WO2000056843A1 - Ethylene polymers - Google Patents

Ethylene polymers Download PDF

Info

Publication number
WO2000056843A1
WO2000056843A1 PCT/EP2000/002264 EP0002264W WO0056843A1 WO 2000056843 A1 WO2000056843 A1 WO 2000056843A1 EP 0002264 W EP0002264 W EP 0002264W WO 0056843 A1 WO0056843 A1 WO 0056843A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
carbon atoms
moles
mixtures according
copolymers
Prior art date
Application number
PCT/EP2000/002264
Other languages
French (fr)
Inventor
Federico Milani
Paolo Falchi
Original Assignee
Societa' Italiana Additivi Per Carburanti S.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societa' Italiana Additivi Per Carburanti S.R.L. filed Critical Societa' Italiana Additivi Per Carburanti S.R.L.
Priority to AU32895/00A priority Critical patent/AU3289500A/en
Publication of WO2000056843A1 publication Critical patent/WO2000056843A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1666Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing non-conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1641Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aliphatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/165Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1625Hydrocarbons macromolecular compounds
    • C10L1/1633Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds
    • C10L1/1658Hydrocarbons macromolecular compounds homo- or copolymers obtained by reactions only involving carbon-to carbon unsaturated bonds from compounds containing conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/06Metallocene or single site catalysts

Definitions

  • the present invention relates to additives for liquid hydrocarbon compositions, for example gas oils, generally known as middle distillates which show improved CFPP values as defined hereinunder.
  • middle distillates contain alkanes which at low temperatures tend to precipitate under the form of waxes, which are linear chain paraffins having a limited solubility and which tend to crystallize as the temperature decreases. In this way gelled structures are formed which cause the middle distillate fluidity loss. Therefore there are problems of middle distillate storage, transfer and feeding through pipes, pumps and besides plugging phenomena of the line filters and of those of the propulsor feeding ducts take place.
  • middle distillates are characterized from the physical point of view by the following features determined with various standardized methods: Cloud Point (C.P.), Pour Point (P.P.), Cold Filter Plugging Point (C.F.P.P.), Wax Antisettling (W.A.S.), etc.
  • Cloud Point C.P.
  • Pour Point P.P.
  • Cold Filter Plugging Point C.F.P.P.
  • Wax Antisettling W.A.S.
  • CFI additives
  • the additives have the purpose to modify the wax crystals formed at low temperatures both reducing the sizes and modifying the shape thereof. Indeed the crystals having reduced sizes give less problems of filter plugging.
  • Another property required to the additives is that to maintain in suspension the formed crystals, i.e. to obtain the result to have a reduced settling rate. Also this effect concurs to the non filter plugging at low temperatures and specifically to reduce wax accumulation on the storage tanks bottom of middle distillates.
  • ethylene copolymers with unsaturated esters for example vinylacetates , maleic or fumaric acid, or unsaturated monocarboxylic acid esters, for example acrylates
  • unsaturated esters for example vinylacetates , maleic or fumaric acid, or unsaturated monocarboxylic acid esters, for example acrylates
  • the ethylene/vinylacetate (EVA) , fumarates , propionates , etc. can be mentioned. See for example USP 3,661,541, USP 4,211,534, EP 153,176, EP 153,177.
  • Ethylene/alpha-olefins (co) polymers suitable to the same purpose are also known in the prior art, see USP 5,097,084, which are characterized by the substantial absence of inversions of the alpha-olefin linking, for example, propylene, as indicated by the X 2 and/or X 4 parameters lower than or equal to about 0.02, determined by ⁇ 3 C NMR according to the method described by J.C. Randal in "Macromolecules" 11, 33 (1978).
  • the ethylene/propylene copolymers having said value of the mentioned parameters show improved CFPP values than the copolymers wherein said values are not satisfied, for example in comparison with those obtained by using vanadium-based catalysts .
  • the patent application WO 91/11488 describes as additives ethylene (co) olymers with alpha-olefins, in particular ethylene/propylene copolymers obtained by polymerization of ethylene with alpha-olefins in the presence of catalysts based on a) coordination organometallic compounds which are cyclopentadienyl derivatives of a metal of the Group 4b of the Periodic Table and they can be mono-, di- and tri -cyclopenta- dienes and derivatives thereof of the transition metal, with b) alumoxanes , which are the reaction products of aluminum trialkyls with water and specifically methylalumoxane .
  • the obtained ethylene/alpha-olefin copolymers have the essential characteristic to have at least 30% of the polymeric chains with ethylene and ethylidene terminal unsaturations .
  • These copolymers can be combined with one or more additives known in the art as CFI such as vinylacetates, fumarates , acrylates, propionates and polar compounds, for example tallowa ines .
  • Ethylene copolymers with alpha-olefins usable as additives to increase the properties at low temperatures of the midle distillate obtainable by reaction of a bis-cyclopentadienyl derivative, characterized by having two phenoxide groups linked to the transition metal, are also known. See for example EP 848,020.
  • An object of the present invention are mixtures comprising the following components: a) ethylene copolymers (C 2 ) with one or more of the following comonomers :
  • - C one or more linear or branched alpha-olefins, from 3 to 20 carbon atoms, and/or
  • - CS one or more dienes, conjugated or not, selected from:
  • the cyclic dienes are selected from vinylcycloalkenes or di-cyclo-pentadienes , such as vinylcyclohexene or di-cyclopentadiene- ethyliden-norbornene ;
  • - vinylaromatic monomers such as styrene, 2,4 vinylstyrene , optionally one or more hydrogen atoms of the ring(s) of the cyclic or aromatic monomers being substituted by saturated alkyl groups from 1 to 12 carbon atoms or by unsaturated alkyl groups from 2 to 12 carbon atoms, optionally one or more carbon atoms of the ring being substituted by heteroatoms , preferably nitrogen, oxygen, sulphur; the comonomer total amount being in the range 1-50% by moles, preferably 5-25% by moles, the average molecular weight by number being in the range 300-25,000, preferably 700-15,000; and b) ethylene copolymers with one or more comonomers mentioned in a) , the comonomer total amount being in the range 1-50% by moles, preferably 5-25% by moles, the average molecular weight by number being in the range 700-15,000; the composition difference in terms of total sum of the comono
  • composition difference in terms of total sum of the comonomers of a) and b) is at most 10-15% by moles.
  • the ⁇ r-olefins mentioned with Car are preferably: propylene (C3), 1-butene (C4), 1-hexene (C6), 1-octene (C8), 1-decene (CIO), 1-dodecene (C12), 4-metl- 1-pentene.
  • the Ca olefin total amount is in the range 5-25% by moles.
  • the conjugated dienes for example butadiene, isoprene, piperylene, 1 , 3 -hexadiene , 1 , 3 -octadiene, 2,4- decadiene, di-cyclopentadiene; non conjugated dienes such as 1 , 4 -hexadiene , 7 -methyl- 1 , 6 -octadiene ; cyclic non conjugated dienes such as norbornene, ethylidennorbornene (ENB), 4 -vinyl - cyclohexene and vinylaromatic monomers such as styrene, 2,4-vi- nylstyrene, etc., can be mentioned.
  • non conjugated dienes such as 1 , 4 -hexadiene , 7 -methyl- 1 , 6 -octadiene
  • cyclic non conjugated dienes such as norbornene, ethylidennorbornene
  • the C ⁇ diene amount is in the range 0-25% by moles, preferably 1-5% by moles.
  • copolymers examples include C 2 /C ⁇ r (II); C 2 /C ⁇ (III); C 2 /C ⁇ ./C ⁇ (IV).
  • copolymers (II) are: ethylene/propylene (C2/C3); ethylene/propylene/butene (C2/C3/- C4 ) ; ethylene/butene/hexene (C2/C4/C6); ethylene/butene/octene (C2/C4/C8), etc.
  • copolymers (III) are: ethylene/ethylidennorbornene (also indicated ethylene/ 5- ethylidene- 2 -norbornene) (C2/ENB); ethylene/styrene; ethylene/ /ENB/4 vinyl -cyclohexene, etc.
  • copolymers (IV) are: ethylene/propylene/ethylidennorbornene ( C2/C3/ENB ) ; ethylene- /butene/ethylidennorbornene (C2/C4/ENB); ethylene/octene/ethy- lidennorbornene (C2/C8/ENB); ethylene/propylene/butadiene; ethylene/propylene/octene/ethylidennorbornene (C2/C3/C8/ENB) ; ethylene/butene/octene/ENB/4 vinyl - cyclohexene , etc.
  • the a) and b) (co) polymers are obtainable by polymerization of the monomers in the presence of catalysts comprising the reaction product between:
  • D is an element of the group from Ilia to Via of the
  • Element Periodic Table with metalloidic characteristics preferably boron, phosphorus or arsenic with valence 3 or
  • Q are selected from the following groups: hydrides, halides , alkyls, aryls optionally substituted, for example with halogens, preferably F, alkoxides, aryloxides , dialkylamido, or R Q COO " wherein R 0 ranges from 1 to 20 carbon atoms, with the proviso that Q is equal to halide only once; q is an integer equal to the D valence plus 1.
  • the metallocene compound 1) is preferably a bis-cyclopentadienyl derivative of general formula:
  • M is a metal from the lllb group to the IVb group or of the lanthanide series of the Element Periodic Table;
  • Cp x and Cp 2 equal to or different from each other, represent the following groups bound to M with delocalized ⁇ bonds, specifically with an eta 5 bond when the groups are selected from cyclopentadiene, indene, fluorene, or derivatives thereof substituted in the indene and fluorene case also with the phenilic hydrogenated ring (rings) and with substituents both in the phenil and cyclopentadienyl rings, also with hetero- atoms; or with ⁇ bonds for example in the cyclooctatriene case; or said Cp 1 Cp 2 groups constrained with M through a bivalent linking bridge, for example -R- type, wherein R is an alkylene, preferably from 1 to 4 carbon atoms, -Si(R') 2 " wherein R' is an alkyl from 1 to 10 C
  • metallocene compounds of patent application WO 91/11488 wherein L 2 and L 3 are for example halogens or alkyl groups or hydrogen can be used.
  • L 2 and L 3 are for example halogens or alkyl groups or hydrogen
  • the co-catalyst alumoxane has the general formula:
  • R b is an alkyl group from 1 to 5 C atoms, preferably methyl, m is an integer from 1 to 30, preferably from 4 to 20; m' is an integer from 3 to 20, preferably from 4 to 20.
  • the structure of invention (co)polymers was characterized by DSC (Differential Scanning Calorimetry) and 13 C NMR in order to determine the % of cristalline material, the length of ethylene sequences and the amount of comonomer inversions.
  • the alumoxane compound of the catalytic system is preferably prepared by reaction of aluminum trimethyl and water, obtaining a mixture of linear and cyclic compounds. They are generally prepared by putting into contact an aluminum trialkyl solution with water in suitable organic solvents, for example aliphatic hydrocarbons.
  • alumoxanes are compounds containing Al-O-Al bonds, having a variable molar ratio O/Al , obtainable in the art by reaction, under controlled conditions, of an aluminum alkyl, or an aluminum alkyl halide, with water and, in the case of aluminum trimethyl, also with an hydrate salt, as aluminum hexahydrate sulphate, copper pentahydrate sulphate and iron pentahydrate sulphate .
  • the molar ratio between Al of the 2) component alumoxane with respect to the metal amount of component 1) (metallocene) is in the range 10,000:1-100:1, preferably 5,000:1-500:1. In the case of the boron compound the ratio is in the range 0.1- 4.0:1 and preferably 0.5-2.0:1.
  • L 1 can be NH 3 , aniline, pyridine, quinoline, alkylamines, dialkylamines, trialkylamines with the alkyl from 1 to 8 C atoms, preferably from 1 to 4, phenylamines, etc. All these compounds can respectively form quaternary ammonium salts, pyridinium salts, quinolinium salts which represent (L 1 -H) ⁇ .
  • Exemplifying compounds which can be mentioned are the following: substituted trialkyl ammonium salts, for example triethylammo- nium tetraph ⁇ nylborate , tripropylammoniu tetraphenylborate , tris (n-butyl ) ammonium tetraphenylborate, trimethylammoniu te- trakis (p- tolyl )borate , tributylammonium tetrakis ( pentafluoro- phenyl ) borate , tripropylammonium tetrakis ( 2 , 4 -dime - thylphenyl )borate , tributylammonium tetrakis ( 3 , 5 -di ethylphe- nyl)borate, triethylammonium tetrakis ( 3 , 5 -ditrifluoromethyl
  • N,N-dialkyl anilinium salts can also be used, such as for example N,N-dimethyl anilinium tetraphenylborate, N.N-die- thyl anilinium tetraphenylborate, N,N- 2 , 4 , 6 -pentamethylani- linium tetraphenylborate, etc.
  • dialkyl ammonium salts such as di- ( i-propyl )ammoniumtetrakis (pentafluorophenyl )borate , dieyelohexylammonium tetraphenylborate, etc.
  • triaryl phosphonium salts such as triphenylphosphfonium tetraphenylborate, t r i ( me t hy 1 ph eny 1 ) pho s phon i um tetrakis pentafluorophenylborate , tri (dimethylphenyl ) phosphonium tetraphenylborate, etc...
  • Preferred non limiting examples of the 1) compound which can be used to prepare the cation complex are titanium, zirconium, vanadium, hafnium (Hf), chromium, lanthanium deri- vatives, ecc . , the titanium or Zr compounds are preferred. Examples which can be mentioned are: bis (eta 5 cyclopentadie- nyl ) Zr diphenate; bis (eta 5 cyclopentadienyl ) Zr of 2,3,6- trimethylphenate , bis (eta 5 cyclopentadienyl) Hf diphenate, bis tetramethylcyclopentadienyl Zr diphenate, etc.
  • metallocene catalysts which can be used are well known in the prior art, for example in EP 129,368, EP 128,046, EP 260,299, these three patents are herein incorporated by reference .
  • the preferred catalysts of the present invention are obtained for example by direct reaction of bis-cyclopentadienyl metal dialkyl , preferably dimethyl, with the corresponding phenols. See the European patent application 848,020.
  • the polymerization to obtain the invention copolymers can be carried out by operating in suspension, in solution or in gas phase at temperatures generally in the range 0°C-150°C at a pressure generally in the range 1-300 bar, optionally using a molecular weight regulator, for example hydrogen.
  • a molecular weight regulator for example hydrogen.
  • the invention (co)polymer mixtures as above defined surprisingly show improved activities as CFPP additives with respect to the single copolymers .
  • the (co- ) olymers obtained by using as catalyst the preferred 1) component in combination with the preferred 2) cocatalyst, for example boranes and/or borates as above mentioned, are pre- f erred .
  • the physical characteristics measurements of the middle distillates are carried out by determining the following parameters: Cloud Point (C.P.), Pour Point (P.P.) and Cold Filter Plugging Point (C.F.P.P.) as defined in the ASTM D2500- 81; ASTM D97-66 and IP 309/83 methods, respectively.
  • Cloud Point C.P.
  • Pour Point P.P.
  • Cold Filter Plugging Point C.F.P.P.
  • the invention (co) polymers can be combined with other cold flow improvers (CFI) known in the prior art to obtain synergic effects both as regards CFPP and the filterability, and the WAS effect.
  • CFI cold flow improvers
  • ethylvinylacetates fumarates, acrylates, propionates are preferably used.
  • the invention polymers are combined with the above mentioned CFIs and furthermore also with a third CFI selected from the nitrogen polar compounds.
  • a nitrogen polar compound is generally selected from aminic salts and/or amides formed by reaction of at least a molar part of a substituted hydrocarbide with a molar part of hydrocarbon acid having from 1 to 4 carboxylic acid groups and an anhydride thereof; esters/amides containing from 30 to 300, preferably from 50 to 150 total carbon atoms, can also be used.
  • aminic salts and/or amides formed by reaction of at least a molar part of a substituted hydrocarbide with a molar part of hydrocarbon acid having from 1 to 4 carboxylic acid groups and an anhydride thereof; esters/amides containing from 30 to 300, preferably from 50 to 150 total carbon atoms, can also be used.
  • Suitable amines are usually long chain C 12 -C 4g primary, secondary, tertiary or quaternary amines or mixtures thereof , but shorter chains can be used if the resulting nitrogen polar compound is soluble in oil; it will usually contain from about 30 to 300 total carbon atoms.
  • the nitrogen polar compound preferably contains at least an alkyl segment of linear C 8 -C 2 chain.
  • Suitable amines comprise primary, secondary and tertiary amines, preferably secondary amines, or quaternary ammonium salts .
  • Examples of primary amines comprise tetradecyl amine, cocoamine, and hydrogenated tallow amine.
  • secondary amines comprise dioctadecyl amine and methyl phenyl amine. Amine mixtures are also suitable and many amines derived from natural materials are mixtures .
  • a preferred amine is a secondary hydrogenated tallow amine of the HNR 3 R formula wherein R 3 and R 4 are alkyl groups derived from hydrogenated tallow greases composed of approximately 4% of C 1 , 31% of C 16 , 59 % of C 18 .
  • Examples of carb ⁇ xylic acids (and anhydrides thereof) suitable for preparing these nitrogen compounds comprise cyclo- pentane-1,2 acid dicarboxylic acid and naphthalendicarboxylic acids. Generally, these acids have about 5-13 carbon atoms in the cyclic fraction.
  • Preferred acids are benzen dicarboxylic acids such as phthalic, isophthalic and terephthalic acid.
  • the phthalic acid or its anhydride is particularly preferred.
  • the particularly preferred compound is the amido-amine salt formed by letting react a molar part of phthalic anhydride with two molar parts of dehydrogenated tallow amine.
  • Another preferred compound is the diamide formed by the dehydration of this amide-amine salt.
  • the known CFI formulations can optionally comprise other additives of fuel oils, many of which are used in the prior art or are known in the literature.
  • the additive concentration of the present invention ranges from 10 ppm to 5,000 ppm, preferably from 50 ppm to 500 ppm, more preferably from 100 to 200 ppm.
  • the weight ratios between the invention copolymer, the known CFI (for example EVA, fumarates , propionates, acrylates) and the nitrogen polar compound is the following: 10/1:10/1:10, preferably 10/1:5/1:5.
  • the molecular weight determination (both number average Mn and weight average Mw) is carried out by gel permeation chromatography (GPC - Gel Permeation Chromatography) which gives also the molecular weight distribution (MWD) .
  • GPC gel permeation chromatography
  • MWD molecular weight distribution
  • the intrinsic viscosity (dl/g) is determined according to known methods, for example in tetraline at 135°C.
  • the Mv viscometric molecular weight can also be determined by using intrinsic viscosity methods well known in the prior art. See for example: L.H. Tung, "Fractionation of Synthetic Polymers” Ed. Marcel Dekkers Inc. N.Y. 1977, J. Polymer Sci 20, 495-506, 1956; G. Moraglio, Chim. Ind . (Milano) 10 984, 1959.
  • the molecular weight distribution is generally in the range 1.5-5, preferably 1.5-3.5.
  • the A and B gas oils (middle distillates) free from additives used in the tests have the following characteristics : type A type B density (IP 160) ( 15°C/gxcm "3 ) 0.8397 0.83
  • the used reactor is a steel AISI 316 autoclave (5 1 volume) equipped with stirrer anchor shaped and able to work at a pressure ⁇ 150 bar.
  • the autoclave is equipped with 4 feeding inlets, an outlet and a water circulation cooling system.
  • the reactor is purged many times with anhydrous and hot nitrogen and maintained under pressure at 120°C for 24 hours.
  • the autoclave is cooled at 25°C maintaining the nitrogen pressure at 1 bar.
  • the polymerization is carried out for 6 minutes maintaining the pressure constant by continuous feeding of ethylene .
  • the polymerization is quickly stopped by venting and cooling the autoclave to 25°C.
  • the produced polymer is precipitated using ethanol/ acetone acidified with hydrochloric acid, washed many times with ethanol/acetone and anhydrified under vacuum.
  • the obtained polymer has been used as CFPP additive for the A and B middle distillates having the above mentioned characteristics.
  • the CFPP value has been determined by using 50 ppm of polymer.
  • Example 3 is repeated with the following variations: instead of propylene 100 g of octene and 5 bar of ethylene are used without employing hydrogen as molecular weight regulator and using a polymerization temperature of 80°C.
  • the viscometric Mv molecular weight is 10,200.
  • the number average Mn molecular weight is 5,000.
  • the obtained polymer has been used as CFPP additive for the B middle distillate having the above mentioned characteristics.
  • the CFPP value has been determined by using 50 ppm of polymer .
  • the CFPP has been determined in the B middle distillate by using a mixture of the polymers of Example 3 and Example 4 in a weight ratio between the two of 1:1 according to the present invention.
  • the CFPP value has been determined by using 50 ppm of the mixture of the two above mentioned polymers.
  • Example 4 is repeated with the following variations: instead of 100 g, 80 g of octene are used.
  • the viscometric Mv molecular weight is 13,800.
  • the number average Mn molecular weight is 6,800.
  • the obtained polymer has been used as CFPP additive for the B middle distillate having the above mentioned characteristics.
  • the CFPP value has been determined by using 50 ppm of polymer.
  • Example 3 is repeated with the following variations: 50 g of octene together with propylene, in an amount of 50 g, are also added; the polymerization temperature was of 70°C and 5 bar of ethylene without hydrogen as molecular weight regulator; 15 mg of Cp 2 Zr(bisphenoxide) solution of Example 1 and 29.5 mg of the cocatalyst of Example 2 in 50 ml of toluene are added under an overpressure of anhydrous nitrogen.
  • the polymerization is carried out for 5 minutes maintaining the pressure constant by continuous ethylene feeding.
  • the obtained polymer has been used as CFPP additive for the A and B middle distillates having the above mentioned characteristics .
  • the CFPP value has been determined by using 50 ppm of polymer .
  • the CFPP has been determined in the B middle distillate by using a mixture of the polymers of Examples 6 and 7 in a 1:1 ratio by weight.
  • the CFPP value has been determined by using 50 ppm of the mixture of the two above mentioned products.
  • Example 7 is repeated with the following variations: propylene in an amount of 50 g, octene 50 g.
  • the polymerization is carried out for 4 minutes maintaining the pressure constant by continuous ethylene feeding .
  • the viscometric Mv molecular weight is 14,000.
  • the number average Mn molecular weight is 7,200.
  • the obtained polymer has been used as CFPP additive for the B middle distillate having the above mentioned characteristics .
  • the CFPP value has been determined by using 50 ppm of polymer .
  • the CFPP has been determined in the B middle distillate by using a mixture of the polymers of Examples 7 and 9 in a 1:1 ratio by weight.
  • the CFPP value has been determined by using 50 ppm of the mixture of the two above mentioned polymers.
  • Example 3 is repeated with the following variations: instead of propylene, 100 g of octene are added; 5 bar of ethylene without using hydrogen as molecular weight regulator; 15 mg of Cp 2 Zr (bisphenoxide) solution of Example 1 and 29.5 mg of the cocatalyst of Example 2 in 50 ml of toluene under an overpressure of anhydrous nitrogen, are introduced.
  • the polymerization is carried out for 4 minutes maintaining the pressure constant by continuous ethylene feeding.
  • the obtained polymer has been used as CFPP additive for the A middle distillate having the above mentioned characteristics .
  • the CFPP value has been determined by using 50 ppm of polymer.
  • EXAMPLE 12 The CFPP has been determined in the A middle distillate by using a mixture of the polymers of Examples 3 and 11 in a ratio by weight between the two respectively of 3:1.
  • the CFPP value has been determined by using 50 ppm of the mixture of the two above mentioned polymers.
  • the CFPP has been determined in the A middle distillate by using a mixture of the polymers of Examples 3 and 7 in a ratio by weight between the two respectively of 3:1.
  • the CFPP value has been determined by using 50 ppm of the mixture of the two above mentioned polymers.

Abstract

Mixtures comprising the following components: a) ethylene copolymers (C2) with one or more of the following comonomers: Cα: one or more linear or branched alpha-olefins, from 3 to 20 carbon atoms, and/or Cβ: one or more dienes, conjugated or not; the comonomer total amount being in the range 1-50% by moles; b) ethylene copolymers with one or more comonomers mentioned in a), the comonomer total amount being in the range 1-50% by moles; the composition difference in terms of total sum of the comonomers of a) and b) being of at least 1% by moles, preferably at least 5% by moles; the a):b) ratios by weight are in the range 5:1-1:5.

Description

ETHYLENE POLYMERS
* * * * *
The present invention relates to additives for liquid hydrocarbon compositions, for example gas oils, generally known as middle distillates which show improved CFPP values as defined hereinunder.
It is well known that middle distillates contain alkanes which at low temperatures tend to precipitate under the form of waxes, which are linear chain paraffins having a limited solubility and which tend to crystallize as the temperature decreases. In this way gelled structures are formed which cause the middle distillate fluidity loss. Therefore there are problems of middle distillate storage, transfer and feeding through pipes, pumps and besides plugging phenomena of the line filters and of those of the propulsor feeding ducts take place.
These problems are well known in the art and for the cold behaviour definition, middle distillates are characterized from the physical point of view by the following features determined with various standardized methods: Cloud Point (C.P.), Pour Point (P.P.), Cold Filter Plugging Point (C.F.P.P.), Wax Antisettling (W.A.S.), etc.
Various additives (CFI), also commercial, are known in the art, having selective and/or multifunctional uses able to improve the above mentioned middle distillate cold characteristics. Generally the additives have the purpose to modify the wax crystals formed at low temperatures both reducing the sizes and modifying the shape thereof. Indeed the crystals having reduced sizes give less problems of filter plugging. Another property required to the additives is that to maintain in suspension the formed crystals, i.e. to obtain the result to have a reduced settling rate. Also this effect concurs to the non filter plugging at low temperatures and specifically to reduce wax accumulation on the storage tanks bottom of middle distillates.
It is known that the additves used to overcome such disadvantages are polymeric products .
In the prior art ethylene copolymers with unsaturated esters, for example vinylacetates , maleic or fumaric acid, or unsaturated monocarboxylic acid esters, for example acrylates , are especially known. The ethylene/vinylacetate (EVA) , fumarates , propionates , etc. , can be mentioned. See for example USP 3,661,541, USP 4,211,534, EP 153,176, EP 153,177.
Ethylene/alpha-olefins (co) polymers suitable to the same purpose are also known in the prior art, see USP 5,097,084, which are characterized by the substantial absence of inversions of the alpha-olefin linking, for example, propylene, as indicated by the X2 and/or X4 parameters lower than or equal to about 0.02, determined by ~3C NMR according to the method described by J.C. Randal in "Macromolecules" 11, 33 (1978). The ethylene/propylene copolymers having said value of the mentioned parameters show improved CFPP values than the copolymers wherein said values are not satisfied, for example in comparison with those obtained by using vanadium-based catalysts .
The patent application WO 91/11488 describes as additives ethylene (co) olymers with alpha-olefins, in particular ethylene/propylene copolymers obtained by polymerization of ethylene with alpha-olefins in the presence of catalysts based on a) coordination organometallic compounds which are cyclopentadienyl derivatives of a metal of the Group 4b of the Periodic Table and they can be mono-, di- and tri -cyclopenta- dienes and derivatives thereof of the transition metal, with b) alumoxanes , which are the reaction products of aluminum trialkyls with water and specifically methylalumoxane . The obtained ethylene/alpha-olefin copolymers have the essential characteristic to have at least 30% of the polymeric chains with ethylene and ethylidene terminal unsaturations . These copolymers can be combined with one or more additives known in the art as CFI such as vinylacetates, fumarates , acrylates, propionates and polar compounds, for example tallowa ines .
Ethylene copolymers with alpha-olefins usable as additives to increase the properties at low temperatures of the midle distillate obtainable by reaction of a bis-cyclopentadienyl derivative, characterized by having two phenoxide groups linked to the transition metal, are also known. See for example EP 848,020.
It has been surprisingly and unexpectedly found by the Applicant that mixtures of particular ethylene (co) polymers with one or more alpha-olefins as defined hereunder, show improved properties when they are used as additives to improve the middle distillate physical behaviour at low temperatures. Specifically the invention copolymers show improved values in C.F.P.P. terms.
An object of the present invention are mixtures comprising the following components: a) ethylene copolymers (C2) with one or more of the following comonomers :
- C : one or more linear or branched alpha-olefins, from 3 to 20 carbon atoms, and/or
- CS: one or more dienes, conjugated or not, selected from:
- linear from 4 to 20 carbon atoms or
- cyclic wherein the ring is from 5 to 6 carbon atoms and having a total carbon atoms till 20, preferably the cyclic dienes are selected from vinylcycloalkenes or di-cyclo-pentadienes , such as vinylcyclohexene or di-cyclopentadiene- ethyliden-norbornene ;
- vinylaromatic monomers, such as styrene, 2,4 vinylstyrene , optionally one or more hydrogen atoms of the ring(s) of the cyclic or aromatic monomers being substituted by saturated alkyl groups from 1 to 12 carbon atoms or by unsaturated alkyl groups from 2 to 12 carbon atoms, optionally one or more carbon atoms of the ring being substituted by heteroatoms , preferably nitrogen, oxygen, sulphur; the comonomer total amount being in the range 1-50% by moles, preferably 5-25% by moles, the average molecular weight by number being in the range 300-25,000, preferably 700-15,000; and b) ethylene copolymers with one or more comonomers mentioned in a) , the comonomer total amount being in the range 1-50% by moles, preferably 5-25% by moles, the average molecular weight by number being in the range 700-15,000; the composition difference in terms of total sum of the comonomers of a) and b) being of at least 1% by moles, preferably at least 5% by moles; the a) :b) ratios by weight are in the range 5:1-1:5.
Preferably, the composition difference in terms of total sum of the comonomers of a) and b) is at most 10-15% by moles.
The αr-olefins mentioned with Car are preferably: propylene (C3), 1-butene (C4), 1-hexene (C6), 1-octene (C8), 1-decene (CIO), 1-dodecene (C12), 4-metl- 1-pentene.
The Ca olefin total amount is in the range 5-25% by moles.
As Cβ dienes, the conjugated dienes, for example butadiene, isoprene, piperylene, 1 , 3 -hexadiene , 1 , 3 -octadiene, 2,4- decadiene, di-cyclopentadiene; non conjugated dienes such as 1 , 4 -hexadiene , 7 -methyl- 1 , 6 -octadiene ; cyclic non conjugated dienes such as norbornene, ethylidennorbornene (ENB), 4 -vinyl - cyclohexene and vinylaromatic monomers such as styrene, 2,4-vi- nylstyrene, etc., can be mentioned.
The Cβ diene amount is in the range 0-25% by moles, preferably 1-5% by moles.
Examples of copolymers are : C2/Cαr (II); C2/Cβ (III); C2/Cα./Cβ (IV).
Examples of copolymers (II) are: ethylene/propylene (C2/C3); ethylene/propylene/butene (C2/C3/- C4 ) ; ethylene/butene/hexene (C2/C4/C6); ethylene/butene/octene (C2/C4/C8), etc.
Examples of copolymers (III) are: ethylene/ethylidennorbornene (also indicated ethylene/ 5- ethylidene- 2 -norbornene) (C2/ENB); ethylene/styrene; ethylene/ /ENB/4 vinyl -cyclohexene, etc.
Examples of copolymers (IV) are: ethylene/propylene/ethylidennorbornene ( C2/C3/ENB ) ; ethylene- /butene/ethylidennorbornene (C2/C4/ENB); ethylene/octene/ethy- lidennorbornene (C2/C8/ENB); ethylene/propylene/butadiene; ethylene/propylene/octene/ethylidennorbornene (C2/C3/C8/ENB) ; ethylene/butene/octene/ENB/4 vinyl - cyclohexene , etc.
The a) and b) (co) polymers are obtainable by polymerization of the monomers in the presence of catalysts comprising the reaction product between:
1) a metallocene compound with
2) a co-catalyst selected from alumoxanes and compounds of general formula:
(Li"H)+ (A)' wherein (A)" is a compatible non coordinating anion, preferably
wherein L- is a neutral Lewis basis,
(L]_-H)+ is a Bronsted acid,
D is an element of the group from Ilia to Via of the
Element Periodic Table with metalloidic characteristics, preferably boron, phosphorus or arsenic with valence 3 or
5, silicon, more preferably boron with valence 3;
Q, equal to or different from each other, are selected from the following groups: hydrides, halides , alkyls, aryls optionally substituted, for example with halogens, preferably F, alkoxides, aryloxides , dialkylamido, or RQCOO" wherein R0 ranges from 1 to 20 carbon atoms, with the proviso that Q is equal to halide only once; q is an integer equal to the D valence plus 1.
The metallocene compound 1) is preferably a bis-cyclopentadienyl derivative of general formula:
(CplCp2)-M-(L2L3) containing groups with oxygen bound to the transition metal, in which
M is a metal from the lllb group to the IVb group or of the lanthanide series of the Element Periodic Table; Cpx and Cp2 , equal to or different from each other, represent the following groups bound to M with delocalized π bonds, specifically with an eta 5 bond when the groups are selected from cyclopentadiene, indene, fluorene, or derivatives thereof substituted in the indene and fluorene case also with the phenilic hydrogenated ring (rings) and with substituents both in the phenil and cyclopentadienyl rings, also with hetero- atoms; or with π bonds for example in the cyclooctatriene case; or said Cp1 Cp2 groups constrained with M through a bivalent linking bridge, for example -R- type, wherein R is an alkylene, preferably from 1 to 4 carbon atoms, -Si(R')2" wherein R' is an alkyl from 1 to 10 C atoms, preferably from 1 to 6 carbon atoms; or an aryl optionally containing heteroatoms , such as O, N, or alkylaryl or arylalkyl from 7 to 20 carbon atoms; L2 or L3 , equal to or different from each other, represent a ORa group wherein Ra is an aryl group, optionally the ring carbon atoms being substituted also with heteroatoms, and optionally containing substituents for example of alkyl type from 1 to 10 carbon atoms .
See in particular EP 840,020 for the preferred 1) catalyst .
Also the metallocene compounds of patent application WO 91/11488 wherein L2 and L3 are for example halogens or alkyl groups or hydrogen, can be used. One can refer to this international patent application, herein incorporated by reference, for these metallocene catalysts.
The co-catalyst alumoxane has the general formula:
(Rb-Al-0)m, in the form of cyclic compound or in the form of linear polymeric compound of formula
Rb(Rb-Al-0)m Al(Rb)2; the alumoxane is generally a mixture of the two mentioned forms ;
Rb is an alkyl group from 1 to 5 C atoms, preferably methyl, m is an integer from 1 to 30, preferably from 4 to 20; m' is an integer from 3 to 20, preferably from 4 to 20.
The structure of invention (co)polymers was characterized by DSC (Differential Scanning Calorimetry) and 13C NMR in order to determine the % of cristalline material, the length of ethylene sequences and the amount of comonomer inversions. The alumoxane compound of the catalytic system is preferably prepared by reaction of aluminum trimethyl and water, obtaining a mixture of linear and cyclic compounds. They are generally prepared by putting into contact an aluminum trialkyl solution with water in suitable organic solvents, for example aliphatic hydrocarbons.
As known, alumoxanes are compounds containing Al-O-Al bonds, having a variable molar ratio O/Al , obtainable in the art by reaction, under controlled conditions, of an aluminum alkyl, or an aluminum alkyl halide, with water and, in the case of aluminum trimethyl, also with an hydrate salt, as aluminum hexahydrate sulphate, copper pentahydrate sulphate and iron pentahydrate sulphate .
The molar ratio between Al of the 2) component alumoxane with respect to the metal amount of component 1) (metallocene) is in the range 10,000:1-100:1, preferably 5,000:1-500:1. In the case of the boron compound the ratio is in the range 0.1- 4.0:1 and preferably 0.5-2.0:1.
Examples of the preferred cocatalyst have the general formula :
(L1-H)+ (B Q4)- wherein the meanings of Lχ and Q are above mentioned, B is the boron in the 3 valence state; L1 can be NH3 , aniline, pyridine, quinoline, alkylamines, dialkylamines, trialkylamines with the alkyl from 1 to 8 C atoms, preferably from 1 to 4, phenylamines, etc. All these compounds can respectively form quaternary ammonium salts, pyridinium salts, quinolinium salts which represent (L1-H)~. Exemplifying compounds which can be mentioned are the following: substituted trialkyl ammonium salts, for example triethylammo- nium tetraphεnylborate , tripropylammoniu tetraphenylborate , tris (n-butyl ) ammonium tetraphenylborate, trimethylammoniu te- trakis (p- tolyl )borate , tributylammonium tetrakis ( pentafluoro- phenyl ) borate , tripropylammonium tetrakis ( 2 , 4 -dime - thylphenyl )borate , tributylammonium tetrakis ( 3 , 5 -di ethylphe- nyl)borate, triethylammonium tetrakis ( 3 , 5 -ditrifluoromethyl - phenyl)borate, etc.
The N,N-dialkyl anilinium salts can also be used, such as for example N,N-dimethyl anilinium tetraphenylborate, N.N-die- thyl anilinium tetraphenylborate, N,N- 2 , 4 , 6 -pentamethylani- linium tetraphenylborate, etc. ; dialkyl ammonium salts such as di- ( i-propyl )ammoniumtetrakis (pentafluorophenyl )borate , dieyelohexylammonium tetraphenylborate, etc.; triaryl phosphonium salts such as triphenylphosphfonium tetraphenylborate, t r i ( me t hy 1 ph eny 1 ) pho s phon i um tetrakis pentafluorophenylborate , tri (dimethylphenyl ) phosphonium tetraphenylborate, etc...
Preferred non limiting examples of the 1) compound which can be used to prepare the cation complex are titanium, zirconium, vanadium, hafnium (Hf), chromium, lanthanium deri- vatives, ecc . , the titanium or Zr compounds are preferred. Examples which can be mentioned are: bis (eta 5 cyclopentadie- nyl ) Zr diphenate; bis (eta 5 cyclopentadienyl ) Zr of 2,3,6- trimethylphenate , bis (eta 5 cyclopentadienyl) Hf diphenate, bis tetramethylcyclopentadienyl Zr diphenate, etc.
Other metallocene catalysts which can be used are well known in the prior art, for example in EP 129,368, EP 128,046, EP 260,299, these three patents are herein incorporated by reference .
The preferred catalysts of the present invention are obtained for example by direct reaction of bis-cyclopentadienyl metal dialkyl , preferably dimethyl, with the corresponding phenols. See the european patent application 848,020.
The polymerization to obtain the invention copolymers can be carried out by operating in suspension, in solution or in gas phase at temperatures generally in the range 0°C-150°C at a pressure generally in the range 1-300 bar, optionally using a molecular weight regulator, for example hydrogen.
As said above, the invention (co)polymer mixtures as above defined surprisingly show improved activities as CFPP additives with respect to the single copolymers .
Specifically according to the present invention the (co- ) olymers obtained by using as catalyst the preferred 1) component in combination with the preferred 2) cocatalyst, for example boranes and/or borates as above mentioned, are pre- f erred .
The physical characteristics measurements of the middle distillates are carried out by determining the following parameters: Cloud Point (C.P.), Pour Point (P.P.) and Cold Filter Plugging Point (C.F.P.P.) as defined in the ASTM D2500- 81; ASTM D97-66 and IP 309/83 methods, respectively.
The methods for determining the invention polymer sequence distribution, specifically the X2 and X4 inversions are well known in the prior art and can be determined by 13C NMR as mentioned in the USP 5,097,084 herein incorporated by reference .
If desired, the percentage of terminal unsaturations of ethylidene -CRlt=CH2 type, wherein Rlt: is an alkyl from 1 to 12 C atoms, or ethylene -CH=CH2 type, can be determined by IR (FT- IR) analysis (see the patent application WO 90/01503 page 26), or by iodometeric titration or 13C NMR.
The invention (co) polymers can be combined with other cold flow improvers (CFI) known in the prior art to obtain synergic effects both as regards CFPP and the filterability, and the WAS effect. As known CFIs according to the present invention, ethylvinylacetates , fumarates, acrylates, propionates are preferably used. Preferably in order to obtain an higher synergic effect, the invention polymers are combined with the above mentioned CFIs and furthermore also with a third CFI selected from the nitrogen polar compounds. The third CFI additive, a nitrogen polar compound is generally selected from aminic salts and/or amides formed by reaction of at least a molar part of a substituted hydrocarbide with a molar part of hydrocarbon acid having from 1 to 4 carboxylic acid groups and an anhydride thereof; esters/amides containing from 30 to 300, preferably from 50 to 150 total carbon atoms, can also be used. These nitrogen compounds are described in USP 4,211,534. Suitable amines are usually long chain C12-C4g primary, secondary, tertiary or quaternary amines or mixtures thereof , but shorter chains can be used if the resulting nitrogen polar compound is soluble in oil; it will usually contain from about 30 to 300 total carbon atoms. The nitrogen polar compound preferably contains at least an alkyl segment of linear C8-C2 chain.
Suitable amines comprise primary, secondary and tertiary amines, preferably secondary amines, or quaternary ammonium salts .
Examples of primary amines comprise tetradecyl amine, cocoamine, and hydrogenated tallow amine. Examples of secondary amines comprise dioctadecyl amine and methyl phenyl amine. Amine mixtures are also suitable and many amines derived from natural materials are mixtures . A preferred amine is a secondary hydrogenated tallow amine of the HNR3R formula wherein R3 and R4 are alkyl groups derived from hydrogenated tallow greases composed of approximately 4% of C1 , 31% of C16 , 59 % of C18 .
Examples of carbαxylic acids (and anhydrides thereof) suitable for preparing these nitrogen compounds comprise cyclo- pentane-1,2 acid dicarboxylic acid and naphthalendicarboxylic acids. Generally, these acids have about 5-13 carbon atoms in the cyclic fraction. Preferred acids are benzen dicarboxylic acids such as phthalic, isophthalic and terephthalic acid. The phthalic acid or its anhydride is particularly preferred. The particularly preferred compound is the amido-amine salt formed by letting react a molar part of phthalic anhydride with two molar parts of dehydrogenated tallow amine. Another preferred compound is the diamide formed by the dehydration of this amide-amine salt. Besides, the known CFI formulations can optionally comprise other additives of fuel oils, many of which are used in the prior art or are known in the literature.
The additive concentration of the present invention, singly or in combination with the other above mentioned CFIs, to be used in the middle distillates, ranges from 10 ppm to 5,000 ppm, preferably from 50 ppm to 500 ppm, more preferably from 100 to 200 ppm. The weight ratios between the invention copolymer, the known CFI (for example EVA, fumarates , propionates, acrylates) and the nitrogen polar compound is the following: 10/1:10/1:10, preferably 10/1:5/1:5.
The present invention will be now better illustrated by the following working examples, which have a merely indicative purpose and not limitative of the scope of the invention itself . EXAMPLES CHARACTERIZATION
The molecular weight determination (both number average Mn and weight average Mw) is carried out by gel permeation chromatography (GPC - Gel Permeation Chromatography) which gives also the molecular weight distribution (MWD) . See for example W.W. Yau et al "Modern Size Exclusion Liquid Chromatography". John Wiley and Sons, N.Y. 1979.
The intrinsic viscosity (dl/g) is determined according to known methods, for example in tetraline at 135°C. The Mv viscometric molecular weight can also be determined by using intrinsic viscosity methods well known in the prior art. See for example: L.H. Tung, "Fractionation of Synthetic Polymers" Ed. Marcel Dekkers Inc. N.Y. 1977, J. Polymer Sci 20, 495-506, 1956; G. Moraglio, Chim. Ind . (Milano) 10 984, 1959.
The molecular weight distribution is generally in the range 1.5-5, preferably 1.5-3.5.
The A and B gas oils (middle distillates) free from additives used in the tests , have the following characteristics : type A type B density (IP 160) ( 15°C/gxcm"3 ) 0.8397 0.83
I.B.P. (initial boiling point) 170.2°C 164.8°C f.b.p. (final boiling point 355.2°C 357.1°C
90%-20% vol. 101.4°C 117.3°C f.b.p. 90% vol, 21.1°C 30.0°C
C.P -5.2°C -8.3°C
C.F.P.P. -8 °C -9 °C
P.P. -12 °C -18 °C
EXAMPLE 1
Zirconocene bisphenoxide (catalyst) synthesis
In a flask containing 50 ml of toluene, 1.988 millimoles of zirconocene dimethyl have been dissolved. Subsequently 3.976 millimoles of phenol have been added under stirring. The solution develops methane according to the reaction: Cp2Zr(CH3)2+2 C6H5OH → [C6H50]2 ZrCp2 +2 CH4T
The process has been carried out at room temperature and is quantitative. The yields are close to 100%. After about 4 hours of stirring, the solution was evaporated and the solid characterized by 'H NMR: the spectrum shows the Cp peak and the whole series of the hydrogen peaks of the two phenyls. Cp2Zr(0-C6H5)2: £ = 5.94 (s,10 H, Cp) , 6.75-7.29 (m, 10 H, C6H5). EXAMPLE 2
Cocatalyst preparation
N,N' Dimethylanilinium tetra(perfluorophenyl )borate (BNF1) synthesis
Figure imgf000020_0001
This compound has been synthetized according to the following literature:
J.A. Ewen, M.J. Elder, R.L. Jones, L. Haspeslagh, J.L. Atwood, S.G. Bott, K. Robinson, Macromol. Chem. , Macromol . Symp. 48/49, 253 (1991).
In a 100 ml flask 1.98 g (2.88 millimoles) of lithium tetra(perfluorophenyl)borate dissolved in 20 ml of methylene chloride are introduced. To this solution 1.05 g (6.66 millimoles) of N,N-dimethylaniline chlorhydrate dissolved in 10 ml of methylene chloride, are added. The lithium chloride precipitates, it is filtered and the solution is evaporated. A white paste is formed which is washed many times in pentane until obtaining a white solid. The yield is of about 71%. EXAMPLE 3 (comparative)
Polymerization with the catalyst of Example 1: ethylene/propy¬ lene copolymer
The used reactor is a steel AISI 316 autoclave (5 1 volume) equipped with stirrer anchor shaped and able to work at a pressure ≤ 150 bar.
The autoclave is equipped with 4 feeding inlets, an outlet and a water circulation cooling system.
The reactor is purged many times with anhydrous and hot nitrogen and maintained under pressure at 120°C for 24 hours.
From the purification temperature the autoclave is cooled at 25°C maintaining the nitrogen pressure at 1 bar.
250 ml of distilled toluene together with 0.7 ml of triethylaluminum and, under stirring, 150 g of liquid propylene are introduced in sequence.
The mixture is heated to 70°C and when this temperature is reached, 6.5 bar of ethylene and 2 bar of hydrogen are added. Then a 20 mg Cp2Zr (bisphenoxide) solution of Example 1 and 39.3 mg of the cocatalyst of Example 2 in 50 ml of toluene are added under an overpressure of anhydrous nitrogen.
The polymerization is carried out for 6 minutes maintaining the pressure constant by continuous feeding of ethylene .
The polymerization is quickly stopped by venting and cooling the autoclave to 25°C.
The produced polymer is precipitated using ethanol/ acetone acidified with hydrochloric acid, washed many times with ethanol/acetone and anhydrified under vacuum.
30 g of polymer containing 16% by weight of propylene (11.3% by moles) determined by IR analysis, are obtained. The viscometric molecular weight Mv is 5,700. The number average molecualr weight Mn is 2,800. CFPP determination
The obtained polymer has been used as CFPP additive for the A and B middle distillates having the above mentioned characteristics. The CFPP value has been determined by using 50 ppm of polymer.
The results are:
Middle distillate CFPP (°C)
A -12
B -13
EXAMPLE 4 (comparative)
Polymerization with the catalyst of Example 1: ethylene/octene copolymer
Example 3 is repeated with the following variations: instead of propylene 100 g of octene and 5 bar of ethylene are used without employing hydrogen as molecular weight regulator and using a polymerization temperature of 80°C.
80 g of copolymer containing 30.3% by weight of octene (corresponding to 9.8% by moles) determined by 13C NMR, have been obtained.
The viscometric Mv molecular weight is 10,200. The number average Mn molecular weight is 5,000. CFPP determination
The obtained polymer has been used as CFPP additive for the B middle distillate having the above mentioned characteristics. The CFPP value has been determined by using 50 ppm of polymer .
The result was :
Middle distillated CFPP (°C)
B -14.
EXAMPLE 5
The CFPP has been determined in the B middle distillate by using a mixture of the polymers of Example 3 and Example 4 in a weight ratio between the two of 1:1 according to the present invention.
The CFPP value has been determined by using 50 ppm of the mixture of the two above mentioned polymers.
The result was :
Middle distillate CFPP (°C)
B -17.
EXAMPLE 6 (comparative)
Polymerization with the catalyst of Example 1: ethylene/octene copolymer
Example 4 is repeated with the following variations: instead of 100 g, 80 g of octene are used.
80 g of copolymer containing 24% by weight of octene (corresponding to 7.5% by moles) determined by 13C NMR, have been obtained .
The viscometric Mv molecular weight is 13,800. The number average Mn molecular weight is 6,800.
The obtained polymer has been used as CFPP additive for the B middle distillate having the above mentioned characteristics. The CFPP value has been determined by using 50 ppm of polymer.
The result was :
Middle distillate CFPP (°C)
B -15.
EXAMPLE 7 (comparative)
Polymerization with the catalyst of Example 1: ethylene/ propylene/octene terpolymer
Example 3 is repeated with the following variations: 50 g of octene together with propylene, in an amount of 50 g, are also added; the polymerization temperature was of 70°C and 5 bar of ethylene without hydrogen as molecular weight regulator; 15 mg of Cp2Zr(bisphenoxide) solution of Example 1 and 29.5 mg of the cocatalyst of Example 2 in 50 ml of toluene are added under an overpressure of anhydrous nitrogen.
The polymerization is carried out for 5 minutes maintaining the pressure constant by continuous ethylene feeding.
70 g of polymer containing 16.2% by weight of propylene (12% by moles) and 11% by weight of octene (3.2% by moles) determined by 13C NMR, are obtained. The viscometric Mv molecular weight is 13,500. The number average Mn molecular weight is 6 , 500 .
The obtained polymer has been used as CFPP additive for the A and B middle distillates having the above mentioned characteristics .
The CFPP value has been determined by using 50 ppm of polymer .
The results are:
Middle distillate CFPP (°C)
A -12
B -14.
EXAMPLE 8
The CFPP has been determined in the B middle distillate by using a mixture of the polymers of Examples 6 and 7 in a 1:1 ratio by weight.
The CFPP value has been determined by using 50 ppm of the mixture of the two above mentioned products.
The result was:
Middle distillate CFPP (°C)
B -17.
EXAMPLE 9 (comparative)
Polymerization with the catalyst of Example 1: ethylene/ propylene/octene terpolymer
Example 7 is repeated with the following variations: propylene in an amount of 50 g, octene 50 g.
The polymerization is carried out for 4 minutes maintaining the pressure constant by continuous ethylene feeding .
60 g of polymer containing 9.7% by weight of propylene (9.4% by moles) and 37.4% by weight of octene (13.6% by moles) determined by -3C NMR, are obtained.
The viscometric Mv molecular weight is 14,000. The number average Mn molecular weight is 7,200.
The obtained polymer has been used as CFPP additive for the B middle distillate having the above mentioned characteristics .
The CFPP value has been determined by using 50 ppm of polymer .
The result was:
Middle distillate CFPP (°C)
B -14.
EXAMPLE 10
The CFPP has been determined in the B middle distillate by using a mixture of the polymers of Examples 7 and 9 in a 1:1 ratio by weight.
The CFPP value has been determined by using 50 ppm of the mixture of the two above mentioned polymers.
The result was :
Middle distillate CFPP (°C)
B -18. EXAMPLE 11 (compara ive)
Polymerization with the catalyst of Example 1: ethylene/octene copolymer
Example 3 is repeated with the following variations: instead of propylene, 100 g of octene are added; 5 bar of ethylene without using hydrogen as molecular weight regulator; 15 mg of Cp2Zr (bisphenoxide) solution of Example 1 and 29.5 mg of the cocatalyst of Example 2 in 50 ml of toluene under an overpressure of anhydrous nitrogen, are introduced.
The polymerization is carried out for 4 minutes maintaining the pressure constant by continuous ethylene feeding.
30 g of polymer containing 51% by weight of octene (20.6% by moles) determined by 13C NMR, are obtained. The viscometric Mv molecular weight is 13,100. The number average Mn molecular weight is 6,300.
The obtained polymer has been used as CFPP additive for the A middle distillate having the above mentioned characteristics .
The CFPP value has been determined by using 50 ppm of polymer.
The result was: Middle distillate CFPP (°C) A -14.
EXAMPLE 12 The CFPP has been determined in the A middle distillate by using a mixture of the polymers of Examples 3 and 11 in a ratio by weight between the two respectively of 3:1.
The CFPP value has been determined by using 50 ppm of the mixture of the two above mentioned polymers.
The result was:
Middle distillate CFPP (°C)
A -16.
EXAMPLE 13
The CFPP has been determined in the A middle distillate by using a mixture of the polymers of Examples 3 and 7 in a ratio by weight between the two respectively of 3:1.
The CFPP value has been determined by using 50 ppm of the mixture of the two above mentioned polymers.
The result was:
Middle distillate CFPP (°C)
A -14.

Claims

CLAIMS 1. Mixtures comprising the following components: a) ethylene copolymers (C2) with one or more of the following comonomers:
- Co: one or more linear or branched alpha-olefins, from 3 to 20 carbon atoms, and/or CS: one or more dienes, conjugated or not, selected from:
- linear from 4 to 20 carbon atoms or
- cyclic wherein the ring is from 5 to 6 carbon atoms and having a total carbon atoms till 20, preferably the cyclic dienes are selected from vinylcycloalkenes or di -cyclo-pentadienes , such as vinylcyclohexene or di-cyclopentadiene- ethy1iden-norbornene ;
- vinylaromatic monomers, such as styrene, 2,4 vinylstyrene , optionally one or more hydrogen atoms of the ring(s) of the cyclic or aromatic monomers being substituted by saturated alkyl groups from 1 to 12 carbon atoms or by unsaturated alkyl groups from 2 to 12 carbon atoms, optionally one or more carbon atoms of the ring being substituted by heteroatoms, preferably nitrogen, oxygen, sulphur; the comonomer total amount being in the range 1-50% by moles, preferably 5-25% by moles, the average molecular weight by number being in the range 300-25,000, preferably 700-15,000; and b) ethylene copolymers with one or more comonomers mentioned in a), the comonomer total amount being in the range 1-50% by moles, preferably 5-25% by moles, the average molecular weight by number being in the range 700-15,000; the composition difference in terms of total sum of the comonomers of a) and b) being of at least 1% by moles, preferably at least 5% by moles; the a) :b) ratios by weight are in the range 5:1-1:5.
2. Mixtures according to claim 1, wherein the αr-olefins Car are selected from: propylene (C3), 1-butene (C4), 1-hexene (C6), 1-octene (C8), 1-decene (CIO), 1-dodecene (C12), 4- metl-1-pentene.
3. Mixtures according to claims 1-2 wherein the Car olefins total amount is in the range 5-25% by moles.
4. Mixtures according to claim 1-3 wherein the Cβ dienes are selected from: conjugated dienes, such as butadiene, iso- prene, piperylene, 1 , 3 -hexadiene, 1 , 3 -octadiene, 2,4- decadiene, di-cyclopentadiene; non conjugated dienes such as 1,4 -hexadiene, 7 -methyl -1, 6 -octadiene; cyclic non conjugated dienes such as norbonene, ethylidennorbonene ( ENB ) , 4-vinylcyclohexene; vinylaromatic monomers such as styrene, 2 , 4 -vinyl styrene .
5. Mixtures according to claim 4 wherein the Cβ dienes amount is in the range 0-25% by moles, preferably 1-5% by moles.
6. Mixtures according to claims 1-5 wherein the copolymers are selected from:
C2/Ca (II); C2/Cβ (III); C2/Cα-/Cβ (IV).
7. Mixtures according to claim 6 wherein copolymers (II) are: ethylene/propylene (C2/C3); ethylene/propylene/ butene (C2/C3/C4); ethylene/butene/hexene (C2/C4/C6); ethylene/butene/octene (C2/C4/C8) .
8. Mixtures according to claim 6 wherein copolymers (III) are: e thylene/e t hy1 idennorbornene (C2/ENB); ethylene/styrene; ethylene/4 vinyl -cyclohexene.
9. Mixtures according to claim 6 wherein copolymers (IV) are: ethylene/propylene/ethylidennorbornene (C2/C3/ENB) ; ethylene/butene/ethylidennorbornene (C2/C4/ENB) ; ethylene/octene/ethylidennorbornene (C2/C8/ENB) ; ethylene/propylene/butadiene ; ethylene/propylene/ octene/ethylidennorbornene (C2/C3/C8/ENB) ; ethylene/bute- ne/octene/ENB/4 vinyl - cyclohexene .
10. Mixtures according to claims 1-9, wherein the a) and b) copolymers are obtainable by polymerization of the monomers in the presence of catalysts comprising the reaction product between: 1) a metallocene compound with
2) a co-catalyst selected from alumoxanes and compounds of general formula:
(L^H)" (A)- wherein (A)" is a compatible non coordinating anion, preferably it is (D Q^ ) ' wherein L1 is a neutral Lewis basis, (L1-H)~ is a Bronsteά acid,
D is an element of the group from Ilia to Via of the Element Periodic Table with metalloid characteristics, preferably boron, phosphorus or arsenic with valence 3 or 5 , silicon, more preferably boron with valence 3 ;
Q, equal to or different from each other, are selected from the following groups: hydrides, halides, alkyls, aryls optionally substituted, for example with halogens, preferably F, or with alkoxides, aryloxides , dialkylamides , or R0COO" wherein R0 ranges from 1 to 20 carbon atoms, with the proviso that Q is equal only once to halide; q is an integer equal to the D valence plus 1.
11. Mixtures according to claim 10, wherein the 1) metallocene compound is a bis-cyclopentadienyl derivative of general formula :
(CplCp2)-M-(L2L3) containing groups with oxygen bound to the transition metal, in which M is a metal from the lllb group to the IVb group or of the lanthanide series of the Element Periodic Table;
Cp-, and Cp2 , equal to or different from each other, represent groups bound to M with delocalized π bonds, specifically with an eta 5 bond when the groups are selected from cyclopentadiene , indene, fluorene, or derivatives thereof substituted in the indene and fluorene case with phenylic hydrogenated rings and with substituents both in the phenylic and cyclopentadienyl rings selected from heteroatoms; or with π bonds in the cyclooctatriene case; or said Cpx Cp2 groups constrained with M through a bivalent linking bridge, -R- type, wherein R is an alkyle- ne, preferaly from 1 to 4 carbon atoms, -Si(R')2- wherein R' is an alkyl from 1 to 10 C atoms, preferably from 1 to
6 carbon atoms; or an aryl optionally containing heteroatoms, such as O, N, or alkylaryl or arylalkyl from
7 to 20 carbon atoms;
L2 or L3 , equal to or different from each other, represent an ORa group wherein R, is an aryl group, optionally the ring carbon atoms being substituted also with heteroatoms, and optionally containing substituents of alkyl type from 1 to 10 carbon atoms.
12. Mixtures according to claims 10-11, wherein the cocatalyst has the general formula:
(L:-HΓ (B Q4 Γ wherein Q has the above mentioned meaning; B is boron with valence 3; L: is selected among NH3 , aniline, pyridine, quinoline, allylamineε, dialkylamines, trialkylamines with the alkyl from 1 to 8 C atoms, preferably from 1 to 4 , phenylamines .
13. Mixtures according to claims 10-12, wherein the 1) compound is selected from the titanium, zirconium, vanadium, hafnium (Hf), chromium, lanthanium derivatives , preferably titanium or Zr.
14. Mixtures according to claim 13, wherein the 1) compound is selected from bis (eta 5 cyclopentadienyl) Zr diphenate; bis (eta 5 cyclopentadienyl) Zr of 2 , 3 , 6 - trimethylphenate , bis (eta 5 cyclopentadienyl) Hf diphenate, bis tetrame- thylcyclopentadienyl Zr diphenate.
15. Use of the mixtures according to claims 1-14 as additives for middle distillates.
PCT/EP2000/002264 1999-03-23 2000-03-15 Ethylene polymers WO2000056843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU32895/00A AU3289500A (en) 1999-03-23 2000-03-15 Ethylene polymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI99A000589 1999-03-23
IT1999MI000589 IT1311974B1 (en) 1999-03-23 1999-03-23 ETHYLENE POLYMERS.

Publications (1)

Publication Number Publication Date
WO2000056843A1 true WO2000056843A1 (en) 2000-09-28

Family

ID=11382403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/002264 WO2000056843A1 (en) 1999-03-23 2000-03-15 Ethylene polymers

Country Status (3)

Country Link
AU (1) AU3289500A (en)
IT (1) IT1311974B1 (en)
WO (1) WO2000056843A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570853A (en) * 2013-10-21 2014-02-12 虞海盈 Manufacturing method of functionalized polyolefin material
CN103570854A (en) * 2013-10-21 2014-02-12 虞海盈 Functionalized polyolefin material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350072A1 (en) * 1988-07-08 1990-01-10 SOCIETA' ITALIANA ADDITIVI PER CARBURANTI S.r.l. Compositions of hydrocarbons from refining, having improved fluidity at low temperatures
WO1991011488A1 (en) * 1990-01-31 1991-08-08 Exxon Chemical Patents Inc. Fuel oil additives and compositions
EP0572034A2 (en) * 1992-05-29 1993-12-01 Idemitsu Kosan Company Limited Ethylenic copolymer and ethylenic copolymer composition
US5272236A (en) * 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
WO1997032946A1 (en) * 1996-03-08 1997-09-12 Dupont Dow Elastomers L.L.C. Substantially linear ethylene/alpha-olefin polymers as viscosity index improvers or gelling agents
EP0848020A1 (en) * 1996-12-12 1998-06-17 SOCIETA' ITALIANA ADDITIVI PER CARBURANTI S.r.l. Ethylene/alpha-olefins copolymers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0350072A1 (en) * 1988-07-08 1990-01-10 SOCIETA' ITALIANA ADDITIVI PER CARBURANTI S.r.l. Compositions of hydrocarbons from refining, having improved fluidity at low temperatures
WO1991011488A1 (en) * 1990-01-31 1991-08-08 Exxon Chemical Patents Inc. Fuel oil additives and compositions
US5272236A (en) * 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
EP0572034A2 (en) * 1992-05-29 1993-12-01 Idemitsu Kosan Company Limited Ethylenic copolymer and ethylenic copolymer composition
WO1997032946A1 (en) * 1996-03-08 1997-09-12 Dupont Dow Elastomers L.L.C. Substantially linear ethylene/alpha-olefin polymers as viscosity index improvers or gelling agents
EP0848020A1 (en) * 1996-12-12 1998-06-17 SOCIETA' ITALIANA ADDITIVI PER CARBURANTI S.r.l. Ethylene/alpha-olefins copolymers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570853A (en) * 2013-10-21 2014-02-12 虞海盈 Manufacturing method of functionalized polyolefin material
CN103570854A (en) * 2013-10-21 2014-02-12 虞海盈 Functionalized polyolefin material

Also Published As

Publication number Publication date
IT1311974B1 (en) 2002-03-22
ITMI990589A1 (en) 2000-09-23
AU3289500A (en) 2000-10-09

Similar Documents

Publication Publication Date Title
JP2957274B2 (en) Fuel oil additives and compositions
FI97234C (en) Polymer blends to improve the cold flow capability of mineral oil distillates
KR101396058B1 (en) Polyolefin solution polymerization process and polymer
KR101678247B1 (en) Polymerization process using a supported constrained geometry catalyst
EP0672688B2 (en) Aluminum-free monocyclopentadienyl metallocene catalysts for olefin polymerization
US3999960A (en) Wax crystal modifiers for petroleum oils
PL185358B1 (en) Poly-1-n-alkenoamines and engine fuel and grease preparations containing them
CN106544067B (en) The additive for fuel and oil comprising functionalization diblock copolymer
KR20140007285A (en) Additives for fuels and oils comprising functionalised diblock copolymers
JPS61221207A (en) Production of liquid alpha-olefin copolymer
US6222081B1 (en) Catalysts suitable for decreasing the cold filter plugging point of middle distillates
US4014663A (en) Synergistic low temperature flow improver in distillate fuel
US3450715A (en) N-hydrocarbon succinimidyl polymers
WO2000056843A1 (en) Ethylene polymers
US6278032B1 (en) Ethylene polymers with α-olefins
CA2074937C (en) Fuel oil compositions and additives
WO2000056789A1 (en) Ethylene polymers
WO2020174346A1 (en) NOVEL TETRAARYLBORATE COMPOUND, CATALYST COMPOSITION COMPRISING SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMERS OR COPOLYMERS OF ETHYLENE AND α-OLEFIN BY USING SAME
US5919275A (en) Fuel and lubricant additives, their preparation and fuel or lubricant compositions containing these additives
EP0398448B1 (en) Viscosity modification of mineral oils
WO1992015656A1 (en) Fuel additives
JPS6123692A (en) Low-temperature fluidity improver for fuel oil and fuel oil having low-temperature fluidity
JPS61211397A (en) Flowability improver for fuel oil
MXPA99009023A (en) Ethylene/alpha-olefin/diene interpolymers and their preparation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ DM EE GE HR HU ID IL IN IS JP KP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase