WO1999050975A1 - Time since last fix annunciation system for gps-based wireless rescue system - Google Patents

Time since last fix annunciation system for gps-based wireless rescue system Download PDF

Info

Publication number
WO1999050975A1
WO1999050975A1 PCT/US1998/006391 US9806391W WO9950975A1 WO 1999050975 A1 WO1999050975 A1 WO 1999050975A1 US 9806391 W US9806391 W US 9806391W WO 9950975 A1 WO9950975 A1 WO 9950975A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
fix
gps
location
gps receiver
Prior art date
Application number
PCT/US1998/006391
Other languages
French (fr)
Inventor
Robert K. Tendler
Original Assignee
Tendler Cellular
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US08/608,483 priority Critical patent/US5736962A/en
Application filed by Tendler Cellular filed Critical Tendler Cellular
Priority to AU69453/98A priority patent/AU6945398A/en
Priority to PCT/US1998/006391 priority patent/WO1999050975A1/en
Publication of WO1999050975A1 publication Critical patent/WO1999050975A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/17Emergency applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0027Transmission from mobile station to base station of actual mobile position, i.e. position determined on mobile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/001Transmission of position information to remote stations
    • G01S2205/006Transmission of position information to remote stations for emergency situations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/001Transmission of position information to remote stations
    • G01S2205/008Transmission of position information to remote stations using a mobile telephone network

