WO2000042639A1 - Method and apparatus for projection exposure - Google Patents

Method and apparatus for projection exposure Download PDF

Info

Publication number
WO2000042639A1
WO2000042639A1 PCT/JP2000/000126 JP0000126W WO0042639A1 WO 2000042639 A1 WO2000042639 A1 WO 2000042639A1 JP 0000126 W JP0000126 W JP 0000126W WO 0042639 A1 WO0042639 A1 WO 0042639A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection exposure
inert gas
exposure apparatus
casing
exposure light
Prior art date
Application number
PCT/JP2000/000126
Other languages
French (fr)
Japanese (ja)
Inventor
Satoru Oshikawa
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU20034/00A priority Critical patent/AU2003400A/en
Publication of WO2000042639A1 publication Critical patent/WO2000042639A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature

Definitions

  • the present invention relates to a projection exposure apparatus that transfers an image of a mask pattern projected by exposure light onto a substrate, for example, a projection exposure apparatus and a projection exposure method suitably used in a manufacturing process of a semiconductor element or a liquid crystal display element.
  • a projection exposure apparatus that transfers an image of a mask pattern projected by exposure light onto a substrate
  • a projection exposure apparatus and a projection exposure method suitably used in a manufacturing process of a semiconductor element or a liquid crystal display element.
  • the circuit pattern of a photomask or reticle (hereinafter simply referred to as a “reticle”) is transmitted through a projection optical system.
  • a projection exposure apparatus that transfers a wafer onto a substrate such as a wafer or a glass plate coated with a photosensitive agent is used.
  • a projection exposure apparatus has been designed to sequentially transfer a pattern to a plurality of exposure regions on a substrate while sequentially moving the substrate in a step-and-repeat manner.
  • the so-called stepper is the mainstream.
  • a laser beam is often used as exposure light emitted from a light source.
  • the circuit pattern of semiconductor devices has been steadily miniaturized, and accordingly, the exposure wavelength has been shortened to cope with this.
  • an ArF excimer laser having a wavelength of 193 nm has been developed. Are being used.
  • ozone is not only harmful, but also has an adverse effect on light use efficiency (transmittance), and furthermore, causes a chemical reaction with ions and suspended matter in the air, causing white turbidity on the surfaces of optical elements such as lenses. This causes a decrease in the performance of the projection exposure apparatus.
  • impurity gases such as sulfuric acid component, nitric acid component, ammonia, amines, and siloxanes in the atmosphere are converted by a reaction such as a photochemical reaction. It changes into substances such as ammonium sulfate and ammonium nitrate, and these substances tend to adhere to the surface of an optical element such as a lens, which also has the problem of deteriorating the light use efficiency of the optical element.
  • projection exposure apparatuses that use an ArF excimer laser or the like as the exposure light have conventionally employed an atmosphere in the optical path of the exposure light, such as nitrogen gas or helium gas, which is inert to photochemical reactions.
  • an atmosphere in the optical path of the exposure light such as nitrogen gas or helium gas
  • an inert gas such as US Pat. No. 5,559,584 (corresponding Japanese application: Japanese Patent Application Laid-Open No. Hei 6-260385, See Kaihei 6-2608686).
  • the conventional projection exposure apparatus as described above has the following problems.
  • an inert gas is supplied to the projection exposure apparatus from a gas supply source such as a gas cylinder through a supply pipe.
  • a gas supply source such as a gas cylinder
  • Resin-based materials such as tubes are frequently used, and impurity gas (so-called outgas) is generated from the supply pipe itself, which causes deterioration of the light use efficiency of the optical element described above.
  • inert gas such as nitrogen supplied from a gas supply source such as a gas cylinder is generally subjected to only a process of drying to reduce moisture, and other impurity gas is mixed into the inert gas. In some cases.
  • the present invention has been made in consideration of the above problems, and has as its object to provide a projection exposure apparatus and a projection exposure method that can prevent a decrease in optical performance due to an impurity gas.
  • the projection exposure apparatus of the present invention exposes a pattern of a mask (reference numeral 3 in the figure, the same applies hereinafter).
  • a projection exposure apparatus (1) that illuminates with light and transfers an image of the pattern onto a substrate (2), the casing (11) surrounding at least a part of an optical path of the exposure light,
  • At least the inner peripheral surface of the supply pipe (12, 14) is formed of an impurity gas generation suppressing material which generates less impurity gas than the conventionally used nylon tube.
  • the generation of impurity gas from the supply pipe (12, 14) itself is suppressed. Therefore, the internal contamination of the inert gas introduced into the casing can be minimized, and the transmittance of the optical element such as a lens can be suppressed from being reduced, so that the original performance of the projection exposure apparatus can be sufficiently exhibited.
  • the performance degradation of the optical element, which has conventionally occurred can be suppressed, the required performance can be maintained for a long period of time.
  • the impurity gas includes a gas containing a substance that adheres to the surface of the optical element, and a light absorbing substance (oxygen, ozone, etc.) that absorbs exposure light.
  • Examples of the impurity gas generation suppressing materials are stainless steel, tetrafluoroethylene (so-called Teflon: registered trademark), tetrafluoroethylene-terfluoro (alkyl vinyl ether), and tetrafluoroethylene-hexafluoro. Examples include various fluoropolymers such as propene copolymers, but are not limited thereto.
  • the supply pipe (12, 14) may be entirely formed of the above material, or only the inner peripheral surface of the supply pipe (12, 14) may be formed of the above material.
  • the supply pipe may be provided with a filter for removing impurities from an inert gas supplied through the supply pipe.
  • impurities can be removed from the inert gas supplied to the casing, and the above-mentioned effect can be made more remarkable.
  • a distribution unit may be provided on a downstream side of the filter, and the distribution unit may be connected to the plurality of supply pipes connected to each unit of the casing.
  • the number of fills can be minimized, and the above effects can be obtained with a minimum cost.
  • a projection exposure method is a method of illuminating a pattern of a mask with exposure light and transferring an image of the pattern onto a substrate, wherein at least a part of an optical path of the exposure light is partially broken.
  • An inert gas was supplied to the inside of the casing through a supply pipe at least an inner surface of which was formed of an impurity gas generation suppressing material, and an optical path of the exposure light was filled with the inert gas. In this state, the image of the pattern is transferred onto a substrate. According to this method, the same effect as described above can be obtained.
  • FIG. 1 is a schematic view showing one embodiment of the projection exposure apparatus according to the present invention.
  • FIG. 2 is a diagram showing an inert gas supply path in the projection exposure apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 schematically shows a configuration of a projection exposure apparatus according to an embodiment of the present invention.
  • reference numeral 1 denotes a projection exposure apparatus
  • 2 denotes a wafer (substrate)
  • 3 denotes a reticle (mask).
  • Reference numeral 4 denotes a light source that emits exposure light
  • 5 denotes an illumination optical system that irradiates the reticle 3 with exposure light
  • 6 denotes a light transmission system that is disposed between the light source 4 and the illumination optical system 5
  • 7 denotes a light source from the reticle 3.
  • the projection optical system projects the exposure light onto the wafer 2.
  • the projection exposure apparatus 1 emits one short-wavelength laser beam such as an ArF light source excimer laser from the light source 4 as exposure light.
  • one short-wavelength laser beam such as an ArF light source excimer laser from the light source 4 as exposure light.
  • the illumination optical system 5 includes various lenses such as a fly-eye lens, a relay lens, and a condenser lens, a field stop, and a blind.
  • the illumination optical system 5 equalizes the luminous flux of the exposure light emitted from the light source 4 and sent through the light transmission system 6, and irradiates the reticle 3 with the exposure light.
  • the illumination optical system 5 and the projection optical system 7 are housed inside the chamber 110.
  • the inside of the chamber 110 is controlled by a temperature controller (not shown) so that the atmosphere is maintained at a predetermined temperature.
  • the projection optical system 7 is surrounded by a casing 11.
  • One end of a supply pipe 12 for supplying an inert gas to the inside of each casing 11 is connected, and the other end of each supply pipe 12 is disposed, for example, inside the chamber 110. It is connected to the distribution unit 13.
  • a supply pipe 14 is connected to the distribution section 13 for connection to a gas supply source such as a gas cylinder. Through this supply pipe 14, a gas supply source (not shown), for example, nitrogen gas, helium gas, etc. An inert gas that is inert to the gas is supplied to the distribution unit 13.
  • a filter 15 for removing an impurity gas in the inert gas supplied from a gas supply source (not shown) is provided in the supply pipe 14.
  • the supply pipe 12, the distribution section 13, the supply pipe 14, and the filter 15 constitute a supply device 16 for supplying an inert gas to the casing 11.
  • the distribution unit 13 distributes the inert gas to the supply pipes 12 that reach the light source 4, the light transmission system 6, the illumination optical system 5, and the projection optical system 7, and controls the supply pipes 12 by a control unit (not shown). Adjust the pressure and flow rate of the inert gas to be distributed.
  • the supply pipes 12, 14 are made of at least an impurity gas generation suppressing material that is a material that generates less gas than a conventionally used nylon tube, for example, a pipe made of stainless steel (hereinafter, referred to as “stainless steel pipe”), or Various fluoropolymers such as tetrafluoroethylene (so-called Teflon: registered trademark), tetrafluoroethylene-terfluoro (alkyl vinyl ether), tetrafluoroethylene-hexafluoropropene copolymer, etc. It is formed by a tube (hereinafter, simply referred to as “Teflon tube”). Stainless steels are classified into austenitic, ferritic and martensitic types.
  • the stainless steel used in this embodiment is preferably an austenitic stainless steel.
  • austenitic stainless steels have better workability than others.
  • iron is the main component, chromium 16.00 to 18.00% by weight, nickel 10.00 to: 14.00% by weight, molybdenum 2.00 to 3.00% by weight, silicon 1.00% by weight or less. It is preferable to use those containing 2.00% by weight or less of manganese, 0.08% by weight or less of carbon, 0.045% by weight or less of phosphorus, and 0.03% by weight or less.
