WO1999063643A1 - Braking and control circuit for electric power tools - Google Patents

Braking and control circuit for electric power tools Download PDF

Info

Publication number
WO1999063643A1
WO1999063643A1 PCT/US1999/012643 US9912643W WO9963643A1 WO 1999063643 A1 WO1999063643 A1 WO 1999063643A1 US 9912643 W US9912643 W US 9912643W WO 9963643 A1 WO9963643 A1 WO 9963643A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
switch
braking
control
set forth
Prior art date
Application number
PCT/US1999/012643
Other languages
French (fr)
Inventor
Jonathan A. Zick
Joseph W. Willhide
Original Assignee
Milwaukee Electric Tool Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Milwaukee Electric Tool Corporation filed Critical Milwaukee Electric Tool Corporation
Priority to AU43346/99A priority Critical patent/AU4334699A/en
Publication of WO1999063643A1 publication Critical patent/WO1999063643A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/14Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D59/00Accessories specially designed for sawing machines or sawing devices
    • B23D59/001Measuring or control devices, e.g. for automatic control of work feed pressure on band saw blade
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25HWORKSHOP EQUIPMENT, e.g. FOR MARKING-OUT WORK; STORAGE MEANS FOR WORKSHOPS
    • B25H1/00Work benches; Portable stands or supports for positioning portable tools or work to be operated on thereby
    • B25H1/0021Stands, supports or guiding devices for positioning portable tools or for securing them to the work
    • B25H1/0057Devices for securing hand tools to the work
    • B25H1/0064Stands attached to the workpiece
    • B25H1/0071Stands attached to the workpiece by magnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27BSAWS FOR WOOD OR SIMILAR MATERIAL; COMPONENTS OR ACCESSORIES THEREFOR
    • B27B5/00Sawing machines working with circular or cylindrical saw blades; Components or equipment therefor
    • B27B5/29Details; Component parts; Accessories
    • B27B5/38Devices for braking the circular saw blade or the saw spindle; Devices for damping vibrations of the circular saw blade, e.g. silencing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/08Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor
    • H02P3/12Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing a dc motor by short-circuit or resistive braking

Definitions

  • the invention relates to motors for electric power tools. More particularly, the invention relates to a braking and control circuit for such a motor.
  • AC universal motors have commonly been used in electric power tools, such as drills, circular saws and other types of equipment. Generally, such motors provide a high-power, light-weight power source for these power tools.
  • the universal motor includes a housing, a stator assembly having a run coil, and a rotatable shaft or arbor having an armature mounted thereon. Current flows through the run coil and creates a magnetic field which interacts with the magnetic field of the armature. This interaction rotatably drives the arbor.
  • a tool element such as a drill bit or a saw blade
  • the tool element may be mounted directly on the arbor or be coupled to the arbor by a gear transmission or the like.
  • a typical braking arrangement includes a dynamic braking circuit which relies on passive generation of free wheeling current in the stator to produce a counter-electromagnetic force (counter-EMF) to stop the rotation of the arbor and to, thereby, brake the motor.
  • counter-EMF counter-electromagnetic force
  • the braking arrangement must be configured to accommodate the different braking conditions. For example, in some power tools, such as portable drill presses, braking is required when the drill press accidentally disconnects from the workpiece ("breakaway") during drilling operations, a safety-related braking condition. In other power tools, such as circular saws, braking is required when the tool element, such as the saw blade, binds on the workpiece and the power tool is jerked or kicks back, another safety-related braking condition. Further, in some power tools, braking may be desired each time the operator releases the trigger so that the blade stops quickly and the operator can move to the next drilling or cutting operation, a productivity-related braking condition.
  • the present invention provides a power tool including a braking and control circuit that alleviates the problems with existing braking arrangements.
  • the present invention provides a braking and control circuit including a microcontroller-based control circuit.
  • the microcontroller assures control of switch means, such as triacs, switches and relays, and ensures that braking is effectuated regardless of the phase in the power cycle of the alternating current.
  • the microcontroller is programmable so that the braking and control circuit accommodates different braking conditions for different power tools and accommodates combinations of braking conditions for the same power tool.
  • the microcontroller is programmable to configure the braking and control circuit so that the braking force applied to the motor and the stopping time of the motor are regulated and adjustable.
  • the present invention provides a braking and control circuit for an electric motor, the motor including a housing, a stator supported by the housing, and a shaft rotatably supported by the housing, wherein the stator is selectively connected with a power source to rotatably drive the shaft.
  • the braking and control circuit comprises first switch means for selectively disconnecting the motor from the power source, second switch means electrically connected across the motor; and control means electrically connected with at least one of the first switch and the second switch means and operable to output a control signal to control the at least one of the first switch means and the second switch means to brake the motor.
  • the control means is preferably electrically connected with the first switch means and with the second switch means.
  • the control means outputs a first control signal to the first switch means so that the first switch means disconnects the motor from the power source.
  • the control means also preferably outputs a second control signal to the second switch means so that the second switch means connects the motor in a closed loop and generates a counter-electromagnetic force to brake the motor.
  • control means preferably selectively outputs the first control signal to the first switch means so that the first switch means selectively disconnects and reconnects the motor and the power source and selectively outputs the second control signal to the second switch means so that the second switch means selectively connects and disconnects the motor in a closed loop to regulate a braking force applied to brake the motor.
  • the control means preferably includes a microcontroller operable to output the control signal and programmable to optimize braking of the motor.
  • the microcontroller is programmable to change the stopping time of the motor and to change the braking force applied to the motor.
  • the microcontroller is preferably programmable to output the control signal on selected ones of the plurality of cycles of the alternating current to control the first switch means and the second switch means on the selected ones of the plurality of cycles to brake the motor and to output the control signal at a point in the alternating current so that a desired voltage is supplied to brake the motor.
  • the present invention also provides a power tool comprising a housing, an electric motor, and braking and control means for controlling and braking the motor.
  • the braking and control means includes switch means electrically connected with the motor and control means electrically connected with the switch means and operable to output a control signal to control the switch means to brake the motor.
  • the control means includes a microcontroller operable to output the control signal.
  • the switch means are preferably operable to selectively disconnect the motor from the power source, and the braking and control means preferably further includes second switch means electrically connected with the motor and operable to selectively connect the motor in a closed loop.
  • the microcontroller preferably outputs a first control signal to the first switch means so that the first switch means disconnects the motor from the power source and outputs a second control signal to the second switch means so that the second switch means connects the motor in a closed loop and generates a counter- electromagnetic force to brake the motor.
  • the microcontroller is programmable to configure the braking and control means for a selected power tool and for a selected braking condition.
  • the power tool further preferably comprises trigger means electrically connected with the control means and operable to trigger braking of the motor when a braking condition for the power tool exists.
  • the trigger means outputs a trigger signal to the control means so that the microcontroller outputs the control signal to the switch means to brake the motor.
  • the trigger means may include the on/off switch or may include sensing means for sensing a safety-related braking condition, such as "breakaway" of a drill press from a workpiece or "binding" of a tool element, i.e., a saw blade, on the workpiece.
  • a safety-related braking condition such as "breakaway" of a drill press from a workpiece or "binding" of a tool element, i.e., a saw blade, on the workpiece.
  • Another advantage of the present invention is that the braking and control circuit is programmable to accommodate different braking conditions for different power tools and accommodates combinations of braking conditions in the same power tool.
  • Yet another advantage of the present invention is that the braking force applied to the arbor may be controlled and adjusted so that the arbor may be stopped more or less quickly.
  • FIG. 1 is a perspective view of a power tool and a braking and control circuit embodying the invention.
  • Fig. 2 is a schematic illustration of an electric motor and the braking and control circuit.
  • Fig. 3 is a schematic illustration of an alternative embodiment of the motor and the braking and control circuit.
  • Figs. 4A and 4B are schematic diagrams of portions of the motor and the braking and control circuit.
  • Figs. 5 A, 5B and 5C are detailed schematic diagrams of the portions of the motor and the braking and control circuit illustrated in Fig. 4A.
  • Figs. 6A and 6B are detailed schematic diagrams of the portions of the motor and the braking and control circuit illustrated in Fig. 4B.
  • Fig. 7 is a perspective view of an alternative power tool and a braking and control circuit embodying the invention.
  • Figs. 1-3 illustrate a power tool including a braking and control circuit 10 (schematically illustrated in Figs. 2-3) embodying the invention and for braking and controlling an electric motor 14 (schematically illustrated in Figs. 2-3).
  • the power tool (see Fig. 1) is a portable drill press 18 including a housing 22 supported by a base 26.
  • the base 26 includes a force applying element 30 (partially shown) for connecting the base 26 to the surface of a workpiece W.
  • the force applying element 30 is an electromagnet assembly 34 (partially shown) for attaching the drill press 18 to a ferro-magnetic workpiece W.
  • the force applying element 30 may be a permanent magnet, a vacuum pad, or a clamp mechanism.
  • the electric motor 14 is supported by the housing 22 and is operable to rotatably drive a spindle assembly 38.
  • the spindle assembly 38 is connected to a tool element, such as a drill bit 42, to drill through or cut the workpiece W.
  • An on/off switch 46 is operated by a trigger or button 48 and selectively connects the electric motor 14 to a power source 50.
  • the motor 14 is generally conventional and, as shown in Figs. 2-3, includes a rotating arbor or shaft 54 on which an armature (not shown) is mounted.
  • the armature includes armature windings (not shown) for generating an armature field. Electricity is conducted to the rotating armature by a pair of commutator brushes 58.
  • the motor 14 also includes a stator assembly (partially shown) including run winding means 62 for generating a magnetic field for rotating the armature and the arbor 54.
  • the braking and control circuit 10 includes (see Figs. 2-3) first switch means 66 connected in series with the motor 14 and operable to selectively disconnect the motor 14 from the power source 50 to brake the motor 14.
  • the first switch means 66 includes a triac 70 which is turned off to disconnect the motor 14 from the power source 50.
  • the first switch means 66 may be any type of switch means which is operable to disconnect the motor 14 from the power source 50.
  • the braking and control circuit 10 also includes (see Figs. 2-3) second switch means 74 connected in parallel with the motor 14 across the armature.
  • the second switch means is operable to connect the motor 14 in a closed loop and to generate counter-electromagnetic force (counter-EMF) to brake the motor 14.
  • the second switch means 74 includes a mechanical switch 78 which is normally open and which is closed to connect the motor 14 in the closed loop.
  • the second switch means includes a solid state switch, such as a triac 82 or other solid state device (not shown). The triac 82 is normally turned off and is turned on to connect the motor in the closed loop.
  • the braking and control circuit 10 includes (see Figs. 2-3) a control circuit or control means 86 electrically connected to at least one of the first switch means 66 and the second switch means 74 and operable to control at least one of the first switch means 66 on the second switch means 74 to brake the motor
  • control means 86 is electrically connected to and controls both the first switch means 66 and the second switch means 74 to brake the motor 14.
  • control means 86 selectively outputs a first control signal to control the first switch means 66, to disconnect the motor 14 from the power source 50, and selectively outputs a second control signal to control the second switch means 74, to connect the motor 14 in a closed loop and to generate counter-EMF.
  • the braking and control circuit 10 further includes (see Figs. 2-3) trigger means 90 electrically connected to the control means 86 and operable to trigger braking of the motor 14.
  • the trigger means 90 When a braking condition occurs, the trigger means 90 outputs a trigger signal to the control means 86 to trigger braking of the motor 14.
  • the first category includes safety-related braking conditions. In this category, braking of the motor 14 is required if an unsafe operating condition for the power tool arises. For example, such a safety-related braking condition occurs if the force applying element 30 of the drill press 18 accidentally disconnects from the workpiece W during drilling operations ("breakaway").
  • Another safety-related braking condition occurs when the tool element, such as a drill bit or a saw blade, binds on the workpiece W causing the to jerk or kick back.
  • braking of the motor 14 is required to prevent injury to the operator or damage to the equipment or workpiece W.
  • braking of the motor 14 is accomplished as quickly as possible without damaging the components of the motor 14 (i.e., the motor 14 is braked in 1 sec).
  • productivity-related braking conditions In this category, braking of the motor 14 is desired to stop the associated tool element so that the operator can move to the next drilling or cutting operation more quickly.
  • the trigger means 90 includes sensing means 92 for sensing a safety-related braking condition.
  • the drill press 18 includes a breakaway sensor 94 for sensing breakaway of the base 26 and the electromagnet assembly 34 from the workpiece W.
  • a breakaway sensor 94 may be any type of sensing means such as a mechanical sensor, i.e., a depressible plunger (not shown), an electrical sensor, or a magnetic sensor, i.e., a
  • the Hall Effect sensor capable of sensing relative movement of the drill press 18 and the workpiece W or "breakaway" of the base 26 from the workpiece W. In this construction, if the drill press 18 breaks away from the workpiece W, the breakaway sensor 94 outputs the trigger signal, a "breakaway" signal, to the control means 86 to trigger braking of the motor 14.
  • the trigger means 90 triggers braking for a productivity-related braking condition.
  • the trigger means 90 includes the on/off switch 46.
  • the trigger signal an "off signal, is output to the control means 86 to trigger braking of the motor 14.
  • the trigger means 90 may trigger braking of the motor 14 for both a safety-related braking condition and a productivity-related braking condition and may, therefore, include combinations of components to trigger braking in both categories of braking conditions.
  • the trigger means 90 may include different types of sensing means 92 for sensing different types of safety-related braking conditions.
  • the control means 86 receives an electrical signal representing the alternating current provided to the motor 14 by the power source 50.
  • the electrical signal may be a current or a voltage waveform, though, in the preferred embodiment, the electrical signal is a current signal.
  • the current signal is used to determine the present state of the alternating current provided to the motor 14 by the power source 50.
  • the control means 86 outputs the control signals at a selected brake starting point or phase angle of the alternating current provided by the power source 50.
  • the control means 86 includes components which are programmable to optimize the braking of the motor 14. The components of the control means 86 are programmable so that the control means 86 outputs the control signals on selected power cycles and at selected phase angles and voltages of the alternating current from the power source 50. In this manner, the control means 86 can vary the braking force applied to the motor 14. Further, in this manner, the control means 86 can vary the stopping time of the motor 14 during braking.
  • Figs. 4A-B, 5A-C and 6A-B are schematic diagrams of portions of the motor 14 and the braking and control circuit 10 for use with the drill press 18.
  • the motor 14 includes a power supply 98 which is connected with the power source 50.
  • the power supply 98 is in a non-isolated fly -back configuration.
  • the power supply 98 creates a 12 V DC and a 5 V DC output from a 90 V AC to a 255 V AC input.
  • U4 is the controller for the power supply 98 and is a three-terminal, off-line PWM switch. Capacitor C4 charges to the peak of the AC mains voltage of the power source 50.
  • Half-wave rectification by diode D5 converts the AC voltage to DC voltage but generates a ripple voltage on capacitor C4.
  • Zener diode VR1 and diode D2 clamp voltage spikes and reduce drain voltage ringing when field-effect transistor ("FET") U4, a TopSwitch device turns off.
  • Diode D6 and capacitor C2 rectify and filter the secondary of coupling transformer Tl. The output voltage is directly sensed by Zener diode VR2.
  • Diode Dl is a blocking diode that prevents loading of FET U4 control pan period.
  • U4 determines the auto-restart frequency during startup and output short circuit conditions, filters internal MOSFET gate charge currents flowing into the control pin, and provides loop compensation.
  • Regulator Ul is a basic fixed 5 V DC regulator with C3 filtering the output.
  • Cl and LI are all EMI filters.
  • the power supply 98 is electrically connected to a magnet/auto demag circuit 102 (node A to node B).
  • the magnet/auto demag circuit 102 controls the electromagnet assembly 34 so that the drill press 18 is selectively connected to the surface of the workpiece W.
  • the power supply 98 is also electrically connected to a motor control circuit 106 (partially illustrated) (node C to node D).
  • the motor control circuit 106 controls the operation of the motor 14.
  • the motor control circuit 106 includes the second switch means 74, in the illustrated construction, relays CR3 and CR4. The operation of the motor control circuit 106 and the second switch means is explained below in more detail.
  • the motor control circuit 106 is electrically connected to the phase delay feedback circuit 110.
  • the phase delay feedback circuit 110 monitors the speed of the motor 14 in an attempt to hold the speed of the motor 14 constant.
  • the phase delay feedback circuit 110 does not provide true "classical" speed feedback, i.e., does not directly monitor the speed of the motor 14.
  • the load point of the motor 14 is sensed via resistor R23, capacitor C8, resistor R24, transistor Q3 (Fig. 6A) and resistor R8 (Fig. 6A).
  • the conduction angle of the triac 70 is increased to compensate for the additional loading of the motor 14.
  • the phase delay feedback circuit 110 is electrically connected to a fire circuit 114.
  • the fire circuit 114 includes the first switch means 66, in the illustrated construction, triac Tl, and is operable to selectively disconnect the motor 14 from the power source 50. The operation of the fire circuit 114 and the first switch means 66 is explained below in more detail.
  • the fire circuit 114 is electrically connected to a fault detector circuit 118.
  • the fault detector circuit 118 generates a signal in both the operating and non-operating state of the motor 14.
  • the fault detection circuit 118 includes the trigger means 90, detects whether a braking condition exists for the drill press 18, and provides the trigger signal to trigger braking of the motor 14.
  • the fault detection circuit 118 is explained in more detail below.
  • the control means 86 includes a microprocessor or microcontroller 122.
  • the control means 86 and the microcontroller 122 are connected to the power supply 98 (connectors R22, see Figs. 5 A and 6A), the magnet/auto demag circuit 102 (see Fig.
  • control means 86 may include different and separate components performing the functions of the microcontroller 122, as described below.
  • the microcontroller 122 is operable and programmable to control braking of the motor 14.
  • the microcontroller 122 outputs the control signal to at least one of the first switch means 66 and the second switch means 74 to brake the motor
  • the microcontroller 122 is electrically connected with the first switch means 66 and with the second switch means 74. Also, to brake the motor 14, the microcontroller 122 is preferably operable to output the first control signal to the first switch means 66, to disconnect the motor 14 from the power source 50, and the second control signal to the second switch means 74, to connect the motor
  • control means 86 and the microcontroller 122 are explained below in more detail.
  • the control means 86 and the microcontroller 122 receive a current signal (node E to node F) representing the power cycle of the alternating current supplied by the power source 50. With this current signal, the microcontroller 122 is operable to begin braking operations at the selected brake start point on the power cycle, skip the selected number of power cycles during braking operations and ramp the voltage provided to regulate the braking force applied to the motor 14 and the stopping time of the motor 14, and stop braking operations at the selected brake end point on the power cycle (after a selected number of power cycles).
  • a current signal node E to node F
  • the control means 86 requires an input frequency of 45-70 Hz and works with stepped and square-wave waveforms that are commonly seen on inverters and alternators, alternate sources of power.
  • the microcontroller 122 senses the frequency and internally self-adjusts by looking at the current signal generated from resistors R22, R7, R21, and transistor Ql . Pin 3 on the microcontroller 122 becomes active only if an inverter is used as power. If DC power is applied to the control means 86, a fault condition will occur. If power to the control means 86 is lost for less than approximately .300 seconds, the electromagnet assembly 34 will stay in the state it was in before the power loss, and the motor 14 will turn off, if it was running.
  • the microcontroller 122 is also connected to a low/no current detector circuit 126 (node G to node H and node I to node J). As shown in Figs. 5B and 6B, the low/no current detector circuit 126 is also connected to the magnet/auto demag circuit 102 (connectors R45). The low/no current detector circuit 126 includes the trigger means 90 to trigger braking of the motor 14.
  • the microcontroller 122 is also electrically connected with a dial speed control circuit 130 (node K to node L and node M to node N).
  • the dial speed control circuit 130 operates to control the speed of the motor 14.
  • the dial speed control circuit 130 includes a potentiometer R33 and a divider network including R34 and R15.
  • the resistor divider network develops and supplies a speed control signal to the microcontroller 122.
  • the microcontroller 122 manipulates the supplied speed control signal and then controls the triac firing delay, which, in turn, varies the rotational speed of the motor 14.
  • the speed control resulting from the dial speed control circuit 130 is a digital implementation and is controlled by the microcontroller 122.
  • the digital implementation is self-calibrating and is thus less susceptible to tolerance stack- ups in the potentiometer R33 and the resistor divider network.
  • the drill press 18 is connected to the AC power source 50.
  • Relay CR2 opens (.400 seconds).
  • Relay CR1 closes to the demag position.
  • Triac T3 is fired starting on a negative AC half cycle, then two half cycles are skipped and the triac T3 is then fired again.
  • the triac T3 fires twelve times (.300 seconds) with decreasing amplitude on each pulse, creating a ringing situation which causes the demag function to operate more efficiently.
  • Relay CR2 opens.
  • Relay CR1 opens to the magnet position.
  • this fire circuit 114 is the firing circuit for the triac Tl which is controlled by the microcontroller 122. Firing pulses from the microcontroller cause the logic triac T2 to conduct, which in turn causes the power triac Tl to control current flow through the motor 14. The speed of the motor 14 increases as the microcontroller 122 delivers more firing pulses to triac T2. Electronic "Pre Burners" are generated by the microcontroller 122 at the maximum dial speed. This provides the maximum motor speed achievable from the triac control circuitry.
  • the motor control circuit 106 also includes a soft-start feature to increase the life of the motor 14 and to decrease stress on the overall system by ramping the motor 14 to full-on.
  • This soft-start feature ramps the motor speed from zero to full-on over a time period of .400 seconds and is facilitated by the microcontroller 122.
  • the direction of rotation of the armature (and the associated spindle assembly 38 and drill bit 42) is switched from forward to reverse with relays CR3 and CR4.
  • switch SW4 When switch SW4 is closed, the microcontroller 122 closes relay CR4, controls the triac, and soft-starts the motor 14 in the forward direction.
  • the microcontroller 122 closes relay CR3, controls the triac, and soft-starts the motor 14 in the reverse direction. If the motor 14 is already operating in one direction and a change in the direction of armature rotation is requested, a delay of .320 seconds is implemented to allow the motor speed to decrease before changing the direction of rotation of the armature.
  • the fault detection circuit consists of transistor Q9 and resistors R16, R38 and R20 and generates a signal to the microcontroller 122 in both the running and non-running state of the motor.
  • the microcontroller 122 verifies the integrity of relays CR3 and CR4 (welded contacts or non- functional contacts). This integrity check assures proper operation of the motor braking and control feature in the system. If, when the motor 14 is in a non-operating state, a signal is present at input P20 of the microcontroller 122, the microcontroller 122 will assume a fault condition due to shorted relay contacts of either relays CR3 or CR4.
  • the microcontroller 122 will assume a fault condition due to open relay contacts of either relays CR3 or CR4, or a shorted triac condition.
  • the fault detection circuit 118 also recognizes proper connection of the motor 14 to the control panel.
  • the electromagnetic holding force of the electromagnet assembly 34 decreases as the current through the magnet coil decreases.
  • the minimum voltage required to adequately secure the drill press 18 to a properly sized workpiece W during drilling operations is 90
  • resistor R45 senses the current flowing through the electromagnet assembly 34.
  • the voltage across the sensing resistor R45 is rectified by diode D4 and filtered by capacitor Cl 1. This voltage is then presented to the U3 comparators, which are referenced to different voltage levels derived from the +5 V DC bus.
  • Resistors R49 and R50 establish the reference for the low voltage condition
  • resistors R51 and R52 establish the reference for the no voltage condition. If any of the microswitches SW1-SW4 remain shorted for more than two seconds, the control panel will assume a fault condition. The motor 14 will not operate or will shut off and be braked if it was operating. The electromagnet assembly 34 will remain in its current state if this fault occurs.
  • the microcontroller 122 repetitively samples the microswitches SW1-SW4 to confirm an intended actuation.
  • flash There are two types of flashes that occur when a system fault is detected, a "blink" and a “flash”.
  • the flash is a 50% duty cycle of the LED and a blink is a less than 50% duty cycle of the LED. The following is a list of the conditions that cause system faults:
  • Flash bad electromagnet assembly 34 bad motor 14 bad electromagnet assembly connection bad motor connection failed or stuck switch Blink: low electromagnet assembly current DC power applied power frequency too high or too low
  • the microcontroller 122 outputs the first signal to the first switch means 66 to open the triac 70
  • the microcontroller 122 then outputs the second signal to the second switch means 74 (by closing both relays CR4 and CR3), to connect the motor 14 in a closed loop and to generate counter-EMF.
  • the switch 78 is closed to allow current through the closed loop.
  • the triac 82 is closed (forced into a conducting state) to allow current through the closed loop.
  • the control means 86 begins the braking operation at the selected brake start point in the power cycle of the alternating current from the power source 50.
  • the microcontroller 122 then outputs the first control signal and the second control signal on desired power cycles to pulse the first switch means 66 (the triac 70) and the second switch means 74 (the relay 78 or the triac 82) for the desired number of power cycles and at the desired voltage and phase angle depending on how quickly the motor 14 needs to stop (based on the type of braking condition).
  • the braking operation is preferably conducted for generally 16 power cycles to the selected braking end point.
  • the microcontroller 122 controls the braking function so that the voltage supplied to the closed loop is ramped, i.e., the supplied voltage increases on subsequent power cycles to the maximum voltage near the end of the braking operation. In this manner, the braking force applied to the motor 14 and the stopping time of the motor 14 is optimized to provide the necessary braking while minimizing any damage to the motor 14 and its components.
  • the microcontroller 122 stops outputting the first control signal and the second control signal so that the first switch means 66 and the second switch means 74 reset and return to the normal motor operating state. Specifically, the triac 70 is turned off, and the short across the armature is removed (the relay 78 is opened or the triac 82 turned on) before the motor 14 is again connected to the power source 50.
  • the power tool is a circular saw 18' including the electric motor 14 and the braking and control circuit 10 embodying the invention.
  • the circular saw 18' includes a housing 22' supported on a workpiece W by a shoe plate 26'.
  • the electric motor 14 is connected to a spindle assembly 38' to rotatably drive a tool element, such as a saw blade 42'. to cut the workpiece W.
  • An on/off switch 46' is operated by a trigger 48' and selectively connects the motor 14 to the power source 50.
  • the circular saw 18' includes sensing means 92' for sensing a safety- related braking condition.
  • the sensing means 92' is a "kick-back" or "binding" sensing means 94'.
  • Such a binding sensing means 94' senses a change in the position, velocity or acceleration of the power tool, such as the circular saw 18', resulting from the tool element, such as the saw blade 42', binding on the workpiece W. Such binding causes the circular saw to jerk or kick-back. If this occurs, the binding sensing means 94' outputs the trigger signal, a "binding" signal, to trigger braking of the motor 14.
  • the circular saw 18' also includes trigger means 90' to trigger braking for a productivity-related braking condition.
  • the trigger means 90' includes the on/off switch 46'.
  • the trigger signal an "off signal, is output to the control means 86' to trigger braking of the motor 14.
  • the microcontroller 122 operates as described above to brake the motor 14 in the circular saw 18'.
  • the control means 86 When the trigger means 90', binding sensing means 94' or on/off switch 46', outputs the trigger signal to the control means 86, the control means 86 outputs the first control signal to the first switch means 66 and the second control signal to the second switch means 74 to brake the motor 14.
  • the microcontroller 122 is programmed to brake the motor 14 more quickly (i.e., the motor 14 is braked in approximately 1 sec.) when the "binding" signal is received - a safety-related braking condition.
  • the motor 14 is braked more slowly (relative to the safety-related braking condition, i.e., the motor 14 is braked in approximately 2 sec.) because this condition occurs more frequently, i.e., each time the operator releases the trigger 48'.

Abstract

A power tool (18), including a braking and control circuit (10). The braking and control circuit (10) includes a microcontroller-based control means circuit. The microcontroller assures control of switch means, such as triacs, switches and relays, and ensures that braking is effectuated regardless of the phase in the power cycle of the alternating current. Also, the microcontroller is programmable so that the braking and control circuit accommodates different braking conditions for different power tools and accommodates combinations of braking conditions for the same power tool. Further, the microcontroller is programmable to configure the braking and control circuit so that the braking force applied to the motor and the stopping time of the motor are regulated and adjustable. This may be accomplished by outputting a control signal so that the switch means skips cycles in the alternating current or by otherwise adjusting the operation of the switch means.

Description

BRAKING AND CONTROL CIRCUIT FOR ELECTRIC POWER TOOLS
RELATED APPLICATIONS This application claims the benefit of prior filed co-pending provisional patent application, serial number 60/088,176, filed on June 5, 1998.
BACKGROUND OF THE INVENTION
The invention relates to motors for electric power tools. More particularly, the invention relates to a braking and control circuit for such a motor.
AC universal motors have commonly been used in electric power tools, such as drills, circular saws and other types of equipment. Generally, such motors provide a high-power, light-weight power source for these power tools. Typically, the universal motor includes a housing, a stator assembly having a run coil, and a rotatable shaft or arbor having an armature mounted thereon. Current flows through the run coil and creates a magnetic field which interacts with the magnetic field of the armature. This interaction rotatably drives the arbor. To drive a tool element, such as a drill bit or a saw blade, the tool element may be mounted directly on the arbor or be coupled to the arbor by a gear transmission or the like. Conventional universal motors tend to coast, i.e., the arbor continues to rotate for some time after the motor is disconnected from the electrical power source. This coasting generally results from the rotational momentum of the arbor, the transmission, and the tool attachments. To prevent or limit coasting, the motor often includes a braking arrangement. A typical braking arrangement includes a dynamic braking circuit which relies on passive generation of free wheeling current in the stator to produce a counter-electromagnetic force (counter-EMF) to stop the rotation of the arbor and to, thereby, brake the motor. One such dynamic braking circuit is shown and described in U.S. Patent No. 5,294,874.
SUMMARY OF THE INVENTION
One problem with existing braking arrangements, such as the above- described dynamic braking circuit is that, if the motor is disconnected from the power source and reconnected in a closed loop at a point or phase in the power cycle of the alternating current at which there is little or no voltage, the braking circuit will not generate the necessary counter-EMF to brake the arbor.
Another problem with existing braking arrangements is that the conditions in which braking required are different for different power tools. Therefore, for different power tools, the braking arrangement must be configured to accommodate the different braking conditions. For example, in some power tools, such as portable drill presses, braking is required when the drill press accidentally disconnects from the workpiece ("breakaway") during drilling operations, a safety-related braking condition. In other power tools, such as circular saws, braking is required when the tool element, such as the saw blade, binds on the workpiece and the power tool is jerked or kicks back, another safety-related braking condition. Further, in some power tools, braking may be desired each time the operator releases the trigger so that the blade stops quickly and the operator can move to the next drilling or cutting operation, a productivity-related braking condition.
Yet another problem with existing braking arrangements is that, if the motor is braked too quickly, the arcing occurs between the rotor and the commutator brushes, thereby reducing the life of the motor and the brushes. This arcing can be especially problematic if the motor is braked frequently, i.e., productivity -related braking. However, if the motor is not braked quickly enough, the braking can be ineffective, i.e., in a safety-related braking condition.
The present invention provides a power tool including a braking and control circuit that alleviates the problems with existing braking arrangements. The present invention provides a braking and control circuit including a microcontroller-based control circuit. The microcontroller assures control of switch means, such as triacs, switches and relays, and ensures that braking is effectuated regardless of the phase in the power cycle of the alternating current. Also, the microcontroller is programmable so that the braking and control circuit accommodates different braking conditions for different power tools and accommodates combinations of braking conditions for the same power tool. Further, the microcontroller is programmable to configure the braking and control circuit so that the braking force applied to the motor and the stopping time of the motor are regulated and adjustable. This may be accomplished by outputting a control signal so that the switch means skips cycles in the alternating current or by otherwise adjusting the operation of the switch means. The present invention provides a braking and control circuit for an electric motor, the motor including a housing, a stator supported by the housing, and a shaft rotatably supported by the housing, wherein the stator is selectively connected with a power source to rotatably drive the shaft. The braking and control circuit comprises first switch means for selectively disconnecting the motor from the power source, second switch means electrically connected across the motor; and control means electrically connected with at least one of the first switch and the second switch means and operable to output a control signal to control the at least one of the first switch means and the second switch means to brake the motor. The control means is preferably electrically connected with the first switch means and with the second switch means. Preferably, the control means outputs a first control signal to the first switch means so that the first switch means disconnects the motor from the power source. At approximately the same time or shortly thereafter, the control means also preferably outputs a second control signal to the second switch means so that the second switch means connects the motor in a closed loop and generates a counter-electromagnetic force to brake the motor. Also, the control means preferably selectively outputs the first control signal to the first switch means so that the first switch means selectively disconnects and reconnects the motor and the power source and selectively outputs the second control signal to the second switch means so that the second switch means selectively connects and disconnects the motor in a closed loop to regulate a braking force applied to brake the motor.
The control means preferably includes a microcontroller operable to output the control signal and programmable to optimize braking of the motor. Preferably, the microcontroller is programmable to change the stopping time of the motor and to change the braking force applied to the motor. Also, the microcontroller is preferably programmable to output the control signal on selected ones of the plurality of cycles of the alternating current to control the first switch means and the second switch means on the selected ones of the plurality of cycles to brake the motor and to output the control signal at a point in the alternating current so that a desired voltage is supplied to brake the motor. The present invention also provides a power tool comprising a housing, an electric motor, and braking and control means for controlling and braking the motor. The braking and control means includes switch means electrically connected with the motor and control means electrically connected with the switch means and operable to output a control signal to control the switch means to brake the motor.
Preferably, the control means includes a microcontroller operable to output the control signal. The switch means are preferably operable to selectively disconnect the motor from the power source, and the braking and control means preferably further includes second switch means electrically connected with the motor and operable to selectively connect the motor in a closed loop. The microcontroller preferably outputs a first control signal to the first switch means so that the first switch means disconnects the motor from the power source and outputs a second control signal to the second switch means so that the second switch means connects the motor in a closed loop and generates a counter- electromagnetic force to brake the motor.
Preferably, the microcontroller is programmable to configure the braking and control means for a selected power tool and for a selected braking condition. The power tool further preferably comprises trigger means electrically connected with the control means and operable to trigger braking of the motor when a braking condition for the power tool exists. The trigger means outputs a trigger signal to the control means so that the microcontroller outputs the control signal to the switch means to brake the motor. The trigger means may include the on/off switch or may include sensing means for sensing a safety-related braking condition, such as "breakaway" of a drill press from a workpiece or "binding" of a tool element, i.e., a saw blade, on the workpiece. One advantage of the present invention is that the braking and control circuit operates to provide the necessary braking force regardless of the phase of the alternating current being supplied to the motor.
Another advantage of the present invention is that the braking and control circuit is programmable to accommodate different braking conditions for different power tools and accommodates combinations of braking conditions in the same power tool.
Yet another advantage of the present invention is that the braking force applied to the arbor may be controlled and adjusted so that the arbor may be stopped more or less quickly.
Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description, claims and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a perspective view of a power tool and a braking and control circuit embodying the invention.
Fig. 2 is a schematic illustration of an electric motor and the braking and control circuit.
Fig. 3 is a schematic illustration of an alternative embodiment of the motor and the braking and control circuit.
Figs. 4A and 4B are schematic diagrams of portions of the motor and the braking and control circuit.
Figs. 5 A, 5B and 5C are detailed schematic diagrams of the portions of the motor and the braking and control circuit illustrated in Fig. 4A. Figs. 6A and 6B are detailed schematic diagrams of the portions of the motor and the braking and control circuit illustrated in Fig. 4B.
Fig. 7 is a perspective view of an alternative power tool and a braking and control circuit embodying the invention.
Before one embodiment of the invention is explained in detail, it is to be understood that the invention is not limited in its application to the details of the construction and the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or carried out in various ways. Also, it is understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Figs. 1-3 illustrate a power tool including a braking and control circuit 10 (schematically illustrated in Figs. 2-3) embodying the invention and for braking and controlling an electric motor 14 (schematically illustrated in Figs. 2-3). In the illustrated construction, the power tool (see Fig. 1) is a portable drill press 18 including a housing 22 supported by a base 26. The base 26 includes a force applying element 30 (partially shown) for connecting the base 26 to the surface of a workpiece W. In the illustrated construction, the force applying element 30 is an electromagnet assembly 34 (partially shown) for attaching the drill press 18 to a ferro-magnetic workpiece W. In other constructions (not shown), the force applying element 30 may be a permanent magnet, a vacuum pad, or a clamp mechanism.
The electric motor 14 is supported by the housing 22 and is operable to rotatably drive a spindle assembly 38. The spindle assembly 38 is connected to a tool element, such as a drill bit 42, to drill through or cut the workpiece W. An on/off switch 46 is operated by a trigger or button 48 and selectively connects the electric motor 14 to a power source 50.
The motor 14 is generally conventional and, as shown in Figs. 2-3, includes a rotating arbor or shaft 54 on which an armature (not shown) is mounted. The armature includes armature windings (not shown) for generating an armature field. Electricity is conducted to the rotating armature by a pair of commutator brushes 58. The motor 14 also includes a stator assembly (partially shown) including run winding means 62 for generating a magnetic field for rotating the armature and the arbor 54. The braking and control circuit 10 includes (see Figs. 2-3) first switch means 66 connected in series with the motor 14 and operable to selectively disconnect the motor 14 from the power source 50 to brake the motor 14. In the illustrated construction, the first switch means 66 includes a triac 70 which is turned off to disconnect the motor 14 from the power source 50. However, in other constructions (not shown), the first switch means 66 may be any type of switch means which is operable to disconnect the motor 14 from the power source 50.
The braking and control circuit 10 also includes (see Figs. 2-3) second switch means 74 connected in parallel with the motor 14 across the armature. The second switch means is operable to connect the motor 14 in a closed loop and to generate counter-electromagnetic force (counter-EMF) to brake the motor 14. In the construction illustrated in Fig. 2, the second switch means 74 includes a mechanical switch 78 which is normally open and which is closed to connect the motor 14 in the closed loop. In the alternative construction illustrated in Fig. 3, the second switch means includes a solid state switch, such as a triac 82 or other solid state device (not shown). The triac 82 is normally turned off and is turned on to connect the motor in the closed loop.
In addition, the braking and control circuit 10 includes (see Figs. 2-3) a control circuit or control means 86 electrically connected to at least one of the first switch means 66 and the second switch means 74 and operable to control at least one of the first switch means 66 on the second switch means 74 to brake the motor
14. In the preferred embodiment, the control means 86 is electrically connected to and controls both the first switch means 66 and the second switch means 74 to brake the motor 14. To brake and control the motor 14, the control means 86 selectively outputs a first control signal to control the first switch means 66, to disconnect the motor 14 from the power source 50, and selectively outputs a second control signal to control the second switch means 74, to connect the motor 14 in a closed loop and to generate counter-EMF.
The braking and control circuit 10 further includes (see Figs. 2-3) trigger means 90 electrically connected to the control means 86 and operable to trigger braking of the motor 14. When a braking condition occurs, the trigger means 90 outputs a trigger signal to the control means 86 to trigger braking of the motor 14. There are two general categories of braking conditions, i.e., conditions in which braking of the motor 14 is required or desired. The first category includes safety-related braking conditions. In this category, braking of the motor 14 is required if an unsafe operating condition for the power tool arises. For example, such a safety-related braking condition occurs if the force applying element 30 of the drill press 18 accidentally disconnects from the workpiece W during drilling operations ("breakaway"). Another safety-related braking condition occurs when the tool element, such as a drill bit or a saw blade, binds on the workpiece W causing the to jerk or kick back. In either of these safety-related braking conditions, braking of the motor 14 is required to prevent injury to the operator or damage to the equipment or workpiece W. Further, in such safety-related braking conditions, braking of the motor 14 is accomplished as quickly as possible without damaging the components of the motor 14 (i.e., the motor 14 is braked in 1 sec). The other category of braking conditions includes productivity-related braking conditions. In this category, braking of the motor 14 is desired to stop the associated tool element so that the operator can move to the next drilling or cutting operation more quickly. The operator does not have to wait for the tool element to coast to a stop before continuing operations. Such productivity-related braking can be accomplished more slowly than the safety-related braking to reduce the wear on the motor (i.e., the motor 14 is braked in 2 sec). This is important because productivity-related braking occurs more frequently than safety-related braking. Generally, a productivity-related braking condition results when the operator releases the trigger and on/off switch to disconnect the motor from the power source. In the construction illustrated in Fig. 2, the trigger means 90 includes sensing means 92 for sensing a safety-related braking condition. Specifically, the drill press 18 includes a breakaway sensor 94 for sensing breakaway of the base 26 and the electromagnet assembly 34 from the workpiece W. Such a breakaway sensor 94 may be any type of sensing means such as a mechanical sensor, i.e., a depressible plunger (not shown), an electrical sensor, or a magnetic sensor, i.e., a
Hall Effect sensor, capable of sensing relative movement of the drill press 18 and the workpiece W or "breakaway" of the base 26 from the workpiece W. In this construction, if the drill press 18 breaks away from the workpiece W, the breakaway sensor 94 outputs the trigger signal, a "breakaway" signal, to the control means 86 to trigger braking of the motor 14.
In the construction illustrated in Fig. 3, the trigger means 90 triggers braking for a productivity-related braking condition. In the illustrated construction, the trigger means 90 includes the on/off switch 46. When the operator releases the trigger 48, so that the on/off switch 46 disconnects the motor 14 from the power source 50, the trigger signal, an "off signal, is output to the control means 86 to trigger braking of the motor 14. It should be understood that, in other constructions, the trigger means 90 may trigger braking of the motor 14 for both a safety-related braking condition and a productivity-related braking condition and may, therefore, include combinations of components to trigger braking in both categories of braking conditions. Further, it should be understood that, in yet other constructions, the trigger means 90 may include different types of sensing means 92 for sensing different types of safety-related braking conditions.
As explained below in more detail, the control means 86 receives an electrical signal representing the alternating current provided to the motor 14 by the power source 50. The electrical signal may be a current or a voltage waveform, though, in the preferred embodiment, the electrical signal is a current signal. The current signal is used to determine the present state of the alternating current provided to the motor 14 by the power source 50. After the trigger means 90 has output the trigger signal to the control means 86, the control means 86 outputs the control signals at a selected brake starting point or phase angle of the alternating current provided by the power source 50. As a result, braking is initiated when there is the desired voltage to generate the necessary counter-EMF to brake the motor 14, and braking is not generally initiated at points in the power cycle when there is little or no voltage from the power source 50, e.g., at a "zero- crossing" point of the alternating current. As explained below in more detail, the control means 86 includes components which are programmable to optimize the braking of the motor 14. The components of the control means 86 are programmable so that the control means 86 outputs the control signals on selected power cycles and at selected phase angles and voltages of the alternating current from the power source 50. In this manner, the control means 86 can vary the braking force applied to the motor 14. Further, in this manner, the control means 86 can vary the stopping time of the motor 14 during braking.
Figs. 4A-B, 5A-C and 6A-B are schematic diagrams of portions of the motor 14 and the braking and control circuit 10 for use with the drill press 18. As shown in Figs. 4A and 5 A, the motor 14 includes a power supply 98 which is connected with the power source 50. In the construction illustrated in Fig. 5A, the power supply 98 is in a non-isolated fly -back configuration. The power supply 98 creates a 12 V DC and a 5 V DC output from a 90 V AC to a 255 V AC input. U4 is the controller for the power supply 98 and is a three-terminal, off-line PWM switch. Capacitor C4 charges to the peak of the AC mains voltage of the power source 50. Half-wave rectification by diode D5 converts the AC voltage to DC voltage but generates a ripple voltage on capacitor C4. Zener diode VR1 and diode D2 clamp voltage spikes and reduce drain voltage ringing when field-effect transistor ("FET") U4, a TopSwitch device turns off. Diode D6 and capacitor C2 rectify and filter the secondary of coupling transformer Tl. The output voltage is directly sensed by Zener diode VR2. Diode Dl is a blocking diode that prevents loading of FET U4 control pan period. Capacitor C14 on the control pin of FET
U4 determines the auto-restart frequency during startup and output short circuit conditions, filters internal MOSFET gate charge currents flowing into the control pin, and provides loop compensation. Regulator Ul is a basic fixed 5 V DC regulator with C3 filtering the output. Cl and LI are all EMI filters. As shown in Fig. 4A, 5A and 5B, the power supply 98 is electrically connected to a magnet/auto demag circuit 102 (node A to node B). The magnet/auto demag circuit 102 controls the electromagnet assembly 34 so that the drill press 18 is selectively connected to the surface of the workpiece W.
As shown in Figs. 4A, 5A and 5C, the power supply 98 is also electrically connected to a motor control circuit 106 (partially illustrated) (node C to node D).
The motor control circuit 106 controls the operation of the motor 14. The motor control circuit 106 includes the second switch means 74, in the illustrated construction, relays CR3 and CR4. The operation of the motor control circuit 106 and the second switch means is explained below in more detail.
As shown in Figs. 4A and 5C, the motor control circuit 106 is electrically connected to the phase delay feedback circuit 110. The phase delay feedback circuit 110 monitors the speed of the motor 14 in an attempt to hold the speed of the motor 14 constant. In the illustrated construction, the phase delay feedback circuit 110 does not provide true "classical" speed feedback, i.e., does not directly monitor the speed of the motor 14. Instead, in the phase delay feedback circuit 110, the load point of the motor 14 is sensed via resistor R23, capacitor C8, resistor R24, transistor Q3 (Fig. 6A) and resistor R8 (Fig. 6A). When an increase in the loading of the motor 14 is detected, the conduction angle of the triac 70 is increased to compensate for the additional loading of the motor 14.
As shown in Figs. 4A and 5C, the phase delay feedback circuit 110 is electrically connected to a fire circuit 114. The fire circuit 114 includes the first switch means 66, in the illustrated construction, triac Tl, and is operable to selectively disconnect the motor 14 from the power source 50. The operation of the fire circuit 114 and the first switch means 66 is explained below in more detail.
As shown in Figs. 4A and 5C, the fire circuit 114 is electrically connected to a fault detector circuit 118. The fault detector circuit 118 generates a signal in both the operating and non-operating state of the motor 14. The fault detection circuit 118 includes the trigger means 90, detects whether a braking condition exists for the drill press 18, and provides the trigger signal to trigger braking of the motor 14. The fault detection circuit 118 is explained in more detail below. As shown in Figs. 4B and 6 A, the control means 86 includes a microprocessor or microcontroller 122. The control means 86 and the microcontroller 122 are connected to the power supply 98 (connectors R22, see Figs. 5 A and 6A), the magnet/auto demag circuit 102 (see Fig. 6 A and Fig. 5 A (connectors R37)) , the motor control circuit 106 (Fig. 6A), the phase delay feedback circuit 110 (Fig. 6A), the fire circuit 114 (connectors R36, see Figs. 5C and 6A) and the fault detector circuit 118 (Fig. 6A). It should be understood that, in other constructions (not shown), the control means 86 may include different and separate components performing the functions of the microcontroller 122, as described below.
The microcontroller 122 is operable and programmable to control braking of the motor 14. The microcontroller 122 outputs the control signal to at least one of the first switch means 66 and the second switch means 74 to brake the motor
14. Preferably, the microcontroller 122 is electrically connected with the first switch means 66 and with the second switch means 74. Also, to brake the motor 14, the microcontroller 122 is preferably operable to output the first control signal to the first switch means 66, to disconnect the motor 14 from the power source 50, and the second control signal to the second switch means 74, to connect the motor
14 in a closed loop and to generate counter-EMF. The operation of the control means 86 and the microcontroller 122 is explained below in more detail.
The control means 86 and the microcontroller 122 receive a current signal (node E to node F) representing the power cycle of the alternating current supplied by the power source 50. With this current signal, the microcontroller 122 is operable to begin braking operations at the selected brake start point on the power cycle, skip the selected number of power cycles during braking operations and ramp the voltage provided to regulate the braking force applied to the motor 14 and the stopping time of the motor 14, and stop braking operations at the selected brake end point on the power cycle (after a selected number of power cycles).
The control means 86 requires an input frequency of 45-70 Hz and works with stepped and square-wave waveforms that are commonly seen on inverters and alternators, alternate sources of power. The microcontroller 122 senses the frequency and internally self-adjusts by looking at the current signal generated from resistors R22, R7, R21, and transistor Ql . Pin 3 on the microcontroller 122 becomes active only if an inverter is used as power. If DC power is applied to the control means 86, a fault condition will occur. If power to the control means 86 is lost for less than approximately .300 seconds, the electromagnet assembly 34 will stay in the state it was in before the power loss, and the motor 14 will turn off, if it was running. If power is lost for greater than approximately .300 seconds, the motor 14 and electromagnet assembly 34 will turn off. At no point will the motor 14 ever operate while the electromagnet assembly 34 is not energized. As shown in Figs. 4B, 6A and 6B, the microcontroller 122 is also connected to a low/no current detector circuit 126 (node G to node H and node I to node J). As shown in Figs. 5B and 6B, the low/no current detector circuit 126 is also connected to the magnet/auto demag circuit 102 (connectors R45). The low/no current detector circuit 126 includes the trigger means 90 to trigger braking of the motor 14.
As shown in Figs. 4B, 6A and 6B, the microcontroller 122 is also electrically connected with a dial speed control circuit 130 (node K to node L and node M to node N). The dial speed control circuit 130 operates to control the speed of the motor 14. In the illustrated construction, to control the speed of the motor 14, the dial speed control circuit 130 includes a potentiometer R33 and a divider network including R34 and R15. The resistor divider network develops and supplies a speed control signal to the microcontroller 122. The microcontroller 122 manipulates the supplied speed control signal and then controls the triac firing delay, which, in turn, varies the rotational speed of the motor 14. The speed control resulting from the dial speed control circuit 130 is a digital implementation and is controlled by the microcontroller 122. The digital implementation is self-calibrating and is thus less susceptible to tolerance stack- ups in the potentiometer R33 and the resistor divider network. In operation, the drill press 18 is connected to the AC power source 50.
Referring now to the magnet/auto demag circuit 102, when switch SW3 is closed, the red light emitting diode ("LED") illuminates and relay CR2 closes; this powers up the full wave bridge (consisting of diodes D7, D8, D9, and D10). When switch SW3 is closed while the electromagnet assembly 34 is energized and the motor 14 is not operating, the LED turns off, and the microcontroller 122 goes through the following demag sequence:
1. Relay CR2 opens (.400 seconds).
2. Relay CR1 closes to the demag position.
3. Relay CR2 closes. 4. Triac T3 is fired starting on a negative AC half cycle, then two half cycles are skipped and the triac T3 is then fired again. The triac T3 fires twelve times (.300 seconds) with decreasing amplitude on each pulse, creating a ringing situation which causes the demag function to operate more efficiently.
5. Relay CR2 opens.
6. Relay CR1 opens to the magnet position. Referring now to the fire circuit 114, this fire circuit 114 is the firing circuit for the triac Tl which is controlled by the microcontroller 122. Firing pulses from the microcontroller cause the logic triac T2 to conduct, which in turn causes the power triac Tl to control current flow through the motor 14. The speed of the motor 14 increases as the microcontroller 122 delivers more firing pulses to triac T2. Electronic "Pre Burners" are generated by the microcontroller 122 at the maximum dial speed. This provides the maximum motor speed achievable from the triac control circuitry.
The motor control circuit 106 also includes a soft-start feature to increase the life of the motor 14 and to decrease stress on the overall system by ramping the motor 14 to full-on. This soft-start feature ramps the motor speed from zero to full-on over a time period of .400 seconds and is facilitated by the microcontroller 122. The direction of rotation of the armature (and the associated spindle assembly 38 and drill bit 42) is switched from forward to reverse with relays CR3 and CR4. When switch SW4 is closed, the microcontroller 122 closes relay CR4, controls the triac, and soft-starts the motor 14 in the forward direction. When switch SW1 is closed the microcontroller 122 closes relay CR3, controls the triac, and soft-starts the motor 14 in the reverse direction. If the motor 14 is already operating in one direction and a change in the direction of armature rotation is requested, a delay of .320 seconds is implemented to allow the motor speed to decrease before changing the direction of rotation of the armature.
The fault detection circuit consists of transistor Q9 and resistors R16, R38 and R20 and generates a signal to the microcontroller 122 in both the running and non-running state of the motor. Before powering the motor 14, the microcontroller 122 verifies the integrity of relays CR3 and CR4 (welded contacts or non- functional contacts). This integrity check assures proper operation of the motor braking and control feature in the system. If, when the motor 14 is in a non-operating state, a signal is present at input P20 of the microcontroller 122, the microcontroller 122 will assume a fault condition due to shorted relay contacts of either relays CR3 or CR4. If, when the motor 14 is in an operating state, a signal is present at input P20 of the microcontroller 122, the microcontroller 122 will assume a fault condition due to open relay contacts of either relays CR3 or CR4, or a shorted triac condition. The fault detection circuit 118 also recognizes proper connection of the motor 14 to the control panel.
Referring to the low/no current detection circuit 126, the electromagnetic holding force of the electromagnet assembly 34 decreases as the current through the magnet coil decreases. The minimum voltage required to adequately secure the drill press 18 to a properly sized workpiece W during drilling operations is 90
V AC. If the power source 50 does not reach at least 90 V AC within five seconds of application, operation of the motor 14 will be disabled and the control panel will signal a fault condition. The five second window accounts for the time required for alternate sources of power to switch from an idle condition to a stabilized power source. If, while the control panel is operational, the input voltage drops below approximately 90 V AC, the motor 14 will not operate, and the panel will signal a fault condition until proper voltage levels are reestablished. If the motor 14 is operating and the input voltage level drops below 90 V AC, motor operation will cease and the panel will signal a fault condition. The fault condition will exist until proper voltage levels are re-established. The electromagnet assembly 34 will continue to operate during this condition unless the user presses the magnet on/off button. If current through the electromagnet assembly 34 is interrupted (i.e., broken magnet wire) while the motor 14 is operating, the control panel will trigger braking of the motor 14 and assume a fault condition, as explained below in more detail.
In the illustrated construction, resistor R45 senses the current flowing through the electromagnet assembly 34. The voltage across the sensing resistor R45 is rectified by diode D4 and filtered by capacitor Cl 1. This voltage is then presented to the U3 comparators, which are referenced to different voltage levels derived from the +5 V DC bus. Resistors R49 and R50 establish the reference for the low voltage condition, and resistors R51 and R52 establish the reference for the no voltage condition. If any of the microswitches SW1-SW4 remain shorted for more than two seconds, the control panel will assume a fault condition. The motor 14 will not operate or will shut off and be braked if it was operating. The electromagnet assembly 34 will remain in its current state if this fault occurs. In order to minimize the effects of vibration, the microcontroller 122 repetitively samples the microswitches SW1-SW4 to confirm an intended actuation.
There are two types of flashes that occur when a system fault is detected, a "blink" and a "flash". The flash is a 50% duty cycle of the LED and a blink is a less than 50% duty cycle of the LED. The following is a list of the conditions that cause system faults:
Flash: bad electromagnet assembly 34 bad motor 14 bad electromagnet assembly connection bad motor connection failed or stuck switch Blink: low electromagnet assembly current DC power applied power frequency too high or too low
If a system fault occurs, a more detailed explanation of the failure can be seen from the output signal on pin 1 of the microcontroller 122.
To brake the motor 14, in the illustrated construction, when the trigger means 90 outputs the trigger signal to the control means 86, the microcontroller 122 outputs the first signal to the first switch means 66 to open the triac 70
(forcing the triac 70 into a non-conducting state), to disconnect the motor 14 from the power source 50. The microcontroller 122 then outputs the second signal to the second switch means 74 (by closing both relays CR4 and CR3), to connect the motor 14 in a closed loop and to generate counter-EMF. In the construction illustrated in Fig. 2, the switch 78 is closed to allow current through the closed loop. In the construction illustrated in Fig. 3, the triac 82 is closed (forced into a conducting state) to allow current through the closed loop. As discussed above, the control means 86 begins the braking operation at the selected brake start point in the power cycle of the alternating current from the power source 50. The microcontroller 122 then outputs the first control signal and the second control signal on desired power cycles to pulse the first switch means 66 (the triac 70) and the second switch means 74 (the relay 78 or the triac 82) for the desired number of power cycles and at the desired voltage and phase angle depending on how quickly the motor 14 needs to stop (based on the type of braking condition).
In the preferred embodiment, two AC half-cycles are skipped between successive motor braking cycles. Also, the braking operation is preferably conducted for generally 16 power cycles to the selected braking end point. Further, in the preferred embodiment, the microcontroller 122 controls the braking function so that the voltage supplied to the closed loop is ramped, i.e., the supplied voltage increases on subsequent power cycles to the maximum voltage near the end of the braking operation. In this manner, the braking force applied to the motor 14 and the stopping time of the motor 14 is optimized to provide the necessary braking while minimizing any damage to the motor 14 and its components.
Once braking is completed, the microcontroller 122 stops outputting the first control signal and the second control signal so that the first switch means 66 and the second switch means 74 reset and return to the normal motor operating state. Specifically, the triac 70 is turned off, and the short across the armature is removed (the relay 78 is opened or the triac 82 turned on) before the motor 14 is again connected to the power source 50. In an alternative construction illustrated in Fig. 7, the power tool is a circular saw 18' including the electric motor 14 and the braking and control circuit 10 embodying the invention. In this construction, the circular saw 18' includes a housing 22' supported on a workpiece W by a shoe plate 26'. The electric motor 14 is connected to a spindle assembly 38' to rotatably drive a tool element, such as a saw blade 42'. to cut the workpiece W. An on/off switch 46' is operated by a trigger 48' and selectively connects the motor 14 to the power source 50. The circular saw 18' includes sensing means 92' for sensing a safety- related braking condition. The sensing means 92' is a "kick-back" or "binding" sensing means 94'. Such a binding sensing means 94' senses a change in the position, velocity or acceleration of the power tool, such as the circular saw 18', resulting from the tool element, such as the saw blade 42', binding on the workpiece W. Such binding causes the circular saw to jerk or kick-back. If this occurs, the binding sensing means 94' outputs the trigger signal, a "binding" signal, to trigger braking of the motor 14.
The circular saw 18' also includes trigger means 90' to trigger braking for a productivity-related braking condition. In the illustrated construction, the trigger means 90' includes the on/off switch 46'. When the operator releases the trigger 48', so that the on/off switch 46' disconnects the motor 14 from the power source 50, the trigger signal, an "off signal, is output to the control means 86' to trigger braking of the motor 14. Generally, the microcontroller 122 operates as described above to brake the motor 14 in the circular saw 18'. When the trigger means 90', binding sensing means 94' or on/off switch 46', outputs the trigger signal to the control means 86, the control means 86 outputs the first control signal to the first switch means 66 and the second control signal to the second switch means 74 to brake the motor 14.
The microcontroller 122 is programmed to brake the motor 14 more quickly (i.e., the motor 14 is braked in approximately 1 sec.) when the "binding" signal is received - a safety-related braking condition. When the "off signal is received - a productivity-related braking condition, the motor 14 is braked more slowly (relative to the safety-related braking condition, i.e., the motor 14 is braked in approximately 2 sec.) because this condition occurs more frequently, i.e., each time the operator releases the trigger 48'.
Various features of the invention are set forth in the following claims.

Claims

CLAIMSWe claim:
1. A braking and control circuit for an electric motor, the motor including a housing, a stator supported by the housing, and a shaft rotatably supported by the housing, wherein the stator is selectively connected with a power source to rotatably drive the shaft, said braking and control circuit comprising: a first switch for selectively disconnecting the motor from the power source; a second switch electrically connected in parallel with the motor; and a control circuit electrically connected to at least one of said first switch and said second switch and operable to output a control signal to control said at least one of said first switch and said second switch to brake the motor.
2. The braking and control circuit as set forth in Claim 1 wherein said control circuit is electrically connected with said first switch and with said second switch, and wherein said control circuit outputs a first control signal to said first switch and outputs a second control signal to said second switch to brake the motor.
3. The braking and control circuit as set forth in Claim 1 wherein said control circuit outputs the control signal to said first switch to disconnect the motor from the power source to brake the motor.
4. The braking and control circuit as set forth in Claim 1 wherein said control circuit outputs the control signal to said second switch to connect the motor in a closed loop.
5. The braking and control circuit as set forth in Claim 1 wherein said control circuit outputs the control signal to said second switch to generate a counter-electromagnetic force to brake the motor.
6. The braking and control circuit as set forth in Claim 1 wherein said control circuit is electrically connected with said first switch and with said second switch, and wherein said control circuit outputs a first control signal to said first switch so that said first switch disconnects the motor from the power source and outputs a second control signal to said second switch so that said second switch connects the motor in a closed loop and generates a counter-electromagnetic force to brake the motor.
7. The braking and control circuit as set forth in Claim 6 wherein said control circuit selectively outputs the first control signal to said first switch so that said first switch selectively disconnects and reconnects the motor and the power source and selectively outputs the second control signal to said second switch so that said second switch selectively connects and disconnects the motor in a closed loop to regulate a braking force applied to brake the motor.
8. The braking and control circuit as set forth in Claim 1 wherein said control circuit includes a microcontroller electrically connected with at least one of said first switch and said second switch, said microcontroller being operable to output the control signal, and wherein said microcontroller is programmable to optimize braking of the motor.
9. The braking and control circuit as set forth in Claim 8 wherein the motor is braked in a stopping time, and wherein said microcontroller is programmable to change the stopping time of the motor.
10. The braking and control circuit as set forth in Claim 8 wherein the motor is braked with a braking force, and wherein said microcontroller is programmable to change the braking force applied to the motor.
11. The braking and control circuit as set forth in Claim 8 wherein the power source is an alternating current power source, wherein said control circuit receives a current signal representing the alternating current, and wherein said microcontroller is programmable to select a braking start point corresponding to a start point phase angle of the alternating current, said microcontroller outputting the control signal when the alternating current is in the start point phase angle.
12. The braking and control circuit as set forth in Claim 11 wherein the alternating current has a plurality of cycles, and wherein said microcontroller is programmable to select a braking end point corresponding to an end point phase angle of the alternating current, the end point phase angle being a selected number of cycles after the start point phase angle, said microcontroller ceasing to output the control signal when the alternating current is in the end point phase angle.
13. The braking and control circuit as set forth in Claim 11 wherein the alternating current has a plurality of cycles, and wherein said microcontroller outputs the control signal on selected ones of the plurality of cycles to control said at least one of said first switch and said second switch on the selected ones of the plurality of cycles to brake the motor.
14. The braking and control circuit as set forth in Claim 8 wherein the power source is an alternating cuπent power source, wherein said control circuit receives a current signal representing a voltage of the alternating current, and wherein said microcontroller is programmable to output the control signal at a point in the alternating current so that a desired voltage is supplied to brake the motor.
15. The braking and control circuit as set forth in Claim 14 wherein the alternating current has a first cycle and a second cycle, and wherein said microcontroller is programmable to output the control signal at a point in the first cycle so that a first voltage is supplied to brake the motor and to output the control signal at a point in the second cycle so that a second voltage is supplied to brake the motor.
16. The braking and control circuit as set forth in Claim 15 wherein the second voltage is greater than the first voltage.
17. A power tool comprising: a housing; an electric motor supported by said housing and operable to drive a tool element, said motor including a stator supported by said housing, and a shaft rotatably supported by said housing, said motor being connectable with a power source; and braking and control means for controlling and braking said motor, said braking and control means including switch means electrically connected with said motor, and control means electrically connected with said switch means and operable to output a control signal to control said switch means to brake the motor.
18. The power tool as set forth in Claim 17 wherein said control means includes a microcontroller electrically connected with said switch means and operable to output the control signal.
19. The power tool as set forth in Claim 18 wherein said switch means are operable to selectively disconnect said motor from the power source, and wherein said microcontroller outputs the control signal to said switch means to disconnect said motor from the power source to brake said motor.
20. The power tool as set forth in Claim 18 wherein said switch means are operable to selectively connect said motor in a closed loop, and wherein microcontroller outputs the control signal to said switch means to connect said motor in a closed loop to brake said motor.
21. The power tool as set forth in Claim 18 wherein said switch means is operable to generate counter-electromagnetic force to brake said motor, and wherein said microcontroller outputs the control signal to said switch means to generate counter-electromagnetic force to brake said motor.
22. The power tool as set forth in Claim 18 wherein said switch means are operable to selectively disconnect said motor from the power source, wherein said power tool further comprises second switch means electrically connected with said motor and operable to selectively connect said motor in a closed loop, and wherein said microcontroller is electrically connected with said first- mentioned switch means and with said second switch and outputs the control signal to control at least one of said first-mentioned switch means and said second switch means to brake said motor.
23. The power tool as set forth in Claim 22 wherein said microcontroller is electrically connected with said first-mentioned switch means and with said second switch means, and wherein said microcontroller outputs a first control signal to said first-mentioned switch means so that said first- mentioned switch means disconnects said motor from the power source and outputs a second control signal to said second switch means so that said second switch means connects said motor in a closed loop and generates a counter- electromagnetic force to brake said motor.
24. The power tool as set forth in Claim 18 wherein said power tool has a condition in which braking of said motor is required, the braking condition being different for different types of power tools, and wherein said microcontroller is programmable to configure said braking and control means for a selected power tool.
25. The power tool as set forth in Claim 24 and further comprising trigger means electrically connected with said control means and operable to trigger braking of said motor, wherein, when the braking condition for said power tool exists, said trigger means outputs an trigger signal to said control means so that said microcontroller outputs the control signal to said switch means to brake said motor.
26. The power tool as set forth in Claim 25 wherein said trigger means includes on/off switch means for selectively connecting said motor to the power source, and wherein, when said on/off switch means is operated to disconnect said motor from the power source, said trigger means outputs the trigger signal to said control means so that said microcontroller outputs the control signal to control said switch means to brake said motor.
27. The power tool as set forth in Claim 25 wherein said power tool has a safety-related braking condition, wherein said trigger means includes sensing means for sensing the safety-related braking condition, and wherein, when said sensing means senses the safety-related braking condition, said trigger means outputs the trigger signal to said control means so that said microcontroller outputs the control signal to said switch means to brake said motor.
28. The power tool as set forth in Claim 17 and further comprising on/off switch means for selectively connecting said motor to the power source, wherein, when said on/off switch is operated to disconnect said motor from the power source, an off signal is output to said control means so that said control means outputs the control signal to control said switch means to brake said motor.
29. The power tool as set forth in Claim 17 wherein said power tool is a drill press and further comprises: a base connected with said housing and supporting said drill press on a workpiece, said base being selectively connected with the workpiece; a spindle connected with said shaft for rotation with said shaft, said spindle supporting a tool bit engageable with the workpiece; and breakaway sensing means electrically connected with said control means and operable to output a breakaway signal to said control means if said base breaks away from the workpiece so that said control means outputs the control signal to said switch means to brake said motor.
30. The power tool as set forth in Claim 17 and further comprising: a spindle connected with said shaft for rotation with said shaft, said spindle supporting a tool element engageable with a workpiece; and binding sensing means electrically connected with said control means and operable to output a binding signal to said control means if the tool element binds on the workpiece so that said control means outputs the control signal to said switch means to brake said motor.
31. In a power tool, a method for braking and controlling an electric motor, the motor including a housing, a stator supported by the housing, and a shaft rotatably supported by the housing, the motor being selectively connected with a power source to rotatably drive the shaft, said method comprising the acts of:
(a) providing a braking and control circuit including a first switch for selectively connecting the motor to the power source, a second switch electrically connected in parallel with the motor, and a control circuit electrically connected to at least one of the first switch and the second switch; and (b) outputting a control signal from the control circuit to control at least one of the first switch and the second switch to brake the motor.
32. The method as set forth in Claim 31 wherein act (b) includes outputting the control signal to the first switch to disconnect the motor from the power source to brake the motor.
33. The method as set forth in Claim 31 wherein act (b) includes outputting the control signal to the second switch to connect the motor in a closed loop.
34. The method as set forth in Claim 31 wherein act (b) includes outputting the control signal to the second switch to generate a counter- electromagnetic force to brake the motor.
35. The method as set forth in Claim 31 wherein act (b) includes outputting a first control signal to the first switch to disconnect the motor from the power source, and outputting a second control signal to the second switch to connect the motor in a closed loop and to generate counter-electromagnetic force.
36. The method as set forth in Claim 35 wherein act (b) includes selectively outputting the first control signal to the first switch so that the first switch selectively disconnects and reconnects the motor and the power source, and selectively outputting the second control signal to the second switch so that the second switch selectively connects and disconnects the motor in a closed loop.
37. The method as set forth in Claim 31 wherein the control circuit includes a microcontroller electrically connected with at least one of the first switch and the second switch, wherein act (b) includes outputting the control signal from the microcontroller, and wherein said method further comprises the act of:
(c) programming the microcontroller to optimize braking of the motor.
38. The method as set forth in Claim 37 wherein the motor is braked in a stopping time, and wherein act (c) includes programming the microcontroller to change the stopping time of the motor.
39. The method as set forth in Claim 37 wherein the motor is braked with a braking force, and wherein act (c) includes programming the microcontroller to change the braking force applied to the motor.
40. The method as set forth in Claim 37 wherein the power source is an alternating cuπent power source, and wherein said method further comprises the act of:
(d) providing to the control circuit a current signal representing the alternating current; wherein act (c) includes programming the microcontroller to select a braking start point corresponding to a start point phase angle of the alternating current, and wherein act (b) includes outputting the control signal when the alternating current is in the start point phase angle.
41. The method as set forth in Claim 40 wherein act (c) includes programming the microcontroller to select a braking end point coπesponding to an end point phase angle of the alternating cuπent, the end point phase angle being a selected number of cycles after the start point phase angle, and wherein said method further comprises the act of:
(e) ceasing to output the control signal when the alternating cuπent is in the end point phase angle.
42. The method as set forth in Claim 40 wherein the alternating cuπent has a plurality of cycles, and wherein act (b) includes outputting the control signal on selected ones of the plurality of cycles to control the at least one of the first switch and the second switch on the selected ones of the plurality of cycles to brake the motor.
43. The method as set forth in Claim 37 wherein the power source is an alternating cuπent power source, and wherein said method further comprises the act of:
(f) providing to the control circuit a cuπent signal representing a voltage of the alternating cuπent; and wherein act (c) includes programming the microcontroller to output the control signal at a point in the alternating cuπent so that a desired voltage is supplied to brake the motor.
44. The method as set forth in Claim 43 wherein the alternating cuπent has a first cycle and a second cycle, and wherein act (c) includes programming the microcontroller to output the control signal at a point in the first cycle so that a first voltage is supplied to brake the motor and to output the control signal at a point in the second cycle so that a second voltage is supplied to brake the motor.
45. The method as set forth in Claim 44 wherein the second voltage is greater than the first voltage.
46. The method as set forth in Claim 31 and further comprising the acts of:
(g) providing trigger means electrically connected with the control circuit and for triggering braking; and
(h) outputting a trigger signal from the trigger means to the control circuit so that the control circuit outputs the control signal.
47. A method for braking and controlling an electric motor in a power tool, the power tool including a housing, the motor being supported by the housing and including a stator supported by the housing and a shaft rotatably supported by the housing, the stator being selectively connected with a power source to rotatably drive the shaft, said method comprising the acts of:
(a) providing a braking and control circuit including switch means electrically connected with the motor, and control means electrically connected with and operable to control the switch means; and
(b) outputting a control signal from the control means to control the switch means to brake the motor.
48. The method as set forth in Claim 47 wherein the control means includes a microcontroller electrically connected with the switch means, and wherein act (b) includes outputting the control signal from the microcontroller.
49. The method as set forth in Claim 48 wherein said switch means are operable to selectively disconnect the motor from the power source, and wherein act (b) includes outputting the control signal to the switch means to disconnect the motor from the power source to brake the motor.
50. The method as set forth in Claim 48 wherein the switch means are operable to selectively connect the motor in a closed loop, and wherein act (b) includes outputting the control signal to the switch means to connect the motor in a closed loop to brake the motor.
51. The method as set forth in Claim 48 wherein the switch means is operable to generate counter-electromagnetic force to brake the motor, and wherein act (b) includes outputting the control signal to the switch means to generate counter-electromagnetic force to brake the motor.
52. The method as set forth in Claim 48 wherein the switch means are operable to selectively disconnect the motor from the power source, wherein the braking and control circuit further includes second switch means electrically connected with the motor and operable to selectively connect the motor in a closed loop, the microcontroller being electrically connected with the first- mentioned switch means and with the second switch, and wherein act (b) includes outputting the control signal to control at least one of the first-mentioned switch means and the second switch means to brake the motor.
53. The method as set forth in Claim 52 wherein act (b) includes outputting a first control signal to the first-mentioned switch means so that the first-mentioned switch means disconnects the motor from the power source and outputting a second control signal to the second switch means so that the second switch means connects the motor in a closed loop and generates a counter- electromagnetic force to brake the motor.
54. The power tool as set forth in Claim 48 wherein the power tool has a condition in which braking of the motor is required, the braking condition being different for different types of power tools, and wherein said method further comprises the act of:
(c) programming the microcontroller to configure the braking and control circuit for a selected power tool.
55. The method as set forth in Claim 54 and further comprising the acts of:
(d) providing trigger means electrically connected with the control means and operable to trigger braking of the motor; and
(e) outputting a trigger signal to the control means when the braking condition for the power tool exists so that the microcontroller outputs the control signal to the switch means to brake the motor.
56. The method as set forth in Claim 55 wherein the trigger means includes on/off switch means for selectively connecting the motor to the power source, and wherein act (e) includes outputting the trigger signal when the on/off switch means is operated to disconnect the motor from the power source so that the microcontroller outputs the control signal to control the switch means to brake the motor.
57. The method as set forth in Claim 55 wherein the power tool has a safety-related braking condition, wherein the trigger means includes sensing means for sensing the safety-related braking condition, and wherein act (e) includes outputting the trigger signal when the sensing means senses the safety- related braking condition so that the microcontroller outputs the control signal to the switch means to brake the motor.
58. A software program for controlling the braking of a motor in a power tool, said software program controlling the motor by:
(a) receiving a signal; and
(b) outputting a control signal to control a switch to brake the motor.
59. The software program as set forth in Claim 58 wherein the received signal is a signal representing an alternating cuπent supplied to the motor from a power source, wherein said software program further controls the motor by, before (b): (c) receiving a trigger signal to trigger braking of the motor; and
(d) evaluating the alternating cuπent signal to determine the phase angle of the alternating cuπent; and wherein (b) includes outputting the control signal when the current signal represents a selected brake start point phase angle.
60. The software program as set forth in Claim 58 wherein the received signal is a trigger signal to trigger braking of the motor, wherein said software program further controls the motor by, before (b):
(e) receiving a signal representing an alternating cuπent supplied to the motor by a power source; and
(f) evaluating the alternating cuπent signal to determine the phase angle of the alternating cuπent; and wherein (b) includes outputting the control signal when the cuπent signal represents a selected brake start point phase angle.
61. The software program as set forth in Claim 58 wherein (b) includes outputting a first control signal to a first switch to brake the motor, and outputting a second control signal to a second switch to brake the motor.
PCT/US1999/012643 1998-06-05 1999-06-04 Braking and control circuit for electric power tools WO1999063643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU43346/99A AU4334699A (en) 1998-06-05 1999-06-04 Braking and control circuit for electric power tools

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US8817698P 1998-06-05 1998-06-05
US60/088,176 1998-06-05

Publications (1)

Publication Number Publication Date
WO1999063643A1 true WO1999063643A1 (en) 1999-12-09

Family

ID=22209808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/012643 WO1999063643A1 (en) 1998-06-05 1999-06-04 Braking and control circuit for electric power tools

Country Status (3)

Country Link
US (1) US6236177B1 (en)
AU (1) AU4334699A (en)
WO (1) WO1999063643A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1474730A2 (en) * 2001-02-21 2004-11-10 Mattel, Inc. Children's ride-on vehicle with electronic speed control
CN102554889A (en) * 2010-12-06 2012-07-11 安德烈亚斯.斯蒂尔两合公司 Manually operated tool with adjustable output
WO2013122266A3 (en) * 2012-02-15 2013-11-07 Hitachi Koki Co., Ltd. Electric working machine
EP1411626A3 (en) * 2002-10-18 2015-08-19 Black & Decker Inc. Method and device for braking a motor
CN108602182A (en) * 2015-12-28 2018-09-28 工机控股株式会社 Electric tool
CN111622030A (en) * 2019-05-05 2020-09-04 丽水市莲都区京承机械厂 Auxiliary cold disassembling equipment for railway glued insulating joint
CN112889212A (en) * 2018-11-28 2021-06-01 欧姆龙株式会社 Electromagnetic brake control device and control device

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9724840B2 (en) 1999-10-01 2017-08-08 Sd3, Llc Safety systems for power equipment
US9927796B2 (en) 2001-05-17 2018-03-27 Sawstop Holding Llc Band saw with improved safety system
US7481140B2 (en) * 2005-04-15 2009-01-27 Sd3, Llc Detection systems for power equipment
US7536238B2 (en) 2003-12-31 2009-05-19 Sd3, Llc Detection systems for power equipment
US20050041359A1 (en) * 2003-08-20 2005-02-24 Gass Stephen F. Motion detecting system for use in a safety system for power equipment
US7707920B2 (en) 2003-12-31 2010-05-04 Sd3, Llc Table saws with safety systems
US7116071B2 (en) * 2000-12-06 2006-10-03 Milwaukee Electric Tool Corporation Power tool and motor controller
US6392373B1 (en) * 2000-12-06 2002-05-21 Milwaukee Electric Tool Corporation Automatic reverse motor controller
US6867703B2 (en) * 2001-03-07 2005-03-15 Yulian Neykov Safety-protection circuit
DE10117121A1 (en) * 2001-04-06 2002-10-17 Bosch Gmbh Robert Hand tool
US7588937B2 (en) * 2001-10-03 2009-09-15 Wisconsin Alumni Research Foundation Method of in vitro differentiation of neural stem cells, motor neurons and dopamine neurons from primate embryonic stem cells
US7159497B2 (en) * 2002-01-25 2007-01-09 Eastway Fair Company Ltd. Light beam alignment system
DE10234397A1 (en) * 2002-07-23 2004-01-29 C. & E. Fein Gmbh & Co Kg Braked series motor and method for braking a series motor
US6680596B1 (en) 2002-10-10 2004-01-20 S-B Power Tool Corporation Electric motor having regenerative braking
US7075257B2 (en) * 2002-10-18 2006-07-11 Black & Decker Inc. Method and device for braking a motor
DE10317636A1 (en) * 2003-04-17 2004-11-25 Robert Bosch Gmbh Braking device for an electric motor
US6989649B2 (en) * 2003-07-09 2006-01-24 A. O. Smith Corporation Switch assembly, electric machine having the switch assembly, and method of controlling the same
US7075040B2 (en) * 2003-08-21 2006-07-11 Barnstead/Thermolyne Corporation Stirring hot plate
US8540493B2 (en) 2003-12-08 2013-09-24 Sta-Rite Industries, Llc Pump control system and method
DE102004018966B4 (en) 2004-04-13 2015-02-19 C. & E. Fein Gmbh Series motor
ATE502725T1 (en) * 2004-04-13 2011-04-15 Black & Decker Inc ELECTRIC GRINDING MACHINE AND ITS MOTOR CONTROL
DE102004021930A1 (en) * 2004-05-04 2005-12-01 Robert Bosch Gmbh Method for operating a shut-off screwdriver and shut-off screwdriver
US7216909B2 (en) * 2004-05-21 2007-05-15 Seagate Technology Llc Breakaway mandrel for transporting disks
JP4127251B2 (en) * 2004-07-23 2008-07-30 株式会社デンソー DC motor rotation information detector
US8602745B2 (en) 2004-08-26 2013-12-10 Pentair Water Pool And Spa, Inc. Anti-entrapment and anti-dead head function
US7874808B2 (en) 2004-08-26 2011-01-25 Pentair Water Pool And Spa, Inc. Variable speed pumping system and method
US8019479B2 (en) 2004-08-26 2011-09-13 Pentair Water Pool And Spa, Inc. Control algorithm of variable speed pumping system
US7686589B2 (en) 2004-08-26 2010-03-30 Pentair Water Pool And Spa, Inc. Pumping system with power optimization
US7845913B2 (en) 2004-08-26 2010-12-07 Pentair Water Pool And Spa, Inc. Flow control
US8480373B2 (en) 2004-08-26 2013-07-09 Pentair Water Pool And Spa, Inc. Filter loading
US8469675B2 (en) 2004-08-26 2013-06-25 Pentair Water Pool And Spa, Inc. Priming protection
US7854597B2 (en) 2004-08-26 2010-12-21 Pentair Water Pool And Spa, Inc. Pumping system with two way communication
US7552781B2 (en) 2004-10-20 2009-06-30 Black & Decker Inc. Power tool anti-kickback system with rotational rate sensor
US7557536B2 (en) * 2004-11-07 2009-07-07 Milwaukee Electric Tool Corporation Light
FR2880740B1 (en) * 2005-01-11 2007-04-27 Somfy Sas DIRECT CURRENT MOTOR ACTUATOR WITH IRREVERSIBLE TRANSMISSION FOR MANUFACTURING A SHUTTER
US8087977B2 (en) 2005-05-13 2012-01-03 Black & Decker Inc. Angle grinder
MX2008008389A (en) * 2005-12-30 2009-01-09 Roger Hirsch Resistance welding machine pinch point safety sensor.
US7508159B2 (en) * 2006-05-31 2009-03-24 General Electric Company Method for controlling a cycle-skipping control system including computer readable code and controller for performing such method
US7208911B1 (en) * 2006-05-31 2007-04-24 General Electric Company Method for controlling a cycle-skipping control system including computer readable code and controller for performing such method
US7208910B1 (en) * 2006-05-31 2007-04-24 General Electric Company Method for modifying baseline circuit architecture for a cycle-skipping control system including computer readable code and controller for performing such method
US20070290646A1 (en) * 2006-06-17 2007-12-20 Tyco Electronics Corporation Soft start time delay relay
US7518837B2 (en) * 2006-09-21 2009-04-14 Uan Chung Enterprises Co., Ltd Control device for soft starting and protecting overload of motor
JP5376392B2 (en) * 2008-02-14 2013-12-25 日立工機株式会社 Electric tool
WO2010042406A1 (en) 2008-10-06 2010-04-15 Pentair Water Pool And Spa, Inc. Method of operating a safety vacuum release system
FR2939008B1 (en) * 2008-12-01 2011-06-24 Pellenc Sa MOTORIZED SIZE SELF-DECOATING APPARATUS, IN PARTICULAR HEDGE TRIMMER
KR20100064741A (en) * 2008-12-05 2010-06-15 삼성전자주식회사 Direct current motor control device and method thereof
DE102009012715A1 (en) * 2009-03-11 2010-09-16 Marquardt Gmbh Electric switch
US9556874B2 (en) 2009-06-09 2017-01-31 Pentair Flow Technologies, Llc Method of controlling a pump and motor
DE102009059884A1 (en) * 2009-12-21 2011-06-22 Robert Bosch GmbH, 70469 Grid separation with semiconductor switches for power tools
JP5645967B2 (en) 2009-12-23 2014-12-24 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Braking device for universal motor
DE102010004311A1 (en) 2010-01-11 2011-07-14 Robert Bosch GmbH, 70469 Electrodynamic braking device for universal motor, has control electronic unit simulating brake operation and motor operation, switch conductively switched, and other switch conductively switched with predetermined time delay
US9475180B2 (en) 2010-01-07 2016-10-25 Black & Decker Inc. Power tool having rotary input control
US9266178B2 (en) 2010-01-07 2016-02-23 Black & Decker Inc. Power tool having rotary input control
WO2011085194A1 (en) 2010-01-07 2011-07-14 Black & Decker Inc. Power screwdriver having rotary input control
US8418778B2 (en) 2010-01-07 2013-04-16 Black & Decker Inc. Power screwdriver having rotary input control
DE102010032335A1 (en) * 2010-07-20 2012-01-26 C. & E. Fein Gmbh hand tool
MX344350B (en) 2010-12-08 2016-12-13 Pentair Water Pool & Spa Inc Discharge vacuum relief valve for safety vacuum release system.
EP2774009B1 (en) 2011-11-01 2017-08-16 Pentair Water Pool and Spa, Inc. Flow locking system and method
EP2631035B1 (en) 2012-02-24 2019-10-16 Black & Decker Inc. Power tool
CN102672526B (en) * 2012-04-30 2014-02-19 苏州赛特尔集团机械有限公司 Secondary power supply return circuit for numerical control sawing machine
JP2014023212A (en) * 2012-07-13 2014-02-03 Panasonic Corp Boost control circuit and power tool
US9885360B2 (en) 2012-10-25 2018-02-06 Pentair Flow Technologies, Llc Battery backup sump pump systems and methods
US9218075B2 (en) 2012-11-01 2015-12-22 Immersion Corporation Haptically-enabled system with braking
US9559628B2 (en) 2013-10-25 2017-01-31 Black & Decker Inc. Handheld power tool with compact AC switch
AU2014100389A4 (en) * 2013-11-29 2014-05-22 Techtronic Outdoor Products Technology Limited Reciprocating power tools
US9561568B2 (en) 2014-04-25 2017-02-07 Black & Decker Inc. Magnetic drill press with alternate power source
US9614466B2 (en) * 2014-05-20 2017-04-04 Black & Decker Inc. Electronic braking for a universal motor in a power tool
US11685034B2 (en) * 2014-05-24 2023-06-27 Andreas Stihl Ag & Co. Kg Handheld work apparatus
US9833891B2 (en) 2015-02-23 2017-12-05 James Patterson Anti-torqueing dynamic arresting mechanism
EP3411173B1 (en) * 2016-02-01 2022-11-16 Milwaukee Electric Tool Corporation Holding force detection for magnetic drill press
US11047528B2 (en) * 2016-02-12 2021-06-29 Black & Decker Inc. Electronic braking for a power tool having a brushless motor
US10589413B2 (en) 2016-06-20 2020-03-17 Black & Decker Inc. Power tool with anti-kickback control system
CN108512464B (en) * 2017-02-24 2020-07-17 南京德朔实业有限公司 Brake circuit and electric tool
US10818450B2 (en) 2017-06-14 2020-10-27 Black & Decker Inc. Paddle switch
DE102017211270A1 (en) * 2017-07-03 2019-01-03 Robert Bosch Gmbh Handkreissäge
TWI730281B (en) 2018-01-03 2021-06-11 美商米沃奇電子工具公司 Electronic braking in a power tool
US10865941B2 (en) * 2018-11-20 2020-12-15 Dennis E. Lewis Safety system and method for power tools
US11648616B2 (en) * 2019-12-20 2023-05-16 Milwaukee Electric Tool Corporation Reciprocating saw
WO2021252588A1 (en) 2020-06-11 2021-12-16 Milwaukee Electric Tool Corporation Voltage-based braking methodology for a power tool
WO2022010851A1 (en) * 2020-07-06 2022-01-13 Milwaukee Electric Tool Corporation Automatic ramp load sense for power tools
US11845173B2 (en) 2020-10-16 2023-12-19 Milwaukee Electric Tool Corporation Anti bind-up control for power tools
CN115225150A (en) * 2021-04-15 2022-10-21 南京泉峰科技有限公司 Multi-head electric tool and working assembly identification method thereof
US20220395951A1 (en) * 2021-06-15 2022-12-15 Milwaukee Electric Tool Corporation Drop detection in power tools
CN113489422A (en) * 2021-07-15 2021-10-08 浙江亿力机电股份有限公司 On-line motor control system and control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357179A (en) * 1992-06-19 1994-10-18 Pace, Incorporated Handheld low voltage machining tool
US5642023A (en) * 1995-01-19 1997-06-24 Textron Inc. Method and apparatus for the electronic control of electric motor driven golf car
US5789885A (en) * 1993-09-30 1998-08-04 Robert Bosch Gmbh Electric motor with field-current-generated magnetic-field brake

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4095153A (en) 1976-07-29 1978-06-13 Westinghouse Electric Corp. Transit vehicle electrical brake control apparatus and method
US4216417A (en) 1978-04-21 1980-08-05 Westinghouse Electric Corp. Transit vehicle motor operation control apparatus and method
US4319170A (en) 1980-04-21 1982-03-09 Brent Allan L Motor control method and system
US4529919A (en) 1983-01-05 1985-07-16 Towmotor Corporation Plugging and plugging override control apparatus
US4460857A (en) 1983-05-31 1984-07-17 Rca Corporation Encoder controlled apparatus for dynamic braking
US4843297A (en) 1984-11-13 1989-06-27 Zycron Systems, Inc. Microprocessor speed controller
FI875074A (en) 1986-12-04 1988-06-05 Kontron Holding Ag STYRNING AV EN MOTOR.
JPS63306070A (en) 1987-06-05 1988-12-14 Minolta Camera Co Ltd Thermal transfer printer
US4816726A (en) 1987-09-14 1989-03-28 United Technologies Corporation Method of and arrangement for controlling and h-bridge electric motor
SE469408B (en) 1988-03-04 1993-06-28 Flygt Ab SETTING TO CONTROL THE SHUTTER OF AN INTERMITTENT WORKING ELECTRIC ENGINE
US4862052A (en) * 1988-03-08 1989-08-29 Allen-Bradley Company, Inc. Method for stopping an electric motor
SU1675846A1 (en) 1988-09-29 1991-09-07 Ташкентский Политехнический Институт Им.А.Р.Бируни Digital device for control over self-sufficient inverter
US5130624A (en) 1989-08-11 1992-07-14 Whirlpool Corporation Electronic control for an automatic washing machine with a reversing PSC motor
US4990844A (en) 1989-10-18 1991-02-05 Eaton Corporation DC braking of inverter-driven AC motors
US5170105A (en) 1991-03-08 1992-12-08 General Electric Company Method for determining operability of an electrical dynamic braking system
US5149998A (en) 1991-08-23 1992-09-22 Eaton Corporation Eddy current drive dynamic braking system for heat reduction
US5291106A (en) 1992-11-23 1994-03-01 General Motors Corporation Single current regulator for controlled motoring and braking of a DC-fed electric motor
US5361022A (en) 1993-03-23 1994-11-01 E. F. Bavis & Associates, Inc. Method and apparatus for electrical dynamic braking
US5449990A (en) 1993-04-26 1995-09-12 The Whitaker Corporation Single cycle positioning system
US5386185A (en) 1993-05-17 1995-01-31 General Motors Corporation High speed AC motor controller
US5451832A (en) 1993-07-01 1995-09-19 Sgs-Thomson Microelectronics, Inc. Method and circuitry for drag braking a polyphase DC motor
US5424622A (en) 1993-11-29 1995-06-13 Baldor Electric Company, Inc. Dynamic brake assembly
US5530328A (en) 1993-12-23 1996-06-25 Pulse Electronics, Inc. Consist power monitor
US5523701A (en) * 1994-06-21 1996-06-04 Martin Marietta Energy Systems, Inc. Method and apparatus for monitoring machine performance
US5659204A (en) 1994-11-16 1997-08-19 Westinghouse Air Brake Company Apparatus for and a method of generating an analog signal for control of dynamic braking
US5537014A (en) 1994-11-16 1996-07-16 Westinghouse Air Brake Company Apparatus for feedback of an analog signal used to monitor and/or control dynamic braking and method of operating
US5902077A (en) * 1998-03-20 1999-05-11 Marking Methods, Inc. Variable speed universal drilling tapping and reaming machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5357179A (en) * 1992-06-19 1994-10-18 Pace, Incorporated Handheld low voltage machining tool
US5789885A (en) * 1993-09-30 1998-08-04 Robert Bosch Gmbh Electric motor with field-current-generated magnetic-field brake
US5642023A (en) * 1995-01-19 1997-06-24 Textron Inc. Method and apparatus for the electronic control of electric motor driven golf car

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1474730A4 (en) * 2001-02-21 2005-02-02 Mattel Inc Children's ride-on vehicle with electronic speed control
EP1474730A2 (en) * 2001-02-21 2004-11-10 Mattel, Inc. Children's ride-on vehicle with electronic speed control
EP1411626A3 (en) * 2002-10-18 2015-08-19 Black & Decker Inc. Method and device for braking a motor
CN102554889A (en) * 2010-12-06 2012-07-11 安德烈亚斯.斯蒂尔两合公司 Manually operated tool with adjustable output
CN102554889B (en) * 2010-12-06 2016-08-03 安德烈亚斯.斯蒂尔两合公司 Portable handheld work apparatus with switchable power
WO2013122266A3 (en) * 2012-02-15 2013-11-07 Hitachi Koki Co., Ltd. Electric working machine
CN104126270A (en) * 2012-02-15 2014-10-29 日立工机株式会社 Electric working machine
US9496809B2 (en) 2012-02-15 2016-11-15 Hitachi Koki Co., Ltd. Electric working machine
CN108602182A (en) * 2015-12-28 2018-09-28 工机控股株式会社 Electric tool
EP3398724A4 (en) * 2015-12-28 2019-09-25 Koki Holdings Co., Ltd. Electric tool
US10630223B2 (en) 2015-12-28 2020-04-21 Koki Holdings Co., Ltd. Power tool
CN108602182B (en) * 2015-12-28 2022-03-01 工机控股株式会社 Electric tool
CN112889212A (en) * 2018-11-28 2021-06-01 欧姆龙株式会社 Electromagnetic brake control device and control device
CN111622030A (en) * 2019-05-05 2020-09-04 丽水市莲都区京承机械厂 Auxiliary cold disassembling equipment for railway glued insulating joint
CN111622030B (en) * 2019-05-05 2021-10-01 徐荣富 Auxiliary cold disassembling equipment for railway glued insulating joint

Also Published As

Publication number Publication date
AU4334699A (en) 1999-12-20
US6236177B1 (en) 2001-05-22

Similar Documents

Publication Publication Date Title
US6236177B1 (en) Braking and control circuit for electric power tools
CN100454747C (en) Excitation circuit and control method for flux switching motor
US9614466B2 (en) Electronic braking for a universal motor in a power tool
US10177691B2 (en) Electronic braking of brushless DC motor in a power tool
EP3299127A1 (en) Control scheme for operating cordless power tool based on battery temperature
US6104155A (en) Controlled braking device for electric motors and in particular portable tools
JPH09314409A (en) Boring machine control system
JP2004140995A (en) Method and device for making motor stop
CN108602182B (en) Electric tool
US20120091932A1 (en) Electrodynamic braking device for a universal motor
JP4217615B2 (en) Excitation circuit and flux switching motor excitation method
WO2012167241A1 (en) Control system for a fastening power tool
GB2400990A (en) Braking device for an electric motor
US5677586A (en) Commutation of a universal motor operating in brake mode
US10892691B2 (en) Control circuit and power tool
WO1997043821A1 (en) Method and device for braking an all-mains motor
WO1997029539A1 (en) Electric brake for an alternating current motor
JP2730206B2 (en) Motor control device
GB2150773A (en) Sparkless circuit for low horsepower electronic motor brake
WO2018153327A1 (en) Control circuit applicable to motor, and electric tool
JPH07284287A (en) Motor controller
CN114598186B (en) Electric tool and electric tool starting method
JPS582037B2 (en) Electric tightening machine control device
JPH03190685A (en) Power source device for grinder
US7098616B1 (en) Control device for a motor unit of a food processor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU GB

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase