WO1999052590A1 - Transdermal delivery system (tds) with an electrode grid - Google Patents

Transdermal delivery system (tds) with an electrode grid Download PDF

Info

Publication number
WO1999052590A1
WO1999052590A1 PCT/EP1999/002425 EP9902425W WO9952590A1 WO 1999052590 A1 WO1999052590 A1 WO 1999052590A1 EP 9902425 W EP9902425 W EP 9902425W WO 9952590 A1 WO9952590 A1 WO 9952590A1
Authority
WO
WIPO (PCT)
Prior art keywords
application system
electrodes
tds
film
active substance
Prior art date
Application number
PCT/EP1999/002425
Other languages
German (de)
French (fr)
Inventor
Wilfried Fischer
Rüdiger HAAS
Clifton Zimmermann
Original Assignee
Paedipharm Arzneimittel Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paedipharm Arzneimittel Gmbh filed Critical Paedipharm Arzneimittel Gmbh
Publication of WO1999052590A1 publication Critical patent/WO1999052590A1/en
Priority to US09/685,782 priority Critical patent/US6757560B1/en
Priority to US10/820,553 priority patent/US7383083B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0432Anode and cathode
    • A61N1/044Shape of the electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/325Applying electric currents by contact electrodes alternating or intermittent currents for iontophoresis, i.e. transfer of media in ionic state by an electromotoric force into the body

Definitions

  • TDS Transdermal application system
  • TDS Transdermal delivery systems
  • previously implemented application areas e.g. hormones, high blood pressure, pain, nicotine replacement
  • TDS have already achieved a sales volume of over US $ 2 billion worldwide.
  • permeability limits that result from the chemical-physical properties of the substances to be applied.
  • Many known active substances are suitable for transdermal application as soon as a system is available that e.g. the permeability of larger molecules.
  • the additional market potential is enormous. For this reason, there have been technical approaches to improve the permeability of substances for some years, e.g. the use of absorption promoters in passive TDS or iontophoretic systems.
  • TDS take advantage of the passive concentration-dependent diffusion along the concentration gradient between the TDS and the stratum corneum of the skin for the active ingredient transport through the skin.
  • this mechanism only succeeds in driving very small molecules through the skin.
  • Larger, more complex molecules such as insulin, LH-RH etc. require an additional driving force to get through the skin into the bloodstream.
  • One method of applying an additional diffusion-increasing force is iontophoresis, ie the transport of molecules by means of an applied electric field. For this purpose, an electrical potential difference is generated between the active substance carrier and the patient. The molecules in ion form are then driven out of the conductive active substance reservoir into the skin by electrostatic repulsion.
  • the time course of the release of the active substance can be precisely controlled by appropriately controlling the driving electromotive force. This is a critical parameter, particularly in the case of an iontophoretic insulin system. Because of the small therapeutic breadth of the active ingredient, it is absolutely necessary that the liberation from the system controls the permeation through the skin.
  • External control units are supplied for iontophoretic systems, which are connected to the system by cables.
  • Devices are also known from the patent literature, which consist of integrated control units in conjunction with an active substance reservoir and electrodes (see below).
  • Iontophoretic transdermal therapeutic systems as are known, for example, from DE 3703321 C2, WO 92/04938, WO 87/04936, US 3,991,755, US 4,141,359 or WO 91/16077, generally consist of a combination of two electrodes, one or both electrodes are each connected to an active substance reservoir. By applying a voltage to both electrodes, after applying the iontophoretic system to the skin, ionized active substance molecules are forced through skin by electrostatic repulsion through the electrode charged with the active substance in the same sense.
  • the basic structure of ionophoretic systems always includes a cathode and an anode, which serve to generate a direct current flow through the body. Accordingly, the electrodes must be arranged at such a geometric distance from one another that no short circuit can occur on the surface of the skin.
  • the electrodes are directly connected to aqueous buffer solutions, which can be immobilized in gels. The electrical contact to the skin takes place via these aqueous preparations. Ion-containing liquid from it can spread along the surface of the skin and thus cause a direct current flow between the electrodes. This requires a certain minimum size of such a system in order to be able to insulate the electrodes.
  • iontophoretic systems are operated with pulsed DC voltage or AC voltage, the type of Pulse (shape, height, length) affect the tolerance and effectiveness of the iontophoretic system.
  • the field is generated over a large area over the entire TDS and can only be roughly controlled, if at all. This means that the entire system is either active or switched off. Since the skin needs recovery phases between the tension applications, for example around If the reservoir built up under the iontophoresis is emptied again, there is a non-constant release of the active ingredient and thus fluctuating blood levels.
  • iontophoretic TDS The current technical versions of iontophoretic TDS are very complex and expensive. Precious metal coated metal disks are mostly used as electrodes, e.g. as counter electrodes. Normal electrodes, all measures to avoid possible polarizations. As stated above, the electrode gels must be attached insulated from each other and must not leak. All in all, the current iontophoretic TDS are large, expensive and not very flexible in terms of their control options. However, in order to make the advantages of voltage-controlled active substance permeation generally usable, it is necessary to have simple, inexpensive to manufacture and flexible TDS.
  • the object of the present invention is to provide an "intelligent" electrically controlled TDS which avoids the disadvantages described above.
  • the invention now relates to a transdermal application system (TDS)
  • a carrier film which carries a substance / active substance reservoir for receiving a substance / active substance on one side and is provided with an electrode grid
  • the application system according to the invention can be characterized by a carrier film with a thickness in the range from 10 to 1000 ⁇ m.
  • the application system according to the invention can be characterized in that the active substance reservoir is formed by a pressure-sensitive pressure sensitive adhesive, a gel or an immobilized solution for the active substance.
  • the application system according to the invention can be characterized in that the carrier foil carries a grid of electrode pairs, the electrodes of each pair being arranged on opposite sides of the carrier foil. Furthermore, the application system according to the invention can be characterized in that the electrode grid is printed.
  • each pair of electrodes can be controlled individually.
  • the application system according to the invention can be characterized in that the electrode pairs can be controlled in groups.
  • the application system according to the invention can be characterized in that electrodes which can be charged in the same direction or in opposite directions are arranged on each of the two sides of the application system.
  • the application system according to the invention can be characterized in that the microchip is firmly welded to the film carrier.
  • the application system according to the invention can be characterized in that the microchip is a recipe-programmable chip.
  • the application system according to the invention can be characterized in that the battery is a button or foil battery.
  • the application system according to the invention can be characterized in that the battery in a pocket of the film carrier is provided.
  • the proposed "grid” TDS represents a new category of transdermal application systems.
  • the grid “TDS” consists primarily of four components:
  • the size of the grid-TDS will not be different from the forth ⁇ conventional passive TDS (some 10 cm 2).
  • the carrier film is given a pattern of punctiform pairs of electrodes by double-sided printing (etching), the geometry of which is designed in such a way that a concentrated electric field is produced in the area of the two antipodes.
  • the field geometry and the level of the applied potential difference are designed in such a way that the active substance ions are driven out of the active substance matrix into the skin.
  • the control of the individual Electrodes are grid-shaped, systematic or. via a random generator.
  • a welded-on microchip with (optionally) electromagnetically rewritable memory is located on the edge of the carrier film.
  • This chip controls the above-mentioned electrodes to re ⁇ zept restroom, wherein the (optional) individual patient parameters can be taken into account in the course of therapy.
  • the patient or the attending doctor receives a card reader and writer. Before each treatment, the individual patient data are transferred to the chip memory via the reader. Depending on the data entered, the patient now receives the active ingredients in an optimal dosage via the patch programmed in this way.
  • One or more Li-button lines or corresponding foil batteries are used as the energy source.
  • the carrier film receives a pocket in the immediate vicinity of the microchip with corresponding connections into which the battery can be inserted.
  • the performance of such a cell will, depending on the active ingredient and the duration of use, be sufficient for one or more TDS applications, so that the batteries can generally be used several times.
  • the grid TDS consists of a large number of electrode pairs that are printed on the top and bottom of the carrier film of the TDS (electrode grid).
  • This electrode design makes it possible to produce large quantities very inexpensively using standard printing processes.
  • the printed film does not lose its flexibility.
  • the distance between the counter electrodes is very precisely determined by the thickness of the film.
  • the distance of the electrode pairs in the lateral direction can be varied very easily by the printing pattern.
  • the distance between the electrode pairs is designed so that the individual pairs can be controlled separately.
  • the electrode area is
  • the type of application of the electric field in the electrode raster TDS allows for the first time a variable change of state of any surface of the TDS. Parts of the TDS can be positively charged, while others are negative or uncharged. A recurring pattern of the distribution of the electric field can be built up via the TDS, which can be linear or flat along the electrode pairs. This makes it possible to adapt very individually to the field strength requirements. 10
  • a fundamental difference to iontophoretic systems is that ionized molecules migrate along the field lines within the drug reservoir. This can be done in media with low electrical or lack of conductivity. This makes it possible to arrange electrodes charged in opposite directions without a special insulator within one level of the TDS. If the strength of the electric field has been chosen so large that it can penetrate the skin with sufficient strength, the penetration of charged active substance molecules into the skin is influenced, in general a penetration enhancement is desired.
  • the electrode pairs can be operated with constant or pulsed DC voltage or AC voltage of different waveforms.
  • Films made of, for example, polyester, polyethylene or polypropylene with thicknesses of 10 to 1000 ⁇ m can be used as carrier films.
  • the electrodes made of copper, silver, gold, platinum or other conductive materials can be applied to the carrier film by means of appropriate printing processes such as gravure printing, screen printing or etching.
  • the active substance reservoir can be a pressure sensitive pressure sensitive adhesive containing an active substance, a gel containing an active substance or an immobilized active substance solution, the pH value of which enables the active substance in question to be ionized.
  • Substances from the class of opioids, antiasthmatics, regulatory peptides, parasympathomimetics, parasympatholytics or local anesthetics can be used as active ingredients, without being limited to these.
  • concentrations of the active substances in the reservoirs can be varied within wide limits, and they depend to varying degrees on the desired release rate and the necessary permeation through the skin. Typical concentrations are in the range of 0.1 to 10% of the total mass of the reservoir.
  • the skin permeation of the active substances in question can be influenced by adding conventional permeation promoters.
  • the electrodes are isolated from each other by the foil. Each electrode is provided with a lead printed on the foil, which is also silver-plated.
  • the supply lines which are insulated from one another, are each electrically conductively connected to a control device (controller).
  • the controller generates pulsating DC voltages in the range up to 7.5 V, whereby the frequency of the voltage can be varied from 0 to 2 kHz. Sine half-waves, triangular or rectangular pulses can be used as the pulse shape.
  • the controller can also be printed on the carrier film or can be accommodated in an external housing together with the required energy source. In the latter case, the electrodes are connected to the controller via flexible wiring. Each pair of electrodes can be controlled individually.
  • An ionic dye (as a model for an ionic drug) is dissolved in the solution of a pressure sensitive pressure sensitive adhesive (Duro-Tak 287-2097, uncrosslinked acrylate adhesive without functional groups) so that its concentration in the dry matter is 0.25%.
  • a pressure sensitive pressure sensitive adhesive Duro-Tak 287-2097, uncrosslinked acrylate adhesive without functional groups
  • a pressure-sensitive adhesive layer from the dye / adhesive solution described above is applied to one side of the electrode-carrying film using coating processes known to those skilled in the art and the solvent is evaporated using warm air.
  • a polyester film is provided with an upper electrode field facing away from the adhesive-containing side.
  • the underside is printed with ring-shaped electrodes, the rings being exactly opposite the flat electrodes.
  • the ring-shaped electrodes are connected together and are therefore not individually controllable. These electrodes represent the zero potential. Circular pieces with 8 electrodes and an area of 5 cm 2 are punched out of the film.
  • 500 mg agarose are dissolved together with 200 mg hydromorphone hydrochloride in 9.3 g water at 90 ° C.
  • the solution is cooled to 65 ° C. and spread out with a preheated application knife to form a 0.4 mm thick layer and allowed to cool.
  • circular 5 cm 2 pieces are punched out of the gel layer and fastened on the underside of the electrode field foils described above by means of a clamping ring so that no air pockets can occur between the gel layer and the foil.
  • the active substance flow in the hydrogel can be influenced as follows by varying the voltage (2 to 200 V): If the electrodes on the underside of the electrode holder 14
  • the diffusion of the hydromorphone hydrochloride increases away from the electrode field.
  • the active substance ions migrate towards the electrode foil. This reduces the amount of active ingredient released into the environment.
  • the strength of the active substance movement can be modulated by temporarily activating / deactivating individual pairs of electrodes.
  • the stamped electrode grid film from Example 2 is covered with a protruding film (Hostaphan MN 19), which is coated on one side with a self-adhesive pressure sensitive adhesive (Duro-Tak 287-2287), in such a way that a uniform adhesive ring results.
  • a protruding film Hostaphan MN 19
  • a self-adhesive pressure sensitive adhesive Duro-Tak 287-2287
  • a thin polyurethane foam film (approx. 0.5 mm thick) is coated with a self-adhesive pressure sensitive adhesive using a conventional coating process and covered with a siliconized protective film. Circular pieces with a diameter of 5 cm are punched out of the laminate, into each of which circular holes with a diameter of 2.5 cm are punched. Completely assembled electrode grid foils are inserted into the openings.
  • the finished electrode grid TTS can be glued to the skin after removing the protective film.

Abstract

The invention relates to a transdermal delivery system (TDS) with an electrode grid, comprising the following: a support film, on one side of which an active agent matrix is applied and which is provided with a printed electrode grid; a re-writable microchip which is fixed to the film support by welding; a reusable energy source in the form of a button or membrane battery provided in a pocket of the support film; and a read and write device for writing the microchip.

Description

Transdermales Applikationssystem (TDS) mit ElektrodenrasterTransdermal application system (TDS) with electrode grid
Stand der TechnikState of the art
Auf der permanenten Suche der Pharma-Industrie nach Optimierung der Verabreichung von Arzneimitteln haben transdermale Applikations-Systeme (transdermal delivery Systems; TDS) heute einen bedeutenden Platz eingenommen. In bisher realisierten Anwendungsbereichen (z.B. Hormone, Bluthochdruck, Schmerz, Nikotinersatz) haben TDS bereits ein Umsatzvolumen von weltweit über 2 Milliarden US$ erreicht. Bei allen Vorteilen der TDS für Patienten und für das Gesundheitskostensystem ist die Verwendungsmöglichkeit solcher Systeme z.Zt. noch durch Permeabilitätsgrenzen eingeschränkt, die sich aus den chemischphysikalischen Eigenschaften der zu applizierenden Substanzen ergeben. Viele bekannte Wirkstoffe bieten sich für die transdermale Applikation an, sobald ein System zur Verfügung steht, das z.B. die Permeabilität größerer Moleküle bewirkt. Das zusätzliche Marktpotential ist enorm. Daher gibt es seit einigen Jahren technische Ansätze, die Permeabilität von Substanzen zu verbessern, z.B. die Verwendung von Absorptionsförderern in passiven TDS oder iontophoretische Systeme.Transdermal delivery systems (TDS) have played an important role in the pharmaceutical industry's ongoing search for optimization of drug delivery. In previously implemented application areas (e.g. hormones, high blood pressure, pain, nicotine replacement), TDS have already achieved a sales volume of over US $ 2 billion worldwide. With all the advantages of TDS for patients and for the health cost system, the possibility of using such systems is currently. still limited by permeability limits that result from the chemical-physical properties of the substances to be applied. Many known active substances are suitable for transdermal application as soon as a system is available that e.g. the permeability of larger molecules. The additional market potential is enormous. For this reason, there have been technical approaches to improve the permeability of substances for some years, e.g. the use of absorption promoters in passive TDS or iontophoretic systems.
Gewöhnliche TDS nutzen für den Wirkstoff-Transport durch die Haut die passive konzentrationsabhängige Diffusion entlang dem Konzentrationsgefälle zwischen dem TDS und dem stratum corneum der Haut aus. Jedoch gelingt es mit diesem Mechanismus nur, sehr kleine Moleküle durch die Haut zu treiben. Größere, komplexere Moleküle wie Insulin, LH-RH etc. bedürfen einer zusätzlichen treibenden Kraft, um durch die Haut in den Blutkreislauf zu gelangen. Eine Methode zur Anwendung einer zusätzlichen diffusionserhö- henden Kraft ist die Iontophorese, also der Transport von Molekülen mittels eines angelegten elektrischen Felds. Hierzu wird zwischen Wirkstoff-Träger und Patient eine elektrische Potentialdifferenz erzeugt. Die in Ionenform vorliegenden Moleküle werden dann aus dem leitfähigen Wirkstoff-Reservoir durch elektrostatische Abstoßung in die Haut getrieben. Der zeitliche Freisetzungsverlauf des Wirkstoffs lässt sich über entsprechende Ansteuerung der treibenden elektro-motorischen Kraft exakt steuern. Insbesondere bei einem iontophoretischen Insulinsystem ist dies eine kritische Größe. Es ist hierbei, aufgrund der geringen therapeutischen Breite des Wirkstoffes absolut notwendig, daß die Liberation aus dem System die Per- meation durch die Haut kontrolliert.Ordinary TDS take advantage of the passive concentration-dependent diffusion along the concentration gradient between the TDS and the stratum corneum of the skin for the active ingredient transport through the skin. However, this mechanism only succeeds in driving very small molecules through the skin. Larger, more complex molecules such as insulin, LH-RH etc. require an additional driving force to get through the skin into the bloodstream. One method of applying an additional diffusion-increasing force is iontophoresis, ie the transport of molecules by means of an applied electric field. For this purpose, an electrical potential difference is generated between the active substance carrier and the patient. The molecules in ion form are then driven out of the conductive active substance reservoir into the skin by electrostatic repulsion. The time course of the release of the active substance can be precisely controlled by appropriately controlling the driving electromotive force. This is a critical parameter, particularly in the case of an iontophoretic insulin system. Because of the small therapeutic breadth of the active ingredient, it is absolutely necessary that the liberation from the system controls the permeation through the skin.
Zu iontophoretischen Systemen werden externe Steuergeräte geliefert, die über Kabel mit dem System verbunden sind. Es sind ebenfalls aus der Patentliteratur Einrichtungen bekannt, die aus integrierten Steuereinheiten in Verbindung mit Wirk- stoffreservoir und Elektroden bestehen (s.u.) .External control units are supplied for iontophoretic systems, which are connected to the system by cables. Devices are also known from the patent literature, which consist of integrated control units in conjunction with an active substance reservoir and electrodes (see below).
Iontophoretische transdermale therapeutische Systeme, wie sie z.B. aus der DE 3703321 C2, WO 92/04938, WO 87/04936, US 3,991,755, US 4,141,359 oder der WO 91/16077 bekannt sind, bestehen im allgemeinen aus einer Kombination zweier Elektroden, wobei eine oder beide Elektroden mit jeweils einem Wirkstoffreservoir verbunden sind. Mittels einer an beide Elektroden angelegten Spannung können nun, nach Auftragen des iontophoretischen Systemes auf die Haut, ionisierte Wirk- stoffmoleküle durch elektrostatische Abstoßung durch die mit dem Wirkstoff gleichsinning geladene Elektrode durch Haut gezwungen werden.Iontophoretic transdermal therapeutic systems, as are known, for example, from DE 3703321 C2, WO 92/04938, WO 87/04936, US 3,991,755, US 4,141,359 or WO 91/16077, generally consist of a combination of two electrodes, one or both electrodes are each connected to an active substance reservoir. By applying a voltage to both electrodes, after applying the iontophoretic system to the skin, ionized active substance molecules are forced through skin by electrostatic repulsion through the electrode charged with the active substance in the same sense.
Der grundsätzliche Aufbau von ionophoretischen Systemen beinhaltet immer eine Kathode und eine Anode, die dazu dienen, einen direkten Stromfluß durch den Körper zu erzeugen. Demnach müssen die Elektroden in einem derartigen geometrischen Abstand zueinander angebracht sein, daß kein Kurzschluß an der Oberfläche der Haut entstehen kann. Die Elektroden sind dabei mit wässrigen Pufferlösungen, die in Gelen immobilisiert sein können, direkt verbunden. Der elektrische Kontakt zur Haut erfolgt über diese wässrigen Zubereitungen. Ionen- haltige Flüssigkeit daraus kann sich entlang der Oberfläche der Haut ausbreiten und so einen direkten Stromfluß zwischen den Elektroden hervorrufen. Dies bedingt eine gewisse Mindestgröße eines derartigen Systems, um eine Isolation der Elektroden vornehmen zu können.The basic structure of ionophoretic systems always includes a cathode and an anode, which serve to generate a direct current flow through the body. Accordingly, the electrodes must be arranged at such a geometric distance from one another that no short circuit can occur on the surface of the skin. The electrodes are directly connected to aqueous buffer solutions, which can be immobilized in gels. The electrical contact to the skin takes place via these aqueous preparations. Ion-containing liquid from it can spread along the surface of the skin and thus cause a direct current flow between the electrodes. This requires a certain minimum size of such a system in order to be able to insulate the electrodes.
Zur Vermeidung von Verbrennungen des Hautgewebes, Verhinderung von Polarisation der Elektroden und Hydrolyse des Gewebewassers (ab ca. 1,7 V), die zu einer schmerzhaften pH- Verschiebung führen kann, werden iontophoretische Systeme mit gepulster Gleichspannung oder Wechselspannung betrieben, wobei die Art der Pulse (Form, Höhe, Länge) die Verträglichkeit und Effektivität des iontophoretischen Systems beeinflussen. Das Feld wird großflächig über dem gesamten TDS erzeugt und ist, wenn überhaupt, nur grob regelbar. Damit ist das gesamte System entweder aktiv oder abgeschaltet. Da die Haut zwischen den Spannungs-Applikationen Erholungsphasen benötigt, z.B. um das unter der lontophorese aufgebaute Reservoir wieder zu entleeren, kommt es zu einer nicht konstanten Wirkstoffabgabe und damit auch zu schwankenden Blutspiegeln.To avoid burns to the skin tissue, prevention of polarization of the electrodes and hydrolysis of the tissue water (from approx.1.7 V), which can lead to a painful pH shift, iontophoretic systems are operated with pulsed DC voltage or AC voltage, the type of Pulse (shape, height, length) affect the tolerance and effectiveness of the iontophoretic system. The field is generated over a large area over the entire TDS and can only be roughly controlled, if at all. This means that the entire system is either active or switched off. Since the skin needs recovery phases between the tension applications, for example around If the reservoir built up under the iontophoresis is emptied again, there is a non-constant release of the active ingredient and thus fluctuating blood levels.
Die derzeitigen technischen Ausführungen von iontophoretischen TDS sind sehr aufwendig und teuer. Als Elektroden werden meist edelmetallbeschichtete Metallscheiben verwendet, als Gegenelektroden z.B. Normalelektroden, alles Maßnahmen um evtl. auftretende Polarisationen zu vermeiden. Die Elektrodengele müssen - wie vorstehend ausgeführt - voneinander isoliert angebracht werden und dürfen nicht auslaufen. Alles in allem sind die derzeitigen iontophoretischen TDS groß, teuer und hinsichtlich ihrer Steuerungsmöglichkeiten nicht sehr flexibel. Um jedoch die Vorteile der spannungsgesteuerten Wirkstoffpermeation allgemein nutzbar zu machen, bedarf es einfacher, preiswert herzustellender und flexibler TDS.The current technical versions of iontophoretic TDS are very complex and expensive. Precious metal coated metal disks are mostly used as electrodes, e.g. as counter electrodes. Normal electrodes, all measures to avoid possible polarizations. As stated above, the electrode gels must be attached insulated from each other and must not leak. All in all, the current iontophoretic TDS are large, expensive and not very flexible in terms of their control options. However, in order to make the advantages of voltage-controlled active substance permeation generally usable, it is necessary to have simple, inexpensive to manufacture and flexible TDS.
Auf die in der neueren Zeit beschriebene Elektroporation, die mit sehr kurzen (einige ms) und sehr hohen Spannungen (100 - 200 V) arbeitet, wird hier nicht näher eingegangen.The electroporation described in more recent times, which works with very short (a few ms) and very high voltages (100-200 V), is not discussed in more detail here.
2. Beschreibung der Erfindung2. Description of the invention
Aufgabe der vorliegenden Erfindung ist es, ein "intelligentes" elektrisch gesteuertes TDS zur Verfügung zu stellen, das die weiter oben beschriebenen Nachteile vermeidet. Die Erfindung betrifft nun ein transdermales Applikationssystem (TDS) mitThe object of the present invention is to provide an "intelligent" electrically controlled TDS which avoids the disadvantages described above. The invention now relates to a transdermal application system (TDS)
(i) einer Trägerfolie, die einseitig ein Substanz/Wirkstoff-Reservoir zur Aufnahme einer Substanz / eines Wirkstoffs trägt und mit einem Elektrodenraster versehen ist,(i) a carrier film which carries a substance / active substance reservoir for receiving a substance / active substance on one side and is provided with an electrode grid,
(ii) einem gegebenenfalls wiederbeschreibbaren Mikrochip, der auf der Trägerfolie fixiert ist,(ii) an optionally rewritable microchip which is fixed on the carrier film,
(iii) einer gegebenenfalls wiederverwendbaren Batterie und(iii) an optionally reusable battery and
(iv) einem Lese- und Schreibgerät zum Beschreiben des Mi- krochips .(iv) a reader and writer for writing to the microchip.
Das erfindungsgemäße Applikationssystem kann durch eine Trägerfolie einer Stärke im Bereich von 10 bis 1000 μm gekennzeichnet sein.The application system according to the invention can be characterized by a carrier film with a thickness in the range from 10 to 1000 μm.
Ferner kann das erfindungsgemäße Applikationssystem dadurch gekennzeichnet sein, daß das Wirkstoffreservoir durch einen druckempfindlichen Haftkleber, ein Gel oder eine immobilisierte Lösung für den Wirkstoff gebildet wird.Furthermore, the application system according to the invention can be characterized in that the active substance reservoir is formed by a pressure-sensitive pressure sensitive adhesive, a gel or an immobilized solution for the active substance.
Ferner kann das erfindungsgemäße Applikationssystem dadurch gekennzeichnet sein, daß die Trägerfolie ein Raster von Elektrodenpaaren trägt, wobei die Elektroden jedes Paares auf einander gegenüberliegenden Seiten der Trägerfolie angeordnet sind. Ferner kann das erfindungsgemäße Applikationssystem dadurch gekennzeichnet sein, daß das Elektrodenraster aufgedruckt ist.Furthermore, the application system according to the invention can be characterized in that the carrier foil carries a grid of electrode pairs, the electrodes of each pair being arranged on opposite sides of the carrier foil. Furthermore, the application system according to the invention can be characterized in that the electrode grid is printed.
Ferner kann das erfindungsgemäße Applikationssystem dadurch gekennzeichnet sein, daß jedes Elektrodenpaar für sich ansteuerbar ist.Furthermore, the application system according to the invention can be characterized in that each pair of electrodes can be controlled individually.
Ferner kann das erfindungsgemäße Applikationssystem dadurch gekennzeichnet sein, daß die Elektrodenpaare gruppenweise ansteuerbar sind.Furthermore, the application system according to the invention can be characterized in that the electrode pairs can be controlled in groups.
Ferner kann das erfindungsgemäße Applikationssystem dadurch gekennzeichnet sein, daß gleichsinnig oder gegensinnig ladbare Elektroden auf jeder der beiden Seiten des Applikationssystems angeordnet sind.Furthermore, the application system according to the invention can be characterized in that electrodes which can be charged in the same direction or in opposite directions are arranged on each of the two sides of the application system.
Ferner kann das erfindungsgemäße Applikationssystem dadurch gekennzeichnet sein, daß der Mikrochip mit dem Folienträger fest verschweißt ist.Furthermore, the application system according to the invention can be characterized in that the microchip is firmly welded to the film carrier.
Ferner kann das erfindungsgemäße Applikationssystem dadurch gekennzeichnet sein, daß es sich bei dem Mikrochip um einen rezeptbezogen programmierbaren Chip handelt.Furthermore, the application system according to the invention can be characterized in that the microchip is a recipe-programmable chip.
Ferner kann das erfindungsgemäße Applikationssystem dadurch gekennzeichnet sein, daß es sich bei der Batterie um eine Knopf- oder Folienbatterie handelt.Furthermore, the application system according to the invention can be characterized in that the battery is a button or foil battery.
Schließlich kann das erfindungsgemäße Applikationssystem dadurch gekennzeichnet sein, daß die Batterie in einer Tasche des Folienträgers vorgesehen ist.Finally, the application system according to the invention can be characterized in that the battery in a pocket of the film carrier is provided.
Das vorgesehene "Rasterfeld"-TDS stellt eine neue Kategorie von transdermalen Applikationssystemen dar. Das Rasterfeld- TDS besteht primär aus vier Komponenten:The proposed "grid" TDS represents a new category of transdermal application systems. The grid "TDS" consists primarily of four components:
1) Einem Folienträger mit einseitig appuzierter Wirkstoff- Matrix und aufgedrucktem Elektrodenraster.1) A film carrier with active substance matrix applied on one side and printed electrode grid.
2) Einem wiederbeschreibbaren Mikrochip, fest verschweißt auf dem Folienträger.2) A rewritable microchip, firmly welded to the film carrier.
3) Einer Knopf- oder Folienbatterie in einer Tasche der Trä¬ gerfolie als wiederverwendbarer Energiequelle.3) To a button or film battery in a pocket of Trä ¬ gerfolie as a reusable energy source.
4) Ein Lese- und Schreibgerät zur Beschreibung des Mikro- chips .4) A reader and writer to describe the microchip.
2.1 Der Folienträger2.1 The film carrier
Die Größe des Rasterfeld-TDS wird sich nicht von dem her¬ kömmlichen passiven TDS (einige 10 cm2) unterscheiden. Die Trägerfolie erhält durch beidseitige Bedruckung (Atzung) ein Raster von punktförmigen Elektroden-Paaren, deren Geometrie so ausgestaltet ist, daß ein konzentriertes elektrisches Feld im Bereich der beiden Antipoden entsteht. Die Feldgeometrie sowie die Höhe der angelegten Potential-Differenz ist so angelegt, daß die Wirkstoff-Ionen aus der Wirkstoffmatrix in die Haut getrieben werden. Die Ansteuerung der einzelnen Elektroden erfolgt rasterförmig, systematisch bzw . über einen Zufallsgenerator .The size of the grid-TDS will not be different from the forth ¬ conventional passive TDS (some 10 cm 2). The carrier film is given a pattern of punctiform pairs of electrodes by double-sided printing (etching), the geometry of which is designed in such a way that a concentrated electric field is produced in the area of the two antipodes. The field geometry and the level of the applied potential difference are designed in such a way that the active substance ions are driven out of the active substance matrix into the skin. The control of the individual Electrodes are grid-shaped, systematic or. via a random generator.
.2 . Mikrochip.2. Microchip
