WO1999060645A1 - Solid electrolyte reactor system for providing electric energy and heat - Google Patents

Solid electrolyte reactor system for providing electric energy and heat Download PDF

Info

Publication number
WO1999060645A1
WO1999060645A1 PCT/EP1999/003066 EP9903066W WO9960645A1 WO 1999060645 A1 WO1999060645 A1 WO 1999060645A1 EP 9903066 W EP9903066 W EP 9903066W WO 9960645 A1 WO9960645 A1 WO 9960645A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
heat
cells
electrical energy
electric energy
Prior art date
Application number
PCT/EP1999/003066
Other languages
German (de)
French (fr)
Inventor
Felix Huber
Ernst Messerschmid
Hans Messerschmid
Original Assignee
Felix Huber
Ernst Messerschmid
Hans Messerschmid
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Felix Huber, Ernst Messerschmid, Hans Messerschmid filed Critical Felix Huber
Publication of WO1999060645A1 publication Critical patent/WO1999060645A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/249Grouping of fuel cells, e.g. stacking of fuel cells comprising two or more groupings of fuel cells, e.g. modular assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • soot formation by so-called blue burners can be avoided by recycling part of the hot, moist exhaust gas for heating and vaporization of the fuel droplets.
  • the resulting cooling of the flame and the water molecules present also reduce the formation of nitrogen oxides.
  • Catalytic heating systems are partly state of the art, but can currently only be operated with methane gas, since the working temperature of the catalyst must be above the self-ignition temperature of the fuel-air mixture. Although these plants produce practically no more nitrogen oxides due to their lower working temperature and also oxidize almost all of the carbon monoxide to carbon dioxide, the service life of the catalysts has not yet been reached. In addition, the entire energy is released in the form of heat, so that here too, classic methods of heat supply with a central system and heat transport via hot water must be used. Another disadvantage of these concepts is that the sulfur present in the heating oil can render the catalyst ineffective.
  • the invention avoids the disadvantages mentioned above in that the oxidation of the fuel is carried out without the presence of atmospheric nitrogen and the formation of soot particles is prevented by the special process control.
  • the chemical energy contained in the fuel is released partly in the form of high-quality electrical energy and partly in the form of heat, the ratio of the two forms of energy being able to be varied over a wide range as required.
  • fuel 1 is pre-split and / or reformed together with auxiliary substances 2 in a catalyst 3. This is necessary for long-chain hydrocarbons, since their autoignition temperature is below the working temperature of the solid electrolyte 7.
  • This first stage for splitting and / or conditioning the fuel can be separated or as a block together with the electrolyte 7 be carried out.
  • the auxiliaries 2 preferably consist of air or water. Since the splitting process is generally endothermic, ie consumes energy, the energy 4 required for the continuous process is supplied by thermal coupling to the second stage.
  • the fission products 5 are then fed to the anode side 16 (negative pole) of the solid electrolyte 7.
  • This electrolyte 7 preferably consists of zirconium dioxide, which can also be applied to a preferably porous substrate 14 in order to achieve the smallest possible layer thickness.
  • the cathode connection 15 of the cell is preferably made of a porous and / or volume-conducting electrode material.
  • ambient air 9 is supplied to the cell. The oxygen in the air is dissociated at the cathode 15 and travels through the electrolyte to the anode 16.
  • the fuel 5 is oxidized; the chemical energy of the fuel 5 is used partly in the form of heat 12 and partly in the form of electrical energy 11 f, which can be removed by the electrodes 15 and 16. Due to the strongly oxidizing environment on the anode side, any contamination by sulfur cannot inactivate the catalyst. Since the oxidation of the fuel 5 is carried out without the nitrogen 10 contained in the air, no thermal nitrogen oxides are produced.
  • the oxidation products 13 and the nitrogen 10 preferably leave the cell via a further heat exchanger in order to likewise use the residual heat contained therein and to preheat the air 9 supplied to the working temperature.
  • the heat of reaction 12 is transmitted by radiation to the heat exchanger 6, where it can preferably be used to heat a heat transfer medium.
  • the electrical energy 11 drawn can be used both for the unit's own requirements and can also be supplied to external customers such as the public power grid or other consumers. Regardless of the relationship between the heat and electrical energy generated, the chemical energy of the fuel is almost fully utilized, since the exhaust gases leave the system at almost room temperature and the latent heat of the exhaust gas moisture is also used.
  • the cell's performance can be continuously regulated and monitored over a wide range, since the voltage generated at the cell is a direct measure of the complete conversion of the fuel. By measuring and controlling these parameters, such a system can determine its own exhaust gas values at the same time, so that intervention is only necessary in the event of a fault and the regular maintenance intervals are increased.
  • the cells are preferably arranged in a sandwich construction, a planar and / or concentric arrangement being possible. Thanks to a modular structure, the cells can be controlled individually and adapted to the required power requirements.
  • the substances involved in the reactions preferably pass through the cell in the countercurrent principle in order to achieve a favorable utilization of the cell over the entire run length.
  • the cells are preferably operated in parallel, while the electrical connections can be connected in parallel and / or in series in order to achieve a specific voltage and current.
  • the reactor can also be used for strongly fluctuating

Abstract

The invention relates to a device and method for producing heat and/or electric energy from hydrocarbons. The invention carries out the oxidation of fuel without the presence of atmospheric nitrogen. To this end, the fuel, if necessary, is reformed together with auxiliary agents in a reactor. Afterwards, the cleavage products are fed to a solid electrolyte. Ambient air is fed to the cell in order to oxidize the fuel. As a result, the chemical energy contained in the fuel is released, in part, in the form of high quality electric energy and, in part, in the form of heat, whereby the ratio of both energy forms can be altered. The reactor is suited for a heating system which simultaneously generates electric energy for itself and for the basic needs of the building.

Description

(Festkörperelektrolyt-Reaktorsystem zur Bereitstellung von elektrischer Energie und Wärme) (Solid-state electrolyte reactor system for providing electrical energy and heat)
Beschreibungdescription
Es ist bekannt, daß Heizungsanlagen mit Öl- oder Gasbrennern bei relativ hohen Flammtemperaturen arbeiten. Dadurch ergeben sich hohe Abgasverluste und ein relativ großer Anteil an thermischen Stickoxiden, die nur durch aufwendige konstruktive Maßnahmen reduziert werden können. Flüssige Brennstoffe haben zudem noch den Nachteil, daß während der Verdampfung der Tröpfchen eine Verkokung des Brennstoffes eintreten kann mit entsprechend starker Bildung von Ruß und gesundheitsschädlichen Aromaten und einer damit einhergehenden Verschlechterung des Wirkungsgrades der Anlage. Prinzipbedingt haben solche Anlagen eine große Bauform und können daher praktisch nur im Kellerbereich oder in speziellen Heizräumen aufgestellt werden. Da die Strömungsverhältnisse innerhalb der Verdampfungs- und Mischzone bei flüssigen Brennstoffen durch die Geometrie des Brenners festliegen, sind solche Anlagen auch nur in begrenztem Umfang regelbar, so daß im Teillastbetrieb der Start/Stop-Betrieb mit hohen Startemissionen verwendet werden muß. Gebläsebrenner erzeugen zudem relativ hohe Verbrennungsgeräusche und durch die bewegten Teile unterliegen sie einem hohen Verschleiß.It is known that heating systems work with oil or gas burners at relatively high flame temperatures. This results in high exhaust gas losses and a relatively large proportion of thermal nitrogen oxides, which can only be reduced by complex design measures. Liquid fuels also have the disadvantage that coking of the fuel can occur during the evaporation of the droplets with a correspondingly strong formation of soot and harmful aromatics and a concomitant deterioration in the efficiency of the system. In principle, such systems have a large design and can therefore only be installed in the basement or in special boiler rooms. Since the flow conditions within the evaporation and mixing zone for liquid fuels are determined by the geometry of the burner, such systems can only be regulated to a limited extent, so that the start / stop operation with high starting emissions must be used in part-load operation. Fan burners also generate relatively high combustion noises and, due to the moving parts, they are subject to high wear.
Weiterhin ist bekannt, daß die Rußbildung durch sog. Blaubrenner vermieden werden kann, indem ein Teil des heißen, feuchten Abgases zur Aufheizung und Verdampfung der Brennstofftröpfchen rückgeführt wird. Durch die dabei bewirkte Kühlung der Flamme und die vorhandenen Wassermoleküle wird außerdem die Bildung von Stickoxiden vermindert.It is also known that soot formation by so-called blue burners can be avoided by recycling part of the hot, moist exhaust gas for heating and vaporization of the fuel droplets. The resulting cooling of the flame and the water molecules present also reduce the formation of nitrogen oxides.
Katalytisch arbeitende Heizungsanlagen sind zum Teil Stand der Technik, können jedoch im Moment nur mit Methangas betrieben werden, da die Arbeitstemperatur des Katalysators über der Selbstentzündungstemperatur des Brennstoff-Luft-Gernisches liegen muß. Diese Anlagen erzeugen zwar durch ihre kleinere Arbeitstemperatur praktisch keine Stickoxide mehr und oxidieren auch nahezu das gesamte Kohlenmonoxid zu Kohlendioxid, die erreichten Standzeiten der Katalysatoren sind allerdings noch nicht marktreif. Zudem wird die gesamte Energie in Form von Wärme frei, so daß auch hier wieder klassische Methode der Wärmeversorgung mit zentraler Anlage und Wärmetransport über Warmwasser verwendet werden muß. Nachteilig bei diesen Konzepten ist außerdem, daß der im Heizöl vorhandene Schwefel den Katalysator unwirksam machen kann.Catalytic heating systems are partly state of the art, but can currently only be operated with methane gas, since the working temperature of the catalyst must be above the self-ignition temperature of the fuel-air mixture. Although these plants produce practically no more nitrogen oxides due to their lower working temperature and also oxidize almost all of the carbon monoxide to carbon dioxide, the service life of the catalysts has not yet been reached. In addition, the entire energy is released in the form of heat, so that here too, classic methods of heat supply with a central system and heat transport via hot water must be used. Another disadvantage of these concepts is that the sulfur present in the heating oil can render the catalyst ineffective.
Funktionsweisefunctionality
Die Erfindung vermeidet die oben genannten Nachteile, indem die Oxidation des Brennstoffes ohne die Anwesenheit von Luftstickstoff durchgeführt und durch die besondere Prozeßführung die Bildung von Rußpartikeln unterbunden wird. Zusätzlich wird die im Brennstoff enthaltende chemische Energie zum Teil in Form von hochwertiger elektrischer Energie und zum Teil in Form von Wärme frei, wobei das Verhältnis der beiden Energieformen je nach Bedarf in weiten Bereichen verändert werden kann. In einem vorzugsweise zweistufigen Reaktor (Figur 1) wird der Brennstoff 1 zusammen mit Hilfsstoffen 2 in einem Katalysator 3 vorgespalten und/oder reformiert. Dies ist für langkettige Kohlenwasserstoffe nötig, da deren Selbstentzündungstemperatur unter der Arbeitstemperatur des Festkörperelektrolyten 7 liegt. Diese erste Stufe zur Spaltung und/oder Konditionierung des Brennstoffes kann dabei getrennt oder als Block zusammen mit dem Elektrolyten 7 ausgeführt werden. Die Hilfsstoffe 2 bestehen vorzugsweise aus Luft oder Wasser. Da der Spaltvorgang im allgemeinen endotherm ist, d.h. Energie verbraucht, wird die für den kontinuierlichen Prozeß nötige Energie 4 durch thermische Kopplung mit der zweiten Stufe zugeführt.The invention avoids the disadvantages mentioned above in that the oxidation of the fuel is carried out without the presence of atmospheric nitrogen and the formation of soot particles is prevented by the special process control. In addition, the chemical energy contained in the fuel is released partly in the form of high-quality electrical energy and partly in the form of heat, the ratio of the two forms of energy being able to be varied over a wide range as required. In a preferably two-stage reactor (FIG. 1), fuel 1 is pre-split and / or reformed together with auxiliary substances 2 in a catalyst 3. This is necessary for long-chain hydrocarbons, since their autoignition temperature is below the working temperature of the solid electrolyte 7. This first stage for splitting and / or conditioning the fuel can be separated or as a block together with the electrolyte 7 be carried out. The auxiliaries 2 preferably consist of air or water. Since the splitting process is generally endothermic, ie consumes energy, the energy 4 required for the continuous process is supplied by thermal coupling to the second stage.
Die Spaltprodukte 5 werden anschließend der Anodenseite 16 (Minus-Pol) des Festkörperelektrolyten 7 zugeführt. Dieser Elektrolyt 7 besteht vorzugsweise aus Zirkoniumdioxid, das, um eine möglichst geringe Schichtdicke zu erreichen, auch auf einem vorzugsweise porösen Substrat 14 aufbracht sein kann. Der Kathodenanschluß 15 der Zelle wird vorzugsweise aus einem porösen und/oder volumenleitenden Elektrodenmaterial hergestellt. Zur Oxidation des Brennstoffes 5 wird der Zelle Umgebungsluft 9 zugeführt. Der Sauerstoff der Luft wird an der Kathode 15 dissoziiert und wandert durch den Elektrolyten bis zur Anode 16. Dort wird der Brennstoff 5 oxidiert; die chemische Energie des Brennstoffes 5 wird dabei zum Teil in Form von Wärme 12 und zum Teil in Form von elektrischer Energie 11 f eigesetzt, die durch die Elektroden 15 und 16 abgenommen werden kann. Durch die stark oxidierende Umgebung an der Anodenseite kann auch eine evtl. Verunreinigung durch Schwefel den Katalysator nicht inaktivieren. Da die Oxidation des Brennstoffes 5 ohne den in der Luft enthaltenen Stickstoff 10 durchgeführt wird, entstehen keine thermischen Stickoxide. Die Oxidationsprodukte 13 und der Stickstoff 10 verlassen die Zelle vorzugsweise über einen weiteren Wärmetauscher, um die darin enthaltene Restwärme ebenfalls auszunutzen und die zugefuhrte Luft 9 auf die Arbeitstemperatur vorzuheizen.The fission products 5 are then fed to the anode side 16 (negative pole) of the solid electrolyte 7. This electrolyte 7 preferably consists of zirconium dioxide, which can also be applied to a preferably porous substrate 14 in order to achieve the smallest possible layer thickness. The cathode connection 15 of the cell is preferably made of a porous and / or volume-conducting electrode material. For the oxidation of the fuel 5, ambient air 9 is supplied to the cell. The oxygen in the air is dissociated at the cathode 15 and travels through the electrolyte to the anode 16. There the fuel 5 is oxidized; the chemical energy of the fuel 5 is used partly in the form of heat 12 and partly in the form of electrical energy 11 f, which can be removed by the electrodes 15 and 16. Due to the strongly oxidizing environment on the anode side, any contamination by sulfur cannot inactivate the catalyst. Since the oxidation of the fuel 5 is carried out without the nitrogen 10 contained in the air, no thermal nitrogen oxides are produced. The oxidation products 13 and the nitrogen 10 preferably leave the cell via a further heat exchanger in order to likewise use the residual heat contained therein and to preheat the air 9 supplied to the working temperature.
Die Reaktionswärme 12 wird durch Strahlung an die Wärmetauscher 6 übertragen, wo sie vorzugsweise zur Aufheizung eines Wärmeträgermediums verwendet werden kann. Die entnommene elektrische Energie 11 kann sowohl für den Eigenbedarf des Aggregates verwendet werden, als auch externen Abnehmern wie das öffentliche Stromnetz oder sonstigen Verbrauchern zugeführt werden. Unabhängig vom Verhältnis zwischen erzeugter Wärme und elektrischer Energie wird die chemische Energie des Brennstoffes nahezu vollständig ausgenutzt, da die Abgase mit fast Raumtemperatur die Anlage verlassen und so auch die latenten Wärmen der Abgasfeuchtigkeit genutzt werden.The heat of reaction 12 is transmitted by radiation to the heat exchanger 6, where it can preferably be used to heat a heat transfer medium. The electrical energy 11 drawn can be used both for the unit's own requirements and can also be supplied to external customers such as the public power grid or other consumers. Regardless of the relationship between the heat and electrical energy generated, the chemical energy of the fuel is almost fully utilized, since the exhaust gases leave the system at almost room temperature and the latent heat of the exhaust gas moisture is also used.
Durch Veränderung der Brennstoffzufuhr 1 und der Stromentnahme 11 kann die Zelle in der Leistung in weiten Bereichen stufenlos geregelt und überwacht werden, da die an der Zelle entstehende Spannung direkt ein Maß für die vollständige Umsetzung des Brennstoffes ist. Durch die Messung und Regelung dieser Parameter kann eine solche Anlage gleichzeitig ihre eigenen Abgaswerte bestimmen, so daß nur im Fehlerfall ein Eingriff nötig ist und die regelmäßigen Wartungsintervalle vergrößert werden. Für den Aufbau eines Reaktors werden die Zellen vorzugsweise in Sandwichbauweise angeordnet, wobei eine planare und/oder konzentrische Anordnung möglich ist. Durch einen modularen Aufbau lassen sich die Zellen einzeln Ansteuern und dem geforderten Leistungsbedarf anpassen. Die an den Reaktionen beteiligten Stoffe durchlaufen die Zelle vorzugsweise im Gegenstromprinzip, um eine günstige Ausnutzung der Zelle über die gesamte Lauflänge zu erreichen. Dabei werden die Zellen strömungstechnisch vorzugsweise parallel betrieben, während die elektrischen Anschlüsse zur Erzielung einer bestimmten Spannung und eines Stromes parallel und/oder in Serie geschaltet sein können.By changing the fuel supply 1 and the current drain 11, the cell's performance can be continuously regulated and monitored over a wide range, since the voltage generated at the cell is a direct measure of the complete conversion of the fuel. By measuring and controlling these parameters, such a system can determine its own exhaust gas values at the same time, so that intervention is only necessary in the event of a fault and the regular maintenance intervals are increased. For the construction of a reactor, the cells are preferably arranged in a sandwich construction, a planar and / or concentric arrangement being possible. Thanks to a modular structure, the cells can be controlled individually and adapted to the required power requirements. The substances involved in the reactions preferably pass through the cell in the countercurrent principle in order to achieve a favorable utilization of the cell over the entire run length. In terms of flow technology, the cells are preferably operated in parallel, while the electrical connections can be connected in parallel and / or in series in order to achieve a specific voltage and current.
Durch den Betrieb von nur einzelnen Zellen kann der Reaktor auch für stark schwankendenBy operating only individual cells, the reactor can also be used for strongly fluctuating
Leistungsbedarf angepaßt werden. Durch den modularen Aufbau und die wegfallenden Verbrennuπgsgeräusche müssen die Reaktoren nicht mehr zentral in dafür vorgesehenen Aufstellräumen untergebracht werden, sondern können direkt am Nutzungsort installiert sein. Dadurch entfällt die aufwendige Verrohrung für den Energietransport durch Warmwasser in die Nutzräume. Power requirements are adjusted. Due to the modular structure and the absence of combustion noises, the reactors no longer have to be in the center Installation rooms are housed, but can be installed directly at the place of use. This eliminates the complex piping for the energy transport through hot water into the utility rooms.

Claims

(Festkörperelektrolyt-Reaktorsystem zur Bereitstellung von elektrischer Energie und Wärme)(Solid-state electrolyte reactor system for providing electrical energy and heat)
Patentansprüche Vorrichtung und Verfahren, dadurch gekennzeichnet, daß ein kohlenwasserstoffhaltiger Brennstoff mit Hilfe eines Katalysators ohne Flamme oxidiert wird, wobei die im Brennstoff enthaltene chemische Energie in Form von Warme und/oder elektrischer Energie bereit gestellt wird und der Brennstoff unmittelbar oder nach Reformierung mit Hilfsstoffen verwendet wird Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die gewonnene elektrische Energie zur Versorgung des Aggregates und/oder lokalen Abnehmern verwendet wird Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die elektrische Energie in das öffentliche Stromnetz abgegeben werden kann Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Anteil zwischen gewonnener Wärme und elektrischer Energie variiert werden kann Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Reaktor ein oder zweistufig arbeitet Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Brennstoff in der ersten Stufe mit oder ohne den Zusatz von Hilfsstoffen reformiert wird Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für die Oxidation des Brennstoffes ein Festkorperelektrolyt verwendet wird Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß für die Oxidation modulare Zellen Verwendet werden Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zellen in planarer oder konzentrischer Anordnung betrieben werden Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zellen im Gegenstrom oder Gleichstrom mit den Arbeitsstoffen beaufschlagt werden Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die erste und zweite Stufe thermisch gekoppelt sind Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Abwarme der einen Stufe zur Heizung der anderen verwendet wird Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Stufen r umlich getrennt oder kombinert sind Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zelle ein zusatzliches Substrat als mechanischen Träger verwendet. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zellen elektrisch in Serie und/oder parallel verschaltet sind löNorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Zellen gasdynamisch parallel geschaltet sind. Device and method, characterized in that a hydrocarbon-containing fuel is oxidized with the aid of a catalyst without a flame, the chemical energy contained in the fuel being provided in the form of heat and / or electrical energy and the fuel being used immediately or after reforming with auxiliaries Device according to claim 1, characterized in that the electrical energy obtained is used to supply the unit and / or local customers. Device according to one of the preceding claims, characterized in that the electrical energy can be released into the public power grid. Device according to one of the preceding claims, characterized in that the proportion between heat and electrical energy obtained can be varied. Device according to one of the preceding claims, characterized in that the reactor operates in one or two stages A device according to one of the preceding claims, characterized in that the fuel is reformed in the first stage with or without the addition of auxiliary substances. Device according to one of the preceding claims, characterized in that a solid electrolyte is used for the oxidation of the fuel The preceding claims, characterized in that modular cells are used for the oxidation. Device according to one of the preceding claims, characterized in that the cells are operated in a planar or concentric arrangement. Device according to one of the preceding claims, characterized in that the cells are in countercurrent or Device according to one of the preceding claims, characterized in that the first and second stages are thermally coupled. Device according to one of the preceding claims, characterized in that the waste heat from one stage is used to heat the other device according to one of the preceding claims, characterized in that the stages are spatially separated or combined. Device according to one of the preceding claims, characterized in that the cell uses an additional substrate as a mechanical carrier . Device according to one of the preceding claims, characterized in that the cells are electrically connected in series and / or in parallel Soldering device according to one of the preceding claims, characterized in that the cells are connected in parallel in a gas dynamic manner.
PCT/EP1999/003066 1998-05-14 1999-05-05 Solid electrolyte reactor system for providing electric energy and heat WO1999060645A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19821478.2 1998-05-14
DE19821478A DE19821478A1 (en) 1998-05-14 1998-05-14 Device for oxidizing fuel containing hydrocarbons using of catalyzer without flame for supply of electrical energy and heat

Publications (1)

Publication Number Publication Date
WO1999060645A1 true WO1999060645A1 (en) 1999-11-25

Family

ID=7867668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/003066 WO1999060645A1 (en) 1998-05-14 1999-05-05 Solid electrolyte reactor system for providing electric energy and heat

Country Status (2)

Country Link
DE (1) DE19821478A1 (en)
WO (1) WO1999060645A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644751A (en) * 1985-03-14 1987-02-24 Massachusetts Institute Of Technology Integrated fuel-cell/steam plant for electrical generation
EP0568822A2 (en) * 1992-04-06 1993-11-10 Osaka Gas Co., Ltd. Energy supply system
US5340664A (en) * 1993-09-29 1994-08-23 Ceramatec, Inc. Thermally integrated heat exchange system for solid oxide electrolyte systems
EP0823742A1 (en) * 1996-08-08 1998-02-11 Sulzer Innotec Ag Plant for the simultaneous production of electric and thermal energy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4644751A (en) * 1985-03-14 1987-02-24 Massachusetts Institute Of Technology Integrated fuel-cell/steam plant for electrical generation
EP0568822A2 (en) * 1992-04-06 1993-11-10 Osaka Gas Co., Ltd. Energy supply system
US5340664A (en) * 1993-09-29 1994-08-23 Ceramatec, Inc. Thermally integrated heat exchange system for solid oxide electrolyte systems
EP0823742A1 (en) * 1996-08-08 1998-02-11 Sulzer Innotec Ag Plant for the simultaneous production of electric and thermal energy

Also Published As

Publication number Publication date
DE19821478A1 (en) 1999-11-18

Similar Documents

Publication Publication Date Title
DE69829262T2 (en) Burner device for fuel cell system
DE10048183B4 (en) Method and device for monitoring a hydrogen-containing gas stream
DE10055291B4 (en) Operating method for a fuel cell system for voltage monitoring and system control for fuel cells
DE69910060T2 (en) FUEL CELL STACK FOR ULTRA-HIGH-EFFICIENT POWER SUPPLY SYSTEMS
DE10297056B4 (en) The fuel cell system
DE2849151A1 (en) FUEL CELL POWER SUPPLY SYSTEM AND METHOD OF OPERATING THE SAME
DE19825772A1 (en) Converting hydrocarbons in fuel gas into hydrogen
DE10306802A1 (en) Solid oxide fuel cell system and method for its control
DE112004001738T5 (en) Shutdown and start purging for fuel cells using a stoichiometric stepped burner
EP2360230A1 (en) Method and device for exploiting the emissions of a power plant
CH682270A5 (en)
WO2004013924A2 (en) Composite fuel cell system
WO2003021696A2 (en) System for generating electrical energy and method for operating a system for generating electrical energy
EP1619737B1 (en) System consisting of fuel cell, afterburner and heat exchanger
AT406808B (en) FORCE AND HEAT COUPLING SYSTEM WITH FUEL CELLS
EP0787367B1 (en) Fuel cell plant with utilization of the cathode heat, and process for operating it
EP2971980A1 (en) Heating installation and method for operating a heating installation
DE102007018264A1 (en) Solid oxide fuel cell type high temperature fuel cell system, has air pre-heater, exhaust-gas heat exchanger and reformer obtaining heat transfer, where components are integrated into exhaust gas channel of heating and afterburners
DE112007001313T5 (en) Hybrid drive system with fuel cell and engine
DE19962679A1 (en) High-temperature-polymer electrolyte-membrane (HTM) fuel cell e.g. for vehicle drive unit
WO1999060645A1 (en) Solid electrolyte reactor system for providing electric energy and heat
DE10006006B4 (en) Cogeneration apparatus
WO2019210344A1 (en) Reversibly operable energy converter and method for operating same
EP2490289B1 (en) Fuel cell system
DE102005055043A1 (en) Chemical reactor unit especially for electricity production has at least two channels for different reaction media and channels for temperature control of the media

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase