WO2000014908A1 - Method for controlling power of communication system - Google Patents

Method for controlling power of communication system Download PDF

Info

Publication number
WO2000014908A1
WO2000014908A1 PCT/JP1999/003818 JP9903818W WO0014908A1 WO 2000014908 A1 WO2000014908 A1 WO 2000014908A1 JP 9903818 W JP9903818 W JP 9903818W WO 0014908 A1 WO0014908 A1 WO 0014908A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless
wireless terminal
call request
transmission
transmission power
Prior art date
Application number
PCT/JP1999/003818
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhito Ishida
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2000014908A1 publication Critical patent/WO2000014908A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]

Definitions

  • the present invention relates to a power control method for a CDMA (CODE D IVISION MULTIPLE ACCESS) wireless communication system.
  • a power control method for a CDMA system in which channels having different desired channel qualities coexist.
  • the power control method In the uplink (reverse link), the method of estimating the amount of radio wave attenuation from the received electric field strength of the base station radio wave received by the mobile station and setting the transmission power of the mobile station and the method of transmitting the signal transmitted by the mobile station are described.
  • the base station that receives the signal measures its Eb / No (signal power / noise power density per bit) and adjusts the transmission power of the mobile terminal by a command on the downlink (base station transmission). Used.
  • the mobile station receiving the signal of the base station measures its FER (Frame Error Rate), transmits the value on the uplink, and the base station transmits the transmission power based on the FER value. Is adjusted.
  • FER Fre Error Rate
  • the desired line quality differs between voice communication and data communication.
  • the desired BER Bit Error Rate
  • the target value for data is set to 2.41 ⁇ 23 to 1445, or higher.
  • the line mode can be a circuit-switched mode or a pocket mode. Therefore, Eb / No for data communication is considered to require a high value equal to or higher than that of voice, and if the communication quality of data communication is to be ensured, it will adversely affect the quality of circuits with weak transmission power such as voice communication. Will be given.
  • an object of the present invention is to provide a radio base station and a power control method of a CDMA system that solve the above-mentioned problems of the related art.
  • An object of the present invention is to provide a radio base station and a power control method for the system A.
  • the present invention sets the power setting for new calls based on line quality under conditions that are vulnerable to interference such as voice. That is, for a high-quality line such as data, transmission power is set from a specified value calculated based on ensuring voice line quality. The increase of the transmission power of the high-quality data link is controlled gradually to a value that satisfies the specified transmission rate and quality of the link while monitoring the quality of the voice link.
  • the base station determines in advance the allowable line transmission power according to the line class corresponding to the service condition.
  • the base station monitors the line status of the uplink / downlink CMA channel from time to time, measures the Eb / No and FER (Frame Error Rate) of the existing line, and monitors the calls that may be newly set, such as voice and data.
  • the line conditions of the code channel corresponding to the service conditions are updated as needed.
  • the base station sets the channel conditions of the code channel in advance, and sets a more suitable transmission / reception state with the wireless terminal according to the current traffic density and the waiting packet.
  • the base station When there is a call request for data communication from the wireless terminal, the base station notifies the wireless terminal of the transmission timing, transmission rate, and transmission power.
  • the optimum value and margin at the time of collection of the parameter are obtained from the parameters collected by the channel monitor in the base station in advance. Transmission conditions (transmission power and timing) are determined based on this data. Therefore, since the initial transmission data rate is low in the base station or the radio terminal, the transmission power is set to be considerably lower than the specified transmission conditions, and the data transmission is started.
  • the base station or wireless terminal With the start of transmission by the base station or wireless terminal, the base station or wireless terminal increases transmission power or transmission rate while monitoring Eb / No in code channel units. When the system capacity limit or a preset data channel capacity is reached, the increase in transmission power or transmission speed is stopped. If there is a request to generate a new call in that state, the transmission power / transmission rate of the existing data line may be reduced, or the request to set up a new call may be rejected.
  • FIG. 1 is a diagram showing a communication system of the present invention.
  • FIG. 2 is a diagram showing a wireless base station according to the present invention.
  • FIG. 3 is a diagram showing a wireless terminal of the present invention.
  • FIG. 4 is a diagram showing a table of desired line quality and line state according to the present invention.
  • FIG. 5 is a diagram showing a line state table and an allowable transmission power value table of the present invention.
  • FIG. 6 is a diagram showing a transmission level management table of the present invention.
  • FIG. 7 is a diagram showing a base station power control function block.
  • FIG. 8 is a diagram showing a base station power control function block.
  • FIG. 9 is a diagram showing a wireless terminal power control function block.
  • Figure 10 shows MS originating / sending FIG.
  • FIG. 9 is a diagram showing a flowchart of a BS operation at the time of communication.
  • FIG. 11 is a diagram showing a flowchart of the BS operation at the time of calling / transmitting the ⁇ side.
  • FIG. 12 is a diagram showing a flow chart of the BS operation at the time of calling an MS priority call.
  • FIG. 13 is a diagram showing transmission power distribution below the BS.
  • FIG. 14 is a diagram showing an example of a control channel frame format. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows an outline of a communication system to which the present invention is applied.
  • the communication system according to the present invention includes a mobile switching center (MSC) 901 that controls a base station (BS), a BS 902 controlled by the MSC 901, and wireless terminals 903, 904, and 905 that communicate with the BS 902.
  • the service area of BS902 is 910.
  • a description will be given of a case where the wireless terminals 903 and 904 have already communicated with the wireless base station 902 and also the wireless terminal 905 starts communication. It is assumed that voice communication that does not need to be high is performed, and the wireless terminal 905 performs data communication that requires higher line quality than voice communication.
  • FIG. 2 shows a configuration example of the wireless base station 902 of the present invention.
  • Radio base station 902 includes reception section 1301, transmission section 1302, line monitoring section 1310, control section 1320, and storage section 1330.
  • the line monitor unit 1310 has an Eb / ⁇ measurement unit 1311, and a FER measurement unit 1312.
  • control section 1320 includes uplink transmission rate determining section 1321, uplink allowable transmission power value determining section 1322, other channel interference monitoring section 1323, uplink transmission level determining section 1324, control information creating section 1325, downlink transmission rate determining section 1326 And a downlink allowable transmission power value determining unit 1329.
  • the storage unit 1330 stores parameters required for control in a storage format such as a table.
  • the wireless terminal includes a receiving unit 1401, a transmitting unit 1402, an Eb / NO measuring unit 1411, a FER measuring unit 1412, and a control unit 1420.
  • the control unit 1420 includes an uplink channel creation unit 1425 and a power control command extraction unit 1428.
  • FIG. 4 shows a table for storing the desired line quality and the current line state for each wireless terminal.
  • the table shows the MS identification information 1101, and the user-desired line quality 1 1 10 as Eb / N 01 1 1 1 and FER 1 112.
  • the maximum transmit power value that the transmitter can transmit 11 13 and the transmission rate 1 114 Is stored.
  • Eb / N01111, FER111, actual transmission power value 1113, and transmission rate 1114 are stored as actual line conditions. These are further stored for each of the uplink channel and the downlink channel, and thus for each of a plurality of code channels in the uplink channel.
  • FIG. 5 shows a table 1200 showing the current line state in more detail, and a table 1500 of the transmission power allowable value for each line quality class. Further, FIG. 5 also shows how a table 1500 of transmission power allowable values for each line quality class is created from the parameters of the line state table 1200.
  • the line state table includes, as line states for each uplink and downlink, downlink Eb / N01210, downlink FER1211, other information such as interference value 1212, uplink Eb / N01220, uplink FER1221, and other information 1222 such as interference value. Is stored. These may also be stored for each of a plurality of code channels.
  • the transmission power allowable value table 1500 has a line quality class 1501, a transmission power level 1502, a downlink allowable transmission power value 1503, and an uplink allowable transmission power value 1504. It is assumed that one class has multiple levels.
  • FIG. 6 shows a table 1000 of transmission power levels.
  • the table 1000 includes a line quality class 1001, a transmission power level 1002, and a flag section 1003 indicating which level is set as a specified value or an initial value. Is shown.
  • each parameter may be managed in a format (pointer, structure, etc.) other than tables.
  • a format pointer, structure, etc.
  • the wireless base station 902 receives the upstream signal of the wireless terminals 903 and 904 in the receiving unit 1301, performs necessary frequency conversion, demodulation and decoding, and performs line monitoring.
  • the Eb / No measuring unit 131 1 measures Eb / No
  • the FER measuring unit 1312 measures FER.
  • the control unit 1320 creates the table 1120 (or 1200) in association with each measured value and each wireless terminal, and stores the table 1120 (or 1200) in the storage unit 1330.
  • the wireless terminal 905 makes or makes a call so as to start communication.
  • the uplink transmission level determination unit 1324 refers to the table 1000 stored in the storage unit 1330, obtains a specified value 1002 of the transmission level, and obtains the obtained specified value.
  • the permissible transmission power value 1504 for data communication corresponding to 1002 is obtained from the table 1500.
  • the allowable transmission power value 1500 is determined based on the uplink allowable transmission power value determining unit 1322 EEb / No or the like, and is stored in the storage unit 1330 as the table 1500.
  • uplink transmission level determination section 1324 determines a value several levels lower than the allowable transmission power value obtained from table 1500 as an initial value (initial power transmission value), and uses the determined value as control information creation section 1325. Send to Here, the reason why the value is set to be several levels lower is to prevent the wireless terminals 903 and 904, which are already in communication, from performing voice communication, and thus not affect those with low line quality. .
  • the control information creation unit 1352 creates control information including the initial transmission power value. I do.
  • the control information creation unit 1352 usually creates a command to increase or decrease the power by one step. Subsequently, transmitting section 1302 transmits this control information to wireless terminal 905 on the control channel. Note that FIG. 6 shows a state in which the initial value several levels below the specified value is selected, and the transmission power is increased so as to reach the specified value in one step.
  • the control channel is received and demodulated by the receiving unit 1401, and the initial transmission power value is extracted by the power control command extracting unit 1428 of the control unit 1420. Subsequently, transmitting section 1402 starts transmission of the uplink channel with the extracted initial power control value.
  • the power control command extraction unit 1428 normally extracts a command to increase or decrease the power by one step.
  • the uplink channel of the radio terminal 905 is received by the receiving unit 1301, the Eb / No is measured by the Eb / No measuring unit 1311, the FER is measured by the FER measuring unit 1312, and the result is stored in the table 1200 (1120). It is stored as the upstream Eb / Nol 220 (1121) and the upstream FER1221 C1 122).
  • the other channel interference monitoring unit 1323 measures the interference value that the uplink channel transmitted by the wireless terminal 905 gives to the wireless terminals 903 and 904, and compares this interference value with a predetermined threshold.
  • the transmission rate determination unit 1321 determines the transmission rate. It is raised gradually until the user's requirements are met. If any of the interference value, Eb / No, and FER become worse than the threshold value in the process of increasing stepwise, stop the increase, reduce the transmission rate, and adjust the interference value, Eb / No, and FER. Try to meet.
  • the uplink transmission level The decision unit 1324 decides to increase the uplink transmission power value of the MS905 by one level.
  • the uplink transmission power value of the MS determined by the uplink transmission level determination unit 1324 is transmitted to the wireless terminal 905 by the method described above, and the The control unit 1420 of the received wireless terminal 905 increases the transmission power by one level and transmits the uplink channel. In the same way, the power control is performed until the transmission rate required by the user is reached while satisfying the interference value, Eb / No, and FER.
  • the Eb / No measuring unit 141 1 and the FER measuring unit 1412 of the communicating wireless terminals 903 and 904 measure the Eb / No and FER of the downlink channel transmitted by the radio base station 902, and report the measurement result to the uplink CH.
  • the creation unit puts it on the uplink channel, and transmits from transmission unit 1402 to radio base station 905.
  • the wireless base station 902 Upon receiving the report, stores the measurement results 1210 and 121 1 of each wireless terminal as a table 1200 in the storage unit 1330.
  • the allowable downlink transmission power value determining unit 1329 refers to the table 1200 stored in the storage unit 1330 and determines the allowable transmission power value 1503 of the downlink channel for each communication type. Note that the specified value for each communication type is determined using table 1000 as in the case of the uplink.
  • the downlink transmission level determining unit 1328 sets the downlink transmission level of the wireless terminal 905 (in this case, the initial value) to a level that is several levels lower than the allowable transmission power value (specified value) determined by the downlink allowable transmission power value determining unit 1329. Set to.
  • Transmitting section 1302 transmits the downlink channel to wireless terminal 905 at the transmission level determined by the allowable downlink transmission power value determining section. Note that reference numeral 1003 in Fig. 6 indicates that the current level is the specified value or the initial value by setting a flag so that it can be grasped.
  • the radio terminal 905 measures the Eb / No, FER, and interference value for the downlink channel transmitted by the radio base station 902, and reports the measurement result to the radio base station 902 via the uplink channel.
  • the wireless base station 902 Upon receiving the report, stores the measurement result of the wireless terminal 905 in the table 1200 in the storage unit 1330 as the downlink Eb / Nol 210 downlink FER 1211. When transmitting the interference value, it is stored in 1212 or the like.
  • the radio base station 902 estimates an interference value given to the downlink channels of the radio terminals 903 and 904 by the downlink channel transmitted to the radio terminal 905, and compares the interference value with a predetermined threshold value.
  • the transmission rate determination unit 1326 sets the transmission rate It is raised gradually until the required value is satisfied. If any of the interference value, Eb / No, and FER become worse than the threshold value in the process of gradually increasing the value, stop the increase, reduce the transmission speed, and satisfy the interference value, Eb / No, and FER. To do.
  • the downlink transmission level The deciding unit 1328 decides to increase the BS transmission power value by one step.
  • Transmitting section 1302 transmits the downlink channel with the downlink transmission power value determined by downlink transmission level determining section 1328. After that, in the same way, while satisfying the interference value, Eb / No, and FER, the transmission power control of the down channel is performed until the transmission rate required by the user is reached.
  • Fig. 5 shows an example of the configuration of BS902.
  • the BS 902 of the present invention includes a BS reception RF7ANT unit 501, a BS demodulation unit 502, a BS decoding unit 503, a BS audio / de-night processing and layer 2, 3 processing unit 504, and a BS audio / data processing unit. 505, a BS uplink link FER determination section 506, a BS call control section 507, a BS QoS / priority control section 508, a BS voice / data processing section 509, a BS management section 510, and a BS encoding section 511.
  • a BS modulation section 512 a BS transmission RF / ANT section 513, a BS uplink link Eb / No determination section 514, a BS downlink power control section 515, and a BS RF power control section 516.
  • FIG. 8 shows an example of the configuration of the MSC901.
  • MSC901 performs signal exchange connection It comprises a switching unit 521 and a mobility management unit 522 for performing call control and mobile object management.
  • FIG. 9 shows a configuration example of the wireless terminals 903 and 904 of the present invention.
  • the wireless terminal of the present invention includes an MS man-machine interface 601, an MS voice / data processing unit 602, an MS encoding unit 603, an MS modulation unit 604, an MS transmission RF / ANT unit 605, and an MS reception RF. / ANT section 606, MS demodulation section 607, MS decoding section 608, MS downlink Eb / No determination section 609, MS QoS Quality of Service) / priority control section 610, and MS downlink link FER It comprises a judgment unit 611 and an MS management unit 612.
  • a solid line indicates a control signal
  • a broken line indicates a traffic signal (communication information).
  • the BS measures the Eb / No based on the received signal from the MS, inserts a power control bit for the MS into a downlink channel, and controls the transmission power of the MS. Is going.
  • the MS measures the Eb / No based on the received signal from the BS, inserts a power control bit into the uplink channel, and The BS transmits and controls the transmission power for a specific MS based on the Eb / No from the MS.
  • the outgoing call is started by a key input from a man-machine interface (MMI) (601).
  • MMI man-machine interface
  • the signal is subjected to framing in the voice / data processing unit (602).
  • attributes related to line quality and priority control are added from the QoS (Quality of Service) / priority control unit (610).
  • QoS Quality of Service
  • priority control unit 610
  • information relating to the transmittable power value of the MS and the transmission speed to be transmitted which are managed by the management unit (612), are added to the information.
  • the signal output from the voice / data processing unit (602) is subjected to channel coding such as interleave error correction coding.
  • the signal output from the encoding unit (603) is subjected to information modulation and spread modulation of the signal by CDMA in the modulation unit (604).
  • the spread signal is transmitted to the BS via the transmission RF / ANT unit (605) on the uplink.
  • the access method used here is generally a random access method.
  • the signal received by the BS RF / ANT unit (501) is subjected to spread demodulation and information demodulation by the demodulation unit (502).
  • the demodulated received signal that is, the random access signal, is decoded by the decoding unit (503), and then transmitted to the voice / data processing and layer 2 and 3 processing unit (hereinafter, VDLP) (504).
  • VDLP voice / data processing and layer 2 and 3 processing unit
  • the uplink link FER determination unit (506) checks for frame errors, determines the MS service attributes (voice, data, line quality, priority, etc.), authenticates, and checks location information. It is. That is, the received signal is decomposed into frames by the voice / data processing unit (505), and the above-mentioned information is confirmed by the call control unit (507).
  • the MSC includes a switching unit (Switch) (521) and a call control / mobility management unit (Call CTRL and Mobility Management) (522).
  • the switching unit (521) transmits traffic information and the call control / mobility management unit (522). ) Performs processing such as call control, mobility management, and authentication.
  • the data such as the line quality and the priority order are stored in the QoS / priority control unit (508) of the BS, and are controlled in conjunction with the call control.
  • the BS allocates a channel to the MS.
  • this allocation is determined by parameters such as code, frequency, transmission timing, and transmission power and transmission rate, depending on the service request from the MS.
  • the negotiation between the BS and the MS is performed by the management part (612) of the MS, the QoS / priority control part (610), the call control part (507) of the BS, the QoS / priority control part (508), and the management part (508). 510).
  • the BS allocates a line in the following procedure.
  • the BS also monitors signals of other MS channels.
  • the total power value received by the BS is monitored by the RF power control unit (516) as the total received power in the RF / ANT unit (501).
  • Each reception channel is demodulated for each code channel by the demodulation unit (502), and an interference value according to the desired channel quality of the channel is estimated and updated as needed.
  • the QoS / priority control unit (508) uses the parameters determined by the management unit (510) based on the line quality request and the appropriate appropriate Eb / No value. Is set, and an algorithm in case of change is prepared.
  • the message is inserted in the voice / data processing unit (509) via the call control unit (507) and transmitted to the MS.
  • the MS After the line is allocated, the MS starts transmission at the specified timing and transmission rate.
  • the signal received from the MS is monitored as needed by the BS, and the uplink link F ER measurement unit (506) measures the FER to check the quality.
  • the QoS / priority control unit (508) sets priorities according to the desired line quality and assigns appropriate interference conditions to the lines. For those that do not satisfy the desired channel quality, the transmission power of the MS and the power associated with the control information from the BS so that the required value is achieved as long as the interference conditions with other channels at the BS are satisfied. And control the transmission rate. This control is performed by controlling the transmission rate using the control channel shown in Fig. 14, in addition to the closed-loop power control between the MS and BS, which involves changing the reference Eb / No. However, at this time, the management unit (510) and the QoS / priority control unit (508) are controlled so that the interference conditions of other lines, including those with a low line class, do not fall below the specified values (106-125). .
  • the call is initiated by a request from the NW system.
  • the signal is subjected to framing in the voice / data processing unit (509).
  • attributes relating to the line quality and priority control are added from the QoS / priority control unit (508) (In addition, these information is managed by the management unit (510).
  • VDLP voice / data processing and layer 2 and 3 processing unit
  • the signal from the voice / data processing and layer 2 and 3 processing unit (hereinafter referred to as VDLP) (504) is sent to the encoding unit (511), where it is interleaved and error-corrected.
  • Channel information such as encoding is performed.
  • -Information modulation of signal by CDMA Modulates and spread-modulates the output from encoding unit (511) in Z-spreading modulation unit (512). Sent to the MS on the downlink via the / ANT section (513).
  • This section describes how to distribute downlink power.
  • the operation of the RF power control unit (516) is related to the downlink power control unit (515), and power control for each line (code channel) is performed by the downlink power control unit (515). Is performed by the RF power control unit (516). All control information is monitored by the management unit (510). That is, the transmission power of the BS is allocated by a predetermined power distribution value or power ratio shown in FIG. 13, and the transmission power of the entire BS is controlled by the RF power control unit (516). The power control on a per-cell basis is performed by the downstream power control unit (515), and the balance is monitored by the management unit (510).
  • the interference state at each MS is monitored, and the monitored interference state is reflected as a control parameter of the downlink power by the management unit (510). ing.
  • MS can measure downlink FER, and if downlink power can be adjusted by transmitting the measured FER as a power control bit on the uplink, And the line quality by FER in FIG. A confirmation is made.
  • transmission is performed from the BS to the MS based on the power distribution value shown in Fig. 13, and the interference level of the other channel is monitored. Increase or decrease.
  • the reservation channel response frame signal (701) is an MS-ID for identifying an MS, a Message-Type indicating a communication type, a Reservation-Packet-Sequence-Number indicating a reservation bucket order, and an initial transmission power Initial-Tx. -Pw, transmission timing Consists of Tx Timing.
  • the transmission rate control frame signal (702) includes MS-ID, which is information for identifying the MS, Message-Type, which indicates a communication type, and Reservation-Packet-Serquence-Number, which indicates the order of reservation packets. It is composed of QoS / CH_Class indicating the service class and Rate-Control-Command indicating the transmission speed.
  • MS-ID information for identifying the MS
  • Message-Type which indicates a communication type
  • Reservation-Packet-Serquence-Number which indicates the order of reservation packets. It is composed of QoS / CH_Class indicating the service class and Rate-Control-Command indicating the transmission speed.
  • FIG. 10 is a diagram illustrating the operation of a base station (BS) when a wireless terminal (MS) performs a calling and transmitting operation.
  • BS base station
  • MS wireless terminal
  • the BS measures Eb / o (signal power / noise power density per bit) from the total received power and the received power from each MS between one or more MSs that set up the line, This is used as an index of line quality (101). At this time, the transmission speed and line quality are set based on the 9.6 kbps voice line; target FER-0.01. In the case of circuit switching, eight 9.6 kbps lines are required for 64 kbps transmission. Yes, corresponding power is required to satisfy Eb / No.
  • a target transmission power control value is set using Eb / No for each desired channel quality (102).
  • negotiation for line setting is usually performed between the MS and BS (104). In this case, a higher FER is required, so the transmission power needs to be further increased to obtain a higher Eb / No.
  • This negotiation responds to transmission requests (transmission speed, line quality, delay requests, etc.) from the MS, and the BS responds to transmission requests from the line congestion state so that the entire system can operate stably within the capacity. To set appropriate transmission power and transmission timing.
  • FIG. 14 shows a control channel configuration example for negotiation.
  • the MS starts transmission based on the reservation information.
  • the Eb / No of the base station is associated with the channel quality class 2 and is set to the nth level which is lower than the level that completely satisfies the channel quality class 2.
  • level 1 of circuit class 2 high-speed data
  • This line is first controlled by this Eb / No. That is, it is determined whether or not the reception Eb / No satisfies the n-th level of class 2 (107). If not, the process returns to step (104), and the negotiation between the BS and the MS is executed again.
  • a margin is given to the existing line, and a stable system operation is performed while monitoring the line condition. Do.
  • margin refers to a power margin that does not adversely affect other line quality.
  • the BS collects the line status with other MSs as needed by receiving the uplink channel from each MS.
  • step (107) if the condition is satisfied, it is determined whether or not the interference level of another channel satisfies the specified value for the newly generated call (108). If the default value is not satisfied, the process returns to step (104), and the negotiation between the BS and MS is executed again.
  • the BS measures FER of the signal from the MS (109).
  • the FER measured in step (109) does not satisfy the predetermined value, an operation to reduce the transmission speed of the MS and suppress the occurrence of errors is performed (1).
  • the control of the transmission rate to the MS uses, for example, the control channel format shown in FIG.
  • step (109) If the FER measured in step (109) satisfies the specified value, it is checked whether the transmission rate satisfies the user required value (MS required value) (111). If the required values are satisfied, the system enters the steady operation mode (1 12). In this state, the line quality conditions requested by the user are satisfied, and no problems occur with other lines in the system.
  • step (11 1) If the MS does not meet this requirement in step (11 1), the level of Eb / N'o is changed to determine whether the power increase is necessary or not and the MS can do so (113). c If it is determined that the power increase is not required, the MS is instructed to increase the transmission rate (114). To change the transmission rate, the BS calculates the power margin value from the Eb / No and FER of the received signal and converts it to a transmission rate, so that the BS notifies the MS of the allowable value of the transmission rate. For example, change the spreading gain to increase the transmission speed. Since this control is performed under constant power control conditions, quick feedback control to the MS using a dedicated control channel as shown in Fig. 14 is desirable.
  • the line quality may be operated only by power control without controlling the transmission rate. (On the other hand, if it is determined that the power needs to be increased, whether the Eb / No level should be changed to n + 1 (1 15)
  • the most efficient value in the system operation is adopted as the difference between the n-level and the n ⁇ l-level. Thus, the n-level is controlled so as to gradually increase by s.
  • the MS increases the transmission power as a result of the power control loop with the BS.
  • This Eb / No value is determined from the change characteristics of the received Eb / No and the estimated capacity from interference from other channels.
  • Figure 11 shows the BS operation when a call is originated from the network side (Nff) and an incoming call is transmitted to the MS accommodated by the BS.
  • the measurement of the Eb / No of the set line is performed by receiving a signal including the Eb / No measured by the MS and grasping the line state (201).
  • the Eb / No of the line to be set is set for each desired line quality (202).
  • An example of a power setting method at this time will be described later with reference to FIG.
  • the BS calls the MS, negotiates the contents related to the line quality, such as the requested transmission speed and transmission quality from, and the reception timing, and reserves the line (204).
  • the BS starts transmission at the n-th level transmission power according to the reserved timing and conditions (206).
  • the BS monitors not only this new call but also all signals from other lines that have already been set up. That is, the downlink signal quality transmitted by the BS is received by the MS, and the channel quality is transmitted from the MS to the BS as power control and other control information. The BS monitors the result as needed. I have.
  • the BS checks whether the transmission power satisfies the power setting value (202) predetermined for each desired channel quality (208).
  • the negotiation is executed again (204). If the interference level is equal to or less than the specified value, it is checked from the monitoring information from the MS whether the downlink FER satisfies the specified value (209). If the user is not satisfied, an operation for reducing the transmission speed of the downlink is performed (210). If so, it checks whether the transmission rate satisfies the user's requirement (211). If this is satisfied, it enters the normal operation mode (212). In this state, the line quality conditions requested by the user are satisfied, and no problems occur with other lines in the system.
  • the transmission speed of the downlink is increased (214), and the FER is checked. If it is determined that the power needs to be increased, the BS increases the reference power. And start transmission (215).
  • the transmission power level here is n + 1 level.
  • the difference between the n + 1 level and the n level uses the most efficient value in system operation.
  • the value of EbZNo is gradually increased, so that the call request is monitored while monitoring the effect on other lines that are already in communication, especially voice lines with low transmission power. Is controlled so as to provide transmission power step by step to satisfy This value is calculated from the downlink transmission power distribution shown in Fig. 13 and the capacity estimate from the interference of other MS channels.
  • a series of subsequent steps (216-223) of power control, interference measurement, Eb / No measurement, and transmission speed control are the same as those for the transmission power n level. However, if the transmission power or interference to other channels exceeds the specified value at the n + 1 level, the power is reduced to the n level and operation resumes (218).
  • This series of power control is performed until the required transmission rate is satisfied under the required line quality.
  • FIG. 12 shows an example in which a priority call is issued from the MS in the example shown in FIG. 10 and control is performed.
  • the BS monitors the status of the set line and calculates the Eb / No when setting up a new line in advance (301, 302).
  • the BS checks the order of priority calls from the MS (304). Compare the priority of the set line and the line in the setting waiting state, and change the setting of other lines if necessary. Therefore, it is necessary to confirm whether the setting change of other lines is necessary (329), and if necessary, confirm whether or not it is possible (305). If it is not possible, after a certain waiting state (306), check the priority (304). ) Is performed again.
  • the change is made (307), and based on the information, the line is reserved between the MS and BS (308).
  • the power control thereafter is the same as in Fig. 10 (310-328) until it enters the steady operation mode (316).
  • FIG. 13 is an example showing a method for allocating power in a downlink channel.
  • the horizontal axis shows the number of lines (TCHV links) normalized by the voice channel power, and the vertical axis shows the transmission power.
  • the pilot power (401), the overhead channel power (402) for transmitting control signals, the voice channel power (403), and the data channel power are calculated in advance at a fixed ratio. It is operated by dividing.
  • division ratios are determined by the occurrence of traffic and interference characteristics.
  • this ratio especially the power distribution ratio for voice channels and data channels, may be distributed dynamically. In any case, these are preset in order to facilitate interference control.
  • the measurement of the interference power at the BS in Figs. 10, 11, and 12 is performed to set up a stable channel within these distribution ratios.
  • the power control according to the present invention is applied to the subsequent processes, and is executed to perform stable interference control between these channels having different line qualities.
  • the pilot power and the overhead channel power are controlled so as to satisfy a predetermined power ratio with respect to the required transmission power of the voice or data channel.
  • the transmission power setting method is based on a line having a weak interference condition, and stable operation of a data line having a line quality different from that of a voice line becomes possible.

Abstract

One or more code channels for which a required channel quality of first class relative to a low-power channel such as a voice communication channel is determined is established between a base station and a radio terminal. In this state, an additional channel of second class having a channel quality request value higher than that of the code channel, for example, a high-speed data channel is set up. The radio terminal or base station determines the transmission power value of this second-class channel in such a way that the value is lower than the transmission power value not influencing the first class channel quality which is set up according to the power distribution based on the current interference level. After the set up of the radio channel, the transmission rate and transmission power are gradually increased while monitoring the interference levels of the other channels to the values which fulfill the required channel quality of second class.

Description

明 細 書 通信システムの電力制御方法 技術分野  Description Power control method for communication systems
CDMA ( CODE D IVISION MULTIPLE ACCESS)無線通信システムの電力制御方 法に関する。 特に、 所望回線品質の異なるチャネルが混在する CDMA シス テムの電力制御方法に関する。  The present invention relates to a power control method for a CDMA (CODE D IVISION MULTIPLE ACCESS) wireless communication system. In particular, it relates to a power control method for a CDMA system in which channels having different desired channel qualities coexist.
背景技術 Background art
米国 TI A(Telecommunication Industry Association)が 1997年 12月 12日 に標準化の投票のために提出した Standards Proposal No. 3693, Propos ed Upgrade of Interim Standard TIA/EIA/ IS- 95 - A, TSB74, and ANSI -J -STD- 008 to an A SI/TI A/E IA Standard Mobile Station - Base Stati on Compat ibi l i ty Standard for Dual Mode Wideband Spread Spectrum Cellular Systems (To Be Publ ished as TIA/EIA- 95 - B)によると、 IS- 95 シリ一ズなど従来の CDMAシステムは音声通信に最適化された設計であり、 データ通信も同じ通信回線品質の元で運用されている。  Standards Proposal No. 3693, Proposed Upgrade of Interim Standard TIA / EIA / IS-95-A, TSB74, and ANSI submitted by the United States TI A (Telecommunication Industry Association) on December 12, 1997, for a standardization vote -J -STD-008 to an A SI / TI A / E IA Standard Mobile Station-Base Stati on Compatibility standard for Dual Mode Wideband Spread Spectrum Cellular Systems (To Be Published as TIA / EIA- 95-B) According to the report, conventional CDMA systems such as the IS-95 series are designed for voice communication, and data communication is operated under the same communication line quality.
以下、 電力制御方法について説明する。 上り回線(リバ一スリ ンク) に おいては、移動局が受信する基地局電波の受信電界強度から電波の減衰量 を推定し移動局の送信電力を設定する方法と、移動局が送信した信号を受 信した基地局がその Eb/No (ビッ トあたりの信号電力/雑音電力密度)を測 定し、下り回線(基地局送信)上のコマンドで移動端末の送信電力を調節す る方法が用いられている。  Hereinafter, the power control method will be described. In the uplink (reverse link), the method of estimating the amount of radio wave attenuation from the received electric field strength of the base station radio wave received by the mobile station and setting the transmission power of the mobile station and the method of transmitting the signal transmitted by the mobile station are described. The base station that receives the signal measures its Eb / No (signal power / noise power density per bit) and adjusts the transmission power of the mobile terminal by a command on the downlink (base station transmission). Used.
下り回線 (フォワー ドリ ンク) では、 基地局の信号を受信した移動局が その FER(Frame Error Rate)を測定し、 上り回線でその値を送信し、 その F ER値に基づき基地局が送信電力を調節するという方法が採られる。  In the downlink (forward link), the mobile station receiving the signal of the base station measures its FER (Frame Error Rate), transmits the value on the uplink, and the base station transmits the transmission power based on the FER value. Is adjusted.
データ通信においても同様の手順がとられており、無線ィンタフェース 上は音声もデータも Eb/Noあるいは FERで定量化される均一な所望回線品 質のもとで運用されている。 そのために、 データの伝送速度はほぼ音声と 同様で、 たとえば 76. 8kbpsでの伝送では、 FER= 1%の回線品質条件のもとで 9. 6kbpsの音声用回線を 8本多重するなどの方法が採られている。 A similar procedure is taken for data communication, and the wireless interface Above, both voice and data are operated under uniform desired circuit quality quantified by Eb / No or FER. Therefore, the data transmission speed is almost the same as that of voice.For example, in the case of transmission at 76.8 kbps, a method such as multiplexing eight 9.6 kbps voice lines under FER = 1% line quality conditions Is adopted.
一般的に、 音声通信とデータ通信ではその所望回線品質が異なる。 例え ば、 音声通信の場合、 所望 B E R (Bit Error Rate)は 10-3以下であり、 デ —夕のそれは 10 - 3〜10- 6以下である。 また、 最高伝送速度が 9. 6kbpsから 1 4. 4. kbpsの音声信号に対し、 データのそれは 2. 4½ 3から144 5、 もしく はそれ以上の目標値が設定されている。 また、 回線モー ドも回線交換モー ドとノ ケッ トモ一 ドが考えられる。 したがって、 データ通信用の Eb/Noは、 音声と同等以上の高い数値が必要となると考えられるとともに、 データ通 信の通信品質を確保しょうとすると、音声通信など送信電力の弱い回線の 品質に悪影響を与えてしまう。  Generally, the desired line quality differs between voice communication and data communication. For example, in the case of voice communication, the desired BER (Bit Error Rate) is less than 10-3, and that in the evening is less than 10-3 to 10-6. For audio signals with a maximum transmission rate of 9.6 kbps to 14.4 kbps, the target value for data is set to 2.4½3 to 1445, or higher. Also, the line mode can be a circuit-switched mode or a pocket mode. Therefore, Eb / No for data communication is considered to require a high value equal to or higher than that of voice, and if the communication quality of data communication is to be ensured, it will adversely affect the quality of circuits with weak transmission power such as voice communication. Will be given.
しかしながら、 上記従来技術では、 音声回線とデータ回線が同じセル或 いはセクタ内に共存する場合に、安定したシステム運用については考慮さ れていないため、 データ通信の通信品質を確保しょうとすると音声通信回 線に影響を及ぼしてしまう。  However, in the above-mentioned conventional technology, when the voice line and the data line coexist in the same cell or sector, stable system operation is not taken into consideration. It will affect the communication line.
そこで、本願発明は上記従来技術の問題点を解消する C D M Aシステム の無線基地局及び電力制御方法を提供することにある。  Accordingly, an object of the present invention is to provide a radio base station and a power control method of a CDMA system that solve the above-mentioned problems of the related art.
具体的には、 ダイナミ ックに変動する音声とデータのトラヒックに対し て、 システム全体のスループッ 卜を最大限に活用することができる C D M Specifically, it can maximize the throughput of the entire system against dynamic voice and data traffic.
Aシステムの無線基地局及び電力制御方法を提供することにある。 An object of the present invention is to provide a radio base station and a power control method for the system A.
また、 同一セル或いは同一セクタ内で、 高い通信品質が要求されるデ一 夕通信と音声通信が異なる端末によって行われている場合であっても、 デ —タ通信のための回線が音声通信のための回線に与える悪影響を極力抑 えた C D M Aシステムの無線基地局及び電力制御方法を提供することに ある。 発明の開示 Also, even if data communication and voice communication requiring high communication quality are performed by different terminals in the same cell or the same sector, the data communication line is not used for voice communication. To provide a radio base station and a power control method for a CDMA system in which the adverse effect on the link for transmission is minimized. is there. Disclosure of the invention
本発明は、 新しい呼の電力設定を、 音声のような干渉に対して弱い条件 の回線品質を基準に設定する。 即ち、 データなど高品質の回線は、 音声回 線品質を確保することを基準に計算した規定値から送信電力が設定する。 高品質データ回線の送信電力の増加は、音声回線の品質をモニタしながら 徐々に規定した回線の伝送速度と品質を満たす値へと制御する。  The present invention sets the power setting for new calls based on line quality under conditions that are vulnerable to interference such as voice. That is, for a high-quality line such as data, transmission power is set from a specified value calculated based on ensuring voice line quality. The increase of the transmission power of the high-quality data link is controlled gradually to a value that satisfies the specified transmission rate and quality of the link while monitoring the quality of the voice link.
具体的には、 まず、 基地局はサービス条件に对応した回線クラスに応じ て回線許容送信電力を予め決めておく。 基地局は、 上り/下り CMAチヤネ ルの回線状態を随時モニタし、 既存回線の Eb/Noおよび FER(Frame Error Rate)を測定するとともに、 音声やデータなど、 新しく設定されるであろ う呼のサービス条件に対応した符号チャネルの回線条件(例 :許容送信電 力)を随時アップデー 卜する。  Specifically, first, the base station determines in advance the allowable line transmission power according to the line class corresponding to the service condition. The base station monitors the line status of the uplink / downlink CMA channel from time to time, measures the Eb / No and FER (Frame Error Rate) of the existing line, and monitors the calls that may be newly set, such as voice and data. The line conditions of the code channel corresponding to the service conditions (eg, allowable transmission power) are updated as needed.
新しい呼が音声回線に比べて高い回線品質、 より低い FERを必要とする バケツ トデータ通信サービスの場合、 回線設定に際し、 基地局と無線端末 間で送信タイ ミ ングと伝送レートのネゴシェ一ションが行われる。  When a new call is a bucket data communication service that requires higher line quality and lower FER than voice lines, transmission timing and transmission rate negotiation are performed between the base station and the wireless terminal when setting up the line. Will be
基地局は前述の通り、 予め符号チャネルの回線条件を設定しており、 現 状のトラヒック密度と待ち状態のパケッ 卜にあわせてより適する送受信 状態を無線端末との間で設定する。  As described above, the base station sets the channel conditions of the code channel in advance, and sets a more suitable transmission / reception state with the wireless terminal according to the current traffic density and the waiting packet.
無線端末からのデータ通信の発呼要求があった場合は、基地局は送信タ イ ミ ングと伝送レ一トおよび送信電力を無線端末に通知する。  When there is a call request for data communication from the wireless terminal, the base station notifies the wireless terminal of the transmission timing, transmission rate, and transmission power.
ここで、基地局と無線端末がデータ通信時に送信する電力は予め基地局で の回線モニタにより収集されたパラメータにより、 そのパラメータ収集時 点における最適値およびマージンが求められている。 このデータに基づき 送信条件(送信電力やタイ ミ ング)が決定される。 したがって、基地局あるいは無線端末においては初期送信データレー 卜 が低い状態であるため、規定送信条件よりもかなり低い送信電力を設定し、 データの送信を開始する。 Here, for the power transmitted by the base station and the wireless terminal at the time of data communication, the optimum value and margin at the time of collection of the parameter are obtained from the parameters collected by the channel monitor in the base station in advance. Transmission conditions (transmission power and timing) are determined based on this data. Therefore, since the initial transmission data rate is low in the base station or the radio terminal, the transmission power is set to be considerably lower than the specified transmission conditions, and the data transmission is started.
基地局または無線端末の送信開始に伴い、基地局または無線端末は符号 チャネル単位で Eb/Noを監視しつつ、 送信電力あるいは伝送速度を上げて いく。 システムキャパシティ限界あるいは予め設定したデータチヤンネル のキャパシティに達した場合にその送信電力あるいは伝送速度の増加を 停止する。 その状態においてまた新たな呼の生起要求があった場合は、 既 存データ回線の送信電力/伝送速度を下げてもよいし、 新規呼の設定要求 を拒絶しても良い。  With the start of transmission by the base station or wireless terminal, the base station or wireless terminal increases transmission power or transmission rate while monitoring Eb / No in code channel units. When the system capacity limit or a preset data channel capacity is reached, the increase in transmission power or transmission speed is stopped. If there is a request to generate a new call in that state, the transmission power / transmission rate of the existing data line may be reduced, or the request to set up a new call may be rejected.
優先呼をキャパシティ限界で設定する際は、 データ回線の電力を落とす 即ち、 先に高品質のデータ回線が存在した場合、 キャパシティに余裕があ れば、 新たに音声回線を設定しても良い。 その場合、 音声回線の優先順位 がデータ回線と同等あるいはそれ以下であれば、既存回線が優先される。 音声回線が優先される場合は、 データ回線の送信電力を音声回線が安定し て運用できるレベルまで落として、 新しく音声回線を設定する。 図面の簡単な説明  When setting a priority call at the capacity limit, lower the power of the data line.In other words, if a high-quality data line exists first, if there is enough capacity, a new voice line can be set. good. In this case, if the priority of the voice line is equal to or lower than that of the data line, the existing line has priority. If the voice line is prioritized, lower the transmission power of the data line to a level at which the voice line can operate stably and set up a new voice line. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本願発明の通信システムを示す図である。 第 2図は、 本願発 明の無線基地局を示す図である。 第 3図は、 本願発明の無線端末を示す図 である。 第 4図は、 本願発明の所望回線品質および回線状態のテーブルを 示す図である。 第 5図は、 本願発明の回線状態テーブル及び許容送信電力 値テーブルを示す図である。 第 6図は、 本願発明の送信レベル管理テープ ルを示す図である。 第 7図は、 基地局電力制御機能ブロックを示す図であ る。 第 8図は、 基地局電力制御機能ブロックを示す図である。 第 9図は、 無線端末電力制御機能ブロックを示す図である。 第 1 0図は、 MS発呼/送 信時の BS動作をのフローチヤ一 卜を示す図である。 第 1 1図は、 ^側発呼 /送信時の BS動作のフローチヤ一トを示す図である。 第 1 2図は、 MS優先 呼発呼時の BS動作のフローチヤ一トを示す図である。 第 1 3図は、 BSの下 り送信電力配分を示す図である。 第 1 4図は、 制御チャネルフレームフォ —マツ ト例を示す図である。 発明を実施するための最良の形態 FIG. 1 is a diagram showing a communication system of the present invention. FIG. 2 is a diagram showing a wireless base station according to the present invention. FIG. 3 is a diagram showing a wireless terminal of the present invention. FIG. 4 is a diagram showing a table of desired line quality and line state according to the present invention. FIG. 5 is a diagram showing a line state table and an allowable transmission power value table of the present invention. FIG. 6 is a diagram showing a transmission level management table of the present invention. FIG. 7 is a diagram showing a base station power control function block. FIG. 8 is a diagram showing a base station power control function block. FIG. 9 is a diagram showing a wireless terminal power control function block. Figure 10 shows MS originating / sending FIG. 9 is a diagram showing a flowchart of a BS operation at the time of communication. FIG. 11 is a diagram showing a flowchart of the BS operation at the time of calling / transmitting the ^ side. FIG. 12 is a diagram showing a flow chart of the BS operation at the time of calling an MS priority call. FIG. 13 is a diagram showing transmission power distribution below the BS. FIG. 14 is a diagram showing an example of a control channel frame format. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本願発明を実施例を用いて詳細に説明する。  Hereinafter, the present invention will be described in detail using examples.
(実施例 1 )  (Example 1)
図 1は本願発明が適用される通信システムの概要を示している。本発明 の通信システムは、 基地局 (BS) の制御を行う移動交換機 (MSC) 901 と、 MSC901に制御される BS902 と、 BS902 と通信をする無線端末 903, 904, 905 とから構成される。 なお、 BS902のサービスエリアを 910としている。 この構成において、 無線端末 903及び 904が既に無線基地局 902と通信 している場合に、 さらに、 無線端末 905も通信を開始する場合を説明する c なお、無線端末 903, 904は回線品質があまり高くなくてもよい音声通信を 行っているものとし、 無線端末 905は、 音声通信よりも高い回線品質を要 求されるデータ通信を行うものとする。  FIG. 1 shows an outline of a communication system to which the present invention is applied. The communication system according to the present invention includes a mobile switching center (MSC) 901 that controls a base station (BS), a BS 902 controlled by the MSC 901, and wireless terminals 903, 904, and 905 that communicate with the BS 902. The service area of BS902 is 910. In this configuration, a description will be given of a case where the wireless terminals 903 and 904 have already communicated with the wireless base station 902 and also the wireless terminal 905 starts communication. It is assumed that voice communication that does not need to be high is performed, and the wireless terminal 905 performs data communication that requires higher line quality than voice communication.
図 2には、 本願発明の無線基地局 902の構成例を示している。 無線基地 局 902は、 受信部 1301、 送信部 1302、 回線モニタ部 1310、 制御部 1320、 記憶部 1330を有している。 回線モニタ部 1310は、 Eb/ΝΟ測定部 131 1、 FER 測定部 1312を有している。また、制御部 1320は、上り伝送速度決定部 1321、 上り許容送信電力値決定部 1322、 他チャンネル干渉監視部 1323、 上り送 信レベル決定部 1324、 制御情報作成部 1325、 下り伝送速度決定部 1326、 下り許容送信電力値決定部 1329等を有している。 なお、 記憶部 1330には、 制御に必要なパラメータをテーブル等の記憶形式で記憶している。 図 3には、 本願発明の無線端末 903〜905 の構成例を示している。 無線 端末は、 受信部 1401、 送信部 1402、 Eb/NO測定部 141 1、 FER測定部 1412、 制御部 1420を有している。 なお、制御部 1420は上りチャネル作成部 1425、 電力制御コマンド抽出部 1428を有している。 FIG. 2 shows a configuration example of the wireless base station 902 of the present invention. Radio base station 902 includes reception section 1301, transmission section 1302, line monitoring section 1310, control section 1320, and storage section 1330. The line monitor unit 1310 has an Eb / ΝΟ measurement unit 1311, and a FER measurement unit 1312. Further, control section 1320 includes uplink transmission rate determining section 1321, uplink allowable transmission power value determining section 1322, other channel interference monitoring section 1323, uplink transmission level determining section 1324, control information creating section 1325, downlink transmission rate determining section 1326 And a downlink allowable transmission power value determining unit 1329. The storage unit 1330 stores parameters required for control in a storage format such as a table. FIG. 3 shows a configuration example of the wireless terminals 903 to 905 of the present invention. The wireless terminal includes a receiving unit 1401, a transmitting unit 1402, an Eb / NO measuring unit 1411, a FER measuring unit 1412, and a control unit 1420. The control unit 1420 includes an uplink channel creation unit 1425 and a power control command extraction unit 1428.
図 4には、各無線端末ごとの所望回線品質及び現在の回線状態記憶する テーブルを示している。 テーブルは、 MSの識別情報 1 101 と、 ユーザが希 望する回線品質 1 1 10 として Eb/N01 1 1 1、 FER 1 112. 送信部が送信できる最 大送信電力値 11 13、 伝送速度 1 114が記憶されている。 さらにこのテ一ブ ル 1 100 には、 実際の回線状態として、 Eb/N01 1 1 1、 FER1 1 12 , 実際の送信 電力値 1 1 13、 伝送速度 1 114が記憶されている。 なお、 これらはさらに、 上りチャネルと下りチャネルごとに、 ひいては上りチャネル中の複数の符 号チャネルごとに記憶されている。  FIG. 4 shows a table for storing the desired line quality and the current line state for each wireless terminal. The table shows the MS identification information 1101, and the user-desired line quality 1 1 10 as Eb / N 01 1 1 1 and FER 1 112. The maximum transmit power value that the transmitter can transmit 11 13 and the transmission rate 1 114 Is stored. Further, in this table 1100, Eb / N01111, FER111, actual transmission power value 1113, and transmission rate 1114 are stored as actual line conditions. These are further stored for each of the uplink channel and the downlink channel, and thus for each of a plurality of code channels in the uplink channel.
図 5には、 現在の回線状態をより詳細に示したテーブル 1200 と、 回線 品質クラスごとの送信電力許容値のテーブル 1500を示している。 さらに、 図 5では、 回線状態テーブル 1200 のパラメータから、 回線品質クラスご との送信電力許容値のテーブル 1500 が作成される様子も示している。 回 線状態テーブルは、 上り下りごとの回線状態として、 下り Eb/N01210、 下 り FER121 1、干渉値等のその他の情報 1212、上り Eb/N01220、上り FER1221、 干渉値等のその他の情報 1222 等が記憶されている。 なお、 これらも複数 の符号チャネルごとに記憶してもよい。送信電力許容値テーブル 1500は、 回線品質クラス 1501と、送信電力レベル 1502と、下り許容送信電力値 1503 と、 上り許容送信電力値 1504 とを有している。 なお、 一のクラスには複 数のレベルがあるものとする。  FIG. 5 shows a table 1200 showing the current line state in more detail, and a table 1500 of the transmission power allowable value for each line quality class. Further, FIG. 5 also shows how a table 1500 of transmission power allowable values for each line quality class is created from the parameters of the line state table 1200. The line state table includes, as line states for each uplink and downlink, downlink Eb / N01210, downlink FER1211, other information such as interference value 1212, uplink Eb / N01220, uplink FER1221, and other information 1222 such as interference value. Is stored. These may also be stored for each of a plurality of code channels. The transmission power allowable value table 1500 has a line quality class 1501, a transmission power level 1502, a downlink allowable transmission power value 1503, and an uplink allowable transmission power value 1504. It is assumed that one class has multiple levels.
図 6には、 送信電力レベルのテーブル 1000 を示している。 このテ一ブ ル 1000には、 回線品質クラス 1001 と、 送信電力レベル 1002 と、 いずれ のレベルが規定値、 初期値として設定されているかを示すフラグ部 1003 を示している。 FIG. 6 shows a table 1000 of transmission power levels. The table 1000 includes a line quality class 1001, a transmission power level 1002, and a flag section 1003 indicating which level is set as a specified value or an initial value. Is shown.
なお、 図 4乃至図 6にはテーブルとして示したが、 テーブル以外の形式 (ポインタ、 構造体等々) で各パラメータを管理してもよい。 要は、 各無 線端末ごとの状態を管理できればよいのであるから、 その記憶形式は問わ ない。 以下、 これらの図面を用いて発明の実施形態を説明する。  4 to 6 show tables, each parameter may be managed in a format (pointer, structure, etc.) other than tables. The point is that it is only necessary to be able to manage the status of each wireless terminal, so the storage format is not important. Hereinafter, embodiments of the invention will be described with reference to these drawings.
はじめに上りチャネルの送信電力制御方法について説明する。無線端末 905の通信が開始される前に、 無線基地局 902は、 無線端末 903, 904の上 り信号を受信部 1301で受信し、 必要な周波数変換、 復調及び復号を行い、 回線モニタ部 131 0の Eb/No測定部 131 1で Eb/Noを、 FER測定部 1312で FERを測定する。 なお、 いずれの測定値も各無線端末に関連付けて、 テ一 ブル 1 120 (もしくは 1200 )を制御部 1320が作成して記憶部 1330に蓄積し ておく。  First, an uplink channel transmission power control method will be described. Before the communication of the wireless terminal 905 is started, the wireless base station 902 receives the upstream signal of the wireless terminals 903 and 904 in the receiving unit 1301, performs necessary frequency conversion, demodulation and decoding, and performs line monitoring. The Eb / No measuring unit 131 1 measures Eb / No, and the FER measuring unit 1312 measures FER. In addition, the control unit 1320 creates the table 1120 (or 1200) in association with each measured value and each wireless terminal, and stores the table 1120 (or 1200) in the storage unit 1330.
次に、 無線端末 905が通信を開始すべく、 発呼あるいは着呼を行う。 こ の際に、 通信種別がデータであるため、 上り送信レベル決定部 1324 は、 記憶部 1330 に記憶されたテーブル 1000 を参照し、 送信レベルの規定値 1002を得て、 この得られた規定値 1002に対応するデータ通信の場合の許 容送信電力値 1504をテーブル 1500から得る。 なお、 この許容送信電力値 1500は、 上り許容送信電力値決定部 1322カ^ Eb/No等に基づいて決定し、 テーブル 1500として記憶部 1330に記憶されるものである。  Next, the wireless terminal 905 makes or makes a call so as to start communication. At this time, since the communication type is data, the uplink transmission level determination unit 1324 refers to the table 1000 stored in the storage unit 1330, obtains a specified value 1002 of the transmission level, and obtains the obtained specified value. The permissible transmission power value 1504 for data communication corresponding to 1002 is obtained from the table 1500. The allowable transmission power value 1500 is determined based on the uplink allowable transmission power value determining unit 1322 EEb / No or the like, and is stored in the storage unit 1330 as the table 1500.
さらに、 上り送信レベル決定部 1324は、 テーブル 1500から得た許容送 信電力値よりも、 数レベル低い値を初期値 (初期電力送信値) として決定 し、 この決定した値を制御情報作成部 1325 に送る。 ここで、 数レベル低 い値とするのは、 既に通信中である無線端末 903、 904が音声通信を行つ ているため、 回線品質の低いこれらに影響を与えないようにするためであ る。  Further, uplink transmission level determination section 1324 determines a value several levels lower than the allowable transmission power value obtained from table 1500 as an initial value (initial power transmission value), and uses the determined value as control information creation section 1325. Send to Here, the reason why the value is set to be several levels lower is to prevent the wireless terminals 903 and 904, which are already in communication, from performing voice communication, and thus not affect those with low line quality. .
制御情報作成部 1352 では、 この初期送信電力値を含む制御情報を作成 する。 なお、 制御情報作成部 1352 は、 通常、 電力を 1ステップ上げるか 下げるかのコマンドを作成する。 続いて送信部 1302 はこの制御情報を制 御チャネルにのせて無線端末 905に送信する。 なお、 図 6には、 規定値に 対し数レベル下の初期値を選択し、 1ステップづっ規定値に達するように 送信電力を上昇させて行く様子が示されている。 The control information creation unit 1352 creates control information including the initial transmission power value. I do. The control information creation unit 1352 usually creates a command to increase or decrease the power by one step. Subsequently, transmitting section 1302 transmits this control information to wireless terminal 905 on the control channel. Note that FIG. 6 shows a state in which the initial value several levels below the specified value is selected, and the transmission power is increased so as to reach the specified value in one step.
無線端末 905では、 受信部 1401 で制御チャネルを受信 ·復調し、 制御 部 1420の電力制御コマン ド抽出部 1428で初期送信電力値を抽出する。 続 いて送信部 1402 は、 抽出された初期電力制御値でもって上りチャネルの 送信を開始する。 なお、 電力制御コマンド抽出部 1428 では、 通常は、 電 力を 1ステップ上げるか下げるかのコマンドを抽出する。  In the wireless terminal 905, the control channel is received and demodulated by the receiving unit 1401, and the initial transmission power value is extracted by the power control command extracting unit 1428 of the control unit 1420. Subsequently, transmitting section 1402 starts transmission of the uplink channel with the extracted initial power control value. Note that the power control command extraction unit 1428 normally extracts a command to increase or decrease the power by one step.
無線基地局 902では、 無線端末 905の上りチャネルを受信部 1301で受 信し、 Eb/No測定部 1311で Eb/Noを、 FER測定部 1312で FERを測定し、 テーブル 1200 ( 1 120 )に上り Eb/Nol 220 ( 1121 )、 上り FER1221 C 1 122)として 記憶する。 他チヤンネル千渉監視部 1323では、 無線端末 905が送信する 上りチャネルが無線端末 903、 904 に与える干渉値を測定し、 この干渉値 と所定のしきい値とを比較する。 比較の結果、 干渉値がしきい値以下であ つて、 かつ、 無線端末 905の Eb/No、 FERが所望値 11 1 1、 1 112より良い場 合、 伝送速度決定部 1321 は、 伝送速度をユーザの要求値を満たすまで段 階的に上昇させて行く。 なお、段階的に上昇させる過程で、 干渉値、 Eb/No 及び FERのいずれかがしきい値より悪化する場合は、 上昇を止め、 伝送速 度を下げ、 干渉値、 Eb/No及び FERを満たすようにする。  In the radio base station 902, the uplink channel of the radio terminal 905 is received by the receiving unit 1301, the Eb / No is measured by the Eb / No measuring unit 1311, the FER is measured by the FER measuring unit 1312, and the result is stored in the table 1200 (1120). It is stored as the upstream Eb / Nol 220 (1121) and the upstream FER1221 C1 122). The other channel interference monitoring unit 1323 measures the interference value that the uplink channel transmitted by the wireless terminal 905 gives to the wireless terminals 903 and 904, and compares this interference value with a predetermined threshold. As a result of the comparison, when the interference value is equal to or less than the threshold value and the Eb / No and FER of the wireless terminal 905 are better than the desired values 1111 and 1112, the transmission rate determination unit 1321 determines the transmission rate. It is raised gradually until the user's requirements are met. If any of the interference value, Eb / No, and FER become worse than the threshold value in the process of increasing stepwise, stop the increase, reduce the transmission rate, and adjust the interference value, Eb / No, and FER. Try to meet.
干渉値がしきい値以下であっても無線端末 905の Eb/No、 FERが所望値 より劣化する場合であって、 なおかつ、 ユーザが要求する伝送速度に至つ ていない場合は、上り送信レベル決定部 1324力、 MS905の上り送信電力値 を 1段階あげるよう決定する。 上り送信レベル決定部 1324が決定した MS の上り送信電力値を、 先に説明した手法で無線端末 905に送信し、 それを 受信した無線端末 905の制御部 1420は、 送信電力を 1段階上げて上りチ ャネルを送信する。 あとは同様に、 干渉値、 Eb/No及び FERを満たしつつ、 ユーザが要求する伝送速度に達するまで電力制御を実施する。 If the Eb / No and FER of the wireless terminal 905 are degraded from desired values even if the interference value is equal to or less than the threshold, and the transmission rate required by the user has not been reached, the uplink transmission level The decision unit 1324 decides to increase the uplink transmission power value of the MS905 by one level. The uplink transmission power value of the MS determined by the uplink transmission level determination unit 1324 is transmitted to the wireless terminal 905 by the method described above, and the The control unit 1420 of the received wireless terminal 905 increases the transmission power by one level and transmits the uplink channel. In the same way, the power control is performed until the transmission rate required by the user is reached while satisfying the interference value, Eb / No, and FER.
次に下りチャネルの電力制御方法について説明する。  Next, a downlink channel power control method will be described.
通信中の無線端末 903、 904の Eb/No測定部 141 1、 FER測定部 1412は、 無線基地局 902が送信する下りチャネルについて、 Eb/No、 FERについて測 定し、 この測定結果を上り C H作成部で上りチャネルに載せて、 送信部 1402から無線基地局 905に送信する。報告を受けた無線基地局 902は、各 無線端末ごとの測定結果 1210、 121 1 をテーブル 1200 として記憶部 1330 に記憶する。  The Eb / No measuring unit 141 1 and the FER measuring unit 1412 of the communicating wireless terminals 903 and 904 measure the Eb / No and FER of the downlink channel transmitted by the radio base station 902, and report the measurement result to the uplink CH. The creation unit puts it on the uplink channel, and transmits from transmission unit 1402 to radio base station 905. Upon receiving the report, the wireless base station 902 stores the measurement results 1210 and 121 1 of each wireless terminal as a table 1200 in the storage unit 1330.
下り許容送信電力値決定部 1329は、 記憶部 1330に記憶されているテ一 ブル 1200を参照し、通信種別ごとの、下りチャネルの許容送信電力値 1503 を決定する。 なお、 通信種別ごとの規定値は、 上り回線と同様にテーブル 1000を用いて決定する。 下り送信レベル決定部 1328は、 無線端末 905の 下りチャネルの送信レベル (この場合は初期値) を、 下り許容送信電力値 決定部 1329 が決定した許容送信電力値(規定値)を数レベル下回るレベル に設定する。 送信部 1302 では、 下り許容送信電力値決定部が決定した送 信レベルで下りチャネルを無線端末 905 に送信する。 なお、 図 6の 1003 は、現在どのレベルが規定値または初期値であるかをフラグを立てること で把握できるようにしている様子を示している。  The allowable downlink transmission power value determining unit 1329 refers to the table 1200 stored in the storage unit 1330 and determines the allowable transmission power value 1503 of the downlink channel for each communication type. Note that the specified value for each communication type is determined using table 1000 as in the case of the uplink. The downlink transmission level determining unit 1328 sets the downlink transmission level of the wireless terminal 905 (in this case, the initial value) to a level that is several levels lower than the allowable transmission power value (specified value) determined by the downlink allowable transmission power value determining unit 1329. Set to. Transmitting section 1302 transmits the downlink channel to wireless terminal 905 at the transmission level determined by the allowable downlink transmission power value determining section. Note that reference numeral 1003 in Fig. 6 indicates that the current level is the specified value or the initial value by setting a flag so that it can be grasped.
無線端末 905 は、 無線基地局 902 が送信する下りチャネルについて、 Eb/No, FER及び干渉値について測定し、 この測定結果を上りチャネルを介 して、 無線基地局 902に報告する。 報告を受けた無線基地局 902は、 無線 端末 905の測定結果を記憶部 1330内のテーブル 1 2 0 0に下り Eb/No l 210 下り FER 1211 として記憶する。 なお、 干渉値も送信する場合は 1212等に 記憶する。 無線基地局 902は、無線端末 905に送信する下りチヤネルが無線端末 903、 904の下りチャネルに与える干渉値を推定し、 この干渉値と所定のしきい 値とを比較する。 比較の結果、 干渉値がしきい値以下であって、 かつ、 無 線端末 905の下りチャネルの Eb/No、 FERが所望値より良い場合は、 伝送 速度決定部 1326 は、 伝送速度をユーザの要求値を満たすまで段階的に上 昇させて行く。 なお、段階的に上昇させる過程で、干渉値、 Eb/No及び FER のいずれかがしきい値より悪化する場合は、 上昇を止め、 伝送速度を下げ、 干渉値、 Eb/No及び FERを満たすようにする。 The radio terminal 905 measures the Eb / No, FER, and interference value for the downlink channel transmitted by the radio base station 902, and reports the measurement result to the radio base station 902 via the uplink channel. Upon receiving the report, the wireless base station 902 stores the measurement result of the wireless terminal 905 in the table 1200 in the storage unit 1330 as the downlink Eb / Nol 210 downlink FER 1211. When transmitting the interference value, it is stored in 1212 or the like. The radio base station 902 estimates an interference value given to the downlink channels of the radio terminals 903 and 904 by the downlink channel transmitted to the radio terminal 905, and compares the interference value with a predetermined threshold value. As a result of the comparison, when the interference value is equal to or less than the threshold value and the Eb / No and FER of the downlink channel of the radio terminal 905 are better than desired values, the transmission rate determination unit 1326 sets the transmission rate It is raised gradually until the required value is satisfied. If any of the interference value, Eb / No, and FER become worse than the threshold value in the process of gradually increasing the value, stop the increase, reduce the transmission speed, and satisfy the interference value, Eb / No, and FER. To do.
干渉値がしきい値以下であっても無線端末 905の Eb/No、 FERが所望値 より劣化する場合であって、 なおかつ、 ユーザが要求する伝送速度に至つ ていない場合は、 下り送信レベル決定部 1328が、 BSの送信電力値を 1段 階あげるよう決定する。 送信部 1302は、 下り送信レベル決定部 1328が決 定した下り送信電力値で下りチャネルを送信する。 あとは同様に、 干渉値、 Eb/No及び FERを満たしつつ、 ユーザが要求する伝送速度に達するまで下 りチャネルの送信電力制御を実施する。  If the Eb / No and FER of the wireless terminal 905 are degraded from desired values even if the interference value is equal to or less than the threshold value, and the transmission rate required by the user has not been reached, the downlink transmission level The deciding unit 1328 decides to increase the BS transmission power value by one step. Transmitting section 1302 transmits the downlink channel with the downlink transmission power value determined by downlink transmission level determining section 1328. After that, in the same way, while satisfying the interference value, Eb / No, and FER, the transmission power control of the down channel is performed until the transmission rate required by the user is reached.
(実施例 2 )  (Example 2)
以下、 図面を参照しつつ本発明の第 2の実施例を説明する。  Hereinafter, a second embodiment of the present invention will be described with reference to the drawings.
図 Ίには、 BS902の構成例を示す。 本発明の BS902は、 BS 受信 RF7ANT 部 501 と、 BS 復調部 502と、 BS 復号化部 503と、 BS 音声/デ一夕処理お よびレイヤ 2, 3処理部 504と、 BS音声/データ処理部 505 と、 BS上り リン ク FER判定部 506 と、 BS 呼制御部 507 と、 BS QoS /優先制御部 508 と、 BS 音声/データ処理部 509 と、 BS マネージメン卜部 510と、 BS 符号化部 511 と、 BS変調部 512 と、 BS送信 RF/ANT部 513と、 BS上り リ ンク Eb/No 判定部 514 と、 BS 下り電力制御部 515 と、 BS RF電力制御部 516 とから 構成される。  Fig. 5 shows an example of the configuration of BS902. The BS 902 of the present invention includes a BS reception RF7ANT unit 501, a BS demodulation unit 502, a BS decoding unit 503, a BS audio / de-night processing and layer 2, 3 processing unit 504, and a BS audio / data processing unit. 505, a BS uplink link FER determination section 506, a BS call control section 507, a BS QoS / priority control section 508, a BS voice / data processing section 509, a BS management section 510, and a BS encoding section 511. , A BS modulation section 512, a BS transmission RF / ANT section 513, a BS uplink link Eb / No determination section 514, a BS downlink power control section 515, and a BS RF power control section 516.
図 8 には、 MSC901 の構成例を示す。 MSC901 は、 信号の交換接続を行う 交換部 521 と、 呼制御及び移動体の管理 '制御を行う移動管理ぶ 522から なる。 Figure 8 shows an example of the configuration of the MSC901. MSC901 performs signal exchange connection It comprises a switching unit 521 and a mobility management unit 522 for performing call control and mobile object management.
図 9には、 本発明の無線端末 903, 904の構成例を示す。 本発明の無線端 末は、 MS マンマシンイ ンタフヱ一ス 601 と、 MS 音声/データ処理部 602 と、 MS 符号化部 603と、 MS 変調部 604と、 MS 送信 RF/ANT部 605と、 MS 受信 RF/ANT部 606 と、 MS 復調部 607と、 MS 復号化部 608と、 MS 下り リ ンク Eb/No判定部 609と、 MS QoSCQual i ty of Service) /優先制御部 610 と、 MS 下り リ ンク FER判定部 611 と、 MS マネ一ジメ ン 卜部 612とから構 成される。 なお、 図 7〜図 8において、 実線は制御信号を、 破線はトラヒ ック信号 (通信情報) を示している。  FIG. 9 shows a configuration example of the wireless terminals 903 and 904 of the present invention. The wireless terminal of the present invention includes an MS man-machine interface 601, an MS voice / data processing unit 602, an MS encoding unit 603, an MS modulation unit 604, an MS transmission RF / ANT unit 605, and an MS reception RF. / ANT section 606, MS demodulation section 607, MS decoding section 608, MS downlink Eb / No determination section 609, MS QoS Quality of Service) / priority control section 610, and MS downlink link FER It comprises a judgment unit 611 and an MS management unit 612. In FIGS. 7 and 8, a solid line indicates a control signal, and a broken line indicates a traffic signal (communication information).
この例は、 MSからの送信電力を制御するため、 BSは MSからの受信信号 に基づき Eb/Noを測定し、 MSに対する電力制御ビッ トを下りチャネルに揷 入し、 MSの送信電力制御を行っている。 同様に、 BSから特定の MSへの送 信電力を制御するため、 MSは BSからの受信信号に基づき Eb/Noを測定し、 電力制御ビッ トを上りチャネルに揷入し、 BSに対して送信し、 BSは MSか らの Eb/Noに基づき、 特定の MSに対する送信電力の制御を行っている。 まず、 図 7乃至 9を用いて、 MSから回線品質クラスが高い呼を発呼する 場合の BSの動作を説明する。  In this example, in order to control the transmission power from the MS, the BS measures the Eb / No based on the received signal from the MS, inserts a power control bit for the MS into a downlink channel, and controls the transmission power of the MS. Is going. Similarly, in order to control the transmission power from the BS to a specific MS, the MS measures the Eb / No based on the received signal from the BS, inserts a power control bit into the uplink channel, and The BS transmits and controls the transmission power for a specific MS based on the Eb / No from the MS. First, the operation of the BS when a call with a high line quality class is originated from the MS will be described with reference to FIGS.
発呼はマンマシ一ンインタフエース(MMI ) (601 )からのキー入力により 開始される。信号は音声/データ処理部(602)にてフレ一ミ ングが行われる このとき、 QoS(Qual ity of Service) /優先制御部(610)から回線品質と優 先制御に関する属性が付加される。 また、 これらの情報にはマネ一ジメン ト部(612)で管理されている、 MSの伝送可能な電力値や送信する伝送速度 に関する情報も付加される。  The outgoing call is started by a key input from a man-machine interface (MMI) (601). The signal is subjected to framing in the voice / data processing unit (602). At this time, attributes related to line quality and priority control are added from the QoS (Quality of Service) / priority control unit (610). In addition, information relating to the transmittable power value of the MS and the transmission speed to be transmitted, which are managed by the management unit (612), are added to the information.
符号化部(603)において、 音声 /データ処理部(602 )から出力された信号 はィンタリーブゃ誤り訂正符号化などの通信路符号化が行われ、 さらに、 符号化部(603)から出力された信号は、変調部(604)において、 CDMAによる 信号の情報変調ならびに拡散変調が行われる。拡散処理された信号は送信 RF/ANT部(605)を経て上り回線にて BSへ送信される。ここでのアクセス方 式は一般にランダ厶アクセス方式が用いられる。 In the coding unit (603), the signal output from the voice / data processing unit (602) is subjected to channel coding such as interleave error correction coding. The signal output from the encoding unit (603) is subjected to information modulation and spread modulation of the signal by CDMA in the modulation unit (604). The spread signal is transmitted to the BS via the transmission RF / ANT unit (605) on the uplink. The access method used here is generally a random access method.
BSの RF/ANT部(501 )で受信された信号は復調部(502)にて拡散復調およ び情報の復調が行われる。 復調処理された受信信号、 即ち、 ランダムァク セス信号は復号化部(503)により復号された後、音声/データ処理およびレ ィャ 2, 3 処理部(以下、 VDLP) (504)へ伝送され、 上り リ ンク F E R判定部 (506)にてフレーム誤りを確認するとともに、 MSのサ一ビス属性(音声、デ 一夕、 回線品質、 優先順など)の判定、 認証、 位置情報などの確認が行わ れる。 すなわち、 受信信号は音声/データ処理部(505)でフレーム分解され、 呼制御部(507)にて前述情報の確認が行われる。  The signal received by the BS RF / ANT unit (501) is subjected to spread demodulation and information demodulation by the demodulation unit (502). The demodulated received signal, that is, the random access signal, is decoded by the decoding unit (503), and then transmitted to the voice / data processing and layer 2 and 3 processing unit (hereinafter, VDLP) (504). The uplink link FER determination unit (506) checks for frame errors, determines the MS service attributes (voice, data, line quality, priority, etc.), authenticates, and checks location information. It is. That is, the received signal is decomposed into frames by the voice / data processing unit (505), and the above-mentioned information is confirmed by the call control unit (507).
一部の情報は移動交換機(MSC) (520)など システムなどの連携のため に、 情報を送受する。 MSC は交換部(Switch) (521 )と呼制御/移動管理部 (Call CTRL and Mobility Management) (522)を含んでおり、 交換部(521 ) でトラヒック情報を、 呼制御/移動管理部(522)で呼制御、 移動管理、 認証 などの処理を行う。 MSからの呼を受け付ける場合、 回線品質、優先順など のデ一夕は、 BSの QoS /優先制御部(508) にストアされており、 呼制御の 際に連動して制御される。  Some information is sent and received to link systems such as the mobile switching system (MSC) (520). The MSC includes a switching unit (Switch) (521) and a call control / mobility management unit (Call CTRL and Mobility Management) (522). The switching unit (521) transmits traffic information and the call control / mobility management unit (522). ) Performs processing such as call control, mobility management, and authentication. When accepting a call from the MS, the data such as the line quality and the priority order are stored in the QoS / priority control unit (508) of the BS, and are controlled in conjunction with the call control.
MSからのアクセスが BSおよび NWから許可されると、 BSは MSにチヤネ ルの割り当てを行う。 CDMA ではこの割り当ては、 MSからのサービス要求 に応じて、 符号、 周波数、 送信タイ ミ ング、 および送信電力と伝送速度な どのパラメータにより決定される。  When access from the MS is permitted from the BS and the NW, the BS allocates a channel to the MS. In CDMA, this allocation is determined by parameters such as code, frequency, transmission timing, and transmission power and transmission rate, depending on the service request from the MS.
BS-MS 間のネゴシエーションは、 MS のマネージメ ント部(612)、 QoS/優 先制御部 (610)、 および BS の呼制御部(507)、 QoS /優先制御部(508)、 マネージメ ン卜部(510)が司る。 MSからの送信要求があった場合、 BSは次の手順で回線を割り当てる。 BSは他の MSのチャネルの信号もモニタしている。 BSが受信する総電力 値は、 RF/ANT部(501 )での総受信電力として、 RF電力制御部(516)でモニ 夕されている。 各受信チャネルは復調部(502)により符号チャネルごとに 復調され、 チャネルの所望回線品質に応じた干渉値が推定されており、 随 時アップデー 卜されている。 このパラメ一夕監視はマネ一ジメ ン ト部 (510)で行われている。 新しい呼の生起要求があった場合には、 回線品質 要求に基づき、 マネージメ ン卜部(510)で決定されたパラメータを用いて、 QoS /優先制御部(508)で適切な適切な Eb/No値が設定され、 変更の場合の アルゴリズムが用意される。 また、 制御メッセージを送信する場合には、 呼制御部(507)を介して音声/データ処理部(509)にてメッセージが挿入さ れ、 MSへ伝送される。 The negotiation between the BS and the MS is performed by the management part (612) of the MS, the QoS / priority control part (610), the call control part (507) of the BS, the QoS / priority control part (508), and the management part (508). 510). When there is a transmission request from the MS, the BS allocates a line in the following procedure. The BS also monitors signals of other MS channels. The total power value received by the BS is monitored by the RF power control unit (516) as the total received power in the RF / ANT unit (501). Each reception channel is demodulated for each code channel by the demodulation unit (502), and an interference value according to the desired channel quality of the channel is estimated and updated as needed. The monitoring of these parameters is performed by the management department (510). When a new call request is made, the QoS / priority control unit (508) uses the parameters determined by the management unit (510) based on the line quality request and the appropriate appropriate Eb / No value. Is set, and an algorithm in case of change is prepared. When transmitting a control message, the message is inserted in the voice / data processing unit (509) via the call control unit (507) and transmitted to the MS.
回線割り当て後、 MSは指定されたタイ ミ ングと伝送速度により送信を開 始する。  After the line is allocated, the MS starts transmission at the specified timing and transmission rate.
MS からの受信信号は BS で随時モニタされ、 上り リ ンク F E R測定部 (506)で、 FERを測定することにより品質確認が行われる。 QoS /優先制御 部(508)は所望回線品質に応じて優先順位を設定し、 適切な干渉条件を回 線に割当てる。所望回線品質を満足していないものについては、 MSの送信 電力と、 BSでの他チャネルとの干渉条件が満足される限り、その要求値が 達成されるように BSからの制御情報に伴い電力および伝送速度を制御す る。 この制御は MSと BS間の、 基準 Eb/No変更を伴う閉ループ電力制御の ほか、 伝送速度の調整を図 14 に示す制御チャネルを用いて行うことによ りなされる。 ただし、 このとき、 回線クラスが低いものを含む他の回線の 干渉条件について、 マネージメント部(510) および QoS /優先制御部(508) で規定値を下回らないように制御される(106 - 125)。  The signal received from the MS is monitored as needed by the BS, and the uplink link F ER measurement unit (506) measures the FER to check the quality. The QoS / priority control unit (508) sets priorities according to the desired line quality and assigns appropriate interference conditions to the lines. For those that do not satisfy the desired channel quality, the transmission power of the MS and the power associated with the control information from the BS so that the required value is achieved as long as the interference conditions with other channels at the BS are satisfied. And control the transmission rate. This control is performed by controlling the transmission rate using the control channel shown in Fig. 14, in addition to the closed-loop power control between the MS and BS, which involves changing the reference Eb / No. However, at this time, the management unit (510) and the QoS / priority control unit (508) are controlled so that the interference conditions of other lines, including those with a low line class, do not fall below the specified values (106-125). .
次に、 図 11の例を元に BSから回線品質クラスが高い呼を発呼する場合 を仮定し、 BS,MSの動作を図 7乃至 9を用いて説明する。 Next, based on the example in Fig. 11, a call originating from the BS with a high line quality class The operations of BS and MS will be described with reference to FIGS.
発呼は NW システムからの要求により開始される。  The call is initiated by a request from the NW system.
信号は音声/データ処理部(509)にてフレーミ ングが行われる。 このとき- QoS/優先制御部(508)から回線品質と優先制御に関する属性が付加される ( また、 これらの情報にはマネージメ ント部(510)で管理されている、 BSの 伝送可能な電力値や伝送速度に関する情報も付加される。 音声/データ処 理およびレイヤ 2, 3処理部(以下、 VDLP) (504)からの信号は、符号化部(511 ) に送出され、 インタリーブや誤り訂正符号化などの通信路符号化が行われ- CDMA による信号の情報変調 Z拡散変調部(512)にて符号化部(511 )からの 出力を変調並びに拡散変調する。 拡散処理された信号は送信 RF/ANT 部 (513)を経て下り回線にて MSへ送信される。 The signal is subjected to framing in the voice / data processing unit (509). At this time, attributes relating to the line quality and priority control are added from the QoS / priority control unit (508) (In addition, these information is managed by the management unit (510). The signal from the voice / data processing and layer 2 and 3 processing unit (hereinafter referred to as VDLP) (504) is sent to the encoding unit (511), where it is interleaved and error-corrected. Channel information such as encoding is performed.-Information modulation of signal by CDMA Modulates and spread-modulates the output from encoding unit (511) in Z-spreading modulation unit (512). Sent to the MS on the downlink via the / ANT section (513).
下り電力の配分方法について触れる。  This section describes how to distribute downlink power.
RF電力制御部(516)の動作は下り電力制御部(515)に関連しており、各回 線(符号チャネル)単位の電力制御は下り電力制御部(515)で行う 、 全体 の送信電力の管理は RF電力制御部(516)で行っている。制御情報は全てマ ネージメ ン 卜部(510) が監視している。 すなわち、 BS の送信電力は、 図 13 に示した予め定められた電力分配値または電力比により割り当てられ るカ 、 BS全体の送信電力を RF電力制御部 (516)が司り、各回線(符号チヤ ネル)単位の電力制御は下り電力制御部(515)で行い、 そのバランスをマネ —ジメ ント部(510)が行うことで監視している。  The operation of the RF power control unit (516) is related to the downlink power control unit (515), and power control for each line (code channel) is performed by the downlink power control unit (515). Is performed by the RF power control unit (516). All control information is monitored by the management unit (510). That is, the transmission power of the BS is allocated by a predetermined power distribution value or power ratio shown in FIG. 13, and the transmission power of the entire BS is controlled by the RF power control unit (516). The power control on a per-cell basis is performed by the downstream power control unit (515), and the balance is monitored by the management unit (510).
また、 上り回線で収集される各 MSの下り回線モニタ情報から、 各 MSで の干渉状態をモニタし、 モニタした干渉状態もマネージメ ン 卜部(510)に より下り電力の制御パラメ一夕として反映させている。  Also, based on the downlink monitor information of each MS collected on the uplink, the interference state at each MS is monitored, and the monitored interference state is reflected as a control parameter of the downlink power by the management unit (510). ing.
双方向通信が可能で、 MSにおいて下り回線の FERの測定が可能で、かつ、 測定された FERを電力制御ビッ トとして、 上り回線で送信することにより、 下り電力の調整が可能な場合には、 図 11 における FERによる回線品質の 確認が行われる。 If bidirectional communication is possible, MS can measure downlink FER, and if downlink power can be adjusted by transmitting the measured FER as a power control bit on the uplink, And the line quality by FER in FIG. A confirmation is made.
一方、 BS送信だけの片方向通信の場合には、 図 13に示す電力配分値を 基準に BSから MSへ送信を行う共に、 他チャネルの干渉レベルを監視し、 規定値を元に送信電力の増減を行う。  On the other hand, in the case of one-way communication using only BS transmission, transmission is performed from the BS to the MS based on the power distribution value shown in Fig. 13, and the interference level of the other channel is monitored. Increase or decrease.
制御チャネルの構成例について述べる。 この例は下り回線の例である。 予約チャネル応答用フレーム信号(701 )は MSを特定するための MS- ID、 通 信種別を表す Message- Type、 予約バケツ 卜の順序を示す Reservation- Packet-Sequence- Number、 初期送信電力 Initial -Tx-Pw、 送信タイ ミ ング Tx Timing から構成されている。  A configuration example of the control channel will be described. This example is a downlink example. The reservation channel response frame signal (701) is an MS-ID for identifying an MS, a Message-Type indicating a communication type, a Reservation-Packet-Sequence-Number indicating a reservation bucket order, and an initial transmission power Initial-Tx. -Pw, transmission timing Consists of Tx Timing.
また伝送速度制御用フレーム信号(702)は MSを特定するための情報である MS- ID , 通信種別を表す Message-Type、 予約バケツ 卜の順序を示す Reservation - Packet-Serquence- Numberヽ 品質サ一ビスのクラスを表す QoS/CH_Class、 伝送速度を表す Rate- Control- Command から構成されてい る。 これらは、 符号化のための CRC/Tail Bits付加(703)後、 畳み込み符 号化とィンタリーブが行われ(704)、 電力制御信号が付加され(705 )、 20ms のフレームに組み直されて伝送される(706) (707)。 The transmission rate control frame signal (702) includes MS-ID, which is information for identifying the MS, Message-Type, which indicates a communication type, and Reservation-Packet-Serquence-Number, which indicates the order of reservation packets. It is composed of QoS / CH_Class indicating the service class and Rate-Control-Command indicating the transmission speed. After adding CRC / Tail Bits for coding (703), convolutional coding and interleaving are performed (704), a power control signal is added (705), and reassembled into a 20 ms frame for transmission. (706) (707).
図 10 は無線端末(以下 MS)が発呼および送信動作を行う場合の基地局 (以下 BS)の動作を示した図である。  FIG. 10 is a diagram illustrating the operation of a base station (BS) when a wireless terminal (MS) performs a calling and transmitting operation.
回線品質クラス 1 ( ( 9. 6kbps音声回線;目標 FER=0. 01 )が主な BS- MS間の 回線設定において、 MSからの発呼により、 回線品質クラス 2 ( 64kbpsデ一 夕;目標 FER = 0. 0001 )の回線を新たに設定すると仮定する。  In the main line setup between BS and MS, the line quality class 1 ((9.6 kbps voice line; target FER = 0.01)) is used to set the line quality class 2 (64 kbps data; target FER Suppose that a new line is set up (= 0.0001).
BSは回線を設定している一または複数の MSとの間で、 総受信電力と各 MSからの受信電力とから、 Eb/ o(ビッ 卜あたりの信号電力/雑音電力密度) を測定し、 回線品質の指標とする(101 )。 このとき、 伝送速度と回線品質 は、 9. 6kbps 音声回線; 目標 FER-0. 01 を基準に設定される。 回線交換を 基本とする場合には 64kbps伝送を行うために 9. 6kbps回線 8本が必要で あり、 Eb/Noを満足させるためにそれに応じた電力が必要となる。 The BS measures Eb / o (signal power / noise power density per bit) from the total received power and the received power from each MS between one or more MSs that set up the line, This is used as an index of line quality (101). At this time, the transmission speed and line quality are set based on the 9.6 kbps voice line; target FER-0.01. In the case of circuit switching, eight 9.6 kbps lines are required for 64 kbps transmission. Yes, corresponding power is required to satisfy Eb / No.
また所望回線品質ごとに、 目標となる送信電力の制御値を Eb/Noを用い て設定する(102)。  In addition, a target transmission power control value is set using Eb / No for each desired channel quality (102).
MS から呼が生起した場合(103)、 特にそれが音声回線(例: 9. 6kbps, FER= 0. 01 )ではなく、 より高い伝送速度と低い誤り率を要求されるクラス 2のデ一夕回線(例: 64kbps, FER=0. 0001 )である場合、 通常 MS と BS間で 回線設定のためのネゴシエーショ ンが行われる(104)。 この場合は、 より 高い FERが必要であるため、 より高い Eb/Noを得るために送信電力をさら に上げる必要がある。 このネゴシエーションは MSからの送信要求(伝送速 度、 回線品質、 遅延要求など)に対し、 BSは回線の輻輳状態から、 システ 厶全体が容量内で安定して運用できるように、 送信要求に対して、 適切な 送信電力、 送信タイ ミ ング、 を設定するものである。  When a call originates from an MS (103), it is not a voice line (eg, 9.6 kbps, FER = 0.01), but is a Class 2 data transmission requiring a higher transmission rate and a lower error rate. In the case of a line (eg, 64 kbps, FER = 0.0001), negotiation for line setting is usually performed between the MS and BS (104). In this case, a higher FER is required, so the transmission power needs to be further increased to obtain a higher Eb / No. This negotiation responds to transmission requests (transmission speed, line quality, delay requests, etc.) from the MS, and the BS responds to transmission requests from the line congestion state so that the entire system can operate stably within the capacity. To set appropriate transmission power and transmission timing.
ネゴシェ一ションのための制御チャネル構成例を図 14に示す。  FIG. 14 shows a control channel configuration example for negotiation.
このネゴシェ一シヨンにより回線予約がなされると(105 )、 MSは予約情 報に基づき送信を開始する。  When the line is reserved by this negotiation (105), the MS starts transmission based on the reservation information.
今、 基地局の Eb/Noは、 回線品質クラス 2に対応付けられており、 回線 品質クラス 2を完全に満たすレベルより低いレベルの第 nレベルに設定さ れている。 この例では回線クラス 2 (高速データ)のレベル 1 という仮定し た(106)。  Now, the Eb / No of the base station is associated with the channel quality class 2 and is set to the nth level which is lower than the level that completely satisfies the channel quality class 2. In this example, we assumed level 1 of circuit class 2 (high-speed data) (106).
この回線は初めにこの Eb/Noで電力制御が実施される。即ち、受信 Eb/No がクラス 2の第 nレベルを満足するか否かを判断する(107)。 満足しない 場合には、 ステップ(104 )に戻り、 BS- MS間のネゴシエーショ ンを再度実行 する。 ここで、 高品質の回線を設定するにあたって、 無線回線の急激な変 動にも十分追従するために、既存回線に対してマージンをあたえるととも に、 回線状態をモニタしながら安定したシステム運用を行う。 ここで、 マ —ジンとは他の回線品質に悪影響をあたえない電力余裕値をさす。 BSは他の MSとの回線状態は、それぞれの MSからの上りチャネルを受信 することにより、 随時収集する。 This line is first controlled by this Eb / No. That is, it is determined whether or not the reception Eb / No satisfies the n-th level of class 2 (107). If not, the process returns to step (104), and the negotiation between the BS and the MS is executed again. Here, when setting up a high-quality line, in order to sufficiently follow sudden changes in the wireless line, a margin is given to the existing line, and a stable system operation is performed while monitoring the line condition. Do. Here, margin refers to a power margin that does not adversely affect other line quality. The BS collects the line status with other MSs as needed by receiving the uplink channel from each MS.
ステップ(107 )において、 条件が満足されると、 新しく生起した呼のた めに他のチャネルの干渉レベルが規定値を満足するかいなかを判断する ( 108)。 既定値を満足しなければ、 ステップ(104)に戻り、 BS MS間のネゴ シェ一ションを再度実行する。  In step (107), if the condition is satisfied, it is determined whether or not the interference level of another channel satisfies the specified value for the newly generated call (108). If the default value is not satisfied, the process returns to step (104), and the negotiation between the BS and MS is executed again.
ステップ(109 )で既定値を満足すると、 BSは MSからの信号の FERを測定 する(109 )。本発明ではチャネル間の干渉制御を第一優先に制御するため、 ステップ(109 ) において測定した FERが既定値を満足しない場合、 MSの伝 送速度を落とし誤りの発生を抑える操作を行う(1 10 )。 MSへの伝送速度の 制御はたとえば図 14に示す制御チャネルフォーマツ トを用いる。  If the predetermined value is satisfied in step (109), the BS measures FER of the signal from the MS (109). In the present invention, since the interference control between channels is controlled with the first priority, if the FER measured in step (109) does not satisfy the predetermined value, an operation to reduce the transmission speed of the MS and suppress the occurrence of errors is performed (1). Ten ). The control of the transmission rate to the MS uses, for example, the control channel format shown in FIG.
ステップ(109 )で測定した FERが規定値を満たしていれば、 伝送速度が ユーザ要求値 (MS要求値) を満たしているかを確認する(1 11 )。 ここで要 求値に満たしていれば、 定常の運転モー ドにはいる(1 12)。 この状態では ユーザの要求した回線品質条件は満足されており、 システム内の他の回線 も問題は生じない。  If the FER measured in step (109) satisfies the specified value, it is checked whether the transmission rate satisfies the user required value (MS required value) (111). If the required values are satisfied, the system enters the steady operation mode (1 12). In this state, the line quality conditions requested by the user are satisfied, and no problems occur with other lines in the system.
ステツプ(11 1 )で MSのこれが満たされていない場合には、 Eb/N'oのレべ ルを変えて、電力増加が必要か、 MSで可能かどうかの判断が行われる( 1 13) c 電力増加が不要と判断された場合には、 MSへ伝送速度ァップの指示がな される (1 14)。伝送速度の変更は、 BSが受信信号の Eb/Noと FERから電力 の余裕値を計算し、 伝送速度に換算することにより、 BSから MSへ伝送速 度の許容値が通知され、 MSでは、たとえば拡散利得を変更して伝送速度を 上げる。 この制御は一定の電力制御条件のもとで実施されるので、 図 14 に示すような制御専用のチャネルを用いた MSへの迅速なフィ一ドバック 制御が望ましい。 また、 フエージングによる受信電界変動が激しく、 伝送 速度の制御がフエ一ジング変動に追いつかないと BSが判断した場合には、 伝送速度の制御は行わず、電力制御のみで回線品質の運用を行っても良い ( 一方、 電力の増加が必要と判断された場合には、 Eb/No のレベルを n+ 1 に変えるか否かを判断する(1 15)。 n レベルと n÷ l レベルとの差は、 システ 厶運用において最も効率的な値が採用される。 このように、 n レベルは段 階的に s上昇するよう制御される。 MSは BSとの電力制御ループに伴い結 果的に送信電力を増加させる。 If the MS does not meet this requirement in step (11 1), the level of Eb / N'o is changed to determine whether the power increase is necessary or not and the MS can do so (113). c If it is determined that the power increase is not required, the MS is instructed to increase the transmission rate (114). To change the transmission rate, the BS calculates the power margin value from the Eb / No and FER of the received signal and converts it to a transmission rate, so that the BS notifies the MS of the allowable value of the transmission rate. For example, change the spreading gain to increase the transmission speed. Since this control is performed under constant power control conditions, quick feedback control to the MS using a dedicated control channel as shown in Fig. 14 is desirable. If the BS determines that the received electric field fluctuates greatly due to fading and the transmission rate control cannot keep up with the fading fluctuation, The line quality may be operated only by power control without controlling the transmission rate. (On the other hand, if it is determined that the power needs to be increased, whether the Eb / No level should be changed to n + 1 (1 15) The most efficient value in the system operation is adopted as the difference between the n-level and the n ÷ l-level. Thus, the n-level is controlled so as to gradually increase by s. The MS increases the transmission power as a result of the power control loop with the BS.
この Eb/No値は、 受信 Eb/Noの変化特性と他チャネルの干渉からの容量推 定値から割り出される。 ここからの電力制御、 干渉測定、 Eb/No測定、 伝 速度制御の一連の過程(1 17 - 125 )は、 基準 Eb/Noが n レベルのときと同じ である。 但し、 1 レベルで受信 Eb/Noあるいは他チャネルへの干渉が許 容値を超えて上回っている場合には、 電力を n レベルまで落として(ri=n-This Eb / No value is determined from the change characteristics of the received Eb / No and the estimated capacity from interference from other channels. A series of processes (117-125) of power control, interference measurement, Eb / No measurement, and speed control from here is the same as when the reference Eb / No is at the n level. However, if the received Eb / No or interference to other channels exceeds the allowable value at one level, the power is reduced to n levels (ri = n-
1 )動作を再開する(1 18)。 この一連の電力制御は要求回線品質のもとで要 求伝送速度が満足されるまで行われる。 1) Restart the operation (118). This series of power control is performed until the required transmission rate is satisfied under the required line quality.
これら一連のプロセスは、 回線品質クラスの数が 2を越える場合にも全 く同様に適用される。回線レベルが 2を超える場合には、異なる初期 Eb/N'o 値(106 )と、 定常運転モー ド(1 12 )に設定する際の回線品質、 伝送速度、 お よび基準 Eb/Noのレベル(n)が設定される。  These series of processes apply equally well when the number of circuit quality classes exceeds two. If the line level is higher than 2, different initial Eb / N'o values (106) and line quality, transmission speed, and standard Eb / No levels when set to the steady operation mode (1 12) (N) is set.
図 1 1 はネッ 卜ワーク側(以下 Nff )から発呼し、 BSが収容する MSに着信 呼を送信する場合の BS動作を示したものである。  Figure 11 shows the BS operation when a call is originated from the network side (Nff) and an incoming call is transmitted to the MS accommodated by the BS.
既設定回線の Eb/Noの測定は、 MSにおいて測定された Eb/Noを含む信号 を受信し、 回線状態を把握することにより行なわれる(201 )。  The measurement of the Eb / No of the set line is performed by receiving a signal including the Eb / No measured by the MS and grasping the line state (201).
また所望回線品質ごとに、 設定する回線の Eb/No を設定する(202)。 こ のときの電力の設定方法例は、 図 13を用いて後述する。  The Eb / No of the line to be set is set for each desired line quality (202). An example of a power setting method at this time will be described later with reference to FIG.
下り回線においては、 NWからの発呼により、 回線品質クラス 2 ( 64kbps デ一夕) のチャネルを新たに設定すると仮定する(203)。 このとき、 伝送 速度と回線品質は、 9. 6kbps音声回線;目標 FER = 0. 01を基準に設定される。 回線交換を基本とする場合には 64kbps伝送を行うために 9. 6kbps 回線 8 本が必要であり、 Eb/Noを満足させるためにそれに応じた電力が必要とな る。 In the downlink, it is assumed that a new channel of class 2 (64 kbps data transmission) is set by calling from the NW (203). At this time, the transmission speed and line quality are set based on the 9.6 kbps voice line; target FER = 0.01. If circuit switching is the basis, eight 9.6 kbps lines are required for 64 kbps transmission, and corresponding power is required to satisfy Eb / No.
BSは MSを呼び出し、 からの要求伝送速度、 伝送品質など、 回線品質 に関する内容と、受信タイ ミ ングなどに関しネゴシェ一ションをおこない、 回線の予約を行う(204)。  The BS calls the MS, negotiates the contents related to the line quality, such as the requested transmission speed and transmission quality from, and the reception timing, and reserves the line (204).
回線が予約できる(205)と、 予約したタイ ミ ングと条件により、 BSは第 n レベル送信電力で送信を開始する(206)。  When the line can be reserved (205), the BS starts transmission at the n-th level transmission power according to the reserved timing and conditions (206).
BSはこの新しい呼だけでなく、既に設定している他の回線からの信号を 全てモニタしている。 即ち、 BSが送信している下り回線の信号品質は、 MS にて受信され、 その回線品質は電力制御やその他の制御情報として MSか ら BSへ送信され、 BSではその結果を随時モニタしている。  The BS monitors not only this new call but also all signals from other lines that have already been set up. That is, the downlink signal quality transmitted by the BS is received by the MS, and the channel quality is transmitted from the MS to the BS as power control and other control information. The BS monitors the result as needed. I have.
BSは送信するにあたり、送信電力が、所望回線品質ごとに予め定めた電 力設定値(202)を満足しているかどうか確認する(208)。 ここで、 他の MS からのモニタ情報から干渉が規定値を上回るようであれば、 ネゴシエーシ ヨンを再実行する(204)。 干渉レベルが規定値以下であれば、 MSからのモ ニタ情報から下り回線の FERが規定値を満足しているかを確認する(209)。 満足していない場合は下り回線の伝送速度を落とす操作を行う(210)。 満 足していれば、伝送速度がユーザ要求値を満足しているかどうかの確認を 行う(211 )。 これが満足されていれば定常の動作モー ドにはいる(212)。 こ の状態ではユーザの要求した回線品質条件は満足されており、 システム内 の他の回線も問題は生じない。  When transmitting, the BS checks whether the transmission power satisfies the power setting value (202) predetermined for each desired channel quality (208). Here, if the interference exceeds the specified value based on the monitor information from another MS, the negotiation is executed again (204). If the interference level is equal to or less than the specified value, it is checked from the monitoring information from the MS whether the downlink FER satisfies the specified value (209). If the user is not satisfied, an operation for reducing the transmission speed of the downlink is performed (210). If so, it checks whether the transmission rate satisfies the user's requirement (211). If this is satisfied, it enters the normal operation mode (212). In this state, the line quality conditions requested by the user are satisfied, and no problems occur with other lines in the system.
伝送速度がユーザ要求値以下であると、 電力増加の必要性を確認する (213)。  If the transmission speed is lower than the user request value, the necessity of power increase is confirmed (213).
電力増加不要の場合は下り回線の伝送速度を上げ(214)、FERの確認が行 われる。電力の増加が必要と判断された場合には、 BSは基準電力を増加さ せて送信を開始する(215)。 ここでの送信電力レベルは n + 1 レベルとする。 n+ 1 レベルと nレベルとの差は、 システム運用において最も効率的な値が 採用される。 このように本発明では、 E b Z N oの値を段階的に上昇させ ることにより、 既に通信中の他の回線、 特に送信電力の低い音声回線に与 える影響を監視しながら、発呼要求を満足するよう段階的に送信電力を状 奉するように制御する。 この値は、 図 13に示す下り送信電力配分と他 MS チヤネルの干渉からの容量推定値から割り出される。 If it is not necessary to increase the power, the transmission speed of the downlink is increased (214), and the FER is checked. If it is determined that the power needs to be increased, the BS increases the reference power. And start transmission (215). The transmission power level here is n + 1 level. The difference between the n + 1 level and the n level uses the most efficient value in system operation. As described above, in the present invention, the value of EbZNo is gradually increased, so that the call request is monitored while monitoring the effect on other lines that are already in communication, especially voice lines with low transmission power. Is controlled so as to provide transmission power step by step to satisfy This value is calculated from the downlink transmission power distribution shown in Fig. 13 and the capacity estimate from the interference of other MS channels.
これ以降の電力制御、 干渉測定、 Eb/No測定、 伝速度制御の一連の過程 ( 216 - 223 )は、 送信電力 nレベルのときと同じである。 ただし、 n + 1 レベル で送信電力あるいは他チヤネルへの干渉が規定値を上回つている場合に は、 電力を nレベルまで落として動作を再開する(218)。  A series of subsequent steps (216-223) of power control, interference measurement, Eb / No measurement, and transmission speed control are the same as those for the transmission power n level. However, if the transmission power or interference to other channels exceeds the specified value at the n + 1 level, the power is reduced to the n level and operation resumes (218).
この一連の電力制御は要求回線品質の下で要求伝送速度が満足される まで行われる。  This series of power control is performed until the required transmission rate is satisfied under the required line quality.
これら一連のプロセスは、 回線品質クラスの数が 2を越える場合にも全 く同様に適用される。但し、初期送信電力値(206 )と、定常運転モー ド(212 ) に設定する際の回線品質、 伝送速度、 および電力値は別々に設定される。 図 12は図 10に示した例において、 MSから優先呼の発呼があり、 その制 御を行う場合の例である。  These series of processes apply equally well when the number of circuit quality classes exceeds two. However, the line quality, transmission speed, and power value for setting the initial transmission power value (206) and the steady operation mode (212) are set separately. FIG. 12 shows an example in which a priority call is issued from the MS in the example shown in FIG. 10 and control is performed.
この例では、 優先呼の発呼に伴い、 必要であれば他の回線の設定を変更 させ、 より有利な回線設定条件と電力設定条件が与えられている。 他の制 御は図 10に示す例と同じである。  In this example, the setting of other lines is changed if necessary in accordance with the outgoing call of the priority call, and more advantageous line setting conditions and power setting conditions are provided. Other controls are the same as in the example shown in FIG.
BS は既設定回線の状態をモニタし、 新しく回線の設定を行う場合の Eb/Noを予め算定しておく(301, 302)。  The BS monitors the status of the set line and calculates the Eb / No when setting up a new line in advance (301, 302).
MSから優先呼の発呼がある ( 303)。  There is a priority call from the MS (303).
BSは MSからの優先呼の順位を確認する(304)。既設定回線および設定待 ち状態の回線の優先順位と比較、必要であれば他回線の設定変更を行うた め、 他回線の設定変更が必要か確認し(329)、 必要な場合にはその可否を 確認し(305)、 不可であれば一定の待ち状態(306)のあと、 優先順位の確認 (304)を再度行う。 The BS checks the order of priority calls from the MS (304). Compare the priority of the set line and the line in the setting waiting state, and change the setting of other lines if necessary. Therefore, it is necessary to confirm whether the setting change of other lines is necessary (329), and if necessary, confirm whether or not it is possible (305). If it is not possible, after a certain waiting state (306), check the priority (304). ) Is performed again.
他回線の設定変更が可能であればその変更を行い(307)、 その情報をも とに MSと BSの間で回線の予約を行う(308)。  If the setting of another line can be changed, the change is made (307), and based on the information, the line is reserved between the MS and BS (308).
回線予約が不可の場合は再度他回線の設定を変更の問い合わせ(305)が 行われ、 優先的に回線を割り当てる。 回線予約が 0K であれば、 優先呼用 の第 nレベル Eb/Noが設定され、 送信を開始する(310)。  If the line reservation cannot be made, an inquiry (305) for changing the setting of another line is made again, and the line is preferentially allocated. If the line reservation is 0K, the nth level Eb / No for the priority call is set and transmission starts (310).
これ以降の電力制御は定常運転モー ド(316)にはいるまで、 図 10と同様 である(310〜328)。  The power control thereafter is the same as in Fig. 10 (310-328) until it enters the steady operation mode (316).
図 13は下りチャネルにおける、 電力の配分方法を示す一例である。 横軸は音声チャネル電力で正規化した回線数(TCHV リ ンク数)を、縦軸に 送信電力を示す。 この例ではパイロッ ト電力(401)、 制御用の信号を伝送 するオーバーへッ ドチャネル電力(402)、 音声チャネル電力(403)、 データ チャネル電力が予め一定の比率で BS の全有効送信電力を分割することに より運用されている。  FIG. 13 is an example showing a method for allocating power in a downlink channel. The horizontal axis shows the number of lines (TCHV links) normalized by the voice channel power, and the vertical axis shows the transmission power. In this example, the pilot power (401), the overhead channel power (402) for transmitting control signals, the voice channel power (403), and the data channel power are calculated in advance at a fixed ratio. It is operated by dividing.
これらの分割比はトラヒックの発生や干渉特性により決定される。 もち ろんこの比率、特に音声チャネルとデータチヤネル用の電力配分比がダイ ナミ ックに分配されても良い。 いずれにしても、 干渉制御を容易にするた めにこれらは予め設定される。  These division ratios are determined by the occurrence of traffic and interference characteristics. Of course, this ratio, especially the power distribution ratio for voice channels and data channels, may be distributed dynamically. In any case, these are preset in order to facilitate interference control.
図 10、 11、 12における BSでの干渉電力測定は、 これらの分配比内で安 定した回線の設定を行うために実行される。 本発明による電力制御は、 そ の後のプロセスに適用され、 これらの回線品質の異なるチャネル間で安定 した干渉制御を行うために実行される。 また音声またはデータチャネルの 所要送信電力に対し、パイロッ ト電力とオーバ一へッ ドチャネル電力は、 予め定められた電力比を満たすように制御される。 以上、 本発明によると、 急激な電波伝播環境の劣化が生じても、 干渉に 弱い音声回線を犠牲にせずに、 システムキャパシティ範囲で、 音声と高品 質のデータ回線を共存させた安定したシステム運用が可能となる。 The measurement of the interference power at the BS in Figs. 10, 11, and 12 is performed to set up a stable channel within these distribution ratios. The power control according to the present invention is applied to the subsequent processes, and is executed to perform stable interference control between these channels having different line qualities. In addition, the pilot power and the overhead channel power are controlled so as to satisfy a predetermined power ratio with respect to the required transmission power of the voice or data channel. As described above, according to the present invention, even if the radio wave propagation environment is rapidly deteriorated, a stable voice and high-quality data line can coexist within the system capacity range without sacrificing the voice line that is vulnerable to interference. System operation becomes possible.
また、 本発明によると、 干渉条件の弱い回線を基準に考えた送信電力の 設定方法であり、音声回線と回線品質の異なるデー夕回線の安定した運用 が可能になる。  Further, according to the present invention, the transmission power setting method is based on a line having a weak interference condition, and stable operation of a data line having a line quality different from that of a voice line becomes possible.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数の無線端末と、 前記複数の無線端末と無線通信可能な無線基地 局とを有する無線通信システムの電力制御方法において、 1. A power control method for a wireless communication system including a plurality of wireless terminals and a wireless base station capable of wirelessly communicating with the plurality of wireless terminals,
前記無線基地局は、前記複数の無線端末からの発呼要求に応じて選択さ れる複数の回線品質条件を予め設定されており、  The wireless base station is preset with a plurality of line quality conditions selected in response to a call request from the plurality of wireless terminals,
前記無線基地局は、前記複数の無線端末から所定の伝送速度を要求値と する発呼要求があった場合、前記予め設定されている回線品質条件から選 択される回線品質条件を満たす送信電力よりも低い値の送信電力を、前記 発呼要求を行なつた無線端末に指示し、該指示された送信電力により前記 無線端末から送信される信号を受信し、前記受信される信号の伝送速度を 徐々に上昇させるよう前記発呼要求をした無線端末に指示することを特 徴とする通信システムの電力制御方法。  The radio base station, when receiving a call request with a predetermined transmission rate as a request value from the plurality of radio terminals, a transmission power satisfying a line quality condition selected from the preset line quality conditions. A transmission power of a lower value to the wireless terminal that has made the call request, receives a signal transmitted from the wireless terminal with the specified transmission power, and transmits a transmission rate of the received signal. Control method for a communication system, characterized by instructing the wireless terminal that has made the call request to gradually raise the power.
2 . 請求の範囲第 1項記載の通信システムの電力制御方法において、 前 記回線品質条件の各々には、前記発呼要求を行なった無線端末に指示する 送信電力の基準となる送信電力の値が対応付けられていることを特徴と する通信システムの電力制御方法。  2. The power control method for a communication system according to claim 1, wherein each of the line quality conditions includes a value of a transmission power serving as a reference of transmission power instructing a wireless terminal that has made the call request. A power control method for a communication system, wherein
3 . 請求の範囲第 2項記載の通信システムの電力制御方法において、 前記 無線基地局は、 前記無線端末から新しく発呼要求を受信した場合、 該発呼 要求に応じて前記無線端末との間で使用される回線のタイミ ング、伝送速 度及び送信電力を決定し、該決定した伝送速度及び送信電力よりも低い値 で前記無線端末と回線を設定し、前記新しく受信した発呼要求に応じて設 定される無線回線により、前記無線基地局と通信中の他の無線端末におい て測定される誤り率が所定値を超える場合、再度前記新しく発呼要求を行 なった無線端末との間で使用される回線のタイミ ング、伝送速度及び送信 電力を決定することを特徴とする通信システムの電力制御方法。  3. The power control method for a communication system according to claim 2, wherein, when a new call request is received from the wireless terminal, the wireless base station communicates with the wireless terminal in response to the call request. Determine the timing, transmission speed, and transmission power of the line used in the above, set the line with the wireless terminal at a value lower than the determined transmission speed and transmission power, and respond to the newly received call request. If the error rate measured by another wireless terminal communicating with the wireless base station exceeds a predetermined value due to the wireless line set up between the wireless terminal and the wireless terminal that has made the new call request again, A power control method for a communication system, comprising: determining a timing, a transmission rate, and a transmission power of a line used in the communication system.
4 . 請求の範囲第 1項記載の通信システムの電力制御方法において、 前 記無線基地局から前記発呼要求を行なった無線端末への伝送速度を上昇 させる指示は、該受信した信号の誤り率が前記発呼要求の誤り率以下の状 態で行なうことを特徴とする通信システムの電力制御方法。 4. The power control method for a communication system according to claim 1, wherein the transmission speed from the radio base station to the radio terminal that has made the call request is increased. The power control method for a communication system is characterized in that the instruction to perform is performed in a state where the error rate of the received signal is equal to or less than the error rate of the call request.
5 . 複数の無線端末と、 前記複数の無線端末と無線通信可能な無線基地 局とを有する無線通信システムの電力制御方法において、  5. A power control method for a wireless communication system including a plurality of wireless terminals and a wireless base station capable of wirelessly communicating with the plurality of wireless terminals,
前記無線基地局は、 前記複数の無線端末からの発呼要求に応じて選択さ れる複数の回線品質条件を予め設定されており、  The wireless base station is preset with a plurality of line quality conditions selected in response to a call request from the plurality of wireless terminals,
前記無線基地局は、前記複数の無線端末から所定の伝送速度を要求値と する発呼要求があった場合、前記予め設定されている回線品質条件から選 択される回線品質条件を満たす送信電力よりも低い値の送信電力を、前記 発呼要求を行なった無線端末に指示し、該指示された送信電力により前記 無線端末から送信される信号を受信し、前記受信される信号の伝送速度が 前記発呼要求に含まれる伝送速度を満たさない場合、前記発呼要求を行な つた無線端末に対し、前記発呼要求に含まれる伝送速度を満たすよう送信 電力を徐々に上げるよう指示することを特徴とする通信システムの電力 制御方法。  The radio base station, when receiving a call request with a predetermined transmission rate as a request value from the plurality of radio terminals, a transmission power satisfying a line quality condition selected from the preset line quality conditions. A transmission power of a lower value is instructed to the wireless terminal that has made the call request, a signal transmitted from the wireless terminal is received by the instructed transmission power, and a transmission speed of the received signal is reduced. If the transmission rate included in the call request is not satisfied, the wireless terminal that issued the call request is instructed to gradually increase the transmission power so as to satisfy the transmission rate included in the call request. A power control method for a communication system.
6 . 請求の範囲第 5項記載の通信システムの電力制御方法において、 前記 回線品質条件の各々には、前記発呼要求を行なった無線端末に指示する送 信電力の基準となる送信電力の値が対応付けられていることを特徴とす る通信システムの電力制御方法。  6. The power control method for a communication system according to claim 5, wherein each of the line quality conditions includes a value of a transmission power serving as a reference of a transmission power instructed to the wireless terminal that has made the call request. A power control method for a communication system, wherein
7 . 請求の範囲第 6項記載の通信システムの電力制御方法において、 前 記無線基地局は、 前記無線端末から新しく発呼要求を受信した場合、 該発 呼要求に応じて前記無線端末との間で使用される回線のタイ ミ ング、伝送 速度及び送信電力を決定し、該決定した伝送速度及び送信電力よりも低い 値で前記無線端末と回線を設定し、 前記新しく受信した発呼要求に応じて 設定される無線回線により、前記無線基地局と通信中の他の無線端末にお いて測定される誤り率が所定値を超える場合、再度前記新しく発呼要求を 行なった無線端末との間で使用される回線のタイ ミ ング、伝送速度及び送 信電力を決定することを特徴とする通信システムの電力制御方法。 7. The power control method for a communication system according to claim 6, wherein, when a new call request is received from the wireless terminal, the wireless base station communicates with the wireless terminal in response to the call request. Determine the timing, transmission speed and transmission power of the line used between the terminals, set the line with the wireless terminal at a value lower than the determined transmission speed and transmission power, and respond to the newly received call request. If the error rate measured by another wireless terminal communicating with the wireless base station by the wireless line set accordingly exceeds a predetermined value, the new call request is issued again. A power control method for a communication system, comprising: determining a timing, a transmission speed, and a transmission power of a line used with a wireless terminal.
8 . 請求の範囲第 5項記載の通信システムの電力制御方法において、 前 記無線基地局から前記発呼要求を行なった無線端末への送信電力を上昇 させる指示は、該受信した信号の誤り率が前記発呼要求の誤り率以下の状 態で行なうことを特徴とする通信システムの電力制御方法。  8. The power control method for a communication system according to claim 5, wherein the instruction to increase the transmission power from the wireless base station to the wireless terminal that has made the call request is an error rate of the received signal. A power control method for a communication system, the method being performed in a state where the error rate is equal to or less than the error rate of the call request.
9 . 請求の範囲第 5項記載の通信システムの電力制御方法において、 前 記送信電力の上昇の指示は段階的に行ない、 各段階において、 前記無線基 地局と通信中の他の無線端末において測定される誤り率が所定値以下で あることを確認した後、次の段階の送信電力を指示することにより行われ ることを特徴とする通信システムの電力制御方法。  9. The power control method for a communication system according to claim 5, wherein the instruction to increase the transmission power is performed in a stepwise manner, and in each of the steps, in another wireless terminal communicating with the wireless base station. A power control method for a communication system, which is performed by confirming that a measured error rate is equal to or less than a predetermined value, and then instructing a next step of transmission power.
1 0 . 複数の無線端末と、 前記複数の無線端末と無線通信可能な無線基 地局とを有する無線通信システムの電力制御方法において、  10. A power control method for a wireless communication system including a plurality of wireless terminals and a wireless base station capable of wirelessly communicating with the plurality of wireless terminals,
前記無線基地局は、 '前記複数の無線端末からの発呼要求に応じて選択さ れる複数の回線品質条件を予め設定されており、  The wireless base station has a plurality of line quality conditions that are selected in response to a call request from the plurality of wireless terminals, and is preset.
前記無線基地局は、前記複数の無線端末から所定の伝送速度を要求値と する発呼要求があった場合、前記予め設定されている回線品質条件から選 択される回線品質条件を満たす送信電力よりも低い値の送信電力を、前記 発呼要求を行なった無線端末に指示し、該指示された送信電力により前記 無線端末から送信される信号を受信し、前記受信される信号の伝送速度を 徐々に上昇させるよう前記発呼要求をした無線端末に指示し、 前記伝送速 度を上昇させる指示を行なった後、前記無線端末からの受信信号の伝送速 度が前記発呼要求の伝送速度より低い場合、前記発呼要求を行なった無線 端末に対し、前記発呼要求に含まれる伝送速度を満たすよう送信電力を徐 々に上げるよう指示することを特徴とする通信システムの電力制御方法。 The radio base station, when receiving a call request with a predetermined transmission rate as a request value from the plurality of radio terminals, a transmission power satisfying a line quality condition selected from the preset line quality conditions. A transmission power of a lower value is instructed to the wireless terminal that has made the call request, a signal transmitted from the wireless terminal is received with the instructed transmission power, and a transmission rate of the received signal is reduced. After instructing the wireless terminal that has made the call request to gradually increase the transmission rate, and instructing to increase the transmission rate, the transmission rate of the signal received from the wireless terminal is higher than the transmission rate of the call request A power control method for a communication system, comprising: when low, instructing a wireless terminal that has made the call request to gradually increase transmission power so as to satisfy a transmission rate included in the call request.
1 1 . 請求の範囲第 1 0項記載の通信システムの電力制御方法において 、 前記回線品質条件の各々には、 前記発呼要求を行なった無線端末に指示 する送信電力の基準となる送信電力の値が対応付けられていることを特 徵とする通信システムの電力制御方法。 11. The power control method for a communication system according to claim 10. A power control method for a communication system, characterized in that each of the line quality conditions is associated with a value of transmission power serving as a reference of transmission power instructing the wireless terminal that made the call request. .
1 2 . 請求の範囲第 1 1項記載の通信システムの電力制御方法において 、 前記無線基地局は、 前記無線端末から新しく発呼要求を受信した場合、 該発呼要求に応じて前記無線端末との間で使用される回線のタイ ミ ング、 伝送速度及び送信電力を決定し、該決定した伝送速度及び送信電力よりも 低い値で前記無線端末と回線を設定し、前記新しく受信した発呼要求に応 じて設定される無線回線により、前記無線基地局と通信中の他の無線端末 において測定される誤り率が所定値を超える場合、 再度前記新しく発呼要 求を行なった無線端末との間で使用される回線のタイ ミ ング、伝送速度及 び送信電力を決定することを特徴とする通信システムの電力制御方法。 12. The power control method for a communication system according to claim 11, wherein the wireless base station, when newly receiving a call request from the wireless terminal, communicates with the wireless terminal in response to the call request. Determine the timing, transmission speed and transmission power of the line used between the terminals, set the line with the wireless terminal at a value lower than the determined transmission speed and transmission power, and set the newly received call request. If the error rate measured by another wireless terminal communicating with the wireless base station by the wireless line set according to the above exceeds a predetermined value, the communication with the wireless terminal that has made the new call request again is performed. A power control method for a communication system, comprising determining a timing, a transmission speed, and a transmission power of a line used between the communication systems.
1 3 . 請求の範囲第 1 0項記載の通信システムの電力制御方法において 、前記無線基地局から前記発呼要求を行なつた無線端末への伝送速度を上 昇させる指示及び送信電力を上昇させる指示は、該受信した信号の誤り率 が前記発呼要求の誤り率以下の状態で行なうことを特徴とする通信シス テムの電力制御方法。 13. The power control method for a communication system according to claim 10, wherein the instruction to increase the transmission speed from the wireless base station to the wireless terminal that has issued the call request and the transmission power are increased. The instruction is performed in a state where the error rate of the received signal is equal to or less than the error rate of the call request.
1 4 . 請求の範囲第 1 0項記載の通信システムの電力制御方法において 、 前記送信電力の上昇の指示は段階的に行ない、 各段階において、 前記無 線基地局と通信中の他の無線端末において測定される誤り率が所定値以 下であることを確認した後、次の段階の送信電力を指示することにより行 われることを特徴とする通信システムの電力制御方法。  14. The power control method for a communication system according to claim 10, wherein the instruction to increase the transmission power is performed stepwise, and in each step, another radio terminal communicating with the radio base station. A power control method for a communication system, comprising: confirming that an error rate measured in step (a) is equal to or less than a predetermined value, and then instructing a next step of transmission power.
1 5 . 複数の無線端末と、 前記複数の無線端末と無線通信可能な無線基 地局とを有する無線通信システムの電力制御方法において、  15. A power control method for a wireless communication system including a plurality of wireless terminals and a wireless base station capable of wirelessly communicating with the plurality of wireless terminals,
前記無線基地局は、前記複数の無線端末からの発呼要求に応じて選択さ れる複数の回線品質条件を予め設定されており、 前記無線基地局は、前記無線端末から新しく優先呼である発呼要求を受 信した場合、 該発呼要求の優先順位に応じて、 既に通信中の他の無線回線 との間で前記無線端末との間で使用される回線のタイ ミ ング、伝送速度及 び送信電力の変更を行い、 前記優先呼である発呼要求を発した無線端末に 対し、 発呼要求の内容に応じて伝送速度及び送信電力とを決定し、 該決定 した伝送速度及び送信電力よりも低い値で前記無線端末と回線を設定す るよう、前記予め設定されている回線品質条件から選択される回線品質条 件を満たす送信電力よりも低い値の送信電力を、前記発呼要求を行なった 無線端末に指示し、該指示された送信電力により前記無線端末から送信さ れる信号を受信し、前記受信される信号の伝送速度を徐々に上昇させるよ う前記発呼要求をした無線端末に指示することを特徴とする通信システ ムの電力制御方法。 The wireless base station is preset with a plurality of line quality conditions selected in response to a call request from the plurality of wireless terminals, When the radio base station receives a call request that is a new priority call from the radio terminal, the radio base station communicates with another radio line that is already communicating according to the priority of the call request. Change the timing, transmission speed, and transmission power of the line used between the wireless terminal and the wireless terminal that issued the call request, which is the priority call, according to the content of the call request. And transmission power, and a line quality condition selected from the preset line quality conditions is set so as to set the line with the wireless terminal at a value lower than the determined transmission speed and transmission power. Instructing the wireless terminal that has made the call request a transmission power lower than the transmission power that satisfies the condition, receiving a signal transmitted from the wireless terminal with the indicated transmission power, I will gradually increase the transmission speed A power control method for a communication system, comprising: instructing the wireless terminal that has made the call request.
1 6 . 請求の範囲第 1 5項記載の通信システムの電力制御方法において 、 前記回線品質条件の各々には、 前記発呼要求を行なった無線端末に指示 する送信電力の基準となる送信電力の値が対応付けられていることを特 徴とする通信システムの電力制御方法。  16. The power control method for a communication system according to claim 15, wherein each of the line quality conditions includes a transmission power as a reference of a transmission power instructed to the wireless terminal that has made the call request. A power control method for a communication system that is characterized by being associated with a value.
1 7 . 請求の範囲第 1 6項記載の通信システムの電力制御方法において 、 前記無線基地局は、 前記無線端末から新しく発呼要求を受信した場合、 該発呼要求に応じて前記無線端末との間で使用される回線のタイ ミ ング、 伝送速度及び送信電力を決定し、該決定した伝送速度及び送信電力よりも 低い値で前記無線端末と回線を設定し、前記新しく受信した発呼要求に応 じて設定される無線回線により、前記無線基地局と通信中の他の無線端末 において測定される誤り率が所定値を超える場合、 再度前記新しく発呼要 求を行なった無線端末との間で使用される回線のタイ ミ ング、伝送速度及 び送信電力を決定することを特徴とする通信システムの電力制御方法。 17. The power control method for a communication system according to claim 16, wherein, when a new call request is received from the wireless terminal, the wireless base station communicates with the wireless terminal in response to the call request. Determine the timing, transmission speed and transmission power of the line used between the terminals, set the line with the wireless terminal at a value lower than the determined transmission speed and transmission power, and set the newly received call request. If the error rate measured by another wireless terminal communicating with the wireless base station by the wireless line set according to the above exceeds a predetermined value, the communication with the wireless terminal that has made the new call request again is performed. A power control method for a communication system, comprising determining a timing, a transmission speed, and a transmission power of a line used between the communication systems.
1 8 . 請求の範囲第 1 5項記載の通信システムの電力制御方法において 、前記無線基地局から前記発呼要求を行なつた無線端末への伝送速度を上 昇させる指示は、該受信した信号の誤り率が前記発呼要求の誤り率以下の 状態で行なうことを特徴とする通信システムの電力制御方法。 18. The power control method for a communication system according to claim 15, The instruction to increase the transmission rate from the wireless base station to the wireless terminal that made the call request is issued when the error rate of the received signal is equal to or less than the error rate of the call request. A power control method for a communication system.
1 9 . 複数の無線端末と、 前記無線端末と通信を行う無線基地局とを有 する無線通信システムにおいて、  19. In a wireless communication system including a plurality of wireless terminals and a wireless base station that communicates with the wireless terminals,
高品質の通信を要求する第 1の無線端末の回線を設定する際に、低品質 の第 2の無線端末の通信品質を基準として、前記第 1の無線端末の送信電 力を制御することを特徴とする無線通信システム。  When setting the line of the first wireless terminal requesting high-quality communication, it is preferable to control the transmission power of the first wireless terminal based on the communication quality of the low-quality second wireless terminal. A wireless communication system, characterized by:
2 0 . 複数の無線端末と通信を行う無線基地局において、  20. In a wireless base station that communicates with multiple wireless terminals,
前記無線基地局と通信中の第 1の無線端末の回線品質を測定する測定 手段と、  Measuring means for measuring the line quality of the first wireless terminal communicating with the wireless base station;
前記測定手段の測定した回線品質に基づいて、新たに前記無線基地局と 通信を開始する第 2の無線端末の送信電力の許容値を決定する第 1の決 定手段と、  First determining means for determining an allowable value of transmission power of a second wireless terminal newly starting communication with the wireless base station based on the line quality measured by the measuring means;
前記第 1の決定手段の決定した前記許容値に基づいて、 前記第 2の無線 端末の送信開始時の送信電力の初期値を決定する第 2の決定手段と、 前記第 2の決定手段が決定した前記初期値に従って前記第 2の無線端 末が送信するよう、前記第 2の無線端末に命令情報を送信する送信手段と 、 を有することを特徴とする無線基地局。  A second determining unit that determines an initial value of transmission power at the start of transmission of the second wireless terminal based on the allowable value determined by the first determining unit; and A transmission unit for transmitting command information to the second wireless terminal so that the second wireless terminal transmits according to the initial value.
2 1 . 請求の範囲第 2 0項記載の無線基地局において、 前記無線基地局 は、前記第 2の無線端末の送信電力が前記初期値から徐々に前記許容値に 近づくように電力制御を行うことを特徴とする無線基地局。  21. The wireless base station according to claim 20, wherein the wireless base station performs power control such that the transmission power of the second wireless terminal gradually approaches the allowable value from the initial value. A wireless base station characterized by the above-mentioned.
PCT/JP1999/003818 1998-09-08 1999-07-15 Method for controlling power of communication system WO2000014908A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/253517 1998-09-08
JP25351798A JP2000091985A (en) 1998-09-08 1998-09-08 Power control method for communication system

Publications (1)

Publication Number Publication Date
WO2000014908A1 true WO2000014908A1 (en) 2000-03-16

Family

ID=17252479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003818 WO2000014908A1 (en) 1998-09-08 1999-07-15 Method for controlling power of communication system

Country Status (2)

Country Link
JP (1) JP2000091985A (en)
WO (1) WO2000014908A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317931B2 (en) 2000-05-19 2008-01-08 Fujitsu Limited Transmission rate changes in communications networks
CN100459729C (en) * 2002-10-03 2009-02-04 株式会社Ntt都科摩 Transmitted power control method, communication equipment and radio communication system
US8005042B2 (en) 1997-11-03 2011-08-23 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
KR101306372B1 (en) 2006-12-19 2013-09-09 재단법인서울대학교산학협력재단 Dynamic power allocation method and apparatus for controlling inter-cell interference in multi-cell orthogonal frequency division multiplexing access system
US8811200B2 (en) 2009-09-22 2014-08-19 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
US9107109B2 (en) 2000-10-25 2015-08-11 Qualcomm Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
US9118387B2 (en) 1997-11-03 2015-08-25 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
US9426821B2 (en) 2000-10-25 2016-08-23 Qualcomm Incorporated Method and apparatus for high rate packet data and low delay data transmissions
CN109102816A (en) * 2018-08-14 2018-12-28 Oppo广东移动通信有限公司 Coding control method, device and electronic equipment

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA946674B (en) 1993-09-08 1995-05-02 Qualcomm Inc Method and apparatus for determining the transmission data rate in a multi-user communication system
GB2362542A (en) * 2000-05-05 2001-11-21 Nokia Mobile Phones Ltd Establishing communications with a proximate wireless device
US6411608B2 (en) * 2000-07-12 2002-06-25 Symbol Technologies, Inc. Method and apparatus for variable power control in wireless communications systems
JP2002077040A (en) * 2000-08-29 2002-03-15 Matsushita Electric Ind Co Ltd Base station unit, control station unit and transmission power control method
US6775254B1 (en) 2000-11-09 2004-08-10 Qualcomm Incorporated Method and apparatus for multiplexing high-speed packet data transmission with voice/data transmission
CN1433651A (en) * 2000-12-01 2003-07-30 松下电器产业株式会社 Base station device and circuit connection control method
JP3608518B2 (en) 2001-02-28 2005-01-12 日本電気株式会社 Mobile communication system
JP2003289280A (en) 2002-03-28 2003-10-10 Sony Corp Radio communications system, mobile radio communication apparatus and method, fixed radio communication apparatus and method, and program
US7110783B2 (en) * 2002-04-17 2006-09-19 Microsoft Corporation Power efficient channel scheduling in a wireless network
FI20021314A0 (en) 2002-07-03 2002-07-03 Nokia Corp Communication method and arrangement
JP4306275B2 (en) 2003-02-19 2009-07-29 日本電気株式会社 Mobile communication system, radio base station controller, and transmission / reception power control method used therefor
KR100519666B1 (en) * 2003-06-12 2005-10-07 에스케이 텔레콤주식회사 Power Allocation Apparatus and Method for Packet Data Services in Mobile Communications Systems
JP4674054B2 (en) * 2004-03-31 2011-04-20 京セラ株式会社 COMMUNICATION SYSTEM, COMMUNICATION DEVICE, AND TRANSMISSION RATE CONTROL METHOD
CN1993906B (en) 2004-07-22 2010-04-28 三菱电机株式会社 Base station and mobile equipment
US7693537B2 (en) 2005-03-22 2010-04-06 Ntt Docomo, Inc. Transmission rate control method, transmission rate control system, and mobile station
JP4549946B2 (en) * 2005-08-01 2010-09-22 ソフトバンクモバイル株式会社 Congestion control method and congestion control apparatus in mobile communication system
JP5035149B2 (en) * 2008-07-08 2012-09-26 富士通株式会社 Power control method and power control apparatus

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231523A (en) * 1990-02-07 1991-10-15 Nippon Telegr & Teleph Corp <Ntt> Mobile communication control system
JPH04233334A (en) * 1990-06-21 1992-08-21 Telefon Ab L M Ericsson Adjusting method of transmission power in digital mobile telephone system
JPH04297137A (en) * 1991-03-26 1992-10-21 Nippon Telegr & Teleph Corp <Ntt> Connection control system for mobile communication
JPH05244056A (en) * 1991-12-26 1993-09-21 Nec Corp Transmitter power control system for mobile communication system
JPH07283888A (en) * 1994-04-04 1995-10-27 Matsushita Electric Ind Co Ltd Radio communication system
JPH09506231A (en) * 1994-07-29 1997-06-17 クゥアルコム・インコーポレイテッド Method and apparatus for controlling power in a variable rate communication system
JPH09261170A (en) * 1996-03-18 1997-10-03 Nec Corp Transmission power control method
JPH1042355A (en) * 1996-07-24 1998-02-13 N T T Ido Tsushinmo Kk Radio channel structuring method in cdma mobile communication system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03231523A (en) * 1990-02-07 1991-10-15 Nippon Telegr & Teleph Corp <Ntt> Mobile communication control system
JPH04233334A (en) * 1990-06-21 1992-08-21 Telefon Ab L M Ericsson Adjusting method of transmission power in digital mobile telephone system
JPH04297137A (en) * 1991-03-26 1992-10-21 Nippon Telegr & Teleph Corp <Ntt> Connection control system for mobile communication
JPH05244056A (en) * 1991-12-26 1993-09-21 Nec Corp Transmitter power control system for mobile communication system
JPH07283888A (en) * 1994-04-04 1995-10-27 Matsushita Electric Ind Co Ltd Radio communication system
JPH09506231A (en) * 1994-07-29 1997-06-17 クゥアルコム・インコーポレイテッド Method and apparatus for controlling power in a variable rate communication system
JPH09261170A (en) * 1996-03-18 1997-10-03 Nec Corp Transmission power control method
JPH1042355A (en) * 1996-07-24 1998-02-13 N T T Ido Tsushinmo Kk Radio channel structuring method in cdma mobile communication system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8005042B2 (en) 1997-11-03 2011-08-23 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US8189540B2 (en) 1997-11-03 2012-05-29 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US9001735B2 (en) 1997-11-03 2015-04-07 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US9118387B2 (en) 1997-11-03 2015-08-25 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
US9124344B2 (en) 1997-11-03 2015-09-01 Qualcomm Incorporated Pilot reference transmission for a wireless communication system
US7317931B2 (en) 2000-05-19 2008-01-08 Fujitsu Limited Transmission rate changes in communications networks
US9107109B2 (en) 2000-10-25 2015-08-11 Qualcomm Incorporated Method and apparatus for determining a data rate in a high rate packet data wireless communications system
US9426821B2 (en) 2000-10-25 2016-08-23 Qualcomm Incorporated Method and apparatus for high rate packet data and low delay data transmissions
CN100459729C (en) * 2002-10-03 2009-02-04 株式会社Ntt都科摩 Transmitted power control method, communication equipment and radio communication system
KR101306372B1 (en) 2006-12-19 2013-09-09 재단법인서울대학교산학협력재단 Dynamic power allocation method and apparatus for controlling inter-cell interference in multi-cell orthogonal frequency division multiplexing access system
US8811200B2 (en) 2009-09-22 2014-08-19 Qualcomm Incorporated Physical layer metrics to support adaptive station-dependent channel state information feedback rate in multi-user communication systems
CN109102816A (en) * 2018-08-14 2018-12-28 Oppo广东移动通信有限公司 Coding control method, device and electronic equipment

Also Published As

Publication number Publication date
JP2000091985A (en) 2000-03-31

Similar Documents

Publication Publication Date Title
WO2000014908A1 (en) Method for controlling power of communication system
KR100549552B1 (en) Method for selection of coding method
EP1112624B1 (en) Method and apparatus for distributed optimal reverse link scheduling of resources, such as rate and power, in a wireless communication system
US7024203B1 (en) Admission control method
CA2184772C (en) Code division multiple access system providing load and interference based demand assignment service to users
US6173162B1 (en) Multiple code channel power control in a radio communication system
EP2107841B1 (en) Closed loop resource allocation in a high speed wireless communications network
JP3955728B2 (en) Adaptive wireless link
JP4447281B2 (en) Transmission power control apparatus in mobile communication system
US20170094553A1 (en) Wireless communication method and system for controlling data bit rates to maintain the quality of radio links
EP1774804B1 (en) Method for controlling communication between two nodes of a communication system
EP1215833A1 (en) Method of controlling quality of service of a CDMA-based system
EP2519061A1 (en) System and method for fast dynamic link adaptation
KR20040096790A (en) Appartus and method for controlling data rate of revers link traffic data rate in a mobile communication system
US20040166899A1 (en) Mobile communication system, radio base station controller and transmitting and receiving power control method therefor
KR101123587B1 (en) Distributed resource management for enhanced dedicated channel
US20080132266A1 (en) Maximum Allowable Transmission Rate Deciding Method, Mobile Station And Wireless Base Station
KR20050055166A (en) Apparatus and method for controlling data rate in a mobile communication system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 09786727

Country of ref document: US