Am Rand der Trägerfolie befindet sich ein aufgeschweißter Mikrochip mit (optional) elektromagnetisch wiederbeschreib- barem Speicher. Dieser Chip steuert die o.g. Elektroden re¬ zeptbezogen an, wobei die (optional) individuellen Patienten-Parameter im Therapieverlauf berücksichtigt werden können. Hierzu erhält der Patient oder der behandelnde Arzt ein Kartenlese- und -Schreibgerät. Vor jeder Behandlung werden die individuellen Patienten-Daten über das Lesegerät in den Chip-Speicher übertragen. Abhängig von den eingegebenen Daten erhält der Patient nun über das so programmierte Pflaster die Wirkstoffe in einer optimalen Dosierung.A welded-on microchip with (optionally) electromagnetically rewritable memory is located on the edge of the carrier film. This chip controls the above-mentioned electrodes to re ¬ zeptbezogen, wherein the (optional) individual patient parameters can be taken into account in the course of therapy. For this purpose, the patient or the attending doctor receives a card reader and writer. Before each treatment, the individual patient data are transferred to the chip memory via the reader. Depending on the data entered, the patient now receives the active ingredients in an optimal dosage via the patch programmed in this way.
2.3 Energiequelle2.3 Energy source
Als Energiequelle werden eine oder mehrere Li-KnopfZeilen oder entsprechende Folienbatterien verwendet. Hierfür erhält die Trägerfolie in unmittelbarer Nähe des Mikrochips eine Tasche mit entsprechenden Anschlüssen, in die die Batterie eingeführt werden kann. Die Leistung einer solchen Zelle wird, je nach Wirkstoff und Anwendungsdauer, für eine oder mehrere TDS-Applikationen ausreichen, so daß die Batterien in der Regel mehrfach verwendet werden können. 2.4 Schreib-/LesegerätOne or more Li-button lines or corresponding foil batteries are used as the energy source. For this purpose, the carrier film receives a pocket in the immediate vicinity of the microchip with corresponding connections into which the battery can be inserted. The performance of such a cell will, depending on the active ingredient and the duration of use, be sufficient for one or more TDS applications, so that the batteries can generally be used several times. 2.4 Read / write device
Dessen Funktion wurde bereits oben beschrieben,Its function has already been described above,
2.5 Unterschiede zu iontophoretischen Systemen2.5 Differences to iontophoretic systems
Das Rasterfeld-TDS besteht aus einer Vielzahl von Elektrodenpaaren, die auf die Ober- und Unterseite der Trägerfolie des TDS aufgedruckt sind (Elektroden-Raster) . Durch diese Elektrodenausbildung ist es möglich, große Stückzahlen sehr kostengünstig mittels Standard-Druckverfahren herzustellen. Die bedruckte Folie büßt nicht ihre Flexibilität ein. Der Abstand der Gegenelektroden wird sehr präzise durch die Dik- ke der Folie bestimmt. Der Abstand der Elektrodenpaare in lateraler Richtung kann sehr einfach durch das Druckmuster variiert werden. Der Abstand der Elektrodenpaare voneinander ist so angelegt, daß sich eine getrennte Ansteuerung der Einzelpaare realisieren läßt. Die Elektrodenfläche beträgtThe grid TDS consists of a large number of electrode pairs that are printed on the top and bottom of the carrier film of the TDS (electrode grid). This electrode design makes it possible to produce large quantities very inexpensively using standard printing processes. The printed film does not lose its flexibility. The distance between the counter electrodes is very precisely determined by the thickness of the film. The distance of the electrode pairs in the lateral direction can be varied very easily by the printing pattern. The distance between the electrode pairs is designed so that the individual pairs can be controlled separately. The electrode area is
2 typischerweise 0,1 bis 10 cm .2 typically 0.1 to 10 cm.
Die Art der Applikation des elektrischen Felds in dem Elek- troden-Raster-TDS erlaubt erstmals eine variable Zustandsän- derung beliebiger Flächen des TDS. So können Teile des TDS positiv geladen sein, während gleichzeitig andere negativ oder ungeladen sind. Es kann über das TDS ein wiederkehrendes Muster der Verteilung des elektrischen Feldes aufgebaut werden, welches entlang der Elektrodenpaare linienförmig oder flächig ausgebildet sein kann. Damit ist es möglich, sehr individuell auf die Feldstärken-Anforderungen unter- 10The type of application of the electric field in the electrode raster TDS allows for the first time a variable change of state of any surface of the TDS. Parts of the TDS can be positively charged, while others are negative or uncharged. A recurring pattern of the distribution of the electric field can be built up via the TDS, which can be linear or flat along the electrode pairs. This makes it possible to adapt very individually to the field strength requirements. 10
schiedlicher Wirkstoffe einzugehen, z.B. Teilbereiche des TDS zu aktivieren, während sich andere Bereiche im Ruhezu¬ stand befinden, so daß sich die Haut dort 'erholen' kann. Durch Wahl der geeigneten Feldstärke kann die Eindringtiefe des Feldes in die Haut variiert werden. Benutzt man "leere", d.h. Wirkstofffreie Rasterfeld-Systeme, können Substanzen entlang dem gerichteten Feld aus der Haut in das Reservoir wandern und hier für diagnostische Zwecke analysiert werden.enter schiedlicher agents to enable, for example, sections of the TDS, while other areas in Ruhezu ¬ was located, so that the skin can 'recover' there. The depth of penetration of the field into the skin can be varied by selecting the appropriate field strength. If "empty", ie drug-free grid systems are used, substances can migrate along the directional field from the skin into the reservoir and be analyzed here for diagnostic purposes.
Ein grundsätzlicher Unterschied zu iontophoretischen Systemen besteht darin, daß ionisierte Moleküle entlang der Feldlinien innerhalb des Wirkstoffreservoirs wandern. Dies kann in Medien geringer elektrischer oder fehlender Leitfähigkeit erfolgen. Damit ist es möglich, gegensinnig geladene Elektroden ohne speziellen Isolator innerhalb einer Ebene des TDS anzuordnen. Falls die Stärke des elektrischen Feldes so groß gewählt wurde, daß es mit ausreichender Stärke in die Haut eindringen kann, wird die Penetration von geladenen Wirkstoffmolekülen in die Haut beeinflußt, im allgemeinen ist eine Penetrationsverstärkung erwünscht.A fundamental difference to iontophoretic systems is that ionized molecules migrate along the field lines within the drug reservoir. This can be done in media with low electrical or lack of conductivity. This makes it possible to arrange electrodes charged in opposite directions without a special insulator within one level of the TDS. If the strength of the electric field has been chosen so large that it can penetrate the skin with sufficient strength, the penetration of charged active substance molecules into the skin is influenced, in general a penetration enhancement is desired.
Die Elektrodenpaare können dabei mit konstanter oder gepulster Gleichspannung oder Wechselspannung unterschiedlicher Wellenformen betrieben werden.The electrode pairs can be operated with constant or pulsed DC voltage or AC voltage of different waveforms.
Indem die Haut nicht mit den Elektroden in Kontakt kommt, kann es unter Anwendung des Elektrodenraster-TDS nicht zu Verbrennungen oder zu Hydrolyse von Gewebswasser kommen. Die Hautverträglichkeit der erfindungsgemäßen Systeme ist dementsprechend gegenüber iontophoretischen Systemen deut- 11Because the skin does not come into contact with the electrodes, there can be no burns or hydrolysis of tissue water using the electrode grid TDS. The skin tolerance of the systems according to the invention is accordingly clear compared to iontophoretic systems. 11
lieh verbessert.lent improved.
Als Trägerfolien können Folien aus beispielsweise Polyester, Polyethylen oder Polypropylen mit Stärken von 10 bis 1000 μm verwendet werden. Die Elektroden können aus Kupfer, Silber, Gold, Platin oder anderen leitfähigen Materialien auf die Trägerfolie mittels entsprechenden Druckverfahren wie Tiefdruck, Siebdruck oder Ätzung aufgebracht werden. Das Wirk- stoffreservoir kann ein wirkstoffhaltiger druckempfindlicher Haftkleber, ein wirkstoffhaltiges Gel oder eine immobilisierte Wirkstofflösung sein, deren pH-Wert die Ionisierung des betreffenden Wirkstoffes ermöglicht. Als Wirkstoffe können Substanzen aus der Klasse der Opioide, Antiasthmatika, regulatorische Peptide, Parasympathomimetica, Parasympatho- lytika oder Lokalanaesthetika, ohne hierauf beschränkt zu sein, eingesetzt werden. Die Konzentrationen der Wirkstoffe in den Reservoirs kann in weiten Grenzen variiert werden, und sie hängen in unterschiedlichem Ausmaß von der gewünschten Freisetzungsrate und der notwendigen Permeation durch Haut ab. Typische Konzentrationen liegen im Bereich von 0,1 bis 10 % der Gesamtmasse des Reservoirs. Die Hautpermeation der betreffenden Wirkstoffe kann durch Zumischung üblicher Permeationsförderer noch beeinflußt werden.Films made of, for example, polyester, polyethylene or polypropylene with thicknesses of 10 to 1000 μm can be used as carrier films. The electrodes made of copper, silver, gold, platinum or other conductive materials can be applied to the carrier film by means of appropriate printing processes such as gravure printing, screen printing or etching. The active substance reservoir can be a pressure sensitive pressure sensitive adhesive containing an active substance, a gel containing an active substance or an immobilized active substance solution, the pH value of which enables the active substance in question to be ionized. Substances from the class of opioids, antiasthmatics, regulatory peptides, parasympathomimetics, parasympatholytics or local anesthetics can be used as active ingredients, without being limited to these. The concentrations of the active substances in the reservoirs can be varied within wide limits, and they depend to varying degrees on the desired release rate and the necessary permeation through the skin. Typical concentrations are in the range of 0.1 to 10% of the total mass of the reservoir. The skin permeation of the active substances in question can be influenced by adding conventional permeation promoters.
BeispieleExamples
Beispiel 1example 1
Auf eine Polyesterfolie einer Dicke von 100 μm werden 12On a polyester film with a thickness of 100 microns 12
beidseitig 8 kreisflächenförmige Kupfer-Elektroden mit einem Durchmesser von 6 mm aufgedruckt (analog Abbildung 1) und anschließend galvanisch versilbert. Die Elektroden sind durch die Folie voneinander isoliert. Jede Elektrode ist mit einer auf die Folie aufgedruckten Zuleitung, die ebenfalls versilbert ist, versehen. Die voneinander isolierten Zuleitungen werden jeweils individuell mit einem Steuergerät (Controller) elektrisch leitend verbunden. Der Controller erzeugt pulsierende Gleichspannungen im Bereich bis 7,5 V, wobei die Frequenz der Spannung von 0 bis 2 kHz variiert werden kann. Als Pulsform kommen Sinushalbwellen, Dreieck- oder Rechteckimpulse in Frage. Der Controller kann dabei ebenfalls auf die Trägerfolie aufgedruckt werden oder zusammen mit der benötigten Energiequelle in einem externen Gehäuse untergebracht sein. In letzterem Falle werden die Elektroden über eine flexible Verdrahtung mit dem Controller verbunden. Jedes Elektrodenpaar kann individuell angesteuert werden.8 circular copper electrodes with a diameter of 6 mm printed on both sides (as in Figure 1) and then galvanically silvered. The electrodes are isolated from each other by the foil. Each electrode is provided with a lead printed on the foil, which is also silver-plated. The supply lines, which are insulated from one another, are each electrically conductively connected to a control device (controller). The controller generates pulsating DC voltages in the range up to 7.5 V, whereby the frequency of the voltage can be varied from 0 to 2 kHz. Sine half-waves, triangular or rectangular pulses can be used as the pulse shape. The controller can also be printed on the carrier film or can be accommodated in an external housing together with the required energy source. In the latter case, the electrodes are connected to the controller via flexible wiring. Each pair of electrodes can be controlled individually.
In der Lösung eines druckempfindlichen Haftklebers (Duro- Tak 287-2097, unvernetzter Acrylatkleber ohne funktioneile Gruppen) wird ein ionischer Farbstoff (als Modellstoff für einen ionischen Arzneistoff) gelöst, so daß seine Konzentration in der Trockenmasse 0,25 % beträgt.An ionic dye (as a model for an ionic drug) is dissolved in the solution of a pressure sensitive pressure sensitive adhesive (Duro-Tak 287-2097, uncrosslinked acrylate adhesive without functional groups) so that its concentration in the dry matter is 0.25%.
Auf eine Seite der elektrodentragenden Folie wird mit dem Fachmann bekannten Beschichtungsverfahren (z.B. Rakelverfahren) eine druckempfindliche Haftschicht aus der oben beschriebenen Farbstoff/Klebstofflösung heraus aufgebracht und das Lösungsmittel mittels Warmluft verdunstet. Durch Anlegen einer einheitlichen Spannung von z.B. 6 V und 0 Hz 13A pressure-sensitive adhesive layer from the dye / adhesive solution described above is applied to one side of the electrode-carrying film using coating processes known to those skilled in the art and the solvent is evaporated using warm air. By applying a uniform voltage of 6 V and 0 Hz, for example 13
an alle Elektroden wird die Diffusion des Farbstoffes in der Klebstoffschicht beschleunigt.the diffusion of the dye in the adhesive layer is accelerated to all electrodes.
Beispiel 2Example 2
Es wird analog Beispiel 1 eine Polyesterfolie mit einem oberen, der klebstoffhaltigen Seite abgewandten Elektrodenfeld versehen. Die Unterseite wird mit ringförmigen Elektroden bedruckt, wobei die Ringe den flächenförmigen Elektroden genau gegenüber liegen. Die ringförmigen Elektroden werden gemeinsam verbunden und sind damit nicht individuell ansteuerbar. Diese Elektroden stellen das Nullpotential dar. Aus der Folie werden kreisrunde, 8 Elektroden tragende Stücke mit einer Fläche von 5 cm2 herausgestanzt.Analogously to Example 1, a polyester film is provided with an upper electrode field facing away from the adhesive-containing side. The underside is printed with ring-shaped electrodes, the rings being exactly opposite the flat electrodes. The ring-shaped electrodes are connected together and are therefore not individually controllable. These electrodes represent the zero potential. Circular pieces with 8 electrodes and an area of 5 cm 2 are punched out of the film.
500 mg Agarose werden zusammen mit 200 mg Hydromorphon- Hydrochlorid in 9,3 g Wasser bei 90 ° C gelöst. Man kühlt die Lösung auf 65 ° C ab und streicht sie mit einem vorgewärmten Auftragsrakel zu einer 0,4 mm starken Schicht aus und läßt sie erkalten. Nach dem Erkalten werden kreisförmige 5 cm2 große Stücke aus der Gelschicht ausgestanzt und auf der Unterseite der oben beschriebenen Elektrodenfeld- Folien mittels eines Klemmringes so befestigt, daß zwischen Gelschicht und Folie keine Lufteinschlüsse auftreten können.500 mg agarose are dissolved together with 200 mg hydromorphone hydrochloride in 9.3 g water at 90 ° C. The solution is cooled to 65 ° C. and spread out with a preheated application knife to form a 0.4 mm thick layer and allowed to cool. After cooling, circular 5 cm 2 pieces are punched out of the gel layer and fastened on the underside of the electrode field foils described above by means of a clamping ring so that no air pockets can occur between the gel layer and the foil.
Durch Variation der Spannung (2 bis 200 V) kann der Wirk- stoffstrom im Hydrogel folgenderweise beeinflußt werden: Wenn die Elektroden an der Unterseite des Elektrodenra- 14The active substance flow in the hydrogel can be influenced as follows by varying the voltage (2 to 200 V): If the electrodes on the underside of the electrode holder 14
sters überwiegend positiv geladen sind, verstärkt sich die Diffusion des Hydromorphon-Hydrochlorids von dem Elektrodenfeld weg. Nach Umpolung wandern die Wirkstoffionen in Richtung Elektrodenfolie. Dadurch wird die Wirkstoffabgäbe an die Umgebung reduziert. Die Stärke der Wirkstoffbewegung kann durch temporäres Aktivieren/Deaktivieren einzelner Elektrodenpaare moduliert werden.are predominantly positively charged, the diffusion of the hydromorphone hydrochloride increases away from the electrode field. After polarity reversal, the active substance ions migrate towards the electrode foil. This reduces the amount of active ingredient released into the environment. The strength of the active substance movement can be modulated by temporarily activating / deactivating individual pairs of electrodes.
Beispiel 3Example 3
Die gestanzte Elektrodenrasterfolie aus Beispiel 2 wird mit einer überstehenden Folie (Hostaphan MN 19) , die einseitig mit einem selbstklebenden Haftkleber (Duro-Tak 287- 2287) beschichtet ist, derart überklebt, daß sich ein gleichmäßiger Klebering ergibt. Nach Montage des wirkstoffhaltigen Geles wird das Elektrodenraster-TTS auf eine silikonisierte Schutzfolie aufgebracht. Die Schutzfolie wird vor dem Aufkleben des Systems auf die Haut entfernt.The stamped electrode grid film from Example 2 is covered with a protruding film (Hostaphan MN 19), which is coated on one side with a self-adhesive pressure sensitive adhesive (Duro-Tak 287-2287), in such a way that a uniform adhesive ring results. After assembling the gel containing the active ingredient, the electrode grid TTS is applied to a siliconized protective film. The protective film is removed before sticking the system onto the skin.
Beispiel 4Example 4
Eine dünne Polyurethanschaumfolie (ca. 0,5 mm Dicke) wird mit einem selbstklebenden Haftkleber mittels üblicher Be- schichtungsverfahren beschichtet und mit einer silikoni- sierten Schutzfolie abgedeckt. Aus dem Laminat werden 5 cm durchmessende kreisrunde Stücke ausgestanzt, in die jeweils kreisrunde Löcher von 2,5 cm Durchmesser gestanzt werden. In die Öffnungen werden fertig montierte Elektro- denrasterfolien eingebracht. Die Schutzfolien der Schaum- 15A thin polyurethane foam film (approx. 0.5 mm thick) is coated with a self-adhesive pressure sensitive adhesive using a conventional coating process and covered with a siliconized protective film. Circular pieces with a diameter of 5 cm are punched out of the laminate, into each of which circular holes with a diameter of 2.5 cm are punched. Completely assembled electrode grid foils are inserted into the openings. The protective foils of the foam 15
stoffringe werden entfernt und durch vollflächige siliko- nisierte Schutzfolien ersetzt.rings of fabric are removed and replaced with full-surface siliconized protective foils.
Das fertige Elektrodenraster-TTS kann nach dem Abziehen der Schutzfolie auf die Haut aufgeklebt werden. The finished electrode grid TTS can be glued to the skin after removing the protective film.

Claims

16Patentansprüche 16 patent claims
1. Transdermales Applikationssystem (TDS) mit1. Transdermal application system (TDS) with
(i) einer Trägerfolie, die einseitig ein Substanz/Wirk-stoff- Reservoir zur Aufnahme einer Substanz / eines Wirkstoffs trägt und mit einem Elektrodenraster versehen ist,(i) a carrier film which carries a substance / active substance reservoir on one side for receiving a substance / an active substance and is provided with an electrode grid,
(ii) einem gegebenenfalls wiederbeschreibbaren Mikrochip, der auf der Trägerfolie fixiert ist,(ii) an optionally rewritable microchip which is fixed on the carrier film,
(iii) einer gegebenenfalls wiederverwendbaren Batterie und(iii) an optionally reusable battery and
(iv) einem Lese- und Schreibgerät zum Beschreiben des Mikro- chips .(iv) a reader and writer for writing to the microchip.
2. Applikationssystem nach Anspruch 1, gekennzeichnet durch eine Trägerfolie einer Stärke im Bereich von 10 bis 1000 μm.2. Application system according to claim 1, characterized by a carrier film with a thickness in the range from 10 to 1000 μm.
3. Applikationssystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Wirkstoffreservoir durch einen druckempfindlichen Haftkleber, ein Gel oder eine immobilisierte Lösung für den Wirkstoff gebildet wird.3. Application system according to claim 1 or 2, characterized in that the active substance reservoir is formed by a pressure-sensitive pressure sensitive adhesive, a gel or an immobilized solution for the active substance.
4. Applikationssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Trägerfolie ein Raster von Elektrodenpaaren trägt, wobei die Elektroden jedes Paares auf einander gegenüberliegenden Seiten der Trägerfolie angeordnet sind.4. Application system according to one of the preceding claims, characterized in that the carrier film carries a grid of electrode pairs, the electrodes of each pair being arranged on opposite sides of the carrier film.
5. Applikationssystem nach einem der vorhergehenden Ansprüche, 175. Application system according to one of the preceding claims, 17
dadurch gekennzeichnet, daß das Elektrodenraster aufgedruckt ist .characterized in that the electrode grid is printed.
6. Applikationssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß jedes Elektrodenpaar für sich ansteuerbar ist.6. Application system according to one of the preceding claims, characterized in that each pair of electrodes can be controlled individually.
7. Applikationssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Elektrodenpaare gruppenweise ansteuerbar sind.7. Application system according to one of the preceding claims, characterized in that the electrode pairs can be controlled in groups.
8. Applikationssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß gleichsinnig oder gegensinnig ladbare Elektroden auf jeder der beiden Seiten des Applikationssystems angeordnet sind.8. Application system according to one of the preceding claims, characterized in that electrodes which can be charged in the same direction or in opposite directions are arranged on each of the two sides of the application system.
9. Applikationssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Mikrochip mit dem Folienträger fest verschweißt ist.9. Application system according to one of the preceding claims, characterized in that the microchip is firmly welded to the film carrier.
10. Applikationssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei dem Mikrochip um einen rezeptbezogen programmierbaren Chip handelt.10. Application system according to one of the preceding claims, characterized in that the microchip is a prescription-specific programmable chip.
11. Applikationssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es sich bei der Batterie um eine Knopf- oder Folienbatterie handelt.11. Application system according to one of the preceding claims, characterized in that the battery is a button or foil battery.
12. Applikationssystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Batterie in einer Tasche des Folienträgers vorgesehen ist. 12. Application system according to one of the preceding claims, characterized in that the battery is provided in a pocket of the film carrier.
PCT/EP1999/002425 1998-04-09 1999-04-09 Transdermal delivery system (tds) with an electrode grid WO1999052590A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/685,782 US6757560B1 (en) 1999-04-09 2000-10-10 Transdermal delivery system (TDS) with electrode network
US10/820,553 US7383083B2 (en) 1998-04-09 2004-04-08 Transdermal delivery system (TDS) with electrode network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19816143.3 1998-04-09
DE1998116143 DE19816143A1 (en) 1998-04-09 1998-04-09 Transdermal application system (TDS) with electrode grid

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/685,782 Continuation-In-Part US6757560B1 (en) 1998-04-09 2000-10-10 Transdermal delivery system (TDS) with electrode network

Publications (1)

Publication Number Publication Date
WO1999052590A1 true WO1999052590A1 (en) 1999-10-21

Family

ID=7864260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/002425 WO1999052590A1 (en) 1998-04-09 1999-04-09 Transdermal delivery system (tds) with an electrode grid

Country Status (2)

Country Link
DE (1) DE19816143A1 (en)
WO (1) WO1999052590A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039748A2 (en) * 1999-12-03 2001-06-07 Psimedia Limited Orally administrable pharmaceutical product and method of fabrication therefor
WO2001041736A2 (en) * 1999-12-10 2001-06-14 Massachusetts Institute Of Technology Microchip devices for delivery of molecules and methods of fabrication thereof
US6730072B2 (en) 2000-05-30 2004-05-04 Massachusetts Institute Of Technology Methods and devices for sealing microchip reservoir devices
EP1457233A1 (en) * 2003-03-12 2004-09-15 Novosis AG Transdermal drug delivery system with mesh electrode
EP1688132A2 (en) * 1999-12-10 2006-08-09 Massachussetts Institute of Technology Microchip devices for delivery of molecules and methods of fabrication thereof
DE102007020799A1 (en) 2007-05-03 2008-11-06 Novosis Ag Transdermal therapeutic system with remifentanil
DE102007058504A1 (en) 2007-12-05 2009-07-09 Acino Ag Transdermal therapeutic system containing a modulator of nicotinic acetylcholine receptors (nAChR)
US7985386B2 (en) 2000-03-02 2011-07-26 Microchips, Inc. Implantable medical device for diagnostic sensing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10015928B4 (en) * 2000-03-30 2004-12-09 Hafner, Dieter, Dr. Carrier for a medicament and method for checking the integrity of this carrier
DE10015930A1 (en) * 2000-03-30 2001-10-18 Dieter Hafner Carrier for chemical, pharmaceutical or cosmetic substances is provided with at least one section with encoded information which is readable by a code reading device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991755A (en) 1973-07-27 1976-11-16 Medicon, Inc. Iontophoresis apparatus for applying local anesthetics
US4141359A (en) 1976-08-16 1979-02-27 University Of Utah Epidermal iontophoresis device
WO1987004936A1 (en) 1986-02-12 1987-08-27 Key Pharmaceuticals, Inc. Method and apparatus for iontophoretic drug-delivery
US4931046A (en) * 1987-05-15 1990-06-05 Newman Martin H Iontophoresis drug delivery system
US4942883A (en) * 1987-09-29 1990-07-24 Newman Martin H Drug delivery device
DE3703321C2 (en) 1986-09-01 1991-08-29 Transcutan Gmbh, 7640 Kehl, De
WO1991016077A1 (en) 1990-04-18 1991-10-31 Medtronic, Inc. Improved method to administer drugs by iontophoresis
WO1992004938A1 (en) 1990-09-25 1992-04-02 Rutgers, The State University Of New Jersey Iontotherapeutic devices, reservoir electrode devices therefor, process and unit dose
WO1993003790A1 (en) * 1991-08-26 1993-03-04 Rutgers, The State University Of New Jersey Iontotherapeutic device and process
EP0532451A1 (en) * 1991-09-12 1993-03-17 S.I. SCIENTIFIC INNOVATIONS Ltd. Transdermal drug delivery device
WO1994016765A1 (en) * 1993-01-28 1994-08-04 Scientific Innovations Ltd. Transcutaneous drug delivery applicator
US5415629A (en) * 1993-09-15 1995-05-16 Henley; Julian L. Programmable apparatus for the transdermal delivery of drugs and method
FR2726769A1 (en) * 1994-11-16 1996-05-15 Lhd Lab Hygiene Dietetique IONOPHORETIC DEVICE FOR TRANSDERMAL DELIVERY OF MEDICINES AND DISPOSABLE ASSEMBLY FORMING SUCH A DEVICE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1244030B (en) * 1989-12-21 1994-06-28 Elan Corp Plc TWO-PART DEVICE FOR THE CONTROLLED ADMINISTRATION OF AN INGREDIENT

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3991755A (en) 1973-07-27 1976-11-16 Medicon, Inc. Iontophoresis apparatus for applying local anesthetics
US4141359A (en) 1976-08-16 1979-02-27 University Of Utah Epidermal iontophoresis device
WO1987004936A1 (en) 1986-02-12 1987-08-27 Key Pharmaceuticals, Inc. Method and apparatus for iontophoretic drug-delivery
DE3703321C2 (en) 1986-09-01 1991-08-29 Transcutan Gmbh, 7640 Kehl, De
US4931046A (en) * 1987-05-15 1990-06-05 Newman Martin H Iontophoresis drug delivery system
US4942883A (en) * 1987-09-29 1990-07-24 Newman Martin H Drug delivery device
WO1991016077A1 (en) 1990-04-18 1991-10-31 Medtronic, Inc. Improved method to administer drugs by iontophoresis
WO1992004938A1 (en) 1990-09-25 1992-04-02 Rutgers, The State University Of New Jersey Iontotherapeutic devices, reservoir electrode devices therefor, process and unit dose
WO1993003790A1 (en) * 1991-08-26 1993-03-04 Rutgers, The State University Of New Jersey Iontotherapeutic device and process
EP0532451A1 (en) * 1991-09-12 1993-03-17 S.I. SCIENTIFIC INNOVATIONS Ltd. Transdermal drug delivery device
WO1994016765A1 (en) * 1993-01-28 1994-08-04 Scientific Innovations Ltd. Transcutaneous drug delivery applicator
US5415629A (en) * 1993-09-15 1995-05-16 Henley; Julian L. Programmable apparatus for the transdermal delivery of drugs and method
FR2726769A1 (en) * 1994-11-16 1996-05-15 Lhd Lab Hygiene Dietetique IONOPHORETIC DEVICE FOR TRANSDERMAL DELIVERY OF MEDICINES AND DISPOSABLE ASSEMBLY FORMING SUCH A DEVICE

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001039748A3 (en) * 1999-12-03 2002-01-03 Qinetiq Ltd Orally administrable pharmaceutical product and method of fabrication therefor
AU769952B2 (en) * 1999-12-03 2004-02-12 Psimedica Limited Orally administrable pharmaceutical product and method of fabrication therefor
WO2001039748A2 (en) * 1999-12-03 2001-06-07 Psimedia Limited Orally administrable pharmaceutical product and method of fabrication therefor
EP1688132A3 (en) * 1999-12-10 2009-10-07 Massachussetts Institute of Technology Microchip devices for delivery of molecules and methods of fabrication thereof
WO2001041736A2 (en) * 1999-12-10 2001-06-14 Massachusetts Institute Of Technology Microchip devices for delivery of molecules and methods of fabrication thereof
WO2001041736A3 (en) * 1999-12-10 2002-01-31 Massachusetts Inst Technology Microchip devices for delivery of molecules and methods of fabrication thereof
US6808522B2 (en) 1999-12-10 2004-10-26 Massachusetts Institute Of Technology Microchip devices for delivery of molecules and methods of fabrication thereof
EP1688132A2 (en) * 1999-12-10 2006-08-09 Massachussetts Institute of Technology Microchip devices for delivery of molecules and methods of fabrication thereof
US7985386B2 (en) 2000-03-02 2011-07-26 Microchips, Inc. Implantable medical device for diagnostic sensing
US6730072B2 (en) 2000-05-30 2004-05-04 Massachusetts Institute Of Technology Methods and devices for sealing microchip reservoir devices
EP1457233A1 (en) * 2003-03-12 2004-09-15 Novosis AG Transdermal drug delivery system with mesh electrode
DE102007020799A1 (en) 2007-05-03 2008-11-06 Novosis Ag Transdermal therapeutic system with remifentanil
DE102007058504A1 (en) 2007-12-05 2009-07-09 Acino Ag Transdermal therapeutic system containing a modulator of nicotinic acetylcholine receptors (nAChR)

Also Published As

Publication number Publication date
DE19816143A1 (en) 1999-10-21

Similar Documents

Publication Publication Date Title
US6757560B1 (en) Transdermal delivery system (TDS) with electrode network
DE69631766T2 (en) DEVICE FOR ADMINISTRATING MEDICINES BY ELECTRO TRANSPORT
DE69933780T2 (en) CONTROLLED MEDICATION DOSING DEVICE
DE69730971T2 (en) DEVICE FOR THE TRANSDERMALIZATION OF MEDICAMENTS OR THE ACCEPTANCE OF BODY FLUIDS
KR100453132B1 (en) Device and method for enhancing transdermal agent flux
DE69921090T2 (en) Configured electrode assembly with improved electrical conduction
DE69921489T2 (en) ELECTRIC TRANSPORT DEVICE WITH BLADE
DE69133328T2 (en) DEVICE FOR IONTOPHORETIC ADMINISTRATION
EP1448263B1 (en) Device for controlled delivery of active substance into the skin
DE60124340T2 (en) SELECTED ADMINISTRATIVE PROFILES OF MEDICAMENTS USING COMPETITIVE IONS
EP0784992B1 (en) Treatment device for malignant changes of tissue
AU2002363106A1 (en) Device and method for controlled delivery of active substance into the skin
EP1438099A2 (en) Dermal patch
DE60216812T2 (en) ELECTROTRANSPORT DEVICE WITH DIRECT SHAPED CONTAINER HOUSING
EP1457233B1 (en) Transdermal drug delivery system with mesh electrode
DE19681392B4 (en) Electrotransport device with reusable control device and preparatory method
WO1999052590A1 (en) Transdermal delivery system (tds) with an electrode grid
DE69723995T2 (en) DEVICE FOR IONTOPHORETIC ADMINISTRATION OF MEDICINES WITH METHOD FOR ACTIVATING THE SAME
DE69838485T2 (en) METHOD AND DEVICE FOR THE TRANSDERMAL ADMINISTRATION OF LITHIUM
CA2155107C (en) Active drug delivery device, electrode, and method for making same
DE102010024558B4 (en) Transdermal therapeutic system with electrodes
EP0529510A1 (en) Sintered transdermal iontophoresis application of active therapeutical agents
US7572252B1 (en) Electrotransport agent delivery method and apparatus
CA2218715C (en) Electrotransport agent delivery method and apparatus
JPH11151303A (en) Iontophoresis type percutaneous administering element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09685782

Country of ref document: US

122 Ep: pct application non-entry in european phase