WO1999052145A1 - Procede de traitement thermique de substrats semi-conducteurs - Google Patents

Procede de traitement thermique de substrats semi-conducteurs Download PDF

Info

Publication number
WO1999052145A1
WO1999052145A1 PCT/FR1999/000786 FR9900786W WO9952145A1 WO 1999052145 A1 WO1999052145 A1 WO 1999052145A1 FR 9900786 W FR9900786 W FR 9900786W WO 9952145 A1 WO9952145 A1 WO 9952145A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
annealing
oxide layer
carried out
semiconductor
Prior art date
Application number
PCT/FR1999/000786
Other languages
English (en)
Inventor
Christophe Maleville
Thierry Barge
Bernard Aspar
Hubert Moriceau
André-Jacques AUBERTON-HERVE
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP99911878A priority Critical patent/EP0986826B1/fr
Priority to KR1019997011506A priority patent/KR100637364B1/ko
Priority to JP55014499A priority patent/JP4479010B2/ja
Priority to DE69943072T priority patent/DE69943072D1/de
Priority to US09/445,314 priority patent/US6403450B1/en
Publication of WO1999052145A1 publication Critical patent/WO1999052145A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Definitions

  • the present invention relates to the manufacture of semiconductor components for microelectronics and / or optoelectronics. More specifically, it relates to the field of manufacturing and / or preparing substrates intended for the production of such components.
  • substrates which consist of transferring a layer, for example of silicon, onto a support substrate.
  • Document FR 2 681 472 discloses, for example, a method of manufacturing thin layers and films of semiconductor material comprising at least three steps.
  • a layer of gaseous microbubbles is created by ion implantation under one face of a plate of semiconductor material.
  • this face of the plate is transferred to a support substrate and made integral with the latter.
  • the assembly constituted by the plate and the support substrate is subjected to a heat treatment capable of creating a cleavage of the plate at the level of the implantation layer.
  • the choice of parameters such as the time and temperature of this heat treatment depends on the history and the thermal budget of the semiconductor plate.
  • This thermal budget is for example acquired during the implantation stage, by voluntary heating and / or by heating by the ion beam itself. It can also be acquired during an annealing step which precedes bonding and which is intended to migrate the implanted atoms in order to facilitate subsequent cleavage. It can also be acquired during an annealing performed before cleavage and intended to stabilize the bonding. Other heat treatments can also be envisaged before the cleavage. After cleavage, a thin layer is obtained adhering to the support substrate. This process is called the Smart-Cut ® process .
  • SOI technique ancronym of the Anglo-Saxon expression Silicon On Insulator
  • a layer of silicon is insulated.
  • Several ways can be envisaged for producing a layer of silicon on insulator, according to the method described in the preceding paragraph.
  • a first way it is possible, for example, to cover the silicon plate, on its implantation face, with an insulating oxide layer, and use a support substrate, for example also made of silicon, for the transfer.
  • a second way it is possible to have a completely semiconductor plate which is transferred either to a support substrate covered with an insulating layer, or to a completely insulating support substrate (eg quartz).
  • insulator on the semiconductor plate, and transfer this plate either on a support substrate also covered with insulator, or on a completely insulating substrate. It will also be noted here, in order to obtain an insulator, the advantage of a step of forming a surface oxide layer of a plate or of a support substrate, in this case of silicon, but more generally d 'a semiconductor material.
  • annealing at relatively high temperatures, that is to say above 1000 ° C., preferably around 1100 ° C., makes it possible to strengthen the bonding interface. Thereafter, we will designate by annealing any thermal operation intended to improve the qualities of the material.
  • This annealing can be a heat treatment carried out at constant temperature or at variable temperature. In the latter case, the annealing can be carried out for example with a gradual increase in temperature between two values, with a cyclic oscillation between two temperatures, etc.
  • annealing can be carried out under a non-oxidizing atmosphere or under an oxidizing atmosphere.
  • Annealing in a non-oxidizing atmosphere nitrogen, argon, vacuum, etc.
  • a parasitic pitting phenomenon also called "pitting”
  • Annealing in an oxidizing atmosphere has the drawback of generating defects in the crystal structure.
  • These faults are, for example, of the stacking fault type and / or, in SOI structures, HF faults (called fault
  • oxide layer on the surface of a silicon layer for example by oxidation.
  • oxidation but also more generally any formation of an oxide layer on the surface, is known to generate defects. The presence of these defects in the crystal structure is completely undesirable.
  • An object of the invention is to provide a method for making anneals, in particular for stabilizing the bonding interface between a plate comprising a layer of semiconductor, in particular silicon, and a support substrate, without pricking the layer surface.
  • Another object of the invention is to provide a method making it possible to form an oxide layer on the surface of the semiconductor layer, by limiting as much as possible the number of defects introduced into the crystal structure.
  • a method of treating a substrate comprising a semiconductor layer on at least one of its faces characterized in that it comprises a step of annealing the substrate and a step of forming an oxide layer on the surface of the semiconductor layer, produced before the end of the annealing step, protecting the rest of the semiconductor layer.
  • substrate is meant a semiconductor layer on at least one of its faces, a fully semiconductor substrate (for example silicon), or a stack of semiconductor layers, or a substrate comprising non-homogeneous structures or a substrate comprising components or parts of components at more or less advanced stages of their development.
  • a fully semiconductor substrate for example silicon
  • a stack of semiconductor layers or a substrate comprising non-homogeneous structures or a substrate comprising components or parts of components at more or less advanced stages of their development.
  • the semiconductor layers have a thickness of a few tens of A to a few tens of microns.
  • an oxide layer is formed on the surface of the semiconductor layer.
  • This oxide layer protects the rest of the semiconductor layer during the annealing step, in particular to avoid the pitting phenomenon.
  • the oxide layer can be formed by depositing an oxide on the surface of the semiconductor layer (in particular, but not limitatively, for non-oxidizable semiconductors), by thermal oxidation of the surface area of the semiconductor layer or alternatively by depositing an oxide on the surface of the semiconductor layer, followed by thermal oxidation of the semiconductor through the already deposited oxide layer.
  • the oxide can be composed of elements of the semiconductor material and other elements such as nitrogen, etc.
  • the combination of the steps of forming a surface oxide layer and of annealing, of the method according to the invention makes it possible in particular to obtain a reinforcement of the bonding interface between the semiconductor layer and the substrate. support, avoiding the formation of faults, and more particularly the formation of pitting type faults.
  • the step of annealing the substrate makes it possible to cure the semiconductor layer of the defects generated during the previous steps of the manufacturing and preparation process. More particularly, the annealing step can be carried out for a duration and at a temperature, such that healing of crystalline defects, such as stacking faults, HF defects, etc., generated in the semiconductor layer, during the step of forming a surface oxide layer. Thus, it is possible to form an oxide layer on the surface of a semiconductor layer without dramatically increasing its defect rate.
  • the Applicant has also discovered that the curing of the semiconductor material by annealing gives it better resistance to possible subsequent steps of forming an oxide layer on the surface of the semiconductor layer. In fact, a semiconductor layer comprises fewer defects after the formation of an oxide layer on the surface, when it has been annealed, prior to the formation of the oxide.
  • this comprises, after the annealing step, a deoxidation step to remove the oxide layer formed on the surface of the semiconductor layer.
  • the method according to the invention comprises several stages of formation of a surface oxide layer and several stages of deoxidation, at least the last stage of formation of a surface oxide layer being followed by 'an annealing step. Implemented according to these latter two variants, the method according to the invention makes it possible in particular to thin the semiconductor layer, to remove part of the semiconductor layer comprising a high concentration of defects or else to reduce the roughness of the surface of the layer.
  • the method according to the invention proves to be particularly useful, when after the steps of implantation, bonding and cleavage of the method mentioned above, it is sought, on the one hand, to remove the part disturbed by the implantation, that is to say at the level of the cleavage zone (this part indeed has a lot of defects), and on the other hand to reduce the roughness of the surface resulting from the cleavage.
  • This formation of a sacrificial surface oxide layer of part of the semiconductor layer makes it possible to avoid the disadvantages of polishing alone.
  • the polishing technique generates lesion type defects mechanical, hardened areas, etc. When using chemical mechanical polishing, defects due to chemistry can be added to the previous ones. In addition, polishing generally results in a lack of uniformity in thickness.
  • the support substrate covered with the semiconductor layer can be stored or delivered to a manufacturer of semiconductor components for example, with a protective oxide layer which will be removed at the time of further processing of the substrate.
  • FIG. 1 schematically shows the steps of an exemplary implementation of the semiconductor layer processing method according to the invention
  • - Figure 2 shows a diagram of an example of change in the heating temperature of a substrate, during its treatment by a method according to the present invention
