WO2000029729A1 - ÜBERWACHUNGSVERFAHREN FÜR NOx-SPEICHERKATALYSATOREN UND ABGASREINIGUNGSVORRICHTUNG ZUR DURCHFÜHRUNG DIESES VERFAHRENS - Google Patents

ÜBERWACHUNGSVERFAHREN FÜR NOx-SPEICHERKATALYSATOREN UND ABGASREINIGUNGSVORRICHTUNG ZUR DURCHFÜHRUNG DIESES VERFAHRENS Download PDF

Info

Publication number
WO2000029729A1
WO2000029729A1 PCT/EP1999/008379 EP9908379W WO0029729A1 WO 2000029729 A1 WO2000029729 A1 WO 2000029729A1 EP 9908379 W EP9908379 W EP 9908379W WO 0029729 A1 WO0029729 A1 WO 0029729A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalytic converter
storage
exhaust gas
catalyst
determined
Prior art date
Application number
PCT/EP1999/008379
Other languages
English (en)
French (fr)
Inventor
Axel Lang
Jens DRÜCKHAMMER
Frank Schulze
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Priority to JP2000582695A priority Critical patent/JP4472873B2/ja
Priority to EP99972287A priority patent/EP1131544B1/de
Priority to DE59902794T priority patent/DE59902794D1/de
Publication of WO2000029729A1 publication Critical patent/WO2000029729A1/de
Priority to US09/854,735 priority patent/US6499291B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • F01N9/005Electrical control of exhaust gas treating apparatus using models instead of sensors to determine operating characteristics of exhaust systems, e.g. calculating catalyst temperature instead of measuring it directly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • F02D41/028Desulfurisation of NOx traps or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1463Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases downstream of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/03Monitoring or diagnosing the deterioration of exhaust systems of sorbing activity of adsorbents or absorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0811NOx storage efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for monitoring a NO x storage catalytic converter connected downstream of a lean-operated internal combustion engine and an exhaust gas purification device for carrying out this method.
  • NO ⁇ storage catalytic converters consist of a conventional 3-way coating, which is expanded by a NO x storage component. They store the nitrogen oxides contained in the exhaust gas during lean operation through nitrate formation and convert them into harmless nitrogen in intermittent catalyst regenerations under reducing conditions in the rich exhaust gas, whereby they are specifically emptied and essentially retain their full absorption capacity for nitrogen oxides, which increase with increasing nitrogen oxide loading the lean phase decreases continuously.
  • the NO x absorption capacity or the storage efficiency is correspondingly lower, which is reflected in the lean operation in a faster increasing NO x concentration or NO x mass after the storage catalytic converter, so that proper exhaust gas cleaning is no longer possible is guaranteed.
  • the object of the present invention is therefore to provide a monitoring or diagnostic method for a NO x storage catalytic converter connected downstream of a lean-burn internal combustion engine, with which catalytic converter defects or poisoning and a consequent decrease in catalytic converter activity or storage efficiency can be detected reliably and quickly, so that proper functioning of the catalyst is always guaranteed.
  • the object is also to create an exhaust gas purification device comprising a NO x storage catalytic converter for carrying out this method.
  • the NO x exhaust gas concentrations before and after the NO x storage catalytic converter are determined and converted into NO x mass flows.
  • the actually interesting NO x storage efficiency is then determined from these values and compared with a threshold value which indicates an inadequately functional or defective storage catalytic converter and, if exceeded, a catalytic converter defect is displayed.
  • the catalyst temperature must therefore preferably be in a predetermined temperature range, in particular between 200 and 600 ° C., that of the particular catalyst system used and in particular of that
  • Catalyst coating is dependent.
  • the NO x loading of the catalyst must be below a predetermined threshold, which preferably corresponds to a fully regenerated catalyst.
  • the lambda value before and / or after the storage catalytic converter must be> 1, preferably switching on the
  • Lean operation must be indicated by a status bit of the engine control.
  • catalyst monitoring is not carried out or monitoring that has already started is interrupted or at least interrupted.
  • a time function or a time counter is preferably started, which is compared with a predetermined monitoring or diagnostic time. After this time has been reached, the storage efficiency determined is stored, the stored values preferably being counted and averaged after reaching a predetermined number of stored values. The value averaged in this way is then finally compared with the threshold value mentioned above.
  • the measured exhaust gas concentration after the NO x storage catalytic converter or the NO x mass flow determined therefrom is evaluated or weighted as a function of these two variables.
  • the storage efficiency is preferably also weighted with the averaged catalyst temperature determined in the monitoring time, which is determined by temperature sensors arranged upstream and downstream of the storage catalytic converter or is calculated by modeling in an associated control device.
  • Another preferred possibility is to determine the NO x storage efficiency for a number of different temperatures as a function of the mean catalyst temperature and to store it in a characteristic curve or a map from the characteristic changes of which have aged, poisoned or Simply identify defective catalysts and have them diagnosed safely.
  • the characteristic changes in the map can reduce the
  • the lambda value and the NO x exhaust gas concentration of the exhaust gas flowing into and / or out of the NO x storage catalytic converter are preferably determined by an upstream or downstream multifunction sensor, which comprises a NO x- sensitive and an oxygen-sensitive measuring device.
  • the NO x storage is also upstream and downstream of the inlet and outlet flow exhaust gas, a NOx sensor for determining the NO x -Abgaskonzentration.
  • the NO x exhaust gas concentration in the inflowing exhaust gas can also be determined by an associated modeling device, so that the upstream NO x sensor can also be omitted.
  • Preferred embodiments of this exhaust gas purification device include, for example, an upstream and / or a downstream temperature sensor or at least one multifunction sensor with an integrated NO x -sensitive and oxygen-sensitive measuring device.
  • the sensors used are advantageously adapted with regard to a zero point drift and a characteristic curve offset.
  • the exhaust gas purification device according to the invention also includes an evaluation and / or control device for evaluating the sensor signals and / or controlling the diagnostic method described above. Further features and advantages of the method according to the invention and the exhaust gas purification device according to the invention for carrying out this method result not only from the associated claims - for themselves and / or in
  • FIG. 1a shows the first half of a flow diagram of the method according to the invention
  • FIG. 1b shows the associated second half of the flow chart according to FIG. 1a;
  • Fig. 2 shows a detailed representation of the block ETANOX in Fig. 1a, in which the
  • Fig. 5 is a schematic representation of an inventive
  • the compliance with predetermined operating conditions is first checked in block BEDJDIAGNOSE, which, among other things, ensure that the subsequent catalyst check takes place under lean exhaust gas conditions .
  • BEDJDIAGNOSE it is checked whether the lambda value before the NO x storage catalytic converter and after the NO x storage catalytic converter is greater than 1 and whether the lean operation is indicated by a status bit of the engine control. Possibly enough however, also one of the specified lambda values for controlling the method.
  • the catalyst temperature T_kat must be within a predetermined temperature range TKATMIN ⁇ T_kat ⁇ TKATMAX, in which the catalyst is active for NO x storage.
  • This temperature range depends on the catalyst system used in each case, in particular on the catalyst coating. However, it is typically between 200 and 600 ° C.
  • the NO x loading of the storage catalyst must be below a predetermined loading threshold value, which ideally corresponds to a fully regenerated catalyst.
  • the NOx storage efficiency ETANOX 2 in more detail the manner described in the block ETANOX to below with reference to FIG. From the converted in NO x -Massenströme NO x -Abgaskonzentrationen before and after the NO x storage. At the same time, a time function or a time counter T_DIAG is started, which also counts the monitoring or diagnostic time. If the release conditions for the diagnosis have been present over a suitable period of time that can be applied, the calculation of the storage efficiency is stopped in the block ETANOX and the diagnosis result is stored in the block ETANOX_ERGEB.
  • T_DIAG and ETANOX are set to zero.
  • the number of diagnostic results determined in this way is counted in block ANZ_ERGEB and compared with a predetermined number. If this predetermined number is undershot, a new diagnosis is carried out, otherwise the stored diagnosis results ETANOX_ERGEB are averaged.
  • the average catalyst efficiency ETANOX_MITTEL determined in this way is compared with a predetermined threshold value NO x MAX, which corresponds to the transition from a defective catalyst to a sufficiently functional catalyst. If the determined average catalyst efficiency ETANOXJvHTTEL is above the predetermined threshold value NO x MAX, the catalyst is OK, while otherwise there is suspicion of a catalyst defect.
  • the actual calculation of the storage efficiency ETANOX takes place in the already mentioned block ETANOX in FIG. 1a, which is shown in more detail in FIG. 2. If the above-mentioned admissibility requirements or release conditions for carrying out a catalyst monitoring or catalyst diagnosis are met, the NO x mass flows determined from the NO x exhaust gas concentrations before and after the NO x storage catalyst MNOVK or MNONK are monitored and diagnosed at T_DIAG each integrated.
  • the NO x mass flow MNONK behind the NO x storage catalytic converter is dependent on the storage load or the The storage level and the space velocity RG are evaluated and weighted accordingly before the integration is carried out, since these parameters have a strong influence on the storage rate and thus have a correspondingly strong influence on the NO x emission behind the NO x storage catalytic converter. From the thus obtained NO x - mass flow, NO x mass before and after the NO x storage catalyst, is then calculated according to the expiry of the time interval T_DIAG the NO x storage efficiency in the relevant time interval. Since, as can be seen in Fig. 4, the distinguishability of the NO x storage activity for different
  • Another possibility to take into account the influence of the indirect catalyst temperature TKAT_mit on the NO x storage efficiency ETANOX is to create a characteristic curve or a map of the NO x storage efficiency as a function of the average catalyst temperature TKAT_mit, from the characteristic changes of which aging, defective or poisoned catalysts recognized and diagnosed safely.
  • the map is created, for example, by "storing" the NO x storage efficiencies determined for different catalyst temperatures in different storage cells, each of which is assigned to a specific average catalyst temperature.
  • the "storing" can be a simple transfer, averaging or also an adaptation (such as, for example, incrementing the memory cell if the value in the memory cell is greater than the current value or decrementing if the value in the memory cell is smaller than the current value).
  • an adaptation such as, for example, incrementing the memory cell if the value in the memory cell is greater than the current value or decrementing if the value in the memory cell is smaller than the current value.
  • the catalytic converter temperature usually initially rises sharply, then passes through a broad maximum and then rapidly decreases again, the course of the curve being strongly influenced by the current operating state of the storage catalytic converter.
  • the course of the curve in an aged or poisoned NO x storage catalytic converter changes in a characteristic manner compared to the new condition, which is noticeable, for example, in a later start of the curve, a lower curve maximum and an earlier loss of NOx storage capacity at a higher catalytic converter temperature, so that the through the minimum permissible NOx storage capacity of the catalyst certain operating range is correspondingly smaller.
  • Further characteristic changes can also be, for example, the reduction in the storage efficiency at specific temperatures, a corresponding change in the mean value of the reductions in the storage efficiency over a specific temperature range or a change in the catalyst temperature at which a specific efficiency is achieved.
  • FIG. 5 shows a schematic illustration of an exhaust gas purification device according to the invention which is suitable for carrying out the described method and which is arranged in the exhaust line 10 of a lean-burn internal combustion engine 12.
  • the exhaust gas cleaning device comprises a NO x storage catalytic converter 14, which stores the nitrogen oxides emitted by the internal combustion engine 12 in lean operation and releases them as harmless nitrogen in the case of intermittent catalyst regeneration by briefly setting rich operating conditions.
  • a lambda sensor 16 or 18 is connected upstream or downstream of the NO Speicherk storage catalytic converter 14, which continuously monitors the entire operating range
  • the NO x storage catalytic converter 14 is also connected upstream or downstream from a respective NO x sensor 20 or 22, which measure the exhaust gas concentration of the nitrogen oxides upstream of the NO x storage catalytic converter 14 or after the NO x storage catalytic converter 14.
  • the NOx sensors 20 and 22 are adapted with regard to a zero point drift and a characteristic curve offset.
  • the required information about the nitrogen oxide concentration or the NO x mass flow in the exhaust gas flowing into the catalytic converter 14 can, however, also be calculated by modeling using a map (speed, injection quantity), so that the upstream NO x sensor 20 for performing the
  • the method according to the invention is not absolutely necessary and can also be omitted in other embodiments according to the invention, which instead comprise a corresponding modeling device.
  • downstream NO x sensor 22 and the downstream Lambda sensor 18 can also be integrated in a multifunction sensor, which is both able to determine the NO x concentration and the oxygen concentration or the air ratio downstream of the NO x storage catalytic converter 14 to eat. The same also applies to the sensors 16 and 20 connected upstream of the NO x storage catalytic converter 14.
  • a temperature sensor (not shown) is also connected upstream or downstream from the NO x storage catalytic converter 14, from whose averaged measured values the required catalyst temperature T_kat is determined.
  • the sensor signals are fed via lines (not shown) to an evaluation device (also not shown), in which the information required for carrying out the method, such as the catalyst temperature T_kat and the NO x mass flows before and after the catalyst MNOVK or MNONK, respectively determined the measurement results and a (also not shown) control device for controlling the above-described invention Proceedings are forwarded.
  • the evaluation device and the control device can be integrated in a motor control device (not shown) associated with the internal combustion engine (12).

Abstract

Es wird ein Verfahren zur Überwachung eines einer mager betriebenen Brennkraftmaschine (12) nachgeschalteten NOx-Speicherkatalysators (14) beschrieben, bei dem der NOx-Speicherwirkungsgrad des Katalysators (14) aus den NOx-Abgaskonzentrationen vor und nach dem NOx-Speicherkatalysator (14) ermittelt und mit einem vorbestimmten Schwellenwert verglichen wird. Zur Durchführung des Verfahrens müssen vorbestimmte Betriebsbedingungen, wie z.B. ein Lambda-Wert > 1 und eine Katalysatortemperatur zwischen 200 und 600 °C eingehalten werden. Eine zur Durchführung dieses Verfahrens geeignete erfindungsgemässe Abgasreinigungsvorrichtung umfasst einen NOx-Speicherkatalysator (14) mit einem vorgeschalteten Lambda-Sensor (16) und einem nachgeschalteten Lambda-Sensor (18) zur Bestimmung des Sauerstoffgehaltes im Abgas, um zu gewährleisten, dass die Katalysatorprüfung nur bei magerer Betriebsweise erfolgt. Eine vorgeschaltete NOx-Sonde (20) und eine nachgeschaltete NOx-Sonde (22) dienen zur Messung der NOx-Abgaskonzentrationen vor bzw. nach dem Katalysator (14), aus denen der gewünschte NOx-Speicherwirkungsgrad bestimmt wird. Die NOx-Abgaskonzentration vor dem Katalysator (14) kann jedoch auch über Modellierungen berechnet werden. Die Abgasreinigungsvorrichtung kann auch einen vor- und/oder nachgeschalteten Temperatursensor zur Bestimmung der Katalysatortemperatur umfassen.

Description

Überwachungsverfahren für NOx-Speicherkatalysatoren und Abgasreinigungsvorrichtung zur Durchführung dieses Verfahrens
Die vorliegende Erfindung betrifft ein Verfahren zur Überwachung eines einer mager betriebenen Brennkraftmaschine nachgeschalteten NOx-Speicherkatalysators und eine Abgasreinigungsvorrichtung zur Durchführung dieses Verfahrens.
NOχ-Speicherkatalysatoren bestehen aus einer üblichen 3-Wege-Beschichtung, die um eine NOx-Speicherkomponente erweitert ist. Sie lagern die im Abgas enthaltenen Stickoxide bei magerer Betriebsweise durch Nitratbildung ein und setzen sie bei intermittierenden Katalysatorregenerationen unter reduzierenden Bedingungen im fetten Abgas in unschädlichen Stickstoff um, wobei sie gezielt entleert werden und im wesentlichen ihre volle Absorptionsfähigkeit für Stickoxide zurückerhalten, die mit zunehmender Stickoxidbeladung in der Magerphase kontinuierlich absinkt.
Bei einem thermisch geschädigten oder vergifteten Speicherkatalysator hingegen ist die NOx-Absorptionsfähigkeit oder der Speicherwirkungsgrad entsprechend geringer, was sich im Magerbetrieb in einer schneller ansteigenden NOx-Konzentration bzw. NOx- Masse nach dem Speicherkatalysator niederschlägt, so daß eine ordnungsgemäße Abgasreinigung nicht mehr gewährleistet ist.
Für den praktischen Einsatz von NOx-Speicherkatalysatoren sind daher Überwachungsoder Diagnoseverfahren zur Überprüfung der ordnungsgemäßen Funktionsweise der Katalysatoren von großem Interesse. Bisher üblichen Katalysatordiagnoseverfahren, bei denen die Sauerstoffspeicherkapazität der Katalysatoren mittels Lambda-Sonden bestimmt und mit dem Katalysatorumsatz und dem Emissionsverhalten korreliert wird, sind für Magerbrennverfahren nicht geeignet. Bei einer Betriebsweise mit λ > 1 , der für zukünftige Magerkonzepte den emissionsbestimmenden Betriebsbereich darstellt, wird von Sauerstoffsonden wegen des permanenten Restsauerstoffs im Abgas kein verwertbares Signal mit ausreichender Auflösung ausgegeben. Die Aufgabe der vorliegenden Erfindung besteht daher in der Schaffung eines Überwachungs- oder Diagnoseverfahrens für einen einer mager betriebenen Brennkraftmaschine nachgeschalteten NOx-Speicherkatalysator, mit dem sich Katalysatordefekte oder Katalysatorvergiftungen und eine dadurch hervorgerufene Abnahme der Katalysatoraktivität oder des Speicherwirkungsgrades zuverlässig und schnell erkennen lassen, so daß stets eine ordnungsgemäße Funktionsweise des Katalysators gewährleistet ist. Die Aufgabe besteht auch in der Schaffung eines einen NOx-Speicherkatalysator umfassenden Abgasreinigungsvorrichtung zur Durchführung dieses Verfahrens.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gemäß Anspruch 1 gelöst, wobei besondere Ausführungsformen den Unteransprüchen 2 bis 17 zu entnehmen sind.
Bei dem erfindungsgemäßen Verfahren werden die NOx-Abgaskonzentrationen vor und nach dem NOx-Speicherkatalysator bestimmt und in NOx-Massenströme umgerechnet. Aus diesen Werten wird nun der eigentlich interessierende NOx-Speicherwirkungsgrad ermittelt und mit einem einen nicht mehr ausreichend funktionsfähigen oder defekten Speicherkatalysator anzeigenden Schwellenwert verglichen, bei dessen Überschreitung ein Katalysatordefekt angezeigt wird.
Da eine Verringerung der Kataiysatoraktivität oder des Speicherwirkungsgrades jedoch beispielsweise auch auf eine zu hohe Stickoxidbeladung und/oder eine reversible Schwefelvergiftung zurückzuführen sein kann, wird bei Überschreitung des Schwellenwertes vorzugsweise zunächst zumindest eine NOx-Regeneration und/oder De-Sulfatierung durchgeführt und der Speicherwirkungsgrad erneut bestimmt. Erst bei einer neuerlichen Überschreitung des vorbestimmten Schwellenwertes wird dann von einer irreversiblen Katalysatorschädigung ausgegangen, die als solche angezeigt wird.
Vor und während einer Katalysatorüberprüfung wird die Einhaltung vorbestimmter Betriebsbedingungen überprüft, denen beispielsweise die Kataiysatorbeladung, die Katalysatortemperatur und der Lambda-Wert genügen müssen und die u.a. gewährleisten, daß die Katalysatorüberprüfung nur unter mageren Abgasbedingungen und in einem Temperaturbereich abläuft, in dem der Katalysator bezüglich einer NOx- Einlagerung aktiv ist. Die Katalysatortemperatur muß daher vorzugsweise in einem vorbestimmten Temperaturbereich, insbesondere zwischen 200 und 600 °C liegen, der von dem jeweils verwendeten Katalysatorsystem und insbesondere von der
Katalysatorbeschichtung abhängig ist. Zudem muß die NOx-Beladung des Katalysators unter einem vorbestimmten Schwellenwert liegen, der vorzugsweise einem vollständig regenerierten Katalysator entspricht. Außerdem muß der Lambda-Wert vor und/oder nach dem Speicherkatalysator > 1 sein, wobei vorzugsweise die Einschaltung des
Magerbetriebes durch ein Statusbit der Motorsteuerung angezeigt werden muß.
Bei Nichteinhaltung dieser Bedingungen wird keine Katalysatorüberwachung durchgeführt oder eine bereits begonnene Überwachung wird abgebrochen oder zumindest unterbrochen.
Bei Beginn des Überwachungsverfahrens wird vorzugsweise eine Zeitfunktion oder ein Zeitzähler gestartet, der mit einer vorbestimmten Uberwachungs- oder Diagnosezeit verglichen wird. Nach Erreichen dieser Zeit wird der ermittelte Speicherwirkungsgrad gespeichert, wobei die gespeicherten Werte vorzugsweise gezählt und nach Erreichen einer vorbestimmten Anzahl an gespeicherten Werten gemittelt werden. Der so gemittelte Wert wird dann schließlich mit dem oben erwähnten Schwellenwert verglichen.
Um Abhängigkeiten des Speicherwirkungsgrades von der Katalysatorbeladung und der Raumgeschwindigkeit auszugleichen, wird hierbei die gemessene Abgaskonzentration nach dem NOx-Speicherkatalysator bzw. der daraus bestimmte NOx-Massenstrom in Abhängigkeit von diesen beiden Größen bewertet oder gewichtet.
Der Speicherwirkungsgrad wird vorzugsweise noch mit der in der Überwachungszeit bestimmten gemittelten Katalysatortemperatur gewichtet, die durch vor und nach dem Speicherkatalysator angeordnete Temperatursensoren bestimmt oder durch Modellierung in einer zugeordneten Steuerungseinrichtung berechnet wird.
Eine andere bevorzugte Möglichkeit besteht darin, den NOx-Speicherwirkungsgrad für mehrere unterschiedliche Temperaturen als Funktion der mittleren Katalysatortemperatur zu bestimmen und in eine Kennlinie oder einem Kennfeld zu speichern, aus dessen charakteristischen Veränderungen sich gealterte, vergiftete oder defekte Katalysatoren einfach erkennen und sicher diagnostizieren lassen. Die charakteristischen Veränderungen des Kennfeldes können eine Verringerung des
Speicherwirkungsgrades bei bestimmten Temperaturen, eine entsprechende
Veränderung des Mittelwertes der Verringerung des Speicherwirkungsgrades über einen bestimmten Temperaturbereich oder eine Veränderung der Katalysatortemperatur, bei der ein bestimmter Wirkungsgrad erreicht ist, umfassen.
Der Lambda-Wert und die NOx-Abgaskonzentration des in den NOx-Speicherkatalysator einströmenden und/oder aus ihm ausströmenden Abgases werden vorzugsweise durch einen vorgeschalteten bzw. nachgeschalteten Multifunktionssensor bestimmt, der eine NOx-empfindliche und eine sauerstoffempfindliche Meßeinrichtung umfaßt.
Eine erfindungsgemäße Abgasvorrichtung zur Durchführung dieses Verfahrens umfaßt gemäß den Ansprüchen 18 bis 22 einen NOx-Speicherkatalysator, dem zur Bestimmung des Sauerstoffverhältnisses in dem in den Katalysator einströmenden bzw. aus ihm ausströmenden Abgas jeweils ein Lambda-Sensor vor- bzw. nachgeschaltet ist. Dem NOx-Speicherkatalysator ist zudem zur Bestimmung der NOx-Abgaskonzentration im ein- bzw. ausströmenden Abgas ein NOx-Sensor vor- bzw. nachgeschaltet. Alternativ hierzu kann die NOx-Abgaskonzentration im einströmenden Abgas jedoch auch durch eine zugeordnete Modellierungseinrichtung bestimmt werden, so daß der vorgeschaltete NOx-Sensor auch entfallen kann.
Bevorzugte Ausführungsformen dieser Abgasreinigungsvorrichtung umfassen beispielsweise einen vorgeschalteten und/oder einen nachgeschalteten Temperatursensor oder zumindest einen Multifunktionssensor mit einer integrierten NOx- empfindlichen und sauerstoffempfindlichen Meßeinrichtung.
Die verwendeten Sensoren sind vorteilhafterweise bezüglich einer Nullpunktsdrift und eines Kennlinien-Offsets adaptiert.
Die erfindungsgemäße Abgasreinigungsvorrichtung umfaßt zudem noch eine Auswerte- und/oder Steuereinrichtung zur Auswertung der Sensorsignale und/oder Steuerung des oben beschriebenen Diagnoseverfahrens. Weitere Merkmale und Vorteile des erfindungsgemäßen Verfahrens und der erfindungsgemäßen Abgasreinigungsvorrichtung zur Durchführung dieses Verfahrens ergeben sich nicht nur aus den zugehörigen Ansprüchen - für sich und/oder in
Kombination - sondern auch aus der nachfolgenden Beschreibung bevorzugter
Ausführungsbeispiele in Verbindung mit den zugehörigen Zeichnungen. In den
Zeichnungen zeigen:
Fig. 1a die erste Hälfte eines Flußdiagramms des erfindungsgemäßen Verfahrens;
Fig. 1b die zugehörige zweite Hälfte des Flußdiagramms gemäß Fig. 1a;
Fig. 2 eine ausführliche Darstellung des Blockes ETANOX in Fig. 1a, in dem der
Speicherwirkungsgrad bestimmt wird;
Fig. 3 eine schematische Darstellung der Auswertung/Wichtung des NOx-
Speicherwirkungsgrades in Abhängigkeit von der mittleren Katalysatortemperatur;
Fig. 4 ein prinzipielles Beispiel für die Abhängigkeit des NOx-
Speicherwirkungsgrades von der Katalysatortemperatur bei einem neuen, einem gealterten und einem durch Schwefel vergifteten NOx- Speicherkatalysator; und
Fig. 5 eine schematische Darstellung einer erfindungsgemäßen
Abgasreinigungsvorrichtung.
Bei dem in den Fig. 1a und 1b dargestellten erfindungsgemäßen Verfahren zur Überwachung eines einer mager betriebenen Brennkraftmaschine nachgeschalteten NOx-Speicherkatalysators (SK) wird in dem Block BEDJDIAGNOSE zunächst die Einhaltung vorbestimmter Betriebsbedingungen überprüft, die u.a. gewährleisten, daß die nachfolgende Katalysatorüberprüfung unter mageren Abgasbedingungen abläuft. Insbesondere wird hierbei überprüft, ob der Lambda-Wert vor dem NOx- Speicherkatalysator und nach dem NOx-Speicherkatalysator größer 1 ist und ob der Magerbetrieb durch ein Statusbit der Motorsteuerung angezeigt wird. Eventuell reicht jedoch auch bereits einer der angegebenen Lambda-Werte zur Steuerung des Verfahrens aus.
Zudem muß die Katalysatortemperatur T_kat innerhalb eines vorbestimmten Temperaturbereiches TKATMIN < T_kat < TKATMAX liegen, in dem der Katalysator für eine NOx-Speicherung aktiv ist. Dieser Temperaturbereich ist von dem jeweils verwendeten Katalysatorsystem, insbesondere von der Katalysatorbeschichtung abhängig. Er liegt jedoch typischerweise zwischen 200 und 600 °C.
Die zur Durchführung dieser Überprüfung erforderlichen Temperatur- und Lambda- Werte werden auf die nachstehend anhand von Fig. 5 ausführlich beschriebene Art und Weise durch entsprechende Sensoren bestimmt.
Außerdem muß die NOx-Beladung des Speicherkatalysator unter einem vorbestimmten Beladungsschwellenwert liegen, der idealerweise einem vollständig regenerierten Katalysator entspricht.
Ferner wird überprüft, ob der oder die zur Bestimmung des Speicherwirkungsgrades eingesetzten NOx-Sensoren, die nachstehend anhand von Fig. 5 ebenfalls noch ausführlich beschrieben werden, bezüglich einer Nullpunktsdrift und eines Kennlinien- Offsets adaptiert sind.
Bei Erfüllung dieser Bedingungen wird in dem Block ETANOX der NOx- Speicherwirkungsgrad ETANOX auf die nachstehend anhand von Fig. 2 noch ausführlicher beschriebenen Art und Weise aus den in NOx-Massenströme umgerechneten NOx-Abgaskonzentrationen vor und nach dem NOx-Speicherkatalysator bestimmt. Gleichzeitig wird eine Zeitfunktion oder ein Zeitzähler T_DIAG gestartet, der die Uberwachungs- oder Diagnosezeit mitzählt. Haben die Freigabebedingungen für die Diagnose über einen applizierbaren geeigneten Zeitraum vorgelegen, wird die Berechnung des Speicherwirkungsgrades im Block ETANOX gestoppt und das Diagnoseergebnis im Block ETANOX_ERGEB gespeichert.
Bei Nichteinhaltung der Bedingungen wird das Verfahren gar nicht erst gestartet, wobei T_DIAG und ETANOX gleich Null gesetzt werden. Um eine ordnungsgemäße Katalysatordiagnose zu gewährleisten, wird die Einhaltung der in dem Block BEDJDIAGNOSE angegebenen Bedingungen auch während der
Durchführung des Verfahrens kontinuierlich überprüft. Bei Nichteinhaltung der
Bedingungen wird das Uberwachungs- oder Diagnoseverfahren vorzeitig abgebrochen oder zumindest unterbrochen.
Die Anzahl der so ermittelten Diagnoseergebnisse wird im Block ANZ_ERGEB gezählt und mit einer vorbestimmten Anzahl verglichen. Bei Unterschreitung dieser vorbestimmten Anzahl wird eine erneute Diagnose durchgeführt, während ansonsten die gespeicherten Diagnoseergebnisse ETANOX_ERGEB gemittelt werden. Der so bestimmte mittlere Katalysatorwirkungsgrad ETANOX_MITTEL wird mit einem vorbestimmten Schwellenwert NOxMAX verglichen, der dem Übergang von einem defekten Katalysator zu einem ausreichend funktionsfähigen Katalysator entspricht. Liegt der ermittelte mittlere Katalysatorwirkungsgrad ETANOXJvHTTEL über dem vorbestimmten Schwellenwert NOxMAX, ist der Katalysator in Ordnung, während ansonsten der Verdacht eines Katalysatordefektes besteht.
Da die Aktivität des Katalysators jedoch auch lediglich durch eine zu hohe Stickoxidbeladung und/oder eine reversible Vergiftung, wie z.B. durch Schwefel, beeinträchtigt sein könnte, wird zunächst ein Fehlervorbehalt gesetzt und es wird zunächst zumindest eine De-Sulfatierung und/oder NOx-Regeneration eingeleitet. Anschließend wird der oben beschriebene Diagnosealgorithmus wiederholt und erneut der Katalysatorwirkungsgrad bestimmt. Bei einem erneuten Unterschreiten des vorbestimmten Schwellenwertes NOxMAX ist von einem defekten Katalysator auszugehen, so daß ein Katalysatordefekt angezeigt wird.
Die eigentliche Berechnung des Speicherwirkungsgrades ETANOX erfolgt in dem bereits erwähnten Block ETANOX in Fig. 1a, der in Fig. 2 noch einmal ausführlicher dargestellt ist. Wenn die oben angegebenen Zulässigkeitsvoraussetzungen oder Freigabebedingungen zur Durchführung einer Katalysatorüberwachung oder Erstellung einer Katalysatordiagnose erfüllt sind, werden dort die aus den NOx- Abgaskonzentrationen bestimmten NOx-Massenströme vor und nach dem NOx- Speicherkatalysator MNOVK bzw. MNONK im Uberwachungs- oder Diagnoseintervall T_DIAG jeweils aufintegriert. Der NOx-Massenstrom MNONK hinter dem NOx- Speicherkatalysator wird hierbei in Abhängigkeit von der Speicherbeladung oder dem Speicherfüllstand und der Raumgeschwindigkeit RG bewertet und vor der Durchführung der Integration entsprechend gewichtet, da diese Parameter einen starken Einfluß auf die Einspeicherrate haben und somit die NOx-Emission hinter dem NOx- Speicherkatalysator entsprechend stark beeinflussen. Aus den so erhaltenen NOx- Massenströmen, NOx-Masse vor und nach dem NOx-Speicherkatalysator, wird dann nach dem Ablauf des Zeitintervalls T_DIAG der NOx-Speicherwirkungsgrad in dem betreffenden Zeitintervall berechnet. Da, wie in Fig. 4 zu erkennen ist, die Unterscheidbarkeit der NOx-Speicheraktivität für verschiedene
Verschlechterungszustände, wie z.B. eine Aktivitätsverschlechterung aufgrund einer Temperaturalterung oder einer Schwefelvergiftung des Katalysators, sehr stark temperaturabhängig ist, wird der so ermittelte Speicherwirkungsgrad zur Ermittlung des auf die oben im Zusammenhang mit den Figuren 1a und 1b beschriebene Art und Weise letztendlich zur Katalysatordiagnose verwendeten eigentlichen Speicherwirkungsgrades ETANOX anschließend noch mit der im Uberwachungs- oder Diagnosezeitraum T_DIAG gemittelten Katalysatortemperatur TKAT_mit gewichtet, so daß die mittlere Katalysatortemperatur TKAT_mit erfindungsgemäß in die Bewertung des Speicherwirkungsgrades ETANOX mit einbezogen wird.
Eine andere Möglichkeit zur Berücksichtigung des Einflusses der mittelbaren Katalysatortemperatur TKAT_mit auf den NOx-Speicherwirkungsgrad ETANOX besteht darin, eine Kennlinie oder ein Kennfeld des NOx-Speicherwirkungsgrades als Funktion der mittleren Katalysatortemperatur TKAT_mit zu erstellen, aus dessen charakteristischen Veränderungen gealterte, defekte oder vergiftete Katalysatoren erkannt und sicher diagnostiziert werden.
Wie in Fig. 3 schematisch dargestellt ist, erfolgt die Erstellung des Kennfeldes hierbei beispielsweise durch "Ablegen" der für unterschiedliche Katalysatortemperaturen ermittelten NOx-Speicherwirkungsgrade in unterschiedlichen Speicherzellen, die jeweils einer bestimmten mittleren Katalysatortemperatur zugeordnet sind. Das „Ablegen" kann hierbei ein einfaches Übertragen, ein Mitteln oder aber auch ein Adaptieren sein (wie z.B. ein Inkrementieren der Speicherzelle, wenn der Wert in der Speicherzelle größer ist als der aktuelle Wert oder ein Dekrementieren, wenn der Wert in der Speicherzelle kleiner ist als der aktuelle Wert). Nach einer gewissen Motorbetriebszeit mit unterschiedlichen Bet ebszuständen, die unterschiedlich hohe Katalysatortemperaturen zur Folge haben, liegt daher im Speicher einer zugeordneten Auswerteeinrichtung oder Motorsteuerungseinrichtung eine Kennlinie oder ein Kennfeld vor, das die Abhängigkeit des Speicherwirkungsgrades von der Katalysatortemperatur beinhaltet. Wie in Fig. 4 zu erkennen ist, nimmt die NOx- Speicherfähigkeit eines NOx-Speicherkatalysators mit zunehmender
Katalysatortemperatur üblicherweise zunächst stark zu, durchläuft dann ein breit ausgebildetes Maximum und nimmt anschließend wieder rasch ab, wobei der Kurvenlauf durch den aktuellen Betriebszustand des Speicherkatalysators stark beeinflußt wird. So ist der Kurvenverlauf bei einem gealterten oder vergifteten NOx-Speicherkatalysators in charakteristischer Weise gegenüber dem Neuzustand verändert, was sich beispielsweise in einem späteren Kurvenbeginn, einem niedrigeren Kurvenmaximum und einem frühzeitigeren Verlust der NOx-Speicherfähigkeit bei höherer Katalysatortemperatur bemerkbar macht, so daß der durch die minimal zulässige NOx- Speicherfähigkeit des Katalysators bestimmte Betriebsbereich entsprechend kleiner wird. Weitere charakteristische Veränderungen können beispielsweise auch die Verringerung des Speicherwirkungsgrades bei bestimmten Temperaturen, eine entsprechende Veränderung des Mittelwertes der Verringerungen des Speicherwirkungsgrades über einen bestimmten Temperaturbereich oder eine Veränderung der Katalysatortemperatur sein, bei der ein bestimmter Wirkungsgrad erreicht ist. Diese charakteristischen Merkmale werden durch die Auswerte- oder Motorsteuerungseinrichtung bestimmt und mit vorbestimmten Fehlerschwellen verglichen, bei deren Überschreitung ein Defekt des Katalysators signalisiert oder eine übermäßig hohe Schwefel- und/oder NOx-Beladung oder eine Alterung des Katalysators festgestellt wird.
Fig. 5 zeigt in schematischer Darstellung eine zur Durchführung des beschriebenen Verfahrens geeignete erfindungsgemäße Abgasreinigungsvorrichtung, die im Abgasstrang 10 einer mager betriebenen Brennkraftmaschine 12 angeordnet ist. Die Abgasreinigungsvorrichtung umfaßt einen NOx-Speicherkatalysator 14, der die von der Brennkraftmaschine 12 emittierten Stickoxide im Magerbetrieb einspeichert und bei intermittierend durchgeführten Katalysatorregenerationen durch kurzzeitige Einstellung fetter Betriebsbedingungen als unschädlichen Stickstoff freisetzt. Dem NOχ-Speicherkatalysator 14 ist jeweils ein Lambda-Sensor 16 bzw. 18 vorgeschaltet bzw. nachgeschaltet, die im gesamten Betriebsbereich kontinuierlich das
Luftverhältnis in dem in den Katalysator 14 einströmenden bzw. aus ihm ausströmenden
Abgas und damit den entsprechenden Lambda-Wert messen.
Zusätzlich hierzu ist dem NOx-Speicherkatalysator 14 auch noch jeweils ein NOx-Sensor 20 bzw. 22 vorgeschaltet bzw. nachgeschaltet, die die Abgaskonzentration der Stickoxide vor dem NOx-Speicherkatalysator 14 bzw. nach dem NOx-Speicherkatalysator 14 messen. Die NOx-Sensoren 20 und 22 sind bezüglich einer Nullpunktsdrift und eines Kennlinien-Offsets adaptiert.
Die benötigten Informationen über die Stickoxidkonzentration bzw. den NOx- Massenstrom in dem in den Katalysator 14 einströmenden Abgas können jedoch auch durch Modellierungen unter Verwendung eines Kennfeldes (Drehzahl, Einspritzmenge) berechnet werden, so daß der vorgeschaltete NOx-Sensor 20 zur Durchführung des erfindungsgemäßen Verfahrens nicht unbedingt erforderlich ist und bei anderen erfindungsgemäßen Ausführungsformen, die statt dessen eine entsprechende Modellierungseinrichtung umfassen, auch weggelassen werden kann.
Zudem können der nachgeschaltete NOx-Sensor 22 und der nachgeschaltete Lambda- Sensor 18 auch in einem Multifunktionssensor integriert sein, der sowohl in der Lage ist, die NOx-Konzentration als auch die Sauerstoffkonzentration bzw. das Luftverhältnis nach dem NOx-Speicherkatalysator 14 zu messen. Entsprechendes gilt auch für die dem NOx- Speicherkatalysator 14 vorgeschalteten Sensoren 16 und 20.
Dem NOx-Speicherkatalysator 14 ist auch jeweils ein (nicht dargestellter) Temperatursensor vorgeschaltet bzw. nachgeschaltet, aus deren gemittelten Meßwerten die erforderliche Katalysatortemperatur T_kat bestimmt wird.
Die Sensorsignale werden über (nicht dargestellte) Leitungen einer (ebenfalls nicht dargestellten) Auswerteeinrichtung zugeleitet, in der die zur Durchführung des Verfahrens erforderlichen Informationen, wie z.B. die Katalysatortemperatur T_kat und die NOx-Massenströme vor und nach dem Katalysator MNOVK bzw. MNONK, aus den Meßergebnissen ermittelt und einer (ebenfalls nicht dargestellten) Steuerungseinrichtung zur Steuerung des oben beschriebenen erfindungsgemäßen Verfahrens zugeleitet werden. Die Auswerteeinrichtung und die Steuerungseinrichtung können in einer der Brennkraftmaschine (12) zugeordneten (nicht dargestellten) Motorsteuerungseinrichtung integriert sein.

Claims

PATENTANSPRÜCHE
1. Verfahren zur Überwachung eines einer mager betriebenen Brennkraftmaschine (12) nachgeschalteten NOx-Speicherkatalysators (14) mit folgenden Verfahrensschritten:
a.) Bestimmung der NOx-Abgaskonzentration vor und nach dem Nox- Speicherkatalysator (14);
b.) Bestimmung des NOx-Speicherwirkungsgrades ETANOX aus den ermittelten NOx-Abgaskonzentrationen;
c.) Vergleich des ermittelten NOx-Speicherwirkungsgrades ETANOX mit einem vorbestimmten ersten Schwellenwert NOxMAX und bei Überschreitung des Schwellenwertes ;
d.) Anzeige eines Katalysatordefektes.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß bei einer Überschreitung des ersten Schwellenwertes NOxMAX zunächst zumindest eine NOχ-Regeneration und/oder De-Sulfatierung durchgeführt und der NOx- Speicherwirkungsgrad ETANOX durch Wiederholung der Verfahrensschritte a.) bis c.) erneut bestimmt und mit dem ersten Schwellenwert NOxMAX verglichen wird und daß erst nach einer erneuten Überschreitung dieses Schwellenwertes ein Katalysatordefekt angezeigt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zur Einleitung des Überwachungsverfahrens und bei dessen Durchführung vorbestimmte Betriebsbedingungen erfüllt sein müssen, denen die Katalysatorbeladung, die Katalysatortemperatur T_kat und der Sauerstoffgehalt des Abgases, d. h. der Lambda-Wert, genügen müssen.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die NOx-Beladung des NOχ-Speicherkatalysators (14) unter einem vorbestimmten zweiten Schwellenwert liegt.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß der NOx- Speicherkatalysator (14) vollständig regeneriert ist.
6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß die Katalysatortemperatur T_kat innerhalb eines vorbestimmten Temperaturbereiches TKATMIN < T_kat < TKATMAX liegt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß der Temperaturbereich 200 - 600 °C beträgt.
8. Verfahren nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, daß der Lambda-Wert vor und/oder nach dem NOx-Speicherkatalysator (14) > 1 ist.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß der Magerbetrieb durch eine zugeordnete Motorsteuerungseinrichtung angezeigt wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mit Beginn des Verfahrens eine Zeitfunktion T_DIAG gestartet wird und daß der ermittelte NOx-Speicherwirkungsgrad ETANOX_ERGEB beim Erreichen einer vorbestimmten Diagnosezeit gespeichert wird.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß die gespeicherten Speicherwirkungsgrade ETANOX_ERGEB gezählt und nach Erreichen einer vorbestimmten Anzahl an gespeicherten Werten gemittelt werden und daß der so bestimmte Mittelwert ETANOX_MITTEL mit dem ersten Schwellenwert NOxMAX verglichen wird.
12. Verfahren nach Anspruch 10 oder 11 , dadurch gekennzeichnet, daß der ermittelte Speicherwirkungsgrad mit der in der Diagnosezeit T_DIAG bestimmten mittleren Katalysatortemperatur TKAT_mit gewichtet wird.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der NOx-Speicherwirkungsgrad ETANOX als Funktion der mittleren Katalysatortemperatur T_KAT mit bestimmt und in einem Kennfeld gespeichert wird, aus dessen charakteristischen Veränderungen Alterungsvorgänge oder Vergiftungserscheinungen des NOx-Speicherkatalysators (14) oder ein Katalysatordefekt diagnostiziert werden.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß die charakteristischen Veränderungen aus einer Verringerung des Speicherwirkungsgrades bei bestimmten Temperaturen, eine entsprechende Veränderung des Mittelwertes der Verringerung des Speicherwirkungsgrades über einem bestimmten Temperaturbereich oder aus einer Veränderung der Katalysatortemperatur, bei der ein bestimmter Wirkungsgrad erreicht ist, bestimmt werden.
15. Verfahren nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, daß die NOx-Abgaskonzentration oder der NOx-Massenstrom MNONK nach dem NOx-Speicherkatalysator (14) in Abhängigkeit von dem Füllstand des Speicherkatalysators (14) und der Raumgeschwindigkeit RG gewichtet wird.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die mittlere Katalysatortemperatur TKAT_mit durch vor und nach dem NOx-Speicherkatalysator (14) angeordnete Temperatursensoren bestimmt oder aber aus den einer zugeordneten Motorsteuerungseinrichtung vorliegenden Informationen berechnet wird.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Lambda-Wert und die NOx-Abgaskonzentration des in den NOx-Speicherkatalysator (14) einströmenden und/oder aus ihm ausströmenden Abgases durch einen vorgeschalteten bzw. nachgeschalteten Multifunktionssensor bestimmt werden, der eine NOx-empfindliche und eine sauerstoffempfindliche Meßeinrichtung umfaßt.
18. Abgasreinigungsvorrichtung für eine mager betriebene Brennkraftmaschine (12) mit einem NOx-Speicherkatalysator (14) und jeweils einem nachgeschalteten Lambda-Sensor (18) und NOx-Sensor (22), dadurch gekennzeichnet, daß dem NOχ-Speicherkatalysator (14) ein Lambda-Sensor (16) vorgeschaltet ist und daß dem NOx-Speicherkatalysator (14) ein NOx-Sensor (20) vorgeschaltet ist und/oder die Abgasreinigungsvorrichtung eine Modellierungseinrichtung zur Bestimmung der NOx-Konzentration in dem in den NOx-Speicherkatalysator (14) einströmenden Abgas umfaßt.
19. Abgasreinigungsvorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß dem NOx-Speicherkatalysator (14) auch ein Temperatursensor vor- und/oder nachgeschaltet ist.
20. Abgasreinigungsvorrichtung nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß die vor- und/oder nachgeschalteten Sensoren (16, 20 bzw. 18, 22) jeweils in einem Multifunktionssensor integriert sind, der zumindest eine NOx-empfindliche und eine sauerstoffempfindliche Meßeinrichtung umfaßt.
21. Abgasreinigungsvorrichtung nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, daß die Sensoren (16 - 22) hinsichtlich einer Nullpunktdrift und eines Kenniinien-Offsets adaptiert sind.
22. Abgasreinigungsvorrichtung nach einem der Ansprüche 18 bis 21 , gekennzeichnet durch eine Auswerte- und/oder Steuereinrichtung zur Auswertung der Sensorsignale und/oder Steuerung des Verfahrens nach einem der Ansprüche 1 bis 17.
PCT/EP1999/008379 1998-11-12 1999-11-03 ÜBERWACHUNGSVERFAHREN FÜR NOx-SPEICHERKATALYSATOREN UND ABGASREINIGUNGSVORRICHTUNG ZUR DURCHFÜHRUNG DIESES VERFAHRENS WO2000029729A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000582695A JP4472873B2 (ja) 1998-11-12 1999-11-03 NOx吸収触媒の監視方法とこの方法を実施するための排気ガス浄化装置
EP99972287A EP1131544B1 (de) 1998-11-12 1999-11-03 ÜBERWACHUNGSVERFAHREN FÜR NOx SPEICHERKATALYSATOREN UND ABGASREINIGUNGSVORRICHTUNG ZUR DURCHFÜHRUNG DIESES VERFAHRENS
DE59902794T DE59902794D1 (de) 1998-11-12 1999-11-03 ÜBERWACHUNGSVERFAHREN FÜR NOx SPEICHERKATALYSATOREN UND ABGASREINIGUNGSVORRICHTUNG ZUR DURCHFÜHRUNG DIESES VERFAHRENS
US09/854,735 US6499291B2 (en) 1998-11-12 2001-05-14 Apparatus and method for monitoring NOx storage catalytic converters

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19852240A DE19852240A1 (de) 1998-11-12 1998-11-12 Überwachungsverfahren für NOx-Speicherkatalysatoren und Abgasreinigungsvorrichtung zur Durchführung dieses Verfahrens
DE19852240.1 1998-11-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/854,735 Continuation US6499291B2 (en) 1998-11-12 2001-05-14 Apparatus and method for monitoring NOx storage catalytic converters

Publications (1)

Publication Number Publication Date
WO2000029729A1 true WO2000029729A1 (de) 2000-05-25

Family

ID=7887598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/008379 WO2000029729A1 (de) 1998-11-12 1999-11-03 ÜBERWACHUNGSVERFAHREN FÜR NOx-SPEICHERKATALYSATOREN UND ABGASREINIGUNGSVORRICHTUNG ZUR DURCHFÜHRUNG DIESES VERFAHRENS

Country Status (6)

Country Link
US (1) US6499291B2 (de)
EP (1) EP1131544B1 (de)
JP (1) JP4472873B2 (de)
CN (1) CN1110622C (de)
DE (2) DE19852240A1 (de)
WO (1) WO2000029729A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2378668A (en) * 2001-06-19 2003-02-19 Ford Global Tech Inc A method and system for monitoring the efficiency of an exhaust gas treatment device
GB2380427A (en) * 2001-06-19 2003-04-09 Ford Global Tech Inc A method for monitoring the efficiency of an exhaust gas treatment device.
GB2380426A (en) * 2001-06-19 2003-04-09 Ford Global Tech Inc A method for monitoring the efficiency of an exhaust gas treatment device.
WO2003031782A1 (en) * 2001-10-08 2003-04-17 Orbital Engine Company (Australia) Pty Ltd Nox control for an internal combustion engine
WO2004022934A1 (de) * 2002-09-07 2004-03-18 Audi Ag Verfahren zur ermittlung des alterungsgrades eines stickoxid-speicherkatalysators einer brennkraftmaschine insbesondere eines kraftfahrzeuges
EP1254307B1 (de) * 2000-01-28 2004-09-22 Volkswagen Aktiengesellschaft VERFAHREN UND VORRICHTUNG ZUR ERMITTLUNG EINER NOx-SPEICHERKAPAZITÄT EINES NOx-SPEICHERKATALYSATORS

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10024773A1 (de) * 2000-05-19 2001-11-22 Volkswagen Ag Direkteinspritzende und fremdgezündete Verbrennungskraftmaschine und Verfahren zur Minderung eines Restsauerstoffgehaltes im Abgas derselben
DE10028882B4 (de) * 2000-06-10 2009-10-15 Volkswagen Ag Verfahren zur Durchführung einer NOx-Regeneration eines NOx-Speicherkatalysators und Vorrichtung zur Ermittlung eines Abbruch-Lambdawertes
DE10032560B4 (de) * 2000-07-05 2010-04-08 Volkswagen Ag Verfahren zur Entschwefelung von wenigstens einem in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysator
DE10036390B4 (de) * 2000-07-26 2010-05-12 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung eines NOx-Speicherkatalysators
DE10103557B4 (de) * 2001-01-26 2012-02-23 Volkswagen Ag Verfahren und Vorrichtung zur Entschwefelung einer Katalysatoreinrichtung
DE10107388B4 (de) * 2001-02-07 2012-08-02 Volkswagen Ag Verfahren zur Nachbehandlung eines Abgases einer magerlauffähigen Verbrennungskraftmaschine
DE10160704B4 (de) * 2001-12-11 2013-07-18 Volkswagen Ag Verfahren zum Betrieb von Abgasreinigungsvorrichtungen
JP3788350B2 (ja) * 2002-01-07 2006-06-21 日産自動車株式会社 内燃機関の排気浄化装置
JP3828425B2 (ja) * 2002-01-08 2006-10-04 三菱電機株式会社 内燃機関の排気ガス浄化方法
JP3966040B2 (ja) 2002-03-15 2007-08-29 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4093302B2 (ja) * 2002-03-29 2008-06-04 いすゞ自動車株式会社 NOx浄化システムの触媒劣化判定方法及びNOx浄化システム
DE10218015A1 (de) * 2002-04-23 2003-11-06 Bosch Gmbh Robert Verfahren und Vorrichtung zur Diagnose eines Katalysators
US6722121B2 (en) * 2002-07-22 2004-04-20 International Engine Intellectual Property Company, Llc Control strategy for regenerating a NOx adsorber catalyst in an exhaust system of an engine having a variable valve actuation mechanism
JP4284087B2 (ja) * 2003-02-18 2009-06-24 本田技研工業株式会社 内燃機関の排気ガス浄化装置
JP4168781B2 (ja) * 2003-02-19 2008-10-22 いすゞ自動車株式会社 NOx浄化システムのNOx触媒再生方法及びNOx浄化システム
DE10318214B4 (de) * 2003-04-22 2005-12-01 Siemens Ag Verfahren zur Ermittlung des Alterungszustandes eines Speicherkatalysators
DE10318213B4 (de) * 2003-04-22 2007-09-20 Siemens Ag Regenerationsverfahren für einen Speicherkatalysator einer Brennkraftmaschine
DE10319224A1 (de) * 2003-04-29 2004-11-18 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE10319983B3 (de) * 2003-05-05 2004-08-05 Siemens Ag Verfahren und Vorrichtung zur Lambda-Regelung und zur Katalysatordiagnose bei einer Brennkraftmaschine
JP4148081B2 (ja) * 2003-09-24 2008-09-10 トヨタ自動車株式会社 内燃機関の制御装置
US7018442B2 (en) * 2003-11-25 2006-03-28 Caterpillar Inc. Method and apparatus for regenerating NOx adsorbers
US8443589B2 (en) * 2004-06-18 2013-05-21 GM Global Technology Operations LLC Diesel oxidation catalyst efficiency diagnostic method
JP2006090238A (ja) * 2004-09-24 2006-04-06 Mitsubishi Fuso Truck & Bus Corp NOx吸蔵触媒の吸蔵量推定装置及び吸蔵量推定方法
DE102004052772A1 (de) * 2004-10-30 2006-05-04 Volkswagen Ag Verfahren zur Steuerung eines Betriebs eines beheizbaren Abgassensors eines Kraftfahrzeugs
JP2006169997A (ja) * 2004-12-14 2006-06-29 Nissan Motor Co Ltd 触媒の劣化判定装置
US8215098B2 (en) * 2005-05-02 2012-07-10 Cummins Inc. Method and apparatus for diagnosing exhaust gas aftertreatment component degradation
EP1904724B1 (de) * 2005-07-07 2012-09-12 Volvo Lastvagnar Ab Verfahren, vorrichtung und computerprogrammprodukt zur diagnose mindestens einer abgasemissionssteuereinheit
JP4657074B2 (ja) * 2005-10-12 2011-03-23 トヨタ自動車株式会社 排気浄化装置の制御装置及び排気浄化装置の制御方法
US7587889B2 (en) * 2006-07-11 2009-09-15 Cummins Filtration Ip, Inc. System for determining NOx conversion efficiency of an exhaust gas aftertreatment component
DE102006041479B4 (de) * 2006-09-05 2023-03-30 Robert Bosch Gmbh Verfahren zur Bestimmung der Sauerstoff-Speicherfähigkeit einer Abgasreinigungsanlage
DE102007063940B4 (de) 2006-09-27 2023-10-26 Robert Bosch Gmbh Verfahren zur Diagnose eines eine Abgasbehandlungsvorrichtung enthaltenden Abgasbereichs einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
JP4730277B2 (ja) * 2006-10-20 2011-07-20 株式会社デンソー 排気浄化用触媒の診断装置
EP1936140A1 (de) * 2006-12-20 2008-06-25 Ford Global Technologies, LLC Verfahren zur Überwachung eines Abgasnachbehandlungssystems einer Brennkraftmaschine
US8065871B1 (en) 2007-01-02 2011-11-29 Cummins Ip, Inc Apparatus, system, and method for real-time diagnosis of a NOx-adsorption catalyst
US7980064B2 (en) * 2007-06-19 2011-07-19 Eaton Corporation Algorithm incorporating driving conditions into LNT regeneration scheduling
US9234474B2 (en) * 2007-06-28 2016-01-12 GM Global Technology Operations LLC Control oriented model for LNT regeneration
US8245567B2 (en) * 2008-08-19 2012-08-21 GM Global Technology Operations LLC On board diagnostic monitor of NOx conversion efficiency for aftertreatment device
JP5422215B2 (ja) * 2009-01-30 2014-02-19 三菱重工業株式会社 排ガス浄化装置
DE102010030632A1 (de) * 2010-06-29 2011-12-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Dynamiküberwachung einer Lambdasonde
US8701390B2 (en) * 2010-11-23 2014-04-22 International Engine Intellectual Property Company, Llc Adaptive control strategy
US8756922B2 (en) * 2011-06-10 2014-06-24 Cummins Ip, Inc. NOx adsorber catalyst condition evaluation apparatus and associated methods
JP6064031B2 (ja) * 2012-04-10 2017-01-18 ボルボ ラストバグナー アーベー Scrシステムを診断するための自己診断方法
US8984867B2 (en) * 2012-04-10 2015-03-24 GM Global Technology Operations LLC Nitrogen dioxide generation diagnostic for a diesel after-treatment system
JP6090051B2 (ja) * 2013-08-08 2017-03-08 トヨタ自動車株式会社 内燃機関の排気浄化装置
DE102013019025A1 (de) * 2013-11-13 2015-05-13 Daimler Ag Verfahren zum Betreiben eines Abgasreinigungssystems einer Brennkraftmaschine
FR3014493B1 (fr) * 2013-12-05 2017-12-08 Peugeot Citroen Automobiles Sa Procede d'optimisation de la detection d'un catalyseur defaillant
US20150377102A1 (en) * 2014-06-27 2015-12-31 Cummins Inc. System and method for controlling and diagnosing passive storage devices in exhaust aftertreatment systems
US9927413B2 (en) * 2015-01-16 2018-03-27 Cummins Emission Solutions, Inc. NOx sensor diagnostic system and method
DE102016210143B4 (de) 2015-06-12 2024-02-29 Ford Global Technologies, Llc Verfahren zur Ermittlung eines Alterungszustands eines NOx-Speicherkatalysators einer Abgasnachbehandlungsanlage eines für einen Magerbetrieb ausgelegten Verbrennungsmotors sowie Steuerungseinrichtung
DE102016005968A1 (de) 2016-05-13 2017-11-16 Daimler Ag Verfahren und Vorrichtung zum Ermitteln einer Stickoxid-Speicherfähigkeit eines Katalysators eines Fahrzeugs
DE102017200090B4 (de) 2017-01-05 2022-05-12 Ford Global Technologies, Llc Verfahren zum Betreiben einer Abgasanlage mit NOx-Speicherkatalysator und SCR-Abgasnachbehandlungseinrichtung
JP6544392B2 (ja) * 2017-07-20 2019-07-17 トヨタ自動車株式会社 排気浄化装置の異常診断システム
US10920645B2 (en) * 2018-08-02 2021-02-16 Ford Global Technologies, Llc Systems and methods for on-board monitoring of a passive NOx adsorption catalyst
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
CN115199388B (zh) * 2021-04-08 2023-09-12 北汽福田汽车股份有限公司 车辆催化器的催化转化效率检测方法、装置及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4040329A1 (de) * 1990-12-17 1992-08-27 Rump Elektronik Tech Nox-sensor zum einsatz in komplexen gasgemischen
US5426934A (en) * 1993-02-10 1995-06-27 Hitachi America, Ltd. Engine and emission monitoring and control system utilizing gas sensors
JPH07166851A (ja) * 1993-10-18 1995-06-27 Toyota Motor Corp 内燃機関の排気浄化装置
GB2315569A (en) * 1996-07-19 1998-02-04 Daimler Benz Ag Operating an internal combustion engine with low nitrogen-oxide emissions
US5771686A (en) * 1995-11-20 1998-06-30 Mercedes-Benz Ag Method and apparatus for operating a diesel engine
DE19753718C1 (de) * 1997-12-04 1999-07-08 Daimler Chrysler Ag Verfahren zum Betreiben eines Dieselmotors

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE6930456U (de) 1969-07-30 1969-12-11 Wilhelm Ley Fa Maschf Vorrichtung zum halten des druckrohres eines strahl-ruehrwerks
US5349816A (en) * 1992-02-20 1994-09-27 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control system
US5483795A (en) * 1993-01-19 1996-01-16 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
DE19511548A1 (de) 1995-03-29 1996-06-13 Daimler Benz Ag Verfahren und Vorrichtung zur Stickoxidreduzierung im Abgas einer Brennkraftmaschine
JP3066607B2 (ja) * 1996-04-26 2000-07-17 株式会社小松製作所 ディーゼルエンジンのNOx触媒の再生装置及び再生方法
US5704339A (en) * 1996-04-26 1998-01-06 Ford Global Technologies, Inc. method and apparatus for improving vehicle fuel economy
DE69730539T2 (de) * 1996-06-10 2005-06-23 Hitachi, Ltd. Abgasreinigungsanlage einer Brennkraftmaschine und Katalysator zum Reinigen des Abgases einer Brennkraftmaschine
US5743084A (en) * 1996-10-16 1998-04-28 Ford Global Technologies, Inc. Method for monitoring the performance of a nox trap
US5771685A (en) * 1996-10-16 1998-06-30 Ford Global Technologies, Inc. Method for monitoring the performance of a NOx trap
JP3067685B2 (ja) * 1997-03-31 2000-07-17 三菱自動車工業株式会社 火花点火式筒内噴射型内燃機関の排気浄化装置
CN1095028C (zh) * 1997-04-09 2002-11-27 发射技术有限公司 监控NOx存储器的方法和设备
DE19736967A1 (de) * 1997-08-25 1999-03-04 Emitec Emissionstechnologie Verfahren und Vorrichtung zur Überwachung eines NO¶x¶-Speichers
US5881686A (en) 1997-09-08 1999-03-16 D.L.S. Cycle Products, Inc. Crankcase breather valve for engines with synchronous piston movement
DE19755299A1 (de) * 1997-12-12 1999-06-17 Man Nutzfahrzeuge Ag Verfahren zur NO¶x¶-Reduzierung an gemischverdichtenden Brennkraftmaschinen
DE19830829C1 (de) * 1998-07-09 1999-04-08 Siemens Ag Verfahren zur Regeneration eines NOx-Speicherkatalysators

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4040329A1 (de) * 1990-12-17 1992-08-27 Rump Elektronik Tech Nox-sensor zum einsatz in komplexen gasgemischen
US5426934A (en) * 1993-02-10 1995-06-27 Hitachi America, Ltd. Engine and emission monitoring and control system utilizing gas sensors
JPH07166851A (ja) * 1993-10-18 1995-06-27 Toyota Motor Corp 内燃機関の排気浄化装置
US5771686A (en) * 1995-11-20 1998-06-30 Mercedes-Benz Ag Method and apparatus for operating a diesel engine
GB2315569A (en) * 1996-07-19 1998-02-04 Daimler Benz Ag Operating an internal combustion engine with low nitrogen-oxide emissions
DE19753718C1 (de) * 1997-12-04 1999-07-08 Daimler Chrysler Ag Verfahren zum Betreiben eines Dieselmotors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 09 31 October 1995 (1995-10-31) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1254307B1 (de) * 2000-01-28 2004-09-22 Volkswagen Aktiengesellschaft VERFAHREN UND VORRICHTUNG ZUR ERMITTLUNG EINER NOx-SPEICHERKAPAZITÄT EINES NOx-SPEICHERKATALYSATORS
GB2378668A (en) * 2001-06-19 2003-02-19 Ford Global Tech Inc A method and system for monitoring the efficiency of an exhaust gas treatment device
GB2380427A (en) * 2001-06-19 2003-04-09 Ford Global Tech Inc A method for monitoring the efficiency of an exhaust gas treatment device.
GB2380426A (en) * 2001-06-19 2003-04-09 Ford Global Tech Inc A method for monitoring the efficiency of an exhaust gas treatment device.
US6591604B2 (en) 2001-06-19 2003-07-15 Ford Global Technologies, Llc Oxygen storage capacity estimation
GB2380426B (en) * 2001-06-19 2004-11-24 Ford Global Tech Inc A system and a method for estimating the storage capacity of an exhaust gas treatment device
GB2380427B (en) * 2001-06-19 2004-12-15 Ford Global Tech Inc A method and system for estimating an efficiency of an exhaust gas treatment device
GB2378668B (en) * 2001-06-19 2005-04-13 Ford Global Tech Inc A method and system for monitoring the efficiency of an exhaust gas treatment device
WO2003031782A1 (en) * 2001-10-08 2003-04-17 Orbital Engine Company (Australia) Pty Ltd Nox control for an internal combustion engine
WO2004022934A1 (de) * 2002-09-07 2004-03-18 Audi Ag Verfahren zur ermittlung des alterungsgrades eines stickoxid-speicherkatalysators einer brennkraftmaschine insbesondere eines kraftfahrzeuges

Also Published As

Publication number Publication date
JP2002530563A (ja) 2002-09-17
DE59902794D1 (de) 2002-10-24
CN1326530A (zh) 2001-12-12
US20010054282A1 (en) 2001-12-27
US6499291B2 (en) 2002-12-31
CN1110622C (zh) 2003-06-04
DE19852240A1 (de) 2000-05-18
JP4472873B2 (ja) 2010-06-02
EP1131544B1 (de) 2002-09-18
EP1131544A1 (de) 2001-09-12

Similar Documents

Publication Publication Date Title
EP1131544B1 (de) ÜBERWACHUNGSVERFAHREN FÜR NOx SPEICHERKATALYSATOREN UND ABGASREINIGUNGSVORRICHTUNG ZUR DURCHFÜHRUNG DIESES VERFAHRENS
EP1097299B1 (de) VERFAHREN ZUR ÜBERPRÜFUNG DES WIRKUNGSGRADES EINES NOx-SPEICHERKATALYSATORS
EP1228301B1 (de) Verfahren zum überprüfen eines abgaskatalysators einer brennkraftmaschine
DE19851564C2 (de) Verfahren zum Betreiben und Überprüfen eines NOx-Speicherreduktionskatalysators einer Mager-Brennkraftmaschine
EP1192340B1 (de) Verfahren zum überprüfen eines dreiwege-abgaskatalysators einer brennkraftmaschine
WO2000000728A1 (de) Verfahren zur überprüfung des dynamikverhaltens eines messaufnehmers im abgastrakt einer brennkraftmaschine
EP1214511A1 (de) VERFAHREN ZUR FUNKTIONSÜBERWACHUNG EINES IN EINEM ABGASKANAL EINER VERBRENNUNGSKRAFTMASCHINE ANGEORDNETEN NO x?-SENSORS
WO2004040104A1 (de) Verfahren zur überprüfung wenigstens dreier sensoren, die eine messgrösse im bereich einer brennkraftmaschine erfassen
DE19844178A1 (de) Katalysatordiagnoseverfahren
DE102016203227A1 (de) Verfahren zur Diagnose eines Abgasnachbehandlungssystems für eine Brennkraftmaschine
WO2004059152A1 (de) Verfahren und vorrichtung zur diagnose der dynamischen eigenschaften einer zur zylinderindividuellen lambdaregelung verwendeten lambdasonde
EP2238321B1 (de) Verfahren und steuergerät zur überprüfung eines abgasnachbehandlungssystems eines verbrennungsmotors
DE102008006631A1 (de) Verfahren zur Diagnose eines Sauerstoffsensors sowie ein Verfahren zur Korrektur einer Diagnose eines Katalysators
DE102016200158A1 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
DE102016210143B4 (de) Verfahren zur Ermittlung eines Alterungszustands eines NOx-Speicherkatalysators einer Abgasnachbehandlungsanlage eines für einen Magerbetrieb ausgelegten Verbrennungsmotors sowie Steuerungseinrichtung
EP1416130B1 (de) Verfahren zur Steuerung der Abgasnachbehandlung eines DI-Otto- und Magermotors
DE10341454A1 (de) Verfahren zur Überprüfung wenigstens dreier Sensoren, die eine Messgröße im Bereich einer Brennkraftmaschine erfassen
DE102015200751A1 (de) Verfahren zur Überwachung einer Abgasnachbehandlungsanlage eines Verbrennungsmotors sowie Steuerungseinrichtung für eine Abgasnachbehandlungsanlage
DE102007006487B4 (de) Verfahren zur Diagnose eines in einem Abgasbereich einer Brennkraftmaschine angeordneten Abgassensors und Vorrichtung zur Durchführung des Verfahrens
DE102016216062B4 (de) Optimierte LNT-Diagnose
EP1496225A2 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10305635B4 (de) Abgasreinigungsverfahren für Magerbrennkraftmaschinen
DE10331333B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102017200542A1 (de) Verfahren zur Ermittlung eines Stickoxidmassenstroms
DE102021209369A1 (de) Verfahren zum Überwachen eines Oxidationskatalysators

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99813259.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999972287

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2000 582695

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09854735

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999972287

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999972287

Country of ref document: EP