WO1999061091A2 - Extruded guide catheter shaft with bump extrusion soft distal segment - Google Patents

Extruded guide catheter shaft with bump extrusion soft distal segment Download PDF

Info

Publication number
WO1999061091A2
WO1999061091A2 PCT/US1999/003798 US9903798W WO9961091A2 WO 1999061091 A2 WO1999061091 A2 WO 1999061091A2 US 9903798 W US9903798 W US 9903798W WO 9961091 A2 WO9961091 A2 WO 9961091A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
bump
outer diameter
continuous
section
Prior art date
Application number
PCT/US1999/003798
Other languages
French (fr)
Other versions
WO1999061091A3 (en
Inventor
Peter A. Lunn
Nasser Rafiee
David J. Lentz
Peter G. Strickler
Original Assignee
Medtronic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic, Inc. filed Critical Medtronic, Inc.
Publication of WO1999061091A2 publication Critical patent/WO1999061091A2/en
Publication of WO1999061091A3 publication Critical patent/WO1999061091A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0009Making of catheters or other medical or surgical tubes
    • A61M25/0012Making of catheters or other medical or surgical tubes with embedded structures, e.g. coils, braids, meshes, strands or radiopaque coils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/005Catheters; Hollow probes characterised by structural features with embedded materials for reinforcement, e.g. wires, coils, braids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M25/0054Catheters; Hollow probes characterised by structural features with regions for increasing flexibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/008Strength or flexibility characteristics of the catheter tip
    • A61M2025/0081Soft tip

Definitions

  • the present invention relates to guiding catheters and more particularly to the use of bump extrusion in altering the flexural modulus of a catheter shaft.
  • PTCA Percutaneous transluminal coronary angioplasty
  • a first guidewire of about .038 inches in diameter is steered through the vascular system to the site of therapy.
  • a guiding catheter for example, can then be advanced over the first guidewire to a point just proximal of the stenosis.
  • the first guidewire is then removed.
  • a balloon catheter on a smaller .014 inch diameter second guidewire is advanced within the guiding catheter to a point just proximal of the stenosis.
  • the second guidewire is advanced into the stenosis, followed by the balloon on the distal end of the catheter.
  • the balloon is inflated causing the site of the stenosis to widen.
  • the dilatation of the occlusion can form flaps, fissures and dissections which threaten reclosure of the dilated vessel or even perforations in the vessel wall.
  • any body lumen can be treated by percutaneous transluminal angioplasty (PTA), including the vas deferens, ducts of the gallbladder, prostate gland, trachea, bronchus and liver.
  • PTA percutaneous transluminal angioplasty
  • the body lumens range in diameter from small coronary vessels of 3 mm or less to 28 mm in the aortic vessel.
  • the invention applies to acute and chronic closure or reclosure of body lumens.
  • Soft distal segments are advantageous in guiding catheters for navigating tortuous paths in the vascular system. This has been achieved in the prior art by attaching discrete softer segments with varying durometer materials to the distal end of a guiding catheter.
  • Discrete segments have the disadvantage of the possibility of joint separation. Joining multiple pieces requires more manufactxiring time then would an extrusion. Buckling and kinking can also occur at joints where there is an abrupt transition in stiffness.
  • U. S. Patent No. 4,904,431 to O'Maleki for "Process for Manufacturing Catheters” discloses a continuous extrusion of a first rigid polymer to form a cylindrical body which will define the inner rigid sheath of the catheter. A second soft, pliable polymer is then extruded over this cylindrical body to form an outer cylindrical layer, which will define the outer soft, pliable sheath of the catheter. Another embodiment involves reinforcing the cylindrical bodies with a stiffening material, typically a wire cord wrapped around the inner layer and embedded between the inner and outer sheaths of the catheter.
  • a stiffening material typically a wire cord wrapped around the inner layer and embedded between the inner and outer sheaths of the catheter.
  • the rigid polymer is extruded at a variable rate which is altered at prescribed locations to first successively diminish the thickness of the forming layer, and then successively increase the thickness, thus forming a depression. This location will form the tip region of two catheters. The overlaying of this location, during the second extrusion step, with the soft polymeric material will define the soft catheter tip.
  • the final catheters are formed by cutting the resulting structure at the junction of where the thickness of the first forming layer begins to increase in thickness.
  • the present invention is accomplished by providing a method and apparatus for a medical catheter comprising a continuous liner defining a guidewire lumen.
  • the liner has a constant inner diameter and a constant outer diameter.
  • a continuous layer is braided over the liner and encapsulated between the liner and a bump layer.
  • the bump layer has a proximal segment, and a bump section.
  • the bump section has a transition zone at the proximal end of the bump section.
  • the proximal segment has a distal end affixed to the proximal end of the bump section.
  • the proximal segment of the bump layer has an outer diameter which is less than the outer diameter of the bump section of the bump layer.
  • the transition zone has an outer diameter which smoothly transitions from the outer diameter of the distal end of the proximal segment of the bump layer to the larger outer diameter at the distal end of the transition zone.
  • the bump layer is encapsulated between the outer jacket layer and the braided layer.
  • the outer jacket layer has a constant outer diameter and an inner diameter conforming to the variable outer diameter of the bump layer.
  • the bump layer is made of a material with a greater flexural modulus than that of the outer jacket layer, such that the flexibility of the catheter is greater at the distal end of the catheter than at the proximal end of the catheter.
  • FIG. 1 is an overall view of a guiding catheter
  • FIG. 2 is a view of the liner and braided layer of a guiding catheter
  • FIG. 3 is a longitudinal cross-section view of the liner, braided layer and bump extrusion layer
  • FIG. 4 is a longitudinal cross-section view of the liner, braided layer, bump extrusion layer and outer jacket of the preferred embodiment
  • FIG. 5 is a cross-section of FIG. 4 along the lines 5 - 5 of the preferred embodiment
  • FIG. 6 is a cross-section of FIG. 1 along the lines 6 - 6 of an alternative embodiment
  • FIG. 7 is a cross-section of FIG. 1 along the lines 7 - 7 of an alternative embodiment
  • FIG. 8 is a cross-section of FIG. 1 along the lines 8 - 8 of an alternative embodiment.
  • guiding catheters 35 it is advantageous for guiding catheters 35 to have a stiff proximal segment 11 for pushability and torqueability while having a softer, more flexible distal segment 13 for navigating tortuous vessels and resulting in less trauma to the vessel walls.
  • Applicant's invention provides a means of creating a stiff proximal segment 11 with a soft distal segment 13 in a guide catheter 35 using continuous extrusion and braiding technologies.
  • Applicant's "bump" extrusion technology alters the flexural modulus of the distal segment 13 of the guiding catheter 35.
  • the preferred embodiment seen in Fig. 4 provides a continuous outer jacket 30 over the continuous bump extrusion layer 20, overlaying a continuous braided layer 15 with a continuous liner 10 within which defines a guidewire lumen 40.
  • the continuous layers throughout the length of the guiding catheter 35 result in greater safety as there are no junctures were adjoined tubing pieces can break.
  • the joining of two plastic tubes with tubes of a different stiffness by secondary operations such as melt bonding, molding or radio frequency bonding as in the prior art is avoided, thereby avoiding lanking at the juncture.
  • the innermost layer is an optional liner 10 which defines the guidewire lumen 40.
  • the liner 10 is formed by extruding a rigid thermoplastic elastomer polymer such as PEB AX ® (available from the Elf Atochem Corporation, Philadelphia, PA), or Vestamid ® which is a Polyamid 12 (available from Huls America Inc., Turner Place, Piscataway, NJ 08855-0365), over an optional substrate material such as polyacetal.
  • the liner 10 could also be formed of a Poly amid such as Vestamid®, Nylon 12, or Nylon 6.
  • Thermoplastic urethanes such as Tecoflex® available from Thermedics, Inc., Woburn MA 01188-1799 or Tecothane® available from Thermedics, Inc., Woburn MA 01188-1799?), etc. could also be used as the liner 10.
  • ECTFE Ethelene ChloroTriFluoro Ethylene, a melt processable fluoropolymer available from Ausimont USA
  • Halai® could be used and optionally extruded over a substrate such as polyacetal to form the liner 10.
  • ECTFE ECTFE
  • PTFE polytetrafluoroethylene Teflon
  • a fluoropolymer such as FEP (fluorinated ethylene propylene copolymer) available from Daikin America, Inc., 20 Olympic Drive, Orangeberg, New York 10962, exhibits melt processibility but is not well suited for wall thicknesses of 0.001 inches or less because of its relatively low melt strength and high melt viscosity, compared to a material such as PEBAX®, which results in melt fracture at these wall thicknesses. Additionally the low melt strength and high melt viscosity of FEP causes stress cracking which makes FEP undesirable for thin wall catheter applications. In contrast, ECTFE exhibits melt strength and viscosity which is sufficient to permit extruded wall thicknesses of 0.001 inches or less.
  • FEP fluorinated ethylene propylene copolymer
  • Additional fluoropolymer groups which exhibit melt processibility, applicability for wall thicknesses less than 0.001 inches, and low frictional coefficients are the copolymers MF A and PF A which are marketed under the tradename HYFLON® and are obtainable from Ausimont USA. MFA and PFA exhibit frictional coefficients which are approximately equivalent to PTFE and are lower than ECTFE. Thus, a material such as HYFLON® is preferred for its melt processibility, thin wall capability, and coefficient of friction.
  • a catheter utilizing a PTFE or FEP fluoropolymer liner required a chemical etchant to permit bonding of the jacket to the liner and the PTFE liner.
  • This chemical etchant is generally costly and has adverse environmental impact.
  • Using a material such as ECTFE, MFA, or PFA permits a technique known as plasma etching to accomplish bonding with a catheter jacket.
  • the plasma etching utilizes a corona discharge method of displacing fluorine atoms from the surface of the fluoropolymer which lowers the surface energy of the fluoropolymer and permits greater wetting and consequently bonding of the catheter jacket to the liner.
  • the corona discharge method enjoys both a cost and an environmental advantage over chemical etching techniques.
  • polyacetal For braided catheters, polyacetal must be used to keep the liner 10 from collapsing.
  • the substrate is used for tolerance improvement and reducing wall thickness in tube extrusion if required and is necessary during braiding to prevent the lumen from collapsing.
  • the disadvantages of a substrate are those of the addition of the secondary operation of removing the Polyacetal beading/core after extrusion as well as the additional costs.
  • the core is removed after the liner 10, braiding 15 and outer jacket 30 has been extruded.
  • the preferred materials for use in the liner 10 are those which exhibit lubricious qualities thereby facilitating the passage of devices.
  • the liner 10 will have a constant inner diameter and a constant outer diameter.
  • the liner is optional and is depicted in Figs. 2 - 6.
  • a guiding catheter could also be designed without a liner 10 as seen in the Fig. 7 and 8 cross-sections.
  • Optional braided layer 15 is applied over the liner 10 as seen in Figs. 2 - 5. It would be possible to have the braided layer 15 without a liner 10 as seen in Fig. 7 or no braided layer 15 at all as seen in Figs. 6 and 8.
  • the braiding may be formed of conventional materials such as at least half hard stainless steel S.S. 304.
  • the outer diameter of the braided layer 15 is approximately .085 inches thick.
  • the advantage of braided layer 15 is that of improved torque, kink resistance and pushability.
  • the bump extrusion layer 20 is applied over the braided layer 15 as seen in Figs. 3 - 5 and 7. If the braided layer 15 is encapsulated between the liner 10 and the bump extrusion layer 20 as seen in Figs. 3 - 5, torque, kink resistance and pushability will be improved. Encapsulation occurs when the braided layer 15 is bonded between the braid picks to another layer.
  • the pick count is the number of wire group intersections per inch.
  • the pic count should be greater than about 25 to 30 to retain sufficient kink resistance and less than about 70 - 75 to retain sufficient torque transfer. A pic count of about 50 is preferred.
  • the bump extrusion layer 20 may also be applied directly over the liner 10 as seen in Fig. 6.
  • the bump extrusion layer 20 need not have any layer underneath it as seen in Fig. 8.
  • the first pass of the extruder lays the bump extrusion layer 20 which consists of a fine layer of soft material such as PEBAX ® 63D, PEBAX ® 55D, PEBAX ® 40D, or a Vestamid® E-series such as E-40 or E-62 for the length of the proximal segment 11.
  • Other materials appropriate for the bump extrusion layer 20 include thermoplastic elastomers and thermoplastic urethanes, polyamids and PEBA (polyether block amide copolymer) materials that exhibit similar soft properties.
  • a typical catheter is about 100 inches long with the length of the proximal segment 11 being about 44 inches.
  • the soft distal segment 13 is the balance of the length, or 66 inches.
  • the bump extrusion layer 20 may be formed of a plastic material having a lower flexural modulus than the outer jacket 30.
  • a suitable range of material for the bump extrusion layer 20 for example, is a 35 Durometer to 55 Durometer material.
  • the bump extrusion layer 20 in the proximal segment 11 can be approximately .001 inches to .0015 inches thick with an outer diameter of approximately .090 inches and a length of approximately 42 to 46 inches.
  • the bump section 25 in the bump extrusion layer 20 can be approximately .004 inches to .005 inches thick with an outer diameter increasing to approximately .097 inches thick.
  • the thickness of the bump section 25 can be tailored to the specific application. Guiding catheters with thinner walls would have a thinner bump section 25 then would angiography catheters, for example, with thicker walls.
  • the length of the bump section 25 is approximately 4 - 7 inches long.
  • the length of transition zone 45 depends on how fast the puller responds to speed change, on the distance between the puller, on the die landing and on the melt volume capacity of the melt pump which should be as low as possible.
  • a low melt volume capacity is necessary in an optimized process which requires minimum melt in order to make the transition from bump 25 to transition zone 45 significantly easier. Otherwise, the excess melt will create die swell during puller speed change and it will result in a non-uniform diameter.
  • transition zone 45 is to minimize catheter kink, especially if the catheter shaft 11 stiffness is significantly higher (e.g., PEBAX® 72D, Vestamid® 75D) than the bump 25 area (e.g., PEBAX® 35D, Vestamid® 40D).
  • the second pass of the extruder lays the outer jacket layer 30 over the bump extrusion layer 20.
  • the outer jacket 30 may be formed of a plastic material having a higher flexural modulus than the bump extrusion layer 20.
  • a suitable range for example, is a 70 Durometer to 85 Durometer material such as PEBAX ® 70D or Vestamid ® L-series. Most thermostatic elastomers, thermostatic urethane, PEBA and polyamids with a flexural modulus from 110,000 psi to 210,000 psi would be suitable.
  • the outer jacket layer 30 will have a constant outer diameter.
  • Bump extrusion can be accomplished by using either two separate extrusion passes (one for the bump extrusion layer 20 and another for the outer jacket layer 30) or by using co-extrusion technology to simultaneously extrude both layers. In either case the thermoplastic material must be melt compatible and process compatible. Co- extrusion is preferable to multiple extrusion passes because of its lower cost as well as shorter run and processing time; the end product is the same.
  • co-extrusion crosshead die including an extruder screw, breaker plate and screen pack
  • one, one inch extruder For bump extrusion, only one extruder and one puller are required at any given time.
  • the system also includes a very low volume Servo melt pump with a pressure feed back loop available from Killion
  • Extruders, Inc. Davis-Standard Corp., 200 Commerce Road, Cedar Grove, NJ.
  • the system also requires a Servo driven bump tube puller with a control package such as Allen Brady's Program Logic Controller (PLC) and an on line laser mike.
  • PLC Program Logic Controller
  • the extruders, the melt pumps, the laser mike and the puller are controlled through the PLC with a Bump/variable stiffness software program which controls variables such as the extruder speed, the melt pump and the programmable puller.
  • the PLC can be programmed according to the application's needs.
  • the first one inch extruder is held at a constant speed producing the outer jacket
  • the speed of the servo melt pump is varied by the controller as the servo bump tube puller speed varies to alternate the ratio of the outer jacket layer 30 and the bump extrusion layer 20 while holding a constant outer diameter for the jacket layer 30.
  • the puller has a variable speed which draws the polymer out of the extruder.
  • the thickness of the polymer being extruded is manipulated by varying the speed at which the polymer is being drawn by the puller.
  • the puller is programmed to gradually increase or decrease the speed of the drawing rate of the polymer through the die of the extruder.
  • This co-extruded layer can be laid over the optional braided layer 15.
  • a soft tip 14 could be affixed to the distal end of the catheter 35 by a variety of prior art means known to those skilled in the art.
  • Bump Extrusion Layer 20 Material - 40D PEBAX ® filled with 40% barium sulfate Puller Speed - 25/6 ft./min.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

A medical catheter comprising a continuous liner defining a guidewire lumen. The liner has a constant inner diameter and a constant outer diameter. A continuous layer is braided over the liner and encapsulated between the liner and a bump layer. The bump layer has a proximal segment, and a bump section. The bump section has a transition zone at the proximal end of the bump section. The proximal segment has a distal end affixed to the proximal end of the bump section. The proximal segment of the bump layer has an outer diameter which is less than the outer diameter of the bump section of the bump layer. The transition zone has an outer diameter which smoothly transitions from the outer diameter of the distal end of the proximal segment of the bump layer to the larger outer diameter at the distal end of the transition zone. The bump layer is encapsulated between the outer jacket layer and the braided layer. The outer jacket layer has a constant outer diameter and an inner diameter conforming to the variable outer diameter of the bump layer. The bump layer is made of a material with a greater flexural modulus than that of the outer jacket layer, such that the flexibility of the catheter is greater at the distal end of the catheter than at the proximal end of the catheter.

Description

EXTRUDED GUIDE CATHETER SHAFT WITH BUMP EXTRUSION
SOFT DISTAL SEGMENT
Field of the Invention The present invention relates to guiding catheters and more particularly to the use of bump extrusion in altering the flexural modulus of a catheter shaft.
Background of the Invention Percutaneous transluminal coronary angioplasty (PTCA) is used to increase the lumen diameter of a coronary artery partially or totally obstructed by a build-up of cholesterol fats or atherosclerotic plaque. Typically a first guidewire of about .038 inches in diameter is steered through the vascular system to the site of therapy. A guiding catheter, for example, can then be advanced over the first guidewire to a point just proximal of the stenosis. The first guidewire is then removed. A balloon catheter on a smaller .014 inch diameter second guidewire is advanced within the guiding catheter to a point just proximal of the stenosis. The second guidewire is advanced into the stenosis, followed by the balloon on the distal end of the catheter. The balloon is inflated causing the site of the stenosis to widen. The dilatation of the occlusion, however, can form flaps, fissures and dissections which threaten reclosure of the dilated vessel or even perforations in the vessel wall.
Although the dimensions in the above example are suited to the coronary arteries, any body lumen can be treated by percutaneous transluminal angioplasty (PTA), including the vas deferens, ducts of the gallbladder, prostate gland, trachea, bronchus and liver. The body lumens range in diameter from small coronary vessels of 3 mm or less to 28 mm in the aortic vessel. The invention applies to acute and chronic closure or reclosure of body lumens.
Soft distal segments are advantageous in guiding catheters for navigating tortuous paths in the vascular system. This has been achieved in the prior art by attaching discrete softer segments with varying durometer materials to the distal end of a guiding catheter. As for example, commonly owned copending patent application for an Improved Method of Soft Tip Forming, USSN 08/368,186 to Riopel and Horrigan as well as commonly owned copending patent application for a Guide Catheter with Sort Distal Segment, USSN 08/543,992 to Brin et al. Discrete segments have the disadvantage of the possibility of joint separation. Joining multiple pieces requires more manufactxiring time then would an extrusion. Buckling and kinking can also occur at joints where there is an abrupt transition in stiffness.
U. S. Patent No. 4,904,431 to O'Maleki for "Process for Manufacturing Catheters" discloses a continuous extrusion of a first rigid polymer to form a cylindrical body which will define the inner rigid sheath of the catheter. A second soft, pliable polymer is then extruded over this cylindrical body to form an outer cylindrical layer, which will define the outer soft, pliable sheath of the catheter. Another embodiment involves reinforcing the cylindrical bodies with a stiffening material, typically a wire cord wrapped around the inner layer and embedded between the inner and outer sheaths of the catheter. The rigid polymer is extruded at a variable rate which is altered at prescribed locations to first successively diminish the thickness of the forming layer, and then successively increase the thickness, thus forming a depression. This location will form the tip region of two catheters. The overlaying of this location, during the second extrusion step, with the soft polymeric material will define the soft catheter tip. The final catheters are formed by cutting the resulting structure at the junction of where the thickness of the first forming layer begins to increase in thickness.
U. S. Patent No. 5,533,985 to Wang for "Tubing" discloses in Fig. 10 "bump" tubing in which the insert end is of stiffer material and the bell end is of soft material. What is needed is a means of attaching separate segments of catheter shaft to provide a soft distal segment on a high volume, low cost basis. It is an object of the invention to provide a continuous outer jacket, a continuous braided layer and a continuous liner throughout the length of the product resulting in greater safety while having a distal segment with a lower flexural modulus than the proximal segment. It is another object of the invention to improve kink resistance in the distal segment. Summary of the Invention The present invention is accomplished by providing a method and apparatus for a medical catheter comprising a continuous liner defining a guidewire lumen. The liner has a constant inner diameter and a constant outer diameter. A continuous layer is braided over the liner and encapsulated between the liner and a bump layer. The bump layer has a proximal segment, and a bump section. The bump section has a transition zone at the proximal end of the bump section. The proximal segment has a distal end affixed to the proximal end of the bump section. The proximal segment of the bump layer has an outer diameter which is less than the outer diameter of the bump section of the bump layer. The transition zone has an outer diameter which smoothly transitions from the outer diameter of the distal end of the proximal segment of the bump layer to the larger outer diameter at the distal end of the transition zone. The bump layer is encapsulated between the outer jacket layer and the braided layer. The outer jacket layer has a constant outer diameter and an inner diameter conforming to the variable outer diameter of the bump layer. The bump layer is made of a material with a greater flexural modulus than that of the outer jacket layer, such that the flexibility of the catheter is greater at the distal end of the catheter than at the proximal end of the catheter.
Brief Description of the Drawings
FIG. 1 is an overall view of a guiding catheter; FIG. 2 is a view of the liner and braided layer of a guiding catheter; FIG. 3 is a longitudinal cross-section view of the liner, braided layer and bump extrusion layer; FIG. 4 is a longitudinal cross-section view of the liner, braided layer, bump extrusion layer and outer jacket of the preferred embodiment;
FIG. 5 is a cross-section of FIG. 4 along the lines 5 - 5 of the preferred embodiment;
FIG. 6 is a cross-section of FIG. 1 along the lines 6 - 6 of an alternative embodiment; FIG. 7 is a cross-section of FIG. 1 along the lines 7 - 7 of an alternative embodiment; and
FIG. 8 is a cross-section of FIG. 1 along the lines 8 - 8 of an alternative embodiment.
Detailed Description of the Preferred Embodiments It is advantageous for guiding catheters 35 to have a stiff proximal segment 11 for pushability and torqueability while having a softer, more flexible distal segment 13 for navigating tortuous vessels and resulting in less trauma to the vessel walls. Applicant's invention provides a means of creating a stiff proximal segment 11 with a soft distal segment 13 in a guide catheter 35 using continuous extrusion and braiding technologies.
Applicant's "bump" extrusion technology alters the flexural modulus of the distal segment 13 of the guiding catheter 35. The preferred embodiment seen in Fig. 4 provides a continuous outer jacket 30 over the continuous bump extrusion layer 20, overlaying a continuous braided layer 15 with a continuous liner 10 within which defines a guidewire lumen 40. The continuous layers throughout the length of the guiding catheter 35 result in greater safety as there are no junctures were adjoined tubing pieces can break. The joining of two plastic tubes with tubes of a different stiffness by secondary operations such as melt bonding, molding or radio frequency bonding as in the prior art is avoided, thereby avoiding lanking at the juncture. Kink resistance is improved in the distal segment 13 because the layers are continuously extruded. This eliminates discrete, separately joined segments, which results in less manufacturing cost, reduced manufacturing time and greater safety. Applicant's guiding catheter is designed as follows. The innermost layer is an optional liner 10 which defines the guidewire lumen 40. The liner 10 is formed by extruding a rigid thermoplastic elastomer polymer such as PEB AX ® (available from the Elf Atochem Corporation, Philadelphia, PA), or Vestamid ® which is a Polyamid 12 (available from Huls America Inc., Turner Place, Piscataway, NJ 08855-0365), over an optional substrate material such as polyacetal. The liner 10 could also be formed of a Poly amid such as Vestamid®, Nylon 12, or Nylon 6. Thermoplastic urethanes such as Tecoflex® available from Thermedics, Inc., Woburn MA 01188-1799 or Tecothane® available from Thermedics, Inc., Woburn MA 01188-1799?), etc. could also be used as the liner 10. In addition, ECTFE (Ethelene ChloroTriFluoro Ethylene, a melt processable fluoropolymer available from Ausimont USA) material such as Halai® could be used and optionally extruded over a substrate such as polyacetal to form the liner 10.
The advantage of the ECTFE material is that it exhibits melt processibility unlike other fluoropolymers such as PTFE (polytetrafluoroethylene) Teflon, a registered trademark of the E.I. Du Pont de Nemours & Company, Wilmington,
Delaware. This melt processibilty permits the overextrusion and bonding of the fluoropolymer with thermoplastic outer jacket materials such as PEBAX® to produce a laminated catheter assembly. The ECTFE material also exhibits a coefficient of friction, which is substantially lower than materials such as PEBAX® which is beneficial for the passage of interventional therapeutic devices through the lumen of the liner. A fluoropolymer such as FEP (fluorinated ethylene propylene copolymer) available from Daikin America, Inc., 20 Olympic Drive, Orangeberg, New York 10962, exhibits melt processibility but is not well suited for wall thicknesses of 0.001 inches or less because of its relatively low melt strength and high melt viscosity, compared to a material such as PEBAX®, which results in melt fracture at these wall thicknesses. Additionally the low melt strength and high melt viscosity of FEP causes stress cracking which makes FEP undesirable for thin wall catheter applications. In contrast, ECTFE exhibits melt strength and viscosity which is sufficient to permit extruded wall thicknesses of 0.001 inches or less. Additional fluoropolymer groups which exhibit melt processibility, applicability for wall thicknesses less than 0.001 inches, and low frictional coefficients are the copolymers MF A and PF A which are marketed under the tradename HYFLON® and are obtainable from Ausimont USA. MFA and PFA exhibit frictional coefficients which are approximately equivalent to PTFE and are lower than ECTFE. Thus, a material such as HYFLON® is preferred for its melt processibility, thin wall capability, and coefficient of friction.
Heretofore a catheter utilizing a PTFE or FEP fluoropolymer liner required a chemical etchant to permit bonding of the jacket to the liner and the PTFE liner. This chemical etchant is generally costly and has adverse environmental impact. Using a material such as ECTFE, MFA, or PFA permits a technique known as plasma etching to accomplish bonding with a catheter jacket. The plasma etching utilizes a corona discharge method of displacing fluorine atoms from the surface of the fluoropolymer which lowers the surface energy of the fluoropolymer and permits greater wetting and consequently bonding of the catheter jacket to the liner. The corona discharge method enjoys both a cost and an environmental advantage over chemical etching techniques.
For braided catheters, polyacetal must be used to keep the liner 10 from collapsing. In general, the substrate is used for tolerance improvement and reducing wall thickness in tube extrusion if required and is necessary during braiding to prevent the lumen from collapsing. The disadvantages of a substrate are those of the addition of the secondary operation of removing the Polyacetal beading/core after extrusion as well as the additional costs. The core is removed after the liner 10, braiding 15 and outer jacket 30 has been extruded. The preferred materials for use in the liner 10 are those which exhibit lubricious qualities thereby facilitating the passage of devices. The liner 10 will have a constant inner diameter and a constant outer diameter. The liner is optional and is depicted in Figs. 2 - 6. A guiding catheter could also be designed without a liner 10 as seen in the Fig. 7 and 8 cross-sections.
Optional braided layer 15 is applied over the liner 10 as seen in Figs. 2 - 5. It would be possible to have the braided layer 15 without a liner 10 as seen in Fig. 7 or no braided layer 15 at all as seen in Figs. 6 and 8. The braiding may be formed of conventional materials such as at least half hard stainless steel S.S. 304. The outer diameter of the braided layer 15 is approximately .085 inches thick. The advantage of braided layer 15 is that of improved torque, kink resistance and pushability.
The bump extrusion layer 20 is applied over the braided layer 15 as seen in Figs. 3 - 5 and 7. If the braided layer 15 is encapsulated between the liner 10 and the bump extrusion layer 20 as seen in Figs. 3 - 5, torque, kink resistance and pushability will be improved. Encapsulation occurs when the braided layer 15 is bonded between the braid picks to another layer. The pick count is the number of wire group intersections per inch. The pic count should be greater than about 25 to 30 to retain sufficient kink resistance and less than about 70 - 75 to retain sufficient torque transfer. A pic count of about 50 is preferred. The bump extrusion layer 20 may also be applied directly over the liner 10 as seen in Fig. 6. The bump extrusion layer 20 need not have any layer underneath it as seen in Fig. 8.
The first pass of the extruder lays the bump extrusion layer 20 which consists of a fine layer of soft material such as PEBAX ® 63D, PEBAX ® 55D, PEBAX ® 40D, or a Vestamid® E-series such as E-40 or E-62 for the length of the proximal segment 11. Other materials appropriate for the bump extrusion layer 20 include thermoplastic elastomers and thermoplastic urethanes, polyamids and PEBA (polyether block amide copolymer) materials that exhibit similar soft properties. A typical catheter is about 100 inches long with the length of the proximal segment 11 being about 44 inches. The soft distal segment 13 is the balance of the length, or 66 inches. The bump extrusion layer 20 may be formed of a plastic material having a lower flexural modulus than the outer jacket 30. A suitable range of material for the bump extrusion layer 20 for example, is a 35 Durometer to 55 Durometer material. The bump extrusion layer 20 in the proximal segment 11 can be approximately .001 inches to .0015 inches thick with an outer diameter of approximately .090 inches and a length of approximately 42 to 46 inches. The bump section 25 in the bump extrusion layer 20 can be approximately .004 inches to .005 inches thick with an outer diameter increasing to approximately .097 inches thick. The thickness of the bump section 25 can be tailored to the specific application. Guiding catheters with thinner walls would have a thinner bump section 25 then would angiography catheters, for example, with thicker walls. The length of the bump section 25 is approximately 4 - 7 inches long.
A transition zone 45 of preferably 0 inches to 1.5 inches in length, links the soft distal segment 13 and the proximal segment 11. The length of transition zone 45 depends on how fast the puller responds to speed change, on the distance between the puller, on the die landing and on the melt volume capacity of the melt pump which should be as low as possible. A low melt volume capacity is necessary in an optimized process which requires minimum melt in order to make the transition from bump 25 to transition zone 45 significantly easier. Otherwise, the excess melt will create die swell during puller speed change and it will result in a non-uniform diameter. The purpose of the transition zone 45 is to minimize catheter kink, especially if the catheter shaft 11 stiffness is significantly higher (e.g., PEBAX® 72D, Vestamid® 75D) than the bump 25 area (e.g., PEBAX® 35D, Vestamid® 40D).
The second pass of the extruder lays the outer jacket layer 30 over the bump extrusion layer 20. The outer jacket 30 may be formed of a plastic material having a higher flexural modulus than the bump extrusion layer 20. A suitable range, for example, is a 70 Durometer to 85 Durometer material such as PEBAX ® 70D or Vestamid ® L-series. Most thermostatic elastomers, thermostatic urethane, PEBA and polyamids with a flexural modulus from 110,000 psi to 210,000 psi would be suitable. The outer jacket layer 30 will have a constant outer diameter.
Bump extrusion can be accomplished by using either two separate extrusion passes (one for the bump extrusion layer 20 and another for the outer jacket layer 30) or by using co-extrusion technology to simultaneously extrude both layers. In either case the thermoplastic material must be melt compatible and process compatible. Co- extrusion is preferable to multiple extrusion passes because of its lower cost as well as shorter run and processing time; the end product is the same.
To co-extrude, use a co-extrusion crosshead die (including an extruder screw, breaker plate and screen pack) with one, one inch extruder. For bump extrusion, only one extruder and one puller are required at any given time. The system also includes a very low volume Servo melt pump with a pressure feed back loop available from Killion
Extruders, Inc., Davis-Standard Corp., 200 Commerce Road, Cedar Grove, NJ. The system also requires a Servo driven bump tube puller with a control package such as Allen Brady's Program Logic Controller (PLC) and an on line laser mike. The extruders, the melt pumps, the laser mike and the puller are controlled through the PLC with a Bump/variable stiffness software program which controls variables such as the extruder speed, the melt pump and the programmable puller. The PLC can be programmed according to the application's needs.
The first one inch extruder is held at a constant speed producing the outer jacket
30. The speed of the servo melt pump is varied by the controller as the servo bump tube puller speed varies to alternate the ratio of the outer jacket layer 30 and the bump extrusion layer 20 while holding a constant outer diameter for the jacket layer 30. The puller has a variable speed which draws the polymer out of the extruder. The thickness of the polymer being extruded is manipulated by varying the speed at which the polymer is being drawn by the puller. The puller is programmed to gradually increase or decrease the speed of the drawing rate of the polymer through the die of the extruder.
This co-extruded layer can be laid over the optional braided layer 15.
A soft tip 14 could be affixed to the distal end of the catheter 35 by a variety of prior art means known to those skilled in the art.
First Example Bump Extrusion Layer 20 Material - Unfilled 40D PEBAX ®
Puller Speed - 25/6 ft./min.
Die 1 and 2 - 425 degrees
Clamp Ring - 425 degrees
Extruder Zone 1 - 224 degrees Extruder Zone 2 - 295 degrees
Extruder Zone 3 - 425 degrees
Result - Acceptable
Second Example
Bump Extrusion Layer 20 Material - 40D PEBAX ® filled with 40% barium sulfate Puller Speed - 25/6 ft./min.
Die 1 and 2 - 425 degrees
Clamp Ring - 425 degrees
Extruder Zone 1 - 224 degrees
Extruder Zone 2 - 295 degrees Extruder Zone 3 - 425 degrees Result - Acceptable, the transition zone 45 to bump section 25 is smooth but at the end of the bump section 25 the transition zone 45 was not as smooth.
Third Example
Bump Extrusion Layer 20 Material - 70 D PEBAX ® from the Elf Atochem Corp., Philadelphia PA
Puller Speed - 15 ft./min.- No melt pump
Die 1 and 2 - 425 degrees
Clamp Ring - 425 degrees
Extruder Zone 1 - 224 degrees Extruder Zone 2 - 295 degrees
Extruder Zone 3 - 425 degrees
Result - Imperfections and thickness variation perhaps because there was no melt pump.
Fourth Example
Bump Extrusion Layer 20 Material - Polyacetal available from Dunn Industries, 123 Abby Road, Manchester, NH 03103
Melt Pump added
Die 1 and 2 - 425 degrees
Clamp Ring - 425 degrees
Extruder Zone 1 - 224 degrees Extruder Zone 2 - 295 degrees
Extruder Zone 3 - 425 degrees
Result - Polyacetal beading material could not hold up to the temperature coming out of the die and the coating kept slipping.
Different puller speeds were used which result in different thicknesses depending on the material used.
First Run Puller Speed - 48/12 ft./min
Second Run Puller Speed - 60/25 ft./min
Third Run Puller Speed - 10/50 ft./min. The preceding specific embodiments are illustrative of the practice of the invention. It is to be understood, however, that other expedients known to those skilled in the art or disclosed herein, may be employed without departing from the scope of the appended claims.

Claims

WHAT IS CLAIMED IS:
1. A medical catheter, comprising: a continuous liner defining a guidewire lumen, the liner having a constant inner diameter and a constant outer diameter; a continuous braided layer being braided over the continuous liner, the braided layer having a constant inner diameter and a constant outer diameter; a continuous bump layer, the braided layer being encapsulated between the liner and the bump layer; the bump layer having a proximal segment, and a bump section, the bump section having a transition zone at a proximal end of the bump section, the proximal segment having a distal end affixed to the proximal end of the bump section; the proximal segment of the bump layer having an outer diameter which is less than an outer diameter of the bump section of the bump layer, the transition zone having an outer diameter which smoothly transitions from the outer diameter of the distal end of the proximal segment of the bump layer to the larger outer diameter at a distal end of the transition zone; and a continuous outer jacket layer, the bump layer being encapsulated between the outer jacket layer and the braided layer, the outer jacket layer having a constant outer diameter, the outer jacket layer having an inner diameter conforming to the variable outer diameter of the bump layer, the bump layer being made of a material with a greater flexural modulus than that of the outer jacket layer, such that the flexibility of the catheter is greater in the bump section than in the proximal segment.
2. A medical catheter, comprising: a continuous liner defining a guidewire lumen, the liner having a constant inner diameter and a constant outer diameter; a continuous bump layer encapsulating the liner; the bump layer having a proximal segment, and a bump section, the bump section having a transition zone at a proximal end of the bump section, the proximal segment of the bump layer having a distal end affixed to the proximal end of the bump section; the proximal segment of the bump layer having an outer diameter which is less than an outer diameter of the bump section of the bump layer, the transition zone having an outer diameter which smoothly transitions from the outer diameter of the distal end of the proximal segment of the bump layer to the larger outer diameter at a distal end of the transition zone; and a continuous outer jacket layer, the bump layer being encapsulated between the outer jacket layer and the braided layer, the outer jacket layer having a constant outer diameter, the outer jacket layer having an inner diameter conforming to the variable outer diameter of the bump layer, the bump layer being made of a material with a greater flexural modulus than that of the outer j acket layer such that the flexibility of the catheter is greater in the bump section than in the proximal segment.
3. A medical catheter, comprising: a continuous braided layer being braided over, the continuous liner, the braided layer having a constant inner diameter and a constant outer diameter; a continuous bump layer; the bump layer having a proximal segment, and a bump section, the bump section having a transition zone at a proximal end of the bump section, the proximal segment having a distal end affixed to the proximal end of the bump section; the proximal segment of the bump layer having an outer diameter which is less than an outer diameter of the bump section of the bump layer, the transition zone having an outer diameter which smoothly transitions from the outer diameter of the distal end of the proximal segment of the bump layer to the larger outer diameter at a distal end of the transition zone; and a continuous outer jacket layer, the bump layer being encapsulated between the outer jacket layer and the braided layer, the outer jacket layer having a constant outer diameter, the outer jacket layer having an inner diameter conforming to the variable outer diameter of the bump layer, the bump layer being made of a material with a greater flexural modulus than that of the outer jacket layer such that the flexibility of the catheter is greater in the bump section than in the proximal segment.
4. A medical catheter, comprising: a continuous bump layer; the bump layer having a proximal segment, and a bump section, the bump section having a transition zone at a proximal end of the bump section, the proximal segment having a distal end affixed to the proximal end of the bump section; the proximal segment of the bump layer having an outer diameter which is less than an outer diameter of the bump section of the bump layer, the transition zone having an outer diameter which smoothly transitions from the outer diameter of the distal end of the proximal segment of the bump layer to the outer diameter at a distal end of the transition zone; and a continuous outer jacket layer encapsulating the bump layer, the outer jacket layer having a constant outer diameter, the outer jacket layer having an inner diameter conforming to the variable outer diameter of the bump layer, the bump layer being made of a material with a greater flexural modulus than that of the outer jacket layer such that the flexibility of the catheter is greater in the bump section than in the proximal segment.
5. A medical catheter according to any of claims 1 - 2 wherein the liner further comprises an extrusion of a rigid, thermoplastic, elastomer polymer over polyacetal.
6. A medical catheter according to any of claims 1 - 4 wherein the thickness of the proximal segment of the bump layer is approximately .001 to .0015 inches.
7. A medical catheter according to any of claims 1 - 4 wherein the thickness of the bump section of the bump layer ranges from that of the thickness of the distal end of the proximal segment of the bump layer to that of between approximately .004 inches to approximately .005 inches.
8. A medical catheter according to any of claims 1 - 4 wherein the bump layer is made of a material with a Durometer ranging from approximately 35 - 55.
9. A medical catheter according to any of claims 1 - 4 wherein the bump section has a length from approximately 4 inches to approximately 7 inches.
10. A medical catheter according to any of claims 1 - 4 wherein the transition zone has a length of not greater than approximately 12 inches.
11. A medical catheter according to any of claims 1 - 4 wherein the outer jacket is formed of a material with a flexural modulus greater than that of the flexural modulus of the bump layer.
12. A medical catheter according to any of claims 1 or 3 wherein the braided layer has a pic count of between approximately 25 - 75.
13. A method of making a medical catheter comprising the steps of: providing a continuous thermoplastic liner defining a lumen; braiding a continuous layer of strands over the liner; applying a continuous bump layer over the braided layer such that the braided layer is encapsulated between the liner and the bump layer, the bump layer becoming thicker toward a distal end of the catheter; applying a continuous outer jacket layer over the bump layer, the outer jacket layer having a higher flexural modulus than the bump layer; and retaining a constant outer diameter of the outer jacket layer as the bump layer thickens, while increasing the inner diameter of the outer jacket layer to correspond to the outer diameter of the bump layer such that the distal end of the catheter is more flexible than a proximal end of the catheter.
14. A method of making a medical catheter according to claim 13 wherein the bump layer and the outer jacket layer are coextruded.
15. A method of making a medical catheter according to claim 13 wherein the braided layer has a pic count of between approximately 25 and 75.
16. A medical catheter, comprising: a continuous liner defining a guidewire lumen; a continuous braided layer being braided over the continuous liner; the liner being selected from a group of melt processable fluoropolymers selected from a group comprising ECTFE, MFA or PFA; and a continuous outer jacket layer disposed over the continuous braided layer, the continuous outer jacket layer bonded to the continuous braided layer and to the continuous liner.
PCT/US1999/003798 1998-05-28 1999-02-22 Extruded guide catheter shaft with bump extrusion soft distal segment WO1999061091A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/086,074 1998-05-28
US09/086,074 US6106510A (en) 1998-05-28 1998-05-28 Extruded guide catheter shaft with bump extrusion soft distal segment

Publications (2)

Publication Number Publication Date
WO1999061091A2 true WO1999061091A2 (en) 1999-12-02
WO1999061091A3 WO1999061091A3 (en) 2000-01-27

Family

ID=22196086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/003798 WO1999061091A2 (en) 1998-05-28 1999-02-22 Extruded guide catheter shaft with bump extrusion soft distal segment

Country Status (2)

Country Link
US (1) US6106510A (en)
WO (1) WO1999061091A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096965A1 (en) * 1998-07-16 2001-05-09 Mark Cohen Reinforced variable stiffness tubing
EP2052672A1 (en) * 2007-10-25 2009-04-29 Fujinon Corporation Endoscope flexible tube and its manufacturing method

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447488B2 (en) * 1998-03-19 2002-09-10 Biolink Corporation Apparatus for the dialysis of blood, method for fabricating the same, and method for the dialysis of blood
US6591472B1 (en) * 1998-12-08 2003-07-15 Medtronic, Inc. Multiple segment catheter and method of fabrication
US6142975A (en) * 1998-12-31 2000-11-07 Advanced Cardiovascular Systems, Inc. Guidewire having braided wire over drawn tube construction
US8888688B2 (en) 2000-04-03 2014-11-18 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US6858005B2 (en) 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
US6468203B2 (en) 2000-04-03 2002-10-22 Neoguide Systems, Inc. Steerable endoscope and improved method of insertion
US6610007B2 (en) 2000-04-03 2003-08-26 Neoguide Systems, Inc. Steerable segmented endoscope and method of insertion
US8517923B2 (en) 2000-04-03 2013-08-27 Intuitive Surgical Operations, Inc. Apparatus and methods for facilitating treatment of tissue via improved delivery of energy based and non-energy based modalities
US6860849B2 (en) * 2000-05-08 2005-03-01 Pentax Corporation Flexible tube for an endoscope
US6652507B2 (en) * 2001-07-03 2003-11-25 Scimed Life Systems, Inc. Intravascular catheter having multi-layered tip
US7071898B2 (en) * 2002-07-18 2006-07-04 Information Decision Technologies, Llc Method for using a wireless motorized camera mount for tracking in augmented reality
EP1469781B1 (en) 2002-01-09 2016-06-29 Intuitive Surgical Operations, Inc. Apparatus for endoscopic colectomy
US20040175525A1 (en) * 2002-02-28 2004-09-09 Scimed Life Systems, Inc. Catheter incorporating an improved polymer shaft
US7115134B2 (en) 2002-07-22 2006-10-03 Chambers Technology, Llc. Catheter with flexible tip and shape retention
US8882657B2 (en) 2003-03-07 2014-11-11 Intuitive Surgical Operations, Inc. Instrument having radio frequency identification systems and methods for use
US20040242990A1 (en) * 2003-04-22 2004-12-02 Medtronic Vascular, Inc. Device, system, and method for detecting vulnerable plaque in a blood vessel
US7331948B2 (en) * 2004-06-18 2008-02-19 Medtronic, Inc. Catheter and catheter fabrication method
US7306585B2 (en) 2004-09-30 2007-12-11 Engineering Resources Group, Inc. Guide catheter
US20060184105A1 (en) * 2005-02-15 2006-08-17 Townsend Gregory L Thin wall catheter and method of placing same
JP2008541797A (en) 2005-05-03 2008-11-27 ハンセン メディカル,インク. Robotic guide catheter system
US7789874B2 (en) * 2005-05-03 2010-09-07 Hansen Medical, Inc. Support assembly for robotic catheter system
US9480589B2 (en) * 2005-05-13 2016-11-01 Boston Scientific Scimed, Inc. Endoprosthesis delivery system
EP1956962B1 (en) 2005-11-22 2020-09-16 Intuitive Surgical Operations, Inc. System for determining the shape of a bendable instrument
US8083879B2 (en) 2005-11-23 2011-12-27 Intuitive Surgical Operations, Inc. Non-metallic, multi-strand control cable for steerable instruments
US7892186B2 (en) 2005-12-09 2011-02-22 Heraeus Materials S.A. Handle and articulator system and method
US8728121B2 (en) * 2006-01-13 2014-05-20 Olympus Medical Systems Corp. Puncture needle and medical procedure using puncture needle that is performed via natural orifice
US20070219411A1 (en) * 2006-01-13 2007-09-20 Olympus Medical Systems Corp. Overtube and endoscopic treatment system
US8241279B2 (en) * 2006-02-23 2012-08-14 Olympus Medical Systems Corp. Overtube and natural opening medical procedures using the same
US8721657B2 (en) * 2006-01-13 2014-05-13 Olympus Medical Systems Corp. Medical instrument
US20070167676A1 (en) * 2006-01-13 2007-07-19 Olympus Medical Systems Corp. Overtube and medical procedure via natural orifice using the same
US20080255422A1 (en) * 2006-01-13 2008-10-16 Olympus Medical Systems Corp. Medical device
US7785333B2 (en) * 2006-02-21 2010-08-31 Olympus Medical Systems Corp. Overtube and operative procedure via bodily orifice
US8568299B2 (en) 2006-05-19 2013-10-29 Intuitive Surgical Operations, Inc. Methods and apparatus for displaying three-dimensional orientation of a steerable distal tip of an endoscope
US7718106B2 (en) * 2006-05-30 2010-05-18 Boston Scientific Scimed, Inc. Medical devices and related systems and methods
US9220398B2 (en) 2007-10-11 2015-12-29 Intuitive Surgical Operations, Inc. System for managing Bowden cables in articulating instruments
US7566342B2 (en) * 2007-12-27 2009-07-28 Cook Incorporated Delivery system for medical device
US8431057B2 (en) 2007-12-30 2013-04-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of its manufacture
US8684999B2 (en) 2007-12-31 2014-04-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Catheter shaft and method of manufacture
EP2249690B1 (en) 2008-02-06 2021-09-29 Intuitive Surgical Operations, Inc. A segmented instrument having braking capabilities
US8182418B2 (en) 2008-02-25 2012-05-22 Intuitive Surgical Operations, Inc. Systems and methods for articulating an elongate body
US20100160862A1 (en) * 2008-12-22 2010-06-24 Cook Incorporated Variable stiffness introducer sheath with transition zone
US9259550B2 (en) 2009-07-13 2016-02-16 Cook Medical Technologies Llc Swaged braided catheter and method of fabrication
US9579193B2 (en) 2010-09-23 2017-02-28 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US10321998B2 (en) 2010-09-23 2019-06-18 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US8585858B2 (en) 2011-06-06 2013-11-19 Alex M. Kronfeld Medical catheter with bump tubing proximal segment
US9549817B2 (en) 2011-09-22 2017-01-24 Transmural Systems Llc Devices, systems and methods for repairing lumenal systems
DK2765944T3 (en) 2011-10-14 2018-12-03 Ra Medical Systems Inc LITTLE FLEXIBLE CATHETS WITH LIQUID CORE FOR LASER ABLATION IN BODY SLUMPS
US9072624B2 (en) 2012-02-23 2015-07-07 Covidien Lp Luminal stenting
US9757536B2 (en) * 2012-07-17 2017-09-12 Novartis Ag Soft tip cannula
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US20140277005A1 (en) * 2013-03-14 2014-09-18 Covidien Lp Medical device including flexible elongate torque-transmitting member
US9782186B2 (en) 2013-08-27 2017-10-10 Covidien Lp Vascular intervention system
US10265207B2 (en) 2013-08-27 2019-04-23 Covidien Lp Delivery of medical devices
US9962527B2 (en) 2013-10-16 2018-05-08 Ra Medical Systems, Inc. Methods and devices for treatment of stenosis of arteriovenous fistula shunts
US20170014115A1 (en) 2014-03-27 2017-01-19 Transmural Systems Llc Devices and methods for closure of transvascular or transcameral access ports
EP3349687B1 (en) 2015-09-15 2020-09-09 THE UNITED STATES OF AMERICA, represented by the S Devices for effectuating percutaneous glenn and fontan procedures
US10555772B2 (en) 2015-11-23 2020-02-11 Ra Medical Systems, Inc. Laser ablation catheters having expanded distal tip windows for efficient tissue ablation
WO2018043554A1 (en) * 2016-09-05 2018-03-08 テルモ株式会社 Catheter
US10376396B2 (en) 2017-01-19 2019-08-13 Covidien Lp Coupling units for medical device delivery systems
JP2019166289A (en) 2018-03-22 2019-10-03 ラ メディカル システムズ, インコーポレイテッド Liquid filled ablation catheter with overjacket
US11413176B2 (en) 2018-04-12 2022-08-16 Covidien Lp Medical device delivery
US11071637B2 (en) 2018-04-12 2021-07-27 Covidien Lp Medical device delivery
US11123209B2 (en) 2018-04-12 2021-09-21 Covidien Lp Medical device delivery
US10786377B2 (en) 2018-04-12 2020-09-29 Covidien Lp Medical device delivery
US11065438B2 (en) * 2019-02-07 2021-07-20 Synecor Llc Systems and methods for transseptal delivery of percutaneous ventricular assist devices and other non-guidewire based transvascular therapeutic devices
US11413174B2 (en) 2019-06-26 2022-08-16 Covidien Lp Core assembly for medical device delivery systems
USD960357S1 (en) * 2020-07-03 2022-08-09 Baylis Medical Company Inc. Piercing stylet with non-contacting distal tip
US11944558B2 (en) 2021-08-05 2024-04-02 Covidien Lp Medical device delivery devices, systems, and methods
CN115012091B (en) * 2022-06-14 2024-04-05 上海洲康医疗器械有限公司 Medical braided tube and cutting process thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904431A (en) 1988-08-12 1990-02-27 Baxter International, Inc. Process for manufacturing catheters
US5533985A (en) 1994-04-20 1996-07-09 Wang; James C. Tubing

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4596563A (en) * 1983-06-09 1986-06-24 Cordis Corporation Thin-walled multi-layered catheter having a fuseless tip
US4925710A (en) * 1988-03-31 1990-05-15 Buck Thomas F Ultrathin-wall fluoropolymer tube with removable fluoropolymer core
US4963306A (en) * 1988-07-14 1990-10-16 Novoste Corporation Method for making fuseless soft tip angiographic catheter
US5125913A (en) * 1990-05-11 1992-06-30 Fbk International Corporation Soft-tipped catheters
DE4032869A1 (en) * 1990-10-17 1992-04-23 Gercke Hans Hermann Catheter prodn. having flexible gradient - by extrusion of hard and soft plastics in varying proportion
US5318032A (en) * 1992-02-05 1994-06-07 Devices For Vascular Intervention Guiding catheter having soft tip
US5316706A (en) * 1992-08-05 1994-05-31 Advanced Cardiovascular Systems Method of manufacturing jointless catheter
NL9301642A (en) * 1993-09-22 1995-04-18 Cordis Europ Microcatheter.
WO1995013110A1 (en) * 1993-11-12 1995-05-18 Micro Interventional Systems Small diameter, high torque catheter
US5542937A (en) * 1994-06-24 1996-08-06 Target Therapeutics, Inc. Multilumen extruded catheter
JPH10511871A (en) * 1995-01-04 1998-11-17 メドトロニック・インコーポレーテッド Soft chip forming method
US5614136A (en) * 1995-03-02 1997-03-25 Scimed Life Systems, Inc. Process to form dimensionally variable tubular members for use in catheter procedures
US5702373A (en) * 1995-08-31 1997-12-30 Target Therapeutics, Inc. Composite super-elastic alloy braid reinforced catheter
US5730733A (en) * 1995-06-01 1998-03-24 Scimed Life Systems, Inc. Flow assisted catheter
EP0862477A1 (en) * 1995-10-17 1998-09-09 Medtronic, Inc. Guide catheter with soft distal segment
JPH1057496A (en) * 1996-06-14 1998-03-03 Olympus Optical Co Ltd Indwelling tube for medical use
JP3563540B2 (en) * 1996-09-13 2004-09-08 テルモ株式会社 catheter
US5755704A (en) * 1996-10-29 1998-05-26 Medtronic, Inc. Thinwall guide catheter
US5891110A (en) * 1997-10-15 1999-04-06 Scimed Life Systems, Inc. Over-the-wire catheter with improved trackability

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904431A (en) 1988-08-12 1990-02-27 Baxter International, Inc. Process for manufacturing catheters
US5533985A (en) 1994-04-20 1996-07-09 Wang; James C. Tubing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1096965A1 (en) * 1998-07-16 2001-05-09 Mark Cohen Reinforced variable stiffness tubing
EP1096965A4 (en) * 1998-07-16 2004-06-30 Mark Cohen Reinforced variable stiffness tubing
EP2052672A1 (en) * 2007-10-25 2009-04-29 Fujinon Corporation Endoscope flexible tube and its manufacturing method
CN102578989A (en) * 2007-10-25 2012-07-18 富士胶片株式会社 Endoscope flexible tube and its manufacturing method
US8734695B2 (en) 2007-10-25 2014-05-27 Fujinon Corporation Endoscope flexible tube and its manufacturing method

Also Published As

Publication number Publication date
WO1999061091A3 (en) 2000-01-27
US6106510A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
US6106510A (en) Extruded guide catheter shaft with bump extrusion soft distal segment
US5836925A (en) Catheter with variable flexibility properties and method of manufacture
US5649909A (en) Variable stiffness multi-lumen catheter
EP1087812B1 (en) Semi-continuous co-extruded catheter shaft
US7037295B2 (en) Co-extruded taper shaft
US6217565B1 (en) Reinforced variable stiffness tubing
EP1414511B1 (en) Integrated polymer and braid for intravascular catheters
US4596563A (en) Thin-walled multi-layered catheter having a fuseless tip
US6663614B1 (en) Catheter shaft having variable thickness layers and method of making
CA2290996C (en) Catheter having controlled flexibility and method of manufacture
US4753765A (en) Method of making a catheter having a fuseless tip
US5824173A (en) Method for making a balloon catheter
EP0517075B1 (en) Intravascular catheter with a nontraumatic distal tip
US20040087933A1 (en) Stiff guiding catheter liner material
EP1206296A1 (en) Catheter device having multi-lumen reinforced shaft and method of manufacture for same
EP2367671B1 (en) Method of forming reinforced tubing
US20040225278A1 (en) Catheter having selectively varied lamination
US5624617A (en) Method of manufacture for catheter lumen lubricity
US20040225280A1 (en) Laminated catheter comprising ultra high molecular weight high density polyethylene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

122 Ep: pct application non-entry in european phase