  • - Figure 3 shows a diagram of another example of change in the heating temperature of a substrate, during its treatment by a method according to the present invention
  • - Figure 4 schematically represents the steps of a method, of the prior art, for the treatment of substrates for microelectronics and optoelectronics
  • FIG. 5 shows schematically the smoothing steps, according to the method according to the invention, of a cleavage surface.
  • FIG. 1 it is produced on a wafer 1, comprising a support substrate 2 covered with a layer of silicon 4, with an intermediate layer buried oxide 5 (Fig. 1a).
  • This method includes a step of forming a surface oxide layer to form a layer of silicon oxide 6 (Fig. 1b), an annealing step, and a deoxidation step (Fig. 1c).
  • the silicon oxide layer 6 develops in the vicinity of the initial surface 8 of the silicon layer 4.
  • the formation of a surface oxide layer can be carried out dry or wet.
  • dry the formation of the surface oxide layer is produced, for example, by heating the wafer 1 under gaseous oxygen.
  • wet the formation of the surface oxide layer is produced, for example, by means of water vapor.
  • the steps of forming the surface oxide layer and annealing the process according to the invention are temporally decoupled.
  • the temperature of formation of the surface oxide layer is between 900 and 1000 ° C., since the formation of a surface oxide layer generates all the less defects in the SOI structure as its temperature is low.
  • the annealing step is advantageously carried out at more than 1000 ° C.
  • the formation of the surface oxide layer by the wet method is preferred since it introduces fewer defects of the type of those already mentioned.
  • the wet process also gives higher rates of formation of the surface oxide layer than the dry process and allows keep the kinetics of formation of the surface oxide layer reasonable, while working at a lower temperature.
  • the wet process is used, at a temperature approximately equal to 950 ° C., and annealing at 1100 ° C., under a non-oxidizing atmosphere, for example under nitrogen, under argon, etc.
  • the wafer 1 can be brought to a temperature of around 1200 ° C. It may even be envisaged, for example to stabilize the bonding interface 10 between the buried oxide layer 5 and the support substrate 2, to carry out this annealing at even higher temperatures, but undesirable effects may occur, such as metallic contamination from annealing equipment, for example.
  • the formation of the surface oxide layer can also be carried out, for example, during the phase of rising of the temperature of the substrate, up to the annealing temperature. T r , at which a bearing is carried out.
  • the step of forming the surface oxide layer is carried out before the actual annealing step begins.
  • the formation of the surface oxide layer can be carried out, both during the temperature rise phase of the substrate and during the start of the annealed. It can also be entirely carried out during the start of the annealing phase, for example by introducing a metered amount of an oxidizing gas into the annealing atmosphere. Preferably, it is carried out so that the formation of the oxide layer of surface is completed before the end of annealing.
  • the deoxidation step is preferably carried out by immersing the wafer 1, in a hydrofluoric acid bath which has good selectivity of chemical attack silicon / silicon oxide.
  • Example 1 The method according to the invention, as described above, can be carried out for a time and at a temperature such that a bonding interface 10 is reinforced between the buried oxide layer 5 and the support substrate 2, obtained after the implementation of the method illustrated in FIG. 4.
  • a silicon wafer 3 covered with a layer of buried oxide is subjected to an implantation of hydrogen ions, for example with a dose of 5.10 16 H + / cm 2 , at 100 keV, in a zone d implantation 12, located at a determined depth (Fig. 4a).
  • the silicon wafer 3 is brought into contact with a support substrate 2 (Fig. 4b).
  • the assembly comprising the silicon plate 3 and the support substrate 2, then undergoes a processing step capable of allowing the separation of the silicon plate 3, at the level of the implantation zone 12 (FIG. 4c).
  • This step is for example carried out by bringing to a temperature which depends on the implantation conditions and which can range up to approximately 600 ° C., the assembly comprising the silicon plate 3 and the support substrate 2. According to a variant, mechanical stresses are applied in combination with the heat treatment or as a replacement for this heat treatment.
  • a support substrate 2 is obtained covered with a thin layer of silicon 4, with an intermediate layer of buried oxide 5.
  • the free surface of this layer of silicon 4 is a cleavage surface 14. It is sometimes necessary, for example before polishing the cleavage surface 14 or to avoid the formation of electrically active defects, to carry out a step of stabilization of the bonding interface 10. 10
  • This stabilization is obtained by annealing the substrate at a temperature close to, for example 1100 ° C. Annealing is carried out in an atmosphere comprising at least one non-oxidizing gas such as argon. A prior oxidation step is then preferably carried out in the vicinity of 950 ° C. to form an oxide layer 6 intended to protect the silicon layer 4, during this stabilization annealing. After this annealing, the silicon layer 4 undergoes a deoxidation step, intended to remove the protective oxide layer 6.
  • Example 2 After the cleavage of the process illustrated by FIG. 4 and already described in the presentation of the first example, the cleavage surface 14 of the silicon layer 4 is too rough and there remains, underlying this surface of cleavage 14, a disturbed zone 16, corresponding to the part of the implantation zone 12 remaining (FIGS. 5a and 5b).
  • the method according to the invention can then be implemented to remove this disturbed zone 16 and regain a suitable roughness. According to the technique of the prior art, these operations are carried out by chemical mechanical polishing. However, polishing is not entirely satisfactory since it has the drawbacks already presented above.
  • the method according to the invention remedies this by producing a layer of sacrificial surface oxide.
  • the silicon layer 4 is oxidized by heat treatment according to one of the techniques described above, to form an oxide layer 6 (Fig. 5c).
  • This oxide layer 6 develops in the vicinity of the cleavage surface 14 and the interface between the oxide and the silicon progresses deep into the silicon, gradually smoothing the roughness of the cleavage surface 14.
  • An annealing step in accordance with the method according to the invention is then carried out.
  • the oxide layer 6 is consumed chemically (Fig. 5d).
  • the wafer 1 is immersed in a hydrofluoric acid bath at 10 or 20%, for a few minutes. 11
  • the important parameters for carrying out this variant of the process according to the invention are the temperature, the oxidation time, the oxidizing nature of the atmosphere and the oxygen content. These parameters can be well controlled. This gives this application of the method according to the invention to the formation of a sacrificial layer, good reproducibility. This process is also flexible to use and homogeneous with all the usual procedures for treating substrates for the manufacture of components for microelectronics.
  • the method according to the invention can also have at least one step of forming a surface oxide layer and at least one deoxidation step, at least one annealing step being carried out after the last step of forming a layer. of oxide on the surface, in order to cure the defects caused by the step or steps of forming an oxide layer of previous surfaces.
  • the method according to the invention comprises several stages of formation of a surface oxide layer and several stages of deoxidation, each stage of formation of a surface oxide layer being followed by a stage annealing.
  • the steps for forming a sacrificial layer can be combined with a polishing step.
  • This polishing step may or may not be subsequent to the steps of forming a sacrificial layer.
  • the combination of these steps can be used to remove part of the silicon layer having a high concentration of crystal defects, located for example in the area disturbed by ion implantation. This combination can also be used to reduce roughness. Thanks to the formation of a sacrificial surface oxide layer and to the deoxidation associated therewith, the polishing can then be very noticeably less long and therefore less damaging for the silicon layer 4. Carried out after formation and removal of a sacrificial surface oxide layer, it is more efficient, the roughness difficult to attenuate by chemical mechanical polishing, having already been reduced to a large extent. 12
  • a step of forming a surface oxide layer is followed by an annealing step, this annealing curing the defects generated by the formation of the surface oxide layer and stabilizing the interface of bonding 10, a deoxidation step, is carried out after this annealing, and finally a short polishing step, makes it possible to complete reducing the roughness.
  • the method according to the invention is implemented as part of processes for performing layers of postponements of materials on a support substrate 2 (Smart-Cut ®, etc.). It then serves to reinforce the bonding interface of the materials on the support substrate 2 and / or to remove a layer in the vicinity of a very disturbed area 16.
  • the method according to the invention is also implemented in the context of methods intended to produce SOI structures (SIMOX, Smart-Cut ® , etc.) or in the context of the use of these structures. It then serves to thin or oxidize a layer of silicon 4 without dramatically increasing the rate of defects in this layer of silicon 4.
  • the method according to the invention is used to form an oxide layer 6 locally, on at least part of the surface of the semiconductor layer 4.
  • silicon can be transposed to other semiconductors, in particular silicon compounds such as SiC, SiGe, etc.
  • the method according to the invention makes it possible to obtain semiconductor structures of the SOI type, in which the density of HF defects is less than 1 defect / cm 2 , in a semiconductor layer 4 whose thickness is less than 2000 Angstroms.
  • the method according to the invention also makes it possible to obtain semiconductor structures in which a semiconductor layer 4 having a uniformity in thickness better than 5%, has an rms value of the roughness less than 2 nm.

Abstract

L'invention concerne un procédé de traitement d'un substrat comportant une couche de semi-conducteur (4) sur au moins une de ses faces. Ce procédé comprend une étape de recuit du substrat et une étape de formation d'une couche d'oxyde (6) en surface de la couche de semi-conducteur (4), réalisée avant la fin de l'étape de recuit, protégeant le reste de la couche de semi-conducteur (4).

Description

PROCEDE DE TRAITEMENT THERMIQUE DE SUBSTRATS SEMICONDUCTEURS
La présente invention concerne la fabrication de composants semi-conducteurs pour la micro-électronique et/ou l'opto-électronique. Plus précisément, elle concerne le domaine de la fabrication et/ou de la préparation de substrats destinés à la réalisation de tels composants.
Il existe certains procédés de fabrication de substrats, qui consistent à reporter une couche, par exemple de silicium, sur un substrat support.
On connaît par exemple par le document FR 2 681 472, un procédé de fabrication de couches et de films minces de matériau semiconducteur comprenant au moins trois étapes. Lors d'une première étape, on crée par implantation ionique, une couche de microbulles gazeuses sous une face d'une plaque de matériau semi-conducteur. Lors d'une seconde étape, cette face de la plaque est reportée sur un substrat support et rendue solidaire de celui-ci. Lors d'une troisième étape, l'ensemble constitué par la plaque et le substrat support est soumis à un traitement thermique apte à créer un clivage de la plaque au niveau de la couche d'implantation. Le choix de paramètres tels que le temps et la température de ce traitement thermique dépend de l'historique et du budget thermique de la plaque de semi-conducteur. Ce budget thermique est par exemple acquis au cours de l'étape d'implantation, par chauffage volontaire et/ou par chauffage par le faisceau d'ions lui même. Il peut aussi être acquis au cours d'une étape de recuit qui précède le collage et qui est destinée à faire migrer les atomes implantés en vue de faciliter le clivage ultérieur. Il peut encore être acquis au cours d'un recuit réalisé avant clivage et destiné à stabiliser le collage. D'autres traitements thermiques peuvent encore être envisagés avant le clivage. Après clivage, on obtient une couche mince adhérant au substrat support. Ce procédé est appelé procédé Smart-Cut®.
Dans une application particulière de ce procédé, dite technique SOI (acronyme de l'expression anglo-saxonne Silicon On Insulator), on réalise une couche de silicium sur isolant. Plusieurs manières peuvent être envisagées pour réaliser une couche de silicium sur isolant, selon le procédé décrit au paragraphe précédent. Selon une première manière, on peut par exemple, recouvrir la plaque de silicium, sur sa face d'implantation, d'une couche d'oxyde isolant, et utiliser un substrat support, par exemple aussi en silicium, pour le report. Selon une deuxième manière, on peut avoir une plaque complètement semi-conductrice que l'on reporte soit sur un substrat support recouvert d'une couche d'isolant, soit sur un substrat support complètement isolant (ex : quartz). Selon une troisième manière, on peut avoir un isolant sur la plaque de semi-conducteur, et reporter cette plaque soit sur un substrat support recouvert lui aussi d'isolant, soit sur un substrat complètement isolant. On remarquera en outre ici, pour obtenir un isolant, l'intérêt d'une étape de formation d'une couche d'oxyde de surface d'une plaque ou d'un substrat support, dans ce cas de silicium, mais plus généralement d'un matériau semi-conducteur.
Après les trois étapes du procédé décrit ci-dessus, des problèmes de décollement de la couche de semi-conducteur sur son substrat support, peuvent survenir. Des défauts présents à l'interface de la couche de semi-conducteur et du substrat support peuvent aussi devenir électriquement actifs et rendre inutilisable la plaquette composée de l'ensemble substrat support-couche de semi-conducteur. Pour pallier ces inconvénients, et plus particulièrement pour éviter un décollement de la couche lorsqu'un polissage est envisagé, il est nécessaire de renforcer l'interface de collage entre le substrat support et la plaque comportant la couche de semi-conducteur.
Il est connu qu'un recuit à des températures relativement élevées, c'est-à-dire supérieures à 1000°C, préférentiellement vers 1100°C, permet de renforcer l'interface de collage. Par la suite, nous désignerons par recuit toute opération thermique destinée à améliorer les qualités du matériau. Ce recuit peut être un traitement thermique effectué à température constante ou à température variable. Dans ce dernier cas, le recuit peut être réalisé par exemple avec une augmentation progressive de la température entre deux valeurs, avec une oscillation cyclique entre deux températures, etc.
Ce type de recuit peut être réalisé sous atmosphère non oxydante ou sous atmosphère oxydante. Un recuit sous atmosphère non oxydante (azote, argon, vide, etc.) présente généralement l'inconvénient de générer un phénomène parasite de piquage, aussi appelé « pitting », à la surface d'un semi-conducteur et du silicium en particulier. Un recuit sous atmosphère oxydante présente l'inconvénient de générer des défauts dans la structure cristalline. Ces défauts sont par exemple du type fautes d'empilement et/ou, dans les structures SOI, défauts HF (on appelle défaut
HF, un défaut dont la présence est révélée par une auréole de décoration de l'oxyde enterré, après traitement dans un bain d'acide fluorhydrique), etc.
Par ailleurs, il est parfois utile, pour l'application que nous avons mentionnée plus haut par exemple, de former une couche d'oxyde en surface d'une couche de silicium, par exemple par oxydation. Mais, comme indiqué ci-dessus, une oxydation, mais aussi plus généralement toute formation d'une couche d'oxyde en surface, est connue pour générer des défauts. Or la présence de ces défauts dans la structure cristalline est tout à fait indésirable.
Un but de l'invention est de fournir un procédé permettant de réaliser des recuits, notamment de stabilisation de l'interface de collage entre une plaque comprenant une couche de semi-conducteur, notamment de silicium, et un substrat support, sans piquage de la surface de la couche. Un autre but de l'invention est de fournir un procédé permettant de former une couche d'oxyde à la surface de la couche de semi-conducteur, en limitant le plus possible le nombre de défauts introduits dans la structure cristalline.
Ces buts sont atteints grâce à un procédé de traitement d'un substrat comportant une couche de semi-conducteur sur au moins une de ses faces, caractérisé par le fait qu'il comprend une étape de recuit du substrat et une étape de formation d'une couche d'oxyde en surface de la couche de semi-conducteur, réalisée avant la fin de l'étape de recuit, protégeant le reste de la couche de semi-conducteur.
On entend par substrat comportant une couche de semiconducteur sur au moins une de ses faces, un substrat entièrement semi- conducteur (par exemple du silicium), ou un empilement de couches semi- conductrices, ou encore un substrat comprenant des structures non homogènes ou un substrat comprenant des composants ou des parties de composants à des niveaux plus ou moins avancés de leur élaboration.
A titre d'exemple, les couches de semi-conducteur présentent une épaisseur de quelques dizaines d'A à quelques dizaines de microns.
Ainsi, grâce au procédé selon l'invention, une couche d'oxyde est formée en surface de la couche de semi-conducteur. Cette couche d'oxyde protège le reste de la couche de semi-conducteur, pendant l'étape de recuit, pour éviter notamment le phénomène de piquage. La couche d'oxyde peut être formée par dépôt d'un oxyde en surface de la couche de semi-conducteur (en particulier, mais pas de manière limitative, pour des semi-conducteurs non oxydables), par oxydation thermique de la zone superficielle de la couche de semi-conducteur ou bien encore par dépôt d'un oxyde en surface de la couche de semi-conducteur, suivi d'une oxydation thermique du semi-conducteur à travers la couche d'oxyde déjà déposée. Dans tous les cas, l'oxyde peut être composé d'éléments du matériau semi-conducteur et d'autres éléments tels que de l'azote, etc.
La combinaison des étapes de formation d'une couche d'oxyde de surface et de recuit, du procédé selon l'invention, permet en particulier d'obtenir un renforcement de l'interface de collage entre la couche de semi-conducteur et le substrat support, en évitant la formation de défauts, et plus particulièrement la formation de défauts du type piquage.
D'autre part, l'étape de recuit du substrat permet de guérir la couche de semi-conducteur des défauts engendrés au cours des étapes précédentes du procédé de fabrication et préparation. Plus particulièrement, l'étape de recuit peut être effectuée pendant une durée et à une température, telles qu'on réalise une guérison de défauts cristallins, tels que des fautes d'empilements, des défauts HF, etc., engendrés dans la couche de semi-conducteur, au cours de l'étape de formation d'une couche d'oxyde de surface. Ainsi, il est possible de former une couche d'oxyde en surface d'une couche de semi-conducteur sans augmenter dramatiquement son taux de défauts. La Demanderesse a en outre découvert que la guérison du matériau semi-conducteur par recuit lui confère une meilleure résistance à d'éventuelles étapes ultérieures de formation d'une couche d'oxyde en surface de la couche de semi-conducteur. En effet, une couche de semiconducteur comprend moins de défauts après formation d'une couche d'oxyde en surface, lorsqu'elle a subi un recuit, préalablement à la formation de l'oxyde.
Suivant une variante du procédé selon l'invention, celui-ci comprend, après l'étape de recuit, une étape de désoxydation pour ôter la couche d'oxyde formée en surface de la couche de semi-conducteur. Suivant une autre variante, le procédé selon l'invention comprend plusieurs étapes de formation d'une couche d'oxyde de surface et plusieurs étapes de désoxydation, au moins la dernière étape de formation d'une couche d'oxyde de surface étant suivie d'une étape de recuit. Mis en œuvre selon ces deux dernières variantes, le procédé selon l'invention permet en particulier d'amincir la couche de semiconducteur, d'ôter une partie de la couche de semi-conducteur comportant une concentration importante de défauts ou encore de réduire la rugosité de surface de la couche. Ainsi, le procédé selon l'invention s'avère particulièrement utile, lorsqu'apres les étapes d'implantation, collage et clivage du procédé mentionné ci-dessus, on cherche, d'une part à ôter la partie perturbée par l'implantation, c'est à dire au niveau de la zone de clivage (cette partie comporte en effet énormément de défauts), et d'autre part à réduire la rugosité de la surface résultant du clivage. Cette formation d'une couche d'oxyde de surface sacrificielle d'une partie de la couche de semi-conducteur, permet d'éviter les inconvénients d'un polissage seul. La technique du polissage génère en effet, des défauts du type lésion mécanique, des zones écrouies, etc. Lorsqu'on utilise un polissage mécano-chimique, des défauts dus à la chimie peuvent s'ajouter aux précédents. De plus, le polissage aboutit généralement à un manque d'uniformité en épaisseur. Ce dernier inconvénient devient d'autant plus critique que l'épaisseur de matériau à enlever est importante et donc que l'étape de polissage est longue. C'est le cas notamment lorsque l'épaisseur à retirer par polissage atteint 100 nm. Ainsi, tous ces inconvénients aboutissent, le plus souvent, à un manque de reproductibilité des résultats du polissage. De plus, de longs polissages ralentissent l'exécution du procédé et induisent une baisse de productivité. On comprend alors tout l'intérêt de la formation d'une couche d'oxyde de surface sacrificielle, conformément au procédé selon l'invention, puisqu'elle permet de retirer de la matière et d'amincir une couche de semi-conducteur. Si on complète cet amincissement par formation d'une couche d'oxyde de surface sacrificielle d'une étape de polissage, les défauts engendrés par le polissage peuvent alors être développés à moins grande échelle.
Suivant une autre variante, le substrat support recouvert de la couche de semi-conducteur peut être stocké ou livré à un fabricant de composants semi-conducteurs par exemple, avec une couche protectrice d'oxyde qui sera ôtée au moment de la poursuite du traitement du substrat. D'autres aspects, buts et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit. L'invention sera aussi mieux comprise à l'aide des références aux dessins sur lesquels :
- la figure 1 représente schématiquement les étapes d'un exemple de mise en œuvre du procédé de traitement de couches de semiconducteur, selon l'invention ;
- la figure 2 représente un diagramme d'un exemple d'évolution de la température de chauffage d'un substrat, au cours de son traitement par un procédé conforme à la présente invention ; - la figure 3 représente un diagramme d'un autre exemple d'évolution de la température de chauffage d'un substrat, au cours de son traitement par un procédé conforme à la présente invention ; - la figure 4 représente schématiquement les étapes d'un procédé, de l'art antérieur, pour le traitement de substrats pour la microélectronique et l'opto-électronique ; et
- la figure 5 représente schématiquement les étapes de lissage, suivant le procédé selon l'invention, d'une surface de clivage.
Selon un exemple non limitatif de mise en œuvre du procédé selon l'invention, illustré par la figure 1 , celui-ci est réalisé sur une plaquette 1 , comprenant un substrat support 2 recouvert d'une couche de silicium 4, avec une couche intermédiaire d'oxyde enterré 5 (Fig. 1a). Ce procédé comprend une étape de formation d'une couche d'oxyde de surface pour former une couche d'oxyde de silicium 6 (Fig. 1b), une étape de recuit, et une étape de désoxydation (Fig. 1c).
Au cours de l'étape de formation de la couche d'oxyde de surface, la couche d'oxyde de silicium 6 se développe au voisinage de la surface initiale 8 de la couche de silicium 4.
La formation d'une couche d'oxyde de surface peut être réalisée par voie sèche ou par voie humide. Par voie sèche, la formation de la couche d'oxyde de surface est produite, par exemple, par chauffage de la plaquette 1 sous oxygène gazeux. Par voie humide, la formation de la couche d'oxyde de surface est produite par exemple par l'intermédiaire de la vapeur d'eau.
Préférentiellement, les étapes de formation de la couche d'oxyde de surface et de recuit, du procédé selon l'invention sont temporel lement découplées. Préférentiellement aussi, la température de formation de la couche d'oxyde de surface est comprise entre 900 et 1000°C, car la formation d'une couche d'oxyde de surface génère d'autant moins de défauts dans la structure SOI que sa température est basse. Par contre, l'étape de recuit est avantageusement réalisée à plus de 1000°C.
La formation de la couche d'oxyde de surface par voie humide est préférée car elle introduit moins de défauts du type de ceux déjà mentionnés. La voie humide donne aussi des vitesses de formation de la couche d'oxyde de surface plus élevées que la voie sèche et permet de conserver des cinétiques de formation de la couche d'oxyde de surface raisonnables, tout en travaillant à plus basse température. Préférentiellement, on utilise donc la voie humide, à une température approximativement égale à 950°C, et un recuit à 1100°C, sous atmosphère non oxydante, par exemple sous azote, sous argon, etc.
Comme représenté sur la figure 2, la formation d'une couche d'oxyde de surface peut être réalisée pendant un premier palier de température à 950°C et le recuit, à un second palier de température, à Tr =1100°C. Dans certains cas, la plaquette 1 peut être portée à une température d'environ 1200°C. Il peut même être envisagé, par exemple pour stabiliser l'interface de collage 10 entre la couche d'oxyde enterré 5 et le substrat support 2, de mener ce recuit à des températures encore plus élevées, mais des effets indésirables peuvent survenir, telles des contaminations métalliques provenant des équipements de recuit par exemple.
Comme illustré par le diagramme de la figure 3, selon une variante, la formation de la couche d'oxyde de surface peut aussi être réalisée, par exemple, pendant la phase de montée de la température du substrat, jusqu'à la température de recuit Tr, à laquelle est effectué un palier.
Dans les exemples de mise en œuvre illustrés par les figures 2 et 3 et décrits ci-dessus, l'étape de formation de la couche d'oxyde de surface est réalisée avant que l'étape de recuit proprement dite ne commence. Mais selon un autre mode de mise en œuvre du procédé selon l'invention, la formation de la couche d'oxyde de surface peut être réalisée, à la fois pendant la phase de montée en température du substrat et pendant le début de la phase de recuit. Elle peut aussi être entièrement réalisée pendant le début de la phase de recuit, par exemple en introduisant une quantité dosée d'un gaz oxydant dans l'atmosphère de recuit Préférentiellement, elle est réalisée de telle sorte que la formation de la couche d'oxyde de surface soit achevée avant la fin du recuit. L'étape de désoxydation est préférentiellement réalisée en immergeant la plaquette 1 , dans un bain d'acide fluorhydrique qui présente une bonne sélectivité d'attaque chimique silicium/oxyde de silicium.
Deux exemples d'application de l'invention vont être développés ci-dessous, dans le cadre du procédé Smart-Cut®. Ce procédé est ici utilisé pour fabriquer des structures SOI.
Exemple 1 : Le procédé selon l'invention, tel que décrit ci- dessus, peut être effectué pendant une durée et à une température telles, qu'on réalise un renforcement de l'interface de collage 10, entre la couche d'oxyde enterré 5 et le substrat support 2, obtenu après la mise en œuvre du procédé illustré par la figure 4.
Selon ce procédé, une plaque de silicium 3 recouverte d'une couche d'oxyde enterré est soumise à une implantation d'ions hydrogène, par exemple avec une dose de 5.1016 H+/cm2, à 100 keV, dans une zone d'implantation 12, située à une profondeur déterminée (Fig. 4a). Après implantation, la plaque de silicium 3 est mise en contact avec un substrat support 2 (Fig. 4b). L'ensemble comprenant la plaque de silicium 3 et le substrat support 2, subit alors une étape de traitement apte à permettre la séparation de la plaque de silicium 3, au niveau de la zone d'implantation 12 (figure 4c). Cette étape est par exemple réalisée en portant à une température qui dépend des conditions d'implantation et qui peut aller jusqu'à 600°C environ, l'ensemble comprenant la plaque de silicium 3 et le substrat support 2. Selon une variante, des contraintes mécaniques sont appliquées en combinaison avec le traitement thermique ou en remplacement de ce traitement thermique. Après séparation de la couche de semi-conducteur 4 de la plaque 3, on obtient un substrat support 2 recouvert d'une mince couche de silicium 4, avec une couche intermédiaire d'oxyde enterré 5. La surface libre de cette couche de silicium 4 est une surface de clivage 14. II est parfois nécessaire, par exemple avant polissage de la surface de clivage 14 ou pour éviter la formation de défauts électriquement actifs, de procéder à une étape de stabilisation de l'interface de collage 10. 10
Cette stabilisation est obtenue par recuit du substrat à une température voisine, par exemple de 1100°C. Le recuit est réalisé dans une atmosphère comprenant au moins un gaz non oxydant tel que l'argon. Une étape d'oxydation préalable est alors réalisée de préférence au voisinage de 950°C pour former une couche d'oxyde 6 destinée à protéger la couche de silicium 4, pendant ce recuit de stabilisation. Après ce recuit, la couche de silicium 4 subit une étape de désoxydation, destinée à retirer la couche d'oxyde 6 protectrice.
Exemple 2 : Après le clivage du procédé illustré par la figure 4 et déjà décrit dans la présentation du premier exemple, la surface de clivage 14 de la couche de silicium 4 est trop rugueuse et il reste, de manière sous-jacente à cette surface de clivage 14, une zone perturbée 16, correspondant à la partie de la zone d'implantation 12 restante (Figures 5a et 5b). Le procédé selon l'invention peut alors être mis en œuvre pour retirer cette zone perturbée 16 et retrouver une rugosité convenable. Selon la technique de l'art antérieur, ces opérations sont réalisées par un polissage mécano-chimique. Cependant, un polissage ne donne pas complètement satisfaction puisqu'il présente les inconvénients déjà présentés plus haut. Le procédé selon l'invention y remédie en réalisant une formation d'une couche d'oxyde de surface sacrificielle.
La couche de silicium 4 est oxydée par traitement thermique selon l'une des techniques exposées ci-dessus, pour former une couche d'oxyde 6 (Fig. 5c). Cette couche d'oxyde 6 se développe au voisinage de la surface de clivage 14 et l'interface entre l'oxyde et le silicium progresse en profondeur dans le silicium, en lissant progressivement la rugosité de la surface de clivage 14.
Une étape de recuit conforme au procédé selon l'invention est ensuite opérée.
Puis la couche d'oxyde 6 est consommée par voie chimique (Fig. 5d). A titre d'exemple dans ce cas, pour enlever mille à quelques milliers d'Angstrόms, la plaquette 1 est plongée dans un bain d'acide fluorhydrique à 10 ou 20 %, pendant quelques minutes. 11
Les paramètres importants, pour réaliser cette variante du procédé selon l'invention, sont la température, la durée d'oxydation, le caractère oxydant de l'atmosphère et la teneur en oxygène. Ces paramètres peuvent être bien contrôlés. Ce qui confère à cette application du procédé selon l'invention à la formation d'une couche sacrificielle, une bonne reproductibilité. Ce procédé est aussi souple d'utilisation et homogène avec l'ensemble des procédures habituelles de traitement de substrats pour la fabrication de composants pour la micro-électronique.
Le procédé selon l'invention peut aussi présenter au moins une étape de formation d'une couche d'oxyde de surface et au moins une étape de désoxydation, au moins une étape de recuit étant réalisée après la dernière étape de formation d'une couche d'oxyde en surface, afin de guérir les défauts engendrés par la ou les étape(s) de formation d'une couche d'oxyde de surfaces précédentes. Selon une autre variante, le procédé selon l'invention comprend plusieurs étapes de formation d'une couche d'oxyde de surface et plusieurs étapes de désoxydation, chaque étape de formation d'une couche d'oxyde de surface étant suivie d'une étape de recuit.
Les étapes de formation d'une couche sacrificielle, présentées ci-dessus, peuvent être combinées avec une étape de polissage. Cette étape de polissage peut être subséquente ou non des étapes de formation d'une couche sacrificielle. La combinaison de ces étapes peut être employée pour enlever une partie de la couche de silicium présentant une concentration importante de défauts cristallins, situés par exemple dans la zone perturbée par l'implantation ionique. Cette combinaison peut aussi être employée pour diminuer la rugosité. Grâce à la formation d'une couche d'oxyde de surface sacrificielle et à la désoxydation qui lui est associée, le polissage peut alors être très sensiblement moins long et donc moins dommageable pour la couche de silicium 4. Réalisé après la formation et le retrait d'une couche d'oxyde de surface sacrificielle, il est plus efficace, la rugosité difficile à atténuer par un polissage mécano-chimique, ayant déjà été réduite en grande partie. 12
Selon une variante avantageuse, une étape de formation d'une couche d'oxyde de surface est suivie d'une étape de recuit, ce recuit guérissant les défauts générés par la formation de la couche d'oxyde de surface et stabilisant l'interface de collage 10, une étape de désoxydation, est effectuée après ce recuit, et enfin une étape de polissage court, permet d'achever de réduire la rugosité.
D'une manière générale, le procédé selon l'invention est mis en œuvre dans le cadre de procédés destinés à effectuer des reports de couches de matériaux sur un substrat support 2 (Smart-Cut®, etc.). Il sert alors à renforcer l'interface de collage des matériaux sur le substrat support 2 et/ou à retirer une couche au voisinage d'un zone très perturbée 16. Le procédé selon l'invention est aussi mis en œuvre dans le cadre de procédés destinés à réaliser des structures SOI (SIMOX, Smart-Cut®, etc.) ou dans le cadre de l'utilisation de ces structures. Il sert alors à amincir ou oxyder une couche de silicium 4 sans augmenter dramatiquement le taux de défauts, dans cette couche de silicium 4.
Avantageusement encore, le procédé selon l'invention est utilisé pour former une couche d'oxyde 6 localement, sur au moins une partie de la surface de la couche de semi-conducteur 4. Ce qui a été décrit ci-dessus dans le cas du silicium, peut être transposé à d'autres semi-conducteurs, notamment des composés du silicium tels que SiC, SiGe, etc.
Le procédé selon l'invention permet d'obtenir des structures semi-conductrices de type SOI, dans lesquelles la densité de défauts HF est inférieure à 1 défaut/cm2, dans une couche de semi-conducteur 4 dont l'épaisseur est inférieure à 2000 Angstrôms.
Le procédé selon l'invention permet aussi d'obtenir des structures semi-conductrices dans lesquelles une couche de semiconducteur 4 ayant une uniformité en épaisseur meilleure que 5 %, a une valeur rms de la rugosité inférieure à 2 nm.

Claims

13REVENDICATIONS
1. Procédé de traitement d'un substrat comportant une couche de semi-conducteur (4) sur au moins une de ses faces, caractérisé par le fait qu'il comprend une étape de recuit du substrat et une étape de formation d'une couche d'oxyde (6) en surface de la couche de semiconducteur (4), réalisée avant la fin de l'étape de recuit, protégeant le reste de la couche de semi-conducteur (4).
2. Procédé selon la revendication 1 , caractérisé par le fait que l'étape de formation de la couche d'oxyde (6), est réalisée par oxydation thermique de la couche de semi-conducteur (4).
3. Procédé selon l'une des revendications 1 et 2, caractérisé par le fait que le recuit du substrat est réalisé dans une atmosphère comprenant au moins un gaz non oxydant, et préférentiellement de l'argon.
4. Procédé selon l'une des revendications précédentes, caractérisé par le fait que l'étape de recuit est effectuée pendant une durée et à une température telles, qu'on réalise une guérison des défauts cristallins engendrés, dans la couche de semi-conducteur (4), par la formation de la couche d'oxyde (6) de surface.
5. Procédé selon l'une des revendications précédentes, caractérisé par le fait qu'il comprend, après l'étape de recuit, une étape de désoxydation pour ôter la couche d'oxyde (6) formée en surface de la couche de semi-conducteur (4).
6. Procédé selon la revendication 5 caractérisé par le fait qu'il est utilisé pour amincir la couche de semi-conducteur (4).
7. Procédé selon l'une des revendications précédentes, caractérisé par le fait que l'étape de recuit est effectuée pendant une durée et à une température telles, qu'on réalise un renforcement d'une interface de collage (10) entre la couche de semi-conducteur (4) et un substrat support (2).
8. Procédé selon l'une des revendications précédentes 14
caractérisé par le fait qu'il comprend plusieurs étapes de formation d'une couche d'oxyde (6) de surface et plusieurs étapes de désoxydation, au moins la dernière étape de formation d'une couche d'oxyde (6) de surface étant suivie d'une étape de recuit.
9. Procédé selon l'une des revendications précédentes caractérisé par le fait qu'il comprend en outre une étape subséquente de polissage.
10. Procédé selon l'une des revendications précédentes caractérisé par le fait qu'il comprend, une étape d'implantation d'atomes, sous une face d'une plaque (3) de matériau semi-conducteur, dans une zone d'implantation (12), une étape de mise en contact intime de la face de la plaque (3) soumise à l'implantation avec un substrat support (2), et une étape de traitement apte à permettre la séparation de la plaque (3), au niveau de la zone d'implantation (12), pour séparer une couche de semi- conducteur (4) de la plaque (3) et constituer le substrat comportant cette couche de semi-conducteur (4).
11. Procédé selon l'une des revendications précédentes caractérisé par le fait que le semi-conducteur est du silicium.
12. Procédé selon la revendication 11 , caractérisé par le fait que chaque étape de recuit est réalisée à plus de 1000°C, et préférentiellement vers 1100°C.
13. Procédé selon l'une des revendications 11 et 12, caractérisé par le fait que chaque étape de formation d'une couche d'oxyde (6) est menée à plus basse température que chaque étape de recuit, et préférentiellement à une température comprise entre 900 et 1000°C.
14. Procédé selon l'une des revendications précédentes, caractérisé par le fait que chaque étape de formation d'une couche d'oxyde (6) de surface est réalisée avant que chaque étape de recuit ne commence.
15. Procédé selon l'une des revendications précédentes, caractérisé par le fait qu'au moins une étape de formation d'une couche d'oxyde (6) de surface est réalisée, au moins partiellement, pendant la phase de montée de la température du substrat à la température de recuit. 15
16. Procédé selon l'une des revendications 1 à 12, caractérisé par le fait que chaque étape de formation d'une couche d'oxyde de surface est réalisée, à la même température que celle du recuit, en introduisant une quantité dosée d'un gaz oxydant, dans l'atmosphère de recuit.
17. Procédé selon l'une des revendications précédentes, caractérisé par le fait que la couche d'oxyde (6) est formée localement, sur au moins une partie de la surface de la couche de semi-conducteur (4).
18. Structure semi-conductrice SOI réalisée grâce au procédé selon l'une des revendications précédentes, caractérisée par le fait que la densité de défauts HF est inférieure à 1 défaut/cm2, dans une couche de semi-conducteur (4) dont l'épaisseur est inférieure à 2000 Angstrôms.
19. Structure semi-conductrice réalisée grâce au procédé selon l'une des revendications précédentes, caractérisée par le fait que la couche de semi-conducteur (4) a à la fois une uniformité en épaisseur meilleure que 5 % et une valeur rms de la rugosité inférieure à 2 nm.
PCT/FR1999/000786 1998-04-07 1999-04-06 Procede de traitement thermique de substrats semi-conducteurs WO1999052145A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP99911878A EP0986826B1 (fr) 1998-04-07 1999-04-06 Procede de traitement thermique de substrats semi-conducteurs
KR1019997011506A KR100637364B1 (ko) 1998-04-07 1999-04-06 반도체기판처리방법
JP55014499A JP4479010B2 (ja) 1998-04-07 1999-04-06 半導体基板の熱処理方法
DE69943072T DE69943072D1 (de) 1998-04-07 1999-04-06 Verfahren zur wärmebehandlung von halbleitersubstraten
US09/445,314 US6403450B1 (en) 1998-04-07 1999-04-06 Heat treatment method for semiconductor substrates

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9804299A FR2777115B1 (fr) 1998-04-07 1998-04-07 Procede de traitement de substrats semi-conducteurs et structures obtenues par ce procede
FR98/04299 1998-04-07

Publications (1)

Publication Number Publication Date
WO1999052145A1 true WO1999052145A1 (fr) 1999-10-14

Family

ID=9524936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1999/000786 WO1999052145A1 (fr) 1998-04-07 1999-04-06 Procede de traitement thermique de substrats semi-conducteurs

Country Status (9)

Country Link
US (1) US6403450B1 (fr)
EP (1) EP0986826B1 (fr)
JP (1) JP4479010B2 (fr)
KR (1) KR100637364B1 (fr)
DE (1) DE69943072D1 (fr)
FR (1) FR2777115B1 (fr)
MY (1) MY122412A (fr)
TW (1) TW429481B (fr)
WO (1) WO1999052145A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006311A2 (fr) * 2002-07-09 2004-01-15 S.O.I.Tec Silicon On Insulator Technologies Transfert d'une couche mince depuis une tranche comprenant une couche tampon
JP2004538627A (ja) * 2001-07-04 2004-12-24 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ 表面しわを減少させる方法
US7749861B2 (en) 2005-12-19 2010-07-06 Shin-Etsu Handotai Co., Ltd. Method for manufacturing SOI substrate and SOI substrate

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911901B2 (ja) * 1999-04-09 2007-05-09 信越半導体株式会社 Soiウエーハおよびsoiウエーハの製造方法
FR2797713B1 (fr) 1999-08-20 2002-08-02 Soitec Silicon On Insulator Procede de traitement de substrats pour la microelectronique et substrats obtenus par ce procede
FR2797714B1 (fr) * 1999-08-20 2001-10-26 Soitec Silicon On Insulator Procede de traitement de substrats pour la microelectronique et substrats obtenus par ce procede
FR2810793B1 (fr) * 2000-06-23 2003-09-05 St Microelectronics Sa Procede de fabrication d'un substrat semi-conducteur du type silicium sur isolant a couche active semi-conductrice mince
US6717213B2 (en) * 2001-06-29 2004-04-06 Intel Corporation Creation of high mobility channels in thin-body SOI devices
US7883628B2 (en) * 2001-07-04 2011-02-08 S.O.I.Tec Silicon On Insulator Technologies Method of reducing the surface roughness of a semiconductor wafer
US7749910B2 (en) * 2001-07-04 2010-07-06 S.O.I.Tec Silicon On Insulator Technologies Method of reducing the surface roughness of a semiconductor wafer
FR2827423B1 (fr) * 2001-07-16 2005-05-20 Soitec Silicon On Insulator Procede d'amelioration d'etat de surface
WO2003038884A2 (fr) * 2001-10-29 2003-05-08 Analog Devices Inc. Procede de liaison d'une paire de plaquettes de silicium et plaquette de semi-conducteur
JPWO2003046993A1 (ja) * 2001-11-29 2005-04-14 信越半導体株式会社 Soiウェーハの製造方法
JP2003205336A (ja) * 2002-01-08 2003-07-22 Tori Techno:Kk 高力ステンレスボルト及びその製造法
US7018910B2 (en) 2002-07-09 2006-03-28 S.O.I.Tec Silicon On Insulator Technologies S.A. Transfer of a thin layer from a wafer comprising a buffer layer
US6953736B2 (en) * 2002-07-09 2005-10-11 S.O.I.Tec Silicon On Insulator Technologies S.A. Process for transferring a layer of strained semiconductor material
FR2842648B1 (fr) * 2002-07-18 2005-01-14 Commissariat Energie Atomique Procede de transfert d'une couche mince electriquement active
ATE484847T1 (de) 2002-08-12 2010-10-15 Soitec Silicon On Insulator Verfahren zur herstellung einer dünnen schicht, einschliesslich eines schrittes des korrigierens der dicke durch hilfsoxidation und zugehörige vorrichtung
FR2845202B1 (fr) * 2002-10-01 2004-11-05 Soitec Silicon On Insulator Procede de recuit rapide de tranches de materiau semiconducteur.
JP4407127B2 (ja) * 2003-01-10 2010-02-03 信越半導体株式会社 Soiウエーハの製造方法
FR2855909B1 (fr) * 2003-06-06 2005-08-26 Soitec Silicon On Insulator Procede d'obtention concomitante d'au moins une paire de structures comprenant au moins une couche utile reportee sur un substrat
FR2856194B1 (fr) * 2003-06-10 2005-08-26 Soitec Silicon On Insulator Procede perfectionne de recuit de stabilisation
US7098148B2 (en) * 2003-06-10 2006-08-29 S.O.I.Tec Silicon On Insulator Technologies S.A. Method for heat treating a semiconductor wafer
DE10326578B4 (de) * 2003-06-12 2006-01-19 Siltronic Ag Verfahren zur Herstellung einer SOI-Scheibe
EP1542275A1 (fr) * 2003-12-10 2005-06-15 S.O.I.TEC. Silicon on Insulator Technologies S.A. Méthode d'amélioration de la qualité d'une structure hétérogène
FR2867310B1 (fr) * 2004-03-05 2006-05-26 Soitec Silicon On Insulator Technique d'amelioration de la qualite d'une couche mince prelevee
ATE384336T1 (de) 2004-10-19 2008-02-15 Soitec Silicon On Insulator Verfahren zur herstellung einer verspannten silizium-schicht auf einem substrat und zwischenprodukt
ATE441206T1 (de) * 2004-12-28 2009-09-15 Soitec Silicon On Insulator Verfahren zum erhalten einer dünnen schicht mit einer geringen dichte von líchern
JP2006216826A (ja) * 2005-02-04 2006-08-17 Sumco Corp Soiウェーハの製造方法
JP4934966B2 (ja) * 2005-02-04 2012-05-23 株式会社Sumco Soi基板の製造方法
CN100481345C (zh) * 2005-02-24 2009-04-22 硅绝缘体技术有限公司 SiGe层的热氧化及其应用
FR2883659B1 (fr) * 2005-03-24 2007-06-22 Soitec Silicon On Insulator Procede de fabrication d'une hetero-structure comportant au moins une couche epaisse de materiau semi-conducteur
FR2895563B1 (fr) * 2005-12-22 2008-04-04 Soitec Silicon On Insulator Procede de simplification d'une sequence de finition et structure obtenue par le procede
FR2903809B1 (fr) * 2006-07-13 2008-10-17 Soitec Silicon On Insulator Traitement thermique de stabilisation d'interface e collage.
JP2008028070A (ja) 2006-07-20 2008-02-07 Sumco Corp 貼り合わせウェーハの製造方法
JP5280015B2 (ja) 2007-05-07 2013-09-04 信越半導体株式会社 Soi基板の製造方法
JP2009260313A (ja) * 2008-03-26 2009-11-05 Semiconductor Energy Lab Co Ltd Soi基板の作製方法及び半導体装置の作製方法
EP2161741B1 (fr) * 2008-09-03 2014-06-11 Soitec Procédé de fabrication d'un semi-conducteur sur un substrat isolant doté d'une densité réduite de défauts SECCO
WO2010062852A1 (fr) * 2008-11-26 2010-06-03 Memc Electronic Materials, Inc. Procédé de traitement d’une structure silicium sur isolant
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
JP5912368B2 (ja) * 2011-03-22 2016-04-27 グローバルウェーハズ・ジャパン株式会社 シリコンウェーハの熱処理方法及びシリコンウェーハ
FR2978604B1 (fr) 2011-07-28 2018-09-14 Soitec Procede de guerison de defauts dans une couche semi-conductrice
FR2984007B1 (fr) 2011-12-13 2015-05-08 Soitec Silicon On Insulator Procede de stabilisation d'une interface de collage situee au sein d'une structure comprenant une couche d'oxyde enterree et structure obtenue
SG11201404039UA (en) * 2012-01-12 2014-10-30 Shinetsu Chemical Co Thermally oxidized heterogeneous composite substrate and method for manufacturing same
US8993458B2 (en) * 2012-02-13 2015-03-31 Applied Materials, Inc. Methods and apparatus for selective oxidation of a substrate
FR2987166B1 (fr) 2012-02-16 2017-05-12 Soitec Silicon On Insulator Procede de transfert d'une couche
FR2991099B1 (fr) * 2012-05-25 2014-05-23 Soitec Silicon On Insulator Procede de traitement d'une structure semi-conducteur sur isolant en vue d'uniformiser l'epaisseur de la couche semi-conductrice
US9202711B2 (en) 2013-03-14 2015-12-01 Sunedison Semiconductor Limited (Uen201334164H) Semiconductor-on-insulator wafer manufacturing method for reducing light point defects and surface roughness
FR3076069B1 (fr) * 2017-12-22 2021-11-26 Commissariat Energie Atomique Procede de transfert d'une couche utile
FR3091620B1 (fr) * 2019-01-07 2021-01-29 Commissariat Energie Atomique Procédé de transfert de couche avec réduction localisée d’une capacité à initier une fracture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824698A (en) * 1987-12-23 1989-04-25 General Electric Company High temperature annealing to improve SIMOX characteristics
EP0328817A2 (fr) * 1988-02-18 1989-08-23 Nortel Networks Corporation Procédé et appareil pour la fabrication de substrats du type SOI
EP0444943A1 (fr) * 1990-02-28 1991-09-04 Shin-Etsu Handotai Company Limited Méthode de fabrication d'un substrat lié
EP0464837A2 (fr) * 1990-07-05 1992-01-08 Kabushiki Kaisha Toshiba Procédé pour fabriquer un substrat semi-conducteur utilisant un circuit intégré semi-conducteur comportant une structure de séparation diélectrique
JPH06275525A (ja) * 1993-03-18 1994-09-30 Shin Etsu Handotai Co Ltd Soi基板及びその製造方法
JPH08316443A (ja) * 1995-05-24 1996-11-29 Mitsubishi Materials Corp Soi基板及びその製造方法
US5646053A (en) * 1995-12-20 1997-07-08 International Business Machines Corporation Method and structure for front-side gettering of silicon-on-insulator substrates

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5297666A (en) * 1976-02-12 1977-08-16 Hitachi Ltd Production of semiconductor device containing pn junctions
JP3036619B2 (ja) * 1994-03-23 2000-04-24 コマツ電子金属株式会社 Soi基板の製造方法およびsoi基板
US6008110A (en) * 1994-07-21 1999-12-28 Kabushiki Kaisha Toshiba Semiconductor substrate and method of manufacturing same
JPH0837286A (ja) * 1994-07-21 1996-02-06 Toshiba Microelectron Corp 半導体基板および半導体基板の製造方法
JP3105770B2 (ja) * 1995-09-29 2000-11-06 日本電気株式会社 半導体装置の製造方法
US5930643A (en) * 1997-12-22 1999-07-27 International Business Machines Corporation Defect induced buried oxide (DIBOX) for throughput SOI

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4824698A (en) * 1987-12-23 1989-04-25 General Electric Company High temperature annealing to improve SIMOX characteristics
EP0328817A2 (fr) * 1988-02-18 1989-08-23 Nortel Networks Corporation Procédé et appareil pour la fabrication de substrats du type SOI
EP0444943A1 (fr) * 1990-02-28 1991-09-04 Shin-Etsu Handotai Company Limited Méthode de fabrication d'un substrat lié
EP0464837A2 (fr) * 1990-07-05 1992-01-08 Kabushiki Kaisha Toshiba Procédé pour fabriquer un substrat semi-conducteur utilisant un circuit intégré semi-conducteur comportant une structure de séparation diélectrique
JPH06275525A (ja) * 1993-03-18 1994-09-30 Shin Etsu Handotai Co Ltd Soi基板及びその製造方法
JPH08316443A (ja) * 1995-05-24 1996-11-29 Mitsubishi Materials Corp Soi基板及びその製造方法
US5646053A (en) * 1995-12-20 1997-07-08 International Business Machines Corporation Method and structure for front-side gettering of silicon-on-insulator substrates

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ABE T ET AL: "ENCAPSULATION OF SURFACE IMPURITIES BY SILICON WAFER-BONDING", JAPANESE JOURNAL OF APPLIED PHYSICS, SUPPLEMENTS, 1 January 1990 (1990-01-01), pages 223 - 226, XP000178042 *
AGA H ET AL: "Reduction of defects in thin bonded silicon on insulator (SOI) wafers", PROCEEDINGS OF THE FOURTH INTERNATIONAL SYMPOSIUM ON SEMICONDUCTOR WAFER BONDING: SCIENCE, TECHNOLOGY, AND APPLICATIONS, PROCEEDINGS OF THE FOURTH INTERNATIONAL SYMPOSIUM ON SEMICONDUCTOR WAFER BONDING: SCIENCE, TECHNOLOGY, AND APPLICATIONS, PARIS, F, ISBN 1-56677-189-7, 1998, Pennington, NJ, USA, Electrochem. Soc, USA, pages 552 - 558, XP002085069 *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 684 (E - 1650) 22 December 1994 (1994-12-22) *
PATENT ABSTRACTS OF JAPAN vol. 097, no. 003 31 March 1997 (1997-03-31) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004538627A (ja) * 2001-07-04 2004-12-24 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ 表面しわを減少させる方法
CN1321443C (zh) * 2001-07-04 2007-06-13 S·O·I·Tec绝缘体上硅技术公司 降低表面粗糙度的方法
WO2004006311A2 (fr) * 2002-07-09 2004-01-15 S.O.I.Tec Silicon On Insulator Technologies Transfert d'une couche mince depuis une tranche comprenant une couche tampon
WO2004006327A2 (fr) * 2002-07-09 2004-01-15 S.O.I. Tec Silicon On Insulator Technologies Transfert d'une couche mince d'une tranche semi-conductrice comportant une couche tampon
WO2004006311A3 (fr) * 2002-07-09 2004-03-04 Soitec Silicon On Insulator Transfert d'une couche mince depuis une tranche comprenant une couche tampon
WO2004006327A3 (fr) * 2002-07-09 2004-03-04 Soitec Silicon On Insulator Transfert d'une couche mince d'une tranche semi-conductrice comportant une couche tampon
US6991956B2 (en) 2002-07-09 2006-01-31 S.O.I.Tec Silicon On Insulator Technologies S.A. Methods for transferring a thin layer from a wafer having a buffer layer
US7749861B2 (en) 2005-12-19 2010-07-06 Shin-Etsu Handotai Co., Ltd. Method for manufacturing SOI substrate and SOI substrate

Also Published As

Publication number Publication date
KR20010013500A (ko) 2001-02-26
KR100637364B1 (ko) 2006-10-23
DE69943072D1 (de) 2011-02-10
FR2777115A1 (fr) 1999-10-08
JP2002503400A (ja) 2002-01-29
TW429481B (en) 2001-04-11
FR2777115B1 (fr) 2001-07-13
EP0986826A1 (fr) 2000-03-22
MY122412A (en) 2006-04-29
US6403450B1 (en) 2002-06-11
EP0986826B1 (fr) 2010-12-29
JP4479010B2 (ja) 2010-06-09

Similar Documents

Publication Publication Date Title
EP0986826B1 (fr) Procede de traitement thermique de substrats semi-conducteurs
EP1208593B1 (fr) Procede de traitement de substrats pour la micro-electronique
EP1208589B1 (fr) Procede de traitement de substrats pour la micro-electronique
EP1902463B1 (fr) Procede de diminution de la rugosite d'une couche epaisse d'isolant
EP1412972A2 (fr) Procede de diminution de rugosite de surface
EP1811560A1 (fr) Procédé de fabrication d'un substrat composite à propriétés électriques améliorées
EP1811561A1 (fr) Procédé de fabrication d'un substrat composite
EP2705529B1 (fr) Procede de formation d'une fracture dans un materiau
FR2938119A1 (fr) Procede de detachement de couches semi-conductrices a basse temperature
FR2881573A1 (fr) Procede de transfert d'une couche mince formee dans un substrat presentant des amas de lacunes
FR2905801A1 (fr) Procede de transfert d'une couche a haute temperature
EP1835534A1 (fr) Procédé de fabrication de film mince
FR2880988A1 (fr) TRAITEMENT D'UNE COUCHE EN SI1-yGEy PRELEVEE
WO2003009366A1 (fr) Procede d'amelioration de l'etat de surface d'une plaquette semiconductrice
FR2912259A1 (fr) Procede de fabrication d'un substrat du type "silicium sur isolant".
FR2941324A1 (fr) Procede de dissolution de la couche d'oxyde dans la couronne d'une structure de type semi-conducteur sur isolant.
JP2008021992A (ja) 接合界面安定化のための熱処理
FR2938118A1 (fr) Procede de fabrication d'un empilement de couches minces semi-conductrices
EP1936667B1 (fr) Traitement double plasma pour l'obtention d'une structure disposant d'un oxyde enterré ultra-fin
EP1186024B1 (fr) Procede de fabrication d'un substrat de silicium comportant une mince couche d'oxyde de silicium ensevelie
FR2928031A1 (fr) Procede de transfert d'une couche mince sur un substrat support.
FR2912550A1 (fr) Procede de fabrication d'une structure ssoi.
WO2023144495A1 (fr) Procede de fabrication d'une structure de type double semi-conducteur sur isolant
EP1818976A1 (fr) Procédé de transfert d'une couche mince formée dans un substrat présentant des amas de lacunes
FR2826177A1 (fr) Substrat a base de silicium poreux et procede de fabrication d'un tel substrat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999911878

Country of ref document: EP

Ref document number: 1019997011506

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 1999 550144

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09445314

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999911878

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997011506

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997011506

Country of ref document: KR