Definitions

  • This invention relates to GPS-based emergency location systems, and more particularly, to a system for assisting emergency personnel to determine the validity of GPS-derived location through the annunciation of the time since last fix.
  • GPS-based emergency location systems which are cellular based in which the location of the cellular phone is determined through a GPS receiver which outputs its location through the cellular phone to public service access points or PSAP'S from which emergency operators dispatch rescue services .
  • the U.S. constellation of GPS satellites currently includes 26 satellites of which 8 to 10 satellites are in view from any given location. What prevents these satellites from being in view are trees, buildings and other structures which are in the line sight between the GPS antenna and any one or a number of satellites .
  • satellite fixes can take as short as two seconds to acquire, given ephemeris, almanac and time to as long as ten to fifteen minutes when none of the above is available.
  • the GPS receiver is turned on at the time of the emergency, either no position is broadcast until a fix is achieved or a
  • calls are routed to a single PSAP within a state so that no position information is
  • PSAP operators if the only information that they receive is. latitude and longitude. It will be appreciated that merely storing and transmitting the last latitude and longitude is not enough to permit ascertaining if the reported position is valid. Moreover, position alone, while if valid is useful in
  • the time of last fix is annunciated, with the time of the prior fix being stored in one embodiment in an E 2ROM and compared with the present time in order to annunciate the time since last fix. Also annunciated can be the velocity at the time of last fix as well as direction of travel. It is noted that this information is available as the
  • NMEA 0183 output of a standard GPS receiver which outputs both latitude and longitude, velocity, direction and time as a matter of course. Current time is established by every GPS receiver since it is essential for the calculation of latitude and longitude.
  • the time of day is also established.
  • GPS receivers such as the Motorola Encore model
  • the time when a fix has occurred is indicated by the setting of a flag. This flag indicates that the latitude and longitude data is valid.
  • valid data can be established when either a 2-D or a
  • 3-D fix is achieved, assuming the location is accurate within a predetermined distance.
  • distances are set by the GPS manufacturers, but can vary from over 1,000 feet and to as little as 240 feet.
  • annunciating time since last fix permits the PSAP operators to ascertain whether or not a reported position is valid. With other information such as velocity, the PSAP operator can deduce that a person making an emergency call has entered a building. This is because a PSAP operator can assume that if the time since last fix is less than several hours and if the velocity indicates a person walking, the person is probably within a building. If the time since last fix is a matter of days, then no valid information can be assumed about the location of the stricken individual.
  • a speech synthesizer at the cell phone is coupled to a CPU which decodes the NMEA 0183 sentence from the co-located GPS receiver.
  • the latitude and longitude is stored either at the CPU or by the GPS receiver, with standard GPS
  • the time of the last valid fix can be ascertained through the aforementioned valid-data flag such that upon correlating the latitude and longitude with the time, of last valid data, one can ascertain how long ago a valid fix occurred.
  • the cellular phone when an emergency call is initiated, the cellular phone, through its speech synthesizing unit, calls out MAYDAY, followed by whatever latitude and longitude has been stored, which is in-turn followed by an annunciation of the time since last fix.
  • the verbalized string may be "MAYDAY, MAYDAY, MAYDAY, Position 40.21.10 North by 70.31.06 West, 26 minutes since last fix, Velocity 0.2 miles an hour, Direction 267 degrees".
  • the information provided by the subject system thus alleviates a problem with the physics of GPS location systems, that being the requirement of the GPS antenna having an unobstructed view of the satellites.
  • Figure 1 is a diagrammatic representation of a typical scene in which an individual carrying a GPS-equipped cellular phone approaches a building, with the building blocking at least a number of the satellites;
  • Figure 2 is a front view of a GPS-equipped cellular phone showing a 911 button, a GPS antenna, and a synthesized speech/dialer board for generating the annunciation of the MAYDAY, the position, and the time since last fix, as well as velocity and direction of travel if desired;
  • Figure 3 is a block diagram of a typical PSAP coupled to a cell site via a local exchange, wherein the position and type of emergency is operator-entered, and with the time since last fix information giving the operator an opportunity to check the validity of the received position;
  • FIG. 4 is a block diagram of the phone of Figure 2 indicating the synthetic speech generating and dialing circuitry within the cellular phone to provide a synthetic voice rendition of the latitude and longitude as well as a verbal rendition of the time since last fix and optionally, velocity and direction;
  • Figure 5 is a diagrammatic illustration of an automotive scenario in which the subject system broadcasts the velocity, direction and time since last fix based on the time and position of the vehicle as it entered a garage;
  • FIG. 6 is a diagrammatic illustration of a handsfree cradle embodiment of the subject invention in which the cellular phone is placed in a handsfree cradle, with the GPS antenna connected to external GPS antenna and with the usual handsfree functions being provided by the handsfree cradle; and,
  • Figure 7 is a detailed block diagram of the phone of Figure 6 indicating the additional handsfree cradle connections and functions .
  • a phone 10 carried by an individual 12 has an integrally carried GPS antenna 14 and an integrally carried GPS receiver 16, with the phone having an integrally carried dialer and speech synthesizer board 18 for controlling the cellular phone to place the emergency call.
  • a 911 call is placed by pushing button 20.
  • individual 12 is shown entering a building 13 walking at a velocity indicated by vector 15.
  • This velocity may, for instance, be 0.13 miles per hour with the individual walking in a direction of 276 degrees magnetic.
  • the time of the fix to which these numbers pertain is illustrated as being
  • the GPS antenna 14 will have its line of sight cut to various satellites, here represented by reference character 17, on which the corresponding GPS receiver depended to provide positional fix.
  • the cellular phone dials 911 and reports the position that the GPS received when the individual walked into the building along with the time of last fix and optionally velocity and direction of travel. Note that position and the time of the last fix is stored at the phone. With the report of the information, the validity of the fix can be ascertained and emergency personnel may be directed reliably to the building if not to the floor so as to effectuate rescue. It is noted that attempts to provide GPS fixes within a building are met with failure due to the fact that the GPS antenna cannot see the satellites.
  • satellites 17' and 17" are in view of GPS antenna 14 as illustrated by dotted lines 21 and 23.
  • the message transmitted is one which may have the following annunciation, "MAYDAY, MAYDAY, MAYDAY, Position 40.23.16 North by 070.41.06 West, Phone Number 617-xxx-xxxx, 27 minutes since last fix, velocity 0.13 miles per hour, direction of travel 276 degrees" .
  • this information is transferred to a dispatch center, in this case, PSAP 30, with the information communicated to the PSAP operator via telephone 32 coupled to a local exchange 34 in turn coupled to a cell site
  • a monitor 56 coupled to CPU 46 displays a map 58 on which location 60 of the caller is depicted by cursor 62.
  • Protocols developed within the PSAP determine whether or not the position is valid. These protocols also permit deterring via dead reckoning techniques where the actual position of the caller or vehicle is likely to be. By placing the cursor on the map regardless of its validity, one can ascertain by drawing various circles with the cursor at the center a zone in which the caller may be located, depending on the time since last fix as well as velocity. Direction of travel, may or may not be useful to indicate the position of the caller since the caller may take many turns since the last fix. Nonetheless, direction of travel can provide additional information as to the likely whereabouts of the caller.
  • cellular phone 10 in general, has RF circuitry 100 and audio/digital circuitry 102 for the provision of cellular phone calls.
  • Speech synthesizer and dialer board 18 includes a
  • CPU 104 which includes a hardware UART 106 and a software UART
  • CPU 104 being coupled to a speech synthesizer 110 for the purpose of providing the requisite message via an audio
  • E 2ROM 114 is utilized to store the preprogrammed telephone numbers and other data that is used by CPU 104 to control the operation of cell phone
  • a TX data line 116 is provided to control a dialer section and all phone related functions for cellular phone 10.
  • CPU 104 provides control of speech chip 110 via control line 120, with a crystal 122 providing the speech clock.
  • this device is utilized not only to store preprogrammed telephone numbers, but is also utilized to store the time of day coincident with a flag 123 on
  • NMEA bus 0183 bus 125 being up.
  • E 2ROM 114 i.s that whi.ch comes from GPS receiver 16 coi.ncident with flag 123. This indicates the time of last fix.
  • an audio output of speech chip 110 is utilized to drive an internal speaker of cell phone 10, not shown, via speaker driver 134 controlled by
  • a "test” switch 144 Also provided as an input to CPU 104 is a "test” switch 144, an “enter” switch 146, and a “program” switch 148 for the testing of the system and for entering a predetermined number into E 2 ROM 114.
  • an LED indicator 140 driven by a transistor circuit 142 to indicate that the GPS receiver has a GPS fix.
  • a car 200 has an internally carried cell phone 202 and a GPS receiver 204 respectively coupled to a cellular phone antenna 206, with the car having an externally-carried GPS antenna 208.
  • Car 200 is shown entering a garage 210 with satellites 214 in view and providing valid position information to GPS 204 at that time.
  • the system declares that as the vehicle is entering the garage, its velocity is 10 miles an hour, its direction of travel is 270 degrees and the time is 0853AM.
  • the view of the satellites from GPS antenna 208 is obscured by the garage superstructure.
  • a car alarm system may trigger the cellular phone to make the emergency call to 911 with a "stolen vehicle" message.
  • the PSAP operators having heard the stolen vehicle message, can deduce from the time since last fix and last velocity that the car was at one point in a garage. If the perpetrator does not disable the GPS or cell phone, then the vehicle track may be maintained by the repetitive transmission of the location of the vehicle as the car moves. If the car is in a densely populated urban setting in which buildings may obscure the satellites, then the time since last fix, along with velocity gives a relatively accurate way of ascertaining the progress of the vehicle despite the fact that at certain times no satellite fix is possible.
  • phone 10 may be placed in a handsfree cradle 220 which has attached to it the usual handsfree microphone 222, speaker 224 and cellular phone antenna 226 that is mounted to the exterior of a car.
  • a transfer antenna 228 is in close proximity to GPS antenna 14 and is connected to an external GPS antenna 230.
  • a. printed circuit board 246 lies within handsfree cradle for the control of the cellular phone through the cellular phone bus structure not shown in this figure. It will be appreciated that the handsfree cradle may be mounted adjacent a car console 248 for convenience.
  • this cradle is provided with a cradle connector 246 to which service request buttons 236, 238, 240, and 244 may be connected.
  • These service requests are coupled to CPU 104 via software UART 108 over TX data line 248 so as to cause CPU 104 to initiate the appropriate service requests and to cause cell phone 10 to dial the appropriate number.
  • a receiver mute line 250 is provided from cradle 220 for muting car mounted broadcast receivers, and ignition sense line 252 is provided from informing the cellular phone that the handsfree cradle has been connected.
  • Speaker outline 254 is provided from the cellular phone to the handsfree cradle for driving speaker 24 and a back-up switch protection line 256 is provided for those informing CPU 104 that there is a call in progress and to provide this information to the handsfree cradle.
  • the call-in-progress line 256 is utilized by CPU 104 to request further services, in the form of a 911 back-up call when after the 911 button has been pushed, the call has been terminated to the PSAP.

Abstract

In a wireless emergency location system (30) in which a cellular phone (10) is utilized to communicate the location of an individual or vehicle by announcing position based on the output of a GPS receiver (16), time since the last fix is computed and annunciated to permit emergency personnel to ascertain if the position information is valid. In one embodiment, velocity and direction of travel are also annunciated for permitting emergency personnel to calculate the location of the phone and thus a stricken individual. Time since last fix as well as velocity and direction annunciation is also used to enable location of stolen or hijacked vehicles assuming location information is no longer available at the phone or satellite fix has been lost.

Description

TITLE OF INVENTION
TIME SINCE LAST FIX ANNUNCIATION SYSTEM
FOR GPS-BASED WIRELESS RESCUE SYSTEM
FIELD OF INVENTION
This invention relates to GPS-based emergency location systems, and more particularly, to a system for assisting emergency personnel to determine the validity of GPS-derived location through the annunciation of the time since last fix.
BACKGROUND OF THE INVENTION
Presently, GPS-based emergency location systems exist which are cellular based in which the location of the cellular phone is determined through a GPS receiver which outputs its location through the cellular phone to public service access points or PSAP'S from which emergency operators dispatch rescue services .
For all GPS-based location systems it is paramount that the GPS antenna associated with the GPS receiver see the satellites. For a 2-D fix, three satellites must be in view, whereas for a 3-D fix, four satellites must be in view. The U.S. constellation of GPS satellites currently includes 26 satellites of which 8 to 10 satellites are in view from any given location. What prevents these satellites from being in view are trees, buildings and other structures which are in the line sight between the GPS antenna and any one or a number of satellites .
It is noted that satellite fixes can take as short as two seconds to acquire, given ephemeris, almanac and time to as long as ten to fifteen minutes when none of the above is available. As can be seen, in the best of circumstances if the GPS receiver is turned on at the time of the emergency, either no position is broadcast until a fix is achieved or a
-1- previously-stored position is broadcast until the GPS information is updated which may take as long as ten to fifteen minutes .
This presents EMT's or other dispatch personnel with a problem upon receipt of the latitude and longitude of a caller requesting emergency services. If the phone and co-located GPS was not on at the time of the emergency call, it is possible that dispatch units would be sent to the wrong location, i.e., a previously stored latitude/longitude. This situation is more likely to occur if the cellular phone is handheld and carries its own GPS receiver and antenna when a person travels from location to location without turning the phone on.
Moreover, even if the GPS receiver is on, if satellites are not in view for an extended period of time, this also gives an invalid location to the PSAP operators. Note that when an individual carrying such a device enters a building, satellite signals are lost. If the phone is activated, the stored position is read out and transmitted to the PSAP. In this case, the location is sufficiently valid to enable rescue units to be dispatched. However, there is no way for the PSAP operators to ascertain that the transmitted location is valid. This is because the PSAP operator cannot deduce from the information sent that the individual has entered a building.
Additionally, when an individual takes such a phone and travels to a different city, a PSAP operator in that city could not, without further information, rule out the reported position, which may be many tens or hundreds of miles off, as being invalid. This is because the cities might not be very far apart. Also, when an unusual position is reported to a
PSAP, it is not possible to disregard the transmitted position based on the assumption that there is an equipment error.
Also, as is often the case in some states, calls are routed to a single PSAP within a state so that no position information is
-2- obviously wrong. Additionally, some calls emanating from one state are picked up by cell sites in an adjoining state.
All of the above militates towards uncertainty when a PSAP receives an emergency call with GPS-based position information.
The situation becomes still worse when such phones are located in motor vehicles. When a GPS-based wireless emergency location system is utilized in a car, oftentimes when the car is parked in a covered garage, no satellite fix is possible. If a driver is accosted in the garage and activates his or her emergency location system, it is impossible for the PSAP operator to ascertain if the location for the emergency call is valid even though the position of the car as it entered the garage is stored and transmitted. Again, in this case the position may be valid, but the PSAP operator has no way of deducing that the car is in a garage from raw latitude/longitude information.
If the car is stolen or hijacked and the thief disables the GPS, then this fact is generally unknown to the PSAP operator which generally frustrates vehicle recovery or twarting the hijack. It is noted that cars can travel extensively in short periods of time making the broadcast of previously stored positions a problem. There is also a problem in ascertaining the position of callers who find themselves in urban environments, through tunnels, under expressways or in the vicinity of objects which block the view of the sky since the satellites are no longer in view.
In summary, all of the above situations are unknown to the
PSAP operators if the only information that they receive is. latitude and longitude. It will be appreciated that merely storing and transmitting the last latitude and longitude is not enough to permit ascertaining if the reported position is valid. Moreover, position alone, while if valid is useful in
-3- ascertaining the general area in which a caller may be located, does not pin-point the individual nor give enough information for the individual to be reliably found during periods of loss of satellite signals due to blockage. This is because it is not possible to predict when the satellites will be reacquired.
SUMMARY OF THE INVENTION
In the subject system, in addition to reporting the last latitude and longitude as received by a GPS receiver at the cellular phone, the time of last fix is annunciated, with the time of the prior fix being stored in one embodiment in an E 2ROM and compared with the present time in order to annunciate the time since last fix. Also annunciated can be the velocity at the time of last fix as well as direction of travel. It is noted that this information is available as the
NMEA 0183 output of a standard GPS receiver which outputs both latitude and longitude, velocity, direction and time as a matter of course. Current time is established by every GPS receiver since it is essential for the calculation of latitude and longitude.
In one embodiment, once the GPS receiver has locked onto satellites and the almanac and the ephemeris is established, the time of day is also established. For GPS receivers such as the Motorola Encore model, the time when a fix has occurred is indicated by the setting of a flag. This flag indicates that the latitude and longitude data is valid. For such a' GPS receiver, valid data can be established when either a 2-D or a
3-D fix is achieved, assuming the location is accurate within a predetermined distance. Such distances are set by the GPS manufacturers, but can vary from over 1,000 feet and to as little as 240 feet.
-4- By providing an annunciation of the time since last fix, the validity of incoming position data can be established. If velocity and direction are annunciated, it is possible for PSAP operators to calculate the current position of the individual using dead reckoning techniques commonly used by the U.S. Coast Guard. Thus, if the fix is many days old, it is, clearly invalid. If it is hours old and the velocity indicates walking, then one can deduce that the call came from a building. If the fix is tens of minutes old and the velocity indicates automobile speeds, then a dead reconing scenario is indicated.
In summary, annunciating time since last fix permits the PSAP operators to ascertain whether or not a reported position is valid. With other information such as velocity, the PSAP operator can deduce that a person making an emergency call has entered a building. This is because a PSAP operator can assume that if the time since last fix is less than several hours and if the velocity indicates a person walking, the person is probably within a building. If the time since last fix is a matter of days, then no valid information can be assumed about the location of the stricken individual.
Likewise, if a car is in covered parking lot in which satellites are not in view, then assuming that the previous velocity was in excess of normal walking velocity, e.g., more than 3 miles an hour, then it can be ascertained at least that the call is coming from a motor vehicle, if not that the vehicle is in a covered parking area.
In order to accomplish the annunciation of the time last since last fix, as well as velocity and direction of travel, in one embodiment, a speech synthesizer at the cell phone is coupled to a CPU which decodes the NMEA 0183 sentence from the co-located GPS receiver. The latitude and longitude is stored either at the CPU or by the GPS receiver, with standard GPS
-5- receivers storing last valid latitude and longitude in non-volatile memory.
Regardless of where the last latitude and longitude is stored, the time of the last valid fix can be ascertained through the aforementioned valid-data flag such that upon correlating the latitude and longitude with the time, of last valid data, one can ascertain how long ago a valid fix occurred.
In one embodiment, only the time of this last valid data is
2 stored in E ROM, with the last latitude and longitude being stored by the GPS receiver.
Regardless, when an emergency call is initiated, the cellular phone, through its speech synthesizing unit, calls out MAYDAY, followed by whatever latitude and longitude has been stored, which is in-turn followed by an annunciation of the time since last fix. Thus, the verbalized string may be "MAYDAY, MAYDAY, MAYDAY, Position 40.21.10 North by 70.31.06 West, 26 minutes since last fix, Velocity 0.2 miles an hour, Direction 267 degrees". With an annunciation of the this type of information, it is possible for the PSAP operators to ascertain whether or not the last fix is sufficiently recent to be acted upon. This is especially important in portable cellular-based emergency location systems in which the cellular phone is transported from one city to another. It is also important in the aforementioned situations in which one enters a building which blocks the view of the satellites. It also solves the problem of a car having a GPS-based wireless emergency location system being parked in a covered parking lot.
The information provided by the subject system thus alleviates a problem with the physics of GPS location systems, that being the requirement of the GPS antenna having an unobstructed view of the satellites.
-6- It will be appreciated while the subject invention will be described in terms of annunciating time since last fix and other data verbally, it is within the scope of the present invention that the same information be transmitted digitally.
It will also be appreciated that regardless of whether velocity and direction are annunciated, as a first approximation to be able to ascertain whether the location of the caller is valid, providing an annunciation of time since last fix provides sufficient information for the PSAP operators as to whether or not to dispatch emergency vehicles to the indicated location. Moreover, while the description of the invention centers on cellular phones, any wireless phone is within the scope of this invention.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other features of the Subject Invention will be better understood taken in conjunction with a Detailed Description in conjunction with the Drawings of which:
Figure 1 is a diagrammatic representation of a typical scene in which an individual carrying a GPS-equipped cellular phone approaches a building, with the building blocking at least a number of the satellites;
Figure 2 is a front view of a GPS-equipped cellular phone showing a 911 button, a GPS antenna, and a synthesized speech/dialer board for generating the annunciation of the MAYDAY, the position, and the time since last fix, as well as velocity and direction of travel if desired;
Figure 3 is a block diagram of a typical PSAP coupled to a cell site via a local exchange, wherein the position and type of emergency is operator-entered, and with the time since last fix information giving the operator an opportunity to check the validity of the received position;
-7- Figure 4 is a block diagram of the phone of Figure 2 indicating the synthetic speech generating and dialing circuitry within the cellular phone to provide a synthetic voice rendition of the latitude and longitude as well as a verbal rendition of the time since last fix and optionally, velocity and direction;
Figure 5 is a diagrammatic illustration of an automotive scenario in which the subject system broadcasts the velocity, direction and time since last fix based on the time and position of the vehicle as it entered a garage;
Figure 6 is a diagrammatic illustration of a handsfree cradle embodiment of the subject invention in which the cellular phone is placed in a handsfree cradle, with the GPS antenna connected to external GPS antenna and with the usual handsfree functions being provided by the handsfree cradle; and,
Figure 7 is a detailed block diagram of the phone of Figure 6 indicating the additional handsfree cradle connections and functions .
DETAILED DESCRIPTION
Referring now to Figures 1 and 2, a phone 10 carried by an individual 12 has an integrally carried GPS antenna 14 and an integrally carried GPS receiver 16, with the phone having an integrally carried dialer and speech synthesizer board 18 for controlling the cellular phone to place the emergency call. In the illustrated embodiment, a 911 call is placed by pushing button 20.
As depicted, individual 12 is shown entering a building 13 walking at a velocity indicated by vector 15. This velocity may, for instance, be 0.13 miles per hour with the individual walking in a direction of 276 degrees magnetic. The time of the fix to which these numbers pertain is illustrated as being
-8- 0853AM. When the individual disappears within the building, the GPS antenna 14 will have its line of sight cut to various satellites, here represented by reference character 17, on which the corresponding GPS receiver depended to provide positional fix.
When the individual reaches his or her destination, illustrated at 12', assuming that he or she has a heart attack or other medical emergency, if he or she pushes the 911 button, i.e., button 20, then the cellular phone dials 911 and reports the position that the GPS received when the individual walked into the building along with the time of last fix and optionally velocity and direction of travel. Note that position and the time of the last fix is stored at the phone. With the report of the information, the validity of the fix can be ascertained and emergency personnel may be directed reliably to the building if not to the floor so as to effectuate rescue. It is noted that attempts to provide GPS fixes within a building are met with failure due to the fact that the GPS antenna cannot see the satellites.
Even outside of the building, the line of sight to a satellite may be blocked by a building as illustrated by dotted line 19, whereas satellites 17' and 17" are in view of GPS antenna 14 as illustrated by dotted lines 21 and 23.
The message transmitted is one which may have the following annunciation, "MAYDAY, MAYDAY, MAYDAY, Position 40.23.16 North by 070.41.06 West, Phone Number 617-xxx-xxxx, 27 minutes since last fix, velocity 0.13 miles per hour, direction of travel 276 degrees" .
Referring now to Figure 3, this information is transferred to a dispatch center, in this case, PSAP 30, with the information communicated to the PSAP operator via telephone 32 coupled to a local exchange 34 in turn coupled to a cell site
36 via land line 38.
-9- The information which is verbally available to the operator is entered at keyboard 40 with the type of emergency, if known, being entered at 42 and with the position being entered at 44. Units 42 and 44 are coupled to a CPU 46 in turn coupled to a database 48, which contains maps and charts. Locations on the maps and charts are accessible by a latitude and longitude as is common.
Note that the operator can ascertain by virtue of having heard the time since last fix whether or not the latitude and longitude is valid and cause the system to select the closest dispatch office 50 as well as optionally switching the call to this dispatch office as illustrated at 52. A monitor 56 coupled to CPU 46 displays a map 58 on which location 60 of the caller is depicted by cursor 62.
Protocols developed within the PSAP determine whether or not the position is valid. These protocols also permit deterring via dead reckoning techniques where the actual position of the caller or vehicle is likely to be. By placing the cursor on the map regardless of its validity, one can ascertain by drawing various circles with the cursor at the center a zone in which the caller may be located, depending on the time since last fix as well as velocity. Direction of travel, may or may not be useful to indicate the position of the caller since the caller may take many turns since the last fix. Nonetheless, direction of travel can provide additional information as to the likely whereabouts of the caller.
In order to accomplish the above, and referring now to
Figure 4, cellular phone 10, in general, has RF circuitry 100 and audio/digital circuitry 102 for the provision of cellular phone calls. Speech synthesizer and dialer board 18 includes a
CPU 104 which includes a hardware UART 106 and a software UART
108, with CPU 104 being coupled to a speech synthesizer 110 for the purpose of providing the requisite message via an audio
-10- line 111 through an audio mixer 112 to an audio input terminal 113 of the audio/digital circuitry. An E 2ROM 114 is utilized to store the preprogrammed telephone numbers and other data that is used by CPU 104 to control the operation of cell phone
10 through its audio/digital circuitry 102. For this purpose, a TX data line 116 is provided to control a dialer section and all phone related functions for cellular phone 10.
It will be appreciated that CPU 104 provides control of speech chip 110 via control line 120, with a crystal 122 providing the speech clock. With respect to the E 2ROM, this device is utilized not only to store preprogrammed telephone numbers, but is also utilized to store the time of day coincident with a flag 123 on
NMEA bus 0183 bus 125 being up. Thus, the time stored in
E 2ROM 114 i.s that whi.ch comes from GPS receiver 16 coi.ncident with flag 123. This indicates the time of last fix.
When button 20 is depressed, the time from GPS receiver 16 is read out and compared with the time of last fix established in the E 2ROM 114. The subtraction of these two times results in the time since last fix which is then audibilized via speech synthesizer 110 under the control of CPU 104.
As to the remainder of the activation of the cellular phone, automatic turn-on of the cellular phone upon depression of switch 20 is accomplished through a power enable transistor circuit 124, which is in turn utilized to turn on the cellular phone, with power being derived from phone battery 126 as illustrated. Note that the turning off of switched power on line 127 is sensed by transistor circuitry generally illustrated at 128 so that CPU 104 can be placed in its low power drain mode.
It will be appreciated that depression of one of the switches to be described hereinafter coupled to CPU 104 via software UART 108 over TX data line 132 causes CPU 104 to
-11- initiate the appropriate message to be generated and causes cell phone 10 to dial the appropriate number.
2 In the programming of E ROM 114, an audio output of speech chip 110 is utilized to drive an internal speaker of cell phone 10, not shown, via speaker driver 134 controlled by
CPU 104 via volume control 136.
Also provided as an input to CPU 104 is a "test" switch 144, an "enter" switch 146, and a "program" switch 148 for the testing of the system and for entering a predetermined number into E2ROM 114.
Also provided at the cell phone is an LED indicator 140 driven by a transistor circuit 142 to indicate that the GPS receiver has a GPS fix.
Referring now to Figure 5, in this scenario a car 200 has an internally carried cell phone 202 and a GPS receiver 204 respectively coupled to a cellular phone antenna 206, with the car having an externally-carried GPS antenna 208. Car 200 is shown entering a garage 210 with satellites 214 in view and providing valid position information to GPS 204 at that time.
In this case, the system declares that as the vehicle is entering the garage, its velocity is 10 miles an hour, its direction of travel is 270 degrees and the time is 0853AM. When the vehicle is parked in the garage, the view of the satellites from GPS antenna 208 is obscured by the garage superstructure.
Should a person entering in the vehicle sometime later be accosted, and assuming the individual can reach the 911 button of the cellular phone, then an emergency call will go out giving the latitude and longitude of the vehicle as it entered the garage. Since the time since last fix will be on the order of minutes or hours, it can be deduced by PSAP personnel that since the velocity was 10 miles per hour, the calling entity is a motor vehicle and the car must have been entering a garage in
-12- view of the time since last fix. Thus in this scenario, it may be appropriate to dispatch rescue units to the indicated location.
In the case of the vehicle being stolen from the garage, a car alarm system may trigger the cellular phone to make the emergency call to 911 with a "stolen vehicle" message. The PSAP operators having heard the stolen vehicle message, can deduce from the time since last fix and last velocity that the car was at one point in a garage. If the perpetrator does not disable the GPS or cell phone, then the vehicle track may be maintained by the repetitive transmission of the location of the vehicle as the car moves. If the car is in a densely populated urban setting in which buildings may obscure the satellites, then the time since last fix, along with velocity gives a relatively accurate way of ascertaining the progress of the vehicle despite the fact that at certain times no satellite fix is possible. Note that with a vehicle going 60 miles an hour, the time that the GPS antenna does not see the satellite is limited. As will be appreciated, the above scenario can be ascertained by virtue of each fix being accompanied by the time since last fix so that the amount of time in and about various buildings can be ascertained by personnel at the PSAP.
While the subject system has been described in terms of a unitary device, as described in connection with Figure 6, phone 10 may be placed in a handsfree cradle 220 which has attached to it the usual handsfree microphone 222, speaker 224 and cellular phone antenna 226 that is mounted to the exterior of a car. For the handsfree cradle embodiment, a transfer antenna 228 is in close proximity to GPS antenna 14 and is connected to an external GPS antenna 230.
In addition to a 911 button 20 which activates the phone to place a 911 call, various service-request buttons 236, 238,
240, 242 and 244 cause the phone to dial respective
-13- predetermined numbers to give the location of the caller to the service provider. While the subject invention is described in connection with PSAP'S, information as to whether or not location is valid and the ability to do dead reckoning tracks is also applicable to any type of service provider.
In order to accomplish the requisite signalling, a. printed circuit board 246 lies within handsfree cradle for the control of the cellular phone through the cellular phone bus structure not shown in this figure. It will be appreciated that the handsfree cradle may be mounted adjacent a car console 248 for convenience.
In order to accommodate the handsfree cradle embodiment of Figure 6, and referring now to Figure 7 in which like reference characters between Figures 4 and 7 are preserved, it will be appreciated that for the handsfree cradle 220, this cradle is provided with a cradle connector 246 to which service request buttons 236, 238, 240, and 244 may be connected. These service requests are coupled to CPU 104 via software UART 108 over TX data line 248 so as to cause CPU 104 to initiate the appropriate service requests and to cause cell phone 10 to dial the appropriate number. Note that a receiver mute line 250 is provided from cradle 220 for muting car mounted broadcast receivers, and ignition sense line 252 is provided from informing the cellular phone that the handsfree cradle has been connected. Speaker outline 254 is provided from the cellular phone to the handsfree cradle for driving speaker 24 and a back-up switch protection line 256 is provided for those informing CPU 104 that there is a call in progress and to provide this information to the handsfree cradle.
The call-in-progress line 256, called the "back-up switch line", is utilized by CPU 104 to request further services, in the form of a 911 back-up call when after the 911 button has been pushed, the call has been terminated to the PSAP. The
-14- falling of the call-in-progress flag causes CPU 104 to have cell phone 10 dial a central dispatch office number with a 911 back-up emergency service request, with the service request resulting in the operators at the dispatch center first calling the cellular phone to see if emergency services have been dispatched, and then to call the particular PSAP involved to assure the services have been rendered.
Having above indicated a preferred embodiment of the present invention, it will occur to those skilled in the art that modifications and alternatives can be practiced within the spirit of the invention. It is accordingly intended to define the scope of the invention only as indicated in the following claims .
-15-

Claims

WHAT IS CLAIMED IS:
1. In a wireless location system in which a wireless phone is provided with a GPS receiver for receiving GPS satellite signals and means for annunciating the position derived from said GPS receiver and for transmitting said annunciated position to a remote location by said wireless phone, means at said wireless phone for ascertaining when in time said GPS receiver acquires a position fix from said GPS satellites, means for ascertaining present time, means for calculating time since said fix, means for annunciating said time since said fix, and means for transmitting said annunciated time since said fix to said remote location with said position annunciation such that the validity of said annunciated position can be ascertained at said remote location.
2. The system of Claim 1 wherein said fix is the last fix prior to the transmitting of said annunciated position.
3. The system of Claim 1 wherein said means for annunciating position includes means for announcing the fact of an emergency, whereby said wireless location system is a wireless emergency location system.
4. The system of Claim 1 wherein said means for announcing a request for services, whereby the requested services may be reliable provided to the appropriate location.
5. The system of Claim 1 wherein said means for annunciating position includes a speech synthesizer.
-16-
6. The system of Claim 1 wherein said GPS receiver outputs velocity of said GPS receiver and wherein said means for annunciating position also annunciates said velocity.
7. The system of Claim 1 wherein said GPS receiver outputs direction of travel of said GPS receiver and wherein said means for annunciating position also annunciates said direction of travel.
-17-
PCT/US1998/006391 1996-02-28 1998-04-01 Time since last fix annunciation system for gps-based wireless rescue system WO1999050975A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/608,483 US5736962A (en) 1996-02-28 1996-02-28 Time since last fix annunciation system for GPS-based wireless rescue system
AU69453/98A AU6945398A (en) 1998-04-01 1998-04-01 Time since last fix annunciation system for gps-based wireless rescue system
PCT/US1998/006391 WO1999050975A1 (en) 1996-02-28 1998-04-01 Time since last fix annunciation system for gps-based wireless rescue system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/608,483 US5736962A (en) 1996-02-28 1996-02-28 Time since last fix annunciation system for GPS-based wireless rescue system
PCT/US1998/006391 WO1999050975A1 (en) 1996-02-28 1998-04-01 Time since last fix annunciation system for gps-based wireless rescue system

Publications (1)

Publication Number Publication Date
WO1999050975A1 true WO1999050975A1 (en) 1999-10-07

Family

ID=26794041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1998/006391 WO1999050975A1 (en) 1996-02-28 1998-04-01 Time since last fix annunciation system for gps-based wireless rescue system

Country Status (2)

Country Link
US (1) US5736962A (en)
WO (1) WO1999050975A1 (en)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6519463B2 (en) 1996-02-28 2003-02-11 Tendler Cellular, Inc. Location based service request system
CA2341159A1 (en) * 1998-01-12 1999-07-15 David Monroe Apparatus for capturing, converting and transmitting a visual image signal via a digital transmission system
US5982324A (en) * 1998-05-14 1999-11-09 Nortel Networks Corporation Combining GPS with TOA/TDOA of cellular signals to locate terminal
US6150961A (en) * 1998-11-24 2000-11-21 International Business Machines Corporation Automated traffic mapping
US6333703B1 (en) 1998-11-24 2001-12-25 International Business Machines Corporation Automated traffic mapping using sampling and analysis
US6298229B1 (en) * 1998-12-04 2001-10-02 General Electric Company GPS receiver for emergency location reporting during intermittent shadowing
AU2355200A (en) 1998-12-07 2000-06-26 Global Trak, Inc. Apparatus and method for triggerable location reporting
TWM253017U (en) * 1999-02-03 2004-12-11 Matsushita Electric Ind Co Ltd Emergency reporting apparatus emergency reporting network system
US6297768B1 (en) 1999-02-25 2001-10-02 Lunareye, Inc. Triggerable remote controller
US6212392B1 (en) * 1999-02-26 2001-04-03 Signal Soft Corp. Method for determining if the location of a wireless communication device is within a specified area
JP3488144B2 (en) * 1999-08-24 2004-01-19 松下電器産業株式会社 Location notification device
SE515439C2 (en) * 1999-11-03 2001-08-06 Satsafe Mls Ab Theft prevention system and method for objects
US6677895B1 (en) 1999-11-16 2004-01-13 Harris Corporation System and method for determining the location of a transmitting mobile unit
US7164921B2 (en) * 2000-06-16 2007-01-16 Tendler Cellular, Inc. Auxiliary switch activated GPS-equipped wireless phone
US20020147135A1 (en) * 2000-12-21 2002-10-10 Oliver Schnell Method and device for producing an adapted travel treatment plan for administering a medicine in the event of a long-haul journey
DE10064018A1 (en) * 2000-12-21 2002-07-18 Oliver Schnell Method for producing a medicament application schedule for a long journey involves establishment of a basic schedule and modification of this schedule dependent on relevant journey details
US20030013449A1 (en) * 2001-07-11 2003-01-16 Hose David A. Monitoring boundary crossings in a wireless network
CA2355426A1 (en) * 2001-08-17 2003-02-17 Luther Haave A system and method for asset tracking
EP1518212A1 (en) * 2002-03-14 2005-03-30 Nd A Islandi A method and system for determining a track record of a moving object
US6711500B2 (en) * 2002-03-15 2004-03-23 E-Lead Electronic Co., Ltd. Method for vehicle dispatching system
EP1416745A1 (en) * 2002-10-31 2004-05-06 Siemens Aktiengesellschaft Localisation method
US20040203883A1 (en) * 2002-11-18 2004-10-14 Roger Jollis Systems and methods for providing location-based services to users
WO2004066240A2 (en) * 2003-01-21 2004-08-05 Byron King Gps based vehicle warning and location system and method
US7099774B2 (en) * 2003-01-21 2006-08-29 Byron King GPS based vehicle warning and location system
US7477906B2 (en) * 2004-02-27 2009-01-13 Research In Motion Limited Methods and apparatus for facilitating the determination of GPS location information for a mobile station without disrupting communications of a voice call
EP1751576A1 (en) * 2004-04-14 2007-02-14 France Telecom S.A. Method, system and module for locating a telecommunications terminal
FR2869188A1 (en) * 2004-04-14 2005-10-21 France Telecom Terminal e.g. mobile telephone, locating method for e.g. GSM network, involves selecting satellite based location and network location terminal when age of location is less than/equal to and greater than given duration respectively
US7277712B2 (en) * 2004-11-17 2007-10-02 At&T Mobility Ii, Llc Method and system for providing location information for emergency services
US8244412B2 (en) * 2005-02-25 2012-08-14 The Boeing Company System and methods for on-board pre-flight aircraft dispatching
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US7330122B2 (en) 2005-08-10 2008-02-12 Remotemdx, Inc. Remote tracking and communication device
US7991407B2 (en) * 2006-02-16 2011-08-02 General Motors Llc Method for identifying appropriate public safety answering points
US8797210B2 (en) 2006-07-14 2014-08-05 Securealert, Inc. Remote tracking device and a system and method for two-way voice communication between the device and a monitoring center
US7737841B2 (en) 2006-07-14 2010-06-15 Remotemdx Alarm and alarm management system for remote tracking devices
US7936262B2 (en) 2006-07-14 2011-05-03 Securealert, Inc. Remote tracking system with a dedicated monitoring center
US20080227466A1 (en) * 2007-03-09 2008-09-18 Rabanne Michael C Modular GPS system for breathalyzer interlock
US8160656B2 (en) * 2007-05-08 2012-04-17 Continental Automotive Systems, Inc. Telematics system and method having combined cellular and satellite functionality
US20080299991A1 (en) * 2007-06-04 2008-12-04 Newbury Mark E Method for locating a mobile unit
US9848447B2 (en) * 2007-06-27 2017-12-19 Ford Global Technologies, Llc Method and system for emergency notification
US7991382B1 (en) 2007-11-08 2011-08-02 Sprint Spectrum L.P. Method for communicating indoor location to an emergency service system
US7831216B1 (en) 2007-11-27 2010-11-09 Sprint Spectrum L.P. Mobile-station-assisted low-cost-internet-base-station-(LCIB) location determination
US7577443B1 (en) 2007-12-20 2009-08-18 Sprint Spectrum L.P. Mobile-station and macro-network-aided location determination of a low-cost internet base station (LCIB)
US8232876B2 (en) 2008-03-07 2012-07-31 Securealert, Inc. System and method for monitoring individuals using a beacon and intelligent remote tracking device
US8903351B2 (en) * 2009-03-06 2014-12-02 Ford Motor Company Method and system for emergency call handling
US8050630B1 (en) 2009-04-28 2011-11-01 Brunswick Corporation Method for monitoring the operation of a global position system receiver
US8417264B1 (en) 2009-05-14 2013-04-09 Spring Spectrum L.P. Method and apparatus for determining location of a mobile station based on locations of multiple nearby mobile stations
US20110098016A1 (en) * 2009-10-28 2011-04-28 Ford Motor Company Method and system for emergency call placement
US8305264B1 (en) 2010-02-03 2012-11-06 Sprint Spectrum L.P. GPS enhancement for wireless devices
US8903354B2 (en) * 2010-02-15 2014-12-02 Ford Global Technologies, Llc Method and system for emergency call arbitration
US20110230159A1 (en) * 2010-03-19 2011-09-22 Ford Global Technologies, Llc System and Method for Automatic Storage and Retrieval of Emergency Information
US8514070B2 (en) 2010-04-07 2013-08-20 Securealert, Inc. Tracking device incorporating enhanced security mounting strap
US20120190324A1 (en) 2011-01-25 2012-07-26 Ford Global Technologies, Llc Automatic Emergency Call Language Provisioning
US8694248B1 (en) 2011-02-08 2014-04-08 Brunswick Corporation Systems and methods of monitoring the accuracy of a global positioning system receiver in a marine vessel
US8818325B2 (en) 2011-02-28 2014-08-26 Ford Global Technologies, Llc Method and system for emergency call placement
US9037109B1 (en) 2012-03-02 2015-05-19 Sprint Spectrum L.P. Controlling billing for use of one system based on device location in other system
US8594616B2 (en) 2012-03-08 2013-11-26 Ford Global Technologies, Llc Vehicle key fob with emergency assistant service
US9049584B2 (en) 2013-01-24 2015-06-02 Ford Global Technologies, Llc Method and system for transmitting data using automated voice when data transmission fails during an emergency call
US9377780B1 (en) 2013-03-14 2016-06-28 Brunswick Corporation Systems and methods for determining a heading value of a marine vessel
US9622209B1 (en) 2013-08-15 2017-04-11 Sprint Spectrum L.P. Alternative location source for low-cost internet base station systems when satellite-based positioning system coverage is unavailable
US11219373B2 (en) * 2014-12-22 2022-01-11 Eggers & Associates, Inc. Wearable apparatus, system and method for detection of cardiac arrest and alerting emergency response
US20160174857A1 (en) * 2014-12-22 2016-06-23 Eggers & Associates, Inc. Wearable Apparatus, System and Method for Detection of Cardiac Arrest and Alerting Emergency Response
US9857794B1 (en) 2015-07-23 2018-01-02 Brunswick Corporation System for controlling position and speed of a marine vessel
US10198005B2 (en) 2016-03-01 2019-02-05 Brunswick Corporation Station keeping and waypoint tracking methods
US9952595B2 (en) 2016-03-01 2018-04-24 Brunswick Corporation Vessel maneuvering methods and systems
US10322787B2 (en) 2016-03-01 2019-06-18 Brunswick Corporation Marine vessel station keeping systems and methods
US10640190B1 (en) 2016-03-01 2020-05-05 Brunswick Corporation System and method for controlling course of a marine vessel
US10259555B2 (en) 2016-08-25 2019-04-16 Brunswick Corporation Methods for controlling movement of a marine vessel near an object
US10671073B2 (en) 2017-02-15 2020-06-02 Brunswick Corporation Station keeping system and method
US10429845B2 (en) 2017-11-20 2019-10-01 Brunswick Corporation System and method for controlling a position of a marine vessel near an object
US10324468B2 (en) 2017-11-20 2019-06-18 Brunswick Corporation System and method for controlling a position of a marine vessel near an object
US10437248B1 (en) 2018-01-10 2019-10-08 Brunswick Corporation Sun adjusted station keeping methods and systems
US10845812B2 (en) 2018-05-22 2020-11-24 Brunswick Corporation Methods for controlling movement of a marine vessel near an object
US10633072B1 (en) 2018-07-05 2020-04-28 Brunswick Corporation Methods for positioning marine vessels
US10926855B2 (en) 2018-11-01 2021-02-23 Brunswick Corporation Methods and systems for controlling low-speed propulsion of a marine vessel
US11198494B2 (en) 2018-11-01 2021-12-14 Brunswick Corporation Methods and systems for controlling propulsion of a marine vessel to enhance proximity sensing in a marine environment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5495416A (en) * 1994-11-07 1996-02-27 The United States Of America As Represented By The Secretary Of The Navy Audio information apparatus for providing position information
US5552993A (en) * 1994-11-07 1996-09-03 The United States Of America As Represented By The Secretary Of The Navy Audio information apparatus for providing position information
US5652570A (en) * 1994-05-19 1997-07-29 Lepkofker; Robert Individual location system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432841A (en) * 1992-07-10 1995-07-11 Rimer; Neil A. System for locating and communicating with mobile vehicles
US5355140A (en) * 1992-09-15 1994-10-11 Trimble Navigation Limited Emergency reporting for marine and airborne vessels

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652570A (en) * 1994-05-19 1997-07-29 Lepkofker; Robert Individual location system
US5495416A (en) * 1994-11-07 1996-02-27 The United States Of America As Represented By The Secretary Of The Navy Audio information apparatus for providing position information
US5552993A (en) * 1994-11-07 1996-09-03 The United States Of America As Represented By The Secretary Of The Navy Audio information apparatus for providing position information

Also Published As

Publication number Publication date
US5736962A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
US5736962A (en) Time since last fix annunciation system for GPS-based wireless rescue system
US7050818B2 (en) Location based service request system
US6703971B2 (en) Mode determination for mobile GPS terminals
US5960337A (en) Method for responding to an emergency event
US6816734B2 (en) Method and apparatus for improved location determination in a private radio network using a public network system
EP1434970B1 (en) Method and system for sending location coded images over a wireless network
US5914675A (en) Emergency locator device transmitting location data by wireless telephone communications
US6144336A (en) System and method to communicate time stamped, 3-axis geo-position data within telecommunication networks
EP1609332B1 (en) Location capable mobile handset
US7474896B2 (en) Locating system and method
US7308272B1 (en) Mobile phone locator
US7251562B1 (en) Network assisted pseudolite acquisition for enhanced GPS navigation
US20070035441A1 (en) Simple device and method to return a user to a location
US7305243B1 (en) Location based information system
US6901260B1 (en) Differential GPS and/or glonass with wireless communications capability
JPH11118902A (en) Mobile body reporting device and its system
JP2002010326A (en) System for monitoring and communicating positional information
KR20050057761A (en) Method for alarming the presence of an overspeeding-vehicle-searching camera according to the position in mobile communication device
MXPA98006430A (en) Cellular transmitter to automatically provide position and emergency location data

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BG BR CA CN CZ HU IL JP KP KR LK MK MX NO NZ PL RO SG SK UA UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA