115, 116) as an adhesive layer, and a Cu film of 50 nm is formed on the TiN by an electroless plating method.
  • a Cu film is further formed by electrolytic plating, and the flat Cu film and the adhesive layer are polished and removed by a CMP method to form a third wiring (11).
  • the plating solution used for forming the Cu film a plating solution similar to the plating solution for forming the second wiring (110) is used.
  • the second wiring which has a longer wiring length than the first wiring (local wiring: 103), mainly uses copper (Cu). It has a buried wiring structure made of a material, and it is fine and the wiring resistance can be reduced by about 40% compared to A1 wiring, and the CR wiring delay of the second layer or more can be improved. Therefore, c high-speed operation possible semiconductor integrated circuit device can be obtained
  • the first wiring (oral wiring) closest to the semiconductor element is mainly made of aluminum (A1), and can prevent Cu contamination of the semiconductor element. Therefore, the reliability of the semiconductor integrated circuit device can be improved. Even if A1 is used, this local wiring has a short wiring length, so it has little effect on high-speed operation.
  • the second wiring which has a longer wiring length than the first wiring (oral wiring), is mainly made of copper (Cu). Is a material that has better migration resistance than A1, so that the wiring reliability can be improved.
  • a high melting point metal which is a different material from the first wiring, is applied to the via wiring connecting the first wiring and the second wiring. Therefore, the problem such as the case of forming the via wiring by the Cu plating process shown in FIG. 38 is solved. That is, corrosion of the first wiring can be avoided, and the reliability of the wiring can be improved. Therefore, "missing" of the first wiring and the via hole provided on the first wiring is allowed, so that the first wiring and the via hole can be miniaturized.
  • the second wiring made of Cu as the main material, the via wiring on the second wiring, and the third wiring have a buried wiring structure, and they are formed by the plating method.
  • the process cost can be reduced.
  • the plating method does not require a vacuum device as used in normal semiconductor processes, and is concerned about safety such as high voltage, high temperature, and toxic gas.
  • the chemicals used are also less expensive than conventional semiconductor process gases. Therefore, even if Cu wiring can be formed by sputtering or CVD, the plating method is overwhelmingly advantageous in terms of cost.
  • a buried wiring forming technique using CMP is applied to the formation of the first wiring made of A1.
  • a film (104) is formed.
  • This interlayer insulating film (104) has a thickness of 300 nm, and is made of a silicon oxide film Si02 formed by a plasma CVD method using ortho-ethyl silicate Si (OC 2 H 5 ) 4 as a source gas.
  • a wiring pattern is formed by a resist (not shown) on the inter-layer insulating film (104) by a photolithography technique.
  • the Si02 film (104) is etched by a dry etching technique using the resist as a mask.
  • the wiring pattern (wiring forming groove) is transferred to the interlayer insulating film.
  • the above-mentioned resist is removed.
  • the semiconductor substrate is also used in the second embodiment.
  • a semiconductor element (elements) constituting a circuit a CM0S transistor composed of a pair of transistors of a P-channel MISFET (PMOS) and an N-channel MISFET (NMOS) is used. A plurality is formed.
  • plugs such as polycrystalline silicon or tungsten are connected to the source / drain regions of these CMOS transistors through contact through holes provided in the Si02 film (102). I have.
  • a conductor layer (103a) is deposited on the interlayer insulating film (104) on which the wiring pattern (wiring forming groove) is formed. This conductor layer
  • (103a) is a stack of 30 nm of Ti to improve the adhesion to the Si02 film, 70 nm of TiN as a barrier layer, and 300 nm of Al-0.5Cu with Al as the main wiring material, in order from the bottom. Consists of a membrane. Then, the conductor layer is reflowed by annealing at 500 ° C. and buried in the wiring forming groove.
  • the unnecessary conductor layer on the interlayer insulating film (104) is polished by the CMP method so that the first wiring (103) is formed in the wiring forming groove of the interlayer insulating film (104). Is buried.
  • a via hole (106) is formed in the interlayer insulating film (105) by photolithography.
  • an interlayer insulating film (105) having a thickness of 800 nm is formed on the first wiring (103). Similar to the interlayer insulation Enmaku (105) the interlayer insulating film (104), the orthosilicate Echiruesute Le Si (0C 2 H 5) 4 as a source gas, is formed by a plasma CVD method Made of silicon oxide film Si02. Subsequently, as in the step (c) of the first embodiment, via holes (106) are formed in the interlayer insulating film (105) by photolithography.
  • via wiring (107) is formed in the via hole (106).
  • the via wiring (107) is formed for the same reason and in the same method as in the step (d) of the first embodiment. That is, the material as the via wiring (10 ends) for electrically connecting the first wiring (oral wiring) made of Cu and the second wiring (global wiring) made of Cu can be avoided.
  • a high melting point metal such as
  • a 100 nm SiN film (108) is formed on the entire surface of the interlayer insulating film (105) on which the via wiring (107) is formed by plasma CVD, and a Si02 film is formed on the SiN film (108).
  • a film (109) is deposited to a thickness of 300 nm to form an interlayer insulating film.
  • a wiring pattern is formed by a resist (not shown) on the interlayer insulating film (108, 109) by a photolithography technique. Next, using the above resist as a mask, dry etching
  • the etching gas is controlled so that the selection ratio between the two is sufficiently large so that the Si02 film is etched and the SiN film is not etched. For this reason, the lower SiN film (108) acts as an etching stopper. That is, the etching of the Si02 film (109) stops at the surface of the SiN film (108). Since the SiN film (108) becomes an etching stopper, the lower interlayer insulating film (105) is not etched. Subsequently, the etching gas is switched and the wiring is formed by etching the SiN film (108). The pattern is transferred to an interlayer insulating film to form a wiring forming groove (wiring groove), and then the above-mentioned resist is removed.
  • a second wiring (109) is formed in a wiring forming groove (wiring groove) formed in the interlayer insulating film (108, 109).
  • nm of Ti and 70 nm of TiN are sequentially formed as an adhesive layer on the main surface of the semiconductor substrate on which the wiring grooves are formed by the Spack method.
  • a Cu film is formed to a thickness of 50 nm on the TiN as a seed film by a sputtering method.
  • a 250 nm thick Cu film is formed on the Cu film by an electrolytic plating method.
  • the Cu film and the adhesive layer in the flat portion are polished and removed by the CMP method to form a second wiring (110).
  • the Cu electroplating is performed using a 0.3 mol I1 copper sulfate (CuS04) solution as a plating solution, similarly to the step (f) of the first embodiment.
  • the thickness of the formed Cu film is controlled by the masking time.
  • an interlayer insulating film (111, 112) is formed on the interlayer insulating film (108, 109) in which the second wiring (110) is embedded, and the interlayer insulating film (111, 112) is formed.
  • a via hole (113) is formed by ordinary photolithography technology. This step is achieved by a method similar to step (e) of the first embodiment.
  • via wiring (114) is formed in the via hole (113).
  • Ti 30 nm and TiN 70 nm are formed as an adhesive layer by a sputtering method on the entire surface of the interlayer insulating film (111, 112) in which the via hole (113) is formed.
  • a Cu film was formed on TiN as a seed film by sputtering. 50 nm is formed.
  • a 250 nm Cu film is further formed on the Cu film by an electrolytic plating method.
  • the thickness of the conductor film (Ti film / TiN film / sputter Cu film / Cu plating film) for forming via wiring is thinner (400M) than the depth (900nm) of the via hole (113).
  • an interlayer insulating film (115, 116) is formed on the interlayer insulating film (111, 112) in which the second wiring (114) is embedded, and the interlayer insulating film (115, 116) is formed.
  • a wiring groove is formed by a normal photolithography technique, and then the resist is removed. This step is achieved by a method similar to step (i) of the first embodiment.
  • a third wiring (117) is formed in a wiring groove formed in the interlayer insulating film (115, 116). This step is achieved by a method similar to step (g) of the second embodiment.
  • the first wiring is formed by the embedded wiring forming technique
  • the first embodiment (the first wiring is usually The formation of a TiN film as an anti-reflection layer, which is required by photolithography, is not required.
  • the contact resistance between the via wiring and the second wiring connected to the via wiring is reduced.
  • the method of manufacturing a semiconductor integrated circuit device includes the following steps (f) to (1) following the steps (a) to (e) of the second embodiment. Is executed.
  • the Si02 film (105) is polished by the CMP method, and the via wiring (107) is formed. 107) is projected.
  • the protrusion of the via wiring (107) is formed at a height of, for example, 50 nm.
  • an interlayer insulating film (108, 109) is formed on the interlayer insulating film (105) according to the step (f) of the second embodiment. Then, a wiring forming groove (wiring groove) having a predetermined pattern is formed in the interlayer insulating film (108, 109).
  • the layer A second wiring (109) is formed in a wiring forming groove (wiring groove) formed in the inter-insulating film (108, 109).
  • the second wiring (109) is formed by a CMP method. Therefore, the surface of the second wiring (109) is flattened, and the protrusion of the via wiring (107) does not appear on the surface of the second wiring (109).
  • the interlayer insulating film (111, 112) is formed on the interlayer insulating film (108, 109) in which the second wiring (110) is embedded. ) Is formed, and a via hole (113) is formed in the interlayer insulating film (111, 112) by ordinary photolithography.
  • a via wiring (114) made of Cu is formed in the via hole (113) according to the step (i) of the second embodiment.
  • the interlayer insulating film (111, 112) is polished by a CMP method to project the via wiring (114).
  • the protrusion of the via wiring (114) is formed at a height of, for example, 10.
  • the Cu that composes the via wiring (114) is softer than W, so it is removed during polishing of the interlayer insulating film (111, 112).
  • the surface of the via wiring (114) has a convex shape of about 10 nm. If so, the purpose of reducing contact resistance will be achieved.
  • an interlayer insulating film (115, 116) is formed on the interlayer insulating film (111, 112) according to the step (j) of the second embodiment. Then, a wiring forming groove (wiring groove) having a predetermined pattern is formed in the interlayer insulating film (115, 116).
  • a third wiring (117) is formed in a wiring groove formed in the interlayer insulating film (115, 116) according to the step (k) of the second embodiment.
  • the first wiring is formed by the buried wiring forming technique as in the second embodiment, the first wiring is formed by the ordinary photolithography technique. It is not necessary to form a required TiN film as an antireflection layer.
  • step (f) after the via wiring (107) is formed by the CMP method, the Si02 film (105) is polished by the CMP method, and the first via wiring (107) is projected. I have. That is, the side surface of the first via wiring (107) is exposed to increase the surface area of the wiring. Therefore, the contact area between the first via wiring (107) and the second wiring (110) is increased as compared with the case of the second embodiment, and the contact resistance can be reduced.
  • the second via wiring (114) is projected for the same purpose. Therefore, the contact area between the first via wiring (114) and the third wiring (117) is increased as compared with the case of the second embodiment, and the contact resistance can be reduced.
  • the third embodiment has at least two layers on the semiconductor substrate.
  • a semiconductor integrated circuit device having a multilayer wiring having upper Cu wiring and via wiring connecting between respective wiring layers, wherein at least one Cu wiring (second wiring 110) and lower wiring (first wiring) are provided. 103), the upper surface of the via wiring (107) is above the bottom surface (the contact surface with the inter-layer insulating film 105) of the Cu wiring excluding the connection region with the via wiring.
  • FIGS. 29 to 35 A method of manufacturing a semiconductor integrated circuit device according to a fourth embodiment of the present invention will be described with reference to FIGS. 29 to 35.
  • the fourth embodiment reduces the wiring (plug) resistance by reducing the height of the first via wiring (plug) made of W in particular.
  • the following steps (f) to (1) are performed.
  • the via wiring (107) made of W shown in FIG. 15 is excessively polished by the CMP method. Therefore, the main surface of the polished via wiring (107) is lower than the surface of the interlayer insulating film (105) as shown in FIG.
  • the step of the via wiring (107) has, for example, 10 nm.
  • an interlayer insulating film (108, 109) is formed on the interlayer insulating film (105) according to the step (f) of the second embodiment. Then, a wiring forming groove (wiring groove) having a predetermined pattern is formed in the interlayer insulating film (108, 109). P
  • the second wiring (wiring groove) is formed in the wiring forming groove (wiring groove) formed in the interlayer insulating film (108, 109). 109).
  • the second wiring (109) is formed by a CMP method. Therefore, the surface of the second wiring (109) is flattened, and the recess of the via wiring (107) does not appear on the surface of the second wiring (109).
  • the interlayer insulating film (111, 112) is formed on the interlayer insulating film (108, 109) in which the second wiring (110) is embedded. ) Is formed, and a via hole (113) is formed in the interlayer insulating film (111, 112) by ordinary photolithography.
  • a via wiring (114) made of Cu is formed in the via hole (113) according to the step (i) of the second embodiment.
  • the via wiring (114) is CMP-processed so that no step is formed between the surface of the interlayer insulating film (111, 112) and the surface of the via wiring (114).
  • an interlayer insulating film (115, 116) is formed on the interlayer insulating film (111, 112) according to the step (j) of the second embodiment. Then, a wiring forming groove (wiring groove) having a predetermined pattern is formed in the interlayer insulating film (115, 116).
  • a third wiring (117) is formed in a wiring groove formed in the interlayer insulating film (115, 116) according to the step (k) of the second embodiment. Also in the fourth embodiment, when an upper layer Cu wiring is further stacked on the third wiring (117), the steps (h) to (k) of this embodiment are repeatedly performed.
  • the first wiring is formed by a buried wiring forming technique. Therefore, the first wiring is formed (the first wiring is formed by a normal photolithography technique). Thus, the formation of a TiN film as an anti-reflection layer, which is required in the above, becomes unnecessary.
  • step (f) the via wiring (107) is excessively polished by the CMP method. Therefore, the main surface of the first via wiring (107) made of polished W is lower than the surface of the interlayer insulating film (105) as shown in FIG. Therefore, by reducing the height of the first via wiring (plug) made of W, the resistance of the wiring (plug) can be reduced.
  • the fourth embodiment is a semiconductor integrated circuit device having at least two or more Cu wiring layers and a via wiring connecting each wiring layer on a semiconductor substrate, and at least one Cu wiring (The upper surface of the via wiring (107) connecting the second wiring 110) and the lower wiring (first wiring 103) is formed on the bottom surface of the Cu wiring excluding the connection region with the via wiring (interlayer insulating film 105 and Below the contact surface).
  • a method of manufacturing a semiconductor integrated circuit device according to a fifth embodiment of the present invention will be described with reference to FIG.
  • the fifth embodiment reduces the connection resistance between the first wiring and the via wiring connected to the first wiring. I have.
  • a step (d ′) described below is added following the steps (a) to (d) of the second embodiment. .
  • the first wiring (103) of the A1-0.5% Cu layer exposed in the via hole (106) is dry-etched.
  • a groove is provided.
  • the groove (103) is self-aligned with the via hole (106).
  • the depth of the groove is arbitrary, for example, about 50 mn.
  • the first wiring is formed by a buried wiring forming technique, so that the first wiring (the first wiring is a conventional photolithography technique) It is not necessary to form a TiN film as an anti-reflection layer, which is required in the step.
  • the first wiring (103) is provided with a groove by dry etching. Therefore, the first via wiring (107) and the second wiring (110) are in contact with the groove bottom surface and the groove side wall surface, and the contact area between them increases as compared with the case of the second embodiment. Therefore, the contact resistance can be reduced.
  • a metal other than Cu is used as a main component.
  • FIG. 37 is a cross-sectional view of the semiconductor integrated circuit device showing a state where the semiconductor element (M0S) is formed on the semiconductor base.
  • an element isolation region GI is selectively formed on the main surface of the semiconductor substrate (101).
  • the element isolation region GI is formed by forming a groove on the substrate surface and burying an insulating film in the groove.
  • This element isolation region GI is also referred to as trench isolation.
