WO2000024821A1 - Bimodale polyethylen-blends hoher mischgüte - Google Patents

Bimodale polyethylen-blends hoher mischgüte Download PDF

Info

Publication number
WO2000024821A1
WO2000024821A1 PCT/EP1999/007748 EP9907748W WO0024821A1 WO 2000024821 A1 WO2000024821 A1 WO 2000024821A1 EP 9907748 W EP9907748 W EP 9907748W WO 0024821 A1 WO0024821 A1 WO 0024821A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
copolymer
weight ethylene
bimodal polyethylene
low molecular
Prior art date
Application number
PCT/EP1999/007748
Other languages
English (en)
French (fr)
Inventor
Paulus De Lange
Andreas Deckers
Thomas Kessler
Wolfgang Rohde
Thomas Blümel
Martin Lux
Original Assignee
Basell Polyolefine Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7885752&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2000024821(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basell Polyolefine Gmbh filed Critical Basell Polyolefine Gmbh
Priority to AT99948992T priority Critical patent/ATE285442T1/de
Priority to EP99948992A priority patent/EP1141118B1/de
Priority to JP2000578383A priority patent/JP2002528586A/ja
Priority to DE59911341T priority patent/DE59911341D1/de
Priority to US09/806,584 priority patent/US6545093B1/en
Publication of WO2000024821A1 publication Critical patent/WO2000024821A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/18Applications used for pipes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/324Liquid component is low molecular weight polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof

Definitions

  • the present invention relates to bimodal polyethylene blends made from a high molecular weight ethylene copolymer and a low molecular weight ethylene homo- or copolymer with a melt flow rate MFR 190 / 21.6 of 6 - 14 g / 10 min, a density of 0.94 - 0.97 g / cm 3 , a stress crack resistance ESCR> 150 h and a mixing quality of the blend, measured according to ISO 13949 of less than 3. It also relates to a process for producing such polyethylene blends by melting and homogenizing in a mixing unit and discharge via a gear pump, and their use for Manufacture of moldings, especially hollow bodies and pressure pipes.
  • the mechanical strength of molded articles made of polyethylene is subject to ever increasing demands.
  • high stress crack resistant, shock resistant and rigid products are required, which are particularly suitable for the production of hollow bodies and pressure pipes.
  • the requirement for good stress crack resistance and rigidity at the same time is not easy to meet, because these properties are opposed. While the stiffness increases with increasing density of the polyethylene, the stress crack resistance decreases with increasing density.
  • bimodal polyethylene blends do not only depend on the properties of the components. Of particular importance for the mechanical properties of the blends is the quality with which the high and low molecular weight components, as well as any additives such as color pigments or process aids, are mixed with one another. Poor mixing quality causes, among other things, low stress crack resistance and deteriorates the creep behavior of pressure pipes made from polyethylene blends.
  • the mixing quality of polymer blends can be checked by examining thin slices (so-called "microtome sections") of a sample under the light microscope. Inhomogeneities manifest themselves in the form of specks or so-called "white spots".
  • the specks or "white spots" are predominantly high-molecular, high-viscosity particles in a low-viscosity matrix (see, for example, U. Burkhardt et al. In “Preparation of Polymers with Novel Properties", VDI-Verlag, Düsseldorf 1995, p. 71 ).
  • Such inclusions can reach a size of up to 300 ⁇ m, cause stress cracks and cause brittle failure of components.
  • the better the mixing quality of a blend the less and the smaller these inclusions are observed.
  • the mixing quality of a blend is determined quantitatively according to ISO 13949. According to the measurement specification, a microtome section is made from a sample of the blend, the number and size of these inclusions are counted, and a grade for the mixing quality of the blend is determined according to a defined evaluation scheme.
  • bimodal polyethylene blends An important application of bimodal polyethylene blends is the use for the production of pressure pipes for the transport of gas, drinking water and waste water. Pressure pipes made of polyethylene are increasingly replacing pipes made of metal. It is important for such an application that the pipe has a long service life without fear of aging and brittle failure. Even small imperfections or notches on a pressure pipe can lead to increased and brittle failure even at low pressures, which process can be accelerated by increasing the temperature and / or aggressive chemicals. It is therefore extremely important to reduce the number and size of the defects in a pipe, such as, for example, specks or "white spots" as much as possible.
  • the blend has the lowest possible odor and is as tasteless as possible.
  • reactor cascades are used to produce bimodal polyethylene blends, ie two or more polymerization reactors are connected in series, and the polymerization of the low-molecular component takes place in one reactor, which is the next to the high-molecular component (see, for example, M. Rteilsch, W. N disclosel "Bimodal polymer materials based on PP and PE” in "Preparation of polymers with novel properties” pp. 3 - 25, VDI-Verlag, Düsseldorf 1995.)
  • the polyethylenes of different molar mass distributions and chemical compositions are already mixed in the polymer grain .
  • a disadvantage of this method is that in only the same catalyst can be used in the individual reactors of the cascade. In order to prevent comonomers added in one reactor or hydrogen added as a regulator from reaching the next reactor, a high outlay on equipment is necessary. It is also difficult to adjust the polymerization rates of each reactor so that the desired blend composition is obtained.
  • bimodal polyethylene blends were made from a high molecular weight ethylene copolymer and a low molecular weight ethylene homo- or copolymer with a melt flow rate MFR 190 / 21.6 of 6 - 14 g / 10 min, a density of 0.94 - 0.97 g / cm 3 , a stress crack resistance ESCR> 150 h and a mixing quality of the blend, measured according to ISO 13949, of less than 3 were found. Furthermore, a method for producing such poly Ethylene blends found by melting and homogenizing in a mixing unit and discharge via a gear pump, as well as their use for hollow bodies and pressure pipes.
  • the density of the bimodal polyethylene blend according to the invention is 0.94-0.97 g / cm 3 , preferably 0.95-0.97 g / cm 3 and very particularly preferably 0.95-0.96 g / cm 3 .
  • the melt flow rate MFR 190 / 21.6 is 6-14 g / 10 min. If the melt flow rate is greater than 14 g / 10 min, stress crack resistance is no longer sufficient for pressure pipes, if the melt flow rate is less than 6, processing the blend into pipes is very difficult.
  • the melt flow rate is preferably 8-12 g / 10 min and very particularly preferably 9-11 g / 10 min.
  • the resistance to stress cracking of the blend is at least 150 h, preferably at least 200 h.
  • the mixing quality of the bimodal polyethylene blend, measured according to ISO 13949, is less than 3, preferably less than 2.5.
  • the polyethylene blend of the present invention contains two components.
  • the low molecular weight component consists of an ethylene homopolymer or copolymer with a weight average molecular weight of 8,000 to 80,000 g / mol, preferably 20,000 to 70,000 g / mol and very preferably 30,000 to 60,000 g / mol.
  • the width of the molecular weight distribution M w / M n is 2.5 to 12, preferably 3 to 10 and very particularly preferably 5 to 8.
  • the low molecular weight component can additionally contain comonomers in addition to the ethylene.
  • the comonomer is selected according to the desired properties.
  • 1-olefins are preferably used as comonomers, very particularly preferably propene, 1-butene, 1-pentene, 1-hexene, 1-octene or 4-methylpentene.
  • the amount of the comonomer used is likewise selected in accordance with the desired properties, but the amount is preferably not more than 1 mol% based on the amount of all monomers used.
  • the melt flow rate MFR 190 / 2.16 of the low molecular weight ethylene homopolymer or copolymer is preferably 20 to 100 g / 10 min and particularly preferably 25 to 40 g / 10 min.
  • the density is preferably greater than 0.95 g / cm 3 .
  • the preparation can be carried out by methods known to the person skilled in the art, but it is preferred to produce the low molecular weight component in the presence of a chromocene catalyst on an oxidic support.
  • This production method has the advantage over the production with Ziegler catalysts that no low-molecular Al-organic African compounds must be used as cocatalysts. Highly volatile low molecular weight Al-organic compounds or their decomposition products can negatively influence the smell of the polyethylene produced and thus that of the blend.
  • the high molecular weight component consists of an ethylene copolymer with a weight average molecular weight> 300,000 g / mol, preferably 350,000 to 700,000 g / mol and very particularly preferably 400,000 to 600,000 g / mol.
  • the comonomer used in addition to the ethylene is selected according to the desired properties. However, 1-olefins are preferably used as comonomers, very particularly preferably propene, 1-butene, 1-pentene, 1-hexene, 1-octene or 4-methylpentene.
  • the amount of the comonomer used is also selected in accordance with the desired properties, but an amount of 0.2 to 4.0 mol% is preferred, based on the amount of all monomers used.
  • the width of the molecular weight distribution M w / M n is 1 to 10, preferably 3 to 9 and very particularly preferably 5 to 9.
  • the melt flow rate MFR 190 / 21.6 of the high molecular weight ethylene copolymer is preferably not greater than 1.5 g / 10 min and particularly preferably 0.5 to 1.5 g / 10 min.
  • the density is preferably not greater than 0.93 g / cm 3 .
  • the high molecular weight ethylene copolymer is preferably prepared by polymerizing the monomers in the presence of a Ziegler catalyst.
  • the blends according to the invention contain 40 to 80% by weight of the high molecular weight component and 20 to 60% by weight of the low molecular weight component. They preferably contain 40 to 60% by weight of the high molecular weight and 60 to 40% by weight of the low molecular weight component. You can also add up to 10% by weight of other components, such as contain known antioxidants, UV stabilizers, dyes or color pigments or their preparations, antistatic agents or processing aids.
  • the blends according to the invention can be produced in mixing units which are equipped with a gear pump as a discharge element.
  • mixing units are single or twin screw extruders or kneaders, co-kneaders or continuous kneaders.
  • the screw configuration of the devices can be selected by a specialist according to the desired aperture properties. It should only be noted that the mechanical load on the blend is not so great that the high-molecular component is degraded, which worsens the mechanical properties of the blend.
  • the two components of the blend are metered in separately using two metering devices. Further Components, such as color pigments or preparations of color pigments in polyethylene, can optionally be metered in via a third dosage.
  • a gear pump as a discharge element is decisive for the method according to the invention.
  • the use of a gear pump not only prevents the thermo-mechanical degradation of the high-molecular component of the blend, recognizable by an increased melt flow rate, but unexpectedly for the person skilled in the art, the mixing quality of the blend is also significantly improved by using a gear pump.
  • the blends according to the invention are outstandingly suitable for the production of foils and moldings, in particular hollow bodies and pressure pipes.
  • Stress crack-shaped test specimens (diameter 40 resistance ESCR mm, 2 mm thick, scored on one side with a notch 20 mm long and 0.1 mm deep) are immersed in a 1% Nekanil solution at 80 ° C and with a pressure of 3 bar charged. We measure the time until stress cracks occur (specified in h).
  • microtome sections are made from 6 different parts of the sample (thickness> 60 ⁇ m, diameter 3 - 5 mm).
  • the sections are examined under the microscope at a magnification of 100, and
  • the overall grade is calculated from the arithmetic mean of the grades of all 6 samples. The smaller the grade, the less
  • the blend contains 25% inclusions and the better the blend's blend quality.
  • the high molecular component was produced using a Ziegler catalyst, the low molecular component using a supported chromocene catalyst.
  • the examples and comparative examples show that by using a gear pump, the mixing quality and the stress crack resistance of polyethylene blends can be significantly increased.
  • the use of a sieve in the discharge of a twin-screw extruder leads to an improvement in the mixing quality of the bimodal polyethylene blend, but the high-molecular component is degraded, so that the melt flow rate increases sharply and the stress crack resistance decreases sharply, and no blend with mechanicals sufficient for pressure pipes Properties will get more.

Abstract

Bimodale Polyethylen-Blends aus einem hochmolekularen Ethylencopolymerisat und einem niedermolekularen Ethylenhomo- oder -copolymerisat mit einer Schmelzfliessrate MFR 190/21,6 von 6-14 g/10 min, einer Dichte von 0,94-0,97 g/cm<3>, einer Spannungsrissbeständigkeit ESCR > 150 h und einer Mischgüte des Blends, gemessen nach ISO 13949 von weniger als 3. Verfahren zur Herstellung derartiger Polyethylen-Blends durch Aufschmelzen und Homogenisieren in einem Mischaggregat und Austrag über eine Zahnradpumpe und deren Verwendung zur Herstellung von Formkörpern, insbesondere Hohlkörpern und Druckrohren.

Description

Bimodale Polyethylen-Blends hoher Mischgüte
Beschreibung
Die vorliegende Erfindung betrifft bimodale Polyethylenblends aus einem hochmolekularen Ethylencopolymerisat und einem niedermolekularen Ethylenhomo- oder -copolymerisat mit einer Schmelzfliessrate MFR 190/21,6 von 6 - 14 g/10 min, einer Dichte von 0,94 - 0,97 g/cm3, einer Spannungsrissbeständigkeit ESCR > 150 h und einer Mischgüte des Blends, gemessen nach ISO 13949 von weniger als 3. Sie betrifft weiterhin ein Verfahren zur Herstellung derartiger Polyethylen-Blends durch Aufschmelzen und Homogenisieren in einem Mischaggregat und Austrag über eine Zahnradpumpe, sowie deren Verwendung zur Herstellung von Formkörpern, insbesondere Hohlkörpern und Druckrohren.
An die mechanische Belastbarkeit von Formkörpern aus Polyethylen werden immer höhere Anforderungen gestellt. Insbesondere werden hoch spannungsrissbestandige, schockzähe und steife Produkte gefordert, die sich besonders für die Herstellung von Hohlkörpern sowie Druckrohren eignen. Die Forderung nach gleichzeitig guter Spannungsrissbeständigkeit und Steifigkeit ist nicht leicht zu erfüllen, denn diese Eigenschaften sind gegenläufig. Während die Steifigkeit mit zunehmender Dichte des Polyethylens zunimmt, nimmt die Spannungsrissbeständigkeit mit zunehmender Dichte ab.
Es hat sich daher als vorteilhaft erwiesen, für Hohlkörper und Druckrohre Blends aus einem hochmolekularen, niederdichten Ethylencopolymer und einem niedermolekularen, hochdichten Ethy- lenhomopolymer einzusetzen, so z.B. beschrieben bei L. L. Böhm et al. , Adv. Mater. 4, 234 - 238 (1992). Ähnliche Polyethylen- Blends werden offenbart von EP-A 100 843, EP-A 533 154, EP-A 533 155, EP-A 533 156, EP-A 533 160 und US 5,350,807.
Die Eigenschaften bimodaler Polyethylen-Blends hängen aber nicht nur von den Eigenschaften der Komponenten ab. Von entscheidender Bedeutung insbesondere für die mechanischen Eigenschaften der Blends ist die Güte, mit der die hoch- und die niedermolekulare Komponente, sowie gegebenenfalls Additive wie bspw. Farbpigmente oder Prozesshilfsmittel miteinander vermischt sind. Eine schlechte Mischgüte verursacht u.a. eine geringe Spannungsrissbeständigkeit und verschlechtert das Zeitstandsverhalten von Druckrohren aus Polyethylen-Blends. Die Mischgüte von Polymer-Blends kann geprüft werden, indem dünne Scheibchen (sog. "Mikrotomschnitte") einer Probe unter dem Lichtmikroskop begutachtet werden. Inhomogenitäten äussern sich dabei in Form von Stippen oder sog. "white spots" . Bei den Stippen oder "white spots" handelt es sich überwiegend um hochmolekulare, hochviskose Partikel in einer niederviskosen Matrix (siehe z.B. U. Burkhardt et al . in " Aufbereiten von Polymeren mit neuartigen Eigenschaften", VDI-Verlag, Düsseldorf 1995, S. 71). Derartige Einschlüsse können eine Grosse von bis zu 300 μm erreichen, Span- nungsrisse verursachen und sprödes Versagen von Bauteilen hervorrufen. Je besser die Mischgüte eines Blends um so weniger und um so kleinere dieser Einschlüsse werden beobachtet. Quantitativ wird die Mischgüte eines Blends nach ISO 13949 bestimmt. Nach der Messvorschrift wird ein Mikrotomschnitt aus einer Probe des Blends angefertigt, Anzahl und Grosse dieser Einschlüsse werden ausgezählt, und nach einem festgelegten Bewertungsschema wird eine Note für die Mischgüte des Blends festgelegt.
Eine wichtige Anwendung bimodaler Polyethylen-Blends ist die Verwendung zur Herstellung von Druckrohren für den Transport von Gas, Trinkwasser und Abwasser. Druckrohre aus Polyethylen ersetzen zunehmend Rohre aus Metallen. Wichtig für eine derartige Anwendung ist eine möglichst lange Gebrauchsdauer des Rohres, ohne Alterung und sprödes Versagen befürchten zu müssen. Schon kleine Fehlstellen oder Kerben an einem Druckrohr können sich auch bei niedrigen Drucken vergrössem und zu sprödem Versagen führen, wobei dieser Vorgang durch Temperaturerhöhung und/oder aggressive Chemikalien beschleunigt werden kann. Es ist deshalb äusserst wichtig, Zahl und Größe der Fehlstellen eines Rohres, wie bspw. Stippen oder "white spots" so weit wie irgend möglich zu verringern.
Für den Transport von Trinkwasser ist es außerdem wichtig, dass das Blend einen möglichst geringen Geruch aufweist und möglichst geschmacksneutral ist.
Zur Herstellung von bimodalen Polyethylen-Blends werden sog. Reaktorkaskaden eingesetzt, d.h. zwei oder mehrere Polymerisationsreaktoren werden in Reihe geschaltet, und die Polymerisation der niedermolekularen Komponente erfolgt in einem Reaktor, die der hochmolekularen Komponente im nächsten (siehe z.B. M. Rätzsch, W. Neißl "Bimodale Polymerwerkstoffe auf der Basis von PP und PE" in "Aufbereiten von Polymeren mit neuartigen Eigenschaften" S. 3 - 25, VDI-Verlag, Düsseldorf 1995.) Hierbei er- folgt eine Vermischung der Polyethylene unterschiedlicher Molmassenverteilungen und chemischen Zusammensetzungen bereits im Polymerkorn. Nachteilig an diesem Verfahren ist allerdings, dass in den einzelnen Reaktoren der Kaskade nur der gleiche Katalysator verwendet werden kann. Um zu verhindern, dass in einem Reaktor zugegebene Comonomere oder als Regler zugesetzter Wasserstoff in nächsten Reaktor gelangen ist hoher apparativer Aufwand nötig. Es ist außerdem schwierig die Polymerisationsraten jedes Reaktors so einzustellen, dass die gewünschte Zusammensetzung des Blends erhalten wird.
Das gebräuchlichste Verfahren zur Herstellung von Polymer-Blends im allgemeinen ist das innige Vermischen einzelner Komponenten bspw. durch Schmelzextrusion in einem Extruder oder Kneter (siehe z.B. "Polymer Blends" in Ulimann' s Encyclopedia of Industrial Che istry, 6th Edition, 1998, Electronic Release) . Diese Methode hat bei der Herstellung von bimodalen Polyethylen-Blends der ge- schilderten Art gegenüber der Reaktionskaskade den Vorteil einer grösseren Flexibilität, so dass die Komponenten des Blends auch unterschiedlichen Verfahren entstammen können. Es ist aber in anderer Hinsicht von besonderen Schwierigkeiten begleitet. Die Schmelzviskositäten der hoch- und der niedermolekularen Kompo- nente eines bimodalen Polyethylen-Blends weisen extreme Unterschiede auf. Während bei den üblichen Temperaturen zur Herstellung der Blends von ca. 190 - 210°C die niedermolekulare Komponente schon fast dünnflüssig ist, ist die hochmolekulare Komponente nur erweicht ("Linsensuppe"). Eine homogene Vermischung der beiden Komponenten ist daher sehr schwierig. Es ist ausserdem bekannt, dass die hochmolekulare Komponente durch thermische Belastung und durch Scherkräfte im Extruder leicht geschädigt werden kann, so dass sich die Eigenschaften des Blends verschlechtern. Um dies zu vermeiden, ist vorgeschlagen worden, Zahnradpumpen als Austragshilfen einzusetzen (siehe z.B. W. Gerber in "Optimierung des Compoundierprozesses durch Rezeptur- und Verf hrensverständnis" S.253 - 280, VDI-Verlag, Düseidorf 1997).
Aufgabe der vorliegenden Erfindung war es, ein für die Herstel- lung von Druckrohren geeignetes bimodales Polyethylen-Blend mit verbesserter Mischgüte bereitzustellen. Aufgabe der Erfindung war es weiterhin, ein kostengünstiges und flexibles Verfahren zur schonenden Herstellung derartiger Blends aus einer hochmolekularen und einer niedermolekularen Komponente bereitzustellen.
Demgemäss wurden bimodale Polyethylenblends aus einem hochmolekularen Ethylencopolymerisat und einem niedermolekularen Ethylen- homo- oder -copolymerisat mit einer Schmelzfliessrate MFR 190/21,6 von 6 - 14 g/10 min, einer Dichte von 0,94 - 0,97 g/cm3, einer Spannungsrissbeständigkeit ESCR > 150 h und einer Mischgüte des Blends, gemessen nach ISO 13949 von weniger als 3 gefunden. Weiterhin wurde ein Verfahren zur Herstellung derartiger Poly- ethylen-Blends durch Aufschmelzen und Homogenisieren in einem Mischaggregat und Austrag über eine Zahnradpumpe, sowie deren Verwendung für Hohlkörper und Druckrohre gefunden.
Die Dichte des erfindungsgemässen, bimodalen Polyethylen-Blends beträgt 0,94 - 0,97 g/cm3, bevorzugt 0,95 - 0,97 g/cm3 und ganz besonders bevorzugt 0,95 - 0,96 g/cm3. Die Schmelzfliessrate MFR 190/21,6 beträgt 6-14 g/10 min. Ist die Schmelzfliessrate grösser als 14g/10 min, so wird keine für Druckrohre ausreichende Span- nungsrissbeständigkeit mehr erreicht, ist die Schmelzfliessrate kleiner als 6, so ist die Verarbeitung des Blends zu Rohren sehr schwierig. Bevorzugt beträgt die Schmelzfliessrate 8 - 12 g/10 min und ganz besonders bevorzugt 9 - 11 g/10 min. Die Spannungsrissbeständigkeit des Blends beträgt mindestens 150 h, bevorzugt mindestens 200 h. Die Mischgüte des bimodalen Polyethylen-Blends, gemessen nach ISO 13949 ist kleiner als 3, bevorzugt kleiner als 2,5.
Das Polyethylen-Blend der vorliegenden Erfindung enthält zwei Komponenten.
Die niedermolekulare Komponente besteht aus einem Ethylenhomo- polymerisat oder -copolymerisat mit einem Gewichtsmittel des Molekulargewichtes von 8000 bis 80000 g/mol, bevorzugt 20000 bis 70000 g/mol und ganz bevorzugt 30000 bis 60000 g/mol. Die Breite der Molekulargewichtsverteilung Mw/Mn beträgt 2,5 bis 12, bevorzugt 3 bis 10 und ganz besonders bevorzugt 5 bis 8.
Die niedermolekulare Komponente kann zusätzlich Comonomere neben dem Ethylen enthalten. Das Comonomer wird entsprechend den gewünschten Eigenschaften ausgewählt. Bevorzugt werden jedoch 1-Olefine als Comonomere eingesetzt, ganz besonders bevorzugt Propen, 1-Buten, 1- Penten, 1-Hexen, 1-Octen oder 4-Methylpenten. Die Menge des eingesetzten Comonomers wird ebenfalls entsprechend den gewünschten Eigenschaften gewählt, bevorzugt beträgt die Menge aber nicht mehr als 1 mol % bzgl. der Menge aller eingesetzten Monomere.
Bevorzugt beträgt die Schmelzfliessrate MFR 190/2,16 des nieder- molekularen Ethylenhomopolymerisates oder -copolymerisates 20 bis 100 g/10 min und besonders bevorzugt 25 bis 40 g/10 min. Die Dichte ist vorzugsweise grösser als 0,95 g/cm3. Die Herstellung kann nach dem Fachmann bekannten Methoden erfolgen, bevorzugt ist es aber, die niedermolekulare Komponente in Gegenwart eines Chro- mocen-Katalysators auf einem oxidischen Träger herzustellen.
Diese Herstellmethode hat gegenüber der Herstellung mit Ziegler- Katalysatoren den Vorteil, dass keine niedermolekularen Al-orga- nischen Verbindungen als Cokatalysatoren eingesetzt werden müssen. Leichtflüchtige niedermolekulare AI-organische Verbindungen bzw. deren Zersetzungsprodukte können den Geruch des hergestellten Polyethylens und damit den des Blends negativ beeinflussen.
Die hochmolekulare Komponente besteht aus einem Ethylencopoly- merisat mit einem Gewichtsmittel des Molekulargewichtes > 300 000 g/mol, bevorzugt 350000 bis 700000 g/mol und ganz besonders bevorzugt 400000 bis 600000 g/mol. Das neben dem Ethylen einge- setzte Comonomer wird entsprechend den gewünschten Eigenschaften ausgewählt. Bevorzugt werden jedoch 1-Olefine als Comonomere eingesetzt, ganz besonders bevorzugt Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Octen oder 4-Methylpenten. Die Menge des eingesetzten Comonomers wird ebenfalls entsprechend den gewünschten Eigen- Schäften gewählt, bevorzugt wird jedoch eine Menge von 0,2 bis 4,0 mol% bzgl. der Menge aller eingesetzten Monomere. Die Breite der Molekulargewichtsverteilung Mw/Mn beträgt 1 bis 10, bevorzugt 3 bis 9 und ganz besonders bevorzugt 5 bis 9.
Bevorzugt ist die Schmelzfliessrate MFR 190/21,6 des hochmolekularen Ethylencopolymerisates ist nicht grösser als 1,5 g/10 min und besonders bevorzugt 0,5 bis 1,5 g/10 min. Die Dichte ist vorzugsweise nicht grösser als 0,93 g/cm3. Bevorzugt wird das hochmolekulare Ethylencopolymerisat durch Polymerisation der Mo- nomeren in gegenwart eines Ziegler-Katalysators hergestellt.
Die erfindungsgemässen Blends enthalten 40 bis 80 Gew. % der hochmolekularen Komponente und 20 bis 60 Gew.% der niedermolekularen Komponente. Bevorzugt enthalten sie 40 bis 60 Gew. % der hochmolekularen und 60 bis 40 Gew. % der niedermolekularen Komponente. Sie können darüber hinaus auch noch bis zu 10 Gew.% an weiteren Komponenten, wie z.B. an sich bekannte Anti- oxidantien, UV-Stabilisatoren, Farbstoffe oder Farbpigmente bzw. deren Zubereitungen, Antistatika oder Prozesshilfsmittel enthal- ten.
Die erfindungsgemässen Blends können in Mischaggregaten, die mit einer Zahnradpumpe als Austragsorgan ausgerüstet sind, hergestellt werden. Beispiele für derartige Mischaggregate sind Ein- oder Doppelschneckenextruder bzw. Kneter, Ko-Kneter oder kontinuierliche Kneter. Die Schneckenkonfiguration der Geräte kann vom Fachmann je nach den gewünschten Blendeigenschaften gewählt werden. Es ist nur zu beachten, dass die mechanische Belastung des Blends nicht so gross ist, dass es zum Abbau der hochmolekularen Komponente kommt, wodurch sich die mechanischen Eigenschaften des Blends verschlechtern. Die beiden Komponenten des Blends werden getrennt mittels zweier Dosiereinrichtungen eindosiert. Weitere Komponenten, wie z.B. Farbpigmente oder Zubereitungen von Farbpigmenten in Polyethylen können gegebenenfalls über eine dritte Dosierung eindosiert werden. Entscheidend für das erfindungsge- mässe Verfahren ist die Verwendung einer Zahnradpumpe als Aus- tragsorgan. Überraschenderweise verhindert die Verwendung einer Zahnradpumpe nicht nur den thermo-mechanisehen Abbau der hochmolekularen Komponente des Blends, erkenntlich an einer erhöhten Schmelzfliessrate, sondern für den Fachmann unerwartet, wird auch die Mischgüte des Blends durch die Verwendung einer Zahnradpumpe deutlich verbessert.
Aufgrund ihrer hohen Mischgüte, guten Spannungsrissbeständigkeit und hohen Schockzähigkeit eignen sich die erfindungsgemässen Blends in hervorragender Art und Weise zur Herstellung von Folien und Formkörpern, insbesondere von Hohlkörpern und Druckrohren.
Die folgenden Versuchsbeispiele dienen zur weiteren Erläuterung der Erfindung, ohne dass dadurch der Umfang der Erfindung eingeschränkt werden soll.
Die beschriebenen Messwerte wurden in folgender Art und Weise ermittelt:
Figure imgf000008_0001
Spannungsriss- Scheibenförmige Prüfkörper (Durchmesser 40 beständigkeit ESCR mm, 2 mm dick, einseitig geritzt mit einer Kerbe von 20 mm Länge und 0,1 mm Tiefe) werden bei 80°C in eine 1% Nekanil-Lösung eingetaucht und mit einem Druck von 3 bar belastet. Gemessen wir die Zeit bis zum Auftreten von Spannungsrissen (Angabe in h) .
Mischgüte der Blends Nach ISO 13949
10 Von einer Probe des Blends werden 6 Mikrotomschnitte aus 6 verschiedenen Teilen der Probe angefertigt (Dicke > 60 μm, Durchmesser 3 - 5 mm) .
Die Schnitte werden unter dem Mikroskop bei einer Vergrößerung von 100 begutachtet, und
15 es wird die Anzahl und die Größe von Einschlüssen ("white spots", Agglomerate, Partikel) auf einer Fläche von 0,7 mm2 ermittelt. Einschlüsse einer Grosse unterhalb 5 μm bleiben ge ass ISO 13949 unberücksichtigt. Gemass der Einteilungstabelle von ISO
20 13949 werden je nach Anzahl und Grosse der Einschlüsse die Noten 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5 oder 7 vergeben. Die Gesamtnote errechnet sich aus dem arithmetrisehen Mittel der Noten aller 6 Proben. Je kleiner die Note, desto weni¬
25 ger Einschlüsse enthält das Blend und desto besser ist die Mischgύte des Blends.
Für die folgenden Versuchsbeispiele wurde die folgenden Ausgangs- materialien eingesetzt:
30
Figure imgf000009_0001
45 Die hochmolekulare Komponente wurde mittels eines Ziegler-Katalysators hergestellt, die niedermolekulare Komponente unter Verwendung eines geträgerten Chromocenkatalysators.
Es wurden jeweils 50 Gew.% der hochmolekularen Komponete, 45 Gew.% der niedermolekularen Komponente und 5 % der Pigment- Zubereitung für die Versuche eingesetzt. Die Versuche wurden bei einer Verarbeitungstemperatur von 200°C durchgeführt.
Die Ergebnisse sind in den Tabellen 1 und 2 aufgeführt.
Die Beispiele und Vergleichsbeispiele zeigen, dass sich durch die Verwendung einer Zahnradpumpe die Mischgüte und die Spannungs- rissbeständigkeit von Polyethylen-Blends deutlich steigern lässt. Die Verwendung eines Siebes im Austrag eines Doppelschnecken- extruders führt zwar zu einer Verbesserung der Mischgüte des bimodalen Polyethylenblends, aber es kommt zum Abbau der hochmolekularen Komponente, so dass die Schmelzfliessrate stark zunimmt und die Spannungsrissbeständigkeit stark abnimmt, und kein Blend mit für Druckrohre ausreichenden mechanischen Eigenschaften mehr erhalten wird.
Tab. 1: Ergebnisse der Blendversuche in Apparaturen mit Zahnradpumpe
Figure imgf000011_0001
Figure imgf000011_0002
* ZSK 40 (Werner&Pfleiderer) , **4''UMSD (Farrel) , + Versuch wurde nach 200 h abgebrochen
Tab. 2 Ergebnisse der Blendversuche in Apparturen ohne Zahnradpumpe
Figure imgf000012_0002
*ZSK 53 (Werner & Pfleiderer) (lang) ** ZSK53 (kurz) ***FTX80 (Farrel)
Figure imgf000012_0001

Claims

Patentansprüche
1. Bimodales Polyethylen-Blend mit einer Schmelzfliessrate MFR 190/21,6 von 6 - 14 g/10 min, einer Dichte von 0,94 - 0,97 g/cm3 und einer Spannungsrissbeständigkeit ESCR > 150 h, enthaltend
40 - 80 Gew.% eines hochmolekularen Ethylencopolymerisates mit einem Gewichtsmittel des Molekulargewichtes > 300000 g/ mol und einer Breite der Molekulargewichtsverteilung Mw/Mn von 1 - 12, und
20 - 60 Gew.% eines niedermolekularen Ethylenhomo-oder copolymerisates mit einem Gewichtsmittel des Molekulargewichtes von 8000 - 80000 g/mol und einer Breite der Molekular- gewichtsverteilung Mw/Mn von 2,5 - 12, wobei die Mischgüte des Blends, gemessen nach ISO 13949, kleiner als 3 ist.
2. Bimodales Polyethylen-Blend gemass Anspruch 1, dadurch ge- kennzeichnet, dass das hochmolekulare Ethylencopolymerisat einen Comonomer-Anteil von 0,2 - 4,0 mol % und das niedermolekulare Ethylenhomo- bzw. -copolymerisat einen Comonomer- Anteil von 0 - 1 mol% jeweils bzgl . der Gesamtmenge aller eingesetzten Monomere enthält, und dass das Comonomer minde- stens eines ausgewählt aus der Gruppe von Propen, 1-Buten, 1-Penten, 1-Hexen, 1-Octen oder 4-Methylpenten ist.
3. Bimodales Polyethylen-Blend gemass Anspruch 2, dadurch gekennzeichnet, dass das hochmolekulare Ethylencopolymerisat durch Polymerisation in Gegenwart eines Ziegler-Katalysators und das niedermolekulare Ethylenhomo- oder copolymerisat durch Polymerisation in Gegenwart eines Chromocen-Katalysa- tors auf einem oxidischen Träger erhalten wird.
4. Bimodales Polyethylen-Blend gemass Anspruch 3, dadurch gekennzeichnet, dass das hochmolekulare Ethylencopolymerisat eine Schmelzfliessrate MFR 190/21,6 < 1,5 g/10 min, und das niedermolekulare Ethylenhomo- oder copolymerisat eine Schmelzfliessrate MFR 190/2,16 von 20 - 100 g/10 min auf- weist.
5. Bimodales Polyethylen-Blend gemass Anspruch 3, dadurch gekennzeichnet, dass das hochmolekulare Ethylencopolymerisat eine Dichte < 0,93 g/cm3, und das niedermolekulare Ethylen- homo- oder copolymerisat eine Dichte von > 0,95 g/cm3 aufweist.
6. Verfahren zur Herstellung eines bimodalen Polyethylen-Blends gemass den Ansprüchen 1 - 5, dadurch gekennzeichnet, dass man ein hochmolekulares Ethylencopolymerisat und ein niedermolekulares Ethylenhomo- oder -copolymerisat getrennt in ein Mischaggregat eindosiert, die beiden Komponenten aufschmilzt, homogenisiert und über eine Zahnradpumpe aus dem Misch- aggregat zur Granulierung austrägt.
7. Verwendung des bimodalen Polyethylen-Blends gemass Ansprüchen den 1 - 5 zur Herstellung von Folien, Formkörpern, insbesondere Hohlkörpern und Druckrohren.
8. Folien und Formkörper, insbesondere Hohlkörper und Druckrohre, hergestellt aus Polyethylen gemass den Ansprüchen 1 bis 5.
PCT/EP1999/007748 1998-10-27 1999-10-14 Bimodale polyethylen-blends hoher mischgüte WO2000024821A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT99948992T ATE285442T1 (de) 1998-10-27 1999-10-14 Bimodale polyethylen-blends hoher mischgüte
EP99948992A EP1141118B1 (de) 1998-10-27 1999-10-14 Bimodale polyethylen-blends hoher mischgüte
JP2000578383A JP2002528586A (ja) 1998-10-27 1999-10-14 良好なブレンド品質を示す二モード性ポリエチレンブレンド
DE59911341T DE59911341D1 (de) 1998-10-27 1999-10-14 Bimodale polyethylen-blends hoher mischgüte
US09/806,584 US6545093B1 (en) 1998-10-27 1999-10-14 High mixture-quality bi-modal polyethylene blends

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19849426A DE19849426A1 (de) 1998-10-27 1998-10-27 Bimodale Polyethylen-Blends mit hoher Mischgüte
DE19849426.2 1998-10-27

Publications (1)

Publication Number Publication Date
WO2000024821A1 true WO2000024821A1 (de) 2000-05-04

Family

ID=7885752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/007748 WO2000024821A1 (de) 1998-10-27 1999-10-14 Bimodale polyethylen-blends hoher mischgüte

Country Status (9)

Country Link
US (1) US6545093B1 (de)
EP (1) EP1141118B1 (de)
JP (1) JP2002528586A (de)
KR (1) KR100567694B1 (de)
CN (1) CN1147527C (de)
AT (1) ATE285442T1 (de)
DE (2) DE19849426A1 (de)
ES (1) ES2235519T3 (de)
WO (1) WO2000024821A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025328A1 (en) * 1999-10-07 2001-04-12 Nova Chemicals (International) S.A. Multimodal polyolefin pipe
WO2004011547A1 (en) * 2002-07-25 2004-02-05 Solvay Polyolefins Europe-Belgium (S.A.) Container formed from multimodal ethylene polymer
EP1676883A2 (de) * 2002-07-12 2006-07-05 Corrugated Polyethylene Pipe Ltd. In der Schmelze vermischte Polyethylen hoher Dichte enthaltende Zusammensetzungen mit verbesserten Eigenschaften und Verfahren zu ihrer Herstellung
US7250473B2 (en) 2001-08-31 2007-07-31 Dow Global Technologies, Inc. Multimodal polyolefin pipe
US7317054B2 (en) 2001-12-14 2008-01-08 Corrugated Polyethleyne Pipe, Ltd. Melt blended high density polyethylene compositions with enhanced properties and method for producing the same
CN100369729C (zh) * 2001-06-14 2008-02-20 英尼奥斯制造业比利时有限公司 配混多峰型聚乙烯组合物的方法
US7829646B2 (en) * 2000-08-18 2010-11-09 Chevron Phillips Chemical Company Lp Olefin polymers, method of making, and use thereof

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI111954B (fi) * 2000-02-21 2003-10-15 Borealis Tech Oy Menetelmä polyeteenipäällysteen valmistamiseksi substraatille
DE60043574D1 (de) * 2000-04-13 2010-02-04 Borealis Tech Oy Polymerzusammensetzung für Rohre
ES2255910T3 (es) * 2000-04-13 2006-07-16 Borealis Technology Oy Composicion de polimero para tuberias.
US6787608B2 (en) * 2001-08-17 2004-09-07 Dow Global Technologies, Inc. Bimodal polyethylene composition and articles made therefrom
SE0103425D0 (sv) * 2001-10-16 2001-10-16 Borealis Tech Oy Pipe for hot fluids
JP2003246899A (ja) * 2001-12-17 2003-09-05 Asahi Kasei Corp ポリエチレン樹脂組成物
RU2326904C2 (ru) * 2002-06-04 2008-06-20 Юнион Карбайд Кемикалз Энд Пластикс Текнолоджи Корпорейшн Полимерные композиции и способ изготовления труб
BE1015053A3 (fr) * 2002-07-25 2004-09-07 Solvay Capsule a visser comprenant une composition a base de polymere de l'ethylene multimodal.
EP1460105B1 (de) 2003-03-20 2012-05-23 Borealis Technology Oy Polymerzusammensetzung
US6878454B1 (en) * 2003-12-05 2005-04-12 Univation Technologies, Llc Polyethylene films
EP1555292B1 (de) * 2004-01-13 2015-12-23 Borealis Technology Oy Polyethylen für extrusionsbeschichtung
US7696280B2 (en) * 2004-04-30 2010-04-13 Chevron Phillips Chemical Company, Lp HDPE resins for use in pressure pipe and related applications
US7193017B2 (en) * 2004-08-13 2007-03-20 Univation Technologies, Llc High strength biomodal polyethylene compositions
US8202940B2 (en) 2004-08-19 2012-06-19 Univation Technologies, Llc Bimodal polyethylene compositions for blow molding applications
US7432328B2 (en) * 2005-06-14 2008-10-07 Univation Technologies, Llc Enhanced ESCR bimodal HDPE for blow molding applications
US7868092B2 (en) * 2005-06-14 2011-01-11 Univation Technologies, Llc Bimodal polyethylene compositions for blow molding applications
EP1978040B1 (de) * 2004-09-10 2015-06-17 Borealis Technology Oy Halbleitende Polymerzusammensetzung
ES2298666T3 (es) * 2004-11-03 2008-05-16 Borealis Technology Oy Compuesto de polietileno multimodal con homogeneidad mejorada.
CN101087824B (zh) * 2005-01-12 2011-02-16 波利亚里斯技术有限公司 挤出涂覆聚乙烯
JP2008527118A (ja) * 2005-01-12 2008-07-24 ボレアリス テクノロジー オイ 押出コーティングポリエチレン
US7312279B2 (en) * 2005-02-07 2007-12-25 Univation Technologies, Llc Polyethylene blend compositions
US20060275571A1 (en) * 2005-06-02 2006-12-07 Mure Cliff R Polyethylene pipes
US7858702B2 (en) * 2005-06-14 2010-12-28 Univation Technologies, Llc Enhanced ESCR bimodal HDPE for blow molding applications
KR100702492B1 (ko) * 2005-08-11 2007-04-02 삼성토탈 주식회사 광택성 및 강도가 우수한 중공성형용 고밀도 폴리에틸렌수지 및 그를 포함하는 수지 조성물
US7595364B2 (en) 2005-12-07 2009-09-29 Univation Technologies, Llc High density polyethylene
CA2568454C (en) * 2006-11-17 2014-01-28 Nova Chemicals Corporation Barrier film for food packaging
ATE485336T1 (de) * 2007-07-18 2010-11-15 Borealis Tech Oy Formartikel mit polyethylen-copolymer von hoher dichte
EP2130863A1 (de) 2008-06-02 2009-12-09 Borealis AG Hochdichte Polymerzusammensetzungen, Verfahren für ihre Herstellung und daraus hergestellte druckfeste Rohre
EP2130859A1 (de) 2008-06-02 2009-12-09 Borealis AG Polymerzusammensetzungen mit verbesserter Homogenität und verbessertem Geruch, Verfahren zu deren Herstellung und daraus hergestellte Rohre
EP2130862A1 (de) 2008-06-02 2009-12-09 Borealis AG Polymerzusammensetzung und daraus hergestellte druckfeste Rohre
EP2539123A1 (de) * 2010-02-22 2013-01-02 Ineos Commercial Services UK Limited Verbessertes verfahren zur herstellung von polyolefinen
US9371442B2 (en) 2011-09-19 2016-06-21 Nova Chemicals (International) S.A. Polyethylene compositions and closures made from them
CA2752407C (en) 2011-09-19 2018-12-04 Nova Chemicals Corporation Polyethylene compositions and closures for bottles
EP2583998B1 (de) 2011-10-21 2018-02-28 Borealis AG Polyethylenzusammensetzung mit sehr schneller Rissausbreitungsbeständigkeit und Druckbeständigkeit
CA2887332C (en) * 2012-10-22 2017-05-02 Basell Polyolefine Gmbh Polyethylene composition having high swell ratio
CA2798854C (en) 2012-12-14 2020-02-18 Nova Chemicals Corporation Polyethylene compositions having high dimensional stability and excellent processability for caps and closures
US9783663B2 (en) 2012-12-14 2017-10-10 Nova Chemicals (International) S.A. Polyethylene compositions having high dimensional stability and excellent processability for caps and closures
US9475927B2 (en) 2012-12-14 2016-10-25 Nova Chemicals (International) S.A. Polyethylene compositions having high dimensional stability and excellent processability for caps and closures
CA2834068C (en) * 2013-11-18 2020-07-28 Nova Chemicals Corporation Enhanced escr bimodal rotomolding resin
US9758653B2 (en) 2015-08-19 2017-09-12 Nova Chemicals (International) S.A. Polyethylene compositions, process and closures
US9783664B1 (en) 2016-06-01 2017-10-10 Nova Chemicals (International) S.A. Hinged component comprising polyethylene composition
WO2019067055A1 (en) 2017-09-28 2019-04-04 Exxonmobil Chemical Patents Inc. PROCESS FOR THE PRODUCTION OF POLYMER COMPOSITIONS HAVING MULTIMODAL MOLECULAR WEIGHT DISTRIBUTION
US11029478B2 (en) 2017-10-04 2021-06-08 Sumitomo Electric Industries, Ltd. Polyethylene resin for use in spacer for optical fiber cable and spacer for optical fiber cable using the same
AR114620A1 (es) * 2017-12-15 2020-09-30 Dow Global Technologies Llc Formulación que contiene una composición de polietileno de alta densidad y cinta de goteo para microirrigación que la contiene
EP3749707A1 (de) 2018-02-05 2020-12-16 ExxonMobil Chemical Patents Inc. Verbesserte verarbeitbarkeit von lldpe durch zusatz von hochdichtem polyethylen mit ultrahohem molekulargewicht
CA3028148A1 (en) 2018-12-20 2020-06-20 Nova Chemicals Corporation Polyethylene copolymer compositions and articles with barrier properties
AU2022285104A1 (en) * 2021-05-31 2024-01-18 Borealis Ag Polyethylene blend

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438238A (en) * 1981-01-30 1984-03-20 Sumitomo Chemical Company, Limited Low density copolymer composition of two ethylene-α-olefin copolymers
WO1996014358A1 (en) * 1994-11-02 1996-05-17 The Dow Chemical Company Molding composition, method of preparation, method of molding, and molded articles
EP0848036A1 (de) * 1996-12-03 1998-06-17 Union Carbide Chemicals & Plastics Technology Corporation Verfahren zur Herstellung einer simulierte in situ Polyäthylenmisschung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4461873A (en) 1982-06-22 1984-07-24 Phillips Petroleum Company Ethylene polymer blends
US6194520B1 (en) * 1991-03-06 2001-02-27 Mobil Oil Corporation Ethylene polymer resins for blow molding applications
KR930006089A (ko) 1991-09-18 1993-04-20 제이 이이 휘립프스 폴리에틸렌 블렌드
KR930006091A (ko) 1991-09-18 1993-04-20 제이 이이 휘립프스 폴리에틸렌 블렌드 및 그로부터 제조된 필름, 병 또는 파이프
KR930006090A (ko) 1991-09-18 1993-04-20 제이 이이 휘립프스 에틸렌 중합체 조성물
CA2078366A1 (en) 1991-09-18 1993-03-19 Joel L. Martin Polyethylene blends
US5350807A (en) 1993-06-25 1994-09-27 Phillips Petroleum Company Ethylene polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438238A (en) * 1981-01-30 1984-03-20 Sumitomo Chemical Company, Limited Low density copolymer composition of two ethylene-α-olefin copolymers
WO1996014358A1 (en) * 1994-11-02 1996-05-17 The Dow Chemical Company Molding composition, method of preparation, method of molding, and molded articles
EP0848036A1 (de) * 1996-12-03 1998-06-17 Union Carbide Chemicals & Plastics Technology Corporation Verfahren zur Herstellung einer simulierte in situ Polyäthylenmisschung

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001025328A1 (en) * 1999-10-07 2001-04-12 Nova Chemicals (International) S.A. Multimodal polyolefin pipe
US7829646B2 (en) * 2000-08-18 2010-11-09 Chevron Phillips Chemical Company Lp Olefin polymers, method of making, and use thereof
CN100369729C (zh) * 2001-06-14 2008-02-20 英尼奥斯制造业比利时有限公司 配混多峰型聚乙烯组合物的方法
US7250473B2 (en) 2001-08-31 2007-07-31 Dow Global Technologies, Inc. Multimodal polyolefin pipe
US8101687B2 (en) 2001-08-31 2012-01-24 Dow Global Technologies Llc Multimodal polyethylene material
US7196138B2 (en) 2001-12-14 2007-03-27 Corrugatedd Polyethylene Pipe Ltd. Melt blended high density polyethylene compositions with enhanced properties and method for producing the same
US7317054B2 (en) 2001-12-14 2008-01-08 Corrugated Polyethleyne Pipe, Ltd. Melt blended high density polyethylene compositions with enhanced properties and method for producing the same
EP1676883A2 (de) * 2002-07-12 2006-07-05 Corrugated Polyethylene Pipe Ltd. In der Schmelze vermischte Polyethylen hoher Dichte enthaltende Zusammensetzungen mit verbesserten Eigenschaften und Verfahren zu ihrer Herstellung
EP1676883A3 (de) * 2002-07-12 2006-08-23 Corrugated Polyethylene Pipe Ltd. In der Schmelze vermischte Polyethylen hoher Dichte enthaltende Zusammensetzungen mit verbesserten Eigenschaften und Verfahren zu ihrer Herstellung
WO2004011547A1 (en) * 2002-07-25 2004-02-05 Solvay Polyolefins Europe-Belgium (S.A.) Container formed from multimodal ethylene polymer

Also Published As

Publication number Publication date
JP2002528586A (ja) 2002-09-03
US6545093B1 (en) 2003-04-08
CN1147527C (zh) 2004-04-28
ES2235519T3 (es) 2005-07-01
EP1141118A1 (de) 2001-10-10
KR20010080909A (ko) 2001-08-25
KR100567694B1 (ko) 2006-04-05
DE19849426A1 (de) 2000-05-04
DE59911341D1 (de) 2005-01-27
CN1324383A (zh) 2001-11-28
ATE285442T1 (de) 2005-01-15
EP1141118B1 (de) 2004-12-22

Similar Documents

Publication Publication Date Title
EP1141118B1 (de) Bimodale polyethylen-blends hoher mischgüte
EP1320570B1 (de) Polyethylen formmasse geeignet als rohrwerkstoff mit herausragenden verarbeitungseigenschaften
DE602004011231T2 (de) Multimodale Polyethylenzusammensetzung mit verbesserter Homogenität
DE602004003960T2 (de) Multimodale Polyethylenzusammensetzung mit verbesserter Homogenität
EP1228101B1 (de) Polyethylen formmasse mit verbesserter escr-steifigkeitsrelation und schwellrate, verfahren zu ihrer herstellung und ihre verwendung
DE69734630T2 (de) Silikonmodifizierte organische Polymerisate
DE1569303C3 (de) Formmasse
DE602004008781T2 (de) Multimodale Polyethylenzusammensetzung für Rohre
DE69910563T2 (de) Chlorierte olefinpolymere, verfahren zur herstellung davon und verwendung als schlagzähigkeit-kompatibilisierungsmittel für pvc oder cpvc
DE60306811T2 (de) Polyethylen Formmasse zum Herstellen von Behältern durch Blasformen und damit hergestellte L-Ring-Conrainer
EP1192216B1 (de) Polyethylen formmassen und daraus hergestelltes rohr mit mechanischen eigenschaften
DE60204312T2 (de) Verfahren zum compoundieren einer multimodalen polyäthylenzusammensetzung
DE1233592C2 (de) Formmassen auf basis von polyaethylen
DE602005005164T2 (de) Polyethylenfilm mit verbesserter Verarbeitbarkeit und verbesserten mechanischen Eigenschaften
DE102007031449A1 (de) PE-Formmasse zum Blasformen von Kleinhohlkörpern mit niedriger Dichte
DE602005005055T2 (de) Druckrohr enthaltend eine multimodale Polyethylenzusammensetzung und anorganischen Füllstoff
DE19833858A1 (de) Geruchsarme Polyethylen-Blends
DE2138685C3 (de) Thermoplastische Formmasse
DE102012005869A1 (de) Modifiziertes Propylenpolymer
DE60221966T2 (de) Polypropylenzusammensetzungen
DE60023546T2 (de) Verfahren zur reduzierung des gewichtsmittel-molekulargewichts und des schmelzindexverhältnisses von polyethylen und polyethylenprodukten
DE10261065A1 (de) Polyethylen Formmasse zum Herstellen von Behältern durch Blasformen und damit hergestellte Großhohlkörper
DE3422853A1 (de) Zusammensetzungen umfassend lineares polyaethylen und copolymere von aethylen und acrylat
DE102017210696B4 (de) Polyolefinharzzusammensetzung, Polyolefin-Masterbatch, Verfahren zur Herstellung eines Polyolefin-Masterbatch und Artikel, der daraus gebildet ist
DE60314114T2 (de) Verfahren zur strahlenbehandlung von ethylenpolymeren

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99812720.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09806584

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2000 578383

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1999948992

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020017005213

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020017005213

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1999948992

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999948992

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017005213

Country of ref document: KR