WO1999064947A1 - Least privilege via restricted tokens - Google Patents

Least privilege via restricted tokens Download PDF

Info

Publication number
WO1999064947A1
WO1999064947A1 PCT/US1999/012914 US9912914W WO9964947A1 WO 1999064947 A1 WO1999064947 A1 WO 1999064947A1 US 9912914 W US9912914 W US 9912914W WO 9964947 A1 WO9964947 A1 WO 9964947A1
Authority
WO
WIPO (PCT)
Prior art keywords
token
access
restricted
parent
application
Prior art date
Application number
PCT/US1999/012914
Other languages
French (fr)
Inventor
Michael M. Swift
Original Assignee
Microsoft Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corporation filed Critical Microsoft Corporation
Priority to AT99955548T priority Critical patent/ATE511671T1/en
Priority to EP99955548A priority patent/EP1086414B1/en
Priority to JP2000553884A priority patent/JP4414092B2/en
Publication of WO1999064947A1 publication Critical patent/WO1999064947A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/604Tools and structures for managing or administering access control systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/62Protecting access to data via a platform, e.g. using keys or access control rules
    • G06F21/6218Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2141Access rights, e.g. capability lists, access control lists, access tables, access matrices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2145Inheriting rights or properties, e.g., propagation of permissions or restrictions within a hierarchy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2149Restricted operating environment

Definitions

  • the invention relates generally to computer systems, and more particularly to improvements in security for computer systems.
  • a task is performed by a user having more privileges than necessary to do that task, there is an increased risk that the user inadvertently will do some harm to computer resources.
  • an administrator may inadvertently delete those files when performing another task that does not need to be accomplished by an administrator. If the administrator had been a user having lesser privileges, then the intended task could still have been performed but the inadvertent deletion would not have been allowed.
  • a recognized goal in computer security is the concept of least privilege, in which a user performing a task should run with the absolute minimum privileges (or identities, such as group memberships) necessary to do that task.
  • an access token is built for the user based on the user's credentials. The access token determines the access rights and privileges that the user will have for that session. As a result, the user will have those privileges for each task attempted during that session and for any future sessions.
  • an administrator can set up multiple identities and log-on as a different user with different rights for each task, this is too burdensome and too complicated.
  • since there is no automatic enforcement even a safety- conscious administrator is unlikely to log off and log back on with a new identity each time a different task is performed, simply to avoid the possibility of doing some unintended action.
  • the present invention provides a mechanism to enforce least privilege, or in some way reduced access, via restricted access tokens.
  • Restricted access tokens enable a security mechanism to determine whether a process has access to a resource based on a modified, restricted version of an existing access token.
  • the restricted token is based on an existing token, and has less access than that token.
  • a restricted token may be created from an existing (parent) token by changing an attribute of one or more security identifiers that allow access in the parent token to a setting that denies access in the restricted token and/or removing one or more privileges from the restricted token that are present in the parent token.
  • restricted security identifiers may be placed in the restricted token.
  • a process is associated with a restricted token, and when the restricted process attempts to perform an action on a resource, a kernel mode security mechanism first compares the user-based security identifiers and the intended type of action against a list of identifiers and actions associated with the resource. If there are no restricted security identifiers in the restricted token, access is determined by the result of this first comparison. If there are restricted security identifiers in the restricted token, a second access check for this action compares the restricted security identifiers against the list of identifiers and actions associated with the resource. With a token having restricted security identifiers, the process is granted access to the resource only if both the first and second access checks pass.
  • Application programs may have restriction information stored in association therewith.
  • a restricted token is created for that application based on the restriction information.
  • reduced access is automatically enforced for that application.
  • Applications may be divided into different access levels such as privileged and non- privileged portions, thereby automatically restricting the actions a user can perform via that application.
  • the system may enforce running with reduced access by running user processes with a restricted token, and then requiring a definite action by the user to specifically override actions that are restricted by temporarily running with the user's normal token.
  • FIGURE 1 is a block diagram representing a computer system into which the present invention may be incorporated;
  • FIG. 2 is a block diagram generally representing the creation of a restricted token from an existing token;
  • FIG. 3 is a block diagram generally representing the various components for determining whether a process may access a resource
  • FIGS. 4 - 5 comprise a flow diagram representing the general steps taken to create a restricted token from an existing token;
  • FIG. 6 is a block diagram generally representing a process having a restricted token associated therewith attempting to access a resource
  • FIG. 7 is a block diagram generally representing the logic for determining access to an object of a process having a restricted token associated therewith;
  • FIG. 8 is a flow diagram representing the general steps taken when determining whether to grant a process access to a resource
  • FIG. 9 is a block diagram of various components for automatically running an application program with reduced privileges in accordance with one aspect of the present invention.
  • FIG. 10 is a block diagram generally representing a process having a restricted token automatically associated therewith attempting to access a resource in accordance with one aspect of the present invention
  • FIG. 11 is a diagram representing an application program split into privileged and non-privileged portions in accordance with one aspect of the present invention
  • FIG. 12 is a is a flow diagram representing general steps taken to enforce a user running with reduced access in accordance with one aspect of the present invention.
  • FIG. 1 and the following discussion are intended to provide a brief general description of a suitable computing environment in which the invention may be implemented.
  • the invention will be described in the general context of computer- executable instructions, such as program modules, being executed by a personal computer.
  • program modules include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types.
  • program modules include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types.
  • program modules include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types.
  • the invention may be practiced with other computer system configurations, including hand-held devices, multi- processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers and the like.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in both local and remote memory storage devices.
  • an exemplary system for implementing the invention includes a general purpose computing device in the form of a conventional personal computer 20 or the like, including a processing unit 21, a system memory 22, and a system bus 23 that couples various system components including the system memory to the processing unit 21.
  • the system bus 23 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
  • the system memory includes read-only memory (ROM) 24 and random access memory (RAM) 25.
  • ROM read-only memory
  • RAM random access memory
  • a basic input/output system 26 (BIOS) containing the basic routines that help to transfer information between elements within the personal computer 20, such as during start-up, is stored in ROM 24.
  • the personal computer 20 may further include a hard disk drive 27 for reading from and writing to a hard disk, not shown, a magnetic disk drive 28 for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30 for reading from or writing to a removable optical disk 31 such as a CD-ROM or other optical media.
  • the hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to the system bus 23 by a hard disk drive interface 32, a magnetic disk drive interface 33, and an optical drive interface 34, respectively.
  • the drives and their associated computer-readable media provide non-volatile storage of computer readable instructions, data structures, program modules and other data for the personal computer 20.
  • exemplary environment described herein employs a hard disk, a removable magnetic disk 29 and a removable optical disk 31, it should be appreciated by those skilled in the art that other types of computer readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs) , read-only memories (ROMs) and the like may also be used in the exemplary operating environment.
  • RAMs random access memories
  • ROMs read-only memories
  • a number of program modules may be stored on the hard disk, magnetic disk 29, optical disk 31, ROM 24 or RAM
  • an operating system 35 preferably Windows NT
  • application programs 36 other program modules 37 and program data 38.
  • a user may enter commands and information into the personal computer 20 through input devices such as a keyboard 40 and pointing device 42.
  • Other input devices may include a microphone, joystick, game pad, satellite dish, scanner or the like.
  • serial port interface 46 that is coupled to the system bus, but may be connected by other interfaces, such as a parallel port, game port or universal serial bus (USB) .
  • a monitor 47 or other type of display device is also connected to the system bus 23 via an interface, such as a video adapter 48.
  • personal computers typically include other peripheral output devices (not shown), such as speakers and printers.
  • the personal computer 20 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 49.
  • the remote computer 49 may be another personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the personal computer 20, although only a memory storage device 50 has been illustrated in FIG. 1.
  • the logical connections depicted in FIG. 1 include a local area network (LAN) 51 and a wide area network (WAN) 52.
  • LAN local area network
  • WAN wide area network
  • the personal computer 20 When used in a LAN networking environment, the personal computer 20 is connected to the local network 51 through a network interface or adapter 53. When used in a WAN networking environment, the personal computer 20 typically includes a modem 54 or other means for establishing communications over the wide area network 52, such as the Internet.
  • the modem 54 which may be internal or external, is connected to the system bus 23 via the serial port interface 46.
  • program modules depicted relative to the personal computer 20, or portions thereof may be stored in the remote memory storage device. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
  • the preferred security model of the present invention is described herein with reference to the Windows NT security model. Notwithstanding, there is no intention to limit the present invention to the Windows NT operating system, but on the contrary, the present invention is intended to operate with and provide benefits with any mechanism that performs security checks at the operating system level.
  • a user performs tasks by accessing the system' s resources via processes (and their threads) .
  • processes and their threads
  • a process and its threads will be considered conceptually equivalent, and will thus hereinafter simply be referred to as a process.
  • system's resources including files, shared memory and physical devices, which in Windows NT are represented by objects, will be ordinarily referred to as either resources or objects herein.
  • a security context is set up for that user, which includes building an access token 60.
  • a conventional user-based access token 60 includes a UserAndGroups field 62 including a security identifier (Security ID, or SID) 64 based on the user's credentials and one or more group IDs 66 identifying groups (e.g., within an organization) to which that user belongs.
  • the token 60 also includes a privileges field 68 listing any privileges assigned to the user. For example, one such privilege may give an administrative-level user the ability to set the system clock through a particular application programming interface (API) .
  • API application programming interface
  • a process 70 desiring access to an object 72 specifies the type of access it desires (e.g., obtain read/write access to a file object) and at the kernel level provides its associated token 60 to an object manager 74.
  • the object 72 has a kernel level security descriptor 76 associated therewith, and the object manager 74 provides the security descriptor 76 and the token 60 to a security mechanism 78.
  • the contents of the security descriptor 76 are typically determined by the owner (e.g., creator) of the object, and generally comprise a (discretionary) access control list (ACL) 80 of access control entries, and for each entry, one or more access rights (allowed or denied actions) corresponding to that entry.
  • ACL access control list
  • Each entry comprises a type (deny or allow) indicator, flags, a security identifier (SID) and access rights in the form of a bitmask wherein each bit corresponds to a permission (e.g., one bit for read access, one for write and so on) .
  • the security mechanism 78 compares the security IDs in
  • a user with a token identifying the user as a member of the ⁇ Accounting" group may wish to access a particular file object with read and write access. If the file object has the ⁇ Accounting" group identifier of type allow in an entry of its ACL 80, and the group has rights enabling read and write access, a handle granting read and write access is returned, otherwise access is denied. Note that for efficiency reasons, the security check is performed only when the process 70 first attempts to access the object 72 (create or open), and thus the handle to the object stores the type of access information so as to limit the actions that can be performed therethrough.
  • the security descriptor 76 also includes a system ACL, or SACL 81, which comprises entries of type audit corresponding to client actions that are to be audited.
  • Flags in each entry indicate whether the audit is monitoring successful or failed operations, and a bitmask in the entry indicates the type of operations that are to be audited.
  • a security ID in the entry indicates the user or group being audited. For example, consider a situation wherein a particular group is being audited so as to determine whenever a member of that group that does not have write access to a file object attempts to write to that file.
  • the SACL 81 for that file object includes an audit entry having the group security identifier therein along with an appropriately set fail flag and write access bit. Whenever a client belonging to that particular group attempts to write to the file object and fails, the operation is logged.
  • the ACL 80 may contain one or more identifiers that are marked for denying users of groups access (as to all rights or selected rights) rather than granting access thereto. For example, one entry listed in the ACL 80 may otherwise allow members of w Gro p 3 " access to the object 72, but another entry in the ACL 80 may specifically deny ⁇ 'Group 2 4" all access. If the token 60 includes the 'Group ⁇ ' security ID, access will be denied regardless of the presence of the w Group" security ID. Of course to function properly, the security check is arranged so as to not allow access via the ⁇ Group 3 " entry before checking the W DENY ALL" status of the Groups entry, such as by placing all DENY entries at the front of the ACL 80. As can be appreciated, this arrangement provides for improved efficiency, as one or more isolated members of a group may be separately excluded in the ACL 80 rather than having to individually list each of the remaining members of a group to allow their access.
  • a caller may request a MAXIMUM_ALLOWED access, whereby an algorithm determines the maximum type of access allowed, based on the normal UserAndGroups list versus each of the entries in the ACL 80. More particularly, the algorithm walks down the list of identifiers accumulating the rights for a given user (i.e., OR-ing the various bitmaps) . Once the rights are accumulated, the user is given the accumulated rights. However, if during the walkthrough a deny entry is found that matches a user or group identifier and the requested rights, access is denied. Restri cted Tokens
  • a restricted token is created from an existing access token (either restricted or unrestricted) as described below. As also described below, if the restricted token includes any restricted security IDs, the token is subject to an additional access check wherein the restricted security IDs are compared against the entries in the object's ACL. Restricted tokens are also described in the copending U.S. Patent Application entitled ⁇ Securi ty Model Using Restri cted Tokens" assigned to the same assignee as the present invention, filed concurrently herewith and incorporated by reference in its entirety.
  • a restricted token The primary use of a restricted token is for a process to create a new process with a restricted version of its own token.
  • the restricted process is then limited in the actions it may perform on resources.
  • a file object resource may have in its ACL a single restricted SID identifying the Microsoft Word application program, such that only restricted processes having the same Microsoft Word restricted SID in its associated restricted token may access the file object.
  • untrusted code such as downloaded via a browser could be run in a restricted process that did not have the Microsoft Word restricted Security ID in its restricted token, preventing that code' s access to the file object.
  • SeAssignPrimaryToken privilege For security reasons, creating a process with a different token normally requires a privilege known as the SeAssignPrimaryToken privilege.
  • process management allows one process with sufficient access to another process to modify its primary token to a restricted token, if the restricted token is derived from the primary token.
  • the operating system 35 may ensure that the process is only creating a restricted version of itself.
  • a restricted token 84 has less access than its parent token, and may, for example, prevent access to an object based on the type of process (as well as the user or group) that is attempting to access the object, instead of simply allowing or denying access solely based on the user or group information.
  • a restricted token may also not allow access via one or more user or group security IDs specially marked as , ⁇ USE_FOR_DENY_ONLY," even though the parent token allows access via those SIDs, and/or may have privileges removed that are present in the parent token.
  • one way in which to reduce access is to change an attribute of one or more user and/or group security identifiers in a restricted token so as to be unable to allow access, rather than grant access therewith.
  • Security IDs marked USE_FOR_DENY__ONLY are effectively ignored for purposes of granting access, however, an ACL that has a " ⁇ DENY" entry for that security ID will still cause access to be denied.
  • the Group security ID in the restricted token 84 (FIG. 3) is marked USE_FOR_DENY_ONLY, when the user's process attempts to access an object 72 having the ACL 80 that lists Group 2 as allowed, that entry is effectively ignored and the process will have to gain access by some other security ID.
  • the ACL 80 includes an entry listing Group? as DENY with respect to the requested type of action, then once tested, no access will be granted regardless of other security IDs.
  • the present invention allows a SID' s attributes to be modified to USE_FOR_DENY_ONLY in a restricted token. Moreover, no mechanism is provided to turn off this USE_FOR_DENY_ONLY security check. Another way to reduce access in a restricted token is to remove one or more privileges relative to the parent token.
  • a user having a normal token with administrative privileges may set up a system such that unless that user specifically informs the system otherwise, the user's processes will run with a restricted token having no privileges.
  • this prevents inadvertent errors that may occur when the user is not intentionally acting in an administrative capacity.
  • programs may be developed to run in different modes depending on a user's privileges, whereby an administrative-level user has to run the program with administrative privileges to perform some operations, but operate with reduced privileges to perform more basic operations. Again, this helps to prevent serious errors that might otherwise occur when such a user is simply attempting to perform normal operations but is running with elevated privileges.
  • Restricted security IDs are numbers representing processes, resource operations and the like, made, unique such as by appending a GUID or a number generated via a cryptographic hash or mapping to a GUID or a cryptographic hash, and may include information to distinguish these Security IDs from other
  • Security IDs Although not necessary to the invention, for convenience, various application programming interfaces (APIs) are provided to interface applications and users with Security IDs, such as to accomplish a GUID to Security ID conversion, represent the Security IDs in human readable form, and so on.
  • APIs application programming interfaces
  • a Security ID such as ⁇ USE_WINDOWS
  • ⁇ USE_WINDOWS would be placed in the default ACLs of graphical user interface objects to allow access thereto only by a process having a corresponding SID in its restricted token.
  • the default ACL of a printer object may include a W USE_PRINTING" SID in its default ACL, so that a process could create a restricted process with only this Security ID listed in its restricted token, whereby the restricted process would be able to access the printer but no other resource.
  • numerous other Security IDs for accessing other resources may be implemented.
  • restricted security IDs are placed in a special field 82 of a restricted token 84, such as for identifying a process that is requesting an action.
  • an object may selectively grant access based on a requesting process (as well as a user or group) .
  • a requesting process as well as a user or group
  • an object such as a file object may allow Microsoft Word, Microsoft Excel or Windows Explorer processes to access it, but deny access to any other process.
  • each of the allowed processes may be granted different access rights.
  • the design provides for significant flexibility and granularity within the context of a user to control what different processes are allowed to do.
  • One expected usage model for these features includes a distinction between trusted applications and untrusted applications.
  • * application is used in a generic sense to describe any piece of code that may be executed in "user mode" under a given security context. For example, an application such as Microsoft Word may be launched from an ActiveX control, which may be loaded into an existing process and executed. Applications which launch other applications, such as Microsoft's Internet Explorer, may introduce a "trust model" using this infrastructure.
  • an application such as Internet Explorer can use restricted tokens to execute untrusted executable code under different processes, and control what those processes can do within the user's overall access rights and privileges.
  • the Internet Explorer application creates a restricted token from its own token, and determines which restricted security IDs will be placed in the restricted token. Then, the untrusted executable code is restricted to accessing only those objects that the restricted context may access.
  • entries corresponding to restricted SIDs and other restrictions may be placed in a field of the SACL 81 for auditing purposes.
  • the SACL of a resource may be set up to audit each time that Internet Explorer program attempts read or write access of that resource, and/or the use of SIDs marked USE_FOR_DENY_ONLY may be audited.
  • auditing will not be described in detail hereinafter, however it can be readily appreciated that the concepts described with respect to access control via restricted SIDs are applicable to auditing operations.
  • NtFilterToken an application programming interface
  • the NtFilterToken API is wrapped under a Win32 API named CreateRestrictedToken, further set forth below:
  • these APIs 86 work in conjunction to take an existing token 60, either restricted or unrestricted, and create a modified (restricted) token 84 therefrom.
  • the structure of a restricted token which contains the identification information about an instance of a logged-on user, includes three new fields, ParentTokenld, RestrictedSidCount and RestrictedSids (shown in boldface below) :
  • a process calls the CreateRestrictedToken API with appropriate flag settings and/or information in the input fields, which in turn invokes the NtFilterToken API.
  • the NtFilterToken API checks to see if a flag named DISABLE_MAX_SIDS is set, which indicates that all Security IDs for groups in the new, restricted token 84 should be marked as
  • step 400 branches to step 402 which sets a bit indicating USE__FOR_DENY_ONLY on each of the group security IDs in the new token 84.
  • step 400 branches to step 404 to test if any security IDs are individually listed in a SidsToDisable Field of the
  • NtFilterToken API As shown at step 404 of FIG. 4, when the optional SidsToDisable input field is present, at step 406, any Security IDs listed therein that are also present in the UserAndGroups field 62 of the parent token 60 are individually marked as USE_FOR_DENY_ONLY in the UserAndGroups field 88 of the new restricted token 84. As described above, such Security IDs can only be used to deny access and cannot be used to grant access, and moreover, cannot later be removed or enabled. Thus, in the example shown in FIG.
  • the Group: security ID is marked as USE_FOR_DENY_ONLY in the restricted token 84 by having specified the Group 2 security ID in the SidsToDisable input field of the NtFilterToken API 86.
  • the filter process then continues to step 410 of FIG. 4, wherein a flag named DISABLE_MAX_PRIVILEGES is tested. This flag may be similarly set as a convenient shortcut to indicate that all privileges in the new, restricted token 84 should be removed. If set, step 410 branches to step 412 which deletes all privileges from the new token 84.
  • step 410 branches to step 414 wherein the optional PrivilegesToDelete field is examined. If present when the NtFilterToken API 86 is called, then at step 416, any privileges listed in this input field that are also present in the privileges field 68 of the existing token 60 are individually removed from the privileges field 90 of the new token 84. In the example shown in FIG. 2, the privileges shown as * Privilege: " to w Privilege ' have been removed from the privileges field 90 of the new token 84 by having specified those privileges in the PrivilegesToDelete input field of the NtFilterToken API 86. In keeping with one aspect of the present invention, as described above, this provides the ability to reduce the privileges available in a token. The process continues to step 420 of FIG. 5.
  • An API, IsTokenRestricted is called at step 422, and resolves this question by querying (via the NtQuerylnformationToken API) the RestrictingSids field of the parent token to see if it is not NULL, whereby if not NULL, the parent token is a restricted token and the API returns a TRUE. If the test is not satisfied, the parent token is a normal token and the API returns a FALSE.
  • a parent token that is restricted but does not have restricted SIDs may be treated as being not restricted.
  • step 424 if the parent token is restricted, step 424 branches to step 426 wherein any security IDs that are in both the parent token's restricted Security ID field and the API'.s restricted Security ID input list are put into the restricted Security ID field 92 of the new token 84. Requiring restricted security IDs to be common to both lists prevents a restricted execution context from adding more security IDs to the restricted Security ID field 92, an event which would effectively increase rather than decrease access. Similarly, if none are common at step 426, any token created still has to be restricted without increasing the access thereof, such as by leaving at least one restricted SID from the original token in the new token. Otherwise, an empty restricted SIDs field in the new token would indicate that the token is not restricted, an event which would effectively increase rather than decrease access.
  • the RestrictingSids field 92 of the new token 84 is set to those listed in the input field. Note that although this adds security IDs, access is actually decreased since a token having restricted SIDs is subject to a secondary access test, as described in more detail below.
  • step 430 is also executed, whereby the ParentTokenld 93 in the new token 84 is set to the
  • Tokenld of the existing (parent) token This provides the operating system with the option of later allowing a process to use a restricted version of its token in places that would not normally be allowed except to the parent token.
  • a restricted process 94 has been created and is attempting to open a file object 70 with read/write access.
  • the ACL 80 has a number of security IDs listed therein along with the type of access allowed for each ID, wherein "RO” indicates that read only access is allowed, "WR” indicates read/write access and "SYNC” indicates that synchronization access is allowed. Note that 'XJones” is specifically denied access to the object 72, even if "XJones" would otherwise be allowed access through membership in an allowed group.
  • restricted security contexts are primarily implemented in the Windows NT kernel.
  • the process 94 provides the object manager 74 with information identifying the object to which access is desired along with the type of access desired, (FIG. 8, step 800) .
  • the object manager 74 works in conjunction with the security mechanism 78 to compare the user and group security IDs listed in the token 84 (associated with the process 94) against the entries in the ACL 80, to determine if the desired access should be granted or denied.
  • the security check denies access at step 814. However, if the result of the user and group portion of the access check indicates allowable access at step 804, the security process branches to step 806 to determine if the restricted token 84 has any restricted security IDs. If not, there are no additional restrictions, whereby the access check is complete and access is granted at step 812 (a handle to the object is returned) based solely on user and group access. In this manner, a normal token is essentially checked as before. However, if the token includes restricted security IDs as determined by step 806, then a secondary access check is performed at step 808 by comparing the restricted security IDs against the entries in the ACL 80. If this secondary access test allows access at step 810, access to the object is granted at step 812. If not, access is denied at step 814.
  • a two-part test is thus performed whenever restricted Security IDs are present in the token 84.
  • both the normal access test and (bitwise AND) the restricted security IDs access test must grant access in order for the process to be granted access to the object.
  • the normal access test proceeds first, and if access is denied, no further testing is necessary.
  • a token may include multiple sets of restricted SIDs, with a Boolean expression in the ACL covering the evaluation of those SIDs.
  • an ACL may specify that "access must be granted to set A OR (set B AND set C) .” Note that access may be denied either because no security ID (or set of SIDs) in the token properly matched an identifier in the ACL, or because an ACL entry specifically denied access to the token based on a security identifier therein.
  • the process 94 was restricted so as to only be able to access objects having an "Internet Explorer" SID (non-DENY) in their ACLs.
  • the caller may have specified MAXIMUM_ALLOWED access, whereby as described above, an algorithm walks through the ACL 80 determining the maximum access.
  • restricted tokens if any type of user or group access at all is granted, the type or types of access rights allowable following the user and groups run is specified as the desired access for the second run, which checks the RestrictedSids list. In this way, a restricted token is certain to be granted less than or equal to access than the normal token.
  • security model of the present invention may be used in conjunction with other security models.
  • capability-based security models residing on top of an operating system may be used above the operating system-level security model of the present invention.
  • capabilities may be implemented as restricted SIDs.
  • the present invention is directed to the system' s automatic enforcement of a user running with reduced access rights and/or privileges.
  • access or “privileges,” when used in the context of the ability of a process to use a resource, refers to either privileges or security identifiers, or some combination of both.
  • a restricted token has reduced “access” with respect to its parent token's access, either by having one or more privileges removed and/or having SIDs set to USE_FOR_DENY_ONLY .
  • a restricted token may also have reduced access if the parent token is a normal user-based token and the restricted token has restricted SIDs therein, or if the parent token itself includes restricted SIDs and the (child) restricted token has fewer restricted SIDs therein.
  • running with increased or elevated “privi privileges” will be the same as running with increased "access,” even though the increased access may actually result from security IDs in the token rather than via actual privileges listed in the token.
  • a first way in which least (i.e., in some way reduced) privileges may be enforced is to logically connect restrictions to applications. More particularly, restricted execution contexts allow the operating system to create separate restricted security IDs for each application, as well as for each resource. The operating system may then include a secure application launcher that knows what resources an application needs to access, and via a restricted token, limit the application (i.e., its processes) to accessing only those resources.
  • an application program 110 may have restriction information 112 associated therewith.
  • applications may be shipped with default restrictions, and/or an administrator or the like may set restrictions therefor when installing the application.
  • the information 112 may include restrictions such as which files or directories the application may access, whether the application needs an administrator to run it, or whether the application needs to launch any other programs.
  • the system stores this restriction information 112 in a database, or other non-volatile memory or the like.
  • a program launcher 114 such as Windows Explorer may store the information in its explorer link files.
  • the program launcher 114 When run, the program launcher 114 reads the restriction information 112, and based on the stored information, creates a restricted token 122 from the normal, user-based token 116. As a result, the application program 110 is restricted to accessing only those resources 124 to which the restricted token 122 allows access. For example, via the restricted token 122, a game program 110 may be restricted to only accessing its own data files. To this end, as shown in FIG. 10, the restricted token 122 includes in its restricted SIDs field a restricted SID that identifies the application, e.g., shown as "GAME33" in FIG. 10. As also shown in FIG.
  • the ACL associated with each of the game' s data files include one or more identifiers (also shown as "GAME33") corresponding to the restricted SID or SIDs placed in the restricted token 122.
  • the application 110 will be granted access to this file object 124 because both the user SID and restricted SID match entries in the security descriptor.
  • the security descriptors of other files in the system lack such a "GAME33" SID, thereby preventing the game program 110 from accessing those other files.
  • Another use is to control viruses by granting an application access only to the one file being edited instead of range of files. In this manner, a macro virus is effectively stopped by not letting the document access other documents .
  • an application program 130 may have its functions divided between administrative and non-administrative types of activities. In this manner, an administrator running with elevated privileges will be able to perform such tasks as adding new features to the application or setting its default behavior. Note that via restricted tokens, this may be accomplished in any number of ways, such as by denying access to non-administrators to dynamic link libraries (DLLs) containing certain functions and/or the data files that store the default information.
  • DLLs dynamic link libraries
  • Another way is to associate a token with each process that each function attempts to perform, e.g., restricted token for functions designated as non- privileged and a normal token for privileged functions.
  • restricted token for functions designated as non- privileged
  • normal token for privileged functions.
  • ordinary users having less access will be able to perform normal functions such as entering and saving data, while higher-level user will be able to perform administrative-like functions.
  • some functions may be logically in both groups by allowing access thereto by any type of valid user.
  • the separate portions may be mutually exclusive with respect to access.
  • restricted tokens such as to grant or deny access to certain functions for administrators
  • the application may be written such that administrators will not be able to perform normal functions when running in the administrative mode, and vice-versa. This prevents an administrator who is performing non-administrative tasks in the normal mode (e.g., entering data) from inadvertently doing some damage (e.g., deleting files) via a privileged function.
  • the application may have a different appearance (e.g., a different color scheme) depending on the mode in which it is being run.
  • the present invention provides the ability to specify that no program can normally be run with administrator privileges. This may be enforced by requiring the user to launch programs with administrator privileges from a secure desktop (i.e., one managed by the operating system) . This forces the user to explicitly use administrative privileges instead of just trusting the programs.
  • FIG. 12 represents how a system may enforce operation with least or reduced access.
  • a restricted token is created for a user that has less access than that user's normal token. As described above, this is accomplished by changing the attributes of user and group SIDs to
  • the restricted token is associated with the user's restricted process.
  • an access evaluation is performed, using the restricted token against the security descriptor of the resource, as described above.
  • more than two levels of restriction are feasible, (e.g., a normal token, a first restricted token created from the normal token and a second restricted token created from the first restricted token) .
  • the restricted token associated with the process at step 1202 is typically the one with the least access. The user thus defaults to using a reduced (e.g., the lowest possible) access level for each task.
  • the operating system determines whether access (of the desired type) is allowed, and if so, branches to step 1220 where the appropriate type of access is granted and the task performed.
  • the access evaluation comprises the two-part access check as described above.
  • step 1204 if at step 1204 access is not allowed, instead of denying access, the operating system may give the user an additional opportunity to access the resource using a token with increased access.
  • step 1206 tests to determine if the user's token is a restricted token. This determination may be made via the token' s ParentTokenID field, since a restricted token has a non- NULL parent token identified in that field. If the token does not have a parent (step 1206) , then access is immediately denied at step 1222 since the user does not have access rights with his or her normal token regardless of any restrictions.
  • step 1206 the system prompts the user at step 1210 to determine whether the user wants to try accessing the resource again at an increased access level, i.e., with the restricted token's parent token. In this manner, a user is made aware of a possibly dangerous situation, i.e., something extraordinary is pending. If the user decides not to attempt to perform the task with increased access, step 1212 branches to step 1222 where access is denied.
  • step 1212 branches to step 1214 wherein the access is increased by associating the parent token with the process, and the evaluation again performed. If access is allowed (step 1216), the requested task is performed at step 1218. If access is not allowed at step 1216, step 1206 is again performed to determine if the token has a parent token. In this manner, more than two levels of restrictions are supported.
  • the above-described mechanism is not for the purpose of denying access to a qualified user, but rather is for the purpose of warning the qualified user that an event requiring a higher access level has been requested.
  • the user must take a second, definite action before the event will be performed.
  • the user has no additional rights above those granted by the user's normal token.
  • an administrator will set up a restricted token for running his or her tasks.
  • the restricted token restricts the administrator to running with the privileges and access rights granted to non- administrators of the group.
  • the administrator cannot inadvertently do something to damage the system (e.g., delete all files on a disk drive) , without being prompted that the requested action is at a higher level than for ordinary users.
  • the prompt and response mechanism ensures that only a specific override will allow the administrative-level action.
  • an improved security model that enforces operation with least (or in some way reduced) privileges via restricted tokens.
  • the enforcement is automatic, and may, for example, be based on the application, written into the application and/or provided by the system via a prompt and response mechanism. While the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.

Abstract

A method and mechanism to enforce reduced access via restricted access tokens. Restricted access tokens are based on an existing token, and have less access than that existing token. A process is associated with a restricted token, and when the restricted process attempts to perform an action on a resource, a security machanism compares the access token information with security information associated with the resource to grant or deny access. Application programs may have restriction information stored in association therewith, such that when launched, a restricted token is created for that application based on the restriction information thereby automatically reducing that application's access. Applications may be divided into defferent access levels such as privileged and non-privileged portions, thereby automatically restricting the actions a user can perform via that application. Also, the system may enforce running with reduced access by running user prodesses with a restricted token, and then requiring a definite action by the user to specifically override actions that are restricted by temporarily running with the user's normal token.

Description

LEAST PRIVILEGE VIA RESTRICTED TOKENS
FIELD OF THE INVENTION
The invention relates generally to computer systems, and more particularly to improvements in security for computer systems.
BACKGROUND OF THE INVENTION
In computing, if a task is performed by a user having more privileges than necessary to do that task, there is an increased risk that the user inadvertently will do some harm to computer resources. By way of example, if a set of files can only be deleted by a user with administrator privileges, then an administrator may inadvertently delete those files when performing another task that does not need to be accomplished by an administrator. If the administrator had been a user having lesser privileges, then the intended task could still have been performed but the inadvertent deletion would not have been allowed.
Thus, a recognized goal in computer security is the concept of least privilege, in which a user performing a task should run with the absolute minimum privileges (or identities, such as group memberships) necessary to do that task. However, there is no convenient way to add and remove a user's access rights and privileges. For example, in the Windows NT operating system, when the user logs on, an access token is built for the user based on the user's credentials. The access token determines the access rights and privileges that the user will have for that session. As a result, the user will have those privileges for each task attempted during that session and for any future sessions. While ideally an administrator can set up multiple identities and log-on as a different user with different rights for each task, this is too burdensome and too complicated. Moreover, since there is no automatic enforcement, even a safety- conscious administrator is unlikely to log off and log back on with a new identity each time a different task is performed, simply to avoid the possibility of doing some unintended action.
In short, there is simply not a convenient way to change privilege levels or access rights, nor a way to further restrict privileges at a granularity finer than that created by the domain administrator. Other operating systems have similar problems that make running with least privileges an ideal that is rarely, if ever, practiced.
SUMMARY OF THE INVENTION
Briefly, the present invention provides a mechanism to enforce least privilege, or in some way reduced access, via restricted access tokens. Restricted access tokens enable a security mechanism to determine whether a process has access to a resource based on a modified, restricted version of an existing access token. The restricted token is based on an existing token, and has less access than that token. A restricted token may be created from an existing (parent) token by changing an attribute of one or more security identifiers that allow access in the parent token to a setting that denies access in the restricted token and/or removing one or more privileges from the restricted token that are present in the parent token. In addition, restricted security identifiers may be placed in the restricted token.
In use, a process is associated with a restricted token, and when the restricted process attempts to perform an action on a resource, a kernel mode security mechanism first compares the user-based security identifiers and the intended type of action against a list of identifiers and actions associated with the resource. If there are no restricted security identifiers in the restricted token, access is determined by the result of this first comparison. If there are restricted security identifiers in the restricted token, a second access check for this action compares the restricted security identifiers against the list of identifiers and actions associated with the resource. With a token having restricted security identifiers, the process is granted access to the resource only if both the first and second access checks pass. Application programs may have restriction information stored in association therewith. When the application is launched, a restricted token is created for that application based on the restriction information. In this manner, reduced access is automatically enforced for that application. Applications may be divided into different access levels such as privileged and non- privileged portions, thereby automatically restricting the actions a user can perform via that application. Also, the system may enforce running with reduced access by running user processes with a restricted token, and then requiring a definite action by the user to specifically override actions that are restricted by temporarily running with the user's normal token.
Other advantages will become apparent from the following detailed description when taken in conjunction with the drawings, in which: BRIEF DESCRIPTION OF THE DRAWINGS
FIGURE 1 is a block diagram representing a computer system into which the present invention may be incorporated; FIG. 2 is a block diagram generally representing the creation of a restricted token from an existing token;
FIG. 3 is a block diagram generally representing the various components for determining whether a process may access a resource; FIGS. 4 - 5 comprise a flow diagram representing the general steps taken to create a restricted token from an existing token;
FIG. 6 is a block diagram generally representing a process having a restricted token associated therewith attempting to access a resource;
FIG. 7 is a block diagram generally representing the logic for determining access to an object of a process having a restricted token associated therewith;
FIG. 8 is a flow diagram representing the general steps taken when determining whether to grant a process access to a resource;
FIG. 9 is a block diagram of various components for automatically running an application program with reduced privileges in accordance with one aspect of the present invention;
FIG. 10 is a block diagram generally representing a process having a restricted token automatically associated therewith attempting to access a resource in accordance with one aspect of the present invention; FIG. 11 is a diagram representing an application program split into privileged and non-privileged portions in accordance with one aspect of the present invention; and FIG. 12 is a is a flow diagram representing general steps taken to enforce a user running with reduced access in accordance with one aspect of the present invention.
DETAILED DESCRIPTION
Exemplary Operating Environment
Figure 1 and the following discussion are intended to provide a brief general description of a suitable computing environment in which the invention may be implemented. Although not required, the invention will be described in the general context of computer- executable instructions, such as program modules, being executed by a personal computer. Generally, program modules include routines, programs, objects, components, data structures and the like that perform particular tasks or implement particular abstract data types. Moreover, those skilled in the art will appreciate that the invention may be practiced with other computer system configurations, including hand-held devices, multi- processor systems, microprocessor-based or programmable consumer electronics, network PCs, minicomputers, mainframe computers and the like. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in both local and remote memory storage devices.
With reference to FIG. 1, an exemplary system for implementing the invention includes a general purpose computing device in the form of a conventional personal computer 20 or the like, including a processing unit 21, a system memory 22, and a system bus 23 that couples various system components including the system memory to the processing unit 21. The system bus 23 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. The system memory includes read-only memory (ROM) 24 and random access memory (RAM) 25. A basic input/output system 26 (BIOS) , containing the basic routines that help to transfer information between elements within the personal computer 20, such as during start-up, is stored in ROM 24. The personal computer 20 may further include a hard disk drive 27 for reading from and writing to a hard disk, not shown, a magnetic disk drive 28 for reading from or writing to a removable magnetic disk 29, and an optical disk drive 30 for reading from or writing to a removable optical disk 31 such as a CD-ROM or other optical media. The hard disk drive 27, magnetic disk drive 28, and optical disk drive 30 are connected to the system bus 23 by a hard disk drive interface 32, a magnetic disk drive interface 33, and an optical drive interface 34, respectively. The drives and their associated computer-readable media provide non-volatile storage of computer readable instructions, data structures, program modules and other data for the personal computer 20. Although the exemplary environment described herein employs a hard disk, a removable magnetic disk 29 and a removable optical disk 31, it should be appreciated by those skilled in the art that other types of computer readable media which can store data that is accessible by a computer, such as magnetic cassettes, flash memory cards, digital video disks, Bernoulli cartridges, random access memories (RAMs) , read-only memories (ROMs) and the like may also be used in the exemplary operating environment.
A number of program modules may be stored on the hard disk, magnetic disk 29, optical disk 31, ROM 24 or RAM
- o 25, including an operating system 35 (preferably Windows NT) , one or more application programs 36, other program modules 37 and program data 38. A user may enter commands and information into the personal computer 20 through input devices such as a keyboard 40 and pointing device 42. Other input devices (not shown) may include a microphone, joystick, game pad, satellite dish, scanner or the like. These and other input devices are often connected to the processing unit 21 through a serial port interface 46 that is coupled to the system bus, but may be connected by other interfaces, such as a parallel port, game port or universal serial bus (USB) . A monitor 47 or other type of display device is also connected to the system bus 23 via an interface, such as a video adapter 48. In addition to the monitor 47, personal computers typically include other peripheral output devices (not shown), such as speakers and printers.
The personal computer 20 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 49. The remote computer 49 may be another personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the personal computer 20, although only a memory storage device 50 has been illustrated in FIG. 1. The logical connections depicted in FIG. 1 include a local area network (LAN) 51 and a wide area network (WAN) 52. Such networking environments are commonplace in offices, enterprise-wide computer networks, Intranets and the Internet.
When used in a LAN networking environment, the personal computer 20 is connected to the local network 51 through a network interface or adapter 53. When used in a WAN networking environment, the personal computer 20 typically includes a modem 54 or other means for establishing communications over the wide area network 52, such as the Internet. The modem 54, which may be internal or external, is connected to the system bus 23 via the serial port interface 46. In a networked environment, program modules depicted relative to the personal computer 20, or portions thereof, may be stored in the remote memory storage device. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
The General Securi ty Model
The preferred security model of the present invention is described herein with reference to the Windows NT security model. Notwithstanding, there is no intention to limit the present invention to the Windows NT operating system, but on the contrary, the present invention is intended to operate with and provide benefits with any mechanism that performs security checks at the operating system level.
In general, in the Windows NT operating system, a user performs tasks by accessing the system' s resources via processes (and their threads) . For purposes of simplicity herein, a process and its threads will be considered conceptually equivalent, and will thus hereinafter simply be referred to as a process. Also, the system's resources, including files, shared memory and physical devices, which in Windows NT are represented by objects, will be ordinarily referred to as either resources or objects herein.
When a user logs on to the Windows NT operating system and is authenticated, a security context is set up for that user, which includes building an access token 60. As shown in the left portion of FIG. 2, a conventional user-based access token 60 includes a UserAndGroups field 62 including a security identifier (Security ID, or SID) 64 based on the user's credentials and one or more group IDs 66 identifying groups (e.g., within an organization) to which that user belongs. The token 60 also includes a privileges field 68 listing any privileges assigned to the user. For example, one such privilege may give an administrative-level user the ability to set the system clock through a particular application programming interface (API) . Note that privileges override access control checks, described below, that are otherwise performed before granting access to an object. As will be described in more detail below and as generally represented in FIG. 3, a process 70 desiring access to an object 72 specifies the type of access it desires (e.g., obtain read/write access to a file object) and at the kernel level provides its associated token 60 to an object manager 74. The object 72 has a kernel level security descriptor 76 associated therewith, and the object manager 74 provides the security descriptor 76 and the token 60 to a security mechanism 78. The contents of the security descriptor 76 are typically determined by the owner (e.g., creator) of the object, and generally comprise a (discretionary) access control list (ACL) 80 of access control entries, and for each entry, one or more access rights (allowed or denied actions) corresponding to that entry. Each entry comprises a type (deny or allow) indicator, flags, a security identifier (SID) and access rights in the form of a bitmask wherein each bit corresponds to a permission (e.g., one bit for read access, one for write and so on) . The security mechanism 78 compares the security IDs in
_ Q _ the token 60 along with the type of action or actions requested by the process 70 against the entries in the ACL 80. If a match is found with an allowed user or group, and the type of access desired is allowable for the user or group, a handle to the object 72 is returned to the process 70, otherwise access is denied.
By way of example, a user with a token identifying the user as a member of the λAccounting" group may wish to access a particular file object with read and write access. If the file object has the λAccounting" group identifier of type allow in an entry of its ACL 80, and the group has rights enabling read and write access, a handle granting read and write access is returned, otherwise access is denied. Note that for efficiency reasons, the security check is performed only when the process 70 first attempts to access the object 72 (create or open), and thus the handle to the object stores the type of access information so as to limit the actions that can be performed therethrough. The security descriptor 76 also includes a system ACL, or SACL 81, which comprises entries of type audit corresponding to client actions that are to be audited. Flags in each entry indicate whether the audit is monitoring successful or failed operations, and a bitmask in the entry indicates the type of operations that are to be audited. A security ID in the entry indicates the user or group being audited. For example, consider a situation wherein a particular group is being audited so as to determine whenever a member of that group that does not have write access to a file object attempts to write to that file. The SACL 81 for that file object includes an audit entry having the group security identifier therein along with an appropriately set fail flag and write access bit. Whenever a client belonging to that particular group attempts to write to the file object and fails, the operation is logged.
Note that the ACL 80 may contain one or more identifiers that are marked for denying users of groups access (as to all rights or selected rights) rather than granting access thereto. For example, one entry listed in the ACL 80 may otherwise allow members of wGro p3" access to the object 72, but another entry in the ACL 80 may specifically deny λ'Group24" all access. If the token 60 includes the 'Group∑ ' security ID, access will be denied regardless of the presence of the w Group" security ID. Of course to function properly, the security check is arranged so as to not allow access via the λλGroup3" entry before checking the WDENY ALL" status of the Groups entry, such as by placing all DENY entries at the front of the ACL 80. As can be appreciated, this arrangement provides for improved efficiency, as one or more isolated members of a group may be separately excluded in the ACL 80 rather than having to individually list each of the remaining members of a group to allow their access.
Note that instead of specifying a type of access, a caller may request a MAXIMUM_ALLOWED access, whereby an algorithm determines the maximum type of access allowed, based on the normal UserAndGroups list versus each of the entries in the ACL 80. More particularly, the algorithm walks down the list of identifiers accumulating the rights for a given user (i.e., OR-ing the various bitmaps) . Once the rights are accumulated, the user is given the accumulated rights. However, if during the walkthrough a deny entry is found that matches a user or group identifier and the requested rights, access is denied. Restri cted Tokens
A restricted token is created from an existing access token (either restricted or unrestricted) as described below. As also described below, if the restricted token includes any restricted security IDs, the token is subject to an additional access check wherein the restricted security IDs are compared against the entries in the object's ACL. Restricted tokens are also described in the copending U.S. Patent Application entitled Λ Securi ty Model Using Restri cted Tokens" assigned to the same assignee as the present invention, filed concurrently herewith and incorporated by reference in its entirety.
The primary use of a restricted token is for a process to create a new process with a restricted version of its own token. The restricted process is then limited in the actions it may perform on resources. For example, a file object resource may have in its ACL a single restricted SID identifying the Microsoft Word application program, such that only restricted processes having the same Microsoft Word restricted SID in its associated restricted token may access the file object. Then, for example, untrusted code such as downloaded via a browser could be run in a restricted process that did not have the Microsoft Word restricted Security ID in its restricted token, preventing that code' s access to the file object.
For security reasons, creating a process with a different token normally requires a privilege known as the SeAssignPrimaryToken privilege. However, to allow processes to be associated with restricted tokens, process management allows one process with sufficient access to another process to modify its primary token to a restricted token, if the restricted token is derived from the primary token. By comparing the ParentTokenld of the new process's token with the Tokenld of the existing process' token, the operating system 35 may ensure that the process is only creating a restricted version of itself.
A restricted token 84 has less access than its parent token, and may, for example, prevent access to an object based on the type of process (as well as the user or group) that is attempting to access the object, instead of simply allowing or denying access solely based on the user or group information. A restricted token may also not allow access via one or more user or group security IDs specially marked as USE_FOR_DENY_ONLY," even though the parent token allows access via those SIDs, and/or may have privileges removed that are present in the parent token.
Thus, one way in which to reduce access is to change an attribute of one or more user and/or group security identifiers in a restricted token so as to be unable to allow access, rather than grant access therewith.
Security IDs marked USE_FOR_DENY__ONLY are effectively ignored for purposes of granting access, however, an ACL that has a "λDENY" entry for that security ID will still cause access to be denied. By way of example, if the Group security ID in the restricted token 84 (FIG. 3) is marked USE_FOR_DENY_ONLY, when the user's process attempts to access an object 72 having the ACL 80 that lists Group2 as allowed, that entry is effectively ignored and the process will have to gain access by some other security ID. However, if the ACL 80 includes an entry listing Group? as DENY with respect to the requested type of action, then once tested, no access will be granted regardless of other security IDs. Note that access to objects cannot be safely reduced by simply removing a security ID from a user's token, since that security ID may be marked as "DENY" in the ACL of some objects, whereby removing that identifier would grant rather than deny access to those objects. Thus, the present invention allows a SID' s attributes to be modified to USE_FOR_DENY_ONLY in a restricted token. Moreover, no mechanism is provided to turn off this USE_FOR_DENY_ONLY security check. Another way to reduce access in a restricted token is to remove one or more privileges relative to the parent token. For example, a user having a normal token with administrative privileges may set up a system such that unless that user specifically informs the system otherwise, the user's processes will run with a restricted token having no privileges. As can be appreciated, and as described in more detail below, this prevents inadvertent errors that may occur when the user is not intentionally acting in an administrative capacity. Similarly, programs may be developed to run in different modes depending on a user's privileges, whereby an administrative-level user has to run the program with administrative privileges to perform some operations, but operate with reduced privileges to perform more basic operations. Again, this helps to prevent serious errors that might otherwise occur when such a user is simply attempting to perform normal operations but is running with elevated privileges.
Yet another way to reduce a token's access is to add restricted security IDs thereto. Restricted security IDs are numbers representing processes, resource operations and the like, made, unique such as by appending a GUID or a number generated via a cryptographic hash or mapping to a GUID or a cryptographic hash, and may include information to distinguish these Security IDs from other
Security IDs. Although not necessary to the invention, for convenience, various application programming interfaces (APIs) are provided to interface applications and users with Security IDs, such as to accomplish a GUID to Security ID conversion, represent the Security IDs in human readable form, and so on.
In addition to restricting access to a resource based on the application (process) requesting access, specific Security IDs may be developed based on likely restricted uses of a resource. By way of example, a Security ID such as ΛUSE_WINDOWS" would be placed in the default ACLs of graphical user interface objects to allow access thereto only by a process having a corresponding SID in its restricted token. Similarly, the default ACL of a printer object may include a WUSE_PRINTING" SID in its default ACL, so that a process could create a restricted process with only this Security ID listed in its restricted token, whereby the restricted process would be able to access the printer but no other resource. As can be appreciated, numerous other Security IDs for accessing other resources may be implemented. As shown in FIG. 3, restricted security IDs are placed in a special field 82 of a restricted token 84, such as for identifying a process that is requesting an action. As described in more detail below, by requiring that both at least one user (or group) security ID and at least one restricted security ID be granted access to an object, an object may selectively grant access based on a requesting process (as well as a user or group) . For example, an object such as a file object may allow Microsoft Word, Microsoft Excel or Windows Explorer processes to access it, but deny access to any other process. Moreover, each of the allowed processes may be granted different access rights.
The design provides for significant flexibility and granularity within the context of a user to control what different processes are allowed to do. One expected usage model for these features includes a distinction between trusted applications and untrusted applications. Note that the term * application" is used in a generic sense to describe any piece of code that may be executed in "user mode" under a given security context. For example, an application such as Microsoft Word may be launched from an ActiveX control, which may be loaded into an existing process and executed. Applications which launch other applications, such as Microsoft's Internet Explorer, may introduce a "trust model" using this infrastructure.
By way of example, an application such as Internet Explorer can use restricted tokens to execute untrusted executable code under different processes, and control what those processes can do within the user's overall access rights and privileges. To this end, the Internet Explorer application creates a restricted token from its own token, and determines which restricted security IDs will be placed in the restricted token. Then, the untrusted executable code is restricted to accessing only those objects that the restricted context may access.
Moreover, entries corresponding to restricted SIDs and other restrictions may be placed in a field of the SACL 81 for auditing purposes. For example, the SACL of a resource may be set up to audit each time that Internet Explorer program attempts read or write access of that resource, and/or the use of SIDs marked USE_FOR_DENY_ONLY may be audited. For purposes of simplicity, auditing will not be described in detail hereinafter, however it can be readily appreciated that the concepts described with respect to access control via restricted SIDs are applicable to auditing operations.
To create a restricted token from an existing token, an application programming interface (API) is provided, named NtFilterToken, as set forth below:
NTSTATUS
NtFilterToken (
IN HANDLE ExistingTokenHandle,
IN ULONG Flags,
IN PTOKEN GROUPS SidsToDisable OPTIONAL,
IN PTOKEN PRIVILEGES Privil egesToDelete OPTIONAL,
IN PTOKEN GROUPS RestrictingSids OPTIONAL,
OUT PHANDLE NewTokenHandle
) ;
The NtFilterToken API is wrapped under a Win32 API named CreateRestrictedToken, further set forth below:
WINADVAPI
BOOL
APIENTRY
CreateRestrictedToken (
IN HANDLE ExistingTokenHandle,
IN DWORD Flags,
IN DWORD DisableSidCount,
IN PSID AND ATTRIBUTES SidsToDisable ( DPTIONAL,
IN DWORD DeletePrivilegeCount,
IN PLUID AND ATTRIBUTES PrivilegesToDelete OPTIONAL,
IN DWORD RestrictedSidCount,
IN PSID AND ATTRIBUTES SidsToRestrict OPTIONAL,
OUT PHANDLE NewTokenHandle
) ; As represented in FIGS. 2 and 4 - 5, these APIs 86 work in conjunction to take an existing token 60, either restricted or unrestricted, and create a modified (restricted) token 84 therefrom. The structure of a restricted token, which contains the identification information about an instance of a logged-on user, includes three new fields, ParentTokenld, RestrictedSidCount and RestrictedSids (shown in boldface below) :
Typedef struct TOKEN {
TOKEN SOURCE TokenSource; // Ro: 16-Bytes
LUID Tokenld; // Ro: 8-Bytes
LUID Authentication^; // Ro: 8-Bytes
LUID ParentTokenld; // Ro: 8-Bytes
LARGE INTEGER ExpirationTime; // Ro: 8-Bytes
LUID Modifiedld; // Wr: 8-Bytes
ULONG UserAndGroupCount; // Ro: 4-Bytes
TJLONG RestrictedSidCount; // Ro: 4-Bytes
ULONG PrivilegeCount; // Ro: 4-Bytes
ULONG VariableLength; // Ro: 4-Bytes
ULONG DynamicCharged; // Ro: 4-Bytes
ULONG DynamicAvailable; // Wr: 4-Bytes (Mod)
ULONG DefaultOwnerlndex; // Wr: 4-Bytes (Mod)
PSID AND ATTRIBUTES UserAndGroups; // Wr: 4-Bytes (Mod)
PSID_AND_ATTRIBUTES RestrictedSids ; // Ro: 4-Bytes
PSID PrimaryGroup; // Wr: 4-Byes (Mod)
PLUID AND ATTRIBUTES Privileges; // Wr: 4-Bytes (Mod)
PULONG DynamicPart; // Wr: 4-Bytes (Mod)
PACL DefaultDacl; // Wr: 4-Bytes (Mod)
TOKEN TYPE TokenType; // Ro: 1-Byte
SECURITY IMPERSONATION_LEVEL
ImpersonationLevel ; // Ro: 1-Byte
UCHAR TokenFlags; // Ro: 4-Bytes
BOOLEAN TokenlnUse; // Wr: 1-Byte
PSECURITY TOKEN PROXY_DATA ProxyData; // Ro: 4-Bytes
PSECURITY TOKEN AUDIT DATA AuditData; // Ro: 4-Bytes
ULONG VariablePart; // Wr: 4-Bytes (Mod)
} TOKEN, * PTOKEN;
Note that when a normal (non-restricted) token is now created, via a CreateToken API, the RestrictedSids field is empty, as is the ParentTokenld field.
To create a restricted token 84, a process calls the CreateRestrictedToken API with appropriate flag settings and/or information in the input fields, which in turn invokes the NtFilterToken API. As represented beginning at step 400 of FIG. 4, the NtFilterToken API checks to see if a flag named DISABLE_MAX_SIDS is set, which indicates that all Security IDs for groups in the new, restricted token 84 should be marked as
USE_FOR_DENY__ONLY . The flag provides a convenient way to restrict the (possibly many) groups in a token without needing to individually identify each of the groups. If the flag is set, step 400 branches to step 402 which sets a bit indicating USE__FOR_DENY_ONLY on each of the group security IDs in the new token 84.
If the DISABLE_MAX_SIDS flag is not set, then step 400 branches to step 404 to test if any security IDs are individually listed in a SidsToDisable Field of the
NtFilterToken API. As shown at step 404 of FIG. 4, when the optional SidsToDisable input field is present, at step 406, any Security IDs listed therein that are also present in the UserAndGroups field 62 of the parent token 60 are individually marked as USE_FOR_DENY_ONLY in the UserAndGroups field 88 of the new restricted token 84. As described above, such Security IDs can only be used to deny access and cannot be used to grant access, and moreover, cannot later be removed or enabled. Thus, in the example shown in FIG. 2, the Group: security ID is marked as USE_FOR_DENY_ONLY in the restricted token 84 by having specified the Group2 security ID in the SidsToDisable input field of the NtFilterToken API 86. The filter process then continues to step 410 of FIG. 4, wherein a flag named DISABLE_MAX_PRIVILEGES is tested. This flag may be similarly set as a convenient shortcut to indicate that all privileges in the new, restricted token 84 should be removed. If set, step 410 branches to step 412 which deletes all privileges from the new token 84.
If the flag is not set, step 410 branches to step 414 wherein the optional PrivilegesToDelete field is examined. If present when the NtFilterToken API 86 is called, then at step 416, any privileges listed in this input field that are also present in the privileges field 68 of the existing token 60 are individually removed from the privileges field 90 of the new token 84. In the example shown in FIG. 2, the privileges shown as * Privilege: " to w Privilege ' have been removed from the privileges field 90 of the new token 84 by having specified those privileges in the PrivilegesToDelete input field of the NtFilterToken API 86. In keeping with one aspect of the present invention, as described above, this provides the ability to reduce the privileges available in a token. The process continues to step 420 of FIG. 5.
When creating a restricted token 84, if SIDs are present in the RestrictingSids input field at step 420, then a determination is made as to whether the parent token is a normal token or is itself a restricted token having restricted SIDs. An API, IsTokenRestricted is called at step 422, and resolves this question by querying (via the NtQuerylnformationToken API) the RestrictingSids field of the parent token to see if it is not NULL, whereby if not NULL, the parent token is a restricted token and the API returns a TRUE. If the test is not satisfied, the parent token is a normal token and the API returns a FALSE. Note that for purposes of the subsequent steps 426 or 428, a parent token that is restricted but does not have restricted SIDs (i.e., by having privileges removed and/or USE_FOR_DENY_ONLY SIDs) may be treated as being not restricted.
At step 424, if the parent token is restricted, step 424 branches to step 426 wherein any security IDs that are in both the parent token's restricted Security ID field and the API'.s restricted Security ID input list are put into the restricted Security ID field 92 of the new token 84. Requiring restricted security IDs to be common to both lists prevents a restricted execution context from adding more security IDs to the restricted Security ID field 92, an event which would effectively increase rather than decrease access. Similarly, if none are common at step 426, any token created still has to be restricted without increasing the access thereof, such as by leaving at least one restricted SID from the original token in the new token. Otherwise, an empty restricted SIDs field in the new token would indicate that the token is not restricted, an event which would effectively increase rather than decrease access.
Alternatively, if at step 424 the parent token is determined to be a normal token, then at step 428 the RestrictingSids field 92 of the new token 84 is set to those listed in the input field. Note that although this adds security IDs, access is actually decreased since a token having restricted SIDs is subject to a secondary access test, as described in more detail below.
Lastly, step 430 is also executed, whereby the ParentTokenld 93 in the new token 84 is set to the
Tokenld of the existing (parent) token. This provides the operating system with the option of later allowing a process to use a restricted version of its token in places that would not normally be allowed except to the parent token.
Turning an explanation of the operation of the invention with particular reference to FIGS. 6 - 8, as represented in FIG. 6, a restricted process 94 has been created and is attempting to open a file object 70 with read/write access. In the security descriptor of the object 72, the ACL 80 has a number of security IDs listed therein along with the type of access allowed for each ID, wherein "RO" indicates that read only access is allowed, "WR" indicates read/write access and "SYNC" indicates that synchronization access is allowed. Note that 'XJones" is specifically denied access to the object 72, even if "XJones" would otherwise be allowed access through membership in an allowed group. Moreover, the process 94 having this token 84 associated therewith will not be allowed to access any object via the "Basketball" security ID in the token84, because this entry is marked λ DENY" (i.e., USE_FOR_DENY_ONLY) .
For purposes of security, restricted security contexts are primarily implemented in the Windows NT kernel. To attempt to access the object 72, the process 94 provides the object manager 74 with information identifying the object to which access is desired along with the type of access desired, (FIG. 8, step 800) . In response, as represented at step 802, the object manager 74 works in conjunction with the security mechanism 78 to compare the user and group security IDs listed in the token 84 (associated with the process 94) against the entries in the ACL 80, to determine if the desired access should be granted or denied.
As generally represented at step 804, if access is not allowed for the listed user or groups, the security check denies access at step 814. However, if the result of the user and group portion of the access check indicates allowable access at step 804, the security process branches to step 806 to determine if the restricted token 84 has any restricted security IDs. If not, there are no additional restrictions, whereby the access check is complete and access is granted at step 812 (a handle to the object is returned) based solely on user and group access. In this manner, a normal token is essentially checked as before. However, if the token includes restricted security IDs as determined by step 806, then a secondary access check is performed at step 808 by comparing the restricted security IDs against the entries in the ACL 80. If this secondary access test allows access at step 810, access to the object is granted at step 812. If not, access is denied at step 814.
As logically represented in FIG. 7, a two-part test is thus performed whenever restricted Security IDs are present in the token 84. Considering the security IDs in the token 84 and the desired access bits 96 against the security descriptor of the object 72, both the normal access test and (bitwise AND) the restricted security IDs access test must grant access in order for the process to be granted access to the object. Although not necessary to the invention, as described above, the normal access test proceeds first, and if access is denied, no further testing is necessary. Moreover, it should be noted that a token may include multiple sets of restricted SIDs, with a Boolean expression in the ACL covering the evaluation of those SIDs. For example, to grant access to a resource, an ACL may specify that "access must be granted to set A OR (set B AND set C) ." Note that access may be denied either because no security ID (or set of SIDs) in the token properly matched an identifier in the ACL, or because an ACL entry specifically denied access to the token based on a security identifier therein.
Thus, in the example shown in FIG. 6, no access to the object 72 will be granted to the process 94 because the only Restricted SID in the token 84 (field 92) identifies "Internet Explorer," while there is no counterpart restricted SID in the object's ACL 80.
Although the user had the right to access the object via a process running with a normal token, the process 94 was restricted so as to only be able to access objects having an "Internet Explorer" SID (non-DENY) in their ACLs. Note that instead of specifying a type of access, the caller may have specified MAXIMUM_ALLOWED access, whereby as described above, an algorithm walks through the ACL 80 determining the maximum access. With restricted tokens, if any type of user or group access at all is granted, the type or types of access rights allowable following the user and groups run is specified as the desired access for the second run, which checks the RestrictedSids list. In this way, a restricted token is certain to be granted less than or equal to access than the normal token.
Lastly, it should be noted that the security model of the present invention may be used in conjunction with other security models. For example, capability-based security models residing on top of an operating system may be used above the operating system-level security model of the present invention. Indeed, capabilities may be implemented as restricted SIDs.
Least Privil ege Via Restricted Tokens
In general, the present invention is directed to the system' s automatic enforcement of a user running with reduced access rights and/or privileges. For purposes of simplicity, as used hereinafter, the terms "access" or "privileges," when used in the context of the ability of a process to use a resource, refers to either privileges or security identifiers, or some combination of both. Thus, a restricted token has reduced "access" with respect to its parent token's access, either by having one or more privileges removed and/or having SIDs set to USE_FOR_DENY_ONLY . A restricted token may also have reduced access if the parent token is a normal user-based token and the restricted token has restricted SIDs therein, or if the parent token itself includes restricted SIDs and the (child) restricted token has fewer restricted SIDs therein. Similarly, as used hereinafter, running with increased or elevated "privileges" will be the same as running with increased "access," even though the increased access may actually result from security IDs in the token rather than via actual privileges listed in the token.
In any event, a first way in which least (i.e., in some way reduced) privileges may be enforced is to logically connect restrictions to applications. More particularly, restricted execution contexts allow the operating system to create separate restricted security IDs for each application, as well as for each resource. The operating system may then include a secure application launcher that knows what resources an application needs to access, and via a restricted token, limit the application (i.e., its processes) to accessing only those resources.
Thus, in accordance with another aspect of the present invention and as represented in FIG. 9, an application program 110 (FIG. 9) may have restriction information 112 associated therewith. For example, applications may be shipped with default restrictions, and/or an administrator or the like may set restrictions therefor when installing the application. The information 112 may include restrictions such as which files or directories the application may access, whether the application needs an administrator to run it, or whether the application needs to launch any other programs. The system stores this restriction information 112 in a database, or other non-volatile memory or the like. For example, a program launcher 114 such as Windows Explorer may store the information in its explorer link files. When run, the program launcher 114 reads the restriction information 112, and based on the stored information, creates a restricted token 122 from the normal, user-based token 116. As a result, the application program 110 is restricted to accessing only those resources 124 to which the restricted token 122 allows access. For example, via the restricted token 122, a game program 110 may be restricted to only accessing its own data files. To this end, as shown in FIG. 10, the restricted token 122 includes in its restricted SIDs field a restricted SID that identifies the application, e.g., shown as "GAME33" in FIG. 10. As also shown in FIG. 10, the ACL associated with each of the game' s data files (e.g., the resource object 124) include one or more identifiers (also shown as "GAME33") corresponding to the restricted SID or SIDs placed in the restricted token 122. When the access evaluation is performed, as described above, the application 110 will be granted access to this file object 124 because both the user SID and restricted SID match entries in the security descriptor. However, as determined by the administrator via the operating system 35, the security descriptors of other files in the system lack such a "GAME33" SID, thereby preventing the game program 110 from accessing those other files.
Another use is to control viruses by granting an application access only to the one file being edited instead of range of files. In this manner, a macro virus is effectively stopped by not letting the document access other documents .
Yet another way in which to restrict access to an application is by separating the application itself into restricted and non-restricted portions. Of course, the application may have additional granularity and be separated into more than two portions based on restriction levels. By way of example, as shown in FIG. 11, an application program 130 may have its functions divided between administrative and non-administrative types of activities. In this manner, an administrator running with elevated privileges will be able to perform such tasks as adding new features to the application or setting its default behavior. Note that via restricted tokens, this may be accomplished in any number of ways, such as by denying access to non-administrators to dynamic link libraries (DLLs) containing certain functions and/or the data files that store the default information. Another way is to associate a token with each process that each function attempts to perform, e.g., restricted token for functions designated as non- privileged and a normal token for privileged functions. In any event, ordinary users having less access will be able to perform normal functions such as entering and saving data, while higher-level user will be able to perform administrative-like functions. Of course, some functions may be logically in both groups by allowing access thereto by any type of valid user.
Note that the separate portions may be mutually exclusive with respect to access. For example, using restricted tokens, such as to grant or deny access to certain functions for administrators, the application may be written such that administrators will not be able to perform normal functions when running in the administrative mode, and vice-versa. This prevents an administrator who is performing non-administrative tasks in the normal mode (e.g., entering data) from inadvertently doing some damage (e.g., deleting files) via a privileged function. Further, to highlight the mode of operation, the application may have a different appearance (e.g., a different color scheme) depending on the mode in which it is being run.
Moreover, the present invention provides the ability to specify that no program can normally be run with administrator privileges. This may be enforced by requiring the user to launch programs with administrator privileges from a secure desktop (i.e., one managed by the operating system) . This forces the user to explicitly use administrative privileges instead of just trusting the programs.
Yet another way to ensure that a user operates with least (or in some way reduced) privileges is to have the system default such that each user runs with a restricted token granting only a necessary amount of access. In general, if a qualified user needs to do a task that requires increased access, the user or the operating system needs to perform an explicit operation to obtain that access. To this end, a user having processes associated with a restricted token may temporarily have his or her processes associated with a token (restricted or normal) having increased access. Once the task is performed, the enhanced access is then removed by restoring the restricted token to the user's processes. FIG. 12 represents how a system may enforce operation with least or reduced access. In operation, beginning at step 1200, a restricted token is created for a user that has less access than that user's normal token. As described above, this is accomplished by changing the attributes of user and group SIDs to
USE_FOR_DENY_ONLY, removing one or more privileges and/or adding restricted .SIDs to the restricted token with respect to the normal parent token. Then, at step 1202, the restricted token is associated with the user's restricted process. As also shown at step 1202, when the process attempts to access a resource, an access evaluation is performed, using the restricted token against the security descriptor of the resource, as described above. Note that more than two levels of restriction are feasible, (e.g., a normal token, a first restricted token created from the normal token and a second restricted token created from the first restricted token) . If more than two levels are desired, the restricted token associated with the process at step 1202 is typically the one with the least access. The user thus defaults to using a reduced (e.g., the lowest possible) access level for each task.
At step 1204, the operating system (i.e., the security mechanism therein) determines whether access (of the desired type) is allowed, and if so, branches to step 1220 where the appropriate type of access is granted and the task performed. Note that when restricted SIDs are present and access is not via a privilege, the access evaluation comprises the two-part access check as described above.
In keeping with the invention, if at step 1204 access is not allowed, instead of denying access, the operating system may give the user an additional opportunity to access the resource using a token with increased access. To this end, step 1206 tests to determine if the user's token is a restricted token. This determination may be made via the token' s ParentTokenID field, since a restricted token has a non- NULL parent token identified in that field. If the token does not have a parent (step 1206) , then access is immediately denied at step 1222 since the user does not have access rights with his or her normal token regardless of any restrictions. Alternatively, if the token has a parent at step 1206, the system prompts the user at step 1210 to determine whether the user wants to try accessing the resource again at an increased access level, i.e., with the restricted token's parent token. In this manner, a user is made aware of a possibly dangerous situation, i.e., something extraordinary is pending. If the user decides not to attempt to perform the task with increased access, step 1212 branches to step 1222 where access is denied. However, if the user decides that the action is indeed desirable, (e.g., do indeed attempt to delete all files on a disk drive) , the user responds affirmatively to the prompt, whereby step 1212 branches to step 1214 wherein the access is increased by associating the parent token with the process, and the evaluation again performed. If access is allowed (step 1216), the requested task is performed at step 1218. If access is not allowed at step 1216, step 1206 is again performed to determine if the token has a parent token. In this manner, more than two levels of restrictions are supported.
Note that the above-described mechanism is not for the purpose of denying access to a qualified user, but rather is for the purpose of warning the qualified user that an event requiring a higher access level has been requested. The user must take a second, definite action before the event will be performed. However, in any situation, the user has no additional rights above those granted by the user's normal token. Thus, for example, an administrator will set up a restricted token for running his or her tasks. The restricted token restricts the administrator to running with the privileges and access rights granted to non- administrators of the group. Once set up in this manner, as described above, the administrator cannot inadvertently do something to damage the system (e.g., delete all files on a disk drive) , without being prompted that the requested action is at a higher level than for ordinary users. The prompt and response mechanism ensures that only a specific override will allow the administrative-level action.
As can be seen from the foregoing detailed description, there is provided an improved security model that enforces operation with least (or in some way reduced) privileges via restricted tokens. The enforcement is automatic, and may, for example, be based on the application, written into the application and/or provided by the system via a prompt and response mechanism. While the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.

Claims

WHAT IS CLAIMED IS:
1. In a system having a security mechanism that determines access of applications to resources based on information in an access token associated with each of the applications against security information associated with each of the resources, a method of restricting the access of an application to system resources, comprising the steps of, storing restriction information with respect to the application, receiving a request to run the application, creating a restricted access token based on the restriction information, and associating the restricted token with the application
2. The method of claim 1 further comprising the steps of, running the application, and attempting to access the system resources using the restricted token as the access token of the application.
3. The method of claim 1 wherein the step of storing restriction information with respect to the application includes the step of identifying at least one file to which the application has access.
4. The method of claim 3 wherein the step of storing restriction information with respect to the application includes the step of limiting the application to one file.
5. The method of claim 1 wherein the step of storing restriction information with respect to the application includes the step of identifying at least one other application that the application may launch.
6. The method of claim 1 wherein the step of creating a restricted access token includes the steps of, copying access information from a normal token into the restricted token, and adding at least one restricted security identifier to the restricted token.
7. The method of claim 6 wherein the step of adding at least one restricted security identifier to the restricted token includes the step of adding a restricted security identifier corresponding to the application.
8. The method of claim 1 wherein the step of creating a restricted access token includes the steps of copying access information from a parent token into the restricted token, and removing at least one privilege from the restricted token relative to the parent token.
9. The method of claim 1 wherein the step of creating a restricted access token from a parent token includes the step of changing attribute information of a security identifier in the restricted token to use for deny only access via that security identifier, relative to attribute information of a corresponding security identifier in the parent token.
10. In a system having a security mechanism that determines access of processes to resources based on information in an access token associated with each of the processes against security information associated with each of the resources, a method of restricting the access of an application's functions to system resources, comprising the steps of, separating at least some of the functions of an application into at least two groups, creating an access token for each group, at least one of the access tokens being a restricted token, and associating the restricted token with at least one of the groups .
11. The method of claim 9 wherein the step of separating at least some of the functions of an application into at least two groups includes the step of, separating the functions into privileged and non- privileged portions, wherein the step of associating the restricted token with at least one of the groups includes the step of associating the restricted token with the non-privileged portion, and further comprising the step of associating a normal token with the privileged portion.
12. In a system having a security mechanism that grants or denies a process access to a resource by comparing information in an access token associated with the process against information in an access control list associated with the resource, a method of attempting to access the resource, comprising the steps of, creating a restricted access token from a parent token, the restricted token having less access than the parent token, receiving a request to grant the process access to the resource, attempting to access the resource with the restricted token, and if access is denied, attempting to access the resource with the parent token.
13. The method of claim 12 wherein the step of attempting to access the resource with the parent token includes the step of receiving a response from a user of the system.
14. The method of claim 13 further comprising the step of prompting the user for the response.
15. The method of claim 12 wherein the parent token has a higher parent token with increased access relative thereto, and wherein the step of attempting to access the resource with the parent token further includes the step of attempting to access the resource with the higher parent token if the system denies access to the parent token.
16. The method of claim 12 wherein the step of creating a restricted access token from a parent token includes the step of removing at least one privilege from the restricted token relative to the parent token.
17. The method of claim 12 wherein the step of creating a restricted access token from a parent token includes the step of changing attribute information of a security identifier in the restricted token to use for deny only access via that security identifier, relative to attribute information of a corresponding security identifier in the parent token.
18. The method of claim 12 wherein the parent token is a normal token, and wherein the step of creating a restricted access token from a parent token includes the step of adding a restricted security identifier to the restricted token relative to the parent token.
19. The method of claim 12 wherein the parent token is a restricted token having at least one restricted security identifier therein, and wherein the step of creating a restricted access token from a parent token includes the step of removing at least one restricted security identifier from the restricted token relative to the parent token.
20. The method of claim 12 wherein the step of attempting to access the resource with the restricted token includes the step of associating the process with the restricted token.
21. The method of claim 12 wherein the step of attempting to access the resource with the parent token includes the step of associating the process with the parent token.
PCT/US1999/012914 1998-06-12 1999-06-09 Least privilege via restricted tokens WO1999064947A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT99955548T ATE511671T1 (en) 1998-06-12 1999-06-09 MINIMAL USER RIGHTS THROUGH RESTRICTED ACCESS PERMISSIONS
EP99955548A EP1086414B1 (en) 1998-06-12 1999-06-09 Least privilege via restricted tokens
JP2000553884A JP4414092B2 (en) 1998-06-12 1999-06-09 Least privilege via restricted token

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/096,679 US6308274B1 (en) 1998-06-12 1998-06-12 Least privilege via restricted tokens
US09/096,679 1998-06-12

Publications (1)

Publication Number Publication Date
WO1999064947A1 true WO1999064947A1 (en) 1999-12-16

Family

ID=22258544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/012914 WO1999064947A1 (en) 1998-06-12 1999-06-09 Least privilege via restricted tokens

Country Status (5)

Country Link
US (1) US6308274B1 (en)
EP (1) EP1086414B1 (en)
JP (1) JP4414092B2 (en)
AT (1) ATE511671T1 (en)
WO (1) WO1999064947A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1389752A2 (en) 2002-08-15 2004-02-18 Activcard Ireland Limited System and method for privilege delegation and control
WO2008045020A2 (en) * 2005-07-20 2008-04-17 Qualcomm Incorporated Apparatus and methods for securing architectures in wireless networks
WO2010065283A1 (en) * 2008-12-05 2010-06-10 Rayheon Company Secure document management
WO2013030583A1 (en) * 2011-09-02 2013-03-07 Avecto Limited Computer device with anti-tamper resource security
US9171177B2 (en) 2007-06-12 2015-10-27 Canon Kabushiki Kaisha Information processing method for executing a command included in an installer and a storage medium storing a program therefor

Families Citing this family (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6941552B1 (en) * 1998-07-30 2005-09-06 International Business Machines Corporation Method and apparatus to retain applet security privileges outside of the Java virtual machine
ES2760905T3 (en) 1998-10-30 2020-05-18 Virnetx Inc An agile network protocol for secure communications with assured system availability
US7418504B2 (en) 1998-10-30 2008-08-26 Virnetx, Inc. Agile network protocol for secure communications using secure domain names
US6502135B1 (en) 1998-10-30 2002-12-31 Science Applications International Corporation Agile network protocol for secure communications with assured system availability
US6839759B2 (en) 1998-10-30 2005-01-04 Science Applications International Corp. Method for establishing secure communication link between computers of virtual private network without user entering any cryptographic information
US10511573B2 (en) 1998-10-30 2019-12-17 Virnetx, Inc. Agile network protocol for secure communications using secure domain names
US6449652B1 (en) * 1999-01-04 2002-09-10 Emc Corporation Method and apparatus for providing secure access to a computer system resource
US7213262B1 (en) 1999-05-10 2007-05-01 Sun Microsystems, Inc. Method and system for proving membership in a nested group using chains of credentials
US6883100B1 (en) 1999-05-10 2005-04-19 Sun Microsystems, Inc. Method and system for dynamic issuance of group certificates
US7058817B1 (en) 1999-07-02 2006-06-06 The Chase Manhattan Bank System and method for single sign on process for websites with multiple applications and services
WO2001033477A2 (en) 1999-11-04 2001-05-10 Jpmorgan Chase Bank System and method for automated financial project management
US8571975B1 (en) 1999-11-24 2013-10-29 Jpmorgan Chase Bank, N.A. System and method for sending money via E-mail over the internet
US10275780B1 (en) 1999-11-24 2019-04-30 Jpmorgan Chase Bank, N.A. Method and apparatus for sending a rebate via electronic mail over the internet
US6867789B1 (en) * 2000-02-15 2005-03-15 Bank One, Delaware, National Association System and method for generating graphical user interfaces
US6591265B1 (en) * 2000-04-03 2003-07-08 International Business Machines Corporation Dynamic behavior-based access control system and method
US7058798B1 (en) 2000-04-11 2006-06-06 Sun Microsystems, Inc. Method ans system for pro-active credential refreshing
US6971018B1 (en) * 2000-04-28 2005-11-29 Microsoft Corporation File protection service for a computer system
US7216361B1 (en) * 2000-05-19 2007-05-08 Aol Llc, A Delaware Limited Liability Company Adaptive multi-tier authentication system
US7174454B2 (en) * 2002-11-19 2007-02-06 America Online, Inc. System and method for establishing historical usage-based hardware trust
US7426530B1 (en) 2000-06-12 2008-09-16 Jpmorgan Chase Bank, N.A. System and method for providing customers with seamless entry to a remote server
US10185936B2 (en) 2000-06-22 2019-01-22 Jpmorgan Chase Bank, N.A. Method and system for processing internet payments
US8341743B2 (en) * 2000-07-14 2012-12-25 Ca, Inc. Detection of viral code using emulation of operating system functions
US8335855B2 (en) 2001-09-19 2012-12-18 Jpmorgan Chase Bank, N.A. System and method for portal infrastructure tracking
US6754889B1 (en) * 2000-10-04 2004-06-22 Compuware Corporation Java automation, testing, and analysis
JP2002182983A (en) * 2000-12-13 2002-06-28 Sharp Corp Method for controlling access to database, database unit, method for controlling access to resources and information processor
US20020099668A1 (en) * 2001-01-22 2002-07-25 Sun Microsystems, Inc. Efficient revocation of registration authorities
JP2002251326A (en) * 2001-02-22 2002-09-06 Hitachi Ltd Tamper-proof computer system
US7020645B2 (en) * 2001-04-19 2006-03-28 Eoriginal, Inc. Systems and methods for state-less authentication
US8849716B1 (en) 2001-04-20 2014-09-30 Jpmorgan Chase Bank, N.A. System and method for preventing identity theft or misuse by restricting access
WO2002099598A2 (en) 2001-06-07 2002-12-12 First Usa Bank, N.A. System and method for rapid updating of credit information
US7266839B2 (en) 2001-07-12 2007-09-04 J P Morgan Chase Bank System and method for providing discriminated content to network users
US20030028813A1 (en) * 2001-08-02 2003-02-06 Dresser, Inc. Security for standalone systems running dedicated application
WO2003014889A2 (en) * 2001-08-06 2003-02-20 Matsushita Electric Industrial Co., Ltd. License management server, terminal device, license management system and usage restriction control method
US7103576B2 (en) 2001-09-21 2006-09-05 First Usa Bank, Na System for providing cardless payment
CA2466071C (en) 2001-11-01 2016-04-12 Bank One, Delaware, N.A. System and method for establishing or modifying an account with user selectable terms
JP2003140972A (en) * 2001-11-08 2003-05-16 Nec Corp Program execute device, program executing method, portable terminal using it and information providing system
US7987501B2 (en) 2001-12-04 2011-07-26 Jpmorgan Chase Bank, N.A. System and method for single session sign-on
US7941533B2 (en) 2002-02-19 2011-05-10 Jpmorgan Chase Bank, N.A. System and method for single sign-on session management without central server
KR100450402B1 (en) * 2002-04-17 2004-09-30 한국전자통신연구원 Access control method by a token with security attributes in computer system
US6938050B2 (en) 2002-04-23 2005-08-30 International Business Machines Corporation Content management system and methodology employing a tree-based table hierarchy which accomodates opening a dynamically variable number of cursors therefor
US6944627B2 (en) * 2002-04-23 2005-09-13 International Business Machines Corporation Content management system and methodology employing a tree-based table hierarchy featuring arbitrary information retrieval from different locations in the hierarchy
US6950815B2 (en) * 2002-04-23 2005-09-27 International Business Machines Corporation Content management system and methodology featuring query conversion capability for efficient searching
US7035854B2 (en) * 2002-04-23 2006-04-25 International Business Machines Corporation Content management system and methodology employing non-transferable access tokens to control data access
US6999966B2 (en) * 2002-04-23 2006-02-14 International Business Machines Corporation Content management system and methodology for implementing a complex object using nested/recursive structures
US6947948B2 (en) * 2002-04-23 2005-09-20 International Business Machines Corporation Version-enabled, multi-typed, multi-targeting referential integrity relational database system and methodology
US7082455B2 (en) * 2002-04-23 2006-07-25 International Business Machines Corporation Method and apparatus of parameter passing of structured data for stored procedures in a content management system
US20030236975A1 (en) * 2002-06-20 2003-12-25 International Business Machines Corporation System and method for improved electronic security credentials
US20040003287A1 (en) * 2002-06-28 2004-01-01 Zissimopoulos Vasileios Bill Method for authenticating kerberos users from common web browsers
US7398557B2 (en) * 2002-09-13 2008-07-08 Sun Microsystems, Inc. Accessing in a rights locker system for digital content access control
US20040059939A1 (en) * 2002-09-13 2004-03-25 Sun Microsystems, Inc., A Delaware Corporation Controlled delivery of digital content in a system for digital content access control
US20040064719A1 (en) * 2002-09-13 2004-04-01 Sun Microsystems, Inc., A Delaware Corporation Accessing for digital content access control
US20040083370A1 (en) * 2002-09-13 2004-04-29 Sun Microsystems, Inc., A Delaware Corporation Rights maintenance in a rights locker system for digital content access control
US20040059913A1 (en) * 2002-09-13 2004-03-25 Sun Microsystems, Inc., A Delaware Corporation Accessing for controlled delivery of digital content in a system for digital content access control
US7240365B2 (en) * 2002-09-13 2007-07-03 Sun Microsystems, Inc. Repositing for digital content access control
US7913312B2 (en) * 2002-09-13 2011-03-22 Oracle America, Inc. Embedded content requests in a rights locker system for digital content access control
US7363651B2 (en) * 2002-09-13 2008-04-22 Sun Microsystems, Inc. System for digital content access control
US7380280B2 (en) * 2002-09-13 2008-05-27 Sun Microsystems, Inc. Rights locker for digital content access control
US7512972B2 (en) * 2002-09-13 2009-03-31 Sun Microsystems, Inc. Synchronizing for digital content access control
US20040054629A1 (en) * 2002-09-13 2004-03-18 Sun Microsystems, Inc., A Delaware Corporation Provisioning for digital content access control
US7058660B2 (en) 2002-10-02 2006-06-06 Bank One Corporation System and method for network-based project management
US7526798B2 (en) * 2002-10-31 2009-04-28 International Business Machines Corporation System and method for credential delegation using identity assertion
US8301493B2 (en) 2002-11-05 2012-10-30 Jpmorgan Chase Bank, N.A. System and method for providing incentives to consumers to share information
US20040122849A1 (en) * 2002-12-24 2004-06-24 International Business Machines Corporation Assignment of documents to a user domain
US7392246B2 (en) * 2003-02-14 2008-06-24 International Business Machines Corporation Method for implementing access control for queries to a content management system
US20040167989A1 (en) * 2003-02-25 2004-08-26 Jeff Kline Method and system for creating and managing a website
GB0311537D0 (en) * 2003-05-20 2003-06-25 Safa John Controlling write access of an application to a storage medium
US7343628B2 (en) * 2003-05-28 2008-03-11 Sap Ag Authorization data model
US8214884B2 (en) * 2003-06-27 2012-07-03 Attachmate Corporation Computer-based dynamic secure non-cached delivery of security credentials such as digitally signed certificates or keys
US20050080897A1 (en) * 2003-09-29 2005-04-14 Capital One Financial Corporation Remote management utility
US20050091535A1 (en) * 2003-10-24 2005-04-28 Microsoft Corporation Application identity for software products
US20050091658A1 (en) * 2003-10-24 2005-04-28 Microsoft Corporation Operating system resource protection
US8190893B2 (en) 2003-10-27 2012-05-29 Jp Morgan Chase Bank Portable security transaction protocol
US7721329B2 (en) 2003-11-18 2010-05-18 Aol Inc. Method and apparatus for trust-based, fine-grained rate limiting of network requests
US20050119902A1 (en) * 2003-11-28 2005-06-02 Christiansen David L. Security descriptor verifier
US7467386B2 (en) 2004-01-16 2008-12-16 International Business Machines Corporation Parameter passing of data structures where API and corresponding stored procedure are different versions/releases
US7908663B2 (en) * 2004-04-20 2011-03-15 Microsoft Corporation Abstractions and automation for enhanced sharing and collaboration
US7587594B1 (en) 2004-08-30 2009-09-08 Microsoft Corporation Dynamic out-of-process software components isolation for trustworthiness execution
US20060193467A1 (en) * 2005-02-16 2006-08-31 Joseph Levin Access control in a computer system
US8631476B2 (en) * 2005-03-31 2014-01-14 Sap Ag Data processing system including explicit and generic grants of action authorization
US7665098B2 (en) * 2005-04-29 2010-02-16 Microsoft Corporation System and method for monitoring interactions between application programs and data stores
US20060265262A1 (en) * 2005-05-18 2006-11-23 Microsoft Corporation Distributed conference scheduling
US20060282830A1 (en) * 2005-06-13 2006-12-14 Microsoft Corporation Analysis of the impact of application programs on resources stored in data stores
US8185877B1 (en) 2005-06-22 2012-05-22 Jpmorgan Chase Bank, N.A. System and method for testing applications
US7636851B2 (en) * 2005-06-30 2009-12-22 Microsoft Corporation Providing user on computer operating system with full privileges token and limited privileges token
US7620995B2 (en) * 2005-06-30 2009-11-17 Microsoft Corporation Identifying dependencies of an application upon a given security context
US7779480B2 (en) * 2005-06-30 2010-08-17 Microsoft Corporation Identifying dependencies of an application upon a given security context
US7784101B2 (en) * 2005-06-30 2010-08-24 Microsoft Corporation Identifying dependencies of an application upon a given security context
US7580933B2 (en) * 2005-07-28 2009-08-25 Microsoft Corporation Resource handling for taking permissions
US8984636B2 (en) 2005-07-29 2015-03-17 Bit9, Inc. Content extractor and analysis system
US7895651B2 (en) 2005-07-29 2011-02-22 Bit 9, Inc. Content tracking in a network security system
US8272058B2 (en) 2005-07-29 2012-09-18 Bit 9, Inc. Centralized timed analysis in a network security system
US8006088B2 (en) * 2005-08-18 2011-08-23 Beyondtrust Corporation Methods and systems for network-based management of application security
US8583926B1 (en) 2005-09-19 2013-11-12 Jpmorgan Chase Bank, N.A. System and method for anti-phishing authentication
US20070199072A1 (en) * 2005-10-14 2007-08-23 Softwareonline, Llc Control of application access to system resources
WO2008048320A1 (en) 2005-10-14 2008-04-24 Xeriton Corporation Control of application access to system resources
US20070199057A1 (en) * 2005-10-14 2007-08-23 Softwareonline, Llc Control of application access to system resources
US9600661B2 (en) * 2005-12-01 2017-03-21 Drive Sentry Limited System and method to secure a computer system by selective control of write access to a data storage medium
US7664924B2 (en) * 2005-12-01 2010-02-16 Drive Sentry, Inc. System and method to secure a computer system by selective control of write access to a data storage medium
US20100153671A1 (en) * 2005-12-01 2010-06-17 Drive Sentry Inc. System and method to secure a computer system by selective control of write access to a data storage medium
US10503418B2 (en) 2005-12-01 2019-12-10 Drive Sentry Limited System and method to secure a computer system by selective control of write access to a data storage medium
US7525425B2 (en) * 2006-01-20 2009-04-28 Perdiem Llc System and method for defining an event based on relationship between an object location and a user-defined zone
US8490093B2 (en) 2006-02-03 2013-07-16 Microsoft Corporation Managed control of processes including privilege escalation
US20080040363A1 (en) * 2006-07-13 2008-02-14 Siemens Medical Solutions Usa, Inc. System for Processing Relational Database Data
US8793490B1 (en) 2006-07-14 2014-07-29 Jpmorgan Chase Bank, N.A. Systems and methods for multifactor authentication
WO2008063185A1 (en) 2006-10-14 2008-05-29 Xeriton Corporation Control of application access to system resources
US20080184330A1 (en) * 2007-01-25 2008-07-31 Lal Rakesh M Levels of access to medical diagnostic features based on user login
US8473735B1 (en) 2007-05-17 2013-06-25 Jpmorgan Chase Systems and methods for managing digital certificates
US7386885B1 (en) 2007-07-03 2008-06-10 Kaspersky Lab, Zao Constraint-based and attribute-based security system for controlling software component interaction
KR101456489B1 (en) * 2007-07-23 2014-10-31 삼성전자주식회사 Method and apparatus for managing access privileges in a CLDC OSGi environment
US8332922B2 (en) * 2007-08-31 2012-12-11 Microsoft Corporation Transferable restricted security tokens
US8245289B2 (en) 2007-11-09 2012-08-14 International Business Machines Corporation Methods and systems for preventing security breaches
US8650616B2 (en) * 2007-12-18 2014-02-11 Oracle International Corporation User definable policy for graduated authentication based on the partial orderings of principals
US8321682B1 (en) 2008-01-24 2012-11-27 Jpmorgan Chase Bank, N.A. System and method for generating and managing administrator passwords
WO2009131656A2 (en) * 2008-04-22 2009-10-29 Barclays Capital Inc. System and method for secure remote computer task automation
US20100036845A1 (en) * 2008-08-07 2010-02-11 Research In Motion Limited System and Method for Negotiating the Access Control List of Data Items in an Ad-Hoc Network with Designated Owner Override Ability
US9882769B2 (en) * 2008-08-08 2018-01-30 Blackberry Limited System and method for registration of an agent to process management object updates
US8429741B2 (en) * 2008-08-29 2013-04-23 Google, Inc. Altered token sandboxing
US8544083B2 (en) * 2009-02-19 2013-09-24 Microsoft Corporation Identification security elevation
US8555378B2 (en) * 2009-03-11 2013-10-08 Sas Institute Inc. Authorization caching in a multithreaded object server
US8850549B2 (en) * 2009-05-01 2014-09-30 Beyondtrust Software, Inc. Methods and systems for controlling access to resources and privileges per process
US9608826B2 (en) 2009-06-29 2017-03-28 Jpmorgan Chase Bank, N.A. System and method for partner key management
US8589264B2 (en) * 2009-10-19 2013-11-19 International Business Machines Corporation Token licensing mapping costs to enabled software tool features
US8996866B2 (en) * 2009-12-22 2015-03-31 Microsoft Technology Licensing, Llc Unobtrusive assurance of authentic user intent
US8782429B2 (en) * 2009-12-23 2014-07-15 Ab Initio Technology Llc Securing execution of computational resources
US8621647B1 (en) * 2010-01-11 2013-12-31 Google Inc. Restricting privileges of first privileged process in operating system using second privileged process
JP5702953B2 (en) * 2010-06-09 2015-04-15 キヤノン株式会社 Information processing apparatus and application execution method and program
US8910290B2 (en) 2011-08-15 2014-12-09 Bank Of America Corporation Method and apparatus for token-based transaction tagging
US8458781B2 (en) 2011-08-15 2013-06-04 Bank Of America Corporation Method and apparatus for token-based attribute aggregation
US8806602B2 (en) 2011-08-15 2014-08-12 Bank Of America Corporation Apparatus and method for performing end-to-end encryption
US8726341B2 (en) 2011-08-15 2014-05-13 Bank Of America Corporation Apparatus and method for determining resource trust levels
US8726340B2 (en) * 2011-08-15 2014-05-13 Bank Of America Corporation Apparatus and method for expert decisioning
WO2013025592A1 (en) * 2011-08-15 2013-02-21 Bank Of America Corporation Method and apparatus for token-based conditioning
US8752124B2 (en) 2011-08-15 2014-06-10 Bank Of America Corporation Apparatus and method for performing real-time authentication using subject token combinations
US8539558B2 (en) * 2011-08-15 2013-09-17 Bank Of America Corporation Method and apparatus for token-based token termination
US8572689B2 (en) 2011-08-15 2013-10-29 Bank Of America Corporation Apparatus and method for making access decision using exceptions
US8572714B2 (en) 2011-08-15 2013-10-29 Bank Of America Corporation Apparatus and method for determining subject assurance level
US8584202B2 (en) 2011-08-15 2013-11-12 Bank Of America Corporation Apparatus and method for determining environment integrity levels
WO2013025590A1 (en) * 2011-08-15 2013-02-21 Bank Of America Corporation Method and apparatus for making token-based access decisions
US8789143B2 (en) 2011-08-15 2014-07-22 Bank Of America Corporation Method and apparatus for token-based conditioning
US8789162B2 (en) 2011-08-15 2014-07-22 Bank Of America Corporation Method and apparatus for making token-based access decisions
US8950002B2 (en) * 2011-08-15 2015-02-03 Bank Of America Corporation Method and apparatus for token-based access of related resources
US8572683B2 (en) * 2011-08-15 2013-10-29 Bank Of America Corporation Method and apparatus for token-based re-authentication
US8689324B2 (en) * 2012-04-04 2014-04-01 Sas Institute, Inc. Techniques to explain authorization origins for protected resource objects in a resource object domain
US8826390B1 (en) 2012-05-09 2014-09-02 Google Inc. Sharing and access control
US8844026B2 (en) * 2012-06-01 2014-09-23 Blackberry Limited System and method for controlling access to secure resources
US9419957B1 (en) 2013-03-15 2016-08-16 Jpmorgan Chase Bank, N.A. Confidence-based authentication
US9213820B2 (en) * 2013-09-10 2015-12-15 Ebay Inc. Mobile authentication using a wearable device
US10148726B1 (en) 2014-01-24 2018-12-04 Jpmorgan Chase Bank, N.A. Initiating operating system commands based on browser cookies
US11100242B2 (en) * 2014-05-30 2021-08-24 Apple Inc. Restricted resource classes of an operating system
US20170220792A1 (en) * 2014-07-25 2017-08-03 Hewlett-Packard Development Company, L.P. Constraining authorization tokens via filtering
JP6285853B2 (en) * 2014-12-05 2018-02-28 株式会社ソニー・インタラクティブエンタテインメント Information processing apparatus and information processing method
US9785783B2 (en) * 2015-07-23 2017-10-10 Ca, Inc. Executing privileged code in a process
US10104084B2 (en) * 2015-07-30 2018-10-16 Cisco Technology, Inc. Token scope reduction
US10505962B2 (en) * 2016-08-16 2019-12-10 Nec Corporation Blackbox program privilege flow analysis with inferred program behavior context
US10402564B2 (en) * 2016-08-16 2019-09-03 Nec Corporation Fine-grained analysis and prevention of invalid privilege transitions
US10120786B2 (en) * 2016-12-13 2018-11-06 Sap Se Programmatic access control validation
US10977361B2 (en) 2017-05-16 2021-04-13 Beyondtrust Software, Inc. Systems and methods for controlling privileged operations
US11165776B2 (en) * 2018-08-28 2021-11-02 International Business Machines Corporation Methods and systems for managing access to computing system resources
US11201871B2 (en) * 2018-12-19 2021-12-14 Uber Technologies, Inc. Dynamically adjusting access policies
US11328054B2 (en) * 2018-12-21 2022-05-10 Netiq Corporation Preventing access to single sign on credentials associated with executing applications
GB2584018B (en) 2019-04-26 2022-04-13 Beyondtrust Software Inc Root-level application selective configuration
US11916918B2 (en) * 2020-04-14 2024-02-27 Salesforce, Inc. System mode override during flow execution
US11620394B2 (en) * 2020-12-22 2023-04-04 International Business Machines Corporation Allocating multiple database access tokens to a single user

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0398645A2 (en) * 1989-05-15 1990-11-22 International Business Machines Corporation System for controlling access privileges
WO1996013113A1 (en) * 1994-10-12 1996-05-02 Secure Computing Corporation System and method for providing secure internetwork services
US5761669A (en) * 1995-06-06 1998-06-02 Microsoft Corporation Controlling access to objects on multiple operating systems

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962449A (en) 1988-04-11 1990-10-09 Artie Schlesinger Computer security system having remote location recognition and remote location lock-out
US5187790A (en) 1989-06-29 1993-02-16 Digital Equipment Corporation Server impersonation of client processes in an object based computer operating system
US5138712A (en) * 1989-10-02 1992-08-11 Sun Microsystems, Inc. Apparatus and method for licensing software on a network of computers
US5204961A (en) 1990-06-25 1993-04-20 Digital Equipment Corporation Computer network operating with multilevel hierarchical security with selectable common trust realms and corresponding security protocols
US5577209A (en) 1991-07-11 1996-11-19 Itt Corporation Apparatus and method for providing multi-level security for communication among computers and terminals on a network
US5276901A (en) * 1991-12-16 1994-01-04 International Business Machines Corporation System for controlling group access to objects using group access control folder and group identification as individual user
AU662805B2 (en) 1992-04-06 1995-09-14 Addison M. Fischer A method for processing information among computers which may exchange messages
US5412717A (en) 1992-05-15 1995-05-02 Fischer; Addison M. Computer system security method and apparatus having program authorization information data structures
JP2519390B2 (en) 1992-09-11 1996-07-31 インターナショナル・ビジネス・マシーンズ・コーポレイション DATA COMMUNICATION METHOD AND DEVICE
US5649099A (en) 1993-06-04 1997-07-15 Xerox Corporation Method for delegating access rights through executable access control program without delegating access rights not in a specification to any intermediary nor comprising server security
EP0775341B1 (en) 1994-08-09 1999-06-30 Shiva Corporation Apparatus and method for limiting access to a local computer network
EP0697662B1 (en) 1994-08-15 2001-05-30 International Business Machines Corporation Method and system for advanced role-based access control in distributed and centralized computer systems
US5682478A (en) 1995-01-19 1997-10-28 Microsoft Corporation Method and apparatus for supporting multiple, simultaneous services over multiple, simultaneous connections between a client and network server
US5696898A (en) 1995-06-06 1997-12-09 Lucent Technologies Inc. System and method for database access control
US5678041A (en) * 1995-06-06 1997-10-14 At&T System and method for restricting user access rights on the internet based on rating information stored in a relational database
US5675782A (en) * 1995-06-06 1997-10-07 Microsoft Corporation Controlling access to objects on multiple operating systems
US5941947A (en) * 1995-08-18 1999-08-24 Microsoft Corporation System and method for controlling access to data entities in a computer network
US5757916A (en) 1995-10-06 1998-05-26 International Series Research, Inc. Method and apparatus for authenticating the location of remote users of networked computing systems
US5638448A (en) 1995-10-24 1997-06-10 Nguyen; Minhtam C. Network with secure communications sessions
US5680461A (en) 1995-10-26 1997-10-21 Sun Microsystems, Inc. Secure network protocol system and method
US5826029A (en) * 1995-10-31 1998-10-20 International Business Machines Corporation Secured gateway interface
US5745676A (en) * 1995-12-04 1998-04-28 International Business Machines Corporation Authority reduction and restoration method providing system integrity for subspace groups and single address spaces during program linkage
JPH09190236A (en) 1996-01-10 1997-07-22 Canon Inc Method, device and system for processing information
AU1829897A (en) 1996-01-16 1997-08-11 Raptor Systems, Inc. Transferring encrypted packets over a public network
US5925109A (en) * 1996-04-10 1999-07-20 National Instruments Corporation System for I/O management where I/O operations are determined to be direct or indirect based on hardware coupling manners and/or program privilege modes
TW313642B (en) 1996-06-11 1997-08-21 Ibm A uniform mechanism for using signed content
US5845067A (en) 1996-09-09 1998-12-01 Porter; Jack Edward Method and apparatus for document management utilizing a messaging system
US5983350A (en) 1996-09-18 1999-11-09 Secure Computing Corporation Secure firewall supporting different levels of authentication based on address or encryption status
US5949882A (en) * 1996-12-13 1999-09-07 Compaq Computer Corporation Method and apparatus for allowing access to secured computer resources by utilzing a password and an external encryption algorithm
US6105132A (en) 1997-02-20 2000-08-15 Novell, Inc. Computer network graded authentication system and method
US5983270A (en) 1997-03-11 1999-11-09 Sequel Technology Corporation Method and apparatus for managing internetwork and intranetwork activity
US6081807A (en) * 1997-06-13 2000-06-27 Compaq Computer Corporation Method and apparatus for interfacing with a stateless network file system server

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0398645A2 (en) * 1989-05-15 1990-11-22 International Business Machines Corporation System for controlling access privileges
WO1996013113A1 (en) * 1994-10-12 1996-05-02 Secure Computing Corporation System and method for providing secure internetwork services
US5761669A (en) * 1995-06-06 1998-06-02 Microsoft Corporation Controlling access to objects on multiple operating systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANON.: "Privilege Control Mechanism for UNIX systems", IBM TECHNICAL DISCLOSURE BULLETIN, vol. 34, no. 7b, December 1991 (1991-12-01), NEW YORK US, pages 477 - 479, XP000282651 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1389752A3 (en) * 2002-08-15 2007-10-10 Activcard Ireland Limited System and method for privilege delegation and control
US7770212B2 (en) 2002-08-15 2010-08-03 Activcard System and method for privilege delegation and control
EP1389752B1 (en) 2002-08-15 2016-01-13 Assa Abloy AB System and method for privilege delegation and control
EP2442204A1 (en) * 2002-08-15 2012-04-18 Activcard Ireland Limited System and method for privilege delegation and control
EP1389752A2 (en) 2002-08-15 2004-02-18 Activcard Ireland Limited System and method for privilege delegation and control
US8302171B2 (en) 2002-08-15 2012-10-30 Activcard System and method for privilege delegation and control
WO2008045020A2 (en) * 2005-07-20 2008-04-17 Qualcomm Incorporated Apparatus and methods for securing architectures in wireless networks
WO2008045020A3 (en) * 2005-07-20 2009-07-02 Qualcomm Inc Apparatus and methods for securing architectures in wireless networks
US9769669B2 (en) 2005-07-20 2017-09-19 Qualcomm Incorporated Apparatus and methods for secure architectures in wireless networks
US8320880B2 (en) 2005-07-20 2012-11-27 Qualcomm Incorporated Apparatus and methods for secure architectures in wireless networks
US9171177B2 (en) 2007-06-12 2015-10-27 Canon Kabushiki Kaisha Information processing method for executing a command included in an installer and a storage medium storing a program therefor
US8234693B2 (en) 2008-12-05 2012-07-31 Raytheon Company Secure document management
AU2009322747B2 (en) * 2008-12-05 2014-02-06 Forcepoint Federal Llc Secure document management
GB2477681A (en) * 2008-12-05 2011-08-10 Raytheon Co Secure document managment
WO2010065283A1 (en) * 2008-12-05 2010-06-10 Rayheon Company Secure document management
US8826419B2 (en) 2011-09-02 2014-09-02 Avecto Limited Computer device with anti-tamper resource security
WO2013030583A1 (en) * 2011-09-02 2013-03-07 Avecto Limited Computer device with anti-tamper resource security

Also Published As

Publication number Publication date
JP4414092B2 (en) 2010-02-10
JP2002517853A (en) 2002-06-18
EP1086414B1 (en) 2011-06-01
EP1086414A1 (en) 2001-03-28
US6308274B1 (en) 2001-10-23
ATE511671T1 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
US6308274B1 (en) Least privilege via restricted tokens
US6279111B1 (en) Security model using restricted tokens
US6505300B2 (en) Method and system for secure running of untrusted content
US7350204B2 (en) Policies for secure software execution
Jaeger Operating system security
US6308273B1 (en) Method and system of security location discrimination
US9213843B2 (en) Analyzing access control configurations
US7665143B2 (en) Creating secure process objects
US8646044B2 (en) Mandatory integrity control
US20050091192A1 (en) Dynamically identifying dependent files of an application program or an operating system
US20090282457A1 (en) Common representation for different protection architectures (crpa)
Hauswirth et al. A secure execution framework for Java
Xu et al. A study on confidentiality and integrity protection of SELinux
WO2017070209A1 (en) Techniques for defining and enforcing security policies upon computer processes and related systems and methods
Estor et al. Mandatory Access Control & SELinux
Jaeger Security in Ordinary Operating Systems
Michener Common Permissions in Microsoft Windows Server 2008 and Windows Vista
Jajodia et al. Basic security concepts
Cristiá Security Model of GIDISS Trusted Linux 0.1 Z Version 0.8. 0
Piessens Access control

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 553884

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1999955548

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999955548

Country of ref document: EP