  • the MOS transistor (M0S) is composed of a gate electrode having a laminated structure of polycrystalline silicon and a metal formed thereon as a gate electrode, and a side wall spacer is provided on the side wall. Have been. Then, a plug (for example, W) is provided in the interlayer insulating film (102). This plug is connected to a source drain region (not shown) provided in the semiconductor substrate (101).
  • the wiring and the interlayer insulating film on the interlayer insulating film (102) are formed, for example, according to the first embodiment.
  • the present invention is an effective technique when applied to a semiconductor integrated circuit device having a high-speed logic circuit requiring fine wiring and high speed operation. More specifically, the present invention relates to an LSI in which a memory (DRAM, SRAM, or EEPROM, or a combination thereof) and a high-speed logic circuit are mounted on a single semiconductor substrate. This is effective for realizing an LSI in which high-speed logic circuits are mounted on a single semiconductor substrate.
  • a memory DRAM, SRAM, or EEPROM, or a combination thereof

Abstract

A semiconductor integrated circuit device which can operate at a high speed, has a fine wiring pattern, and is improved in reliability. In the circuit device, a semiconductor element is provided in a semiconductor substrate (101), and first wiring (103) made mainly of aluminum is provided on the main surface of the substrate (101) as main surface-side local wiring, and then, second wiring (110) made mainly of copper is provided on the first wiring (103) as global wiring. Via wiring (107) which is brought into contact with the first wiring (103) is made of a conductive material other than Cu.

Description

明 細 書 半導体集積回路装置およびその製造方法 技術分野  Description: Semiconductor integrated circuit device and method of manufacturing the same
本発明は半導体技術分野、 特に高速動作可能な半導体集積回路装 置およびその製造方法に関する。  The present invention relates to the field of semiconductor technology, and more particularly to a semiconductor integrated circuit device capable of operating at high speed and a method of manufacturing the same.
背景技術 Background art
システム L S I において、 高速化、 低消費電力化に適合した微細 配線技術の開発が望まれている。  In system LSI, development of fine wiring technology suitable for high speed and low power consumption is desired.
微細配線技術の傾向としては、 アルミ二ユウム、 アルミ二ユウ厶 合金の材料に代わり銅系の材料の適用が進んできている。 銅系配線 の場合、 アルミ二ユウム系配線に比べて、 比抵抗が小さ く、 エレク トロマイグレーショ ン(electromigration)耐性が強く、 そして微細 パターンでの許容電流密度も大きく採れる効果を奏する。  As for the trend of fine wiring technology, the use of copper-based materials instead of aluminum-based aluminum and aluminum-based alloy materials is increasing. Copper-based interconnects have lower specific resistance, higher electromigration resistance and higher allowable current density in fine patterns than aluminum-based interconnects.
銅(Cu)系配線技術の検討に先立つて、 その銅系配線技術に関する 公知技術を調査した。 この結果、 以下の公知技術を発見した。  Prior to the study of copper (Cu) -based wiring technology, we investigated known technologies related to the copper-based wiring technology. As a result, the following known technology was discovered.
特開平 8- 78410号公報には、 Cu配線が耐酸化性に劣ることを問題 にし、 その Cu配線が露出しないようにその表面を耐酸化性導電膜 (具体的には、 AlSiCuの他、 Al, Als i, Au, Ag或いは Agを主体とした 合金) で覆う技術が開示されている。  Japanese Patent Application Laid-Open No. 8-78410 discloses a problem that the Cu wiring is inferior in oxidation resistance, and oxidizes the surface of the Cu wiring so that the Cu wiring is not exposed. , Alsi, Au, Ag or alloys mainly composed of Ag) are disclosed.
特開平 9 -55429号公報には、 層間絶縁膜を低誘電率化して配線間 容量を低減させた多層配線構造を少ない工程数で製造できるように することを目的とし、 層間絶縁膜として感光性ポリイ ミ ドの如き低 誘電率材料を用い、 その層間絶縁膜に配線溝を設け、 その溝に埋込 み配線を形成した技術が開示されている。 かかる公報によれば、 下 地配線として、 半導体基板上にシリ コン酸化膜の溝の中に埋め込みJapanese Patent Application Laid-Open No. 9-55429 discloses a method for manufacturing a multilayer wiring structure in which the interlayer insulating film has a low dielectric constant to reduce the capacitance between wirings in a small number of steps. A wiring groove is formed in the interlayer insulating film using a low dielectric constant material such as polyimide, and embedded in the groove. There is disclosed a technology in which only wiring is formed. According to this publication, the underlying wiring is buried in a groove of a silicon oxide film on a semiconductor substrate.
A 1配線を形成し、 その A1配線上の層間絶縁膜 (感光性ポリイ ミ ド 膜) 溝に第 1の埋め込み 配線、 第 2の埋め込み Cu配線を形成す ることが開示されている。 It is disclosed that an A1 wiring is formed, and a first buried wiring and a second buried Cu wiring are formed in an interlayer insulating film (photosensitive polyimide film) groove on the A1 wiring.
特開平 5 - 206065号公報には、 Cu配線形成にあたり無電解堆積プ 口セスを用いて、所望の領域上にのみ Cuを選択的に堆積することが 開示されている。 より具体的には、 パラジウムシリサイ ドを触媒と して特定表面のみに無電解 Cuメ ツキして Cu配線を形成することが 開示されている。  JP-A-5-206065 discloses that Cu is selectively deposited only on a desired region by using an electroless deposition process in forming a Cu wiring. More specifically, it discloses that a Cu wiring is formed by electroless Cu plating only on a specific surface using palladium silicide as a catalyst.
特開平 6 - 29246号公報には、 誘電体基板内の比較的深く且つ狭い 卜レンチ中に金属を無電解メ ツキする Cu配線技術が開示されてい る。  Japanese Patent Application Laid-Open No. 6-29246 discloses a Cu wiring technique in which metal is electrolessly plated in a relatively deep and narrow trench in a dielectric substrate.
本願発明者等の検討によれば、 Cu配線を用いる多層配線では信頼 性、 コス 卜等の面から、 1層目の配線は A1配線とし、 Cu配線を 2層 目より上に用いることが有効であり、 さらに、 Cu配線の形成法とし ては、 スパッ夕法、 CVD法に比べ、 埋め込み性及びコス ト面で有利 であるメ ツキ法を採用するとの結論に到つた。 その経緯を以下に述 ベる。  According to the study by the inventors of the present invention, it is effective to use the A1 wiring for the first layer wiring and the Cu wiring above the second layer from the viewpoint of reliability, cost, etc. in the multilayer wiring using Cu wiring. In addition, they concluded that a plating method that is more advantageous in terms of embedding and cost than the sputtering method and the CVD method will be used as the method for forming the Cu wiring. The details are described below.
—般に、 Cu配線プロセスは A1配線プロセスに比べ高コス トであ り、 多層配線においては用途により A1配線層と Cu 配線層を使い分 ける必要があるものと考えられる。 特に複数の半導体素子  In general, the Cu wiring process is more expensive than the A1 wiring process, and it is considered necessary to use the A1 wiring layer and the Cu wiring layer separately for multi-layer wiring depending on the application. Especially multiple semiconductor devices
(elements )に最も近く、 素子間を接続する第 1層目の配線 (いわゆ るローカル配線) は、 配線長が短く低抵抗化するメ リ ッ トが小さい こと、半導体素子に対する Cu汚染を防止すること、等の理由から A1 配線とし、 第 2層目以上の配線 ('いわゆるグローバル配線) を Cu配 線とすることが有効と考えられる。 The first layer wiring (so-called local wiring), which is closest to the (elements) and connects the elements, has a short wiring length and low resistance, and prevents Cu contamination of semiconductor elements. A1 It is considered effective to use Cu wiring for the wiring on the second layer or higher (so-called global wiring).
公知の A1配線と Cu配線との使い分け技術については、 先に述べ た特開平 8-78410号公報および特開平 9 - 55429号公報に開示されて いる技術がある。  Known techniques for selectively using the A1 wiring and the Cu wiring include the techniques disclosed in the aforementioned Japanese Patent Application Laid-Open Nos. 8-78410 and 9-55429.
しかしながら、 前者 (特開平 8-78410号公報) は、 Cu配線上に A1等の配線を設ける技術を開示するものであり、 半導体素子に最も 近い 1層目配線に A1を適用する考えはない。 すなわち、 この公報に 開示の発明では、 パッ ド領域にワイヤ一とのボンディ ング性を良く するために、 Cu配線上部を AlSiCuの他、 Al, Als i, Au, Ag或いは Ag を主体とした合金より成る耐酸化性導電膜で覆う という ものである これにより、ボンディングの際に Cu配線の酸化を抑制するという も のである。 つまり、 この公報に開示の発明は、 Cu配線の上部表面を 問題にしたものであり、 Cu配線の下層配線として Cuとは別の配線 材料を適用する考えはない。  However, the former (Japanese Patent Application Laid-Open No. 8-78410) discloses a technique of providing a wiring such as A1 on a Cu wiring, and there is no idea to apply A1 to a first-layer wiring closest to a semiconductor element. That is, in the invention disclosed in this publication, in order to improve the bonding property with the wire in the pad region, the upper part of the Cu wiring is made of Al, Alsi, Au, Ag or an alloy mainly composed of Ag in addition to AlSiCu. In this way, oxidation of the Cu wiring is suppressed during bonding. That is, the invention disclosed in this publication addresses the problem of the upper surface of the Cu wiring, and there is no idea to apply a wiring material different from Cu as the lower wiring of the Cu wiring.
一方、 後者 (特開平 9- 55429号公報) には、 A1配線上に Cu配 線を設けた技術が開示されている。 この公報に開示された実施例 4 によれば、 ローカル配線形成は、 シリ コン酸化膜に縦接続孔 (スル 一ホール) および配線溝を形成した後、 高温スパッ夕法による A1 の成膜、そして化学機械研磨法によるシリコン酸化膜上の A1膜の除 去により、縦接続配線および埋め込み A1配線を形成することで達成 される。 そしてさらに、 このローカル配線上のグローバル配線形成 は、 低誘電率樹脂 (具体的にはベンゾシクロブテン) より成る層間 絶縁膜に配線溝と縦接続孔を形成し、 C V D法による Cu膜の成長と 化学機械研磨法による低誘電率樹脂膜上の Cuの研磨により、縦接続 配線および埋め込み Cii配線を形成することで達成される。 On the other hand, the latter (JP-A-9-55429) discloses a technique in which a Cu wiring is provided on an A1 wiring. According to the fourth embodiment disclosed in this publication, local wiring is formed by forming a vertical connection hole (through hole) and a wiring groove in a silicon oxide film, forming a film of A1 by a high-temperature sputtering method, and This is achieved by forming vertical connection wiring and embedded A1 wiring by removing the A1 film on the silicon oxide film by chemical mechanical polishing. In addition, the global wiring on the local wiring is formed by forming wiring grooves and vertical connection holes in an interlayer insulating film made of a low dielectric constant resin (specifically, benzocyclobutene). Vertical connection by polishing Cu on low dielectric constant resin film by chemical mechanical polishing method This is achieved by forming wiring and embedded Cii wiring.
この公報に開示された技術では、下層 A1配線および via配線を含 む上層 Cu配線の両者を溝埋め込み配線技術で形成する方法を提供 するにとどまっている。  The technique disclosed in this publication merely provides a method for forming both the lower layer A1 wiring and the upper Cu wiring including the via wiring by the trench filling wiring technique.
また、 従来、 Cu配線の具体的な形成方法については、 スパック法 あるいは上記の特開平 9 -55429号公報に開示のような CVD法が考え られている。  Conventionally, as a specific method of forming a Cu wiring, a Spack method or a CVD method as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 9-55429 has been considered.
しかし、 スパッ夕法では、 深さが 400nm( 0. 4um)または 400nm以上 で、 0. 5um以下の via孔の径あるいは 0. 35um以下の幅を有する配線 形成用溝に埋込むことが困難であった。 これは、溝内に Cu膜のォー バーハングによる空洞が形成されるためである。 したがって、 配線 の微細化には限界がある。 また、 CVD法では、 高価な有機 化合物 ガスを使用するため、 プロセスコス トを安くすることが困難である。 以上の理由から、微細 Cu配線、特に多層配線にはメ ツキ法を用い ることが有効である。  However, in the sputter method, it is difficult to embed in a wiring formation groove having a depth of 400 nm (0.4 μm) or 400 nm or more and a via hole diameter of 0.5 μm or less or a width of 0.35 μm or less. there were. This is because a cavity is formed in the trench due to the overhang of the Cu film. Therefore, there is a limit to miniaturization of wiring. In addition, the CVD method uses an expensive organic compound gas, so it is difficult to reduce the process cost. For the above reasons, it is effective to use the plating method for fine Cu wiring, especially for multilayer wiring.
メ ッキ技術を用いた Cu配線の形成法自体は、 先に述べた特開平 5 -206065号公報に記載された、パラジゥ厶シリサイ ドを触媒として 特定表面のみに無電解 Cuメ ツキして Cu配線を形成する方法や、 特 開平 6 - 29246号公報に記載に記載された、 深く狭い卜レンチ内に無 電解メ ツキにより Cu配線を形成する方法等がある。  The method of forming the Cu wiring itself using the plating technique is based on the electroless Cu plating only on a specific surface using a palladium silicide as a catalyst described in JP-A-5-206065. There is a method of forming a wiring, a method of forming a Cu wiring in a deep and narrow wrench by electroless plating, as described in JP-A-6-29246.
しかしながら、これらの公報には A1配線層との組み合わせは何等 述べられておらず、また A1配線層と組み合わせる必要性も認められ ない。  However, these publications do not mention any combination with the A1 wiring layer, and the necessity of combining with the A1 wiring layer is not recognized.
発明者等は、メ ツキ法による Cu膜形成では従来想定していなかつ た課題が存在することを明らかにした。 すなわち、 下層配線を Al (または A1合金) とし、 その下層配線 上に Cuメ ッキ法でビア(via )配線を形成しょう とするとその A1配線 が腐食してしまう という問題である。 The inventors have clarified that there is a problem that has not been assumed in the past when forming a Cu film by the plating method. In other words, if the lower wiring is made of Al (or A1 alloy) and a via wiring is to be formed on the lower wiring by the Cu plating method, the A1 wiring will be corroded.
無電解 Cuメ ツキによる Cu膜形成では、 強アル力リ水溶液が用い られる。 また、 電解メ ツキによる Cu膜形成では、 形成される Cuの 膜質制御のため、メ ツキ液の pHを中性付近に固定することは困難で あ  For forming a Cu film by electroless Cu plating, a strong aqueous solution is used. In addition, when a Cu film is formed by electrolytic plating, it is difficult to fix the pH of the plating solution to around neutral because of controlling the quality of the formed Cu film.
ところが、 A1は酸性でもアル力 リ性でも容易に腐食する材料であ る。 このため、 Cuメ ツキの際には A1腐食防止策が必須である。 し かし、 実際には、 "目はずれ" を許容するような微細配線では A 1 表面を完全に化学的に安定な導電性膜で覆い、 腐食の可能性を全く なくすことは不可能である。特に、下層配線と Cuメ ツキ膜との接着 性を良く しょう とすると、 下地の導電性膜をエッチングしながら Cu メ ツキを同時進行させる工程が必要となる。  However, A1 is a material that easily corrodes in both acidic and alkaline conditions. Therefore, in the case of Cu plating, A1 corrosion prevention measures are indispensable. However, in practice, it is impossible to completely cover the A 1 surface with a chemically stable conductive film and eliminate the possibility of corrosion at all with fine wiring that allows “missing” . In particular, in order to improve the adhesion between the lower wiring and the Cu plating film, a step of simultaneously performing Cu plating while etching the underlying conductive film is required.
"目はずれ" による A1腐食の問題点をさらに詳しく説明する。 下層配線を構成する A1層もしくは W層上に Cuメ ツキを実施する 場合には、 それらの層上を TiN等のアルカリ雰囲気での溶解速度の 遅い材料で覆い、 反応を防止する必要がある。 ところが、 このよう な TiN膜上に直接電解メ ツキで Cu膜を形成することは困難である。 このため、先に無電解メ ツキにより Cuシ一 ド(seed)層を形成する必 要がある。 しかし、 無電解メ ッキ液は強アル力リ溶液であり、 A1や といった通常配線プロセスで使用される材料と反応し容易に溶解 する。 そして、 たとえ TiN等のアルカリ雰囲気での溶解速度の遅い 材料で覆い、 その下層配線に反応を防止する手段が施されたとして も、 配線の微細化が進行するとその反応を防止する効果が十分発揮 できなくなるという事態が発生する。 The problem of A1 corrosion due to "missing eyes" will be explained in more detail. When performing Cu plating on the A1 layer or the W layer that constitutes the lower wiring, it is necessary to cover those layers with a material such as TiN, which dissolves slowly in an alkaline atmosphere, to prevent the reaction. However, it is difficult to form a Cu film directly on such a TiN film by electrolytic plating. For this reason, it is necessary to first form a Cu seed layer by electroless plating. However, the electroless plating solution is a strong solution and reacts easily with materials such as A1 used in normal wiring processes to dissolve. And even if it is covered with a material that dissolves slowly in an alkaline atmosphere, such as TiN, and measures are taken to prevent the reaction in the underlying wiring, the effect of preventing the reaction is fully exhibited as the wiring becomes finer. A situation occurs in which it becomes impossible.
すなわち、 その事態は第 3 7図に示す配線構造の場合に発生する c 第 3 7図は、絶縁膜(126 )に設けられた via孔(127 )に Cu無電解メ ツキ膜形成しょう とする配線接続を示す断面図である。特に、 図は、 Cu無電解メ ツキ膜形成に先立って、 Cu無電解メ ツキ用の反応防止バ リャ TiN層(129)が via孔(127)に形成された状態を示す。 That is, the situation occurs in the case of the wiring structure shown in FIG. 37. c In FIG. 37, it is attempted to form a Cu electroless plating film in the via hole (127) provided in the insulating film (126). It is sectional drawing which shows wiring connection. In particular, the figure shows a state in which a reaction prevention barrier TiN layer (129) for Cu electroless plating has been formed in the via hole (127) prior to the formation of the Cu electroless plating film.
第 3 7図において、 半導体基板(121 )上には、 酸化膜 (図示せず) を介して TiN膜 (122 ) 、 A卜 0. 5 % Cu膜 (123 ) 、 TiN膜 (124 ) の積 層された A1配線 (125 ) がドライエツチング加工により形成されて いる。 そして、 A1配線(125 )上に絶縁膜 (126 ) が形成されている。 微細配線の場合、その A1配線表面の via領域に十分なスペースが なく、 via孔(127)が完全に下層配線上に重ならない "目はずれ" の 状態を許容せざるを得ない。 "目はずれ" があると via孔形成時の オーバーエッチングにより配線側壁に容易に空孔 (1 28 ) が発生し、 この側壁が露出する。 しかしながら、 この側壁をカバレジ性良く覆 えるバリャ膜形成技術は確立されていないため、 次のメ ッキエ程に 大きな問題を残すのである。 In FIG. 37, on a semiconductor substrate (121), a TiN film (122), a 0.5% Cu film (123), and a TiN film (124) are stacked via an oxide film (not shown). The layered A1 wiring (125) is formed by dry etching. Then, an insulating film (126) is formed on the A1 wiring (125). In the case of fine wiring, there is not enough space in the via area on the A1 wiring surface, and it is inevitable to allow "missing eyes" where the via hole (127) does not completely overlap the lower wiring. If there is "missing eyes", holes (128 ) are easily generated in the wiring side walls due to overetching when forming via holes, and the side walls are exposed. However, no barrier film formation technology has been established to cover these sidewalls with good coverage, leaving a major problem as in the next MECIE.
すなわち、 Cu無電解メ ツキを実施しょう とすると、 この側壁空孔 にメ ツキ液が侵入し、 A1配線が溶解し不良を発生させるのである。 この状況は W配線であっても変わらない。 また、 Cu無電解メ ツキほ ど深刻でないものの、 スパッ夕あるいは CVD-Cu膜の場合でも、側壁 を通じて A1と Cuが反応し、 高抵抗の金属間化合物を形成し、 配線 抵抗を上昇させる要因となるため A1配線の場合には問題がある。 以上の点から A1配線上へ Cuメ ッキする場合は、 A1配線表面が他 の導電性膜で覆われていたとしても腐食の発生を完全には抑えきれ ない。 In other words, when the Cu electroless plating is performed, the plating liquid penetrates into the side wall vacancies, and the A1 wiring is dissolved to cause a defect. This situation does not change even with W wiring. Also, although not as severe as Cu electroless plating, even in the case of sputter or CVD-Cu films, A1 and Cu react through the sidewalls to form high-resistance intermetallic compounds, which may increase wiring resistance. Therefore, there is a problem in the case of A1 wiring. From the above points, when Cu plating on A1 wiring, corrosion can be completely suppressed even if the A1 wiring surface is covered with another conductive film. Absent.
発明の開示 Disclosure of the invention
本発明の目的は、 高速動作可能な微細配線パターンを有し、 かつ 信頼度を向上させた半導体集積回路装置を提供することにある。 本発明の他の目的は、 高速動作可能な微細配線パター ンを有し、 かつ信頼度を向上させた半導体集積回路装置の製造方法を提供する とにめ^ > 0 An object of the present invention is to provide a semiconductor integrated circuit device having a fine wiring pattern capable of operating at high speed and having improved reliability. Another object of the present invention, Tonime ^> 0 to provide a method of manufacturing a high-speed operable has a fine wiring pattern, and a semiconductor integrated circuit device having improved reliability
本発明の他の目的は、 高速動作可能な微細配線パターンを有する 半導体集積回路装置を低コス 卜で実現させることにある。  Another object of the present invention is to realize a semiconductor integrated circuit device having a fine wiring pattern capable of operating at high speed at low cost.
本発明の他の目的は、 アルミニウム(A1 )を主要材料とした配線と 銅(Cu)を主要材料とした配線とから成る多層配線構造を有する半導 体集積回路装置を提供することにある。  Another object of the present invention is to provide a semiconductor integrated circuit device having a multilayer wiring structure including a wiring mainly composed of aluminum (A1) and a wiring mainly composed of copper (Cu).
本発明の代表的な構成は、 半導体基体主面上に第 1の配線を有し、 上記第 1の配線を覆うように第 1の層間絶縁膜を有し、 上記第 1の 層間絶縁膜に設けられたビア孔を介して上記第 1の配線の一部に接 続された第 1のビア配線を有し、 上記第 1の層間絶縁膜上に第 2の 層間絶縁膜に設けられた配線用溝内に埋め込まれ、 上記第 1のビア 配線に接続された、 上記ビア配線および上記第 1の配線とは異なる 材料から成る第 2の配線を有することを特徴とする。  A typical configuration of the present invention has a first wiring on a main surface of a semiconductor substrate, a first interlayer insulating film so as to cover the first wiring, and a first interlayer insulating film formed on the first interlayer insulating film. A first via wiring connected to a part of the first wiring via the provided via hole, a wiring provided in the second interlayer insulating film on the first interlayer insulating film; And a second wiring made of a material different from that of the via wiring and the first wiring, the second wiring being embedded in the groove for use and connected to the first via wiring.
本発明のより具体的な構成は、 半導体基体内に半導体素子が設け られ、 上記半導体基体主面上にその基体主面側に近いローカル配線 としてアルミ二ユウムを主要材料とした第 1の配線が設けられ、 そ の第 1の配線上にグローバル配線として銅を主要材料とした第 2の 配線が設けられ、第 1の配線にコンタク 卜される via配線は Cuとは 別の導体材料から成ることを特徴とするものである。 そして、 上記第 2配線上に形成する via配線及び第 3の配線は A1 に比べて固有抵抗の低い Cuを主成分とする導体材料から成る。 In a more specific configuration of the present invention, a semiconductor element is provided in a semiconductor substrate, and a first wiring mainly composed of aluminum is provided on the main surface of the semiconductor substrate as a local wiring near the main surface of the substrate. A second wiring made of copper as the main material is provided as a global wiring on the first wiring, and the via wiring connected to the first wiring is made of a conductor material different from Cu It is characterized by the following. The via wiring and the third wiring formed on the second wiring are made of a conductive material mainly composed of Cu having a lower specific resistance than A1.
本発明によれば、半導体素子に対する Cuの汚染を防止することが でき、 そして上層の CU配線 (第 2の配線) は耐マイグレーショ ンに 優れ、 かつ低抵抗であるため速動作可能な微細配線パターンを有し、 かつ信頼度を向上させた半導体集積回路装置が得られる。  According to the present invention, it is possible to prevent contamination of the semiconductor element with Cu, and the CU wiring (second wiring) in the upper layer is excellent in migration resistance and has a low resistance, so that it can be operated at a high speed because of its small size. A semiconductor integrated circuit device having a wiring pattern and having improved reliability can be obtained.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施例に係わる半導体集積回路装置の 製造工程を示す断面図である。  FIG. 1 is a sectional view showing a manufacturing process of a semiconductor integrated circuit device according to a first embodiment of the present invention.
第 2図は、 第 1図に続く半導体集積回路装置の製造工程を示す断 面図である。  FIG. 2 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
第 3図は、 第 2図に続く半導体集積回路装置の製造工程を示す断 面図である。  FIG. 3 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
第 4図は、 第 3図に続く半導体集積回路装置の製造工程を示す断 面図である。  FIG. 4 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
第 5図は、 第 4図に続く半導体集積回路装置の製造工程を示す断 面図である。  FIG. 5 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
第 6図は、 第 5図に続く半導体集積回路装置の製造工程を示す断 面図である。  FIG. 6 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
第 7図は、 第 6図に続く半導体集積回路装置の製造工程を示す断 面図である。  FIG. 7 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
第 8図は、 第 7図に続く半導体集積回路装置の製造工程を示す断 面図である。  FIG. 8 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
第 9図は、 第 8図に続く半導体集積回路装置の製造工程を示す断 面図である。 第 1 0図は、 第 9図に続く半導体集積回路装置の製造工程を示す 断面図である。 FIG. 9 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG. FIG. 10 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
第 1 1図は、 本発明の第 2の実施例に係わる半導体集積回路装置 の製造工程を示す断面図である。  FIG. 11 is a sectional view showing a manufacturing process of a semiconductor integrated circuit device according to a second embodiment of the present invention.
第 1 2図は、 第 1 1図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 12 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
第 1 3図は、 第 1 2図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 13 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
第 1 4図は、 第 1 3図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 14 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
第 1 5図は、 第 1 4図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 15 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
第 1 6図は、 第 1 5図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 16 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
第 1 7図は、 第 1 6図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 17 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
第 1 8図は、 第 1 7図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 18 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
第 1 9図は、 第 1 8図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 19 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
第 2 0図は、 第 1 9図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 20 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG.
第 2 1図は、 第 2 0図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 21 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
第 2 2図は、 本発明の第 3の実施例に係わる半導体集積回路装置 の製造工程を示す断面図である。 FIG. 22 shows a semiconductor integrated circuit device according to a third embodiment of the present invention. FIG. 6 is a cross-sectional view showing a manufacturing process of the second embodiment.
第 2 3図は、 第 2 2図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 23 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
第 2 4図は、 第 2 3図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 24 is a cross-sectional view showing the manufacturing process of the semiconductor integrated circuit device following FIG. 23.
第 2 5図は、 第 2 4図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 25 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 24.
第 2 6図は、 第 2 5図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 26 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 25.
第 2 7図は、 第 2 6図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 27 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG.
第 2 8図は、 第 2 7図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 28 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 27.
第 2 9図は、 本発明の第 4の実施例に係わる半導体集積回路装置 の製造工程を示す断面図である。  FIG. 29 is a cross-sectional view showing a manufacturing process of the semiconductor integrated circuit device according to the fourth embodiment of the present invention.
第 3 0図は、 第 2 9図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 30 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 29.
第 3 1図は、 第 3 0図に続く装置の製造工程を示す断面図である。 第 3 2図は、 第 3 1図に続く装置の製造工程を示す断面図である。 第 3 3図は、 第 3 2図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 31 is a cross-sectional view showing a manufacturing step of the device following FIG. 30. FIG. 32 is a cross-sectional view showing a manufacturing step of the device following FIG. 31. FIG. 33 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 32.
第 3 4図は、 第 3 3図に続く半導体集積回路装置の製造工程を示 す断面図である。  FIG. 34 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. 33.
第 3 5図は、 第 3 4図に続く半導体集積回路装置の製造工程を示 す断面図である。 第 3 6図は、 第 5の実施例に係わる半導体集積回路装置を示す断 面図である。 FIG. 35 is a cross-sectional view showing a manufacturing step of the semiconductor integrated circuit device following FIG. FIG. 36 is a sectional view showing a semiconductor integrated circuit device according to the fifth embodiment.
第 3 7図は、 本発明の第 6の実施例に係わる半導体集積回路装置 を示す断面図である。  FIG. 37 is a sectional view showing a semiconductor integrated circuit device according to a sixth embodiment of the present invention.
第 3 8図は、 本発明者等が問題にした多層配線構造の部分断面図 を示す。  FIG. 38 shows a partial cross-sectional view of a multilayer wiring structure which has been a problem of the present inventors.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面を用いてさらに詳細に説明する。 な お、 実施例を説明するための全図において、 同一機能を有するもの は同一の符号を付し、 その繰り返しの説明は省略する。  Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. In all the drawings for describing the embodiments, those having the same functions are denoted by the same reference numerals, and their repeated description will be omitted.
く第 1の実施例 > First Example>
第 1図乃至第 1 0図を用いて本発明の第 1の実施例である半導体 集積回路装置の製造方法を説明する。  A method for manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention will be described with reference to FIGS.
工程(a)  Step (a)
第 1図に示すように、 最初に主面が C V D - Si02膜もしくは熱酸 化 Si02膜 (102 ) に被われた単結晶 Siから成る半導体基板 ( C Z基 板) (101 ) 上に第 1の配線(103)を形成する。 第 1の配線(103)は下 から順に Si02膜との接着性を良好にするための Ti 30nra、 バリァ層 としての TiN 70nm、 A1を主要配線材料とした Al - 0. 5¾Cu 300nm、 反 射防止層としての TiN 50nmを順にスパッ夕法で形成した積層配線よ り成る。 この第 1の配線(103)は、公知のホ ト リ ソグラフィ一技術に よりパターン形成される。すなわち、スパッ夕法により Si02膜(102 ) 上に堆積した積層導体層上にレジス 卜(photoresis t fi lm)で配線パ ターンを形成し、 ドライエツチング技術によりその積層導体層に転 写し、 その後レジス トを除去し、 第 1の配線 (103 ) を得る。 この第 1の配線(103)は、後で述べる上層配線に比べて配線長は短く、近接 する素子間を接続する配線 (ローカル配線) であり、 例えば 5 0〜 6 0 m程度である。 As shown in Fig. 1, first a semiconductor substrate (CZ substrate) (101) consisting of single-crystal Si covered with a CVD-Si02 film or a thermally oxidized Si02 film (102) The wiring (103) is formed. The first wiring (103) is, in order from the bottom, Ti 30nra to improve adhesion to the Si02 film, TiN 70 nm as the barrier layer, Al-0.5 0Cu 300 nm with A1 as the main wiring material, anti-reflection It is composed of laminated wiring in which TiN 50 nm as a layer is sequentially formed by a sputtering method. The first wiring (103) is patterned by a known photolithography technique. In other words, a wiring pattern is formed on the laminated conductor layer deposited on the Si02 film (102) by the sputtering method using a resist (photoresis t lm), transferred to the laminated conductor layer by a dry etching technique, and then transferred to the laminated conductor layer. Then, the first wiring (103) is obtained. This second The first wiring (103) has a shorter wiring length than an upper wiring described later and is a wiring (local wiring) for connecting adjacent elements, for example, about 50 to 60 m.
なお、図示していないが、半導体基板(101)主面内には回路を構成 する半導体素子(elements)として、 Pチャネル M I S F E T ( PM 〇 S ) と Nチャネル M I S F E T ( N M 0 S ) との一対の 卜ランジ ス夕で構成された C MO S トランジスタが複数形成されている。 こ れらの C M 0 S トランジスタのソース · ドレイ ン領域には、 例えば、 多結晶シリ コンあるいはタ ングステンの如きブラグが Si02膜( 102) に設けられたコンタク ト用スルーホールを介して接続されている。 そして、このプラグに対し、上記第 1の配線(103)が接続されている。 また、半導体基板(101)は、請求の範囲の欄の中では半導体基体と している。 この半導体基体は、 上記半導体基板(101)の他に、 表面に ェピタキシャル層 (例えば、 厚さ 1 um〜 4 um) が形成された半導体 基板、 いわゆるェピタキシャルウェハを含む。  Although not shown, a pair of a P-channel MISFET (PM〇S) and an N-channel MISFET (NM 0 S) is provided in the main surface of the semiconductor substrate (101) as semiconductor elements constituting a circuit. Multiple CMOS transistors composed of transistors are formed. For example, a plug such as polycrystalline silicon or tungsten is connected to the source / drain region of these CM0S transistors through contact through holes provided in the Si02 film (102). I have. The first wiring (103) is connected to this plug. The semiconductor substrate (101) is a semiconductor substrate in the claims. The semiconductor substrate includes, in addition to the semiconductor substrate (101), a semiconductor substrate having a surface on which an epitaxial layer (for example, a thickness of 1 μm to 4 μm) is formed, that is, a so-called epitaxy wafer.
工程(b)  Step (b)
第 2図に示すように、第 1の配線(103)上にプラズマ CVD法で Si02 膜 (104) を UOOnm形成する。 この状態では、 図に示すように、 第 1の配線が形成されていない Si02膜(102)上に堆積された Si02膜 ( 104) 表面は段差 (いわゆる凹部) が形成される。  As shown in FIG. 2, a U02 nm Si02 film (104) is formed on the first wiring (103) by a plasma CVD method. In this state, as shown in the figure, a step (so-called concave portion) is formed on the surface of the Si02 film (104) deposited on the Si02 film (102) where the first wiring is not formed.
工程(c)  Step (c)
化学機械的研磨(Chemical Mechanical Polishing:以下、 CMPと略 記する) 法で、 上記 Si02膜 (104) 表面を研磨平坦化し、 第 1の配 線 (103) 上で 800 の膜厚となる配線間絶縁膜、 すなわち層間絶縁 膜(105) を形成する。 続いて、 第 3図に示すように、 ホ ト リ ソグラ フィ一技術により層間絶縁膜 (105 ) に via孔(106 )を形成する。 まず、ホ ト リ ソグラフィ一技術により層間絶縁膜(105 )上にレジス 卜 (図示せず) でビア(via )孔パターンを形成する。 そして、 ドライ ェッチング技術により層間絶縁膜(105 ) にその via孔パターンを転 写し、 via孔 (106 ) を形成し、 その後上記レジス 卜を除去する。 工程(d) The surface of the above-mentioned Si02 film (104) is polished and flattened by chemical mechanical polishing (hereinafter, abbreviated as CMP), and an interconnect having a thickness of 800 on the first wiring (103) is formed. An insulating film, that is, an interlayer insulating film (105) is formed. Then, as shown in Fig. 3, A via hole (106) is formed in the interlayer insulating film (105) by the FI technology. First, a via hole pattern is formed by a resist (not shown) on the interlayer insulating film (105) by a photolithography technique. Then, the via hole pattern is transferred to the interlayer insulating film (105) by a dry etching technique to form a via hole (106), and then the above-mentioned resist is removed. Step (d)
第 4図に示すように、 上記 via孔(106 )内に第 1の via配線(107) を形成する。 本第 1の実施例によれば、 A1 (もしくは A1合金) よ り成る第 1の配線に対し、 Cu (もしくは Cu合金) を用いた via配線 との接続は、 前述した問題点の認識から回避されている。 つまり、 A1より成る第 1の配線 (口一カル配線) と、 Cuより成る第 2の配線 (グロ一バル配線)とを電気的に接続する via配線(107)としての材 料は Cuが避けられ、 Wの如き高融点金属が適用される。 この via配 線(107 )の形成順序を以下に述べる。  As shown in FIG. 4, a first via wiring (107) is formed in the via hole (106). According to the first embodiment, the connection of the first wiring made of A1 (or A1 alloy) to the via wiring using Cu (or Cu alloy) is avoided from the recognition of the above-described problem. Have been. In other words, Cu should be avoided as a material for via wiring (107) that electrically connects the first wiring (oral wiring) made of A1 and the second wiring (global wiring) made of Cu. And a high melting point metal such as W is applied. The order of forming the via wiring (107) will be described below.
まず、 第 1の配線との接着性を向上させコンタク 卜抵抗を下げる ための接着層として Ti 30nm、 上記第 1の配線と via配線との反応 を防止するためのバリア層として TiN 50nmを形成し、 CVD法により 全面に W膜を 500nm形成する。 そして、 第 4図に示すように、 層間 絶縁膜(105 ) 平坦部の上記 ff膜、 TiN膜および Ti膜を CMP法で研磨 除去し、 via配線 (107 ) を形成する。  First, Ti 30 nm was formed as an adhesive layer for improving the adhesion to the first wiring and reducing the contact resistance, and TiN 50 nm was formed as a barrier layer for preventing the reaction between the first wiring and the via wiring. Then, a W film is formed to a thickness of 500 nm on the entire surface by CVD. Then, as shown in FIG. 4, the ff film, the TiN film and the Ti film in the flat portion of the interlayer insulating film (105) are polished and removed by a CMP method to form a via wiring (107).
工程(e)  Step (e)
第 5図に示すように、 via配線(107)が形成された層間絶縁膜 ( 105 )の全面に、 プラズマ CVD法で SiN膜 (108 ) を 100nm、 そして その SiN膜(108)上に Si02膜 (109 ) を 300nm堆積し、 層間絶縁膜を 形成する。 ホ 卜リ ソグラフィ一技術によりこの配線間絶縁膜 ( 108, 109)上にレジス 卜 (図示せず) で配線パターンを形成する。 次 に、 上記レジス トをマスクにして ドライエッチング技術により Si02 膜 (109 ) をエッチング加工する。 この時、 下層の SiN膜 (108 ) は エッチングス ト ツパとして作用する。すなわち、 ドライエッチング は、 Si02膜 (109 ) エッチングのエッチングガスが用いられる。 こ のため、 SiN膜 (108) は Si02膜 (109) のエッチングガスではエツ チングされない。 このため、 Si02膜(109 ) のエツチング加工は SiN 膜 (108) 表面で停止する。 この SiN膜 (108 ) がェツチス ト ツバに なるため、 下層の層間絶縁膜(105 )がェツチングされるこ とはない。 続いて、 エツチングガスを切り換え SiN膜 ( 108) をェッチングする こ とにより、配線パターンを層間絶縁膜に転写して配線形成用溝(配 線溝) を形成し、 その後、 上記レジス トを除去する。 As shown in FIG. 5, a 100 nm SiN film (108) is formed on the entire surface of the interlayer insulating film (105) on which the via wiring (107) is formed by a plasma CVD method, and a Si02 film is formed on the SiN film (108). (109) is deposited to a thickness of 300 nm to form an interlayer insulating film. This inter-wiring insulating film is formed by photolithography technology. A wiring pattern is formed on (108, 109) by a resist (not shown). Next, the Si02 film (109) is etched by dry etching using the resist as a mask. At this time, the lower SiN film (108) acts as an etching stopper. That is, in the dry etching, an etching gas for etching the Si02 film (109) is used. For this reason, the SiN film (108) is not etched by the etching gas for the Si02 film (109). Therefore, the etching of the Si02 film (109) stops at the surface of the SiN film (108). Since the SiN film (108) becomes an etch stop, the lower interlayer insulating film (105) is not etched. Subsequently, by switching the etching gas and etching the SiN film (108), the wiring pattern is transferred to the interlayer insulating film to form a wiring forming groove (wiring groove), and then the above-mentioned resist is removed. .
工程(f)  Step (f)
第 6図に示すように、層間絶縁膜(108, 109 )に形成された配線形成 用溝 (配線溝) に第 2の配線(110 ) を形成する。  As shown in FIG. 6, a second wiring (110) is formed in a wiring forming groove (wiring groove) formed in the interlayer insulating film (108, 109).
まず、配線溝が形成された半導体基板主面に接着層として Ti 30nm、 TiN 70 ·を順次形成し、 そして無電解メ ツキ法により TiN上に Cu 膜を 50mn形成する。 続いて、 この Cu膜上にさ らに電解メ ッキ法で Cu膜を 250nm形成する。 平坦部の Cu膜及び接着層を CMP法で研磨 除去し、 第 2の配線 (110 ) を形成する。  First, Ti 30 nm and TiN 70 are sequentially formed as an adhesive layer on the main surface of the semiconductor substrate on which the wiring groove is formed, and a Cu film is formed on the TiN by 50 mn by an electroless plating method. Subsequently, a Cu film is further formed to a thickness of 250 nm on the Cu film by an electrolytic plating method. The Cu film and the adhesive layer in the flat portion are polished and removed by the CMP method to form a second wiring (110).
ここで Cu無電解メ ツキはメ ッキ液として、 銅源として 5mol / 1 の硫酸銅 (CuS04) 、 還元剤として 0. 03πιο1 / 1のホルムアルデヒ ド ( HCH0) 、 キレー ト剤として 0. lmol / 1のエチレンジア ミ ン四酢酸 ( EDTA) 及び 0. 5mol I 1の 2, 2' -ビピリ ジルを含む溶液を用い、 ポ リエチレングリ コールを加えて粘性を調節し、 pH 13、 液温 80°Cで 基板をこのメ ッキ液中に浸すこ とで実施される。 Here, Cu electroless plating is used as a plating solution, 5 mol / l copper sulfate (CuS04) as a copper source, 0.03πιο1 / 1 / formaldehyde (HCH0) as a reducing agent, and 0.1 mol / l as a chelating agent. Using a solution containing ethylenediaminetetraacetic acid (EDTA) 1 and 0.5 mol I 1 of 2,2'-bipyridyl, adjust the viscosity by adding poly (ethylene glycol), pH 13, and liquid temperature 80 ° C. so This is performed by immersing the substrate in this Mek's solution.
また、 Cu電解メ ツキはメ ツキ液として 0.3mol I 1の硫酸銅 (CuS04) 溶液を用いて実施される。 形成される Cu膜厚はメ ツキ処 理時間で制御される。 上述の 2段階メ ッキ膜形成により、 溝パター ン内にカバレジ性良く Cu膜を形成できる。  The Cu electroplating is performed using a 0.3 mol I 1 copper sulfate (CuS04) solution as a plating solution. The thickness of the formed Cu film is controlled by the plating time. By the above-described two-step mask film formation, a Cu film can be formed with good coverage in the groove pattern.
工程(g)  Process (g)
第 7図に示すように、第 2の配線(110)が埋め込まれた層間絶縁膜 (111, 112)全面にプラズマ CVD法で SiN膜 (111) を 200mn、 Si02膜 (112) を 600ηπι堆積し、 層間絶縁膜を形成する。 ホ ト リ ソグラフィ —技術によりこの層間絶縁膜上にレジス 卜で via配線パターンを形 成する。 ドライエッチング技術により Si02膜(112)を SiN膜(111) をエッチングス ト ツバとして加工した後、 エッチングガスを切り換 え SiN膜 (111) をエッチングするこ とにより、 via配線パターン を層間絶縁膜に転写し.、 via孔 (113) を形成し、 その後レジス トを 除去する。  As shown in Fig. 7, 200nm of SiN film (111) and 600ηπι of Si02 film (112) are deposited on the entire surface of the interlayer insulating film (111, 112) in which the second wiring (110) is embedded by plasma CVD. Then, an interlayer insulating film is formed. By photolithography, a via wiring pattern is formed on this interlayer insulating film by a resist. After processing the Si02 film (112) using the SiN film (111) as the etching stopper by dry etching technology, the via wiring pattern is changed to the interlayer insulating film by switching the etching gas and etching the SiN film (111). Then, via holes (113) are formed, and then the resist is removed.
工程(h)  Process (h)
第 8図に示すように、 via孔 (113) 内に第 2の via配線 (114) を形成する。 まず、 via孔(113)が形成された層間絶縁膜(111, 112) 全面に接着層として Ti 30nm、 TiN 70mnを形成し、 無電解メ ッキ法 により TiN上に Cu膜を 50nm形成する。 この Cu膜上にさ らに電解メ ッキ法で Cu膜を 250nm形成し、 平坦部の Cu膜及び接着層を CMP法 で研磨除去し、 第 2の via配線 (114) を形成する。 Cu膜形成で使 用されるメ ツキ液は第 2の配線(110)形成のメ ツキ液と同様のメ ッ キ液とが用いられる。  As shown in FIG. 8, a second via wiring (114) is formed in the via hole (113). First, Ti 30 nm and TiN 70 mn are formed as adhesive layers on the entire surface of the interlayer insulating film (111, 112) in which the via hole (113) is formed, and a 50 nm Cu film is formed on the TiN by electroless plating. On this Cu film, a Cu film is further formed to a thickness of 250 nm by the electrolytic plating method, and the Cu film and the adhesive layer in the flat portion are polished and removed by the CMP method to form a second via wiring (114). The same plating solution as used in the formation of the second wiring (110) is used as the plating solution used for forming the Cu film.
工程(i) 第 9図に示すように、 via配線(114)が形成された層間絶縁膜 (111, 112)全面にプラズマ CVD法で SiN膜 (115) を 100nm、 Si02膜 (116) を 300nm堆積し、 層間絶縁膜を形成する。 ホ ト リ ソグラフィ 一技術によりこの層間絶縁膜(115, 116)上にレジス トで配線パター ンを形成する。 次に、 上記レジス トをマスクにして ドライエツチン グ技術により Si02膜 (116) をエッチング加工する。 この時、 下層 の SiN膜 (115) はエッチングス ト ッパとして作用する。 続いて、 ェ ッチングガスを切り換え SiN膜(115)をエッチングするこ とにより、 配線パターンを層間絶縁膜に転写して配線溝を形成し、 その後、 レ ジス トを除去する。 Step (i) As shown in Fig. 9, a 100 nm SiN film (115) and a 300 nm Si02 film (116) are deposited on the entire surface of the interlayer insulating film (111, 112) with via wiring (114) formed by plasma CVD. An insulating film is formed. A wiring pattern is formed on this interlayer insulating film (115, 116) by photolithography using a resist. Next, using the resist as a mask, the Si02 film (116) is etched by dry etching technology. At this time, the lower SiN film (115) acts as an etching stopper. Subsequently, by switching the etching gas and etching the SiN film (115), the wiring pattern is transferred to the interlayer insulating film to form a wiring groove, and then the resist is removed.
工程(j)  Step (j)
第 1 0図に示すよう に、層間絶縁膜(115, 116)に形成された配線溝 内に第 3の配線(117)を形成する。 まず、 層間絶縁膜(115, 116)全面 に接着層として Ti 30nm、 TiN 70ηπιを形成し、 無電解メ ツキ法によ り TiN上に Cu膜を 50nm形成する。 この Cu膜上にさらに電解メ ツキ 法で Cu膜を 250 形成し、 平坦部の Cu膜及び接着層を CMP法で研 磨除去し、 第 3の配線 (11了) を形成する。 ここで、 Cu膜形成で使 用されるメ ツキ液は第 2の配線(110)形成のメ ツキ液と同様のメ ッ キ液とが用いられる。  As shown in FIG. 10, a third wiring (117) is formed in a wiring groove formed in the interlayer insulating film (115, 116). First, a Ti film of 30 nm and a TiN of 70ηπι are formed on the entire surface of the interlayer insulating film (115, 116) as an adhesive layer, and a Cu film of 50 nm is formed on the TiN by an electroless plating method. On this Cu film, a Cu film is further formed by electrolytic plating, and the flat Cu film and the adhesive layer are polished and removed by a CMP method to form a third wiring (11). Here, as the plating solution used for forming the Cu film, a plating solution similar to the plating solution for forming the second wiring (110) is used.
上述の如く 、 工程 (i) 、 ( j) はそれぞれ工程 (e) 、 (.f) と同 じ内容であり、 以下、 工程 (g) 〜工程 (]') を繰り返して必要な Cu 配線層を積み上げる。  As described above, the processes (i) and (j) have the same contents as the processes (e) and (.f), respectively. Stack up.
本第 1の実施例によれば、 以下の作用効果を得るこ とができる。 ( 1 ) 第 1の配線 (ローカル配線 : 103) に対し相対的に長い配線 長を有した第 2の配線 (グロ一バル配線: 110, 117) は銅(Cu)を主要 材料とした埋め込み配線構造であり、 微細、かつ配線抵抗を A1配線 に比べて 4 0 %程度低減でき、 2層目以上の C R配線遅延を改善で きる。 したがって、 高速動作可能な半導体集積回路装置が得られる c According to the first embodiment, the following operation and effect can be obtained. (1) The second wiring (global wiring: 110, 117), which has a longer wiring length than the first wiring (local wiring: 103), mainly uses copper (Cu). It has a buried wiring structure made of a material, and it is fine and the wiring resistance can be reduced by about 40% compared to A1 wiring, and the CR wiring delay of the second layer or more can be improved. Therefore, c high-speed operation possible semiconductor integrated circuit device can be obtained
( 2 ) 半導体素子に最も近い第 1の配線 (口一カル配線) は、 ァ ルミ二ユウム(A1 )を主要材料としたものであり、 その半導体素子に 対する Cu汚染を防止することができる。 したがって、半導体集積回 路装置の信頼性向上を図ることができる。 このローカル配線は A1 が使用されても配線長が短いため、 高速動作に対する影響は小さい。(2) The first wiring (oral wiring) closest to the semiconductor element is mainly made of aluminum (A1), and can prevent Cu contamination of the semiconductor element. Therefore, the reliability of the semiconductor integrated circuit device can be improved. Even if A1 is used, this local wiring has a short wiring length, so it has little effect on high-speed operation.
( 3 ) 第 1の配線 (口一カル配線) に対して、 相対的に長い配線 長を有した第 2の配線 (グローバル配線) は、 銅(Cu)を主要材料と しており、 その Cuは A1に比べ耐マイグレーショ ン性に優れた材料 であることから、 配線の信頼性の向上が図れる。 (3) The second wiring (global wiring), which has a longer wiring length than the first wiring (oral wiring), is mainly made of copper (Cu). Is a material that has better migration resistance than A1, so that the wiring reliability can be improved.
( 4 ) 第 1の配線と第 2の配線とを接続する via配線は第 1の配 線とは別材料である高融点金属が適用される。 したがって、 第 3 8 図に示した Cuメ ッキ処理による via配線形成時のような問題は解消 される。 すなわち、 第 1の配線の腐食が避けられ、 配線の信頼性の 向上が図れる。 ろれゆえ、 第 1の配線とその第 1の配線上に設けら れる via孔の "目はずれ" が許容され、 第 1の配線の微細化および via孔の微細化が図れる。  (4) A high melting point metal, which is a different material from the first wiring, is applied to the via wiring connecting the first wiring and the second wiring. Therefore, the problem such as the case of forming the via wiring by the Cu plating process shown in FIG. 38 is solved. That is, corrosion of the first wiring can be avoided, and the reliability of the wiring can be improved. Therefore, "missing" of the first wiring and the via hole provided on the first wiring is allowed, so that the first wiring and the via hole can be miniaturized.
( 5 ) Cuを主要材料から成る第 2の配線およびその第 2の配線上 の via配線、 第 3の配線は埋め込み配線構造であり、 それらはメ ッ キ法により形成されるため、 配線形成のプロセスコス 卜を低減でき すなわち、 メ ツキ法には通常の半導体プロセスで使用するような 真空装置が必要なく、 高電圧、 高温、 有毒ガス等の安全面での心配 もない。 また、 使用する薬品も従来の半導体プロセス用ガスに比べ 安価である。 そのため、 も しスパッ夕あるいは CVD法で Cu配線が形 成可能になったとしてもコス ト面でメ ツキ法が圧倒的に有利である, ( 6 ) A1より成る第 1 の配線の形成は、 通常のホ ト リ ソグラフィ —技術により ドライエッチング加工される。 A1配線の場合、 ドライ エッチング技術の微細加工性に優れているため、 通常のホ ト リ ソグ ラフィ一技術の適用が好ま しい。 (5) The second wiring made of Cu as the main material, the via wiring on the second wiring, and the third wiring have a buried wiring structure, and they are formed by the plating method. The process cost can be reduced. In other words, the plating method does not require a vacuum device as used in normal semiconductor processes, and is concerned about safety such as high voltage, high temperature, and toxic gas. Nor. The chemicals used are also less expensive than conventional semiconductor process gases. Therefore, even if Cu wiring can be formed by sputtering or CVD, the plating method is overwhelmingly advantageous in terms of cost. (6) The formation of the first wiring made of A1 Normal photolithography-dry etching by technology. In the case of A1 wiring, it is preferable to apply ordinary photolithography technology because of its excellent microfabrication by dry etching technology.
く第 2の実施例 > Second embodiment>
第 1 1 図乃至第 2 1 図を用いて本発明の第 2の実施例である半導 体集積回路装置の製造方法を説明する。  A method of manufacturing a semiconductor integrated circuit device according to a second embodiment of the present invention will be described with reference to FIGS.
本実施例では、 A1より成る第 1 の配線の形成は、 C M Pを用いた 埋め込み配線形成技術が適用される。  In the present embodiment, a buried wiring forming technique using CMP is applied to the formation of the first wiring made of A1.
工程(a)  Step (a)
第 1 1図に示すよう に、 主面が C V D - Si02膜もしく は熱酸化 Si02膜 (102 ) に被われた単結晶 Siから成る半導体基板 (10 1 ) 上 に配線溝パターンを有する層間絶縁膜(104 )を形成する。この層間絶 縁膜(104)は厚さ 300nmを有し、 正珪酸四ェチルエステル Si ( OC2H5 )4 をソースガスとし、 プラズマ C V D法により形成されたシ リ コン酸 化膜 Si02より成る。 続いて、 ホ 卜 リ ソグラフィ一技術によりこの層 間絶縁膜(104)上にレジス ト (図示せず)で配線パターンを形成する。 次に、 上記レジス トをマスクにして ドライエッチング技術により Si02膜 (104 ) をエッチング加工する。 この結果、 配線パターン (配 線形成用溝) が層間絶縁膜に転写される。 その後、 上記レジス トを 除去する。 As shown in Fig. 11, an interlayer dielectric having a wiring groove pattern on a semiconductor substrate (10 1) made of single-crystal Si whose main surface is covered with a CVD-Si02 film or a thermally oxidized Si02 film (102) A film (104) is formed. This interlayer insulating film (104) has a thickness of 300 nm, and is made of a silicon oxide film Si02 formed by a plasma CVD method using ortho-ethyl silicate Si (OC 2 H 5 ) 4 as a source gas. Subsequently, a wiring pattern is formed by a resist (not shown) on the inter-layer insulating film (104) by a photolithography technique. Next, the Si02 film (104) is etched by a dry etching technique using the resist as a mask. As a result, the wiring pattern (wiring forming groove) is transferred to the interlayer insulating film. Then, the above-mentioned resist is removed.
なお、 図示していないが、 本第 2の実施例においても半導体基板 (101)主面には回路を構成する半導体素子(elements)として、 Pチヤ ネル M I S F E T ( P MO S ) と Nチャネル M I S F E T (NMO S ) との一対の トラ ンジスタで構成された C M 0 S トランジスタが 複数形成されている。 これらの C MO S トランジスタのソース · ド レイ ン領域には、 例えば、 多結晶シ リ コンあるいはタ ングステンの 如きプラグが Si02膜(102)に設けられたコンタク ト用スルーホール を介して接続されている。 Although not shown, the semiconductor substrate is also used in the second embodiment. (101) On the main surface, as a semiconductor element (elements) constituting a circuit, a CM0S transistor composed of a pair of transistors of a P-channel MISFET (PMOS) and an N-channel MISFET (NMOS) is used. A plurality is formed. For example, plugs such as polycrystalline silicon or tungsten are connected to the source / drain regions of these CMOS transistors through contact through holes provided in the Si02 film (102). I have.
工程(b)  Step (b)
第 1 2図に示すよう に、 配線パターン (配線形成用溝) が形成さ れた層間絶縁膜(104)上に導体層(103a)を堆積する。 この導体層 As shown in FIG. 12, a conductor layer (103a) is deposited on the interlayer insulating film (104) on which the wiring pattern (wiring forming groove) is formed. This conductor layer
(103a)は、下から順に Si02膜との接着性を良好にするための Ti 30nm、 バリア層としての TiN 70mn、 Alを主要配線材料とした Al- 0.5 Cu 300nmを順にスパッタ法で形成した積層膜より成る。 そして、 この 導体層を 500°Cのァニール処理により リ フロ一させて配線形成用溝 内に埋め込む。 (103a) is a stack of 30 nm of Ti to improve the adhesion to the Si02 film, 70 nm of TiN as a barrier layer, and 300 nm of Al-0.5Cu with Al as the main wiring material, in order from the bottom. Consists of a membrane. Then, the conductor layer is reflowed by annealing at 500 ° C. and buried in the wiring forming groove.
工程 )  Process)
第 1 3図に示すよう に、 層間絶縁膜(104)上の不要な導体層を CMP 法により研磨することにより、層間絶縁膜(104)の配線形成用溝内に 第 1 の配線(103)が埋め込み形成される。  As shown in FIG. 13, the unnecessary conductor layer on the interlayer insulating film (104) is polished by the CMP method so that the first wiring (103) is formed in the wiring forming groove of the interlayer insulating film (104). Is buried.
工程(d)  Step (d)
第 1 4図に示すよう に、 ホ ト リ ソグラフィ一技術により層間絶縁 膜 (105) に via孔(106)を形成する。 まず、 上記第 1 の配線 (103) 上で 800nmの膜厚となる層間絶縁膜(105) を形成する。 この層間絶 縁膜(105)は上記層間絶縁膜(104)と同様に、 正珪酸四ェチルエステ ル Si(0C2H5)4をソースガスとし、 プラズマ C V D法により形成され たシリ コン酸化膜 Si02より成る。 続いて、 前記第 1 の実施例の工程 (c)と同様に、 ホ 卜 リ ソグラフィ一技術により層間絶縁膜 (105 ) に via孔(106 )を形成する。 As shown in FIG. 14, a via hole (106) is formed in the interlayer insulating film (105) by photolithography. First, an interlayer insulating film (105) having a thickness of 800 nm is formed on the first wiring (103). Similar to the interlayer insulation Enmaku (105) the interlayer insulating film (104), the orthosilicate Echiruesute Le Si (0C 2 H 5) 4 as a source gas, is formed by a plasma CVD method Made of silicon oxide film Si02. Subsequently, as in the step (c) of the first embodiment, via holes (106) are formed in the interlayer insulating film (105) by photolithography.
工程(e)  Step (e)
第 1 5図に示すよう に、 上記 via孔(106 )内に via配線(107 )を形 成する。 この via配線(107)は、 前記第 1 の実施例の工程(d)と同様 の理由そして同様の方法により形成される。 すなわち、 より成る 第 1 の配線 (口一カル配線) と、 Cuより成る第 2の配線 (グローバ ル配線) とを電気的に接続する via配線(10了)としての材料は が 避けられ、 Wの如き高融点金属が適用される。  As shown in FIG. 15, via wiring (107) is formed in the via hole (106). The via wiring (107) is formed for the same reason and in the same method as in the step (d) of the first embodiment. That is, the material as the via wiring (10 ends) for electrically connecting the first wiring (oral wiring) made of Cu and the second wiring (global wiring) made of Cu can be avoided. A high melting point metal such as
工程(f )  Process (f)
第 1 6図に示すように、 via配線(107)が形成された層間絶縁膜 ( 105)の全面に、 プラズマ CVD法で SiN膜 (108 ) を 100nm、 そして その SiN膜(108 )上に Si02膜 (109 ) を 300nm堆積し、 層間絶縁膜を 形成する。ホ ト リ ソグラフィ一技術によりこの層間絶縁膜(108, 109 ) 上にレジス ト (図示せず) で配線パターンを形成する。 次に、 上記 レジス トをマスクにして ドライエッチング技術により Si02膜  As shown in FIG. 16, a 100 nm SiN film (108) is formed on the entire surface of the interlayer insulating film (105) on which the via wiring (107) is formed by plasma CVD, and a Si02 film is formed on the SiN film (108). A film (109) is deposited to a thickness of 300 nm to form an interlayer insulating film. A wiring pattern is formed by a resist (not shown) on the interlayer insulating film (108, 109) by a photolithography technique. Next, using the above resist as a mask, dry etching
( 109 ) をエッチング加工する。 この ドライエッチングは、 Si02膜 がエッチングされ、 SiN膜がエッチングされないよう に、 両者の選 択比が充分大き くなるよう にエッチングガスが制御される。 このた め、 下層の SiN膜 (108 ) はエッチングス ト ッパとして作用する。 す なわち、 Si02膜 (109 ) のエッチング加工は SiN膜 (108 ) 表面で 停止する。 この SiN膜 (108 ) がエツチス ト ツバになるため、 下層の 層間絶縁膜(105 )がェツチングされるこ とはない。続いて、 エツチン グガスを切り換え SiN膜 (108 ) をエッチングすることにより、 配線 パターンを層間絶縁膜に転写して配線形成用溝 (配線溝) を形成し、 その後、 上記レジス トを除去する。 (109) is etched. In this dry etching, the etching gas is controlled so that the selection ratio between the two is sufficiently large so that the Si02 film is etched and the SiN film is not etched. For this reason, the lower SiN film (108) acts as an etching stopper. That is, the etching of the Si02 film (109) stops at the surface of the SiN film (108). Since the SiN film (108) becomes an etching stopper, the lower interlayer insulating film (105) is not etched. Subsequently, the etching gas is switched and the wiring is formed by etching the SiN film (108). The pattern is transferred to an interlayer insulating film to form a wiring forming groove (wiring groove), and then the above-mentioned resist is removed.
工程(g)  Process (g)
第 1 7図に示すように、層間絶縁膜(108, 109)に形成された配線形 成用溝 (配線溝) に第 2の配線(109)を形成する。  As shown in FIG. 17, a second wiring (109) is formed in a wiring forming groove (wiring groove) formed in the interlayer insulating film (108, 109).
まず、配線溝が形成された半導体基板主面に接着層として Ti 30nm、 TiN70nmを順次スパック法により形成する。 続いて、 TiN上にスパ ッタ法によりシー ド(seed)膜として Cu膜を 50nm形成する。続いて、 この Cu膜上にさらに電解メ ツキ法で Cu膜を 250nm形成する。 そし て、 平坦部の Cu膜及び接着層を CMP法で研磨除去し、 第 2の配線 (110) を形成する。  First, 30 nm of Ti and 70 nm of TiN are sequentially formed as an adhesive layer on the main surface of the semiconductor substrate on which the wiring grooves are formed by the Spack method. Subsequently, a Cu film is formed to a thickness of 50 nm on the TiN as a seed film by a sputtering method. Subsequently, a 250 nm thick Cu film is formed on the Cu film by an electrolytic plating method. Then, the Cu film and the adhesive layer in the flat portion are polished and removed by the CMP method to form a second wiring (110).
Cu電解メ ツキは、 前記第 1の実施例の工程(f)と同様に、 メ ツキ 液として 0.3mol I 1の硫酸銅 (CuS04) 溶液を用いて実施される。 形成される Cu膜厚はメ ッキ処理時間で制御される。  The Cu electroplating is performed using a 0.3 mol I1 copper sulfate (CuS04) solution as a plating solution, similarly to the step (f) of the first embodiment. The thickness of the formed Cu film is controlled by the masking time.
工程(h)  Process (h)
第 1 8図に示すように、第 2の配線(110)が埋め込まれた層間絶縁 膜(108, 109)上に層間絶縁膜(111, 112)を形成し、 その層間絶縁膜 (111, 112)に通常のホ 卜 リ ソグラフィ一技術により via孔 (113) を 形成する。 この工程は、前記第 1の実施例の工程(e)と同様な方法に より達成される。  As shown in FIG. 18, an interlayer insulating film (111, 112) is formed on the interlayer insulating film (108, 109) in which the second wiring (110) is embedded, and the interlayer insulating film (111, 112) is formed. In (), a via hole (113) is formed by ordinary photolithography technology. This step is achieved by a method similar to step (e) of the first embodiment.
工程(i)  Step (i)
第 1 9図に示すように、 via孔 (113) 内に via配線 (114)を形 成する。 まず、 via孔(113)が形成された層間絶縁膜(111, 112)全面 に接着層として Ti 30nm、 TiN 70nmをスパッ夕法により形成する。 続いて、 TiN上にスパッタ法によりシ一 ド(seed)膜として Cu膜を 50nm形成する。 この Cu膜上にさらに電解メ ツキ法で Cu膜を 250mn 形成する。 via配線を形成するための導体膜 (Ti膜/ TiN膜/ スパッ タ Cu膜/ Cuメ ツキ膜) の膜厚が via孔 (113 ) の深さ(900nm)よりも 薄い膜厚 (400M)であっても、 径の小さな via孔(113)内に Cu膜で 埋め込まれる。 続いて、 平坦部の Cu膜及び接着層を CMP法で研磨除 去し、 via配線 (114 ) を形成する。 なお、 Cu膜形成で使用されるメ ツキ液は上記第 2の配線 (110 ) 形成のメ ツキ液が用いられる。 工程(j ) As shown in FIG. 19, via wiring (114) is formed in the via hole (113). First, Ti 30 nm and TiN 70 nm are formed as an adhesive layer by a sputtering method on the entire surface of the interlayer insulating film (111, 112) in which the via hole (113) is formed. Next, a Cu film was formed on TiN as a seed film by sputtering. 50 nm is formed. A 250 nm Cu film is further formed on the Cu film by an electrolytic plating method. The thickness of the conductor film (Ti film / TiN film / sputter Cu film / Cu plating film) for forming via wiring is thinner (400M) than the depth (900nm) of the via hole (113). Even if it is, it is buried with a Cu film in the via hole (113) with a small diameter. Subsequently, the Cu film and the adhesive layer in the flat portion are polished and removed by a CMP method to form a via wiring (114). The plating solution used for forming the second film (110) is used as the plating solution used for forming the Cu film. Process (j)
第 2 0図に示すように、第 2の配線(114)が埋め込まれた層間絶縁 膜(111, 112)上に層間絶縁膜(115, 1 16 )を形成し、 その層間絶縁膜 ( 115, 116 )に通常のホ 卜 リ ソグラフィ一技術により配線溝を形成し、 その後、 レジス トを除去する。 この工程は、 前記第 1の実施例のェ 程(i )と同様な方法により達成される。  As shown in FIG. 20, an interlayer insulating film (115, 116) is formed on the interlayer insulating film (111, 112) in which the second wiring (114) is embedded, and the interlayer insulating film (115, 116) is formed. At 116), a wiring groove is formed by a normal photolithography technique, and then the resist is removed. This step is achieved by a method similar to step (i) of the first embodiment.
工程(k)  Process (k)
第 2 1図に示すように、層間絶縁膜(1 15, 116 )に形成された配線溝 内に第 3の配線(117)を形成する。 この工程は、本第 2の実施例のェ 程(g)と同様な方法により達成される。  As shown in FIG. 21, a third wiring (117) is formed in a wiring groove formed in the interlayer insulating film (115, 116). This step is achieved by a method similar to step (g) of the second embodiment.
本第 2の実施例において、 第 3の配線(117)上にさらに上層の Cu 配線を積み上げる場合、 工程 (h ) 〜工程 (k) が繰り返して行われ る。  In the second embodiment, when an upper Cu wiring is further stacked on the third wiring (117), the steps (h) to (k) are repeated.
本第 2の実施例によれば、 以下の作用効果を得ることができる。 According to the second embodiment, the following operation and effect can be obtained.
( 1 ) 前記第 1の実施例で述べた ( 1 ) 〜 ( 5 ) の作用効果が得 られる。 (1) The effects (1) to (5) described in the first embodiment can be obtained.
( 2 ) 本第 2の実施例によれば、 第 1の配線は埋め込み配線形成 技術により形成されるため、 前記第 1の実施例 (第 1の配線を通常 のホ ト リ ソグラフィ一技術で形成) で必要とされる反射防止層とし ての TiN膜形成が不要となる。 (2) According to the second embodiment, since the first wiring is formed by the embedded wiring forming technique, the first embodiment (the first wiring is usually The formation of a TiN film as an anti-reflection layer, which is required by photolithography, is not required.
但し、 本第 2の実施例のような A1を C M Pで加工する場合、 A1 が Cuより もさらに柔らかいため C M P時に研磨傷の発生や表面の 凹み (デッシング) が発生する心配がある。  However, when A1 is processed by CMP as in the second embodiment, since A1 is softer than Cu, there is a concern that polishing scratches and surface dents (dishing) may occur during CMP.
<第 3の実施例 > <Third embodiment>
第 2 2図乃至第 2 8図を用いて本発明の第 3の実施例である半導 体集積回路装置の製造方法を説明する。  A method of manufacturing a semiconductor integrated circuit device according to a third embodiment of the present invention will be described with reference to FIGS.
本第 3の実施例は、 特に via配線とその via配線に接続される第 2の配線とのコンタク ト抵抗を低減している。  In the third embodiment, the contact resistance between the via wiring and the second wiring connected to the via wiring is reduced.
本第 3の実施例である半導体集積回路装置の製造方法は、 前記第 2の実施例の工程(a)〜工程(e)に続いて、 以下に説明する工程(f ) 〜工程(1 )が実行される。  The method of manufacturing a semiconductor integrated circuit device according to the third embodiment includes the following steps (f) to (1) following the steps (a) to (e) of the second embodiment. Is executed.
工程(f )  Process (f)
第 1 5図に示した Wより成る via配線(107)を CMP法により形成し た後、 第 2 2図に示すように、 Si02膜(105 )に対し CMP法により研 磨し、 via配線(107)を突出させる。 この via配線(107)の突出部は、 例えば 50nmの高さに形成される。  After the via wiring (107) made of W shown in FIG. 15 is formed by the CMP method, as shown in FIG. 22, the Si02 film (105) is polished by the CMP method, and the via wiring (107) is formed. 107) is projected. The protrusion of the via wiring (107) is formed at a height of, for example, 50 nm.
工程(g)  Process (g)
続いて、第 2 3図に示すように、前記第 2の実施例の工程(f )に従 つて、 層間絶縁膜(105 )上に層間絶縁膜(108, 109 )を形成する。 そし て、 層間絶縁膜(108, 109 )に所定のパターンを有する配線形成用溝 (配線溝) を形成する。  Subsequently, as shown in FIG. 23, an interlayer insulating film (108, 109) is formed on the interlayer insulating film (105) according to the step (f) of the second embodiment. Then, a wiring forming groove (wiring groove) having a predetermined pattern is formed in the interlayer insulating film (108, 109).
工程(h)  Process (h)
第 2 4図に示すように、前記第 2の実施例の工程(g)に従って、層 間絶縁膜(108, 109)内に形成された配線形成用溝(配線溝)に第 2の 配線(109)を形成する。 第 2の配線(109)は CMP法によって形成され る。 このため、第 2の配線(109)の表面は平坦化され、 via配線(107) の突出部は第 2の配線(109)の表面には現れない。 As shown in FIG. 24, according to the step (g) of the second embodiment, the layer A second wiring (109) is formed in a wiring forming groove (wiring groove) formed in the inter-insulating film (108, 109). The second wiring (109) is formed by a CMP method. Therefore, the surface of the second wiring (109) is flattened, and the protrusion of the via wiring (107) does not appear on the surface of the second wiring (109).
工程(i)  Step (i)
第 2 5図に示すように、前記第 2の実施例の工程(h)に従って、第 2の配線(110)が埋め込まれた層間絶縁膜(108, 109)上に層間絶縁膜 (111, 112)を形成し、 その層間絶縁膜(111, 112)に通常のホ ト リ ソグ ラフィ一技術により via孔 (113) を形成する。  As shown in FIG. 25, according to the step (h) of the second embodiment, the interlayer insulating film (111, 112) is formed on the interlayer insulating film (108, 109) in which the second wiring (110) is embedded. ) Is formed, and a via hole (113) is formed in the interlayer insulating film (111, 112) by ordinary photolithography.
工程(j)  Step (j)
第 2 6図に示すように、 前記第 2の実施例の工程(i)に従って、 via孔 (113) 内に Cuより成る via配線 (114)を形成する。 続いて、 層間絶縁膜膜(111, 112)に対し CMP法により研磨し、 via配線(114) を突出させる。 この via配線(114)の突出部は、 例えば 10 の高さ に形成される。 via配線 (114)を構成する Cuは Wに比べて柔らか いため、 層間絶縁膜膜(111, 112)の研磨時に削られる。 このため、 W より成る via配線 (107)に比べてこの via配線 (114)に大きな突出 部を作るのが難しいが、図に示したように via配線(114)表面が 10nm 程度の凸形状になつていればコンタク ト抵抗低減の目的は達成され る。  As shown in FIG. 26, a via wiring (114) made of Cu is formed in the via hole (113) according to the step (i) of the second embodiment. Subsequently, the interlayer insulating film (111, 112) is polished by a CMP method to project the via wiring (114). The protrusion of the via wiring (114) is formed at a height of, for example, 10. The Cu that composes the via wiring (114) is softer than W, so it is removed during polishing of the interlayer insulating film (111, 112). For this reason, it is more difficult to make a large protrusion in this via wiring (114) than in the via wiring (107) made of W, but as shown in the figure, the surface of the via wiring (114) has a convex shape of about 10 nm. If so, the purpose of reducing contact resistance will be achieved.
工程(k)  Process (k)
続いて、 第 2 7図に示すように、 前記第 2の実施例の工程(j) に従って、 層間絶縁膜(111, 112)上に層間絶縁膜(115, 116)を形成す る。そして、層間絶縁膜(115, 116)に所定のパターンを有する配線形 成用溝 (配線溝) を形成する。 工程(1 ) Subsequently, as shown in FIG. 27, an interlayer insulating film (115, 116) is formed on the interlayer insulating film (111, 112) according to the step (j) of the second embodiment. Then, a wiring forming groove (wiring groove) having a predetermined pattern is formed in the interlayer insulating film (115, 116). Process (1)
第 2 8図に示すように、前記第 2の実施例の工程(k)に従って、層 間絶縁膜(115, 116 )に形成された配線溝内に第 3の配線(117)を形成 する。  As shown in FIG. 28, a third wiring (117) is formed in a wiring groove formed in the interlayer insulating film (115, 116) according to the step (k) of the second embodiment.
本第 3の実施例において、 第 3の配線(117)上にさらに上層の Cu 配線を積み上げる場合、 工程 (h ) 〜工程 (k) が繰り返して行われ る  In the third embodiment, when an upper layer Cu wiring is further stacked on the third wiring (117), the steps (h) to (k) are repeated.
本第 3の実施例によれば、 以下の作用効果を得ることができる。 According to the third embodiment, the following operation and effect can be obtained.
( 1 ) 前記第 1の実施例で述べた ( 1 ) 〜 ( 5 ) の作用効果が得 られる。 (1) The effects (1) to (5) described in the first embodiment can be obtained.
( 2 ) 前記第 2の実施例と同様に第 1の配線は埋め込み配線形成 技術により形成されるため、 前記第 1の実施例 (第 1の配線を通常 のホ トリ ソグラフィ一技術で形成) で必要とされる反射防止層とし ての TiN膜形成が不要となる。  (2) Since the first wiring is formed by the buried wiring forming technique as in the second embodiment, the first wiring is formed by the ordinary photolithography technique. It is not necessary to form a required TiN film as an antireflection layer.
( 3 ) 工程(f )で、 via配線(107 )を CMP法により形成した後、 さ らに Si02膜(105 )に対し CMP法により研磨し、 第 1の via配線(107 ) を突出させている。すなわち、 その第 1の via配線(107 )の側面を露 出させ、 配線の表面積を増加させている。 したがって、 第 1の via 配線(107)と第 2の配線(110 )との接触面積が前記第の 2実施例の場 合に比べ増大し、 コンタク ト抵抗の低減を図ることができる。  (3) In step (f), after the via wiring (107) is formed by the CMP method, the Si02 film (105) is polished by the CMP method, and the first via wiring (107) is projected. I have. That is, the side surface of the first via wiring (107) is exposed to increase the surface area of the wiring. Therefore, the contact area between the first via wiring (107) and the second wiring (110) is increased as compared with the case of the second embodiment, and the contact resistance can be reduced.
また、 工程(j )でも同様な目的で第 2の via配線(114)を突出させ ている。 したがって、 第 1の via配線(114 )と第 3の配線(117)との 接触面積が第の 2実施例の場合に比べ増大し、 コンタク ト抵抗の低 減を図ることができる。  In the step (j), the second via wiring (114) is projected for the same purpose. Therefore, the contact area between the first via wiring (114) and the third wiring (117) is increased as compared with the case of the second embodiment, and the contact resistance can be reduced.
要するに、 本第 3の実施例は、 半導体基板上に少なく とも 2層以 上の Cu配線と各配線層間を接続する via配線を有する多層配線を有 した半導体集積回路装置であって、 少なく とも 1つの Cu配線 (第 2 の配線 110 )と下の配線(第 1の配線 103 )とを接続する via配線(107) の上面がこの via配線との接続領域を除いた前記 Cu配線の底面(層 間絶縁膜 105との接触面) より上にあることを特徴とするものであ In short, the third embodiment has at least two layers on the semiconductor substrate. A semiconductor integrated circuit device having a multilayer wiring having upper Cu wiring and via wiring connecting between respective wiring layers, wherein at least one Cu wiring (second wiring 110) and lower wiring (first wiring) are provided. 103), the upper surface of the via wiring (107) is above the bottom surface (the contact surface with the inter-layer insulating film 105) of the Cu wiring excluding the connection region with the via wiring. In
<第 4の実施例 > <Fourth embodiment>
第 2 9図乃至第 3 5図を用いて本発明の第 4の実施例である半導 体集積回路装置の製造方法を説明する。  A method of manufacturing a semiconductor integrated circuit device according to a fourth embodiment of the present invention will be described with reference to FIGS. 29 to 35.
本第 4の実施例は、 特に Wより成る第 1の via配線 (プラグ) の 高さを低減させることで、 その配線 (プラグ) 抵抗を低減させてい 本第 4の実施例である半導体集積回路装置の製造方法は、 前記第 2の実施例の工程(a )〜工程(e)に続いて、 以下に説明する工程(f ) 〜工程(1 )が成される。  The fourth embodiment reduces the wiring (plug) resistance by reducing the height of the first via wiring (plug) made of W in particular. In the method of manufacturing the device, following the steps (a) to (e) of the second embodiment, the following steps (f) to (1) are performed.
工程(f)  Step (f)
第 1 5図に示した Wより成る via配線(107)は、 CMP法により過剰 に研磨される。 したがって、 研磨された via配線(107)主面は、 第 2 9図に示すように層間絶縁膜(105 )表面より も低くなる。 この via 配線(107)の段差は、 例えば 10nmを有する。  The via wiring (107) made of W shown in FIG. 15 is excessively polished by the CMP method. Therefore, the main surface of the polished via wiring (107) is lower than the surface of the interlayer insulating film (105) as shown in FIG. The step of the via wiring (107) has, for example, 10 nm.
工程(g)  Process (g)
第 3 0図に示すように、前記第 2の実施例の工程(f )に従って、層 間絶縁膜(105 )上に層間絶縁膜(108, 109)を形成する。 そして、 層間 絶縁膜(108, 109 )に所定のパターンを有する配線形成用溝 (配線溝) を形成する。 P As shown in FIG. 30, an interlayer insulating film (108, 109) is formed on the interlayer insulating film (105) according to the step (f) of the second embodiment. Then, a wiring forming groove (wiring groove) having a predetermined pattern is formed in the interlayer insulating film (108, 109). P
27 工程(h) 27 process (h)
第 3 1図に示すように、前記第 2の実施例の工程(g)に従って、層 間絶縁膜(108, 109)内に形成された配線形成用溝(配線溝)に第 2の 配線(109)を形成する。 第 2の配線(109)は CMP法によって形成され る。 このため、第 2の配線(109)の表面は平坦化され、 via配線(107) の凹部は第 2の配線(109)の表面には現れない。  As shown in FIG. 31, according to the step (g) of the second embodiment, the second wiring (wiring groove) is formed in the wiring forming groove (wiring groove) formed in the interlayer insulating film (108, 109). 109). The second wiring (109) is formed by a CMP method. Therefore, the surface of the second wiring (109) is flattened, and the recess of the via wiring (107) does not appear on the surface of the second wiring (109).
工程(i)  Step (i)
第 3 2図に示すように、前記第 2の実施例の工程(h)に従って、第 2の配線(110)が埋め込まれた層間絶縁膜(108, 109)上に層間絶縁膜 (111, 112)を形成し、 その層間絶縁膜(111, 112)に通常のホ ト リ ソグ ラフィ一技術により via孔 (113) を形成する。  As shown in FIG. 32, according to the step (h) of the second embodiment, the interlayer insulating film (111, 112) is formed on the interlayer insulating film (108, 109) in which the second wiring (110) is embedded. ) Is formed, and a via hole (113) is formed in the interlayer insulating film (111, 112) by ordinary photolithography.
工程(j)  Step (j)
第 3 3図に示すように、前記第 2の実施例の工程(i)に従って、 via 孔 (113) 内に Cuより成る via配線 (114)を形成する。 この工程で は、 層間絶縁膜(111, 112)の表面と via配線(114)の表面との間の段 差は設けられないように via配線 (114)の CMP加工が実施される。 工程(k)  As shown in FIG. 33, a via wiring (114) made of Cu is formed in the via hole (113) according to the step (i) of the second embodiment. In this step, the via wiring (114) is CMP-processed so that no step is formed between the surface of the interlayer insulating film (111, 112) and the surface of the via wiring (114). Process (k)
第 3 4図に示すように、前記第 2の実施例の工程(j)に従って、層 間絶縁膜(111, 112)上に層間絶縁膜(115, 116)を形成する。 そして、 層間絶縁膜(115, 116)に所定のパターンを有する配線形成用溝(配線 溝) を形成する。  As shown in FIG. 34, an interlayer insulating film (115, 116) is formed on the interlayer insulating film (111, 112) according to the step (j) of the second embodiment. Then, a wiring forming groove (wiring groove) having a predetermined pattern is formed in the interlayer insulating film (115, 116).
工程(1)  Process (1)
第 3 5図に示すように、前記第 2の実施例の工程(k)に従って、層 間絶縁膜(115, 116)に形成された配線溝内に第 3の配線(117)を形成 する。 本第 4の実施例においても、 第 3の配線(117)上にさらに上層の Cu配線を積み上げる場合、 本実施例の工程 (h ) 〜工程 (k ) が繰り 返して行われる。 As shown in FIG. 35, a third wiring (117) is formed in a wiring groove formed in the interlayer insulating film (115, 116) according to the step (k) of the second embodiment. Also in the fourth embodiment, when an upper layer Cu wiring is further stacked on the third wiring (117), the steps (h) to (k) of this embodiment are repeatedly performed.
本第 4の実施例によれば、 以下の作用効果を得ることができる。 ( 1 ) 前記第 1の実施例で述べた ( 1 ) 〜 ( 5 ) の作用効果が得 られる。  According to the fourth embodiment, the following operation and effect can be obtained. (1) The effects (1) to (5) described in the first embodiment can be obtained.
( 2 ) 前記第 2の実施例と同様に第 1の配線は埋め込み配線形成 技術により形成されるため、 前記第 1の実施例 (第 1の配線を通常 のホ 卜 リ ソグラフィ一技術で形成) で必要とされる反射防止層とし ての TiN膜形成が不要となる。  (2) As in the second embodiment, the first wiring is formed by a buried wiring forming technique. Therefore, the first wiring is formed (the first wiring is formed by a normal photolithography technique). Thus, the formation of a TiN film as an anti-reflection layer, which is required in the above, becomes unnecessary.
( 3 ) 工程(f)で、 via配線(107)を、 CMP法により過剰に研磨して いる。 したがって、 研磨された Wより成る第 1の via配線(107)主面 は、第 2 9図に示すように層間絶縁膜(105 )表面よりも低くなる。 し たがって、 Wより成る第 1の via配線 (プラグ) の高さを低減させ ることで、 その配線 (プラグ) 抵抗の低減が図れる。  (3) In step (f), the via wiring (107) is excessively polished by the CMP method. Therefore, the main surface of the first via wiring (107) made of polished W is lower than the surface of the interlayer insulating film (105) as shown in FIG. Therefore, by reducing the height of the first via wiring (plug) made of W, the resistance of the wiring (plug) can be reduced.
要するに、 本第 4の実施例では、 半導体基板上に少なく とも 2層 以上の Cu配線層と各配線層間を接続する via配線を有する半導体集 積回路装置であって、 少なく とも 1つの Cu配線 (第 2の配線 110 ) と下の配線 (第 1の配線 103) を接続する via配線(107 )の上面がこ の via配線との接続領域を除いた前記 Cu配線の底面 (層間絶縁膜 105との接触面) より下にあることを特徴とするものである。  In short, the fourth embodiment is a semiconductor integrated circuit device having at least two or more Cu wiring layers and a via wiring connecting each wiring layer on a semiconductor substrate, and at least one Cu wiring ( The upper surface of the via wiring (107) connecting the second wiring 110) and the lower wiring (first wiring 103) is formed on the bottom surface of the Cu wiring excluding the connection region with the via wiring (interlayer insulating film 105 and Below the contact surface).
く第 5の実施例 > K Fifth Embodiment>
第 3 6図を用いて本発明の第 5の実施例である半導体集積回路装 置の製造方法を説明する。 本第 5の実施例は、 特に第 1の配線とそ の第 1の配線に接続される via配線とのコン夕ク ト抵抗を低減して いる。 A method of manufacturing a semiconductor integrated circuit device according to a fifth embodiment of the present invention will be described with reference to FIG. The fifth embodiment reduces the connection resistance between the first wiring and the via wiring connected to the first wiring. I have.
本第 5の実施例である半導体集積回路装置の製造方法は、 前記第 2の実施例の工程(a)〜工程(d)に続いて、 以下に説明する工程(d') が追加される。  In the method of manufacturing a semiconductor integrated circuit device according to the fifth embodiment, a step (d ′) described below is added following the steps (a) to (d) of the second embodiment. .
工程(d')  Step (d ')
第 1 5図に示した via孔(106 )を形成した後、 その via孔(106 )内 に露出した A1 - 0. 5%Cu層の第 1の配線(103)を ドライエツチングす ることにより溝を設ける。 この溝(103 )は via孔(106 )に対し、 自己 整合形成されることになる。 溝の深さは、 任意であり、 例えば 50mn 程度である。  After forming the via hole (106) shown in FIG. 15, the first wiring (103) of the A1-0.5% Cu layer exposed in the via hole (106) is dry-etched. A groove is provided. The groove (103) is self-aligned with the via hole (106). The depth of the groove is arbitrary, for example, about 50 mn.
続いて、 前記第 2の実施例の工程(e)〜工程(k)が実施され、 第 3 6図に示した半導体集積回路装置が得られる。  Subsequently, the steps (e) to (k) of the second embodiment are performed, and the semiconductor integrated circuit device shown in FIG. 36 is obtained.
本第 5の実施例によれば、 以下の作用効果を得ることができる。 According to the fifth embodiment, the following operation and effect can be obtained.
( 1 ) 前記第 1の実施例で述べた ( 1 ) 〜 ( 5 ) の作用効果が得 られる。 (1) The effects (1) to (5) described in the first embodiment can be obtained.
( 2 ) 前記第 2の実施例と同様に、 第 1の配線は埋め込み配線形 成技術により形成されるため、 前記第 1の実施例 (第 1の配線を通 常のホ 卜 リ ソグラフィ一技術で形成) で必要とされる反射防止層と しての TiN膜形成が不要となる。  (2) As in the second embodiment, the first wiring is formed by a buried wiring forming technique, so that the first wiring (the first wiring is a conventional photolithography technique) It is not necessary to form a TiN film as an anti-reflection layer, which is required in the step.
( 3 ) 上記の工程(d')で、 第 1の配線(103 )に ドライエツチングに より溝を設けている。 したがって、第 1の via配線(107 )と第 2の配 線(110)とはその溝底面と溝側壁面とで接触され、両者の接触面積が 第の 2実施例の場合に比べて増大し、 コンタク 卜抵抗の低減を図る ことができる。  (3) In the above step (d ′), the first wiring (103) is provided with a groove by dry etching. Therefore, the first via wiring (107) and the second wiring (110) are in contact with the groove bottom surface and the groove side wall surface, and the contact area between them increases as compared with the case of the second embodiment. Therefore, the contact resistance can be reduced.
要するに、 本第 5の実施例は、 特に Cu 以外の金属を主成分とす る第 1の配線 (103) とその上の Cu配線層を接続する Wを主成分と する第 1の via配線(107)の底面が、この via配線の接続領域を除い た第 1の配線(103)の上面より下にあることを特徴とするものであ る。 In short, in the fifth embodiment, in particular, a metal other than Cu is used as a main component. The bottom surface of the first via wiring (107) mainly composed of W that connects the first wiring (103) and the Cu wiring layer thereon is formed by the first wiring (excluding the connection region of this via wiring). 103) is located below the upper surface.
(第 6の実施例)  (Sixth embodiment)
第 3 7図は、半導体基体に半導体素子(M0S)が形成されている状態 を示す半導体集積回路装置の断面図である。  FIG. 37 is a cross-sectional view of the semiconductor integrated circuit device showing a state where the semiconductor element (M0S) is formed on the semiconductor base.
第 3 7図に示すように、 半導体基板(101)の主面には素子分離領 GIが選択的に形成され、 この素子分離領域により区画された基板主 面に複数の MO S トランジスタ(M0S)が形成されている。素子分離領 域 GIは、 具体的には、 その基板表面に溝が設けられ、 その溝内に絶 縁膜が埋め込まれて形成される。この素子分離領域 GIは ト レンチア イソレ一シヨ ンとも言う。 MO S トランジスタ(M0S)はゲ一 ト電極 として、 多結晶シリ コンとその上に形成された金属との積層構造の ゲ一 卜電極で構成され、 その側壁にはサイ ドウォールスぺ一サが設 けられている。 そして、 層間絶縁膜(102)にはプラグ (例えば W) が 設けられている。このブラグは半導体基板(101)内に設けられたソ一 ス · ドレイ ン領域 (図示せず) に接続されている。 層間絶縁膜(102) 上の配線および層間絶縁膜は、 例えば第 1の実施例に従って形成さ れている。 第 3の配線(117)上には、 さらに Cu より成る第 3の via 配線(118)および第 4の配線(119)が層間絶縁膜に埋め込み形成され ている。  As shown in FIG. 37, an element isolation region GI is selectively formed on the main surface of the semiconductor substrate (101). Are formed. Specifically, the element isolation region GI is formed by forming a groove on the substrate surface and burying an insulating film in the groove. This element isolation region GI is also referred to as trench isolation. The MOS transistor (M0S) is composed of a gate electrode having a laminated structure of polycrystalline silicon and a metal formed thereon as a gate electrode, and a side wall spacer is provided on the side wall. Have been. Then, a plug (for example, W) is provided in the interlayer insulating film (102). This plug is connected to a source drain region (not shown) provided in the semiconductor substrate (101). The wiring and the interlayer insulating film on the interlayer insulating film (102) are formed, for example, according to the first embodiment. On the third wiring (117), a third via wiring (118) and a fourth wiring (119) made of Cu are further buried in the interlayer insulating film.
以上、 本発明によれば、 高速動作、 高信頼性を有する半導体集積 回路装置が得られる。  As described above, according to the present invention, a semiconductor integrated circuit device having high speed operation and high reliability can be obtained.
産業上の利用可能性 本発明によれば、 微細配線で、 かつ高速動作が要求された高速論 理回路を有する半導体集積回路装置に適用して有効な技術である。 より具体的には、 本発明はメモリ (D R AM、 S R AMあるいは E E P R OMいずれかあるいはそれらの組み合わせ) と高速論理回路 とを一つの半導体基板に搭載した L S I 、 また、 メモリ と、 マイク ロコンピュー夕および高速論理回路とを一つの半導体基板に搭載し た L S I を実現するのに有効である。 Industrial applicability According to the present invention, it is an effective technique when applied to a semiconductor integrated circuit device having a high-speed logic circuit requiring fine wiring and high speed operation. More specifically, the present invention relates to an LSI in which a memory (DRAM, SRAM, or EEPROM, or a combination thereof) and a high-speed logic circuit are mounted on a single semiconductor substrate. This is effective for realizing an LSI in which high-speed logic circuits are mounted on a single semiconductor substrate.

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体基体主面上に第 1の配線を有し、 上記第 1の配線を覆う ように第 1の層間絶縁膜を有し、 上記第 1の層間絶縁膜に設けられ たビア孔を介して上記第 1の配線の一部に接続された第 1のビア配 線を有し、 上記第 1の層間絶縁膜上に第 2の層間絶縁膜に設けられ た配線用溝内に埋め込まれ、 上記第 1のビア配線に接続された上記 ビア配線および上記第 1の配線とは異なる材料の第 2の配線を有す ることを特徴とする半導体集積回路装置。  1. A first wiring is provided on the main surface of the semiconductor substrate, a first interlayer insulating film is provided so as to cover the first wiring, and via a via hole provided in the first interlayer insulating film. A first via wiring connected to a part of the first wiring, and embedded in a wiring groove provided in a second interlayer insulating film on the first interlayer insulating film; A semiconductor integrated circuit device comprising: the via wiring connected to the first via wiring; and a second wiring made of a different material from the first wiring.
2 . 上記第 1の配線は、 アルミ二ユウムを主要材料とした導体層か ら成り、 上記ビア配線は夕ングステンを主要材料とした導体層から 成り、 上記第 2の配線は銅を主要材料とした導体層から成ることを 特徴とする請求の範囲第 1項記載の半導体集積回路装置。 2. The first wiring is made of a conductor layer mainly made of aluminum, the via wiring is made of a conductor layer mainly made of tungsten, and the second wiring is made of copper as a main material. 2. The semiconductor integrated circuit device according to claim 1, comprising a conductor layer formed.
3 .上記第 2の層間絶縁膜に設けられたビア配線を有し、上記第 2の 層間絶縁膜上に第 3の層間絶縁膜を有し、 上記第 3の異絶縁膜に設 けられた配線用溝内に埋め込まれ、 上記第 2のビア配線に接続され た第 3の配線を有することを特徴とする半導体集積回路装置。 3. having a via wiring provided in the second interlayer insulating film, having a third interlayer insulating film on the second interlayer insulating film, and being provided in the third different insulating film; A semiconductor integrated circuit device having a third wiring buried in a wiring groove and connected to the second via wiring.
4 . 上記第 2のビア配線は銅を主要材料とした導体層から成り、 上 記第 3の配線は銅を主要材料とした導体層から成ることを特徴とす る請求の範囲第 3項記載の半導体集積回路装置。  4. The method according to claim 3, wherein the second via wiring is made of a conductor layer mainly made of copper, and the third wiring is made of a conductor layer mainly made of copper. Semiconductor integrated circuit device.
5 . 半導体基体主面上に絶縁膜を有し、 上記絶縁膜上にホ ト リ ソグ ラフィー技術によりパターン加工された第 1の配線を有し、 上記第 1の配線を覆うように第 1の層間絶縁膜を有し、 上記第 1の層間絶 縁膜に設けられたビア孔を介して上記第 1の配線の一部に接続され た第 1のビア配線を有し、 上記第 1の層間絶縁膜上に第 2の層間絶 縁膜に設けられた配線用溝内に埋め込まれ、 上記第 1 のビア配線に 接続された第 2の配線を有することを特徴とする半導体集積回路装 5. An insulating film on the main surface of the semiconductor substrate, a first wiring patterned on the insulating film by photolithography, and a first wiring so as to cover the first wiring. An interlayer insulating film, having a first via wiring connected to a part of the first wiring via a via hole provided in the first interlayer insulating film, Second interlayer insulation on insulating film A semiconductor integrated circuit device having a second wiring buried in a wiring groove provided in an edge film and connected to the first via wiring.
6 . 上記第 1の配線は、 アルミ二ユウムを主要材料とした導体層か ら成り、 上記ビア配線はタングステンを主要材料とした導体層から 成り、 上記第 2の配線は銅を主要材料とした導体層から成ることを 特徴とする請求の範囲第 5項記載の半導体集積回路装置。 6. The first wiring is made of a conductor layer mainly made of aluminum, the via wiring is made of a conductor layer mainly made of tungsten, and the second wiring is made of copper as a main material. 6. The semiconductor integrated circuit device according to claim 5, comprising a conductor layer.
7 . 上記第 1 の配線を構成する導体層は、 Ti, TiN, Cuを含む A1そし て TiNが順次積層されて成ることを特徴とする半導体集積回路装置。 7. A semiconductor integrated circuit device, wherein the conductor layer constituting the first wiring is formed by sequentially stacking A1 containing Ti, TiN, and Cu and TiN.
8 . 半導体基体主面上にアルミ二ユウムを主要材料とした第 1の配 線を形成する工程と、 8. forming a first wiring composed mainly of aluminum on the main surface of the semiconductor substrate;
上記第 1の配線を覆う ように第 1の層間絶縁膜を形成する工程と、 上記第 1の層間絶縁膜に上記第 1の配線の一部が露出するビア孔 を形成する工程と、  Forming a first interlayer insulating film so as to cover the first wiring; forming a via hole in the first interlayer insulating film such that a part of the first wiring is exposed;
上記ビア孔を介して上記第 1の配線の一部に接続され、 上記第 1 の配線とは異なる導電材料から成る第 1のビア配線を形成する工程 と、  Forming a first via wiring connected to a part of the first wiring via the via hole and made of a conductive material different from the first wiring;
上記第 1の層間絶縁膜上に第 2の層間絶縁膜を形成する工程と、 上記第 2の層間絶縁膜に上記第 1のビア配線が露出する配線用溝 を設ける工程と、  Forming a second interlayer insulating film on the first interlayer insulating film; and providing a wiring groove for exposing the first via wiring in the second interlayer insulating film;
上記配線用溝内に埋め込まれ、 上記第 1のビア配線に接続された 銅を主要材料とした第 2の配線をメ ッキ処理により形成する工程と を有することを特徴とする半導体集積回路装置の製造方法。  Forming a second wiring made of copper as the main material, which is embedded in the wiring groove and connected to the first via wiring, by a sticking process. Manufacturing method.
9 . 上記ビア配線は、 高融点金属により形成されることを特徴とす る請求の範囲第 8項記載の半導体集積回路の製造方法。 9. The method for manufacturing a semiconductor integrated circuit according to claim 8, wherein the via wiring is formed of a high melting point metal.
1 0 . 上記第 2の配線のメ ッキ処理は、 無電解メ ツキの第 1段階と、 その第 1段階に続く電解メ ツキの第 2段階とから成ることを特徴と する請求の範囲第 8項ないし第 9項記載の半導体集積回路装置の製 造方法。 10. The method of claim 2, wherein the second wiring is formed by a first step of electroless plating and a second step of electrolytic plating following the first step. 10. The method for manufacturing a semiconductor integrated circuit device according to item 8 or 9.
1 1 . 半導体基体内に半導体素子が設けられ、 上記半導体基体主面 上にその基体主面側に近いローカル配線としてアルミ二ユウムを主 要材料とした第 1の配線が設けられ、 その第 1の配線上にグロ一バ ル配線として銅を主要材料とした第 2の配線が設けられ、 第 1の配 線コンタク 卜される via配線は Cuとは別の導体材料から成り、その 導体材料から成る via配線に上記第 2の配線がコンタク 卜されてい ることを特徴とする半導体集積回路装置。  11. A semiconductor element is provided in a semiconductor base, and a first wiring mainly made of aluminum is provided on the main surface of the semiconductor base as a local wiring close to the main surface of the base. A second wiring mainly made of copper is provided as a global wiring on the wiring of the first wiring, and the via wiring to be contacted with the first wiring is made of a conductive material different from Cu, and is made of the conductive material. A semiconductor integrated circuit device, wherein the second wiring is connected to the via wiring.
1 2 . 上記第 2配線上に層間絶縁膜が設けられ、 上記層間絶縁膜に via配線及び第 3の配線が設けられ、 上記 via配線及び第 3の配線 は A1に比べて固有抵抗の低い Cuを主成分とする導体材料から成る ことを特徴とする請求の範囲第 1 1項記載の半導体集積回路装置。 1 2. An interlayer insulating film is provided on the second wiring, a via wiring and a third wiring are provided on the interlayer insulating film, and the via wiring and the third wiring have a lower specific resistance than A1. 12. The semiconductor integrated circuit device according to claim 11, wherein the semiconductor integrated circuit device is made of a conductive material mainly composed of:
1 3 . 最も半導体基体主面側に近接して設けられた少なく とも 1 層の A1配線と、 その A1配線上に層間絶縁膜をはさんで 2層以上の Cu配線とを有する多層配線構造の半導体集積回路装置の製造方法 であって、上記 A1配線のパターンは上記半導体基体主面上全面に形 成された A1を含む金属膜を ドライエッチングすることにより形成 し、上記 Cu配線のパターンは層間絶縁膜を ドライエッチングして形 成した溝パターン中に Cuを含む金属膜を埋込んで形成することを 特徴とする半導体集積回路装置の製造方法。 13. Multi-layer wiring structure with at least one layer of A1 wiring provided closest to the main surface of the semiconductor substrate and two or more layers of Cu wiring with an interlayer insulating film interposed on the A1 wiring A method of manufacturing a semiconductor integrated circuit device, wherein the A1 wiring pattern is formed by dry etching a metal film containing A1 formed on the entire surface of the semiconductor substrate main surface, and the Cu wiring pattern is an interlayer. A method for manufacturing a semiconductor integrated circuit device, wherein a metal film containing Cu is buried in a groove pattern formed by dry-etching an insulating film.
1 4 . Cu配線パターンは上記 Cuを含む金属膜をメ ツキ法により 形成する段階と、 上記金属膜を化学機械的研磨法により研磨する段 3 δ 階とから成りことを特徴とする請求の範囲第 1 3項記載の半導体集 積回路装置の製造方法。 14. A Cu wiring pattern is formed by forming the metal film containing Cu by a plating method and polishing the metal film by a chemical mechanical polishing method. 14. The method for manufacturing a semiconductor integrated circuit device according to claim 13, wherein the method comprises a 3δ floor.
1 5 . 上記 Cuを含む金属膜をメ ツキ法は無電解メ ツキの段階と、 電解メ ツキの段階とから成ることを特徴とする請求の範囲第 1 4項 記載の半導体集積回路装置の製造方法。  15. The manufacturing method of a semiconductor integrated circuit device according to claim 14, wherein the plating method of the metal film containing Cu comprises a step of electroless plating and a step of electrolytic plating. Method.
1 6 . 半導体基板上に少なく とも 2層以上の Cu配線層と各配線層 間を接続する via配線を有する多層配線を有した半導体集積回路装 置であって、 少なく とも 1つの Cu配線と下の配線とを接続する via 配線の上面がこの via配線との接続領域を除いた前記 Cu配線の底面 より上にあることを特徴とする半導体集積回路装置。  16. A semiconductor integrated circuit device having a multilayer wiring having at least two or more Cu wiring layers on a semiconductor substrate and a via wiring connecting between each wiring layer, wherein at least one Cu wiring and Wherein the upper surface of the via wiring connecting to the via wiring is above the bottom surface of the Cu wiring excluding the connection region with the via wiring.
1 7 . 半導体基板上に少なく とも 2層以上の Cu配線層と各配線層 間を接続する via配線を有する半導体集積回路装置であって、 少な く とも 1つの Cu配線と下の配線を接続する via配線の上面がこの via配線との接続領域を除いた前記 Cu配線の底面より下にあること を特徴とする半導体集積回路装置。  17. A semiconductor integrated circuit device having at least two or more Cu wiring layers on a semiconductor substrate and a via wiring for connecting each wiring layer, and connecting at least one Cu wiring and a lower wiring. A semiconductor integrated circuit device, wherein an upper surface of a via wiring is below a bottom surface of the Cu wiring excluding a connection region with the via wiring.
1 8 . Cu以外の金属を主成分とする第 1の配線とその上の Cu配 線層を接続する Wを主成分とする第 1の via配線の底面が、この via 配線の接続領域を除いた第 1の配線の上面より下にあることを特徴 とする半導体集積回路装置。  18. Connecting the first wiring mainly composed of metal other than Cu and the Cu wiring layer above it The bottom surface of the first via wiring mainly composed of W excludes the connection area of this via wiring. A semiconductor integrated circuit device located below an upper surface of the first wiring.
PCT/JP1998/001434 1998-03-30 1998-03-30 Semiconductor integrated circuit device and method for manufacturing the same WO1999050903A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001434 WO1999050903A1 (en) 1998-03-30 1998-03-30 Semiconductor integrated circuit device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1998/001434 WO1999050903A1 (en) 1998-03-30 1998-03-30 Semiconductor integrated circuit device and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO1999050903A1 true WO1999050903A1 (en) 1999-10-07

Family

ID=14207943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001434 WO1999050903A1 (en) 1998-03-30 1998-03-30 Semiconductor integrated circuit device and method for manufacturing the same

Country Status (1)

Country Link
WO (1) WO1999050903A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505385A (en) * 2005-08-08 2009-02-05 インターナショナル・ビジネス・マシーンズ・コーポレーション Dry etchback of interconnect contacts
JP2010123998A (en) * 2002-05-17 2010-06-03 Semiconductor Energy Lab Co Ltd Semiconductor device
WO2011158319A1 (en) * 2010-06-14 2011-12-22 ルネサスエレクトロニクス株式会社 Semiconductor device and method for manufacturing same
CN104952790A (en) * 2010-06-14 2015-09-30 瑞萨电子株式会社 Semiconductor device manufacturing method
JP2021036594A (en) * 2015-03-19 2021-03-04 株式会社半導体エネルギー研究所 Semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116953A (en) * 1990-09-07 1992-04-17 Seiko Epson Corp Semiconductor device provided with plated wiring layer and manufacture thereof
JPH0799198A (en) * 1993-06-24 1995-04-11 Nec Corp Manufacture for semiconductor device
JPH0955429A (en) * 1995-08-10 1997-02-25 Nec Corp Semiconductor device and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04116953A (en) * 1990-09-07 1992-04-17 Seiko Epson Corp Semiconductor device provided with plated wiring layer and manufacture thereof
JPH0799198A (en) * 1993-06-24 1995-04-11 Nec Corp Manufacture for semiconductor device
JPH0955429A (en) * 1995-08-10 1997-02-25 Nec Corp Semiconductor device and its manufacturing method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197750A (en) * 2002-05-17 2016-11-24 株式会社半導体エネルギー研究所 Semiconductor device
JP2010123998A (en) * 2002-05-17 2010-06-03 Semiconductor Energy Lab Co Ltd Semiconductor device
US9847355B2 (en) 2002-05-17 2017-12-19 Semiconductor Energy Laboratory Co., Ltd. Silicon nitride film, and semiconductor device
US8866144B2 (en) 2002-05-17 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Thin film semiconductor device having silicon nitride film
JP4742147B2 (en) * 2005-08-08 2011-08-10 インターナショナル・ビジネス・マシーンズ・コーポレーション Dry etchback of interconnect contacts
JP2009505385A (en) * 2005-08-08 2009-02-05 インターナショナル・ビジネス・マシーンズ・コーポレーション Dry etchback of interconnect contacts
CN102939649A (en) * 2010-06-14 2013-02-20 瑞萨电子株式会社 Semiconductor device and method for manufacturing same
US9030014B2 (en) 2010-06-14 2015-05-12 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN104952790A (en) * 2010-06-14 2015-09-30 瑞萨电子株式会社 Semiconductor device manufacturing method
TWI512898B (en) * 2010-06-14 2015-12-11 Renesas Electronics Corp Semiconductor device and manufacturing method thereof
US9337016B2 (en) 2010-06-14 2016-05-10 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
JP5684254B2 (en) * 2010-06-14 2015-03-11 ルネサスエレクトロニクス株式会社 Semiconductor device
WO2011158319A1 (en) * 2010-06-14 2011-12-22 ルネサスエレクトロニクス株式会社 Semiconductor device and method for manufacturing same
US10049984B2 (en) 2010-06-14 2018-08-14 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN104952790B (en) * 2010-06-14 2019-01-01 瑞萨电子株式会社 The manufacturing method of semiconductor devices
US10418328B2 (en) 2010-06-14 2019-09-17 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US11515257B2 (en) 2010-06-14 2022-11-29 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
JP2021036594A (en) * 2015-03-19 2021-03-04 株式会社半導体エネルギー研究所 Semiconductor device

Similar Documents

Publication Publication Date Title
US7834457B2 (en) Bilayer metal capping layer for interconnect applications
EP2139037B1 (en) Method of fabricating an interconnect structure for electromigration enhancement
US7517736B2 (en) Structure and method of chemically formed anchored metallic vias
JP5419328B2 (en) Interconnect structure having redundant barrier components and method of forming an interconnect structure
TWI290736B (en) Semiconductor device and method for production thereof
US20080128907A1 (en) Semiconductor structure with liner
US20080113508A1 (en) Method of fabricating metal interconnects using a sacrificial layer to protect seed layer prior to gap fill
JP2000077411A (en) Semiconductor device and manufacture thereof
JP2011511469A (en) Interconnect structure with high leakage resistance
JP3177968B2 (en) Semiconductor device and manufacturing method thereof
CN101174608A (en) Reduced leakage interconnect structure
JPH11135506A (en) Manufacture of semiconductor device
JPH11307530A (en) Semiconductor device and its manufacture
US6406996B1 (en) Sub-cap and method of manufacture therefor in integrated circuit capping layers
JP2019054153A (en) Semiconductor device manufacturing method
US6469385B1 (en) Integrated circuit with dielectric diffusion barrier layer formed between interconnects and interlayer dielectric layers
US20070023868A1 (en) Method of forming copper metal line and semiconductor device including the same
JP2006324584A (en) Semiconductor device and manufacturing method thereof
WO1999050903A1 (en) Semiconductor integrated circuit device and method for manufacturing the same
WO2002056364A2 (en) Conductor reservoir volume for integrated circuit interconnects
CN111383989B (en) Semiconductor structure and forming method thereof
JPH11340226A (en) Manufacture of semiconductor device
JPH11102911A (en) Semiconductor device and its manufacture
US20010029081A1 (en) Method for producing semiconductor device
JP2004247337A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09582703

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase