WO2000039467A1 - Electrostatic/pneumatic actuators for active surfaces - Google Patents

Electrostatic/pneumatic actuators for active surfaces Download PDF

Info

Publication number
WO2000039467A1
WO2000039467A1 PCT/US1999/021212 US9921212W WO0039467A1 WO 2000039467 A1 WO2000039467 A1 WO 2000039467A1 US 9921212 W US9921212 W US 9921212W WO 0039467 A1 WO0039467 A1 WO 0039467A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrostatic
cavity
cooperative
active surface
cover
Prior art date
Application number
PCT/US1999/021212
Other languages
French (fr)
Inventor
Cleopatra Cabuz
Thomas R. Ohnstein
Michael R. Elgersma
Original Assignee
Honeywell Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Inc. filed Critical Honeywell Inc.
Priority to DE1141554T priority Critical patent/DE1141554T1/en
Priority to CA002358115A priority patent/CA2358115C/en
Priority to JP2000591335A priority patent/JP2002533230A/en
Priority to DE69928441T priority patent/DE69928441T2/en
Priority to EP99946950A priority patent/EP1141554B1/en
Publication of WO2000039467A1 publication Critical patent/WO2000039467A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/24Transmitting means
    • B64C13/38Transmitting means with power amplification
    • B64C13/40Transmitting means with power amplification using fluid pressure
    • B64C13/48Transmitting means with power amplification using fluid pressure characterised by the fluid being gaseous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C21/00Influencing air flow over aircraft surfaces by affecting boundary layer flow
    • B64C21/10Influencing air flow over aircraft surfaces by affecting boundary layer flow using other surface properties, e.g. roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/005Influencing air flow over aircraft surfaces, not otherwise provided for by other means not covered by groups B64C23/02 - B64C23/08, e.g. by electric charges, magnetic panels, piezoelectric elements, static charges or ultrasounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/44Varying camber
    • B64C3/46Varying camber by inflatable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0035Constitution or structural means for controlling the movement of the flexible or deformable elements
    • B81B3/0054For holding or placing an element in a given position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/10Characterised by the construction of the motor unit the motor being of diaphragm type
    • F15B15/103Characterised by the construction of the motor unit the motor being of diaphragm type using inflatable bodies that contract when fluid pressure is applied, e.g. pneumatic artificial muscles or McKibben-type actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15CFLUID-CIRCUIT ELEMENTS PREDOMINANTLY USED FOR COMPUTING OR CONTROL PURPOSES
    • F15C5/00Manufacture of fluid circuit elements; Manufacture of assemblages of such elements integrated circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/10Influencing flow of fluids around bodies of solid material
    • F15D1/12Influencing flow of fluids around bodies of solid material by influencing the boundary layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0015Diaphragm or membrane valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0028Valves having multiple inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • F16K99/0051Electric operating means therefor using electrostatic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • H02N1/006Electrostatic motors of the gap-closing type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/05Type of movement
    • B81B2203/053Translation according to an axis perpendicular to the substrate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0073Fabrication methods specifically adapted for microvalves
    • F16K2099/0078Fabrication methods specifically adapted for microvalves using moulding or stamping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction

Definitions

  • the present invention relates to localized and global control of relatively large surfaces. More particularly the invention relates to the use of electrostatic actuators and pneumatic action to control the shape of a flexible surface.
  • Electromagnetic actuation requires heavy magnetic materials and relatively large currents, and the construction of such devices is not compact enough to be suitable for actuation of large surfaces. Clearly, for flight applications this method is excluded because of poor power/weight performance.
  • Electrothermally induced actuation is structurally suited for activator arrays, but also has the drawbacks of high power requirements, low speed of response and, in many cases dependence on environmental temperatures.
  • piezoelectric actuation while structurally fitted for actuator arrays and uses low power with adequate or high speed, does not possess the displacements needed and are, in fact, so low as to not be useful for the above considered applications. Piezoelectric materials with increased performance have been proposed, but are both very expensive and heavier than would be acceptable.
  • actuator arrays could be designed which would permit construction of large two and three dimensional arrays useful in a wide range of applications in flow and sound propagation control. Other advantages will appear hereinafter.
  • the present invention comprises a series of electrostatic actuation devices which are admirable suited for building large two and three dimensional arrays of actuators that can cooperate to achieve the advantages of the present invention.
  • the actuator construction of the present invention may be embedded into the functional device for which it is intended, at a minimum of cost and difficulty.
  • the actuator can be fabricated as the skin.
  • the actuator becomes the walls of the pump chamber. No additional motors, magnets or high weight power sources are needed.
  • the materials required for the electrostatic actuation are conductors for the electrodes and insulators to prevent an electrical short in touch-mode electrostatic actuators, and these materials may be deposited in thin layers over low cost plastic substrates produced by extrusion molding or other methods in desired shapes. The plastic substrates are also available in various off-the-shelf configurations.
  • the device of this invention broadly comprises a rigid, thin plate with suitable patterned electrodes and embedded circuitry, with a relatively flexible cover. Combined with the plates, the cover creates a cavity that can be sealed. By applying suitable voltages, the shape of the flexible cover can be changed, through the combined effect of electrostatic actuation, built-in elastic force and pneumatic action. Pulling down on the cover in certain areas by electrostatic attraction will result in the displacement of a bubble along the surface, controlled by the pattern of the electrodes and the configuration of the device. Both open and closed cavities are contemplated, as are control of the pressure of the fluid inside the cavity and the magnitude of the built-in elastic force.
  • the fluid within the cavity can be a gas or a liquid, depending on the final end use of the product containing the invention. For most flight applications, the fluid will be a gas, while a liquid may be used in other cases such as under water or earth-bound operation.
  • Figures la, lb, lc and Id are schematic depictions of the electrostatic/pneumatic actuation of a surface, in accordance with the present invention
  • Figures 2a, 2b and 2c are a schematic illustration of the action of a surface controlled by the present invention
  • Figure 3 is a schematic sectional view of part of the surface shown in Fig. 2;
  • Figures 4a, 4b and 4c are schematic, sectional views of a two dimensional array using the electrostatic/pneumatic actuators of the present invention.
  • Figures 5a and 5b are schematic plan views respectively of circular and rectangular arrays of controlled bubbles.
  • Figures 6a, 6b and 6c are schematic, side elevational views of three conditions of pressure control for one embodiment of the present invention, illustrating three operating conditions.
  • the present invention provides an improved actuator for controlling the shape of active surfaces, using a combination of electrostatic and pneumatic forces.
  • a fluid either liquid or gas, is contained in a cavity or chamber. Liquid fluids are used primarily in water or earth-bound applications, while flight applications will normally use a gas for the fluid.
  • the shape of the chamber is controlled by an electrostatic actuator formed by a base and a cover, such that the cover and base cooperatively function as the actuator when power is supplied to electrodes formed in the base and cover. Attraction of the electrodes during electrostatic actuation causes a change in the shape of the cavity or chamber, thus causing changes in the shape of the active surface.
  • an actuator, 11 generally, comprises a central base 13 and a pair of covers 15a and 15b, each of which covers face inward to the base 13 for providing electrostatic actuator responses with base 13 when power is supplied from a power source.
  • Covers 15a and 15b also form chambers or cavities 17a and 17b, in which is sealed a quantity of gas.
  • Fig. la there is no actuation in operation and the gas inside cavities 17a and 17b exerts a uniform pressure on all areas of covers 15a and 15b, thus forming a symmetrical shape.
  • Fig. lb actuation of the electrodes on base 13 and covers 15a and 15b at the right end of Fig.
  • cover 15b is deformed as an active surface.
  • flight can be controlled in a wide variety of manners as surfaces change.
  • active surface control for flight surfaces has been achieved with a low cost, light weight, efficient system, as set forth herein. It is a specific embodiment of the present invention to use the activator device herein as a surface in an aircraft.
  • Covers 17 include a lightweight metal frame and thin diaphragm forming the active surface condition during the intended cooperative electrostatic actuation.
  • Figs. 2a, 2b and 2c illustrate the rolling action that is accomplished by the present invention, where electrodes are electrostatically actuated to cause a diaphragm or moving electrode to be attracted to an electrode in the base of the device.
  • the fluid will no longer be uniformly distributed in the cavity and balanced with elastic forces of the cover sheet.
  • cover 25 By applying a voltage between cover 25 and base 23 in these Figs 2a, 2b and 2c, fluid will be pushed away by the rolling cover, moving from right to left in these figures as shown.
  • the cover 25 can be deflected by its own compressive stress, such as when the cover is buckled, for example.
  • FIG. 3 illustrates some of the details of the electrostatic actuator portion of the present invention.
  • a base 33 is formed from a molded plastic sheet, a light metal frame or other substrate.
  • a pattern array of electrodes 34 are formed on the surface of base 33, in bands, patches with circular or rectangular shapes, or in any shape desired, depending on the desired forces to be applied to the active surface being controlled.
  • Conventional electrostatic actuator control electronics 36 may also be embedded in base 33, and a dielectric 38 applied on top of the array 34 when touch mode actuators are used. Cover
  • Figs. 4a, 4b and 4c illustrate the construction of a two dimensional array of a plurality of electrostatic actuators, in which base 43 interacts with various portions of the covers 45a and 45b as illustrated.
  • fluid passes through openings in base 43 to further provide control of a variety of active surface shapes.
  • Figs. 5a and 5b illustrate two varieties (of the virtually unlimited choices) for a circular array 54a or a rectangularly shaped array 54b.
  • electrostatic activation will cause attraction between the base electrode and the moveable electrode or diaphragm on the cover, thus providing for a controlled adjustment of the shape of the active surface via pneumatic response by the fluid.
  • the pressure in the cavities or chambers acts as an out- of-plane, restoring force to enhance deflection and, also, to fight the known electrostatic actuator phenomenon of stiction.
  • a pair of actuators is used, such as shown in
  • the camber of a wing can be controlled.
  • Two dimensional arrays of actuators as illustrated for purposes of example herein can be used for active surface control for acoustic purposes, or drag control in other materials.
  • the use of a sealed cavity permits the use of a clean and stable fluid, facilitating the task of the electrostatic actuators associated with the fluid.
  • Figs. 6a, 6b and 6c illustrate the operation of a sealed cavity actuator, which is based on the pressure inside the cavity being slightly higher than the pressure outside the cavity.
  • temperature variations could affect this balance, such as when a gas is used as the fluid inside the chamber or cavity.
  • One solution to the effect of temperature on the gas inside the cavity is to include a balloon 71 and check valve 73.
  • Balloon 71 expands when the outside pressure is higher than the inside pressure, reducing the enclosed volume and increasing the pressure without air from the outside entering the enclosed cavity. This solution eliminates the need for filters and ensures the proper operation of the electrostatic actuator, by preventing humidity and particles from entering the cavity.
  • the balloon 71 deflates and, if necessary, some gas can leak through a check valve 73.
  • An alternative embodiment is when the cavity is open to the atmosphere, such as if check valve 73 was eliminated and balloon 71 communicated directly with the outside atmosphere.
  • the cover such as cover 45 in Figs. 4a-4c, would be buckled or otherwise out of plane.
  • Application of the electrostatic force will still move the location of the bubble or cavity, changing the overall shape of the envelope defined by cover 45a-45c.
  • an array of doubly supported beams was constructed for silicon microvalve applications. Operation of the active surface control was also achieved on larger area actuators based on molded plastic substrates and diaphragms made out of plastic materials such as polyimides.
  • Typical but not limiting polymer sheets which may be used in the present invention are flexible and not brittle, properties found in many polymers.
  • One particularly useful polymer is the polyimide sold as KAPTON®, (registered trademark of E. I. du Pont de Nemours & Co., Wilmington, Delaware).
  • Others include KALADEX® (registered trademark of ICI Films, Wilmington, Delaware) and MYLAR® (registered trademark of E. I. du Pont de Nemours & Co., Wilmington, Delaware), or any flexibly elastic polymer that permits it to deform as described herein. Fabrication of the sheets may be based upon technology developed for keyboard and flexible circuits that are produced in huge quantities, although not for electrostatic actuators at this time, making the process well optimized.
  • Preferred sheets are made from polymer films such as KAPTON® or MYLAR® (registered trademark of E. I. du Pont de Nemours & Co., Wilmington, Delaware), or different polyesters that are commercially available.
  • Preferred electrodes are aluminum electrodes deposited directly on the polymer sheets with one or more dielectric films, such as aluminum oxide or poly-para-xylene, or other suitable organic or inorganic dielectrics. Coating layers such as diamond like layers or self assembled monolayers are also contemplated in order to control surface properties.
  • the base plate may be made of molded polymers with embedded electrodes and electronics for localized control. As noted, when flight applications are considered, use of a light metal frame with a thin diaphragm may be used.
  • pinhole free dielectric will be used together with specific schemes to locally interrupt the electrode at the location of the pinhole in order to prevent an electrical short.
  • This technique is known as a self healing technique.
  • High quality dielectrics on the plastic substrates can be obtained: (a) transfer of LPCND nitrides or another high quality dielectric from silicon wafers to the base plate by bonding; (b) use of organic dielectrics such as parylene, acrylates, or polyimides; or (c) the use of inorganic dielectrics deposited at low temperature through ion beam spattering or plasma assisted deposition to increase the dielectric strength.
  • the mechanical design of the present invention has many forms. Metalized Kapton membranes with thicknesses of 50 to 75 microns have been made, illustrating that electrostatic actuation against pressures of a few psi can be easily achieved when a dielectric with a dielectric strength of more than 2 to 3 MV/cm is available on the desired area. It is clear the present invention permits the application of envelope control in micro UAV, resulting in full attitude control at a very advantageous power to weight ratio. Simulations have shown attitude control can be achieved with a change in camber of 2% to 4%, which means a change in deflection of about 0.6 to 1.2 mm over a cord of 3 cm, which means the deflections can be easily controlled with the electrostatic pneumatic actuator of this invention.
  • This invention relates to the combination of electrostatic actuator arrays with pneumatic action, and any such array technology presently existing to accomplish this combination is contemplated as being within the scope of this invention. While particular embodiments of the present invention have been illustrated and described, it is not intended to limit the invention, except as defined by the following claims.

Abstract

An actuator device providing an active surface. The actuator has a base (23) having at least one first electrostatic electrode mounted therein which is oriented for electrostatic cooperative action with an opposing electrostatic electrode in a cover (25) mounted above the first electrostatic electrode to define an enclosed cavity. The cover (25) has at least one second electrostatic electrode for cooperative electrostatic activation between the electrostatic electrodes. The cover (25) also has an outer surface forming the active surface. A power supply is operably connected to the electrostatic electrodes for causing the cooperative electrostatic activation. A quantity of fluid is contained within the cavity for pneumatically defining active surface conditions during cooperative electrostatic actuation. The cavity may be closed to provide a sealed cavity for movement of the fluid, either a gas or a liquid, during the cooperative electrostatic actuation, or it may be open to the atmosphere. The electrostatic electrodes may comprise a plurality of electrostatic electrodes arranged in a pattern to cause a predetermined change in the active surface. Various patterns may be used, such as bands, patches and regions. Also provided is control electronics in the base for controlling application of power from the power supply.

Description

ELECTROSTATIC/PNEUMATIC ACTUATORS FOR ACTIVE SURFACES
FIELD OF THE INVENTION The present invention relates to localized and global control of relatively large surfaces. More particularly the invention relates to the use of electrostatic actuators and pneumatic action to control the shape of a flexible surface.
BACKGROUND OF THE INVENTION Activation in two or three dimensional arrays of actuators, particularly where the actuators affect a surface shape over a quasi-continuum, have not been developed to date, even though localized and global shape control of relatively large surfaces would offer significant advantage in various technologies. Examples of these technologies where a significant need exists are, among others, micro adaptive flow control, flight control in micro UAV, acoustics, and drag control.
In order to accomplish the yet to be developed control of surfaces, an actuation principle that allows the actuation of large surfaces with out-of-plane forces is desirable. If there is to be adequate control of small flying objects, simple, light, low power actuators are mandatory. Various actuation devices which affect a surface are known to have drawbacks which prevent their use broadly and certainly limit their use in the various needs described above.
Electromagnetic actuation requires heavy magnetic materials and relatively large currents, and the construction of such devices is not compact enough to be suitable for actuation of large surfaces. Clearly, for flight applications this method is excluded because of poor power/weight performance.
Electrothermally induced actuation is structurally suited for activator arrays, but also has the drawbacks of high power requirements, low speed of response and, in many cases dependence on environmental temperatures. Similarly, piezoelectric actuation, while structurally fitted for actuator arrays and uses low power with adequate or high speed, does not possess the displacements needed and are, in fact, so low as to not be useful for the above considered applications. Piezoelectric materials with increased performance have been proposed, but are both very expensive and heavier than would be acceptable.
It would be of great advantage to the art if a low weight, low power, high performance actuator could be developed which would permit localized and global shape control of relatively large surfaces.
It would be another great advance in the art if actuator arrays could be designed which would permit construction of large two and three dimensional arrays useful in a wide range of applications in flow and sound propagation control. Other advantages will appear hereinafter.
SUMMARY OF THE INVENTION
It has now been discovered that the above and other advantages of the present invention may be realized in the following manner. Specifically, the present invention comprises a series of electrostatic actuation devices which are admirable suited for building large two and three dimensional arrays of actuators that can cooperate to achieve the advantages of the present invention.
Extremely simple, the actuator construction of the present invention may be embedded into the functional device for which it is intended, at a minimum of cost and difficulty. Where a moving surface such as an outer skin of an object is desired, the actuator can be fabricated as the skin. Similarly, where a pump is desired, the actuator becomes the walls of the pump chamber. No additional motors, magnets or high weight power sources are needed. Moreover, the materials required for the electrostatic actuation are conductors for the electrodes and insulators to prevent an electrical short in touch-mode electrostatic actuators, and these materials may be deposited in thin layers over low cost plastic substrates produced by extrusion molding or other methods in desired shapes. The plastic substrates are also available in various off-the-shelf configurations. The device of this invention broadly comprises a rigid, thin plate with suitable patterned electrodes and embedded circuitry, with a relatively flexible cover. Combined with the plates, the cover creates a cavity that can be sealed. By applying suitable voltages, the shape of the flexible cover can be changed, through the combined effect of electrostatic actuation, built-in elastic force and pneumatic action. Pulling down on the cover in certain areas by electrostatic attraction will result in the displacement of a bubble along the surface, controlled by the pattern of the electrodes and the configuration of the device. Both open and closed cavities are contemplated, as are control of the pressure of the fluid inside the cavity and the magnitude of the built-in elastic force. Of course, the fluid within the cavity can be a gas or a liquid, depending on the final end use of the product containing the invention. For most flight applications, the fluid will be a gas, while a liquid may be used in other cases such as under water or earth-bound operation.
BRIEF DESCRIPTION OF THE DRAWINGS
For a more complete understanding of the invention, reference is hereby made to the drawings, in which:
Figures la, lb, lc and Id are schematic depictions of the electrostatic/pneumatic actuation of a surface, in accordance with the present invention; Figures 2a, 2b and 2c are a schematic illustration of the action of a surface controlled by the present invention;
Figure 3 is a schematic sectional view of part of the surface shown in Fig. 2;
Figures 4a, 4b and 4c are schematic, sectional views of a two dimensional array using the electrostatic/pneumatic actuators of the present invention;
Figures 5a and 5b are schematic plan views respectively of circular and rectangular arrays of controlled bubbles; and
Figures 6a, 6b and 6c are schematic, side elevational views of three conditions of pressure control for one embodiment of the present invention, illustrating three operating conditions.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
The present invention provides an improved actuator for controlling the shape of active surfaces, using a combination of electrostatic and pneumatic forces. A fluid, either liquid or gas, is contained in a cavity or chamber. Liquid fluids are used primarily in water or earth-bound applications, while flight applications will normally use a gas for the fluid. The shape of the chamber is controlled by an electrostatic actuator formed by a base and a cover, such that the cover and base cooperatively function as the actuator when power is supplied to electrodes formed in the base and cover. Attraction of the electrodes during electrostatic actuation causes a change in the shape of the cavity or chamber, thus causing changes in the shape of the active surface.
As shown in Fig. la, an actuator, 11 generally, comprises a central base 13 and a pair of covers 15a and 15b, each of which covers face inward to the base 13 for providing electrostatic actuator responses with base 13 when power is supplied from a power source. Covers 15a and 15b also form chambers or cavities 17a and 17b, in which is sealed a quantity of gas. In Fig. la, there is no actuation in operation and the gas inside cavities 17a and 17b exerts a uniform pressure on all areas of covers 15a and 15b, thus forming a symmetrical shape. In Fig. lb, actuation of the electrodes on base 13 and covers 15a and 15b at the right end of Fig. lb in response to power supply 19b has caused the electrodes in these elements to electrostatically attract one another, thus closing the space between electrodes as is accomplished in eletrostatic actuators. As a result, the gas in cavities 17a and 17b is pushed to the right hand side of the device. If, for example, the covers 15a and 15b formed part of a surface used in an aircraft over which air passes, thus permitting control of flight in some desired manner. In Fig. lc, only one pair of electrostatic electrodes has been actuated by power supply 19c, thus causing only cavity 17a and therefore cover 15a to be deformed as an active surface. Similarly in Fig. 15d, only cavity 17b has been actuated by power supply 19d, and therefore cover 15b is deformed as an active surface. Clearly, flight can be controlled in a wide variety of manners as surfaces change. For the first time, active surface control for flight surfaces has been achieved with a low cost, light weight, efficient system, as set forth herein. It is a specific embodiment of the present invention to use the activator device herein as a surface in an aircraft. Covers 17 include a lightweight metal frame and thin diaphragm forming the active surface condition during the intended cooperative electrostatic actuation.
Figs. 2a, 2b and 2c illustrate the rolling action that is accomplished by the present invention, where electrodes are electrostatically actuated to cause a diaphragm or moving electrode to be attracted to an electrode in the base of the device. When this is accomplished, the fluid will no longer be uniformly distributed in the cavity and balanced with elastic forces of the cover sheet. By applying a voltage between cover 25 and base 23 in these Figs 2a, 2b and 2c, fluid will be pushed away by the rolling cover, moving from right to left in these figures as shown. In this case the cover 25 can be deflected by its own compressive stress, such as when the cover is buckled, for example.
Fig. 3 illustrates some of the details of the electrostatic actuator portion of the present invention. A base 33 is formed from a molded plastic sheet, a light metal frame or other substrate. A pattern array of electrodes 34 are formed on the surface of base 33, in bands, patches with circular or rectangular shapes, or in any shape desired, depending on the desired forces to be applied to the active surface being controlled. Conventional electrostatic actuator control electronics 36 may also be embedded in base 33, and a dielectric 38 applied on top of the array 34 when touch mode actuators are used. Cover
35, which may be formed from a metalized polymer such as a polyester or polyimide, is attached to base 33 so as to define cavity 37, which is then filled with an appropriate fluid.
Figs. 4a, 4b and 4c illustrate the construction of a two dimensional array of a plurality of electrostatic actuators, in which base 43 interacts with various portions of the covers 45a and 45b as illustrated. In this embodiment, fluid passes through openings in base 43 to further provide control of a variety of active surface shapes. Figs. 5a and 5b illustrate two varieties (of the virtually unlimited choices) for a circular array 54a or a rectangularly shaped array 54b. In all of the devices of this invention, electrostatic activation will cause attraction between the base electrode and the moveable electrode or diaphragm on the cover, thus providing for a controlled adjustment of the shape of the active surface via pneumatic response by the fluid. The pressure in the cavities or chambers acts as an out- of-plane, restoring force to enhance deflection and, also, to fight the known electrostatic actuator phenomenon of stiction. When a pair of actuators is used, such as shown in
Figs, la- Id, the camber of a wing can be controlled. Two dimensional arrays of actuators as illustrated for purposes of example herein can be used for active surface control for acoustic purposes, or drag control in other materials. The use of a sealed cavity permits the use of a clean and stable fluid, facilitating the task of the electrostatic actuators associated with the fluid.
Figs. 6a, 6b and 6c illustrate the operation of a sealed cavity actuator, which is based on the pressure inside the cavity being slightly higher than the pressure outside the cavity. Of course, temperature variations could affect this balance, such as when a gas is used as the fluid inside the chamber or cavity. One solution to the effect of temperature on the gas inside the cavity is to include a balloon 71 and check valve 73. Balloon 71 expands when the outside pressure is higher than the inside pressure, reducing the enclosed volume and increasing the pressure without air from the outside entering the enclosed cavity. This solution eliminates the need for filters and ensures the proper operation of the electrostatic actuator, by preventing humidity and particles from entering the cavity. When the inside pressure is higher than the outside pressure, the balloon 71 deflates and, if necessary, some gas can leak through a check valve 73.
An alternative embodiment is when the cavity is open to the atmosphere, such as if check valve 73 was eliminated and balloon 71 communicated directly with the outside atmosphere. In this embodiment, the cover such as cover 45 in Figs. 4a-4c, would be buckled or otherwise out of plane. Application of the electrostatic force will still move the location of the bubble or cavity, changing the overall shape of the envelope defined by cover 45a-45c. In order to demonstrate the efficacy of this concept, an array of doubly supported beams was constructed for silicon microvalve applications. Operation of the active surface control was also achieved on larger area actuators based on molded plastic substrates and diaphragms made out of plastic materials such as polyimides.
Typical but not limiting polymer sheets which may be used in the present invention are flexible and not brittle, properties found in many polymers. One particularly useful polymer is the polyimide sold as KAPTON®, (registered trademark of E. I. du Pont de Nemours & Co., Wilmington, Delaware). Others include KALADEX® (registered trademark of ICI Films, Wilmington, Delaware) and MYLAR® (registered trademark of E. I. du Pont de Nemours & Co., Wilmington, Delaware), or any flexibly elastic polymer that permits it to deform as described herein. Fabrication of the sheets may be based upon technology developed for keyboard and flexible circuits that are produced in huge quantities, although not for electrostatic actuators at this time, making the process well optimized. Preferred sheets are made from polymer films such as KAPTON® or MYLAR® (registered trademark of E. I. du Pont de Nemours & Co., Wilmington, Delaware), or different polyesters that are commercially available.
Preferred electrodes are aluminum electrodes deposited directly on the polymer sheets with one or more dielectric films, such as aluminum oxide or poly-para-xylene, or other suitable organic or inorganic dielectrics. Coating layers such as diamond like layers or self assembled monolayers are also contemplated in order to control surface properties. The base plate may be made of molded polymers with embedded electrodes and electronics for localized control. As noted, when flight applications are considered, use of a light metal frame with a thin diaphragm may be used.
In order to obtain the desired dielectric strength, pinhole free dielectric will be used together with specific schemes to locally interrupt the electrode at the location of the pinhole in order to prevent an electrical short. This technique is known as a self healing technique. High quality dielectrics on the plastic substrates can be obtained: (a) transfer of LPCND nitrides or another high quality dielectric from silicon wafers to the base plate by bonding; (b) use of organic dielectrics such as parylene, acrylates, or polyimides; or (c) the use of inorganic dielectrics deposited at low temperature through ion beam spattering or plasma assisted deposition to increase the dielectric strength.
The mechanical design of the present invention has many forms. Metalized Kapton membranes with thicknesses of 50 to 75 microns have been made, illustrating that electrostatic actuation against pressures of a few psi can be easily achieved when a dielectric with a dielectric strength of more than 2 to 3 MV/cm is available on the desired area. It is clear the present invention permits the application of envelope control in micro UAV, resulting in full attitude control at a very advantageous power to weight ratio. Simulations have shown attitude control can be achieved with a change in camber of 2% to 4%, which means a change in deflection of about 0.6 to 1.2 mm over a cord of 3 cm, which means the deflections can be easily controlled with the electrostatic pneumatic actuator of this invention.
This invention relates to the combination of electrostatic actuator arrays with pneumatic action, and any such array technology presently existing to accomplish this combination is contemplated as being within the scope of this invention. While particular embodiments of the present invention have been illustrated and described, it is not intended to limit the invention, except as defined by the following claims.

Claims

1. An actuator device providing an active surface, comprising: a base having at least one first electrostatic electrode mounted therein and oriented to present said first electrostatic electrode for electrostatic cooperative action with an electrostatic electrode positioned above it; a cover mounted above said first electrostatic electrode and defining an enclosed cavity, said cover having at least one second electrostatic electrode facing said cavity for cooperative electrostatic activation between said first and second electrostatic electrodes, said cover having an outer surface forming said active surface; a power supply operably connected to said at least one first and second electrostatic electrodes for causing said cooperative electrostatic activation there between; and a quantity of fluid contained within said cavity for pneumatically defining a first active surface condition when there is no electrostatic actuation and at least one second active surface condition during said cooperative electrostatic actuation.
2. The device of claim 1 , wherein said cavity is closed to provide a sealed cavity for movement of said fluid during said cooperative electrostatic actuation.
3. The device of claim 1, which further includes a pressure control chamber operably connected to said cavity to control pressure in said cavity.
4. The device of claim 1, wherein said cavity is open to the atmosphere to provide an unsealed cavity for movement of said fluid during said cooperative electrostatic actuation.
5. The device of claim 1, wherein said fluid is a liquid.
6. The device of claim 1, wherein said fluid is a gas.
7. The device of claim 1, wherein said at least one first electrostatic electrode comprises a plurality of electrostatic electrodes arranged in a pattern to cause a predetermined change in said active surface.
8. The device of claim 7, wherein said pattern is selected from bands, patches and regions.
9. The device of claim 1, wherein base contains control electronics for controlling application of power from said power supply.
10. The device of claim 1, wherein said activator device forms a surface in an aircraft and said cover includes a lightweight metal frame and thin diaphragm forming said active surface condition during said cooperative electrostatic actuation.
11. An actuator device providing an active surface, comprising: base means having at least one first electrostatic electrode means mounted therein and oriented to present said first electrostatic electrode means for electrostatic cooperative action with an electrostatic electrode means positioned above it; cover means mounted above said first electrostatic electrode means and defining an enclosed cavity, said cover means having at least one second electrostatic electrode means facing said cavity for cooperative electrostatic activation between said first and second electrostatic electrode means, said cover means having an outer surface forming said active surface; power supply means operably connected to said at least one first and second electrostatic electrode means for causing said cooperative electrostatic activation there between; and a quantity of fluid contained within said cavity for pneumatically defining a first active surface condition when there is no electrostatic actuation and at least one second active surface condition during said cooperative electrostatic actuation.
12. The device of claim 11, wherein said cavity is closed to provide a sealed cavity for movement of said fluid during said cooperative electrostatic actuation.
13. The device of claim 12, which further includes pressure control means operably connected to said cavity to control pressure in said cavity.
14. The device of claim 11, wherein said cavity is open to the atmosphere to provide an unsealed cavity for movement of said fluid during said cooperative electrostatic actuation.
15. The device of claim 11, wherein said at least one first electrostatic electrode means comprises a plurality of electrostatic electrode means arranged in a pattern to cause a predetermined change in said active surface.
16. The device of claim 15, wherein said pattern is selected from bands, patches and regions.
17. The device of claim 11, wherein base means contains control electronics means for controlling application of power from said power supply means.
18. A method for forming and controlling an active surface, comprising the steps of: providing a base having at least one first electrostatic electrode mounted therein and oriented to present said first electrostatic electrode for electrostatic cooperative action with an electrostatic electrode positioned above it; mounting a cover above said first electrostatic electrode to define an enclosed cavity, said cover having at least one second electrostatic electrode facing said cavity for cooperative electrostatic activation between said first and second electrostatic electrodes, said cover having an outer surface forming said active surface; connecting a power supply to said at least one first and second electrostatic electrodes for causing said cooperative electrostatic activation there between; and filling said cavity with a quantity of fluid for pneumatically defining a first active surface condition when there is no electrostatic actuation and at least one second active surface condition during said cooperative electrostatic actuation.
19. The method of claim 18, which further includes the step of controlling pressure in said cavity by closing said cavity and connecting said cavity to a pressure control to provide a sealed cavity for movement of said fluid during said cooperative electrostatic actuation.
20. The method of claim 18, wherein said at least one first electrostatic electrode comprises a plurality of electrostatic electrodes arranged in a pattern selected from bands, patches and regions, to cause a predetermined change in said active surface.
PCT/US1999/021212 1998-12-29 1999-09-10 Electrostatic/pneumatic actuators for active surfaces WO2000039467A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE1141554T DE1141554T1 (en) 1998-12-29 1999-09-10 ELECTROSTATIC / PNEUMATIC ACTUATORS FOR VARIABLE SURFACES
CA002358115A CA2358115C (en) 1998-12-29 1999-09-10 Electrostatic/pneumatic actuators for active surfaces
JP2000591335A JP2002533230A (en) 1998-12-29 1999-09-10 Electrostatic / pneumatic actuator for surface
DE69928441T DE69928441T2 (en) 1998-12-29 1999-09-10 ELECTROSTATIC / PNEUMATIC ACTUATORS FOR CHANGING SURFACES
EP99946950A EP1141554B1 (en) 1998-12-29 1999-09-10 Electrostatic/pneumatic actuators for active surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/223,083 US6215221B1 (en) 1998-12-29 1998-12-29 Electrostatic/pneumatic actuators for active surfaces
US09/223,083 1998-12-29

Publications (1)

Publication Number Publication Date
WO2000039467A1 true WO2000039467A1 (en) 2000-07-06

Family

ID=22834961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1999/021212 WO2000039467A1 (en) 1998-12-29 1999-09-10 Electrostatic/pneumatic actuators for active surfaces

Country Status (6)

Country Link
US (2) US6215221B1 (en)
EP (1) EP1141554B1 (en)
JP (1) JP2002533230A (en)
CA (1) CA2358115C (en)
DE (2) DE1141554T1 (en)
WO (1) WO2000039467A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002033268A3 (en) * 2000-10-18 2002-11-21 Univ New York State Res Found Microvalve
US11453482B2 (en) * 2020-06-10 2022-09-27 United States Of America As Represented By The Secretary Of The Navy Vehicle with surface array of transducers controlling drag

Families Citing this family (165)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297471B1 (en) * 2003-04-15 2007-11-20 Idc, Llc Method for manufacturing an array of interferometric modulators
US7550794B2 (en) * 2002-09-20 2009-06-23 Idc, Llc Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
US8928967B2 (en) 1998-04-08 2015-01-06 Qualcomm Mems Technologies, Inc. Method and device for modulating light
WO1999052006A2 (en) 1998-04-08 1999-10-14 Etalon, Inc. Interferometric modulation of radiation
US6358021B1 (en) * 1998-12-29 2002-03-19 Honeywell International Inc. Electrostatic actuators for active surfaces
WO2003007049A1 (en) 1999-10-05 2003-01-23 Iridigm Display Corporation Photonic mems and structures
US6611642B1 (en) 2000-02-17 2003-08-26 Jds Uniphase Inc. Optical coupling arrangement
US7978329B2 (en) * 2000-08-02 2011-07-12 Honeywell International Inc. Portable scattering and fluorescence cytometer
US20060263888A1 (en) * 2000-06-02 2006-11-23 Honeywell International Inc. Differential white blood count on a disposable card
US7630063B2 (en) * 2000-08-02 2009-12-08 Honeywell International Inc. Miniaturized cytometer for detecting multiple species in a sample
US7215425B2 (en) * 2000-08-02 2007-05-08 Honeywell International Inc. Optical alignment for flow cytometry
US6568286B1 (en) 2000-06-02 2003-05-27 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US7420659B1 (en) * 2000-06-02 2008-09-02 Honeywell Interantional Inc. Flow control system of a cartridge
US8071051B2 (en) 2004-05-14 2011-12-06 Honeywell International Inc. Portable sample analyzer cartridge
US7471394B2 (en) * 2000-08-02 2008-12-30 Honeywell International Inc. Optical detection system with polarizing beamsplitter
US7016022B2 (en) * 2000-08-02 2006-03-21 Honeywell International Inc. Dual use detectors for flow cytometry
US7242474B2 (en) * 2004-07-27 2007-07-10 Cox James A Cytometer having fluid core stream position control
US8329118B2 (en) * 2004-09-02 2012-12-11 Honeywell International Inc. Method and apparatus for determining one or more operating parameters for a microfluidic circuit
US7283223B2 (en) * 2002-08-21 2007-10-16 Honeywell International Inc. Cytometer having telecentric optics
US7641856B2 (en) * 2004-05-14 2010-01-05 Honeywell International Inc. Portable sample analyzer with removable cartridge
US7130046B2 (en) * 2004-09-27 2006-10-31 Honeywell International Inc. Data frame selection for cytometer analysis
US6598409B2 (en) 2000-06-02 2003-07-29 University Of Florida Thermal management device
US6837476B2 (en) 2002-06-19 2005-01-04 Honeywell International Inc. Electrostatically actuated valve
US6970245B2 (en) * 2000-08-02 2005-11-29 Honeywell International Inc. Optical alignment detection system
US7262838B2 (en) * 2001-06-29 2007-08-28 Honeywell International Inc. Optical detection system for flow cytometry
US6883337B2 (en) * 2000-06-02 2005-04-26 University Of Florida Research Foundation, Inc. Thermal management device
US7000330B2 (en) * 2002-08-21 2006-02-21 Honeywell International Inc. Method and apparatus for receiving a removable media member
US7277166B2 (en) * 2000-08-02 2007-10-02 Honeywell International Inc. Cytometer analysis cartridge optical configuration
US6382228B1 (en) 2000-08-02 2002-05-07 Honeywell International Inc. Fluid driving system for flow cytometry
US7061595B2 (en) * 2000-08-02 2006-06-13 Honeywell International Inc. Miniaturized flow controller with closed loop regulation
US6626416B2 (en) * 2000-12-12 2003-09-30 Eastman Kodak Company Electrostrictive valve for modulating a fluid flow
US6450773B1 (en) * 2001-03-13 2002-09-17 Terabeam Corporation Piezoelectric vacuum pump and method
US6868314B1 (en) 2001-06-27 2005-03-15 Bentley D. Frink Unmanned aerial vehicle apparatus, system and method for retrieving data
US6729856B2 (en) 2001-10-09 2004-05-04 Honeywell International Inc. Electrostatically actuated pump with elastic restoring forces
US6574033B1 (en) 2002-02-27 2003-06-03 Iridigm Display Corporation Microelectromechanical systems device and method for fabricating same
US7008193B2 (en) * 2002-05-13 2006-03-07 The Regents Of The University Of Michigan Micropump assembly for a microgas chromatograph and the like
US7781850B2 (en) 2002-09-20 2010-08-24 Qualcomm Mems Technologies, Inc. Controlling electromechanical behavior of structures within a microelectromechanical systems device
TW590982B (en) * 2002-09-27 2004-06-11 Agnitio Science & Technology I Micro-fluid driving device
DE10302304B3 (en) * 2003-01-22 2004-01-29 Festo Ag & Co. Electronic microvalve and method for its operation
JP4209917B2 (en) * 2003-03-25 2009-01-14 ソニー エリクソン モバイル コミュニケーションズ, エービー Keypad for terminals that can be pulled out
TW570896B (en) 2003-05-26 2004-01-11 Prime View Int Co Ltd A method for fabricating an interference display cell
US6917099B2 (en) * 2003-08-27 2005-07-12 Hewlett-Packard Development Company, L.P. Die carrier with fluid chamber
US20050067919A1 (en) * 2003-09-30 2005-03-31 Horning Robert D. Polymer actuator having a circular unit cell
US7038824B2 (en) * 2003-11-18 2006-05-02 Honeywell International Inc. Dynamic reflector array and method of making the same
US8323564B2 (en) 2004-05-14 2012-12-04 Honeywell International Inc. Portable sample analyzer system
US8828320B2 (en) 2004-05-14 2014-09-09 Honeywell International Inc. Portable sample analyzer cartridge
US7446450B2 (en) * 2004-06-07 2008-11-04 California Institute Of Technology Method and system using liquid dielectric for electrostatic power generation
EP2246726B1 (en) * 2004-07-29 2013-04-03 QUALCOMM MEMS Technologies, Inc. System and method for micro-electromechanical operating of an interferometric modulator
US7612871B2 (en) * 2004-09-01 2009-11-03 Honeywell International Inc Frequency-multiplexed detection of multiple wavelength light for flow cytometry
US20060065622A1 (en) * 2004-09-27 2006-03-30 Floyd Philip D Method and system for xenon fluoride etching with enhanced efficiency
US7936497B2 (en) * 2004-09-27 2011-05-03 Qualcomm Mems Technologies, Inc. MEMS device having deformable membrane characterized by mechanical persistence
US7369296B2 (en) * 2004-09-27 2008-05-06 Idc, Llc Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
US7893919B2 (en) * 2004-09-27 2011-02-22 Qualcomm Mems Technologies, Inc. Display region architectures
US7372613B2 (en) 2004-09-27 2008-05-13 Idc, Llc Method and device for multistate interferometric light modulation
US8008736B2 (en) 2004-09-27 2011-08-30 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device
US7630075B2 (en) 2004-09-27 2009-12-08 Honeywell International Inc. Circular polarization illumination based analyzer system
US7553684B2 (en) * 2004-09-27 2009-06-30 Idc, Llc Method of fabricating interferometric devices using lift-off processing techniques
US7684104B2 (en) 2004-09-27 2010-03-23 Idc, Llc MEMS using filler material and method
US7289259B2 (en) 2004-09-27 2007-10-30 Idc, Llc Conductive bus structure for interferometric modulator array
US7420725B2 (en) 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
US7719500B2 (en) 2004-09-27 2010-05-18 Qualcomm Mems Technologies, Inc. Reflective display pixels arranged in non-rectangular arrays
US7944599B2 (en) 2004-09-27 2011-05-17 Qualcomm Mems Technologies, Inc. Electromechanical device with optical function separated from mechanical and electrical function
US7327510B2 (en) * 2004-09-27 2008-02-05 Idc, Llc Process for modifying offset voltage characteristics of an interferometric modulator
US20060127247A1 (en) * 2004-12-10 2006-06-15 Hamilton Sundstrand Corporation Magnetic pulse pump/compressor system
US20060134510A1 (en) * 2004-12-21 2006-06-22 Cleopatra Cabuz Air cell air flow control system and method
US7168675B2 (en) * 2004-12-21 2007-01-30 Honeywell International Inc. Media isolated electrostatically actuated valve
US7222639B2 (en) * 2004-12-29 2007-05-29 Honeywell International Inc. Electrostatically actuated gas valve
US7328882B2 (en) * 2005-01-06 2008-02-12 Honeywell International Inc. Microfluidic modulating valve
US7445017B2 (en) 2005-01-28 2008-11-04 Honeywell International Inc. Mesovalve modulator
JP4965561B2 (en) * 2005-04-29 2012-07-04 ハネウェル・インターナショナル・インコーポレーテッド Cytometer cell counting and sizing system
US20090217997A1 (en) * 2005-05-04 2009-09-03 Alan Feinerman Thin welded sheets fluid pathway
US7320338B2 (en) * 2005-06-03 2008-01-22 Honeywell International Inc. Microvalve package assembly
US8273294B2 (en) 2005-07-01 2012-09-25 Honeywell International Inc. Molded cartridge with 3-D hydrodynamic focusing
WO2007005973A2 (en) 2005-07-01 2007-01-11 Honeywell International, Inc. A microfluidic card for rbc analysis
WO2007005974A2 (en) 2005-07-01 2007-01-11 Honeywell International, Inc. A flow metered analyzer
US7517201B2 (en) * 2005-07-14 2009-04-14 Honeywell International Inc. Asymmetric dual diaphragm pump
EP2495212A3 (en) * 2005-07-22 2012-10-31 QUALCOMM MEMS Technologies, Inc. Mems devices having support structures and methods of fabricating the same
KR20080040715A (en) 2005-07-22 2008-05-08 콸콤 인코포레이티드 Support structure for mems device and methods therefor
US20070023719A1 (en) * 2005-07-27 2007-02-01 Shannon Mark A Bi-direction rapid action electrostatically actuated microvalve
US8628055B2 (en) * 2005-07-27 2014-01-14 The Board Of Trustees Of The University Of Illinois Bi-direction rapid action electrostatically actuated microvalve
US7843563B2 (en) * 2005-08-16 2010-11-30 Honeywell International Inc. Light scattering and imaging optical system
US20070051415A1 (en) * 2005-09-07 2007-03-08 Honeywell International Inc. Microvalve switching array
US8123834B2 (en) * 2005-10-06 2012-02-28 The Board Of Trustees Of The University Of Illinois High gain selective metal organic framework preconcentrators
US7630114B2 (en) * 2005-10-28 2009-12-08 Idc, Llc Diffusion barrier layer for MEMS devices
EP1963866B1 (en) * 2005-12-22 2018-05-16 Honeywell International Inc. Hematological analyzer system with removable cartridge
US7795061B2 (en) 2005-12-29 2010-09-14 Qualcomm Mems Technologies, Inc. Method of creating MEMS device cavities by a non-etching process
WO2007076549A2 (en) 2005-12-29 2007-07-05 Honeywell International Inc. Assay implementation in a microfluidic format
US7916980B2 (en) 2006-01-13 2011-03-29 Qualcomm Mems Technologies, Inc. Interconnect structure for MEMS device
US7382515B2 (en) 2006-01-18 2008-06-03 Qualcomm Mems Technologies, Inc. Silicon-rich silicon nitrides as etch stops in MEMS manufacture
US7450295B2 (en) * 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
US7321457B2 (en) 2006-06-01 2008-01-22 Qualcomm Incorporated Process and structure for fabrication of MEMS device having isolated edge posts
US7649671B2 (en) 2006-06-01 2010-01-19 Qualcomm Mems Technologies, Inc. Analog interferometric modulator device with electrostatic actuation and release
US7471442B2 (en) * 2006-06-15 2008-12-30 Qualcomm Mems Technologies, Inc. Method and apparatus for low range bit depth enhancements for MEMS display architectures
US7835061B2 (en) 2006-06-28 2010-11-16 Qualcomm Mems Technologies, Inc. Support structures for free-standing electromechanical devices
US7527998B2 (en) 2006-06-30 2009-05-05 Qualcomm Mems Technologies, Inc. Method of manufacturing MEMS devices providing air gap control
US8007704B2 (en) * 2006-07-20 2011-08-30 Honeywell International Inc. Insert molded actuator components
US7763546B2 (en) 2006-08-02 2010-07-27 Qualcomm Mems Technologies, Inc. Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
US7543604B2 (en) * 2006-09-11 2009-06-09 Honeywell International Inc. Control valve
US7545552B2 (en) * 2006-10-19 2009-06-09 Qualcomm Mems Technologies, Inc. Sacrificial spacer process and resultant structure for MEMS support structure
US7644731B2 (en) 2006-11-30 2010-01-12 Honeywell International Inc. Gas valve with resilient seat
US7733552B2 (en) * 2007-03-21 2010-06-08 Qualcomm Mems Technologies, Inc MEMS cavity-coating layers and methods
US7719752B2 (en) 2007-05-11 2010-05-18 Qualcomm Mems Technologies, Inc. MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same
US7569488B2 (en) * 2007-06-22 2009-08-04 Qualcomm Mems Technologies, Inc. Methods of making a MEMS device by monitoring a process parameter
JP2009083382A (en) * 2007-10-01 2009-04-23 Brother Ind Ltd Image forming device and image processing program
US8123841B2 (en) 2008-01-16 2012-02-28 The Board Of Trustees Of The University Of Illinois Column design for micro gas chromatograph
US8269029B2 (en) * 2008-04-08 2012-09-18 The Board Of Trustees Of The University Of Illinois Water repellent metal-organic frameworks, process for making and uses regarding same
US7851239B2 (en) * 2008-06-05 2010-12-14 Qualcomm Mems Technologies, Inc. Low temperature amorphous silicon sacrificial layer for controlled adhesion in MEMS devices
US20100034704A1 (en) * 2008-08-06 2010-02-11 Honeywell International Inc. Microfluidic cartridge channel with reduced bubble formation
US8037354B2 (en) 2008-09-18 2011-10-11 Honeywell International Inc. Apparatus and method for operating a computing platform without a battery pack
US7719754B2 (en) * 2008-09-30 2010-05-18 Qualcomm Mems Technologies, Inc. Multi-thickness layers for MEMS and mask-saving sequence for same
US7864403B2 (en) * 2009-03-27 2011-01-04 Qualcomm Mems Technologies, Inc. Post-release adjustment of interferometric modulator reflectivity
JP2013524287A (en) 2010-04-09 2013-06-17 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Mechanical layer of electromechanical device and method for forming the same
US9134527B2 (en) 2011-04-04 2015-09-15 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8963159B2 (en) 2011-04-04 2015-02-24 Qualcomm Mems Technologies, Inc. Pixel via and methods of forming the same
US8659816B2 (en) 2011-04-25 2014-02-25 Qualcomm Mems Technologies, Inc. Mechanical layer and methods of making the same
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
US8741234B2 (en) 2011-12-27 2014-06-03 Honeywell International Inc. Disposable cartridge for fluid analysis
US8741233B2 (en) 2011-12-27 2014-06-03 Honeywell International Inc. Disposable cartridge for fluid analysis
US8663583B2 (en) 2011-12-27 2014-03-04 Honeywell International Inc. Disposable cartridge for fluid analysis
US8741235B2 (en) 2011-12-27 2014-06-03 Honeywell International Inc. Two step sample loading of a fluid analysis cartridge
US8803861B2 (en) 2012-02-23 2014-08-12 Qualcomm Mems Technologies, Inc. Electromechanical systems device
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
EP2868970B1 (en) 2013-10-29 2020-04-22 Honeywell Technologies Sarl Regulating device
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
CN103821800B (en) * 2014-03-18 2016-03-16 上海交通大学 Based on the active vortex generator of electromagnetic exciting
US9850922B2 (en) 2014-04-14 2017-12-26 President And Fellows Of Harvard College Soft buckling actuators
WO2016011345A1 (en) 2014-07-17 2016-01-21 President And Fellows Of Harvard College Soft actuators and soft actuating devices
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
WO2017046802A1 (en) * 2015-09-16 2017-03-23 Technion Research & Development Foundation Limited Dynamic microfluidic devices and use thereof
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
US11067200B2 (en) 2018-10-24 2021-07-20 Toyota Motor Engineering & Manufacturing North America, Inc. Self-healing microvalve
US11548261B2 (en) 2018-10-24 2023-01-10 Toyota Motor Engineering & Manufacturing North America, Inc. Structure with selectively variable stiffness
US11088635B2 (en) 2018-10-25 2021-08-10 Toyota Motor Engineering & Manufacturing North America, Inc. Actuator with sealable edge region
US11081975B2 (en) 2018-10-25 2021-08-03 Toyota Motor Engineering & Manufacturing North America, Inc. Somersaulting motion of soft bodied structure
US11041576B2 (en) 2018-10-25 2021-06-22 Toyota Motor Engineering & Manufacturing North America, Inc. Actuator with static activated position
US10946535B2 (en) 2018-10-25 2021-03-16 Toyota Motor Engineering & Manufacturing North America, Inc. Earthworm-like motion of soft bodied structure
CN113039367B (en) 2018-11-06 2023-08-04 深度科学有限责任公司 System and method for actively controlling surface drag using wall coupling
US11498270B2 (en) 2018-11-21 2022-11-15 Toyota Motor Engineering & Manufacturing North America, Inc. Programmable matter
EP3887249B1 (en) 2018-11-30 2023-04-26 Deep Science, LLC Systems and methods of active control of surface drag using selective wave generation
US11195506B2 (en) 2018-12-03 2021-12-07 Toyota Motor Engineering & Manufacturing North America, Inc. Sound-modulating windows
US10859101B2 (en) 2018-12-10 2020-12-08 Toyota Motor Engineering & Manufacturing North America, Inc. Soft-bodied actuator with pinched configuration
US11066016B2 (en) 2018-12-18 2021-07-20 Toyota Motor Engineering & Manufacturing North America, Inc. Adjusting vehicle mirrors
US11479308B2 (en) 2019-01-09 2022-10-25 Toyota Motor Engineering & Manufacturing North America, Inc. Active vehicle interface for crosswind management
CN111313741B (en) * 2019-01-29 2021-04-16 北京纳米能源与系统研究所 Power generation facility of electricity generation can stretch
US11192469B2 (en) 2019-01-30 2021-12-07 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle seat with morphing bolsters
US11473567B2 (en) 2019-02-07 2022-10-18 Toyota Motor Engineering & Manufacturing North America, Inc. Programmable surface
WO2020257670A1 (en) * 2019-06-19 2020-12-24 The Texas A&M University System Aircraft airfoils including wave assemblies, systems including wave assemblies, and methods of using the same
US11905983B2 (en) 2020-01-23 2024-02-20 Deep Science, Llc Systems and methods for active control of surface drag using electrodes
US20230012961A1 (en) * 2020-01-23 2023-01-19 Deep Science, Llc Systems and methods for active control of surface drag using intermittent or variable actuation
KR102418095B1 (en) 2020-09-22 2022-07-08 한국과학기술연구원 Active Plate wiht Actuator
US11466709B2 (en) 2021-02-17 2022-10-11 Deep Science, Llc In-plane transverse momentum injection to disrupt large-scale eddies in a turbulent boundary layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947644A (en) * 1971-08-20 1976-03-30 Kureha Kagaku Kogyo Kabushiki Kaisha Piezoelectric-type electroacoustic transducer
US4654546A (en) * 1984-11-20 1987-03-31 Kari Kirjavainen Electromechanical film and procedure for manufacturing same
DE19617852A1 (en) * 1996-04-23 1997-10-30 Karlsruhe Forschzent Process for the planar production of pneumatic and fluidic miniature manipulators

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2403692A (en) * 1944-12-29 1946-07-09 George C Tibbetts Piezoelectric device
US3304446A (en) * 1963-12-26 1967-02-14 Union Oil Co Electrostrictive fluid transducer
US4197737A (en) * 1977-05-10 1980-04-15 Applied Devices Corporation Multiple sensing device and sensing devices therefor
US4140936A (en) * 1977-09-01 1979-02-20 The United States Of America As Represented By The Secretary Of The Navy Square and rectangular electroacoustic bender bar transducer
DE3320441A1 (en) * 1983-06-06 1984-12-06 Siemens AG, 1000 Berlin und 8000 München WRITING DEVICE WORKING WITH LIQUID DROPLETS WITH ROD-SHAPED PIEZOELECTRIC TRANSFORMERS CONNECTED ON BOTH ENDS WITH A NOZZLE PLATE
JPH01174278A (en) * 1987-12-28 1989-07-10 Misuzu Erii:Kk Inverter
JP2709318B2 (en) * 1988-08-31 1998-02-04 セイコープレシジョン株式会社 Liquid crystal panel and conversion device using liquid crystal panel
US5206557A (en) * 1990-11-27 1993-04-27 Mcnc Microelectromechanical transducer and fabrication method
EP0518112B1 (en) * 1991-05-24 1997-04-02 Sumitomo Electric Industries, Ltd. A process for fabricating micromachines
DE4119955C2 (en) * 1991-06-18 2000-05-31 Danfoss As Miniature actuator
US5176358A (en) 1991-08-08 1993-01-05 Honeywell Inc. Microstructure gas valve control
US5350966A (en) * 1991-11-12 1994-09-27 Rockwell International Corporation Piezocellular propulsion
US5275055A (en) * 1992-08-31 1994-01-04 Honeywell Inc. Resonant gauge with microbeam driven in constant electric field
US5780958A (en) * 1995-11-03 1998-07-14 Aura Systems, Inc. Piezoelectric vibrating device
US5729077A (en) * 1995-12-15 1998-03-17 The Penn State Research Foundation Metal-electroactive ceramic composite transducer
WO1997029538A1 (en) * 1996-02-10 1997-08-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bistable microactuator with coupled membranes
US5941501A (en) * 1996-09-06 1999-08-24 Xerox Corporation Passively addressable cantilever valves
US5867302A (en) * 1997-08-07 1999-02-02 Sandia Corporation Bistable microelectromechanical actuator
US5901939A (en) * 1997-10-09 1999-05-11 Honeywell Inc. Buckled actuator with enhanced restoring force

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947644A (en) * 1971-08-20 1976-03-30 Kureha Kagaku Kogyo Kabushiki Kaisha Piezoelectric-type electroacoustic transducer
US4654546A (en) * 1984-11-20 1987-03-31 Kari Kirjavainen Electromechanical film and procedure for manufacturing same
DE19617852A1 (en) * 1996-04-23 1997-10-30 Karlsruhe Forschzent Process for the planar production of pneumatic and fluidic miniature manipulators

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002033268A3 (en) * 2000-10-18 2002-11-21 Univ New York State Res Found Microvalve
US6592098B2 (en) 2000-10-18 2003-07-15 The Research Foundation Of Suny Microvalve
US11453482B2 (en) * 2020-06-10 2022-09-27 United States Of America As Represented By The Secretary Of The Navy Vehicle with surface array of transducers controlling drag

Also Published As

Publication number Publication date
DE69928441T2 (en) 2006-07-27
US6288472B1 (en) 2001-09-11
US6215221B1 (en) 2001-04-10
CA2358115C (en) 2008-07-22
DE69928441D1 (en) 2005-12-22
CA2358115A1 (en) 2000-07-06
EP1141554B1 (en) 2005-11-16
DE1141554T1 (en) 2002-06-13
EP1141554A1 (en) 2001-10-10
JP2002533230A (en) 2002-10-08

Similar Documents

Publication Publication Date Title
CA2358115C (en) Electrostatic/pneumatic actuators for active surfaces
EP1332547B1 (en) Electrostatic/pneumatic actuators for active surfaces
KR100286486B1 (en) Elastomeric Micro Electromechanical Systems
CA2357049C (en) Polymer microactuator array with macroscopic force and displacement
EP1221180B1 (en) Electroactive polymers
Goll et al. An electrostatically actuated polymer microvalve equipped with a movable membrane electrode
US20090195120A1 (en) Capillary Force Actuator Device and Related Method of Applications
JP2004211898A (en) Pneumatic actuator equipped with elastomer membrane and low electric power electrostatic flap valve structure
WO2002021568A2 (en) Distributed mems electrostatic pumping devices
EP1275853B1 (en) Muscle-emulating PC board actuator
WO2006123317A2 (en) Dielectric electroactive polymer
EP0958614A1 (en) Magnetic microactuator
US20210363983A1 (en) MIcro Pump Systems and Processing Techniques
US11359619B2 (en) Valve having a first and second obstruction confining the valve from leaving a confining region
AU2019360176A1 (en) Haptic actuators fabricated by roll to roll processing
Hsu et al. A two-way membrane-type micro-actuator with continuous deflections
US20190222141A1 (en) Repulsive-force electrostatic actuator
EP1127403B1 (en) Buckled actuator with enhanced restoring force
Ikehara et al. Electromagnetically driven silicon microvalve for large-flow pneumatic controls
Petrov Development of the technological process for the production of the electrostatic curved beam actuator for pneumatic microvalves
Chapuis et al. Polymer membrane-based thermo-pneumatic actuation for distributed air-jet planar micromanipulator
MXPA97008359A (en) Elastomeri microelectromecanic system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2358115

Country of ref document: CA

Ref country code: JP

Ref document number: 2000 591335

Kind code of ref document: A

Format of ref document f/p: F

Ref country code: CA

Ref document number: 2358115

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1999946950

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999946950

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999946950

Country of ref document: EP