  • the movable part includes, for example, a reticle blind ⁇ ⁇ for changing an illumination area of a reticle arranged in the illumination optical system, and a plurality of aperture stops (transport zone, aperture diameter) for changing reticle illumination conditions.
  • the aperture plate has a different aperture, an aperture for making four secondary light sources at positions eccentric from the optical axis, etc.).
  • the inner and outer peripheral surfaces of the stainless steel pipe are preferably subjected to electrolytic polishing, while the Teflon tube is preferably cleaned in advance with a solvent or the like.
  • an inert gas is supplied from a gas supply source or the like (not shown) through the supply pipe 14, the inert gas is removed after the impurity gas is removed through the filter 15.
  • the distribution unit 13 the inert gas is distributed to each of the supply pipes 12 so as to have a predetermined pressure and flow rate, and then the casings of the light source 4, the light transmission system 6, the illumination optical system 5, and the projection optical system 7 are provided. It is sent to 11 and the atmosphere of the optical path of the exposure light is replaced with an inert gas.
  • a desired inert gas atmosphere is formed between the final lens of the projection optical system 7 and the wafer 2 by an appropriate method.
  • the entire stage device 1 ⁇ ⁇ on which the wafer 2 is placed from the lower end of the projection optical system 7 is surrounded by a container (not shown), and the container is filled with an inert gas.
  • a method of continuously supplying an inert gas to an open space between the lower end and the wafer 2 to form an inert gas atmosphere can be employed.
  • the illumination optical system and the projection optical system that is, the reticle chamber in which the reticle is arranged is also surrounded by the casing 11, and the inside of the casing 11 may be replaced with an inert gas as described above. .
  • wiring and fiber cables (not shown) disposed in the casing 11 are also made of tetrafluoroethylene (registered trademark) tetrafluoroethylene, a material that suppresses the generation of impurity gases. — It is preferably coated with various fluoropolymer materials such as terfluoro (alkyl vinyl ether) and tetrafluoroethylene-hexafluoropropene copolymer.
  • the wiring is used, for example, to supply electric power to a motor for driving a reticle blind and a palette plate.
  • fiber cables are used, for example, for reticles and wafers. It is used to emit alignment light to perform alignment.
  • the exposure light emitted from the light source 4 is made uniform through the light transmission system 6 and the illumination optical system 5 to uniformly illuminate the reticle 3, and any light on the reticle 3
  • the pattern forms an image on a predetermined exposure area on the wafer 2 via the projection optical system 7 and is projected and transferred.
  • the wafer 2 is moved to a predetermined position and positioned by the stage device 17, and the projection transfer of the pattern to the next exposure area is performed.
  • the projection transfer of the pattern onto the entire wafer 2 is performed by the so-called step-and-repeat method in which the movement and positioning of the wafer 2 and the projection transfer of the pattern are sequentially repeated.
  • the periphery of the light source 4, the illumination optical system 5, the light transmission system 6, and the projection optical system 7 are surrounded by the casing 11, and the inert gas is supplied into the interior. Is done.
  • the atmosphere in the optical path of the exposure light from the light source 4 to the wafer 2 is replaced with the inert gas, and the exposure light passes through the inert gas atmosphere. Therefore, it is possible to prevent the generation of ozone generated by the photochemical reaction of the exposure light with the air.
  • the environment is not impaired, the light use efficiency (transmittance) of the exposure light is not reduced, and the surface of an optical element such as a lens or a mirror disposed on the optical path of the exposure light is not clouded. Therefore, the performance of the projection exposure apparatus 1 can be stably exhibited.
  • the supply pipes 12 and 14 for supplying inert gas to the casing 11 use stainless steel pipes or Teflon tubes, which are materials for suppressing the generation of impurity gases. Generation of outgas from the gas itself can be minimized, and internal contamination of the inert gas introduced into the casing 11 can be minimized. As a result, it is possible to suppress a decrease in the transmittance of optical elements such as lenses disposed in the light source 4, the light transmission system 6, the illumination optical system 5, the projection optical system 7, and the like, and to reduce the original performance of the projection exposure apparatus 1. We can show enough. Also, from a long-term perspective, it is possible to suppress the performance degradation of the optical element that has occurred conventionally, and to maintain the required performance for a long time. Further, since the supply pipe 14 is provided with a filter 15, impurity gas mixed with the inert gas supplied into the casing 11 can be removed. Can be enhanced.
  • a distribution section 13 is provided on the downstream side of the filter 15, and a plurality of supply pipes 12 connected to the casing 11 are connected to the distribution section 13.
  • the number of the filters 15 can be minimized, and the above-described effects can be achieved with a minimum cost.
  • the positions of the distribution unit 13 and the filter 15 are not limited, and may be disposed inside the chamber 10 or outside the chamber 10. Good.
  • the inert gas into the casing 10 with only one supply pipe instead of using a plurality of supply pipes 12.
  • the distribution section 13 May be omitted.
  • the supply pipes 12, 14 are made of stainless steel pipes, Teflon tubes, etc., but other materials can be used as long as they generate little impurity gas from themselves. is there. Further, for example, only the inner peripheral surface and the outer peripheral surface of the supply pipes 12 and 14 may be formed of the above-described material. In this case, for the supply pipes 12 and 14 located outside the chamber 10, only the inner peripheral surface may be formed of the above-described material.
  • the casing 11 to which the inert gas is supplied via the stainless steel pipe and the Teflon tube is one which has been washed with an ultrasonic wave or a solvent before being installed in the apparatus. Thereby, generation of impurity gas can be further suppressed.
  • the casing 11 especially the inner peripheral surface of the casing 11 that houses the light transmission system is usually coated with chrome, but since the coating itself may generate impurity gas, it is solid. It is preferred to form the casing 11 with metal.
  • the wiring and the fiber cable disposed in the casing 11 are also covered with the impurity gas generation suppressing material.
  • the nylon coating may be used, and the nylon coating may be wrapped or coated with aluminum foil. With this configuration as well, generation of impurity gas from the coating can be suppressed.
  • the wiring, the fiber cable, and the like be covered with an impurity gas generation suppressing material, and further be wound or covered with aluminum foil.
  • an aluminum foil may be provided on the inner and outer peripheral surfaces of the inert gas supply pipes 12 and 14 and the tube.
  • the filter 15 is provided in the supply pipe 14 to remove the impurity gas mixed with the inert gas supplied into the casing 11.
  • the air supply for the air stage is used to remove the impurity gas present in the air supplied to the air stage.
  • the tube may be provided with a filter. With such a configuration, the contamination of the air in the chamber can be further suppressed.
  • the Teflon tube is desirably used as described above since the air stage is a movable member.
  • the air for the air stage it is desirable to use the same or a different inert gas as the inert gas supplied into the casing 11. If the same gas as the inert gas supplied into the casing 11 is used, a decrease in the gas concentration in the casing can be prevented. Further, any filter may be used as the filter 15 as long as the impurity gas mixed in the inert gas can be removed.
  • the filter 15 can be an organic filter that removes silicon-based organic substances (for example, siloxane / silazane), or an activated carbon that removes plasticizers (such as phthalsan esters) and flame retardants (such as phosphoric acid and chlorine-based substances).
  • Filter for example, trademark “Gigasoap” manufactured by Niyu Corporation)
  • Zeolite Fill Yuichi or the like can be used.
  • the present invention has an object to prevent an impurity gas from being mixed into an inert gas supplied to an optical path of exposure light of a projection exposure apparatus. Any configuration other than the configuration described above may be used.
  • the supply pipe for supplying the inert gas is used to suppress generation of impurity gas.
  • the discharge pipe for discharging the gas in the casing from the casing may be formed of the impurity gas generation suppressing material.
  • the projection exposure apparatus 1 is of the step-and-repeat type, the present invention is also applicable to a scanning projection exposure apparatus that exposes the pattern of the reticle 3 by synchronously moving the reticle 3 and the wafer 2. Can be applied.
  • the types of projection exposure apparatus are not limited to those used for semiconductor manufacturing, and include, for example, a liquid crystal projection exposure apparatus that exposes a liquid crystal display element pattern to a square glass plate, and a thin film magnetic head.
  • the projection optical system 7 may be any of a total reflection system, a total refraction system, and a catadioptric system, and the magnification may be not only a reduction system but also any of an equal magnification and an enlargement system.
  • the light source used as the exposure light in the projection exposure apparatus 1, A r F excimer not limited to one The one (1 9 3 nm), K r F excimer one The one (2 4 8 nm), F 2 laser one ( 157 nm), or a harmonic of a YAG laser or a metal vapor laser, or EUV (Extreme Ultra Violet) light with an emission spectrum at 5 to 5 nm (soft X-ray region), and even X-rays. Charged particle beam can also be used.
  • an inert gas such as nitrogen, helium, neon, argon, krypton, xenon, or radon may be used.
  • an inert gas such as nitrogen, helium, neon, argon, krypton, xenon, or radon
  • use is made of chemically clean dry air air from which substances that cause lens fogging, such as ammonia ions floating in a clean room, or air with a humidity of 5% or less
  • air with a humidity of 5% or less are used.
  • At least the inner peripheral surface of the supply pipe for supplying the inert gas to the casing is made of, for example, stainless steel, tetrafluoroethylene, tetrafluoroethylene, ethylene-terfluoro (alkyl vinyl ether), tetrafluoro. It is made of an impurity gas generation suppressing material such as various fluorine polymers such as ethylene-hexafluoropropene copolymer. Therefore, generation of impurity gas from the supply pipe itself is suppressed.
  • the internal contamination of the inert gas introduced into the casing can be minimized, the transmittance of optical elements such as lenses can be suppressed, and the original performance of the projection exposure apparatus can be fully exhibited. .

Abstract

A projection exposure device (1) irradiates the pattern of a mask (3) with exposure light and transfers the image of the pattern to a substrate (2). The device comprises a casing (11) enclosing at least part of the path of the exposure light, and a source (16) for supplying inert gas to the casing (11) through pipes (12, 14). The tubes (12, 14) include inner walls formed of a material, such as stainless steel or tetrafluoroethylene, incapable of producing impurity gases.

Description

明 細 書 投影露光装置および投影露光方法 技術分野  Description Projection exposure apparatus and projection exposure method
本発明は、 露光光で投影されたマスクのパターンの像を基板上に転写する投影 露光装置に関し、 例えば、 半導体素子や液晶表示素子の製造工程に好適に用いら れる投影露光装置および投影露光方法に関する。 背景技術  The present invention relates to a projection exposure apparatus that transfers an image of a mask pattern projected by exposure light onto a substrate, for example, a projection exposure apparatus and a projection exposure method suitably used in a manufacturing process of a semiconductor element or a liquid crystal display element. About. Background art
半導体素子や液晶表示素子等のデバイスの製造工程において重要な位置を占め るフォトリソグラフイエ程では、 フォトマスクまたはレチクル (以降、 単に 「レ チクル」 と称する) の回路パターンを、 投影光学系を介し、 感光剤を塗布したゥ ェハまたはガラスプレート等の基板上に転写する投影露光装置が用いられている。 近年、 半導体集積回路の集積度が高まるにつれ、 このような投影露光装置として は、 基板をステップ 'アンド ' リピート方式で順次移動させつつ、 基板上の複数 の露光領域にパターンを順次転写していく、 いわゆるステツパーが主流となって いる。  In the photolithography process, which is an important part of the manufacturing process of devices such as semiconductor devices and liquid crystal display devices, the circuit pattern of a photomask or reticle (hereinafter simply referred to as a “reticle”) is transmitted through a projection optical system. A projection exposure apparatus that transfers a wafer onto a substrate such as a wafer or a glass plate coated with a photosensitive agent is used. In recent years, as the degree of integration of semiconductor integrated circuits has increased, such a projection exposure apparatus has been designed to sequentially transfer a pattern to a plurality of exposure regions on a substrate while sequentially moving the substrate in a step-and-repeat manner. The so-called stepper is the mainstream.
このようなステッパー等の投影露光装置において、 光源から射出される露光光 としてはレーザー光が多用されている。 特に近年では、 半導体素子の回路パター ンが微細化の一途をたどっていることから、 これに対応するため露光波長の短波 長化が図られ、 例えば波長 1 9 3 n mの A r Fエキシマレーザ一等が用いられつ つある。  In such a projection exposure apparatus such as a stepper, a laser beam is often used as exposure light emitted from a light source. In particular, in recent years, the circuit pattern of semiconductor devices has been steadily miniaturized, and accordingly, the exposure wavelength has been shortened to cope with this. For example, an ArF excimer laser having a wavelength of 193 nm has been developed. Are being used.
ところが、 例えば A r Fエキシマレーザ一等の露光光を用いた場合には、 その 発光スぺクトル線が酸素の吸収スぺクトル領域と重なるため、 酸素による吸収に よって光利用効率が低下するとともに、 オゾン発生の原因となる。 特に、 オゾン は有害であるばかりか、 光利用効率 (透過率) にも悪影響を及ぼし、 さらにはィ オンや空気中の浮遊物と化学反応を起こしてレンズ等の光学素子表面に白濁を生 じさせ、 投影露光装置の性能低下の原因となる。 また、 A r Fエキシマレ一ザ一等の露光光を用いた場合には、 雰囲気中の硫酸 成分、 硝酸成分、 アンモニア、 アミン類、 シロキサン類等の不純物ガスが、 光化 学反応等の反応によって硫酸アンモニゥムゃ硝酸アンモニゥム等の物質に変質し、 それら物質がレンズ等の光学素子の表面に付着しやすく、 これによつても光学素 子の光利用効率を悪化させるという問題がある。 However, for example, when exposure light such as an ArF excimer laser is used, the emission spectrum line overlaps the oxygen absorption spectrum region, so that the light utilization efficiency is reduced by the absorption by oxygen, and It causes ozone generation. In particular, ozone is not only harmful, but also has an adverse effect on light use efficiency (transmittance), and furthermore, causes a chemical reaction with ions and suspended matter in the air, causing white turbidity on the surfaces of optical elements such as lenses. This causes a decrease in the performance of the projection exposure apparatus. In addition, when exposure light such as ArF excimer laser is used, impurity gases such as sulfuric acid component, nitric acid component, ammonia, amines, and siloxanes in the atmosphere are converted by a reaction such as a photochemical reaction. It changes into substances such as ammonium sulfate and ammonium nitrate, and these substances tend to adhere to the surface of an optical element such as a lens, which also has the problem of deteriorating the light use efficiency of the optical element.
以上の問題を回避するため、 A r Fエキシマレーザ一等を露光光として用いる 投影露光装置には、 従来より、 露光光の光路の雰囲気を、 光化学反応に対して不 活性な窒素ガスやヘリウムガス等の不活性ガスに置換する技術が採用されている (例えば、 米国特許第 5, 5 5 9, 5 8 4号 (対応日本出願:特開平 6— 2 6 0 3 8 5号公報、 および特開平 6— 2 6 0 3 8 6号公報) を参照)。  In order to avoid the above problems, projection exposure apparatuses that use an ArF excimer laser or the like as the exposure light have conventionally employed an atmosphere in the optical path of the exposure light, such as nitrogen gas or helium gas, which is inert to photochemical reactions. For example, a technique of replacing with an inert gas such as US Pat. No. 5,559,584 (corresponding Japanese application: Japanese Patent Application Laid-Open No. Hei 6-260385, See Kaihei 6-2608686).
しかしながら、 上述したような従来の投影露光装置には、 以下のような問題が 存在する。  However, the conventional projection exposure apparatus as described above has the following problems.
まず、 露光光の雰囲気を不活性ガスに置換するため、 ガスボンベ等のガス供給 源から供給パイプを通して投影露光装置に不活性ガスを供給しているが、 この供 給パイプには従来よりナイ口ンチューブ等の樹脂系の材料が多用されており、 こ の供給パイプ自体から不純物ガス (いわゆるアウトガス) が発生し、 上述した光 学素子の光利用効率の悪化の原因となる。  First, in order to replace the atmosphere of the exposure light with an inert gas, an inert gas is supplied to the projection exposure apparatus from a gas supply source such as a gas cylinder through a supply pipe. Resin-based materials such as tubes are frequently used, and impurity gas (so-called outgas) is generated from the supply pipe itself, which causes deterioration of the light use efficiency of the optical element described above.
また、 ガスボンベ等のガス供給源から供給する窒素等の不活性ガスは、 一般に 乾燥させて水分を減少させる処理のみを施したものであり、この不活性ガス中に、 他の不純物ガスが混入している場合もある。  In addition, inert gas such as nitrogen supplied from a gas supply source such as a gas cylinder is generally subjected to only a process of drying to reduce moisture, and other impurity gas is mixed into the inert gas. In some cases.
このように上記供給パイプ等の配管自体から発生する不純物ガスや、 供給され る不活性ガス中に混在する不純物ガスは、 光学素子に付着するだけでその光学的 性能に悪影響を及ぼすという問題がある。 発明の開示  As described above, there is a problem that the impurity gas generated from the pipe itself such as the supply pipe or the impurity gas mixed in the supplied inert gas adversely affects the optical performance only by adhering to the optical element. . Disclosure of the invention
本発明は、 以上のような問題を考慮してなされたもので、 不純物ガスによる光 学的性能の低下を防ぐことのできる投影露光装置および投影露光方法を提供する ことを目的とする。  The present invention has been made in consideration of the above problems, and has as its object to provide a projection exposure apparatus and a projection exposure method that can prevent a decrease in optical performance due to an impurity gas.
本発明の投影露光装置は、 マスク (図中符号 3、 以下同様) のパターンを露光 光で照明し、 前記パターンの像を基板 (2) 上に転写する投影露光装置 (1) で あって、 前記露光光の光路の少なくとも一部を囲むケーシング (1 1) と、 この ケ一シング (1 1) の内部に供給管 (12, 14) を介して不活性ガスを供給す る供給装置(16) とを有し、 前記供給管(12, 14) の少なくとも内周面が、 不純物ガス発生抑制材料で形成されている。 The projection exposure apparatus of the present invention exposes a pattern of a mask (reference numeral 3 in the figure, the same applies hereinafter). A projection exposure apparatus (1) that illuminates with light and transfers an image of the pattern onto a substrate (2), the casing (11) surrounding at least a part of an optical path of the exposure light, A supply device (16) for supplying an inert gas through a supply pipe (12, 14) into the interior of (11), wherein at least the inner peripheral surface of the supply pipe (12, 14) has impurities. It is formed of a gas generation suppressing material.
本発明の投影露光装置では、 供給管 (12, 14) の少なくとも内周面が、 従 来用いられていたナイロンチューブよりも不純物ガスの発生が少ない不純物ガス 発生抑制材料で形成されているから、 供給管 (12, 14) 自体からの不純物ガ スの発生が抑えられる。 したがって、 ケーシング内に導入する不活性ガスの内部 汚染を最小限に抑えることができ、 レンズ等の光学素子の透過率低下を抑えて、 投影露光装置の本来の性能を十分発揮することができる。 また、 従来発生してい た光学素子の性能低下を抑えることができるから、 必要な性能を長期にわたって 維持することが可能である。  In the projection exposure apparatus of the present invention, at least the inner peripheral surface of the supply pipe (12, 14) is formed of an impurity gas generation suppressing material which generates less impurity gas than the conventionally used nylon tube. The generation of impurity gas from the supply pipe (12, 14) itself is suppressed. Therefore, the internal contamination of the inert gas introduced into the casing can be minimized, and the transmittance of the optical element such as a lens can be suppressed from being reduced, so that the original performance of the projection exposure apparatus can be sufficiently exhibited. In addition, since the performance degradation of the optical element, which has conventionally occurred, can be suppressed, the required performance can be maintained for a long period of time.
ここで不純物ガスとしては、 光学素子の表面に付着する物質を含むァゥトガス や、 露光光を吸収する吸光物質 (酸素、 オゾンなど) を含むものとする。  Here, the impurity gas includes a gas containing a substance that adheres to the surface of the optical element, and a light absorbing substance (oxygen, ozone, etc.) that absorbs exposure light.
前記不純物ガス発生抑制材料としては、 ステンレス鋼、 四フッ化工チレン (い わゆるテフロン:登録商標)、 テトラフルォロエチレン一テルフルォロ (アルキル ビニールエーテル)、テトラフルォロエチレン—へキサフルォロプロペン共重合体 等の各種フッ素ポリマー等が例示できるが、 これらに限定されることはない。 供 給管(12, 14) はその全体が前記材料で形成されていてもよいし、供給管(1 2, 14) の内周面のみが前記材料で形成されていてもよい。  Examples of the impurity gas generation suppressing materials are stainless steel, tetrafluoroethylene (so-called Teflon: registered trademark), tetrafluoroethylene-terfluoro (alkyl vinyl ether), and tetrafluoroethylene-hexafluoro. Examples include various fluoropolymers such as propene copolymers, but are not limited thereto. The supply pipe (12, 14) may be entirely formed of the above material, or only the inner peripheral surface of the supply pipe (12, 14) may be formed of the above material.
前記供給管に、 この供給管を通して供給される不活性ガスから不純物を除去す るフィルターが配設されていてもよい。 この場合には、 ケ一シングに供給される 不活性ガスから不純物を除去することができ、 前述の効果をより顕著にすること ができる。  The supply pipe may be provided with a filter for removing impurities from an inert gas supplied through the supply pipe. In this case, impurities can be removed from the inert gas supplied to the casing, and the above-mentioned effect can be made more remarkable.
前記フィルタ一の後段側に分配部が設けられ、 この分配部には、 前記ケーシン グの各部に接続される複数の前記供給管が接続されていてもよい。この場合には、 フィル夕一の数を最小限とすることができ、 最小限のコス卜で前記効果が得られ る。 一方、 本発明に係る投影露光方法は、 マスクのパターンを露光光で照明し、 前 記パターンの像を基板上に転写する方法であって、 前記露光光の光路の少なくと も一部をケ一シングで囲み、 前記ケ一シングの内部に、 少なくとも内面が不純物 ガス発生抑制材料で形成された供給管を介して不活性ガスを供給し、 前記露光光 の光路を前記不活性ガスで満たした状態で、 前記パターンの像を基板上に転写す る。 この方法によっても前記同様の効果を得ることができる。 図面の簡単な説明 A distribution unit may be provided on a downstream side of the filter, and the distribution unit may be connected to the plurality of supply pipes connected to each unit of the casing. In this case, the number of fills can be minimized, and the above effects can be obtained with a minimum cost. On the other hand, a projection exposure method according to the present invention is a method of illuminating a pattern of a mask with exposure light and transferring an image of the pattern onto a substrate, wherein at least a part of an optical path of the exposure light is partially broken. An inert gas was supplied to the inside of the casing through a supply pipe at least an inner surface of which was formed of an impurity gas generation suppressing material, and an optical path of the exposure light was filled with the inert gas. In this state, the image of the pattern is transferred onto a substrate. According to this method, the same effect as described above can be obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る投影露光装置の一実施例を示す模式図である。  FIG. 1 is a schematic view showing one embodiment of the projection exposure apparatus according to the present invention.
図 2は、 前記投影露光装置における不活性ガス供給経路を示す図である。 発明を実施するための最良の形態  FIG. 2 is a diagram showing an inert gas supply path in the projection exposure apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の具体的な実施形態について、 図 1および図 2を参照して説明す る。  Hereinafter, specific embodiments of the present invention will be described with reference to FIG. 1 and FIG.
図 1は、本発明の実施の形態に係る投影露光装置の構成を模式的に示すもので、 この図において、 符号 1は投影露光装置、 2はウェハ (基板)、 3はレチクル (マ スク)、 4は露光光を射出する光源、 5はレチクル 3に露光光を照射する照明光学 系、 6は光源 4と照明光学系 5との間に配置される送光系、 7はレチクル 3から の露光光をウェハ 2上に投射する投影光学系である。  FIG. 1 schematically shows a configuration of a projection exposure apparatus according to an embodiment of the present invention. In this figure, reference numeral 1 denotes a projection exposure apparatus, 2 denotes a wafer (substrate), and 3 denotes a reticle (mask). Reference numeral 4 denotes a light source that emits exposure light, 5 denotes an illumination optical system that irradiates the reticle 3 with exposure light, 6 denotes a light transmission system that is disposed between the light source 4 and the illumination optical system 5, and 7 denotes a light source from the reticle 3. The projection optical system projects the exposure light onto the wafer 2.
この投影露光装置 1は、 露光光として、 例えば光源 4から A r F光源エキシマ レーザ等の短波長レーザ一光を射出するようになっている。  The projection exposure apparatus 1 emits one short-wavelength laser beam such as an ArF light source excimer laser from the light source 4 as exposure light.
照明光学系 5は、 フライアイレンズ, リレーレンズ, コンデンサレンズ等の各 種レンズや、 視野絞り, ブラインド等を含む。 この照明光学系 5は、 光源 4から 射出されて送光系 6を介して送り込まれた露光光の光束の一様化を図り、 レチク ル 3に露光光を照射する。  The illumination optical system 5 includes various lenses such as a fly-eye lens, a relay lens, and a condenser lens, a field stop, and a blind. The illumination optical system 5 equalizes the luminous flux of the exposure light emitted from the light source 4 and sent through the light transmission system 6, and irradiates the reticle 3 with the exposure light.
図 2に示すように、 投影露光装置 1では、 照明光学系 5と投影光学系 7とが、 チャンバ一 1 0の内部に収められている。 チャンバ一 1 0の内部は図示しない温 調機によって雰囲気が所定の温度に保たれるように制御されている。  As shown in FIG. 2, in the projection exposure apparatus 1, the illumination optical system 5 and the projection optical system 7 are housed inside the chamber 110. The inside of the chamber 110 is controlled by a temperature controller (not shown) so that the atmosphere is maintained at a predetermined temperature.
光源 4からの露光光の光路、 すなわち光源 4 , 送光系 6 , 照明光学系 5, およ び投影光学系 7は、 それぞれケ一シング 1 1によって包囲されている。 各ケ一シ ング 11には、 内部に不活性ガスを供給するための供給管 12の一端が接続され ており、 各供給管 12の他端は、 例えばチャンバ一 10の内部に配設された分配 部 13に接続されている。 この分配部 1 3にはガスボンベ等のガス供給源との間 を結ぶ供給管 14が接続されており、 この供給管 14を通して、 図示しないガス 供給源から、 例えば窒素ガスやヘリウムガス等、 光化学反応に対して不活性な不 活性ガスが分配部 13に供給される。 The optical path of the exposure light from the light source 4, i.e., the light source 4, the light transmission system 6, the illumination optical system 5, The projection optical system 7 is surrounded by a casing 11. One end of a supply pipe 12 for supplying an inert gas to the inside of each casing 11 is connected, and the other end of each supply pipe 12 is disposed, for example, inside the chamber 110. It is connected to the distribution unit 13. A supply pipe 14 is connected to the distribution section 13 for connection to a gas supply source such as a gas cylinder. Through this supply pipe 14, a gas supply source (not shown), for example, nitrogen gas, helium gas, etc. An inert gas that is inert to the gas is supplied to the distribution unit 13.
供給管 14の途中には図示しないガス供給源から送給される不活性ガス中の不 純物ガスを除去するフィルター 15が設けられている。  A filter 15 for removing an impurity gas in the inert gas supplied from a gas supply source (not shown) is provided in the supply pipe 14.
供給管 12, 分配部 13, 供給管 14, およびフィルタ一 15によって、 ケー シング 1 1に不活性ガスを供給する供給装置 16が構成されている。  The supply pipe 12, the distribution section 13, the supply pipe 14, and the filter 15 constitute a supply device 16 for supplying an inert gas to the casing 11.
分配部 13は、 光源 4, 送光系 6, 照明光学系 5、 投影光学系 7の各部に至る 供給管 12に不活性ガスを分配するとともに、 図示しない制御部によって、 各供 給管 12に分配する不活性ガスの圧力および流量を調整する。  The distribution unit 13 distributes the inert gas to the supply pipes 12 that reach the light source 4, the light transmission system 6, the illumination optical system 5, and the projection optical system 7, and controls the supply pipes 12 by a control unit (not shown). Adjust the pressure and flow rate of the inert gas to be distributed.
供給管 12, 14は、 少なくとも従来用いていたナイロンチューブよりもァゥ トガスの発生の少ない材料である不純物ガス発生抑制材料、 例えばステンレス鋼 からなるパイプ (以下、 「ステンレスパイプ」 と称する)、 または四フッ化工チレ ン (いわゆるテフロン:登録商標)、 テトラフルォロエチレン一テルフルォロ (ァ ルキルビニールエーテル)、テ卜ラフルォロエチレン—へキサフルォロプロペン共 重合体等の各種フッ素ポリマー製のチューブ (以下、 単に 「テフロンチューブ」 と称する) によって形成されている。 ステンレス鋼の種類としては、 オーステナ イト系、 フェライ卜系、 マルテンサイト系に分類される。 特に本実施例で使用す るステンレス鋼は、 オーステナイト系ステンレス鋼であることが望ましい。 なぜ なら、 オーステナイト系ステンレス鋼は、 他に比べて加工性が優れているからで ある。 特に、 鉄を主成分とし、 クロム 16. 00〜18. 00重量%、 ニッケル 10. 00〜: 14. 00重量%、 モリブデン 2. 00〜3. 00重量%、 シリコ ン 1. 00重量%以下、 マンガン 2. 00重量%以下、 炭素 0. 08重量%以下、 リン 0. 045重量%以下、 ィォゥ 0. 03重量%以下等を含むものを使用する ことが好ましい。 供給管 1 2 , 1 4のうち、 固定状態にあるものはステンレスパイプで形成し、 可動部や定期的に交換等を行う場所についてはテフロンチューブを用いると好ま しい。 ここで、 可動部としては、 たとえば、 照明光学系内に配置されるレチクル の照明領域を変更するレチクルブラインドゃ、 レチクルの照明条件を変更するた めに、 複数の開口絞り (輸帯、 開口径が異なる絞り、 光軸から偏心した位置に 4 つの二次光源を作るための絞りなど) を有する夕一レット板等がある。 なお、 ス テンレスパイプの内周面および外周面には電解研磨を施すことが好ましく、一方、 テフロンチューブは、 溶剤等で予め洗浄しておくことが好ましい。 The supply pipes 12, 14 are made of at least an impurity gas generation suppressing material that is a material that generates less gas than a conventionally used nylon tube, for example, a pipe made of stainless steel (hereinafter, referred to as “stainless steel pipe”), or Various fluoropolymers such as tetrafluoroethylene (so-called Teflon: registered trademark), tetrafluoroethylene-terfluoro (alkyl vinyl ether), tetrafluoroethylene-hexafluoropropene copolymer, etc. It is formed by a tube (hereinafter, simply referred to as “Teflon tube”). Stainless steels are classified into austenitic, ferritic and martensitic types. In particular, the stainless steel used in this embodiment is preferably an austenitic stainless steel. This is because austenitic stainless steels have better workability than others. In particular, iron is the main component, chromium 16.00 to 18.00% by weight, nickel 10.00 to: 14.00% by weight, molybdenum 2.00 to 3.00% by weight, silicon 1.00% by weight or less. It is preferable to use those containing 2.00% by weight or less of manganese, 0.08% by weight or less of carbon, 0.045% by weight or less of phosphorus, and 0.03% by weight or less. Of the supply pipes 12 and 14, it is preferable to use a stainless steel pipe for the fixed one, and to use a Teflon tube for the movable part and the place where the replacement is performed regularly. Here, the movable part includes, for example, a reticle blind す る for changing an illumination area of a reticle arranged in the illumination optical system, and a plurality of aperture stops (transport zone, aperture diameter) for changing reticle illumination conditions. The aperture plate has a different aperture, an aperture for making four secondary light sources at positions eccentric from the optical axis, etc.). The inner and outer peripheral surfaces of the stainless steel pipe are preferably subjected to electrolytic polishing, while the Teflon tube is preferably cleaned in advance with a solvent or the like.
このような投影露光装置によれば、 図示しないガス供給源などから供給管 1 4 を通して不活性ガスが供給されると、 この不活性ガスは、 フィルター 1 5を通し て不純物ガスが取り除かれた後、 分配部 1 3に送り込まれる。 そして分配部 1 3 において不活性ガスは各供給管 1 2に所定の圧力 '流量となるよう分配された後、 光源 4 , 送光系 6, 照明光学系 5 , 投影光学系 7のそれぞれのケーシング 1 1に 送り込まれ、 露光光の光路雰囲気が不活性ガスに置換される。  According to such a projection exposure apparatus, when an inert gas is supplied from a gas supply source or the like (not shown) through the supply pipe 14, the inert gas is removed after the impurity gas is removed through the filter 15. Are sent to the distribution unit 13. Then, in the distribution section 13, the inert gas is distributed to each of the supply pipes 12 so as to have a predetermined pressure and flow rate, and then the casings of the light source 4, the light transmission system 6, the illumination optical system 5, and the projection optical system 7 are provided. It is sent to 11 and the atmosphere of the optical path of the exposure light is replaced with an inert gas.
また、 図 1に示したように、 上記投影光学系 7の最終レンズとウェハ 2との間 にも、 適当な方法により所望の不活性ガス雰囲気が形成される。 具体的には、 投 影光学系 7の下端からウェハ 2が載置されたステージ装置 1 Ί全体を図示しない 容器で包囲し、 その容器に不活性ガスを充填する方法や、 投影光学系 7の下端と ウェハ 2との間の開放空間に不活性ガスを連続的に供給して不活性ガス雰囲気を 形成する方法等が採用できる。さらに照明光学系と投影光学系との間、すなわち、 レチクルが配置されるレチクル室もケーシング 1 1で包囲し、 そのケーシング 1 1内を上述したものと同様に、 不活性ガスで置換すればよい。  Also, as shown in FIG. 1, a desired inert gas atmosphere is formed between the final lens of the projection optical system 7 and the wafer 2 by an appropriate method. Specifically, the entire stage device 1 さ れ on which the wafer 2 is placed from the lower end of the projection optical system 7 is surrounded by a container (not shown), and the container is filled with an inert gas. A method of continuously supplying an inert gas to an open space between the lower end and the wafer 2 to form an inert gas atmosphere can be employed. Further, between the illumination optical system and the projection optical system, that is, the reticle chamber in which the reticle is arranged is also surrounded by the casing 11, and the inside of the casing 11 may be replaced with an inert gas as described above. .
さらに、 上記ケーシング 1 1内に配置される配線やファイバーケーブル等 (図 示なし) についても、 不純物ガス発生抑制材料である四フッ化工チレン (いわゆ るテフロン:登録商標)、 テトラフルォロエチレン—テルフルォロ (アルキルビニ —ルエーテル)、テトラフルォロエチレン一へキサフルォロプロペン共重合体等の 各種フッ素ポリマー製の材料で被覆されていることが好ましい。 なお、 配線は、 例えばレチクルブラインドゃターレツト板を駆動するためのモー夕に電力を供給 するために使用される。 また、 ファイバーケーブルは、 例えばレチクルとウェハ とのァライメントを行うために、 ァライメント光を射出するために使用される。 このような投影露光装置 1では、 光源 4から射出された露光光は、 送光系 6お よび照明光学系 5を介して均一化されてレチクル 3を均一に照明し、 レチクル 3 上の任意のパターンが投影光学系 7を介してウェハ 2上の所定の露光領域に像を 結び投影転写される。 In addition, wiring and fiber cables (not shown) disposed in the casing 11 are also made of tetrafluoroethylene (registered trademark) tetrafluoroethylene, a material that suppresses the generation of impurity gases. — It is preferably coated with various fluoropolymer materials such as terfluoro (alkyl vinyl ether) and tetrafluoroethylene-hexafluoropropene copolymer. The wiring is used, for example, to supply electric power to a motor for driving a reticle blind and a palette plate. Also, fiber cables are used, for example, for reticles and wafers. It is used to emit alignment light to perform alignment. In such a projection exposure apparatus 1, the exposure light emitted from the light source 4 is made uniform through the light transmission system 6 and the illumination optical system 5 to uniformly illuminate the reticle 3, and any light on the reticle 3 The pattern forms an image on a predetermined exposure area on the wafer 2 via the projection optical system 7 and is projected and transferred.
そして、 この露光領域へのパターンの転写が完了した後には、 ステージ装置 1 7によりこのウェハ 2が所定の位置まで移動させられて位置決めされ、 次の露光 領域へのパターンの投影転写が行われる。 このようにして、 ウェハ 2の移動 '位 置決めと、 パターンの投影転写とを順次繰り返す、 いわゆるステップ'アンド ' リピ一ト方式によりウェハ 2全体へのパターンの投影転写が行われる。  After the transfer of the pattern to the exposure area is completed, the wafer 2 is moved to a predetermined position and positioned by the stage device 17, and the projection transfer of the pattern to the next exposure area is performed. In this manner, the projection transfer of the pattern onto the entire wafer 2 is performed by the so-called step-and-repeat method in which the movement and positioning of the wafer 2 and the projection transfer of the pattern are sequentially repeated.
上述したように、 投影露光装置 1では、 光源 4 , 照明光学系 5, 送光系 6, お よび投影光学系 7の周囲がケーシング 1 1によって包囲され、 その内部には不活 性ガスが供給される。  As described above, in the projection exposure apparatus 1, the periphery of the light source 4, the illumination optical system 5, the light transmission system 6, and the projection optical system 7 are surrounded by the casing 11, and the inert gas is supplied into the interior. Is done.
これにより、 光源 4からウェハ 2に至るまでの露光光の光路の雰囲気が不活性 ガスに置換され、 露光光は不活性ガス雰囲気中を通過する。 したがって、 露光光 が空気と光化学反応を起こすことによって発生するオゾンの発生を防止すること ができる。 その結果、 環境を損なったり、 露光光の光利用効率 (透過率) を低下 させることもなく、 さらに露光光の光路上に配置されたレンズやミラー等の光学 素子表面に白濁を生じさせることも防ぐことができるので、 投影露光装置 1の性 能を安定して発揮させることができる。  As a result, the atmosphere in the optical path of the exposure light from the light source 4 to the wafer 2 is replaced with the inert gas, and the exposure light passes through the inert gas atmosphere. Therefore, it is possible to prevent the generation of ozone generated by the photochemical reaction of the exposure light with the air. As a result, the environment is not impaired, the light use efficiency (transmittance) of the exposure light is not reduced, and the surface of an optical element such as a lens or a mirror disposed on the optical path of the exposure light is not clouded. Therefore, the performance of the projection exposure apparatus 1 can be stably exhibited.
また、 ケーシング 1 1に不活性ガスを供給するための供給管 1 2、 1 4に、 不 純物ガス発生抑制材料であるステンレスパイプあるいはテフロンチューブを用い ているので、 供給管 1 2, 1 4そのものからのアウトガスの発生を最小限に抑え ることができ、 ケーシング 1 1内に導入する不活性ガスの内部汚染を最小限に抑 えることができる。 この結果、 光源 4, 送光系 6, 照明光学系 5、 投影光学系 7 等に配置されるレンズ等の光学素子の透過率低下を抑えることができ、 投影露光 装置 1としての本来の性能を十分発揮できる。 また、 長期的な観点で見れば、 従 来発生していた光学素子の性能低下を抑えることができ、 長期にわたり所要の性 能を維持することが可能である。 さらに、 供給管 1 4にフィル夕一 1 5を備えたので、 ケ一シング 1 1内に供給 される不活性ガスに混在する不純物ガスを除去することができ、 これによつても 上記効果を高めることができる。 The supply pipes 12 and 14 for supplying inert gas to the casing 11 use stainless steel pipes or Teflon tubes, which are materials for suppressing the generation of impurity gases. Generation of outgas from the gas itself can be minimized, and internal contamination of the inert gas introduced into the casing 11 can be minimized. As a result, it is possible to suppress a decrease in the transmittance of optical elements such as lenses disposed in the light source 4, the light transmission system 6, the illumination optical system 5, the projection optical system 7, and the like, and to reduce the original performance of the projection exposure apparatus 1. We can show enough. Also, from a long-term perspective, it is possible to suppress the performance degradation of the optical element that has occurred conventionally, and to maintain the required performance for a long time. Further, since the supply pipe 14 is provided with a filter 15, impurity gas mixed with the inert gas supplied into the casing 11 can be removed. Can be enhanced.
加えて、 フィルター 1 5の後段側に分配部 1 3が設けられ、 この分配部 1 3に ケ一シング 1 1に接続される複数の供給管 1 2が接続された構成となっているの で、 フィルタ一 1 5の数を最小限とすることができ、 最小限のコストで上記各効 果を奏することができる。  In addition, a distribution section 13 is provided on the downstream side of the filter 15, and a plurality of supply pipes 12 connected to the casing 11 are connected to the distribution section 13. The number of the filters 15 can be minimized, and the above-described effects can be achieved with a minimum cost.
なお、 上記の実施の形態において、 分配部 1 3やフィルター 1 5の位置は限定 されず、 チャンバ一 1 0の内部に配置してもよいし、 チャンバ一 1 0の外部に配 置してもよい。  In the above embodiment, the positions of the distribution unit 13 and the filter 15 are not limited, and may be disposed inside the chamber 10 or outside the chamber 10. Good.
また、 例えば供給管 1 2を複数本とするのではなく、 一本のみでケ一シング 1 0内への不活性ガスの供給を行うことも可能であり、 その場合には、 分配部 1 3 を省略してもよい。  Also, for example, it is possible to supply the inert gas into the casing 10 with only one supply pipe instead of using a plurality of supply pipes 12. In this case, the distribution section 13 May be omitted.
加えて、 供給管 1 2, 1 4をステンレスパイプ、 テフロンチューブ等で形成す る構成としたが、 それ自体からの不純物ガスの発生が少ない材料であれば、 他の 材料を用いることが可能である。 また、 例えば供給管 1 2, 1 4の内周面と外周 面のみを上記材料で形成するようにしてもよい。 この場合、 チャンバ一 1 0の外 部に位置する供給管 1 2, 1 4については、 内周面のみを上記材料で形成するよ うにしてもよい。  In addition, the supply pipes 12, 14 are made of stainless steel pipes, Teflon tubes, etc., but other materials can be used as long as they generate little impurity gas from themselves. is there. Further, for example, only the inner peripheral surface and the outer peripheral surface of the supply pipes 12 and 14 may be formed of the above-described material. In this case, for the supply pipes 12 and 14 located outside the chamber 10, only the inner peripheral surface may be formed of the above-described material.
また、 本実施の形態において、 ステンレスパイプ、 テフロンチューブを介して 不活性ガスが供給されるケーシング 1 1は、 装置内に取り付けられる前に、 超音 波洗浄又は溶剤で洗浄されているものを用いることにより、 より不純物ガスの発 生を抑制することができる。  Further, in the present embodiment, the casing 11 to which the inert gas is supplied via the stainless steel pipe and the Teflon tube is one which has been washed with an ultrasonic wave or a solvent before being installed in the apparatus. Thereby, generation of impurity gas can be further suppressed.
さらに、 ケーシング 1 1として、 特に送光系を収容するケーシング 1 1の内周 面については、 通常、 クロム塗装が施されているが、 塗装自身から不純物ガスが 発生する可能性があるので、 無垢金属でケ一シング 1 1を形成することが好まし い。  Further, as the casing 11, especially the inner peripheral surface of the casing 11 that houses the light transmission system is usually coated with chrome, but since the coating itself may generate impurity gas, it is solid. It is preferred to form the casing 11 with metal.
以上の実施の形態では、 ケーシング 1 1内に配置される配線やファイバ一ケ一 ブルなどについても不純物ガス発生抑制材料で被覆されていたが、 配線やケープ ルを従来と同様にナイロン被覆したものとし、 そのナイロン被覆にアルミ箔を巻 いたり、 被覆してもよい。 この構成によっても、 被覆からの不純物ガスの発生を 抑制することができる。 ただし、 上記配線やファイバーケーブル等は、 不純物ガ ス発生抑制材料で被覆し、 さらにこれをアルミ箔で巻いたり被覆する構成とする のが最も好ましい。 In the above embodiment, the wiring and the fiber cable disposed in the casing 11 are also covered with the impurity gas generation suppressing material. As in the past, the nylon coating may be used, and the nylon coating may be wrapped or coated with aluminum foil. With this configuration as well, generation of impurity gas from the coating can be suppressed. However, it is most preferable that the wiring, the fiber cable, and the like be covered with an impurity gas generation suppressing material, and further be wound or covered with aluminum foil.
同様に、 不活性ガスの供給管 1 2, 1 4やチューブのその内周面や外周面にァ ルミ箔を設けてもよい。  Similarly, an aluminum foil may be provided on the inner and outer peripheral surfaces of the inert gas supply pipes 12 and 14 and the tube.
さらに本実施形態では、 供給管 1 4にフィルタ一 1 5を設け、 ケ一シング 1 1 内に供給される不活性ガスに混在する不純物ガスを除去しているが、 ウェハステ 一ジゃレクチルステ一ジなどにおいて、 ステ一ジを空気圧で浮上させて駆動させ るエアステージを使用する場合には、 エアステージに供給される空気中に存在す る不純物ガスを除去するために、 エアステージ用の空気供給管にもフィルターを 設けてもよい。 このような構成にすることにより、 チャンバ内の空気の汚染をい つそう抑制することができる。  Further, in the present embodiment, the filter 15 is provided in the supply pipe 14 to remove the impurity gas mixed with the inert gas supplied into the casing 11. For example, when using an air stage that drives the stage by lifting it with air pressure, the air supply for the air stage is used to remove the impurity gas present in the air supplied to the air stage. The tube may be provided with a filter. With such a configuration, the contamination of the air in the chamber can be further suppressed.
エアステージ用の供給管としては、 エアステージが可動部材であるため、 前述 したようにテフロンチューブを用いることが望ましい。 なお、 エアステージ用の エアとしては、 ケーシング 1 1内に供給される不活性ガスと同じか、 又は異なる 不活性ガスを用いることが望ましい。 ケ一シング 1 1内に供給される不活性ガス と同じガスを用いれば、 ケ一シング内でのガス濃度低下を防ぐことができる。 さらに、 フィルター 1 5としては、 不活性ガス中に混在する不純物ガスを除去 することができれば、 いかなるものを用いてもよい。 例えば、 フィルター 1 5と して、 シリコン系の有機物 (例えば、 シロキサンゃシラザン) を除去する有機物 フィルターや、 可塑剤 (フタルサンエステルなど)、 難燃剤 (燐酸、 塩素系物質) などを除去する活性炭フィルタ一 (例えば、 ニッ夕株式会社製の商標 「ギガソ一 プ」) ゃゼォライトフィル夕一などを用いることができる。  As the supply pipe for the air stage, the Teflon tube is desirably used as described above since the air stage is a movable member. As the air for the air stage, it is desirable to use the same or a different inert gas as the inert gas supplied into the casing 11. If the same gas as the inert gas supplied into the casing 11 is used, a decrease in the gas concentration in the casing can be prevented. Further, any filter may be used as the filter 15 as long as the impurity gas mixed in the inert gas can be removed. For example, the filter 15 can be an organic filter that removes silicon-based organic substances (for example, siloxane / silazane), or an activated carbon that removes plasticizers (such as phthalsan esters) and flame retardants (such as phosphoric acid and chlorine-based substances). Filter (for example, trademark “Gigasoap” manufactured by Niyu Corporation)) Zeolite Fill Yuichi or the like can be used.
また、 本発明は、 投影露光装置の露光光の光路に供給する不活性ガスに不純物 ガスが混入するのを防ぐことを目的としたものであるので、 投影露光装置 1の構 成については、 前述した構成以外のいかなるものであってもよい。  In addition, the present invention has an object to prevent an impurity gas from being mixed into an inert gas supplied to an optical path of exposure light of a projection exposure apparatus. Any configuration other than the configuration described above may be used.
なお、 本実施例では、 不活性ガスを供給する供給管として、 不純物ガス発生抑 制材料で形成された供給管を用いる例について説明したが、 ケーシングからケ一 シング内の気体を排出する排出管を不純物ガス発生抑制材料で形成してもよい。 また、前記投影露光装置 1はステップ 'アンド ·リピート式のものであつたが、 レチクル 3とウェハ 2とを同期移動させてレチクル 3のパターンを露光する走査 型の投影露光装置にも、 本発明を適用することができる。 また投影露光装置の種 類としては半導体製造用のものに限定されることなく、 例えば、 角形のガラスプ レートに液晶表示素子パターンを露光する液晶用の投影露光装置や、 薄膜磁気へ ッドを製造するための露光装置等にも本発明を広く適用することが可能である。 さらに、投影光学系 7は、全反射系、全屈折系、反射屈折系のいずれでも良く、 その倍率は、 縮小系のみならず等倍および拡大系のいずれであっても良い。 In this embodiment, the supply pipe for supplying the inert gas is used to suppress generation of impurity gas. Although the example using the supply pipe formed of the control material has been described, the discharge pipe for discharging the gas in the casing from the casing may be formed of the impurity gas generation suppressing material. Although the projection exposure apparatus 1 is of the step-and-repeat type, the present invention is also applicable to a scanning projection exposure apparatus that exposes the pattern of the reticle 3 by synchronously moving the reticle 3 and the wafer 2. Can be applied. The types of projection exposure apparatus are not limited to those used for semiconductor manufacturing, and include, for example, a liquid crystal projection exposure apparatus that exposes a liquid crystal display element pattern to a square glass plate, and a thin film magnetic head. The present invention can be widely applied to an exposure apparatus or the like for performing the above. Further, the projection optical system 7 may be any of a total reflection system, a total refraction system, and a catadioptric system, and the magnification may be not only a reduction system but also any of an equal magnification and an enlargement system.
また、 投影露光装置 1で露光光として用いる光源は、 A r Fエキシマレ一ザ一 ( 1 9 3 n m) に限らず、 K r Fエキシマレ一ザ一 (2 4 8 n m)、 F 2レーザ一 ( 1 5 7 n m) , あるいは Y A Gレーザーや金属蒸気レーザ一の高調波や、例えば 5〜: L 5 n m (軟 X線領域) に発振スペクトルを有する E U V (Extreme Ultra Violet) 光、 さらには X線等の荷電粒子線を用いることもできる。 The light source used as the exposure light in the projection exposure apparatus 1, A r F excimer not limited to one The one (1 9 3 nm), K r F excimer one The one (2 4 8 nm), F 2 laser one ( 157 nm), or a harmonic of a YAG laser or a metal vapor laser, or EUV (Extreme Ultra Violet) light with an emission spectrum at 5 to 5 nm (soft X-ray region), and even X-rays. Charged particle beam can also be used.
不活性ガスとして、 例えば、 窒素、 ヘリウム、 ネオン、 アルゴン、 クリプトン、 キセノン、 ラドン等の不活性ガスを用いてもよい。 好ましくは、 化学的にクリ一 ンなドライエア (レンズの曇りの原因となる物質、 例えば、 クリーンルーム内を 浮遊するアンモニゥムイオン等が除去された空気、 又は湿度が 5 %以下の空気) が用いられる。  As the inert gas, for example, an inert gas such as nitrogen, helium, neon, argon, krypton, xenon, or radon may be used. Preferably, use is made of chemically clean dry air (air from which substances that cause lens fogging, such as ammonia ions floating in a clean room, or air with a humidity of 5% or less) are used. .
さらに、 前述した構成を適宜選択して組み合わせてもよいし、 本発明の主旨を 逸脱しない範囲内であれば、 本発明にいかなる構成を組み合わせてもよい。 産業上の利用の可能性  Further, the above-described configurations may be appropriately selected and combined, or any configuration may be combined with the present invention without departing from the gist of the present invention. Industrial applicability
本発明の投影露光装置は、 ケーシングに不活性ガスを供給する供給管の少なく とも内周面が、 例えばステンレス鋼、 または四フッ化工チレン、 テトラフルォロ エチレン一テルフルォロ (アルキルビニールエーテル)、テトラフルォロエチレン 一へキサフルォロプロペン共重合体等の各種フッ素ポリマ一等の、 不純物ガス発 生抑制材料で形成されている。 よって、 供給管自体からの不純物ガスの発生が抑 えられ、 ケーシング内に導入する不活性ガスの内部汚染を最小限に抑えることが でき、 レンズ等の光学素子の透過率低下を抑えて、 投影露光装置の本来の性能を 十分発揮することができる。 また、 長期にわたり所要の性能を維持することが可 能である。 In the projection exposure apparatus of the present invention, at least the inner peripheral surface of the supply pipe for supplying the inert gas to the casing is made of, for example, stainless steel, tetrafluoroethylene, tetrafluoroethylene, ethylene-terfluoro (alkyl vinyl ether), tetrafluoro. It is made of an impurity gas generation suppressing material such as various fluorine polymers such as ethylene-hexafluoropropene copolymer. Therefore, generation of impurity gas from the supply pipe itself is suppressed. As a result, the internal contamination of the inert gas introduced into the casing can be minimized, the transmittance of optical elements such as lenses can be suppressed, and the original performance of the projection exposure apparatus can be fully exhibited. . In addition, it is possible to maintain the required performance for a long time.

Claims

請求の範囲 The scope of the claims
1 . マスクのパターンを露光光で照明し、 前記パターンの像を基板上に転写す る投影露光装置であって、 前記露光光の光路の少なくとも一部を囲むケ一シング と、 このケ一シングの内部に供給管を介して不活性ガスを供給する供給装置とを 具備し、 前記供給管の少なくとも内周面が、 不純物ガス発生抑制材料で形成され ている投影露光装置。 1. A projection exposure apparatus that illuminates a pattern of a mask with exposure light and transfers an image of the pattern onto a substrate, wherein the casing surrounds at least a part of an optical path of the exposure light; And a supply device for supplying an inert gas to the inside of the device via a supply tube, wherein at least an inner peripheral surface of the supply tube is formed of an impurity gas generation suppressing material.
2 . 請求の範囲第 1項記載の投影露光装置であって、 前記不純物ガス発生抑制 材料として、 ステンレス鋼、 または四フッ化工チレン、 テトラフルォロエチレン 一テルフルォロ (アルキルビニールエーテル)、テトラフルォロエチレン一へキサ フルォロプロペン共重合体等の各種フッ素ポリマーが用いられている投影露光装 置。 2. The projection exposure apparatus according to claim 1, wherein the material for suppressing the generation of impurity gas is stainless steel, styrene tetrafluoride, tetrafluoroethylene monoterfluoro (alkyl vinyl ether), tetrafluoro. Projection exposure equipment using various fluoropolymers such as ethylene-hexafluoropropene copolymer.
3 . 請求の範囲第 1項記載の投影露光装置であって、 前記供給管に、 この供給 管を通して供給される不活性ガスから不純物を除去するフィル夕一が配設されて いる投影露光装置。 3. The projection exposure apparatus according to claim 1, wherein the supply pipe is provided with a filter for removing impurities from an inert gas supplied through the supply pipe.
4 . 請求の範囲第 3項記載の投影露光装置であって、 前記フィルターの後段側 に分配部が設けられ、 この分配部には、 前記ケ一シングの各部に接続される複数 の前記供給管が接続されている投影露光装置。 4. The projection exposure apparatus according to claim 3, wherein a distribution unit is provided downstream of the filter, and the distribution unit includes a plurality of supply pipes connected to each unit of the casing. Is connected to the projection exposure apparatus.
5 . 請求の範囲第 1項記載の投影露光装置であって、 前記露光光の光路近傍に 配置される電力供給用の配線は、 不純物ガス発生抑制材料で被覆されている投影 5. The projection exposure apparatus according to claim 1, wherein the power supply wiring disposed near the optical path of the exposure light is covered with an impurity gas generation suppressing material.
6 . 請求の範囲第 5項記載の投影露光装置であって、 前記不純物ガス発生抑制 材料は、 アルミニウム箔である投影露光装置。 6. The projection exposure apparatus according to claim 5, wherein the impurity gas generation suppressing material is an aluminum foil.
7 . マスクのパターンを露光光で照明し、 前記パターンの像を基板上に転写す る投影露光方法において、 前記露光光の光路の少なくとも一部をケーシングで囲 み、 前記ケ一シングの内部に、 少なくとも内面が不純物ガス発生抑制材料で形成 された供給管を介して不活性ガスを供給し、 前記露光光の光路を前記不活性ガス で満たした状態で、 前記パターンの像を基板上に転写することを特微とする投影 露光方法。 7. A projection exposure method for illuminating a pattern of a mask with exposure light and transferring an image of the pattern onto a substrate, wherein at least a part of an optical path of the exposure light is surrounded by a casing, and the inside of the casing is formed. Transferring an image of the pattern onto a substrate in a state in which an inert gas is supplied through a supply pipe having at least an inner surface formed of an impurity gas generation suppressing material, and an optical path of the exposure light is filled with the inert gas. A projection exposure method that specializes in
PCT/JP2000/000126 1999-01-13 2000-01-13 Method and apparatus for projection exposure WO2000042639A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU20034/00A AU2003400A (en) 1999-01-13 2000-01-13 Method and apparatus for projection exposure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/7008 1999-01-13
JP700899 1999-01-13

Publications (1)

Publication Number Publication Date
WO2000042639A1 true WO2000042639A1 (en) 2000-07-20

Family

ID=11654042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000126 WO2000042639A1 (en) 1999-01-13 2000-01-13 Method and apparatus for projection exposure

Country Status (2)

Country Link
AU (1) AU2003400A (en)
WO (1) WO2000042639A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002270502A (en) * 2001-02-24 2002-09-20 Carl Zeiss Semiconductor Manufacturing Technologies Ag Optical beam guide system and method of preventing contamination of optical components contained in system
JP2002313714A (en) * 2000-12-14 2002-10-25 Nikon Corp Device manufacturing apparatus, wiring unit and filter unit
EP2287644A2 (en) 2009-08-18 2011-02-23 Mitsubishi Electric Corporation Light source device and method of producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347033A (en) * 1986-08-08 1988-02-27 Mitsubishi Heavy Ind Ltd High-speed machining device
US5559584A (en) * 1993-03-08 1996-09-24 Nikon Corporation Exposure apparatus
JPH09275054A (en) * 1996-04-03 1997-10-21 Nikon Corp Semiconductor manufacturing apparatus
JPH10242029A (en) * 1997-02-27 1998-09-11 Canon Inc Aligner
EP0867773A2 (en) * 1997-03-25 1998-09-30 Nikon Corporation Stage apparatus and method for producing circuit device utilizing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6347033A (en) * 1986-08-08 1988-02-27 Mitsubishi Heavy Ind Ltd High-speed machining device
US5559584A (en) * 1993-03-08 1996-09-24 Nikon Corporation Exposure apparatus
JPH09275054A (en) * 1996-04-03 1997-10-21 Nikon Corp Semiconductor manufacturing apparatus
JPH10242029A (en) * 1997-02-27 1998-09-11 Canon Inc Aligner
EP0867773A2 (en) * 1997-03-25 1998-09-30 Nikon Corporation Stage apparatus and method for producing circuit device utilizing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313714A (en) * 2000-12-14 2002-10-25 Nikon Corp Device manufacturing apparatus, wiring unit and filter unit
JP2002270502A (en) * 2001-02-24 2002-09-20 Carl Zeiss Semiconductor Manufacturing Technologies Ag Optical beam guide system and method of preventing contamination of optical components contained in system
EP2287644A2 (en) 2009-08-18 2011-02-23 Mitsubishi Electric Corporation Light source device and method of producing the same

Also Published As

Publication number Publication date
AU2003400A (en) 2000-08-01

Similar Documents

Publication Publication Date Title
US6571057B2 (en) Optical instrument, gas replacement method and cleaning method of optical instrument, exposure apparatus, exposure method and manufacturing method for devices
US7119878B2 (en) Exposure apparatus and method of cleaning optical element of the same
JP2003234287A (en) Lithographic projection apparatus, device manufacturing method and device manufacturing thereby
JP2006093724A (en) Lithography apparatus, gas supply system, method for purging, and device-manufacturing method and device manufactured thereby
EP1670040B1 (en) Projection exposure apparatus, projection exposure method, and device manufacturing method
US7030960B2 (en) Exposure apparatus and purging method for the same
JP3977377B2 (en) Exposure apparatus and device manufacturing method
JP2005244015A (en) Aligner, optical cleaning method of optical element in aligner, and process for fabricating device having fine pattern
WO2003105203A1 (en) Exposure system and exposure method
WO2000042639A1 (en) Method and apparatus for projection exposure
JP3619157B2 (en) Optical element, exposure apparatus having the optical element, cleaning apparatus, and optical element cleaning method
JP4510433B2 (en) Exposure apparatus and cleaning method
US6590631B2 (en) Exposure apparatus and device manufacturing method using the same
JP2010267926A (en) Substrate processing apparatus, and method of manufacturing device
JP4438072B2 (en) Method for cleaning lens of exposure apparatus
JP4174239B2 (en) Gas supply apparatus, exposure system, and device manufacturing method
WO2002065183A1 (en) Lens-barrel, exposure device, and method of manufacturing device
JP2005166897A (en) Aligner
JP2003257822A (en) Optical device and aligner
JP2003115433A (en) Exposure method and aligner
JP2000021744A (en) Exposure equipment and manufacture of device using the equipment
JP2005072076A (en) Aligner, chemical filter, and manufacturing method of device
JP2005019744A (en) Component of aligner, mirror cylinder and aligenr, and method for manufacturing device
JPWO2004006309A1 (en) Exposure method and exposure apparatus
JP2001345265A (en) Optical device, gas substitution method of optical device, aligner, and exposure method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 594141

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase