WO2000018474A1 - Golf ball - Google Patents

Golf ball Download PDF

Info

Publication number
WO2000018474A1
WO2000018474A1 PCT/US1999/020560 US9920560W WO0018474A1 WO 2000018474 A1 WO2000018474 A1 WO 2000018474A1 US 9920560 W US9920560 W US 9920560W WO 0018474 A1 WO0018474 A1 WO 0018474A1
Authority
WO
WIPO (PCT)
Prior art keywords
golf ball
core
cover
layer
hardness
Prior art date
Application number
PCT/US1999/020560
Other languages
French (fr)
Inventor
Jeffrey L. Dalton
Chistopher Cavallaro
Murali Rajagopalan
Original Assignee
Acushnet Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acushnet Company filed Critical Acushnet Company
Priority to AU58161/99A priority Critical patent/AU5816199A/en
Publication of WO2000018474A1 publication Critical patent/WO2000018474A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0876Neutralised polymers, i.e. ionomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • C08L53/025Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes modified
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0023Covers
    • A63B37/0029Physical properties
    • A63B37/0031Hardness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0023Covers
    • A63B37/0029Physical properties
    • A63B37/0033Thickness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/004Physical properties
    • A63B37/0043Hardness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/004Physical properties
    • A63B37/0045Thickness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/0038Intermediate layers, e.g. inner cover, outer core, mantle
    • A63B37/004Physical properties
    • A63B37/0047Density; Specific gravity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/005Cores
    • A63B37/006Physical properties
    • A63B37/0066Density; Specific gravity
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B37/00Solid balls; Rigid hollow balls; Marbles
    • A63B37/0003Golf balls
    • A63B37/007Characteristics of the ball as a whole
    • A63B37/0072Characteristics of the ball as a whole with a specified number of layers
    • A63B37/0075Three piece balls, i.e. cover, intermediate layer and core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3644Vacuum bags; Details thereof, e.g. fixing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/30Making multilayered or multicoloured articles
    • B29C43/305Making multilayered articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • C08L67/025Polyesters derived from dicarboxylic acids and dihydroxy compounds containing polyether sequences

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention is directed towards a high-spin multi-layer golf ball (1) which comprises a high specific gravity core (2), a soft cover (3) with a Shore D hardness of less than about 63, and a mantle layer (4) disposed between the core (2) and cover layer (3), wherein the mantle layer (4) has a Shore D hardness of greater than about 60.

Description

GOLF BALL
This application is a continuation-in-part of co-pending U.S. patent application Nos. 08/996,718, 08/706,008, 08/603,057, 08/606,373, and 08/746,362 filed December 23, 1997, August 30, 1996, February 16, 1996, February 23, 1996, and November 8, 1996, respectively, which are continuation-in-part applications of patent application No. 08/482,522 filed June 7, 1995, now U.S. Patent No. 5,688,191.
FIELD OF THE INVENTION This invention relates generally to golf balls, and more specifically, to a multilayer golf ball. In particular, this invention relates to a golf ball having a core, a cover and one or more mantle layers disposed between the core and cover. This invention is also directed to a composition used for the manufacture of golf ball cores, mantle layers and covers for multilayer golf balls. The multilayer golf balls of the present invention have been found to provide improved playing characteristics.
BACKGROUND OF THE INVENTION
Conventional golf balls can be divided into two general types or groups: two-piece balls or wound balls (also known as three-piece balls). The difference in play characteristics resulting from these different types of constructions can be quite significant. Balls having a two-piece construction are generally most popular with the average recreational golfer because they provide a very durable ball while also providing maximum distance. Two-piece balls are made with a single solid core, usually made of a crosslinked rubber, which is encased by a cover material. Typically the solid core is made of polybutadiene which is chemically crosslinked with zinc diacrylate and/or similar crosslinking agents and is covered by a tough, cut-proof blended cover. The cover is generally a material such as SURLYN®, which is a trademark for an ionomer resin produced by DuPont. The combination of the core and cover materials provide a "hard" ball that is virtually indestructible by golfers. Further, such a combination imparts a high initial velocity to the ball which results in improved distance. Because these materials are very rigid, two-piece balls have a hard "feel" when struck with a club. Likewise, due to their hardness, these balls have a relatively low spin rate which provides greater distance. A number of polymers, such as polybutadiene, natural rubber, styrene butadiene, and isoprene, are commonly used in fabricating golf ball cores. Today, golf ball cores are predominantly made of polybutadiene. Moreover, in order to obtain the desired physical properties for golf balls, manufacturers have added cross-linking agents, such as metallic salts of an unsaturated carboxylic acid. The amount of cross-linking agent added is typically about 20 to 50 parts per hundred parts of polybutadiene. Most commonly, zinc diacrylate or zinc dimethacrylate are used for this purpose. Of these two cross-linkers, zinc diacrylate has been found to produce golf balls with greater initial velocity than zinc dimethacrylate. Typically, about 5 to 50 pph (parts per hundred) of zinc oxide (ZnO) is also added to the composition. This material serves as both a filler and an activation agent for the zinc diacrylate/peroxide cure system. The zinc diacrylate/peroxide cure system, which is well known to those of ordinary skill in this art, cross-links the polybutadiene during the core molding process. The high specific gravity of zinc oxide (5.57) can serve the dual purposes of adjusting the weight of the golf ball, in addition to acting as an activation agent. At the present time, the wound ball remains the preferred ball of the more advanced players due to its spin and feel characteristics. Wound balls typically have either a solid rubber or liquid center core around which many yards of a stretched elastic thread or yarn are wound. The wound core is then covered with a durable cover material such as a SURLYN® or similar material or a softer cover such as Balata or polyurethane. Wound balls are generally softer and provide more spin, which enables a skilled golfer to have more control over the ball's flight and final position. Particularly, with approach shots onto the green, the high spin rate of soft, wound balls enables the golfer to stop the ball very near its landing position.
DESCRIPTION OF THE PRIOR ART
Several patents have been issued which are directed towards modifying the properties of a conventional two-piece ball by altering the typical single layer core and single cover layer construction to provide a multi-layer core. The inventions disclosed in the prior art patents are directed towards improving a variety of golf ball characteristics.
Several patents are directed towards improving the carry distance of the ball. For example, U.S. Patent No. 4,863,167 relates to a three-piece solid golf ball having improved rebound characteristics in order to increase its flight distance. This golf ball has a center portion and the outer layer formed from a rubber composition, preferably having a base rubber of polybutadiene, wherein the outer layer further contains a gravity filler such as tungsten or tungsten carbide so as to impart a higher specific gravity to the outer layer than that of the inner layer. The difference in specific gravity of the layers should be 0.15-0.8 for small balls and 0.15-0.45 for large balls. Preferably, the outer layer is harder than the center portion.
U.S. Patent No. 4,431,193 relates to a solid core golf ball with a multilayer cover construction. The first layer includes a hard, high flexural modulus resinous material and the second layer includes a soft low flexural modulus resinous material. The construction and material allows the ball to obtain the maximum initial velocity permitted by the United States Golf Association Rules while having a good playing characteristics or "feel." Preferably, the first layer is made of SURLYN® resin type 1605 and the second layer is made of SURLYN® resin type 1855. U.S. Patent No. 5,184,828 relates to a solid three-piece golf ball having improved rebound characteristics and carry distance while maintaining an adequate spin rate. These characteristics are obtained by controlling the size of the inner core and outer layer as well as the specific gravity and hardness. The core and mantle layers are made from a rubber compound such as polybutadiene, and have a Shore D hardness of 30-62 and 30-56 respectively. The key to obtaining the desired rebound characteristics is that the maximum hardness (42-62) must be located at the interface between the core and the mantle and the hardness must then decrease both inwardly and outwardly.
U.S. Patent No. 4,714,253 is also directed towards a three-piece golf ball having an excellent rebound coefficient. This golf ball has a core with a Shore C hardness of 57-80 in its center, but not more than 83 at a distance between 5-10mm from its center and an outer layer with a Shore C hardness of 70-83.
Additionally, there are a number of patents also directed towards improving the spin, click and feel of solid balls while maintaining the distance provided by the solid construction. A variety of approaches to manipulating the core construction are described in the art. For example, U.S. Patent No. 5,072,944 discloses a three-piece solid golf ball having a center and outer layer which are prepared from a rubber composition, preferably having a base rubber of polybutadiene. It is desirable that the center core is softer than the outer layer, each having a hardness (Shore C) of 25-50 and 70-90 respectively.
U.S. Patent No. 4,625,964 relates to a solid golf ball having a polybutadiene rubber core of a diameter not more than 32mm, and a polybutadiene rubber intermediate layer having a specific gravity of higher than that of the core material, and a cover.
U.S. Patent No. 4,650,193 is directed towards a solid golf ball having a core comprising of a central portion and an integral outer layer. Preferably the core is a curable elastomer such as polybutadiene which is treated with a cure altering agent to soften an outer layer of the core, thereby producing a central layer with a hardness (Shore C) of greater than 75 and an outer layer with a hardness (Shore A) of less than 80.
U.S. Patent No. 4,848,770 discloses a non-wound three-piece golf ball which includes a core of a highly filled synthetic rubber or polymeric material, an intermediate mantle of an unfilled synthetic rubber and a cover. The core and intermediate mantle have a hardness of between 50-95. U.S. Patent No. 5,002,281 is directed towards a three-piece solid golf ball which has an inner core having a hardness of 25-70 (Shore C), an outer shell having a hardness of 80-95 (Shore C) and a cover. Further, the specific gravity of the inner core must be greater than 1.0, but less than or equal to that of the outer shell, which must be less than 1.3. U.S. Patent No. 5,253,871 concerns a golf ball having a three-piece structure comprising an elastomer core, an intermediate layer of a thermoplastic material containing at least 10% of ether block copolymer, preferably blended with an ionomer and a thermoplastic cover.
Further, there are also several patents which are directed to golf balls having multiple cover layers. For example U.S. Patent No. 4,431,193 relates to a golf ball having a multilayer cover wherein the inner layer is a hard, high flexural modulus ionomer resin and the outer layer is a soft, high flexural modulus ionomer resin, and wherein either or both layers may comprise a foamed ionomer resin.
U.S. Patent No. 5,314,187 also relates to golf balls having a multiple layer cover, wherein the outer layer is molded over the inner layer and comprises a blend of balata and an elastomer and the inner layer is an ionomer resin. U.S. Patent No. 4,919,434 is directed towards a golf ball having a cover which comprises an inner layer and an outer layer each of which comprise a thermoplastic resin, preferably the layers comprise of materials that are capable of fusion bonding with each other. U.S. Patent No. 5,556,098 is directed to a three-piece solid golf ball comprising a center core, an intermediate layer, and a cover. The center core is formed of a polybutadiene base rubber and a specific gravity of less than 1.4, and a hardness up to 80 on JIS C scale. The intermediate layer is formed of a thermoplastic polyester elastomer and has a specific gravity of less than 1.2, and a hardness of less than 80 on JIS C scale. The cover has a hardness of at least 85 on JIS C scale.
U.S. Patent No. 5,439,227 is directed to a multi-piece solid golf ball having a solid core including an inner layer circumscribed by an outer layer. The core inner layer is formed from a rubber composition. The core outer layer is formed by a polyether ester type thermoplastic elastomer having a Shore D hardness of 30-50. The core is surrounded by a cover of an ethylene-(meth)acrylate copolymer ionomer having a flexural modulus of 200- 450 MPa and a Shore D hardness of 55-68.
U.S. Patent No. 5,415,937 is directed to a golf ball cover comprised on 80 to 50% by weight of a high stiffness ionomer and 20 to 50% by weight of a low stiffness ionomer. However, none of these patents disclose a multi-layer ball having the materials and material property requirements as disclosed herein to provide the improved golf balls of the present invention.
SUMMARY OF THE INVENTION The present invention is directed towards a multi-layer golf ball which provides improved playing characteristics by using specific core, mantle and cover formulations. More particularly, the present invention is directed to balls having good distance, spin, durability and ease of manufacturing. The present invention is directed to improved golf balls that have durability, lower driver spin rates and substantial distance more like conventional two-piece balls, but have a soft feel and higher 5 iron spin by using a thermoplastic mantle layer, a harder core and a soft cover. The present invention is further directed towards a multi-layer golf ball which comprises a core with one or more layers; at least one cover layer; and one or more mantle layers disposed between the core and cover layer. The core is preferably comprised of a polybutadiene rubber having an activation agent of calcium oxide and/or zinc oxide. The mantle layer has a Shore D hardness greater than 60 and preferably comprises thermoplastic copolyetherester block copolymer, thermoplastic copolyesterester block copolymer, thermoplastic polyurethane, thermoset polyurethane, dynamically vulcanized thermoplastic elastomer, styrene-butadiene, styrene-isoprene and styrene-ixoprene elastomers with a functional group such as maleic anhydride or sulfonic acid, polymer made using a metallocene catalyst, or blends thereof and/or thermoset materials. The cover preferably comprises a thermoplastic or thermosetting material.
The present invention is still further directed to a multi-layer golf ball which comprises a core, at least one cover layer and at least one mantle layer disposed between the core and cover layer wherein properties such as the thickness, specific gravity, hardness, flexural modulus, tensile modulus, compression or Bashore resilience of the various layers is such as to provide a ball with improved playing characteristics.
The present invention is also directed to an improved high-spin, multilayer golf ball having a harder golf ball core. The composition of the golf ball core comprises a base mixture of polybutadiene, a metal salt diacrylate or dimethacrylate, preferably, zinc diacrylate in an amount of about 20 to 50 parts per hundred parts of polybutadiene, and a free radical initiator, to which some calcium oxide (CaO) may be added instead of zinc oxide as an activation agent in an amount sufficient to produce a golf ball core with the advantageous properties discussed below.
Still further, in the preferred high spin golf ball, fillers may be added to the core to give the core a high specific gravity. By keeping weight in the core, the spin rate of the ball is increased.
The invention thus provides a novel golf ball composition that offers enhanced performance properties. BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a cross-sectional view of a golf ball according to the present invention.
Fig. 2 is a perspective view of a golf ball according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
The following terms that are used in this application are defined in terms of the enumerated ASTM tests:
Specific gravity ASTM D - 297 ' Flexural (Flex) Modulus ASTM D - 7902 Shore D Hardness ASTM D - 2240 Tensile Modulus ASTM D - 6383 Bashore resiliency ASTM D - 26324
For purposes of the present invention, the term "reaction conditions" can refer to any reaction condition that can affect the ability of the inventive core compositions to form free radicals. Reaction conditions include, for example, temperature, time and pressure. As used herein, the terms "points" or "compression points" refer to the compression scale or the compression scale based on the ATTI Engineering Compression
'Tests were carried out in lab conditions where temperature was controlled to 20-23 °C. Humidity was not controlled.
2Tests were carried out using a 0.2 in min cross-head speed and a 2 inch span length in the three point bending mode. Test samples were annealed at 140°F for 24 hours and the tests were performed no earlier than 24 hours after annealing.
3Tests were carried out on type IV specimens using a 2 in min cross-head speed without an extensiometer. Test samples were annealed at 140°F for 24 hours and the tests were performed no earlier than 24 hours after annealing.
4Four (4) 1/8 inch samples were plied together to achieve the Vτ inch test thickness. Tester. This scale, which is well known to those working in this field, is used in determining the relative compression of a core or ball. Some artisans use the Reihle compression scale instead of the standard compression scale. Based on disclosure in U.S. Patent No. 5,368,304, column 20, lines 55-53 it appears that Reihle compression values can be converted to compression values through the use of the following equation:
compression value = 160 - Reihle compression value.
Referring to Figs. 1 and 2, this invention is particularly directed towards a multi-layer golf ball 1 which comprises a core 2, at least one cover layer 3 and at least one mantle layer 4 disposed therebetween.
A representative base composition for forming the golf ball core 2, prepared in accordance with the present invention, comprises polybutadiene and, in parts by weight based on 100 parts polybutadiene, 20-50 parts of a metal salt diacrylate, dimethacrylate, or monomethacrylate, preferably zinc diacrylate. The polybutadiene preferably has a cis 1,4 content of above about 90% and more preferably above about 96%>. Commercial sources of polybutadiene include Shell 1220 manufactured by Shell Chemical, Neocis BR40 manufactured by Enichem Elastomers, and Ubepol BR150 manufactured by Ube Industries, Ltd. If desired, the polybutadiene can also be mixed with other elastomers known in the art, such as natural rubber, styrene butadiene, and/or isoprene in order to further modify the properties of the core. When a mixture of elastomers is used, the amounts of other constituents in the core composition are usually based on 100 parts by weight of the total elastomer mixture.
Metal salt diacrylates, dimethacrylates, and monomefhacrylates suitable for use in this invention include those wherein the metal is magnesium, calcium, zinc, aluminum, sodium, lithium or nickel. Zinc diacrylate is preferred, because it provides golf balls with a high initial velocity in the USGA test. The zinc diacrylate can be of various grades of purity. Suitable, commercially available zinc diacrylates include those from Rockland React-Rite and Sartomer. The preferred concentrations of zinc diacrylate that can be used are 20-50 pph and preferably 25-35 pph based upon 100 pph of polybutadiene or alternately, polybutadiene with a mixture of other elastomers that equal 100 pph. Free radical initiators are used to promote cross-linking of the metal salt diacrylate, dimethacrylate, or monomethacrylate and the polybutadiene. Suitable free radical initiators for use in the invention include, but are not limited to peroxide compounds, such as dicumyl peroxide, 1,1 -di (t-butylperoxy) 3,3,5-trimethyl cyclohexane, a-a bis (t-butylperoxy) diisopropylbenzene, 2,5-dimethyl-2,5 di (t-butylperoxy) hexane, or di-t-butyl peroxide, and mixtures thereof. Other useful initiators would be readily apparent to one of ordinary skill in the art without any need for experimentation. The initiator(s) at 100%) activity are preferably added in an amount ranging between about 0.05 and 2.5 pph based upon 100 parts of butadiene, or butadiene mixed with one or more other elastomers. More preferably, the amount of initiator added ranges between about 0.15 and 2 pph and most preferably between about 0.25 and 1.5 pph.
A typical prior art golf ball core incorporates 5 to 50 pph of zinc oxide in a zinc diacrylate-peroxide cure system that cross-links polybutadiene during the core molding process. In the present invention, some of the zinc oxide (ZnO) can be eliminated in favor of calcium oxide (CaO) in the golf ball core composition. The cores and balls produced from such an admixture typically exhibit enhanced performance properties. The initial velocity of the standard ball is maintained, but the compression of the ball is reduced by at least about 2 compression points on the standard compression scale. On the other hand, the combination of the use of some calcium oxide and a higher percentage of zinc diacrylate can be used to maintain the same compression, but the initial velocity is significantly increased. Where the amount of zinc oxide incorporated in prior art cores is typically about 5 to 50 pph, the amount of calcium oxide added to the core-forming composition of the invention as an activator is typically in the range of about 0.1 to 15, preferably 1 to 10, most preferably 1.25 to 5, parts calcium oxide per hundred parts (pph) of polybutadiene.
The compositions of the present invention may also include fillers, added to the elastomeric composition to adjust the density and/or specific gravity of the core. As used herein, the term "fillers" includes any compound or composition that can be used to vary the density and other properties of the subject golf ball core. Fillers useful in the golf ball core according to the present invention include, for example, zinc oxide, barium sulfate, and regrind (which is recycled core molding matrix ground to about 30 mesh particle size). The amount and type of filler utilized is governed by the amount and weight of other ingredients in the composition, since a maximum golf ball weight of 1.620 ounces (45.92 gm) has been established by the USGA. Appropriate fillers generally used range in specific gravity from about 2.0 to 5.6. In the preferred golf ball, the amount of filler is higher than that of a typical golf ball such that the specific gravity of the core is increased.
In the golf ball core 2, as shown in Fig. 1, the preferred range of specific gravities is from about 1.2 to about 1.7, more preferably in the range of about 1.3 to about 1.5, depending upon the size of the core, cover, mantle layer and finished ball, as well as the specific gravity of the cover and mantle layer. Other ingredients such as processing aids, processing oils, plasticizers, dyes and pigments, as well as other additives well known to the skilled artisan may also be used in the present invention in amounts sufficient to achieve the purpose for which they are typically used.
The core compositions of the invention are produced by forming a mixture comprising at least polybutadiene, zinc diacrylate, and calcium or zinc oxide.
When a set of predetermined conditions is met, i.e., time and temperature of mixing, the free radical initiator is added in an amount dependent upon the amounts and relative ratios of the starting components, as would be well understood by one of ordinary skill in the art. In particular, as the components are mixed, the resultant shear causes the temperature of the mixture to rise. Peroxide(s) free radical initiator(s) are blended into the mixture for crosslinking purposes in the molding process.
After completion of the mixing, the golf ball core composition is milled and hand prepped or extruded into pieces ("preps") suitable for molding. The milled preps are then compression molded into cores at an elevated temperature. Typically, 160°C (320 °F) for 15 minutes is suitable for this purpose. These cores can then be used to make finished golf balls by surrounding the cores with mantle and cover materials.
The core has a Shore D hardness of about 30 to about 65. The core has a compression of about 50 to about 100. Preferably, the core has a compression of about 80 to about 90. Most preferably, the core compression is about 85. Turning now to the mantle layer 4, it preferably comprises thermoplastic copolyesterester block copolymer, dynamically vulcanized thermoplastic elastomer, styrene-butadiene elastomer with functional groups such as maleic anhydride or sulfonic acid attached, thermoplastic polyurethane or polymers made using a metallocene catalyst or blends thereof.
In a preferred embodiment of the present invention, the mantle layer 4 is a thermoplastic copolyetherester block copolymer. Suitable thermoplastic copolyetheresters include Hytrel® 6356 and Hytrel® 7246 which are commercially available from DuPont. Hytrel® 6356 being the most preferred.
Prior art mantle layers generally have a specific gravity of about 1 or less. As stated above, the objective of most prior art multi-layer balls is to increase spin. The mantle layer according to the present invention preferably has a specific gravity greater than about 1.2. In one embodiment, the specific gravity of the mantle layer is increased to about 1.25 by adding about 20%o of a filler such as barium sulfate, zinc oxide, titanium dioxide and combinations thereof. The most preferred high spin golf ball is comprised of a mantle layer made of Hytrel® 6356 and 20%o zinc oxide. By increasing the specific gravity of the mantle layer and increasing the specific gravity of the core, the moment of inertia is decreased, which will contribute to a higher initial spin rate.
Suitable dynamically vulcanized thermoplastic elastomers include Santoprene®, Sarlink®, Vyram®, Dytron® and Vistaflex®. Santoprene® is the trademark for a dynamically vulcanized PP/EPDM. Santoprene® 203-40 is an example of a preferred Santoprene® and is commercially available from Advanced Elastomer Systems. An example of suitable functionalized styrene-butadiene elastomers, i.e., styrene-butadiene elastomers with functional groups such as maleic anhydride or sulfonic acid, is Kraton G7680 which is available from the Shell Corporation. Examples of suitable thermoplastic polyurethanes include Estane® 58861 and Estane® 58091, which are commercially available from the B.F. Goodrich Company. Suitable metallocene polymers, i.e., polymers made with a metallocene catalyst, whose melting points are higher than the cover materials can also be employed in the mantle layer of the present invention. Further, the materials for the mantle layer described above may be in the form of a foamed polymeric material. For example, suitable metallocene polymers include foams of thermoplastic elastomers based on metallocene single-site catalyst-based foams. Such metallocene-based foam resins are commercially available from Sentinel Products of Hyannis, Massachusetts.
In another preferred embodiment of the present invention, the mantle layer is a blend of a first and a second thermoplastic, wherein the first thermoplastic is a thermoplastic copolyetherester, copolyesterester block copolymer, a dynamically vulcanized thermoplastic elastomer, a functionalized styrene-butadiene elastomer, a thermoplastic polyurethane or a metallocene polymer and the second thermoplastic is a material such as a thermoplastic polyurethane, a thermoplastic polyetherester or polyetheramide, a thermoplastic ionomer resin, a thermoplastic polyester, another dynamically vulcanized elastomer, another functionalized styrene-butadiene elastomer, another metallocene polymer or blends thereof.
Illustrated in Table I are a number of batch formulations for several mantle layer compositions of the present invention, as well as properties such a hardness (Shore D), Bashore resilience, flexural modulus, % strain at break and tensile modulus for each composition.
The following examples of batch compositions are given to illustrate the novel multi-layer golf balls of the present invention. However, it is to be understood that the examples are only for illustrative purposes and in no manner is the present invention limited to the specific disclosures therein.
TABLE I Mantle Layer Compositions and Properties
Figure imgf000015_0002
Figure imgf000015_0001
The golf balls of the present invention have a mantle layer with a Shore D hardness of greater than about 60. Preferably, the Shore D hardness of the mantle layer is about 60 to about 70.
The cover layers of the present invention comprises at least one layer of a thermoplastic or thermosetting material. Any number of a wide variety of cover materials may be used in the present invention. Among the preferred conventional cover materials are ionomer resins. More particularly, ionomers, such as copolymer ionomers comprised of an olefin such as ethylene and an alpha, beta-unsaturated carboxylic acid such as me hacrylic acid wherein 10% to 90% of the carboxylic acid groups are neutralized by a metal cation such as lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc or aluminum. Preferably, the cover is an E/X/Y terpolymer or blend of a copolymer and terpolymer where E is an olefin such as ethylene, X is a softening comonomer such as acrylate or methacrylate and Y is an alpha, beta-unsaturated carboxylic acid such as acrylic or methacrylic acid, wherein the carboxylic acid groups are neutralized by a metal cation such as lithium, sodium, potassium, magnesium, calcium, barium, lead, tin, zinc or aluminum. Specific acid-containing ethylene copolymers include ethylene/acrylic acid, ethylene/methacrylic acid, ethylene/acrylic acid/n-butyl acrylate, efhylene/methacrylic acid/n-butyl acrylate, ethylene/methacrylic acid/iso-butyl acrylate, ethylene/acrylic acid/iso-butyl acrylate, ethylene/methacrylic acid/n-butyl methacrylate, ethylene/acrylic acid/methyl methacrylate, ethylene/acrylic acid/methyl acrylate, ethylene/methacrylic acid/methyl acrylate, ethylene/methacrylic acid/methyl methacrylate, and ethylene/acrylic acid/n-butyl methacrylate.
The manner in which these ionomers are made is well known in the art as described in e.g. U.S. Patent No. 3,264,272. Such ionomer resins are commercially available from DuPont Co. under the tradename SURLYN®. Preferably, the flexural modulus of the cover is less than 60 ksi. Most preferably, the high spin embodiment has a hardness of between about 55 and about 63 Shore D. The preferred cover of the present invention is comprised of about 30 to 45% of SURLYN® 8320, which is a terpolymer having a softening agent, and 70 to 55% of SURLYN® 7940 which is a lithium copolymer SURLYN® having about 15% methacrylic acid.
The present invention also contemplates the use of a variety of non-conventional cover materials, i.e., not SURLYN®, balata or polyurethane. In particular, the covers of the present invention may comprise thermoplastic or engineering plastics such as ethylene or propylene based homopolymers and copolymers including functional monomers such as acrylic and methacrylic acid and fully or partially neutralized ionomers and their blends, methyl acrylate, methyl methacrylate homopolymers and copolymers, imidized, amino group containing polymers, polycarbonate, reinforced polyamides, polyphenylene oxide, high impact polystyrene, polyether ketone, polysulfone, poly(phenylene sulfide), reinforced engineering plastics, acrylonitrile-butadiene, acrylic-styrene-acrylonitrile, poly(ethylene terephthalate), poly(butylene terephthalate), poly(ethylene-vinyl alcohol), poly(tetrafluoroethylene) and their copolymers including functional comonomers and blends thereof. These polymers or copolymers can be further reinforced by blending with a wide range of fillers and glass fibers or spheres or wood pulp.
The properties such as compression, specific gravity, hardness, Bashore resilience, modulus, core diameter and mantle layer thickness of the golf balls of the present invention have been found to effect play characteristics such as spin, initial velocity and feel of the present golf balls.
In particular, the thickness of the mantle layer of the present invention is about 0.02 inches to about 0.1 inches. Preferably, the thickness of the mantle layer is about 0.03 inches to about 0.08 inches. Most preferably, the thickness of the mantle layer is about 0.06 to 0.065 inches. The cover thickness of the invention is about 0.04 inches to about 0.15 inches. Most preferably, the thickness of the cover is about 0.05 inches. Similarly, the diameter of the core of the present invention is about 1.2 inches to about 1.55 inches. Preferably the diameter of the core is about 1.30 inches to about 1.48 inches. Most preferably, the diameter of the core is about 1.45 inches. The overall diameter of the core and mantle layer is about 84% to about 97% of the overall diameter of the finished ball, and is preferably about 1.58 inches.
The golf balls of the present invention can be made by any conventional process employed in the golf ball art. For example, the solid cores can be either injection or compression molded. Similarly, the undersized wound cores of the present invention are produced through conventional means. The mantle layer is subsequently injection or compression molded about the core. It is important that the mantle material be able to sustain the temperatures applied during the application of the cover layer. The cover layer or layers are then injection or compression molded or cast about the mantle layer. In the manufacturing of the ball, the core is preferably compression molded as stated above. The mantle layer is molded over the core using a retractable-pin mold. The cover is molded over the mantle layer.
EXAMPLES
These and other aspects of the present invention may be more fully understood with reference to the following non-limiting examples, which are merely illustrative of the preferred embodiment of the present invention golf ball, and are not to be construed as limiting the invention, the scope of which is defined by the appended claims.
The first example is a ball with a diameter of about 1.45. The core has a high specific gravity. Preferably, the core has a specific gravity of greater than 1.21 and most preferably about 1.23. The mantle layer covering the core has a thickness of about .05 to .2 inches, preferably about .13 inches. The mantle layer preferably has a specific gravity of .91 and is made of Kraton G7890. The cover of the ball has a thickness of about .5 to .15 and most preferably about .1 inches. The cover preferably has a specific gravity of about .96 and is made of SURLYN®. This golf ball preferably weights 1.618 ounces.
The second example of a golf ball made according to the present invention has a core with a low specific gravity and a mantle layer with a high specific gravity. Preferably, the mantle layer has a specific gravity of greater than 1.21, most preferably the mantle layer has a specific gravity of 1.25. In the preferred embodiment, the mantle layer is made of Hytrel 6356. The mantle layer has a thickness of about .05 to about .2, and most preferably about .13 inches.
The core of the second example preferably has a specific gravity of less than 1.21 and most preferably a specific gravity of 1.13. The diameter of the core is preferably 1.4 to 1.5 inches and most preferably about 1.45 inches. The cover layer surrounding both the core and mantle layer has a thickness of about 0.5 to about 15 inches and most preferably about .1 inches. Further, the specific gravity of the cover is most preferably about .96 and is made of SURLYN®. The second example most preferably weighs 1.618 ounces.

Claims

WHAT IS CLAIMED IS:
1. A golf ball comprising:
(a) a core having a specific gravity of less than 1.20; (b) a cover layer; and
(c) a mantle layer disposed between the core and cover layer, the mantle layer having a Shore D hardness greater than 60 and a specific gravity greater than 1.21.
2. The golf ball of claim 1 , wherein the ball has a weight of greater than about 1.6 ounces.
3. The golf ball of claim 2, wherein the core has a diameter greater than about 1.2 inches.
4. The golf ball of claim 2, wherein the mantle layer has a thickness of about 0.05 to 0.2 inches and the cover has a thickness of about 0.04 to 0.15 inches.
5. The golf ball of claim 1, wherein the cover has a Shore D hardness of less than about 63.
6. The golf ball of claim 5, wherein the cover has a Shore D hardness of about 55 to about 63.
7. The golf ball of claim 5 wherein the mantle layer comprises a polymer selected from the group of thermoplastic copolyetherester block copolymer, thermoplastic copolyesterester block copolymer, thermoplastic polyurethane and thermoset polyurethane and a filler selected from the group of barium sulfate, zinc oxide, titanium dioxide and combinations thereof.
8. A golf ball comprising:
(a) a core having a specific gravity greater than 1.2;
(b) a cover layer; and (c) a mantle layer disposed between the core and cover layer, the mantle layer having a specific gravity of less than .94.
9. The golf ball of claim 8, wherein the cover has a Shore D hardness of less than about 63.
10. The golf ball of claim 9 wherein the cover has a Shore D hardness of about 55 to about 63.
11. The golf ball of claim 8, wherein the ball has a weight greater than about 1.6 ounces.
12. The golf ball of claim 11, wherein the core has a compression of less than about 90 points.
13. The golf ball of claim 8, wherein the mantle layer has a Shore D hardness of greater than 60.
14. The golf ball of claim 11, wherein the core has a diameter greater than about 1.2 inches.
15. The golf ball of claim 14, wherein the mantle layer has a thickness of about 0.02 to 0.1 inches and the cover has a thickness of about 0.05 to 0.15 inches.
16. The golf ball of claim 8, wherein the mantle layer comprises a polymer selected from the group of thermoplastic copolyetherester block copolymer, thermoplastic copolyesterester block copolymer, thermoplastic polyurethane and thermoset polyurethane and a filler selected from the group of barium sulfate, zinc oxide, titanium dioxide and combinations thereof.
17. The golf ball of claim 8 wherein the core is a mixture comprising a polybutadiene, a metal salt and calcium oxide.
18. The golf ball of claim 17 wherein the amount of calcium oxide in the mixture is less than about 2 parts per hundred of polybutadiene.
19. The golf ball of claim 17 wherein the metal salt is zinc diacrylate.
20. The golf ball of claim 8 wherein the core includes a filler.
21. The golf ball of claim 20 wherein the filler is zinc oxide.
22. The golf ball of claim 20 wherein the core filler is at least about 10 parts per hundred of polybutadiene.
PCT/US1999/020560 1998-09-28 1999-09-08 Golf ball WO2000018474A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU58161/99A AU5816199A (en) 1998-09-28 1999-09-08 Golf ball

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/161,223 1998-09-28
US09/161,223 US6315680B1 (en) 1995-06-07 1998-09-28 Multilayer golf ball

Publications (1)

Publication Number Publication Date
WO2000018474A1 true WO2000018474A1 (en) 2000-04-06

Family

ID=22580350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/020560 WO2000018474A1 (en) 1998-09-28 1999-09-08 Golf ball

Country Status (3)

Country Link
US (1) US6315680B1 (en)
AU (1) AU5816199A (en)
WO (1) WO2000018474A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102266658A (en) * 2010-06-02 2011-12-07 阿库施耐特公司 Multilayer golf
JP2014524338A (en) * 2011-08-23 2014-09-22 ナイキ インターナショナル リミテッド Multi-core golf ball with increased initial velocity

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6616549B2 (en) * 1995-06-07 2003-09-09 Acushnet Company Multi-layer high spin golf ball
US6355715B1 (en) 1995-06-07 2002-03-12 Acushnet Company Multi-layered golf ball and composition
US6913547B2 (en) * 1997-05-27 2005-07-05 Acushnet Company Thin-layer-covered multilayer golf ball
US20010005699A1 (en) 1999-02-03 2001-06-28 Morgan William E. Multi-layer golf ball
US6386992B1 (en) * 2000-05-04 2002-05-14 Acushnet Company Golf ball compositions including microcellular materials and methods for making same
US20020137579A1 (en) * 2001-01-23 2002-09-26 Dewanjee Pijush K. Golf ball
US7125345B2 (en) * 2002-10-24 2006-10-24 Acushnet Company Low deformation golf ball
US6533682B2 (en) * 2001-03-23 2003-03-18 Acushnet Company Golf ball
US20050187347A1 (en) * 2001-03-23 2005-08-25 Sullivan Michael J. Golf ball composition having substantially no ZDA coagent
US6756436B2 (en) * 2001-06-26 2004-06-29 Acushnet Company Golf balls comprising highly-neutralized acid polymers
US7652086B2 (en) * 2001-06-26 2010-01-26 Acushnet Company Highly-neutralized thermoplastic copolymer center for improved multi-layer core golf ball
US8025593B2 (en) 2001-06-26 2011-09-27 Acushnet Company Multi-layer-core golf ball having highly-neutralized polymer outer core layer
US8152654B2 (en) 2001-06-26 2012-04-10 Acushnet Company Three-layer-core golf ball having highly-neutralized polymer outer core layer
US20090325731A1 (en) * 2001-06-26 2009-12-31 Sullivan Michael J Highly-neutralized thermoplastic copolymer center for improved multi-layer core golf ball
US9457233B2 (en) 2001-06-26 2016-10-04 Acushnet Company Three-layer-core golf ball having highly-neutralized polymer outer core layer
US6910974B2 (en) 2002-03-08 2005-06-28 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
US20040017027A1 (en) * 2002-07-25 2004-01-29 Vora Ajay P. Method of heating golf ball components by radio frequency
US7108921B2 (en) * 2002-10-24 2006-09-19 Acushnet Company Compositions for use in golf balls
US7132480B2 (en) * 2002-10-24 2006-11-07 Acushnet Company Compositions for use in golf balls
US6783468B2 (en) 2002-10-24 2004-08-31 Acushnet Company Low deformation golf ball
US7138460B2 (en) * 2002-10-24 2006-11-21 Acushnet Company Compositions for use in golf balls
US7163471B2 (en) * 2003-01-10 2007-01-16 Taylor Made Golf Company, Inc. Golf balls having sound-altered layers and methods for making them
US7654918B2 (en) 2004-01-12 2010-02-02 Acushnet Company Multi-layer core golf ball having thermoset rubber cover
US7193000B2 (en) * 2004-05-15 2007-03-20 Acushnet Company Compositions for use in golf balls
US7682265B2 (en) 2006-08-21 2010-03-23 Vandelden Jay Adaptive golf ball
US10226670B2 (en) 2008-01-10 2019-03-12 Acushnet Company Multi-layer core golf ball
US9649538B2 (en) 2013-08-05 2017-05-16 Acushnet Company Multi-layer core golf ball
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US9662542B2 (en) 2008-01-10 2017-05-30 Acushnet Company Multi-layer core golf ball
US9643060B2 (en) 2008-01-10 2017-05-09 Acushnet Company Multi-layer core golf ball
US9943730B2 (en) 2008-01-10 2018-04-17 Acushnet Company Multi-layer core golf ball
US9717957B2 (en) 2013-08-05 2017-08-01 Acushnet Company Multi-layer core golf ball
US8500574B2 (en) 2009-06-29 2013-08-06 Acushnet Company Multi-layer golf ball
US8119051B2 (en) * 2009-11-09 2012-02-21 Acushnet Company Method of casting urethane for a golf ball cover
KR101194401B1 (en) * 2009-12-09 2012-10-25 금호석유화학 주식회사 1,4-cis Polybutadiene with Aromatic Organosulfur Compound for Preparation of Golf Ball Core
JP6022753B2 (en) * 2011-08-31 2016-11-09 ダンロップスポーツ株式会社 Golf ball
US8764580B2 (en) * 2011-09-30 2014-07-01 Nike, Inc. Golf ball having relationships among the densities of various layers
US9592425B2 (en) 2012-04-20 2017-03-14 Acushnet Company Multi-layer core golf ball
US9649539B2 (en) 2012-04-20 2017-05-16 Acushnet Company Multi-layer core golf ball
US9643061B2 (en) 2013-08-05 2017-05-09 Acushnet Company Multi-layer core golf ball
US9737764B2 (en) 2013-08-05 2017-08-22 Acushnet Company Multi-layer core golf ball

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688191A (en) * 1995-06-07 1997-11-18 Acushnet Company Multilayer golf ball
US5800286A (en) * 1996-05-01 1998-09-01 Bridgestone Sports Co., Ltd. Golf ball

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US696353A (en) 1901-12-14 1902-03-25 Kempshall Mfg Co Golf-ball.
US696366A (en) 1901-12-18 1902-03-25 Kempshall Mfg Co Golf-ball.
FR82838E (en) 1962-12-27 1964-04-24 Centre Nat Rech Scient Device for lowering the temperature of a body by its own radiation and application to the production of cold
US3359231A (en) 1965-02-06 1967-12-19 Polymer Corp Synthetic trans-1, 4-polymers of conjugated diolefins with improved hardening rate properties
US3490146A (en) 1967-11-09 1970-01-20 Niles F Guichet Pantograph
AR200241A1 (en) 1971-06-25 1974-10-31 Uniroyal Inc A GOLF BALL
US4123061A (en) 1976-05-20 1978-10-31 Acushnet Company Ball and process and composition of matter for production thereof
FR2418250A1 (en) 1978-02-24 1979-09-21 Ato Chimie ENVELOPE IN THERMOPLASTIC POLYMER MATERIAL FOR GOLF BALLS AND GOLF BALLS CONTAINING SUCH A WRAP
JPS5683367A (en) 1979-12-10 1981-07-07 Bridgestone Tire Co Ltd Golf ball
JPS5734874A (en) 1980-08-13 1982-02-25 Bridgestone Tire Co Ltd Golf ball
US4431193A (en) 1981-08-25 1984-02-14 Questor Corporation Golf ball and method of making same
JPS59194760A (en) 1983-04-21 1984-11-05 住友ゴム工業株式会社 Three-piece solid golf ball
JPS6014877A (en) 1983-07-06 1985-01-25 住友ゴム工業株式会社 Golf ball
JPS62137075A (en) 1984-10-30 1987-06-19 住友ゴム工業株式会社 Multipiece solid golf ball
US4650193A (en) 1984-12-10 1987-03-17 Spalding & Evenflo Companies, Inc. Golf ball
JPS62181069A (en) 1986-02-04 1987-08-08 キャスコ株式会社 Solid three-piece golf ball
JPH078301B2 (en) 1986-05-23 1995-02-01 ブリヂストンスポーツ株式会社 Solid Golf Ball
US5159035A (en) 1986-06-10 1992-10-27 The Dow Chemical Company Homogenous copolymerization of non-polar monomers with ionic amphiphilic monomers
US4848770A (en) 1986-10-20 1989-07-18 Wilson Sporting Goods Co. Three-piece solid golf ball
US4884814A (en) 1988-01-15 1989-12-05 Spalding & Evenflo Companies, Inc. Golf ball
JPH02107275A (en) 1988-10-17 1990-04-19 Sumitomo Rubber Ind Ltd Golf ball
JP3124533B2 (en) 1989-02-06 2001-01-15 住友ゴム工業株式会社 Golf ball
JP2674627B2 (en) 1989-03-01 1997-11-12 住友ゴム工業株式会社 Large three-piece solid golf ball
US5150906A (en) 1989-03-10 1992-09-29 Lisco, Inc. Multi-piece golf balls and methods of manufacture
JP2680405B2 (en) 1989-04-04 1997-11-19 住友ゴム工業株式会社 Large three-piece solid golf ball
US5000459A (en) 1989-07-05 1991-03-19 Acushnet Company Golf ball cover
US4986545A (en) 1989-12-13 1991-01-22 Spalding Sports Worldwide Golf ball compositions
KR920006255B1 (en) * 1990-06-01 1992-08-01 일야실업 주식회사 Three piece solid golf ball
US5120791A (en) 1990-07-27 1992-06-09 Lisco, Inc. Golf ball cover compositions
JP2915108B2 (en) 1990-08-10 1999-07-05 住友ゴム工業株式会社 Golf ball
FR2666018A1 (en) 1990-08-22 1992-02-28 Salomon Sa GOLF BALL.
US5026067A (en) 1990-11-08 1991-06-25 Gentiluomo Joseph A Golf ball
US5492972A (en) 1990-12-10 1996-02-20 Acushnet Company Golf ball cover
US5104126A (en) 1991-07-08 1992-04-14 Gentiluomo Joseph A Golf ball
US5314187A (en) 1991-07-26 1994-05-24 Wilson Sporting Goods Co. Golf ball with improved cover
CA2078842C (en) 1991-10-15 2000-03-07 Michael J. Sullivan Improved golf ball covers containing high acid ionomers
US5368304A (en) 1993-04-28 1994-11-29 Lisco, Inc. Low spin golf ball
AU663359B2 (en) 1992-01-31 1995-10-05 E.I. Du Pont De Nemours And Company High-resilience ionomeric compositions for golf ball covers
CA2088140C (en) 1992-06-19 2000-08-22 Michael J. Sullivan High acid ionomers and golf ball cover compositions comprising same
US5387637A (en) 1992-08-20 1995-02-07 Lisco, Inc. Golf ball core compositions
US5439227A (en) 1992-08-31 1995-08-08 Bridgestone Sports Co., Ltd. Multi-piece solid golf ball
JP3564641B2 (en) 1993-06-01 2004-09-15 ザ、トップ・フライト、ゴルフ、カムパニ Improved multi-layer golf ball
JP2910516B2 (en) 1993-07-08 1999-06-23 ブリヂストンスポーツ株式会社 Three piece solid golf ball
US5609532A (en) 1993-07-08 1997-03-11 Bridgestone Sports Co., Ltd. Thread-wound golf ball
JP2658811B2 (en) 1993-07-08 1997-09-30 ブリヂストンスポーツ株式会社 Three piece solid golf ball
US5415937A (en) 1993-10-21 1995-05-16 Dunlop Slazenger Corporation Golf ball cover
JP3080290B2 (en) 1993-11-02 2000-08-21 住友ゴム工業株式会社 Golf ball
JP2866298B2 (en) 1993-12-28 1999-03-08 住友ゴム工業株式会社 Three piece solid golf ball
US5681898A (en) 1996-08-14 1997-10-28 Pocklington; Terence W. Golf ball and method of manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688191A (en) * 1995-06-07 1997-11-18 Acushnet Company Multilayer golf ball
US5800286A (en) * 1996-05-01 1998-09-01 Bridgestone Sports Co., Ltd. Golf ball

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102266658A (en) * 2010-06-02 2011-12-07 阿库施耐特公司 Multilayer golf
JP2014524338A (en) * 2011-08-23 2014-09-22 ナイキ インターナショナル リミテッド Multi-core golf ball with increased initial velocity

Also Published As

Publication number Publication date
AU5816199A (en) 2000-04-17
US6315680B1 (en) 2001-11-13

Similar Documents

Publication Publication Date Title
US6315680B1 (en) Multilayer golf ball
US5947842A (en) Multi-layer low-spin golf ball
US5810678A (en) Multilayer golf ball
US5813923A (en) Golf ball
US5965669A (en) Multi-layer golf ball and composition
US6124389A (en) Multilayer golf ball and composition
US5688191A (en) Multilayer golf ball
US5759676A (en) Multilayer golf ball
US6634962B2 (en) Crosslinked foam as filler in an inner layer or core of a multi-component golf ball
US6780933B2 (en) Multi-layered golf ball and composition
US6508724B2 (en) Golf ball cores with improved durability
US20010031671A1 (en) Multi layer golf ball
WO2001023045A1 (en) Multi-layered golf ball and composition
US20010016523A1 (en) Multi-layer golf ball
WO2002043818A1 (en) Ultimate control, reduced slippage golf ball
US6114455A (en) Golf ball composition comprising high acid and VLMI ionomers
US6458892B1 (en) Multilayer golf ball and composition
WO2002081035A1 (en) Golf ball having very thin outermost cover layer for improved scuff resistance
US20010039219A1 (en) Golf ball having multi-layer cover with unique inner cover characteristics
AU741282B1 (en) Crosslinked foam as filler in an inner layer or core of a multi-component golf ball
GB2367250A (en) Golf ball including foamed particles or granules
CA2320550A1 (en) Crosslinked foam as filler in an inner layer or core of a multi-component golf ball
AU2002219874A1 (en) Ultimate control, reduced slippage golf ball
AU2002303088A1 (en) Golf ball having very thin outermost cover layer for improved scuff resistance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA GB JP NZ

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase