WO2000067303A1 - Exposure method and apparatus - Google Patents

Exposure method and apparatus Download PDF

Info

Publication number
WO2000067303A1
WO2000067303A1 PCT/JP2000/002761 JP0002761W WO0067303A1 WO 2000067303 A1 WO2000067303 A1 WO 2000067303A1 JP 0002761 W JP0002761 W JP 0002761W WO 0067303 A1 WO0067303 A1 WO 0067303A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
illumination light
illumination
mask
prism
Prior art date
Application number
PCT/JP2000/002761
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Aoki
Naomasa Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU41430/00A priority Critical patent/AU4143000A/en
Publication of WO2000067303A1 publication Critical patent/WO2000067303A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/201Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by an oblique exposure; characterised by the use of plural sources; characterised by the rotation of the optical device; characterised by a relative movement of the optical device, the light source, the sensitive system or the mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70566Polarisation control

Definitions

  • the present invention relates to an exposure method used when manufacturing a microdevice such as a semiconductor integrated circuit, an imaging device (CCD or the like), a liquid crystal display, a plasma display, or a thin-film magnetic head by using a lithography technique.
  • a microdevice such as a semiconductor integrated circuit, an imaging device (CCD or the like), a liquid crystal display, a plasma display, or a thin-film magnetic head by using a lithography technique.
  • a halogen molecule laser such as an F 2 laser (wavelength: 157 nm)
  • F 2 laser wavelength: 157 nm
  • laser light is used as exposure light.
  • laser light is light that is strongly linearly polarized and has high coherence. Therefore, when laser light is used as the exposure light, speckle-like interference fringes called speckles are generated in the illumination area. The occurrence of this speckle makes the illuminance distribution of the exposure light non-uniform and deteriorates the uniformity of the line width of a circuit pattern formed on a substrate to be exposed such as a wafer. Speed, etc.) It may cause malfunction.
  • a quartz prism is arranged in the optical path of the exposure light to reduce the coherence of the exposure light.
  • ordinary crystals have a large decrease in transmittance for vacuum ultraviolet light with a wavelength of about 200 nm or less. Therefore, if the exposure light is about the ArF excimer laser light, the crystal can be used by taking measures such as prolonging the exposure time against a decrease in illuminance, but the throughput will be significantly reduced. There is an inconvenience. And, the crystal becomes difficult to use to greatly reduced transmittance with respect to a shorter wavelength of F 2 laser light.
  • the present invention provides a method for controlling the illuminance of the illumination light even when using light having a coherence with a wavelength of about the vacuum ultraviolet region as the exposure illumination light. It is a first object of the present invention to provide an exposure method that can increase the uniformity of the illuminance distribution of the illumination light without significantly reducing the illuminance.
  • a second object of the present invention is to provide an illumination optical device and an exposure device capable of performing such an exposure method.
  • the present invention seeks a material having a birefringence effect and a high transmittance with respect to illumination light having a wavelength in the vacuum ultraviolet range, and an illumination optical device capable of performing such an exposure method using this material.
  • the third purpose is to provide.
  • Still another object of the present invention is to provide a method for manufacturing such an exposure apparatus and a method for manufacturing a device using such an exposure method. Disclosure of the invention
  • a first exposure method is an exposure method for illuminating a mask (R) with illumination light and transferring the pattern of the mask onto a substrate (W), wherein the wavelength of the illumination light is about 180 nm.
  • An optical element made of magnesium fluoride (MgF 2 ) is placed on the optical path until the illumination light enters the mask, and a direction substantially perpendicular to the optical path of the illumination light Then, the polarization state of the illumination light is gradually changed.
  • the polarization state of the illumination light is a predetermined state such as linearly polarized light or circularly polarized light
  • the polarization state is gradually changed in a direction substantially perpendicular to the optical path.
  • the spatial coherence of the illumination light Spatial coherency
  • the occurrence of scattering in the illumination area is suppressed, and the uniformity of the illuminance distribution is improved.
  • the wavelength of the illumination light is set to 180 nm.
  • the polarization state of the illuminating light is changed by an optical element made of magnesium fluoride prior to incidence on the mask.
  • generation of speckles in the illumination area is suppressed, and the uniformity of the illuminance distribution is improved.
  • the entire mask pattern is transferred onto the substrate with high line width uniformity and high throughput. be able to.
  • a first illumination optical device is an illumination optical device (15) for illuminating a mask (W) with illumination light having a wavelength of 200 nm or less from a light source (1), On the optical path of the illuminating light between the light source (1) and the mask, the illuminating light is formed of a material that is transmissive and birefringent to the illuminating light, and intersects the optical axis of the illuminating optical device A prism (3) whose thickness changes gradually in the direction is arranged.
  • the exposure method of the present invention can be performed. That is, since the prism is formed of a birefringent material, the prism is inclined in a plane perpendicular to the optical axis in a plane perpendicular to the optical axis. According to the position, the polarization state of the illumination light can be continuously changed in a direction perpendicular to the optical axis. Further, as a material of the prism, a wavelength of about 200 nm or less, that is, a relatively high transmittance even in a vacuum ultraviolet region. By using an optical glass material with an excessive ratio, the illuminance on the mask can be kept high.
  • a crystal of magnesium fluoride (MgF 2 ) can be used as a material having high transmittance and birefringence even in the vacuum ultraviolet region.
  • Magnesium fluoride has a sufficiently high transmittance for ultraviolet light up to a wavelength of about 130 nm. In particular, when the wavelength is about 180 nm or less in the vacuum ultraviolet region, the transmittance of the conventionally used quartz is greatly reduced, and magnesium fluoride is effective.
  • a second illumination optical device is an illumination optical device for illuminating a mask (R) with illumination light having a wavelength of 200 nm or less from a light source, and the illumination light from the light source is provided.
  • a prism (which is made of a material that is transparent and birefringent to the illumination light, and whose thickness gradually changes in a direction intersecting the optical axis of the illumination optical device). 3), a vibrating member (4) for vibrating the illumination light passing through the prism, and an optical integray (5A, 5B) for forming a plurality of light source images from the illumination light passing through the vibrating member.
  • a condenser optical system (9) for guiding the illumination light emitted from the optical integrator to the mask.
  • the present invention it is possible to improve the uniformity of the illuminance distribution of the illumination light as in the first illumination optical device. Further, by vibrating the vibrating member during illumination, the illuminance unevenness of the illumination light is reduced by the integration effect.
  • the use of the optical integrator (homogenizer) allows the illumination light to be superimposed, thereby making the illuminance distribution of the illumination light more uniform.
  • a first exposure apparatus is an exposure apparatus including the illumination optical device (15) of the present invention, and illuminates a mask (R) with illumination light from the illumination optical device. Transfers mask pattern onto substrate (W) It is.
  • the exposure method of the present invention can be carried out, and the entire pattern of the mask can be transferred onto the substrate with high line width uniformity at high throughput. it can.
  • the second exposure apparatus has an illumination optical system that irradiates a mask with coherent illumination light having a wavelength of about 180 nm or less, and exposes the substrate with the illumination light via the mask.
  • an optical element that changes the polarization state of the illumination light is formed of magnesium fluoride in order to reduce the flexibility of the illumination light in the illumination optical system.
  • the second exposure method of the present invention can be performed, and the entire mask pattern can be formed on the substrate with high line width uniformity at high throughput. Can be transcribed.
  • a method of manufacturing an exposure apparatus includes assembling the illumination optical device of the present invention, a mask stage for holding a mask thereof, and a substrate stage for holding a substrate in a predetermined positional relationship.
  • the device manufacturing method according to the present invention includes a step of illuminating the mask with the illumination light using the exposure method of the present invention, and transferring a pattern of the mask onto the substrate.
  • the entire mask pattern can be transferred onto the substrate with high line width uniformity without lowering the illuminance of the illumination light.
  • Devices can be manufactured with high throughput.
  • FIG. 1 is a schematic configuration diagram illustrating a projection exposure apparatus according to an example of an embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view showing the relationship between the prism 3 in FIG. 1 and the traveling direction and polarization direction of the illumination light.
  • FIG. 3 is a diagram illustrating an example of the polarization state of the illumination light emitted from the prism 3.
  • Figure 4 shows the manufacturing of semiconductor devices. It is a figure showing a fabrication process. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention is applied to a projection exposure apparatus for manufacturing a semiconductor device.
  • FIG. 1 shows a schematic configuration of the projection exposure apparatus of the present embodiment.
  • a laser light source 1 as an exposure light source to an illumination optical system 15 composed of a condenser lens system 9 are used.
  • Illumination light (exposure light) IL illuminates, for example, a rectangular illumination area on the pattern surface (lower surface) of reticle R as a mask.
  • vacuum ultraviolet (VUV) F 2 laser light (wavelength: 157 nm) is used as the exposure light.
  • ArF excimer laser light (wavelength: 193 nm), YAG laser light
  • the exposure light Even when light having a wavelength of about 200 nm or less, such as harmonics of solid-state laser light or semiconductor laser light, or vacuum ultraviolet light is used as the exposure light, the coherence of the exposure light is strong. In such a case, the present invention is effective.
  • Illumination light IL passes through the temporal coherence retarder 2 is an optical member for reducing the (time coherency I) (described in detail later), magnesium fluoride is a material having a Fuku ⁇ folding resistance (M g F 2 Incident on the prism 3 made of).
  • M g F 2 Incident on the prism 3 made of
  • the polarization state of the illumination light IL continuously changes in the direction perpendicular to the optical axis according to the position of the line projected on the plane perpendicular to the optical axis of the slope of the illumination light IL.
  • space Effective coherency (spatial coherency) is reduced.
  • the illumination light IL that has passed through the prism 3 passes through a vibrating mirror 4 as an optical element for further reducing spatial coherence, and then travels through a first stage fly as an optical integrator (homogenizer). After reaching the eye lens 5A, a plurality of light source images are formed at the rear focal position near the exit surface.
  • the illumination light IL from the plurality of light source images enters the stop 7 via the lens 6A.
  • the aperture diameter of the aperture 7 is adjustable, and the illuminance (light amount) of the illumination light IL on the reticle R can be controlled by controlling the aperture diameter.
  • a main control system 13 that controls the overall operation of the apparatus controls the aperture diameter of the aperture 7 via an illumination system control device 14.
  • the illumination light IL that has passed through the aperture 7 passes through the lens 6B and the second-stage fly-eye lens 5B, and forms a large number of light source images at the rear focal point near the exit surface of the fly-eye lens 5B.
  • An aperture stop ( ⁇ stop) 5C is arranged near the exit surface.
  • the illumination light IL that has passed through the aperture stop 5C is turned 90 ° downward by a mirror 8 and then condensed by a condenser lens system.
  • the condenser lens system 9 is shown in a simplified manner, it is actually an optical system that forms an image once inside and has a reticle blind (variable field stop) on the image forming surface.
  • the illumination optical system 15 in this example is a double integrator system with a two-stage fly-eye lens (fly-eye and integrator system). The uniformity of the illuminance distribution has been improved.
  • the reticle R has a predetermined circuit pattern formed on a pattern surface of a transparent substrate such as fluorite or fluorine-doped quartz glass which is transparent to the illumination light IL and does not exhibit birefringence. An enlarged reticle pattern was formed. Illumination light IL that has passed through reticle R is applied to both sides (or to the wafer side). One side) Through a telecentric projection optical system PL, a pattern image in the illumination area of the reticle R is coated with a photoresist as a substrate at a predetermined projection magnification] 3 (3 is 1Z4, 1Z5, etc.) Projected on the wafer W.
  • the wafer W is a disk-shaped substrate such as a semiconductor (silicon or the like) or an SOI (silicon on insulator) for manufacturing a semiconductor device.
  • an imaging characteristic correction member 30 made of a parallel plate and having a variable tilt angle is installed, and the main control system 13 is connected to the imaging characteristic correction member 3 via a drive system (not shown).
  • the configuration is such that the desired imaging characteristics (distortion and the like) of the projection optical system PL can be corrected to a desired state.
  • the projection optical system PL can be constituted by a refraction system.
  • a catadioptric system combining a reflective system and a refractive system, or a reflective system may be used. Examples of the catadioptric system include, for example, Japanese Patent Application Laid-Open No.
  • a projection optical system PL a pair of reflection elements (primary mirror and secondary mirror) each having an opening (transmission part) through which exposure light passes are arranged on an optical axis on which a plurality of refraction elements are arranged.
  • An optical system that forms a primary image (intermediate image) by using a plurality of refraction elements for example, Japanese Patent Application No. 10-37011043 and Japanese Patent Application No.
  • the Z axis is taken parallel to the optical axis AX of the projection optical system PL
  • the X axis is taken parallel to the plane of Fig. 1 in the plane perpendicular to the optical axis AX
  • the Y axis is taken perpendicular to the plane of Fig. 1. Will be explained.
  • reticle R is held on reticle stage RST.
  • the stage RST positions the reticle R on the reticle base 31 within a predetermined range in the X direction, the Y direction, and the rotation direction.
  • the position of reticle stage RST (reticle R) is measured with high precision by a laser interferometer incorporated in reticle stage control system 12 and is based on the position information and control information from main control system 13.
  • the reticle stage control system 12 controls the positioning operation of the reticle stage RST.
  • the wafer W is held on a wafer stage WST via a wafer holder (not shown), and the wafer stage WST is two-dimensionally movably mounted on the wafer base 10.
  • the wafer stage WST positions the wafer W in the X direction and the Y direction by, for example, a linear motor method.
  • the position of wafer stage WST (wafer W) is measured with high precision by a laser interferometer built into wafer stage control system 11, and its position information and control information from main control system 13 are provided. Based on the above, the wafer stage control system 11 controls the positioning operation of the wafer stage WST.
  • the wafer stage WST has a focus position (optical axis
  • a position in the X direction) and a Z tilt drive mechanism to control the tilt angle are incorporated.
  • the focus position is measured at a plurality of measurement points on the surface of the wafer W by an auto focus sensor (not shown). Align the surface of W with the image plane of the projection optical system PL.
  • the illumination system control device 14 causes the laser light source 1 to emit the illumination light IL under the instruction of the main control system 13 at the time of exposure, and instructs the vibration reflecting mirror driving device 4a. Then, while the image of the pattern of the reticle R is being exposed on each shot area on the wafer, the vibration reflecting mirror 4 is continuously vibrated.
  • the wafer stage W is aligned after the wafer W is aligned.
  • the reticle R is illuminated with the illumination light IL from the illumination optical system 15 for a predetermined time to perform exposure, and then the next shot area on the wafer W is moved to the exposure area to perform exposure.
  • a reduced image of the reticle pattern is transferred to each shot area on the wafer W.
  • a semiconductor device is manufactured through processes such as development of a photoresist, etching of a light-shielding film, and stripping of a resist, followed by dicing and bonding.
  • the projection exposure apparatus of this embodiment can be of a step-and-scan type.
  • a reticle stage RST is also provided with a continuous moving mechanism in a predetermined scanning direction (Y direction). Is done. Then, the reticle R is illuminated by the illumination light IL from the illumination optical system 15 in a rectangular illumination area elongated in the X direction, and in synchronization with scanning the reticle R in the Y direction with respect to the illumination area, By scanning the wafer W in the Y direction with a projection ratio of [3] as the speed ratio, the image of the reticle scale pattern is sequentially transferred to each shot area on the wafer W.
  • magnesium fluoride (M g F 2) As a birefringent optical material.
  • quartz has been used as a birefringent optical material.
  • ordinary quartz greatly reduces the transmittance of vacuum ultraviolet light, especially when the wavelength is less than 180 nm. Has a considerably lower transmittance.
  • magnesium fluoride is a uniaxial crystal and exhibits optical anisotropy (birefringence), whereas fluorite and lithium fluoride are both cubic and exhibit birefringence. Since quartz glass is amorphous and does not exhibit birefringence because it is amorphous, magnesium fluoride is the most suitable optical material that has high transmittance in the vacuum ultraviolet region and exhibits birefringence at present.
  • the magnesium fluoride having a high transmittance at a wavelength of 1 5 0 wavelength has a 80% degree or more transmittance nm is 1 3 0 nm even 4 about 0% over more than
  • the exposure light is F 2 laser (Wavelength: 157 nm), and even a laser beam having a shorter wavelength (for example, a harmonic) can maintain a high transmittance.
  • Magnesium fluoride can also be used as a window material for vacuum ultraviolet light, but in such applications it is better not to cause birefringence.
  • the optical axis (optic axis), which is the axis of, is set to be approximately parallel to the optical path of the illumination light.
  • the birefringence of magnesium fluoride since the birefringence of magnesium fluoride is actively used, a state in which birefringence occurs for the illumination light, that is, the optical axis of the magnesium fluoride and the illumination light They differ in that they are installed in a direction perpendicular to the optical axis.
  • FIG. 2 shows a state in which the illumination light IL is incident on the prism 3.
  • the illumination light IL travels along the optical axis of the illumination optical system 15 (in this example, parallel to the Z axis).
  • the prism 3 is formed in a wedge shape whose thickness changes linearly in a direction perpendicular to the optical axis (in this example, a direction parallel to the X axis). It is set wider than the cross-sectional shape of the illumination light IL.
  • Magnesium fluoride constituting the prism 3 is birefringent. This is a uniaxial crystal with a characteristic, and is arranged in the illumination optical system 15 (see Fig.
  • each of the three axis directions of this crystal is parallel to the X axis, Y axis, and Z axis.
  • the ⁇ axis and the E axis indicate the direction of the ordinary ray component and the direction of the extraordinary ray component due to birefringence, respectively, and the 0 axis and the E axis are parallel to the X axis and the Y axis, respectively.
  • the optical axis of the prism 3 is parallel to the E axis (Y axis).
  • laser light is linearly polarized light due to a window material or the like provided to increase the reflectance of the resonator
  • the laser light source used in the projection exposure apparatus has a laser light inside a resonator.
  • Prisms and the like for reducing the chromatic aberration of the projection optical system are installed, and the band of the laser light is narrowed.
  • the laser light becomes stronger linearly polarized light, and the polarization direction depends on the installation angle of the prism installed in the resonator.
  • the illumination light IL of this example is also strong linearly polarized light, and its polarization direction is set in the direction indicated by the arrow 20.
  • the ⁇ axis (X axis) or E axis (Y axis) of the crystal of the prism 3 forms a predetermined inclination angle ⁇ ; with respect to the polarization direction of the illumination light IL indicated by the arrow 20, and the illumination optical system
  • the prism 3 is arranged so that the thickness of the prism 3 gradually changes in the direction (X direction) orthogonal to the optical axis of the prism.
  • the tilt angle may be any angle other than 0 ° and 90 °, but in order to greatly change the polarization state, the tilt angle is preferably closer to 45 °. Therefore, in this example, the inclination angle is set within a range of about 45 ° ⁇ 10 ° as an example.
  • the prism 3 By arranging the prism 3 so that the ⁇ axis or the E axis of the crystal of the prism 3 forms an inclination angle ⁇ ; with respect to the polarization direction when the illumination light IL is incident, it is possible to obtain the usual birefringence.
  • the polarization state of the illumination light I that is, the ellipticity in the polarization amplitude space representing the degree of polarization, is determined by the length of the optical path of the illumination light IL in the prism 3. It can be changed according to the thickness (thickness).
  • the polarization at the time of emission of the illumination light IL The light state will be different from the polarization state at the time of incidence. Since the thickness of the prism 3 changes gradually along the X direction, the polarization state of the illumination light IL emitted from the prism 3 changes gradually along the X direction.
  • FIG. 3 shows an example of a change in the polarization state of the light beams IL1 to IL4 in the linearly polarized illumination light IL incident on the prism 3.
  • the light beams IL1 to IL4 Since the length of each optical path (thickness of prism 3) is different from L1 to L4, the phase difference between ordinary ray and extraordinary ray due to birefringence when emitted from prism 3 is ⁇ 1 to ⁇ 4 Also change.
  • the light beam I L 1 is assumed to be emitted from the prism 3 as linearly polarized light (hereinafter referred to as “0 ° linearly polarized light”) indicated by an arrow 21 ⁇ .
  • the light beam IL 2 becomes, for example, an arrow 2
  • the light is emitted from prism 3 as clockwise circularly polarized light indicated by 1 B.
  • the phase difference ⁇ 3 of the light beam IL 3 is different from the phase difference ⁇ by 180 ° corresponding to 1 Z 2 wavelengths, the light beam IL 3 has a polarization direction of 1 with respect to the light beam IL 1.
  • linearly polarized light at 180 ° The light exits from the prism 3 as linearly polarized light indicated by an arrow 21 C different by 80 ° (hereinafter referred to as “linearly polarized light at 180 °”). Also, assuming that the phase difference (/) 4 of the light beam IL 4 is different from the phase difference ⁇ 2 by 270 ° corresponding to 3/4 wavelength, the light beam IL 4 is opposite to the light beam IL 2 The light is emitted from the prism 3 as left-handed circularly polarized light.
  • the polarization state of the illumination light IL emitted from the prism 3 is 0 ° linearly polarized light, clockwise circularly polarized light, and 18 ° sequentially along the direction (X direction) perpendicular to the optical axis of the illumination optical system. 0.
  • the tilt angle in FIG. 2 described above is not necessarily 45 °, but when the tilt angle ⁇ is 45 °, that is, in the middle of the directions of two crystal axes having different refractive indexes from each other.
  • the prism 3 is arranged so that the direction of the illumination light IL substantially matches the polarization direction of the illumination light IL, a part of the illumination light IL passing through the prism 3 is completely circularly polarized, so that the illumination light IL There is an advantage that the coherence can be efficiently reduced.
  • the illumination light lifting Chi a high transmittance to (F 2 laser) IL
  • the illumination optical system of FIG. 1 the flop rhythm 3 formed by magnesium fluoride is glass material of the birefringent 1
  • the illumination light IL By arranging the illumination light IL inside the reticle R, it is possible to suppress the occurrence of a spike in the illumination area of the reticle R without lowering the illuminance of the illumination light IL, thereby preventing the illumination light IL from deteriorating the uniformity of the illuminance distribution. Can be.
  • a reflector 2 in addition to the prism 3 made of magnesium fluoride, a reflector 2, an oscillating reflector 4, and a flywheel are used as optical elements for uniformizing the illuminance distribution.
  • Eye lenses 5A and 5B are provided to make the illuminance distribution of the illumination light IL more uniform.
  • the retarder (optical delay element) 2 is a partial optical delay element composed of a multiple reflection element composed of a semi-transparent mirror 2a and reflection mirrors 2b and 2c. About 1 to 2 of the light IL is reflected by the semi-transparent mirror 2 a and travels to prism 3. Then, the illumination light IL 5 transmitted through the semi-transparent mirror 2a is reflected by the reflection mirrors 2b and 2c, and its optical path again matches the illumination light directly reflected by the semi-transparent mirror 2a. I have.
  • the illumination light IL 5 transmitted through a has a longer optical path length than the illumination light directly reflected by the semi-transparent mirror 2 a, the illumination light IL traveling toward the prism 3 is allowed to pass through the retarder 2 by passing through the retarder 2. Interference can be reduced.
  • the vibration reflecting mirror 4 is also an optical element for reducing the occurrence of speckle.
  • the vibration reflecting mirror 4 By vibrating the vibration reflecting mirror 4 with the vibration axis at the very short period about the optical axis by the vibration reflecting mirror driving device 4a, the light path of the illumination light IL is vibrated within a small angle around the predetermined direction, and the vibration is very small.
  • the spatial responsiveness of the illumination light IL can be reduced.
  • the use of two-stage fly-eye lenses 5A and 5B makes the illuminance distribution of the illumination light IL more uniform.
  • the prism 3 made of magnesium fluoride in this example impairs the functions of the above-described optical elements (the retarder 2, the vibration reflecting mirror 4, and the fly-eye lenses 5A and 5B) for uniformizing the illuminance distribution. Needless to say, they can be used together.
  • magnesium fluoride was used as an optical material for forming the prism 3.
  • the glass material is birefringent and has a high transmittance to illumination light for exposure, it is used as the prism 3. It goes without saying that you can do it. As a result, the coherence of the illumination light can be reduced and the generation of speckles can be suppressed without lowering the illuminance of the illumination light as in the present example.
  • the prism 3 is a prism whose thickness changes in a one-dimensional direction, but other than that, the prism whose thickness changes in a two-dimensional direction, for example, intersects each other in a plane perpendicular to the optical axis of the illumination optical system.
  • a prism whose thickness changes gradually in two directions may be used.
  • a prism whose thickness changes in a high-order function of second order or more may be used.
  • a prism was used as a transmission type optical element that changes the polarization state.
  • the optical element may have any shape and configuration.
  • the retarder 2 and the vibration reflecting mirror 4 are used in addition to the prism 3.
  • the present invention is not limited to the combination of the retarder 2 and the vibration reflecting mirror 4.
  • a fly eye lens is used as an optical integrator (homogenizer). You may use it together.
  • the number of optical integrators arranged in the illumination optical system is not limited to two, but may be one or three or more.
  • a light source for generating light in the vacuum ultraviolet region eg if the wavelength 1 4 6 nm krypton dimer laser (K r 2 laser), wavelength 1 3 4 nm of K r A r laser, or a wavelength 1 2 6 nm It is also possible to use an argon dimer laser (Ar 2 laser).
  • optical path is shifted by disposing the prism 3 in the optical path of the illumination light IL, it is desirable to further dispose an optical member (prism or the like) for correcting this.
  • FIG. 4 shows an example of a semiconductor device manufacturing process.
  • a wafer W is manufactured from a silicon semiconductor or the like.
  • a photoresist is applied on the wafer W (step S10), and the next step S12 is performed.
  • the reticle R1 is loaded on the reticle stage of the projection exposure apparatus of the above embodiment (FIG. 1), and the pattern (represented by the symbol A) of the reticle R1 is transferred to the entire shot area SE on the wafer W. Transfer (exposure) to The wafer W is, for example, a wafer (12-inch wafer) having a diameter of 300 mm.
  • a predetermined pattern is formed in each shot region SE of the wafer W by performing development, etching, ion implantation, and the like.
  • step S16 a photoresist is applied on the wafer W, and then in step S18, the reticle R2 is loaded on the reticle stage of the projection exposure apparatus of the above embodiment (FIG. 1). Then, the pattern (represented by the symbol B) of the reticle R 2 is transferred (exposed) to each shot area SE on the wafer W. Then, in step S20, a predetermined pattern is formed in each shot region of the wafer W by performing development, etching, ion implantation, and the like of the wafer W.
  • step S22 a dicing process for separating each chip CP on the wafer W one by one, a bonding process and a packaging process (step S224), a semiconductor device as a product is obtained.
  • Chair SP is manufactured.
  • the application of the projection exposure apparatus according to the above-described embodiment is not limited to an exposure apparatus for manufacturing a semiconductor.
  • an exposure apparatus for a liquid crystal that exposes a liquid crystal display element pattern to a square glass plate It can be widely applied to exposure equipment for manufacturing plasma display thin film magnetic heads, imaging devices (CCD, etc.), micro machines, and the like.
  • a reticle or a mask used in an exposure apparatus for manufacturing a device for manufacturing a semiconductor element or the like may be used, for example.
  • the projection exposure apparatus of the above-described embodiment can be suitably used also when manufacturing with an exposure apparatus using far ultraviolet light (DUV light) or vacuum ultraviolet light (VUV light).
  • DUV light far ultraviolet light
  • VUV light vacuum ultraviolet light
  • the present invention provides a step-and-stitch type reduction projection exposure apparatus that uses, for example, vacuum ultraviolet light or the like as exposure illumination light, or a projection optical system that uses vacuum ultraviolet light or the like as exposure light.
  • the present invention can be applied to a proximity type exposure apparatus that exposes a mask pattern by bringing a mask and a substrate into close contact.
  • a single-wavelength laser in the infrared or visible region oscillated from a DFB semiconductor laser or a fiber laser as exposure illumination light for example, erbium (Er) (or both erbium and ytterbium (Yb)) is used.
  • harmonics that have been amplified by a coupled fiber amplifier and wavelength-converted to ultraviolet light using a nonlinear optical crystal.
  • the oscillation wavelength of a single-wavelength laser is in the range of 1.544 to 1.553 / xm
  • the 8th harmonic in the range of 193 to 194 nm, that is, almost the same as the ArF excimer laser same wave length and comprising the ultraviolet light is obtained, when the oscillation wavelength 1. and 57 to 1.58 01 within the range of 1 0 harmonic in the range of 1. 57 to 1 58 nm, i.e. the F 2 lasers Ultraviolet light having substantially the same wavelength can be obtained.
  • the projection exposure apparatus includes an illumination optical system including a prism formed of a birefringent glass material that is transparent to illumination light and is made of birefringent glass material, such as magnesium fluoride described above.
  • the projection optical system is incorporated into the exposure apparatus body to perform optical adjustments, and a reticle stage or wafer stage consisting of a large number of mechanical parts is attached to the exposure apparatus body to connect wiring and piping for further comprehensive adjustment (electrical adjustment, operation Confirmation etc.). It is desirable that the projection exposure apparatus be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • the spatial coherence of the illumination light is reduced, and the occurrence of speckle is suppressed, so that the deterioration of the uniformity of the illuminance distribution of the illumination light is suppressed. be able to. Therefore, exposure can be performed with a uniform illuminance distribution using illumination light in a vacuum ultraviolet region having a wavelength of 200 nm or less.
  • the polarization state of the illumination light can be gradually changed in a direction perpendicular to the optical axis of the illumination light, and the spatial The coherence can be reduced to suppress the occurrence of speckle, and the deterioration of the uniformity of the illuminance of the illumination light can be suppressed.
  • the second illumination optical device further includes the vibrating member and the optical integre, the illuminance distribution of the illumination light can be made more uniform.
  • a prism made of magnesium fluoride even when vacuum ultraviolet light is used, high illuminance uniformity and low extinction coefficient can be realized with almost no change in the entire apparatus.
  • the pattern of the mask is formed on the substrate with high precision, and the height of the device is further increased. Integration and high speed can be achieved.
  • a high-performance device can be manufactured with high throughput.

Abstract

An exposure method for conducting exposure with high, uniform illuminance by illuminating light (IL) for exposure even when the illuminating light (IL) is a laser beam having a wavelength in the vacuum ultraviolet region. The illuminating light (IL) which is a linearly-polarized F2 laser beam emitted from a laser light source (1) passes through a prism (3), an oscillating mirror (4), bly-eye lenses (5A, 5B), and a condenser lens (9) and illuminates a reticle (R). The pattern on the reticle (R) is transferred onto a wafer (W) through a projection optical system (PL). The prism (3) is made of a crystal of magnesium fluoride (MgF2) which is a birefringent glass material transparent to the F2 laser beam. The prism (3) has a thickness gradually varying in the direction perpendicular to the optical axis of the illuminating light (IL) and is so disposed that it exhibits birefringence with respect to the illuminating light (IL). The polarized state of the illuminating light (IL) is continuously changed in a predetermined direction in a plane perpendicular to the optical axis.

Description

明 細 書 露光方法及び装置 技術分野  Description Exposure method and apparatus
本発明は、 例えば半導体集積回路、 撮像素子 (C C D等) 、 液晶ディ スプレイ、 プラズマディスプレイ、 又は薄膜磁気ヘッド等のマイクロデ バイスをリソグラフィ技術を用いて製造する際に使用される露光方法に 関する。 背景技術  The present invention relates to an exposure method used when manufacturing a microdevice such as a semiconductor integrated circuit, an imaging device (CCD or the like), a liquid crystal display, a plasma display, or a thin-film magnetic head by using a lithography technique. Background art
近年、 半導体集積回路等の回路パターンの微細化に伴い、 ステッパー 等の露光装置で使用される露光用の照明光 (露光光) の波長は年々短波 長化してきている。 即ち、 露光光としては、 従来主に使用されていた水 銀ランプの i線 (波長 3 6 5 n m) に代わって K r Fエキシマレーザ光 (波長 2 4 8 n m) が主流となってきており、 更に短波長のほぼ真空紫 外域の A r Fエキシマレ一ザ光 (波長 1 9 3 n m) も実用化されつつあ る。 また、 更なる露光光の短波長化を目的として、 F 2 レーザ (波長 1 5 7 n m) のようなハロゲン分子レ一ザ等の使用も試みられている。 このように露光装置では、 露光光としてレーザ光が使用されるように なっているが、 一般にレーザ光は強く直線偏光した光であり、 かつ可干 渉性 (コヒ一レンシィ) が高い。 そのため、 露光光としてレーザ光を使 用すると、 照明領域にスペックルと呼ばれる斑点状の干渉縞が生じる。 このスペックルの発生は、 露光光の照度分布を不均一にし、 ウェハ等の 被露光基板上に形成される回路パターンの線幅の均一性を悪化させるた め、 製造されるデバイスの品質 (動作速度等) を著しく低下させたり、 誤動作させたりする要因となる。 In recent years, as circuit patterns of semiconductor integrated circuits and the like have become finer, the wavelength of exposure illumination light (exposure light) used in an exposure apparatus such as a stepper has been becoming shorter and shorter year by year. In other words, KrF excimer laser light (wavelength: 248 nm) has become the mainstream of exposure light instead of the i-line (wavelength: 365 nm) of mercury lamps, which has been mainly used in the past. In addition, short-wavelength ArF excimer laser light (wavelength: 193 nm) in the vacuum ultraviolet region is being put into practical use. In addition, for the purpose of further shortening the wavelength of exposure light, use of a halogen molecule laser such as an F 2 laser (wavelength: 157 nm) has been attempted. As described above, in the exposure apparatus, laser light is used as exposure light. Generally, laser light is light that is strongly linearly polarized and has high coherence. Therefore, when laser light is used as the exposure light, speckle-like interference fringes called speckles are generated in the illumination area. The occurrence of this speckle makes the illuminance distribution of the exposure light non-uniform and deteriorates the uniformity of the line width of a circuit pattern formed on a substrate to be exposed such as a wafer. Speed, etc.) It may cause malfunction.
このため、 例えば K r Fエキシマレーザ光を露光光として使用してい た従来の露光装置では、 水晶製のプリズムを照明光学系内に配置するこ とによって、 露光光の照度分布の均一性の悪化を防止していた。 この場 合、 水晶は複屈折性を有するため、 その水晶のプリズムを露光光が通過 する際に、 複屈折によって常光線と異常光線とのプリズム内における速 度が異なったものになる。 従って、 露光光の光路に厚さが次第に変化し ている水晶のプリズムを配置することによって、 局所的に 1 Z 4波長板 や 1 Z 2波長板を配置した場合と同等の効果、 又はそれらの中間の効果 を得ることができ、 プリズムから射出される露光光の偏光状態を部分的 に変化させることができる。 このため、 露光光の空間的な可干渉性 (空 間コヒ一レンシィ) が低減して、 スペックルの発生を抑えることができ る。  For this reason, for example, in a conventional exposure apparatus using KrF excimer laser light as exposure light, the uniformity of the illuminance distribution of the exposure light is deteriorated by arranging a quartz prism in the illumination optical system. Had been prevented. In this case, since the crystal has birefringence, when the exposure light passes through the prism of the crystal, the speed of the ordinary ray and the extraordinary ray in the prism becomes different due to the birefringence. Therefore, by arranging a quartz prism with a gradually changing thickness in the optical path of the exposure light, the same effect as when a 1Z 4 wavelength plate or 1Z 2 wavelength plate is locally arranged, or those effects An intermediate effect can be obtained, and the polarization state of the exposure light emitted from the prism can be partially changed. For this reason, the spatial coherence (space coherency) of the exposure light is reduced, and the occurrence of speckle can be suppressed.
上記の如く従来の露光装置では、 露光光の光路中に水晶のプリズムを 配置して露光光の可干渉性を低下させていた。 しかしながら、 通常の水 晶は波長 2 0 0 n m程度以下の真空紫外光に対しては透過率が大きく低 下する。 そのため、 露光光が A r Fエキシマレ一ザ光程度であれば、 水 晶は照度低下に対して露光時間を長くする等の対策を施すことで使用可 能であるが、 スループッ トが著しく低下するという不都合がある。 そし て、 より短波長の F 2 レーザ光に対しては水晶は透過率が大きく低下す るために使用が困難となる。 従って、 露光光として真空紫外域のレーザ 光を使用する場合には、 その露光光の照度を高く維持した状態でその可 干渉性を低減させてスペックルの発生を抑えることが難しく、 露光光の 照度分布の均一性の悪化を防止することが困難であった。 As described above, in the conventional exposure apparatus, a quartz prism is arranged in the optical path of the exposure light to reduce the coherence of the exposure light. However, ordinary crystals have a large decrease in transmittance for vacuum ultraviolet light with a wavelength of about 200 nm or less. Therefore, if the exposure light is about the ArF excimer laser light, the crystal can be used by taking measures such as prolonging the exposure time against a decrease in illuminance, but the throughput will be significantly reduced. There is an inconvenience. And, the crystal becomes difficult to use to greatly reduced transmittance with respect to a shorter wavelength of F 2 laser light. Therefore, when laser light in the vacuum ultraviolet region is used as the exposure light, it is difficult to reduce the coherence while keeping the illuminance of the exposure light high and to suppress the occurrence of speckle. It has been difficult to prevent deterioration of the uniformity of the illuminance distribution.
本発明は斯かる点に鑑み、 露光用の照明光として真空紫外域程度の波 長で可干渉性を有する光を使用する場合であっても、 その照明光の照度 をあまり低下させることなく、 その照明光の照度分布の均一性を高める ことができる露光方法を提供することを第 1の目的とする。 In view of such a point, the present invention provides a method for controlling the illuminance of the illumination light even when using light having a coherence with a wavelength of about the vacuum ultraviolet region as the exposure illumination light. It is a first object of the present invention to provide an exposure method that can increase the uniformity of the illuminance distribution of the illumination light without significantly reducing the illuminance.
また、 本発明はそのような露光方法を実施できる照明光学装置及び露 光装置を提供することを第 2の目的とする。  A second object of the present invention is to provide an illumination optical device and an exposure device capable of performing such an exposure method.
また、 本発明は、 真空紫外域程度の波長の照明光に対して複屈折作用 を持つと共に高い透過率を持つ材料を探し、 この材料を用いてそのよう な露光方法を実施できる照明光学装置を提供することを第 3の目的とす る。  Further, the present invention seeks a material having a birefringence effect and a high transmittance with respect to illumination light having a wavelength in the vacuum ultraviolet range, and an illumination optical device capable of performing such an exposure method using this material. The third purpose is to provide.
更に本発明は、 そのような露光装置の製造方法、 及びそのような露光 方法を用いたデバイスの製造方法を提供することをも目的とする。 発明の開示  Still another object of the present invention is to provide a method for manufacturing such an exposure apparatus and a method for manufacturing a device using such an exposure method. Disclosure of the invention
本発明による第 1の露光方法は、 照明光でマスク (R ) を照明し、 そ のマスクのパターンを基板 (W) 上に転写する露光方法において、 その 照明光の波長を 1 8 0 n m程度以下とし、 その照明光がそのマスクに入 射するまでの光路上にフッ化マグネシウム (M g F 2 )で形成される光学 素子を配置して、 その照明光の光路に実質的に垂直な方向にその照明光 の偏光状態を次第に変化させるようにしたものである。 A first exposure method according to the present invention is an exposure method for illuminating a mask (R) with illumination light and transferring the pattern of the mask onto a substrate (W), wherein the wavelength of the illumination light is about 180 nm. An optical element made of magnesium fluoride (MgF 2 ) is placed on the optical path until the illumination light enters the mask, and a direction substantially perpendicular to the optical path of the illumination light Then, the polarization state of the illumination light is gradually changed.
本発明によれば、 その照明光の偏光状態が直線偏光や円偏光のような 所定の状態である場合に、 その光路にほぼ垂直な方向にその偏光状態を 次第に変化させることによって、 即ち具体的には例えばその照明光の光 軸に垂直な平面内の少なくとも一つの方向にその照明光の偏光状態を空 間的に連続的に変化させることによって、 その照明光の空間的な可干渉 性 (空間コヒ一レンシィ) が低減される。 従って、 照明領域でのスぺッ クルの発生が抑えられ、 照度分布の均一性が向上する。 更に、 照明光の 光量を殆ど低下させることなく偏光状態のみを変化させることによって、 解像度を高めるために波長 2 0 0 n m以下のほぼ真空紫外域の照明光を 使用したときに、 高い照度均一性と大きい照度とを両立できるという好 条件で露光を行うことができるため、 そのマスクのパターンの全体をそ の基板上に高い線幅均一性で高スループットに転写することができる。 また、 本発明による第 2の露光方法は、 コヒ一レントな照明光でマス クを照明し、 そのマスクを介して照明光で基板を露光する方法において、 その照明光の波長を 1 8 0 n m程度以下とし、 その照明光の可干渉性を 低減するために、 そのマスクへの入射に先立ってその照明光の偏光状態 をフッ化マグネシウムで形成される光学素子で変化させるものである。 本発明によれば、 第 1の露光方法と同様に照明領域でのスペックルの 発生が抑えられ、 照度分布の均一性が向上する。 また、 高い照度均一性 と大きい照度とを両立できるという好条件で露光を行うことができるた め、 そのマスクのパターンの全体をその基板上に高い線幅均一性で高ス ループッ 卜に転写することができる。 According to the present invention, when the polarization state of the illumination light is a predetermined state such as linearly polarized light or circularly polarized light, the polarization state is gradually changed in a direction substantially perpendicular to the optical path. For example, by spatially and continuously changing the polarization state of the illumination light in at least one direction in a plane perpendicular to the optical axis of the illumination light, the spatial coherence of the illumination light ( Spatial coherency) is reduced. Therefore, the occurrence of scattering in the illumination area is suppressed, and the uniformity of the illuminance distribution is improved. Furthermore, by changing only the polarization state without substantially reducing the amount of illumination light, When using illumination light in the almost vacuum ultraviolet region with a wavelength of 200 nm or less to enhance resolution, exposure can be performed under favorable conditions that both high illuminance uniformity and high illuminance can be achieved. The entire pattern can be transferred onto the substrate with high line width uniformity and high throughput. In a second exposure method according to the present invention, in a method of illuminating a mask with coherent illumination light and exposing a substrate with the illumination light through the mask, the wavelength of the illumination light is set to 180 nm. In order to reduce the coherence of the illuminating light, the polarization state of the illuminating light is changed by an optical element made of magnesium fluoride prior to incidence on the mask. According to the present invention, similarly to the first exposure method, generation of speckles in the illumination area is suppressed, and the uniformity of the illuminance distribution is improved. In addition, since exposure can be performed under favorable conditions that both high illuminance uniformity and high illuminance can be achieved, the entire mask pattern is transferred onto the substrate with high line width uniformity and high throughput. be able to.
次に、 本発明による第 1の照明光学装置は、 光源 ( 1 ) からの 2 0 0 n m以下の波長の照明光でマスク (W) を照明する照明光学装置 ( 1 5 ) であって、 その光源 ( 1 ) とそのマスクとの間のその照明光の光路上に、 その照明光に対して透過性で複屈折性を有する材料より形成されて、 そ の照明光学装置の光軸に交差する方向に厚さが次第に変化するプリズム ( 3 ) を配置したものである。  Next, a first illumination optical device according to the present invention is an illumination optical device (15) for illuminating a mask (W) with illumination light having a wavelength of 200 nm or less from a light source (1), On the optical path of the illuminating light between the light source (1) and the mask, the illuminating light is formed of a material that is transmissive and birefringent to the illuminating light, and intersects the optical axis of the illuminating optical device A prism (3) whose thickness changes gradually in the direction is arranged.
本発明によれば、 本発明の露光方法が実施できる。 即ち、 そのプリズ ムは、 複屈折性を有する材料より形成されているため、 その光軸に垂直 な平面内でそのプリズムの斜面方向をその光軸に垂直な平面に投影した 線の方向上の位置にしたがって、 その光軸に垂直な方向にその照明光の 偏光状態を連続的に変化させることができる。 また、 そのプリズムの材 料として、 波長 2 0 0 n m程度以下、 即ち真空紫外域でも比較的高い透 過率を持つ光学硝材を利用すれば、 マスク上での照度を高く維持できる。 この場合、 その真空紫外域でも透過率が高く複屈折性を持つ材料として は、 フッ化マグネシウム (M g F 2)の結晶が使用できる。 フッ化マグネ シゥムは、 波長 1 3 0 n m程度までの紫外光に対して十分に高い透過率 を有する。 特に真空紫外域で波長が 1 8 0 n m程度以下となると、 従来 使用されていた水晶では透過率が大きく低下してしまうため、 フッ化マ グネシゥムが有効である。 According to the present invention, the exposure method of the present invention can be performed. That is, since the prism is formed of a birefringent material, the prism is inclined in a plane perpendicular to the optical axis in a plane perpendicular to the optical axis. According to the position, the polarization state of the illumination light can be continuously changed in a direction perpendicular to the optical axis. Further, as a material of the prism, a wavelength of about 200 nm or less, that is, a relatively high transmittance even in a vacuum ultraviolet region. By using an optical glass material with an excessive ratio, the illuminance on the mask can be kept high. In this case, a crystal of magnesium fluoride (MgF 2 ) can be used as a material having high transmittance and birefringence even in the vacuum ultraviolet region. Magnesium fluoride has a sufficiently high transmittance for ultraviolet light up to a wavelength of about 130 nm. In particular, when the wavelength is about 180 nm or less in the vacuum ultraviolet region, the transmittance of the conventionally used quartz is greatly reduced, and magnesium fluoride is effective.
次に、 本発明による第 2の照明光学装置は、 光源からの 2 0 0 n m以 下の波長の照明光でマスク (R ) を照明する照明光学装置であって、 そ の光源からの照明光の光路上に配置され、 その照明光に対して透過性で 複屈折性を有する材料より形成されると共に、 その照明光学装置の光軸 に交差する方向に厚さが次第に変化しているプリズム (3 ) と、 このプ リズムを通過した照明光を振動させる振動部材 (4 ) と、 この振動部材 を通過した照明光より複数の光源像を形成するオプティカル ·ィンテグ レー夕 ( 5 A , 5 B ) と、 このオプティカル ·インテグレー夕から射出 される照明光をそのマスクに導くコンデンサ光学系 (9 ) と、 を有する ものである。  Next, a second illumination optical device according to the present invention is an illumination optical device for illuminating a mask (R) with illumination light having a wavelength of 200 nm or less from a light source, and the illumination light from the light source is provided. A prism (which is made of a material that is transparent and birefringent to the illumination light, and whose thickness gradually changes in a direction intersecting the optical axis of the illumination optical device). 3), a vibrating member (4) for vibrating the illumination light passing through the prism, and an optical integray (5A, 5B) for forming a plurality of light source images from the illumination light passing through the vibrating member. And a condenser optical system (9) for guiding the illumination light emitted from the optical integrator to the mask.
本発明によれば、 第 1の照明光学装置と同様にその照明光の照度分布 の均一性を向上できる。 更に、 照明中にその振動部材を振動させること によって、 積分効果により照明光の照度むらが小さくなる。 また、 その オプティカル ·インテグレー夕 (ホモジナイザー) の使用による照明光 の重畳作用によって、 その照明光の照度分布をより均一にすることがで さる。  According to the present invention, it is possible to improve the uniformity of the illuminance distribution of the illumination light as in the first illumination optical device. Further, by vibrating the vibrating member during illumination, the illuminance unevenness of the illumination light is reduced by the integration effect. In addition, the use of the optical integrator (homogenizer) allows the illumination light to be superimposed, thereby making the illuminance distribution of the illumination light more uniform.
次に、 本発明による第 1の露光装置は、 本発明の照明光学装置 ( 1 5 ) を備えた露光装置であって、 その照明光学装置からの照明光でマスク ( R ) を照明し、 このマスクのパターンを基板 (W) 上に転写するもの である。 斯かる本発明の第 1の露光装置によれば、 本発明の露光方法を 実施することができ、 そのマスクのパターンの全体を高いスループット でその基板上に高い線幅均一性で転写することができる。 Next, a first exposure apparatus according to the present invention is an exposure apparatus including the illumination optical device (15) of the present invention, and illuminates a mask (R) with illumination light from the illumination optical device. Transfers mask pattern onto substrate (W) It is. According to the first exposure apparatus of the present invention, the exposure method of the present invention can be carried out, and the entire pattern of the mask can be transferred onto the substrate with high line width uniformity at high throughput. it can.
また、 本発明による第 2の露光装置は、 波長が 1 8 0 n m程度以下で コヒーレントな照明光をマスクに照射する照明光学系を有し、 そのマス クを介してその照明光で基板を露光する露光装置において、 その照明光 学系内でその照明光の可千涉性を低減するために、 その照明光の偏光状 態を変化させる光学素子をフッ化マグネシウムで形成したものである。 斯かる本発明の第 2の露光装置によれば、 本発明の第 2の露光方法を実 施することができ、 そのマスクのパターンの全体を高いスループットで その基板上に高い線幅均一性で転写することができる。  Further, the second exposure apparatus according to the present invention has an illumination optical system that irradiates a mask with coherent illumination light having a wavelength of about 180 nm or less, and exposes the substrate with the illumination light via the mask. In such an exposure apparatus, an optical element that changes the polarization state of the illumination light is formed of magnesium fluoride in order to reduce the flexibility of the illumination light in the illumination optical system. According to such a second exposure apparatus of the present invention, the second exposure method of the present invention can be performed, and the entire mask pattern can be formed on the substrate with high line width uniformity at high throughput. Can be transcribed.
また、 本発明による露光装置の製造方法は、 本発明の照明光学装置と、 そのマスクを保持するマスクステージと、 基板を保持する基板ステージ とを所定の位置関係で組み上げるものである。  Further, a method of manufacturing an exposure apparatus according to the present invention includes assembling the illumination optical device of the present invention, a mask stage for holding a mask thereof, and a substrate stage for holding a substrate in a predetermined positional relationship.
次に、 本発明によるデバイスの製造方法は、 本発明の露光方法を用い て、 その照明光でそのマスクを照明し、 そのマスクのパターンをその基 板上に転写する工程を含むものである。 斯かる本発明によれば、 本発明 の露光方法を用いるため、 照明光の照度を低下させることなくマスクの パターンの全体を基板上に高い線幅均一性で転写することができ、 高機 能のデバイスを高スループッ 卜に製造することができる。 図面の簡単な説明  Next, the device manufacturing method according to the present invention includes a step of illuminating the mask with the illumination light using the exposure method of the present invention, and transferring a pattern of the mask onto the substrate. According to the present invention, since the exposure method of the present invention is used, the entire mask pattern can be transferred onto the substrate with high line width uniformity without lowering the illuminance of the illumination light. Devices can be manufactured with high throughput. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態の一例の投影露光装置を示す概略構成図 である。 図 2は、 図 1中のプリズム 3と照明光の進行方向及び偏光方向 との関係を示す拡大斜視図である。 図 3は、 プリズム 3から射出される 照明光の偏光状態の一例を示す図である。 図 4は、 半導体デバイスの製 造工程を示す図である。 発明を実施するための最良の形態 FIG. 1 is a schematic configuration diagram illustrating a projection exposure apparatus according to an example of an embodiment of the present invention. FIG. 2 is an enlarged perspective view showing the relationship between the prism 3 in FIG. 1 and the traveling direction and polarization direction of the illumination light. FIG. 3 is a diagram illustrating an example of the polarization state of the illumination light emitted from the prism 3. Figure 4 shows the manufacturing of semiconductor devices. It is a figure showing a fabrication process. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施の形態の一例につき図面を参照して説明す る。 本例は、 半導体デバイス製造用の投影露光装置に本発明を適用した ものである。  Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings. In this example, the present invention is applied to a projection exposure apparatus for manufacturing a semiconductor device.
図 1は、 本例の投影露光装置の概略構成を示し、 この図 1において、 露光時には、 露光光源としてのレーザ光源 1〜コンデンサレンズ系 9か ら構成される照明光学系 1 5からの露光用の照明光 (露光光) I Lが、 マスクとしてのレチクル Rのパターン面 (下面) の例えば矩形の照明領 域を照明する。 本例では露光光として真空紫外域 (V U V ) の F 2 レー ザ光 (波長 1 5 7 n m) を使用するが、 この他に A r Fエキシマレーザ 光 (波長 1 9 3 n m) 、 Y A Gレーザ光の高調波、 固体レーザ光、 又は 半導体レーザ光の高調波等で波長が 2 0 0 n m程度以下の光、 即ち真空 紫外光を露光光とする場合にも、 その露光光の可干渉性が強い場合には 本発明が有効である。 FIG. 1 shows a schematic configuration of the projection exposure apparatus of the present embodiment. In FIG. 1, at the time of exposure, a laser light source 1 as an exposure light source to an illumination optical system 15 composed of a condenser lens system 9 are used. Illumination light (exposure light) IL illuminates, for example, a rectangular illumination area on the pattern surface (lower surface) of reticle R as a mask. In this example, vacuum ultraviolet (VUV) F 2 laser light (wavelength: 157 nm) is used as the exposure light. In addition, ArF excimer laser light (wavelength: 193 nm), YAG laser light Even when light having a wavelength of about 200 nm or less, such as harmonics of solid-state laser light or semiconductor laser light, or vacuum ultraviolet light is used as the exposure light, the coherence of the exposure light is strong. In such a case, the present invention is effective.
即ち、 F 2 レーザ光源よりなるレーザ光源 1から射出されたパルスレ —ザ光よりなる照明光 I Lは、 所定方向に直線偏光したコヒーレントな 光束である。 照明光 I Lは、 この時間的な可干渉性 (時間コヒーレンシ ィ) を低下させる光学部材であるリターダ 2 (詳細後述) を経て、 複屈 折性を有する材料であるフッ化マグネシウム (M g F 2 ) 製のプリズム 3に入射する。 照明光 I Lがプリズム 3を通過することによって、 照明 光学系 1 5の光軸に直交する方向に沿って照明光 I Lの偏光状態が変化 して、 即ちその光軸に垂直な平面内でプリズム 3の斜面方向をその光軸 に垂直な平面に投影した線の方向の位置に応じて、 その光軸に垂直な方 向に照明光 I Lの偏光状態が連続的に変化するため、 照明光 I Lの空間 的な可干渉性 (空間コヒーレンシィ) が低減される。 プリズム 3を通過 した照明光 I Lは、 更に空間的な可干渉性を低減させるための光学素子 としての振動反射鏡 4を介して、 オプティカル ·インテグレ一夕 (ホモ ジナイザー) としての 1段目のフライアイレンズ 5 Aに達し、 この射出 面近傍の後側焦点位置に複数の光源像を形成する。 That is, pulse rates emitted from the laser light source 1 consisting of F 2 laser light source - illumination light IL consisting laser light is coherent light beam linearly polarized in a predetermined direction. Illumination light IL passes through the temporal coherence retarder 2 is an optical member for reducing the (time coherency I) (described in detail later), magnesium fluoride is a material having a Fuku屈folding resistance (M g F 2 Incident on the prism 3 made of). When the illumination light IL passes through the prism 3, the polarization state of the illumination light IL changes along a direction orthogonal to the optical axis of the illumination optical system 15, that is, the prism 3 in a plane perpendicular to the optical axis. The polarization state of the illumination light IL continuously changes in the direction perpendicular to the optical axis according to the position of the line projected on the plane perpendicular to the optical axis of the slope of the illumination light IL. space Effective coherency (spatial coherency) is reduced. The illumination light IL that has passed through the prism 3 passes through a vibrating mirror 4 as an optical element for further reducing spatial coherence, and then travels through a first stage fly as an optical integrator (homogenizer). After reaching the eye lens 5A, a plurality of light source images are formed at the rear focal position near the exit surface.
これらの複数の光源像からの照明光 I Lは、 レンズ 6 Aを経て絞り 7 に入射する。 絞り 7は、 その開口径が調整自在となっており、 その開口 径の制御によって例えばレチクル R上での照明光 I Lの照度 (光量) を 制御することができる。 装置全体の動作を統轄制御する主制御系 1 3が 照明系制御装置 1 4を介して、 その絞り 7の開口径の制御を行っている。 絞り 7を通過した照明光 I Lは、 レンズ 6 B及び 2段目のフライアイレ ンズ 5 Bを通過して、 フライアイレンズ 5 Bの射出面近傍の後側焦点位 置に多数の光源像を形成する。 その射出面近傍には開口絞り (σ絞り) 5 Cが配置され、 開口絞り 5 Cを通過した照明光 I Lは、 ミラー 8によ つて光路が 9 0 ° 下方に折り曲げられた後、 コンデンサレンズ系 9を介 してレチクル Rを照明する。 なお、 コンデンサレンズ系 9は簡略化して 示されているが、 実際には内部で一度結像を行うと共に、 その結像面に レチクルブラインド (可変視野絞り) を備えた光学系である。 本例の照 明光学系 1 5は、 2段のフライアイレンズ (フライアイ ·インテグレ一 夕) を備えるダブル ·インテグレー夕方式であるため、 シングル,イン テグレー夕方式に比べてレチクル R上での照度分布の均一性が向上して いる。  The illumination light IL from the plurality of light source images enters the stop 7 via the lens 6A. The aperture diameter of the aperture 7 is adjustable, and the illuminance (light amount) of the illumination light IL on the reticle R can be controlled by controlling the aperture diameter. A main control system 13 that controls the overall operation of the apparatus controls the aperture diameter of the aperture 7 via an illumination system control device 14. The illumination light IL that has passed through the aperture 7 passes through the lens 6B and the second-stage fly-eye lens 5B, and forms a large number of light source images at the rear focal point near the exit surface of the fly-eye lens 5B. . An aperture stop (σ stop) 5C is arranged near the exit surface. The illumination light IL that has passed through the aperture stop 5C is turned 90 ° downward by a mirror 8 and then condensed by a condenser lens system. Illuminate reticle R via 9. Although the condenser lens system 9 is shown in a simplified manner, it is actually an optical system that forms an image once inside and has a reticle blind (variable field stop) on the image forming surface. The illumination optical system 15 in this example is a double integrator system with a two-stage fly-eye lens (fly-eye and integrator system). The uniformity of the illuminance distribution has been improved.
レチクル Rは、 照明光 I Lに対して透過性で、 かつ複屈折性を示さな い例えば蛍石やフッ素をド一プした石英ガラス等の透明な基板のパター ン面に、 所定の回路パターンを拡大したレチクルパターンを形成したも のである。 レチクル Rを通過した照明光 I Lは、 両側 (又はウェハ側に 片側) テレセントリックな投影光学系 P Lを介して、 レチクル Rの照明 領域内のパターンの像を所定の投影倍率 ]3 ( 3は 1 Z 4, 1 Z 5等) で 基板としてのフォトレジス卜が塗布されたウェハ (waf er) W上に投影す る。 ウェハ Wは、 半導体デバイス製造用の例えば半導体 (シリコン等) 又は S O I (s i l i con on insu l ator)等の円板状の基板である。 The reticle R has a predetermined circuit pattern formed on a pattern surface of a transparent substrate such as fluorite or fluorine-doped quartz glass which is transparent to the illumination light IL and does not exhibit birefringence. An enlarged reticle pattern was formed. Illumination light IL that has passed through reticle R is applied to both sides (or to the wafer side). One side) Through a telecentric projection optical system PL, a pattern image in the illumination area of the reticle R is coated with a photoresist as a substrate at a predetermined projection magnification] 3 (3 is 1Z4, 1Z5, etc.) Projected on the wafer W. The wafer W is a disk-shaped substrate such as a semiconductor (silicon or the like) or an SOI (silicon on insulator) for manufacturing a semiconductor device.
投影光学系 P Lの上部には、 平行平板よりなり傾斜角可変の結像特性 補正部材 3 0が設置されており、 主制御系 1 3が不図示の駆動系を介し て結像特性補正部材 3 0を駆動することによって、 投影光学系 P Lの所 定の結像特性 (ディストーション等) を所望の状態に補正できるように 構成されている。 また、 投影光学系 P Lは屈折系でも構成可能である力 本例のように露光光が真空紫外域である場合には、 透過率を高めて色収 差補正を良好に行うために、 投影光学系 P Lとして反射系と屈折系とを 組み合わせた反射屈折系、 更には反射系を使用してもよい。 なお、 反射 屈折系の一例は、 例えば日本国特開平 1 0— 1 0 4 5 1 3号公報、 米国 特許第 5 6 5 0 8 7 7号及び米国特許第 5 5 5 9 3 3 8号などに開示さ れている。 なお、 本国際出願で指定した指定国、 又は選択した選択国の 国内法令の許す限りにおいてこれらの米国特許の開示を援用して本文の 記載の一部とする。 更に投影光学系 P Lとして、 複数の屈折素子が配列 される光軸上に、 それぞれ露光光が通過する開口 (透過部) を有する一 対の反射素子 (主鏡及び副鏡) が配置され、 その複数の屈折素子によつ て一次像 (中間像) を形成する光学系 (例えば日本国特願平 1 0— 3 7 0 1 4 3号及び日本国特願平 1 1 _ 6 6 7 6 9号に開示されている) を 用いてもよい。 以下、 投影光学系 P Lの光軸 A Xに平行に Z軸を取り、 その光軸 A Xに垂直な平面内で図 1の紙面に平行に X軸を、 図 1の紙面 に垂直に Y軸を取って説明する。  At the top of the projection optical system PL, an imaging characteristic correction member 30 made of a parallel plate and having a variable tilt angle is installed, and the main control system 13 is connected to the imaging characteristic correction member 3 via a drive system (not shown). By driving 0, the configuration is such that the desired imaging characteristics (distortion and the like) of the projection optical system PL can be corrected to a desired state. Further, when the exposure light is in the vacuum ultraviolet region as in this example, the projection optical system PL can be constituted by a refraction system. As the system PL, a catadioptric system combining a reflective system and a refractive system, or a reflective system may be used. Examples of the catadioptric system include, for example, Japanese Patent Application Laid-Open No. H10-1040513, U.S. Patent No. 5,650,877, and U.S. Patent No. 5,559,338. Is disclosed in The disclosure of these U.S. patents shall be incorporated into the text as far as the national laws of the designated country designated in this international application or the selected elected country allow. Further, as a projection optical system PL, a pair of reflection elements (primary mirror and secondary mirror) each having an opening (transmission part) through which exposure light passes are arranged on an optical axis on which a plurality of refraction elements are arranged. An optical system that forms a primary image (intermediate image) by using a plurality of refraction elements (for example, Japanese Patent Application No. 10-37011043 and Japanese Patent Application No. 11 _ 6 6 7 6 9 May be used. Hereinafter, the Z axis is taken parallel to the optical axis AX of the projection optical system PL, the X axis is taken parallel to the plane of Fig. 1 in the plane perpendicular to the optical axis AX, and the Y axis is taken perpendicular to the plane of Fig. 1. Will be explained.
まずレチクル Rは、 レチクルステージ R S T上に保持され、 レチクル ステージ R S Tは、 レチクルべ一ス 3 1上でレチクル Rを X方向、 Y方 向、 及び回転方向に所定範囲内で位置決めする。 レチクルステージ R S T (レチクル R ) の位置は、 レチクルステージ制御系 1 2内に組み込ま れたレーザ干渉計によって高精度に計測されており、 その位置情報及び 主制御系 1 3からの制御情報に基づいて、 レチクルステージ制御系 1 2 はレチクルステージ R S Tの位置決め動作を制御する。 First, reticle R is held on reticle stage RST. The stage RST positions the reticle R on the reticle base 31 within a predetermined range in the X direction, the Y direction, and the rotation direction. The position of reticle stage RST (reticle R) is measured with high precision by a laser interferometer incorporated in reticle stage control system 12 and is based on the position information and control information from main control system 13. The reticle stage control system 12 controls the positioning operation of the reticle stage RST.
一方、 ウェハ Wは、 不図示のウェハホルダを介してウェハステージ W S T上に保持され、 ウェハステージ W S Tはウェハべ一ス 1 0上に 2次 元的に移動自在に載置されている。 ウェハステージ W S Tは、 例えばリ ニァモー夕方式で X方向、 Y方向にウェハ Wを位置決めする。 ウェハス テージ W S T (ウェハ W) の位置は、 ウェハステージ制御系 1 1内に組 み込まれたレーザ干渉計によって高精度に計測されており、 その位置情 報及び主制御系 1 3からの制御情報に基づいて、 ウェハステージ制御系 1 1はウェハステージ W S Tの位置決め動作を制御する。  On the other hand, the wafer W is held on a wafer stage WST via a wafer holder (not shown), and the wafer stage WST is two-dimensionally movably mounted on the wafer base 10. The wafer stage WST positions the wafer W in the X direction and the Y direction by, for example, a linear motor method. The position of wafer stage WST (wafer W) is measured with high precision by a laser interferometer built into wafer stage control system 11, and its position information and control information from main control system 13 are provided. Based on the above, the wafer stage control system 11 controls the positioning operation of the wafer stage WST.
また、 ウェハステージ W S Tには、 ウェハ Wのフォーカス位置 (光軸 The wafer stage WST has a focus position (optical axis
A X方向の位置) 及び傾斜角を制御する Zチルト駆動機構が組み込まれ ている。 そして、 不図示のオートフォーカスセンサによりウェハ Wの表 面の複数の計測点でフォーカス位置が計測されており、 この計測結果に 基づいてウェハステージ W S Tは、 ォ一トフォーカス方式及びォートレ ベリング方式でウェハ Wの表面を投影光学系 P Lの像面に合わせ込む。 また、 照明系制御装置 1 4は、 露光時に主制御系 1 3の指示のもとでレ 一ザ光源 1に照明光 I Lの発光を開始させると共に、 振動反射鏡駆動装 置 4 aに指示して、 レチクル Rのパターンの像がウェハ上の各ショッ 卜 領域に露光されている間に継続して振動反射鏡 4を振動させる。 A position in the X direction) and a Z tilt drive mechanism to control the tilt angle are incorporated. The focus position is measured at a plurality of measurement points on the surface of the wafer W by an auto focus sensor (not shown). Align the surface of W with the image plane of the projection optical system PL. In addition, the illumination system control device 14 causes the laser light source 1 to emit the illumination light IL under the instruction of the main control system 13 at the time of exposure, and instructs the vibration reflecting mirror driving device 4a. Then, while the image of the pattern of the reticle R is being exposed on each shot area on the wafer, the vibration reflecting mirror 4 is continuously vibrated.
実際にレチクル Rのパターンの像をウェハ W上の各ショット領域に転 写する際には、 ウェハ Wのァライメントを行った後、 ウェハステージ W S Tを駆動することによってウェハ w上の一つのショット領域を投影光 学系 P Lの露光領域に移動する。 そして、 照明光学系 1 5からの照明光 I Lによってレチクル Rを所定時間照明して露光を行った後、 ウェハ W 上の次のショッ ト領域を露光領域に移動して露光を行うという動作がス テツプ · アンド ' リピート方式で繰り返されて、 ウェハ W上の各ショッ 卜領域にレチクルパターンの縮小像が転写される。 その後、 フォトレジ ストの現像、 遮光膜のエッチング、 レジスト剥離等の工程を経てから、 ダイシング及びボンディング等の工程を経ることで半導体デバイスが製 造される。 When transferring the pattern image of the reticle R to each shot area on the wafer W, the wafer stage W is aligned after the wafer W is aligned. By driving the ST, one shot area on the wafer w is moved to the exposure area of the projection optical system PL. Then, the reticle R is illuminated with the illumination light IL from the illumination optical system 15 for a predetermined time to perform exposure, and then the next shot area on the wafer W is moved to the exposure area to perform exposure. By repeating the step-and-repeat method, a reduced image of the reticle pattern is transferred to each shot area on the wafer W. After that, a semiconductor device is manufactured through processes such as development of a photoresist, etching of a light-shielding film, and stripping of a resist, followed by dicing and bonding.
また、 本例の投影露光装置をステップ · アンド · スキャン方式とする ことも可能であり、 この場合には、 レチクルステージ R S Tにも所定の 走査方向 (Y方向とする) への連続移動機構が付加される。 そして、 照 明光学系 1 5からの照明光 I Lによってレチクル Rが X方向に細長い長 方形の照明領域で照明され、 その照明領域に対してレチクル Rを Y方向 に走査するのと同期して、 投影倍率 ]3を速度比としてウェハ Wを Y方向 に走査することによって、 ウェハ W上の各ショッ ト領域にレチクル尺の パターンの像が逐次転写される。  Further, the projection exposure apparatus of this embodiment can be of a step-and-scan type. In this case, a reticle stage RST is also provided with a continuous moving mechanism in a predetermined scanning direction (Y direction). Is done. Then, the reticle R is illuminated by the illumination light IL from the illumination optical system 15 in a rectangular illumination area elongated in the X direction, and in synchronization with scanning the reticle R in the Y direction with respect to the illumination area, By scanning the wafer W in the Y direction with a projection ratio of [3] as the speed ratio, the image of the reticle scale pattern is sequentially transferred to each shot area on the wafer W.
次に、 本例の照明光学系 1 5内のフッ化マグネシウム製のプリズム 3 の作用につき図 2及び図 3を参照して説明する。  Next, the operation of the prism 3 made of magnesium fluoride in the illumination optical system 15 of this embodiment will be described with reference to FIGS.
まず、 本例において、 複屈折性の光学材料としてフッ化マグネシウム ( M g F 2 ) を使用する理由につき説明する。 複屈折性の光学材料とし て従来は水晶が使用されていたが、 既に説明したように通常の水晶は真 空紫外光に対して透過率が大きく低下し、 特に波長が 1 8 0 n m以下で は透過率がかなり小さくなる。 これに対して、 波長 2 0 0 n m程度以下 の真空紫外域でも比較的大きな透過率を持つ光学材料としては、 フッ化 マグネシムの他に蛍石 (C a F 2)、 フッ素をドープした石英ガラス、 及 びフッ化リチウム (L i F ) 等がある。 しかしながら、 フッ化マグネシ ゥムは 1軸性結晶で光学的異方性 (複屈折性) を示すのに対して、 蛍石 やフッ化リチウムは何れも立方晶系で複屈折性を示すことがなく、 石英 ガラスは非晶質であるためにやはり複屈折性を示さないため、 真空紫外 域で透過率が大きく、 かつ複屈折性を示す光学材料は現状ではフッ化マ グネシゥムが最適である。 更に、 フッ化マグネシウムは波長が 1 5 0 n mで 8 0 %程度以上の透過率を持ち波長が 1 3 0 n mでも 4 0 %程度以 上の高い透過率を有するため、 露光光が F 2 レーザ (波長 1 5 7 n m) 、 更にはより短波長のレーザ光 (例えば高調波等) であっても、 高い透過 率を維持することができる。 First, in the present embodiment, it will be explained the reason for using magnesium fluoride (M g F 2) as a birefringent optical material. Conventionally, quartz has been used as a birefringent optical material.However, as described above, ordinary quartz greatly reduces the transmittance of vacuum ultraviolet light, especially when the wavelength is less than 180 nm. Has a considerably lower transmittance. On the other hand, as an optical material that has a relatively large transmittance even in the vacuum ultraviolet region with a wavelength of about 200 nm or less, quartz glass doped with fluorite (C a F 2 ) and fluorine in addition to magnesium fluoride , And And lithium fluoride (L i F). However, magnesium fluoride is a uniaxial crystal and exhibits optical anisotropy (birefringence), whereas fluorite and lithium fluoride are both cubic and exhibit birefringence. Since quartz glass is amorphous and does not exhibit birefringence because it is amorphous, magnesium fluoride is the most suitable optical material that has high transmittance in the vacuum ultraviolet region and exhibits birefringence at present. Further, since the magnesium fluoride having a high transmittance at a wavelength of 1 5 0 wavelength has a 80% degree or more transmittance nm is 1 3 0 nm even 4 about 0% over more than, the exposure light is F 2 laser (Wavelength: 157 nm), and even a laser beam having a shorter wavelength (for example, a harmonic) can maintain a high transmittance.
また、 フッ化マグネシウムは真空紫外光に対する窓材等として使用す ることも可能であるが、 このような用途では複屈折が生じない方が良い ため、 フッ化マグネシウムはその複屈折が生じない方向の軸である光学 軸(op t i c ax i s)が照明光の光路にほぼ平行になるように設置される。 こ れに対して本例では、 積極的にフッ化マグネシウムの複屈折性を利用す るために、 その照明光に対して複屈折が生じる状態、 即ちフッ化マグネ シゥムの光学軸と照明光の光軸とが直交する方向で設置される点が異な つている。  Magnesium fluoride can also be used as a window material for vacuum ultraviolet light, but in such applications it is better not to cause birefringence. The optical axis (optic axis), which is the axis of, is set to be approximately parallel to the optical path of the illumination light. On the other hand, in this example, since the birefringence of magnesium fluoride is actively used, a state in which birefringence occurs for the illumination light, that is, the optical axis of the magnesium fluoride and the illumination light They differ in that they are installed in a direction perpendicular to the optical axis.
以下、 具体的にフッ化マグネシウム製のプリズム 3の使用方法にっき 説明する。  Hereinafter, the method of using the magnesium fluoride prism 3 will be specifically described.
図 2は、 プリズム 3に照明光 I Lが入射する様子を示し、 この図 2お いて、 照明光 I Lは、 照明光学系 1 5の光軸 (本例では Z軸に平行) に 沿ってプリズム 3の入射面に垂直に入射しており、 プリズム 3はその光 軸に直交する方向 (本例では X軸に平行な方向) に厚さが線形に変化す る楔状に形成され、 その入射面は照明光 I Lの断面形状よりも広く設定 されている。 また、 プリズム 3を構成するフッ化マグネシウムは複屈折 性を持つ 1軸性結晶であり、 この結晶の 3つの軸方位のそれぞれが X軸、 Y軸、 及び Z軸に平行になるように照明光学系 1 5 (図 1参照) 内に配 置されている。 また、 図 2において、 〇軸及び E軸は、 それぞれ複屈折 による常光線成分方向及び異常光線成分方向を示し、 かつ 0軸及び E軸 はそれぞれ X軸及び Y軸に平行になっている。 このとき、 プリズム 3の 光学軸は E軸 (Y軸) に平行である。 FIG. 2 shows a state in which the illumination light IL is incident on the prism 3. In this FIG. 2, the illumination light IL travels along the optical axis of the illumination optical system 15 (in this example, parallel to the Z axis). The prism 3 is formed in a wedge shape whose thickness changes linearly in a direction perpendicular to the optical axis (in this example, a direction parallel to the X axis). It is set wider than the cross-sectional shape of the illumination light IL. Magnesium fluoride constituting the prism 3 is birefringent. This is a uniaxial crystal with a characteristic, and is arranged in the illumination optical system 15 (see Fig. 1) so that each of the three axis directions of this crystal is parallel to the X axis, Y axis, and Z axis. ing. In FIG. 2, the 〇 axis and the E axis indicate the direction of the ordinary ray component and the direction of the extraordinary ray component due to birefringence, respectively, and the 0 axis and the E axis are parallel to the X axis and the Y axis, respectively. At this time, the optical axis of the prism 3 is parallel to the E axis (Y axis).
一般にレーザ光は、 共振器の反射率を高めるために設置された窓材等 に起因して直線偏光となっており、 更に投影露光装置に使用されるレ一 ザ光源の共振器内には、 投影光学系の色収差を軽減するためのプリズム 等が設置され、 レーザ光の狭帯化が行われている。 このような場合には、 レーザ光はより強い直線偏光になり、 その偏光方向は共振器内に設置さ れたプリズムの設置角度に依存する。 本例の照明光 I Lも強い直線偏光 であり、 その偏光方向は矢印 2 0で示す方向に設定されている。  In general, laser light is linearly polarized light due to a window material or the like provided to increase the reflectance of the resonator, and further, the laser light source used in the projection exposure apparatus has a laser light inside a resonator. Prisms and the like for reducing the chromatic aberration of the projection optical system are installed, and the band of the laser light is narrowed. In such a case, the laser light becomes stronger linearly polarized light, and the polarization direction depends on the installation angle of the prism installed in the resonator. The illumination light IL of this example is also strong linearly polarized light, and its polarization direction is set in the direction indicated by the arrow 20.
本例では、 プリズム 3の結晶の〇軸 (X軸) 又は E軸 (Y軸) が矢印 2 0で示される照明光 I Lの偏光方向に対して所定の傾き角 ο;をなし、 照明光学系の光軸に直交する方向 (X方向) にプリズム 3の厚さが次第 に変化するようにプリズム 3を配置している。 傾き角ひは、 0 ° 及び 9 0 ° 以外の角度であれば良いが、 偏光状態を大きく変化させるためには 傾き角ひは 4 5 ° に近い方が良い。 そこで、 本例では傾き角ひは一例と して 4 5 ° ± 1 0 ° 程度の範囲内に設定されている。 このようにプリズ ム 3の結晶の〇軸又は E軸が、 照明光 I Lの入射時の偏光方向に対して 傾き角 ο;をなすようにプリズム 3を配置することによって、 複屈折によ る常光線と異常光線との間に所定の位相差を生じさせて、 照明光 I しの 偏光状態、 即ち偏光の程度を表す偏光振幅空間における楕円率を照明光 I Lのプリズム 3中での光路の長さ (厚さ) に応じて変化させることが できる。 即ち、 プリズム 3中の光路長に応じて照明光 I Lの射出時の偏 光状態は入射時の偏光状態とは異なったものになる。 そして、 プリズム 3の厚さが X方向に沿って次第に変化しているため、 プリズム 3から射 出される照明光 I Lの偏光状態は X方向に沿って次第に変化する。 In this example, the 〇 axis (X axis) or E axis (Y axis) of the crystal of the prism 3 forms a predetermined inclination angle ο; with respect to the polarization direction of the illumination light IL indicated by the arrow 20, and the illumination optical system The prism 3 is arranged so that the thickness of the prism 3 gradually changes in the direction (X direction) orthogonal to the optical axis of the prism. The tilt angle may be any angle other than 0 ° and 90 °, but in order to greatly change the polarization state, the tilt angle is preferably closer to 45 °. Therefore, in this example, the inclination angle is set within a range of about 45 ° ± 10 ° as an example. By arranging the prism 3 so that the 〇 axis or the E axis of the crystal of the prism 3 forms an inclination angle ο; with respect to the polarization direction when the illumination light IL is incident, it is possible to obtain the usual birefringence. By generating a predetermined phase difference between the light beam and the extraordinary light beam, the polarization state of the illumination light I, that is, the ellipticity in the polarization amplitude space representing the degree of polarization, is determined by the length of the optical path of the illumination light IL in the prism 3. It can be changed according to the thickness (thickness). That is, depending on the optical path length in the prism 3, the polarization at the time of emission of the illumination light IL The light state will be different from the polarization state at the time of incidence. Since the thickness of the prism 3 changes gradually along the X direction, the polarization state of the illumination light IL emitted from the prism 3 changes gradually along the X direction.
図 3は、 プリズム 3に入射する直線偏光の照明光 I L中の光束 I L 1 〜 I L 4の偏光状態の変化の一例を示し、 この図 3において、 光束 I L 1〜 I L 4はプリズム 3中でのそれぞれの光路の長さ (プリズム 3の厚 さ) L 1〜L 4が互いに異なっているため、 プリズム 3から射出される 際の複屈折による常光線と異常光線との位相差 Φ 1〜φ 4も変化する。 この内、 光束 I L 1は、 矢印 2 1 Αで示す直線偏光 (以下、 「0 ° の直 線偏光」 という) としてプリズム 3から射出されるものとする。 これに 対して、 光束 I L 2の位相差 φ 2は、 光束 I L 1の位相差 φ 1に対して 1 4波長に相当する 9 0 ° だけ異なっているものとすると、 光束 I L 2は例えば矢印 2 1 Bで示す右回りの円偏光となってプリズム 3から射 出される。 また、 光束 I L 3の位相差 φ 3は、 その位相差 φ ΐに対して 1 Z 2波長に相当する 1 8 0 ° だけ異なるものとすると、 光束 I L 3は 光束 I L 1とは偏光方向が 1 8 0 ° 異なった矢印 2 1 Cで示す直線偏光 (以下、 「 1 8 0 ° の直線偏光」 という) となってプリズム 3から射出 される。 また、 光束 I L 4の位相差 (/) 4は、 その位相差 φ ΐに対して 3 ノ 4波長に相当する 2 7 0 ° だけ異なるものとすると、 光束 I L 4は光 束 I L 2とは反対回りの左回りの円偏光となってプリズム 3から射出さ れる。  FIG. 3 shows an example of a change in the polarization state of the light beams IL1 to IL4 in the linearly polarized illumination light IL incident on the prism 3. In FIG. 3, the light beams IL1 to IL4 Since the length of each optical path (thickness of prism 3) is different from L1 to L4, the phase difference between ordinary ray and extraordinary ray due to birefringence when emitted from prism 3 is Φ1 to Φ4 Also change. Among them, the light beam I L 1 is assumed to be emitted from the prism 3 as linearly polarized light (hereinafter referred to as “0 ° linearly polarized light”) indicated by an arrow 21 Α. On the other hand, assuming that the phase difference φ 2 of the light beam IL 2 is different from the phase difference φ 1 of the light beam IL 1 by 90 ° corresponding to 14 wavelengths, the light beam IL 2 becomes, for example, an arrow 2 The light is emitted from prism 3 as clockwise circularly polarized light indicated by 1 B. Further, assuming that the phase difference φ 3 of the light beam IL 3 is different from the phase difference φ by 180 ° corresponding to 1 Z 2 wavelengths, the light beam IL 3 has a polarization direction of 1 with respect to the light beam IL 1. The light exits from the prism 3 as linearly polarized light indicated by an arrow 21 C different by 80 ° (hereinafter referred to as “linearly polarized light at 180 °”). Also, assuming that the phase difference (/) 4 of the light beam IL 4 is different from the phase difference φ 2 by 270 ° corresponding to 3/4 wavelength, the light beam IL 4 is opposite to the light beam IL 2 The light is emitted from the prism 3 as left-handed circularly polarized light.
即ち、 プリズム 3から射出される照明光 I Lの偏光状態は、 照明光学 系の光軸に垂直な方向 (X方向) に沿って順次、 0 ° の直線偏光、 右回 りの円偏光、 1 8 0。 の直線偏光、 左回りの円偏光、 0 ° の直線偏光、 右回りの円偏光、 …と周期的に変化する。 そして、 偏光状態の異なる光 束同士の可干渉性は低くなるため、 プリズム 3を図 1のように照明光学 系 1 5内に設置することによって、 プリズム 3を通過した後の照明光 I Lの空間的な可干渉性が低減される。 That is, the polarization state of the illumination light IL emitted from the prism 3 is 0 ° linearly polarized light, clockwise circularly polarized light, and 18 ° sequentially along the direction (X direction) perpendicular to the optical axis of the illumination optical system. 0. Linearly polarized light, left-handed circularly polarized light, 0 ° linearly polarized light, right-handed circularly polarized light, and so on. Since the coherence between light beams having different polarization states is low, the prism 3 is connected to the illumination optics as shown in Fig. 1. By installing in the system 15, the spatial coherence of the illumination light IL after passing through the prism 3 is reduced.
なお、 上述の図 2の傾き角ひは、 必ずしも 4 5 ° にする必要はないが、 その傾き角 αを 4 5 ° にした場合、 即ち、 互いに屈折率が異なる 2つの 結晶軸の方向の中間の方向が照明光 I Lの偏光方向に実質的に合致する ようにプリズム 3を配置した場合には、 プリズム 3を通過する照明光 I Lの一部が完全に円偏光になるため、 照明光 I Lの可干渉性を効率よく 低下させることができる利点がある。  Note that the tilt angle in FIG. 2 described above is not necessarily 45 °, but when the tilt angle α is 45 °, that is, in the middle of the directions of two crystal axes having different refractive indexes from each other. When the prism 3 is arranged so that the direction of the illumination light IL substantially matches the polarization direction of the illumination light IL, a part of the illumination light IL passing through the prism 3 is completely circularly polarized, so that the illumination light IL There is an advantage that the coherence can be efficiently reduced.
以上のように、 照明光 (F 2 レーザ光) I Lに対して高い透過率を持 ち、 かつ複屈折性の硝材であるフッ化マグネシウムにより形成されたプ リズム 3を図 1の照明光学系 1 5内に配置することによって、 照明光 I Lの照度を低下させることなく、 レチクル Rの照明領域におけるスぺッ クルの発生を抑え、 照明光 I Lの照度分布の均一性の悪化を防止するこ とができる。 この結果、 ウェハ W上に形成される回路パターンの線幅の 均一性の悪化を防止し、 ひいては、 製造されるデバイスの動作速度の低 下を軽減し、 デバイスの誤動作を防止することができる。 As described above, the illumination light lifting Chi a high transmittance to (F 2 laser) IL, and the illumination optical system of FIG. 1 the flop rhythm 3 formed by magnesium fluoride is glass material of the birefringent 1 By arranging the illumination light IL inside the reticle R, it is possible to suppress the occurrence of a spike in the illumination area of the reticle R without lowering the illuminance of the illumination light IL, thereby preventing the illumination light IL from deteriorating the uniformity of the illuminance distribution. Can be. As a result, it is possible to prevent the uniformity of the line width of the circuit pattern formed on the wafer W from deteriorating, thereby reducing the decrease in the operating speed of the manufactured device and preventing the device from malfunctioning.
また、 本例の投影露光装置では、 図 1に示すようにフッ化マグネシゥ ム製のプリズム 3の他に、 照度分布均一化用の光学素子としてリ夕ーダ 2、 振動反射鏡 4、 及びフライアイレンズ 5 A, 5 Bを備えており、 照 明光 I Lの照度分布をより均一にしている。  In addition, in the projection exposure apparatus of this example, as shown in FIG. 1, in addition to the prism 3 made of magnesium fluoride, a reflector 2, an oscillating reflector 4, and a flywheel are used as optical elements for uniformizing the illuminance distribution. Eye lenses 5A and 5B are provided to make the illuminance distribution of the illumination light IL more uniform.
まず、 リターダ (光遅延素子) 2は、 半透鏡 2 aと反射鏡 2 b, 2 c とから構成される多重反射素子よりなる部分的な光遅延素子であり、 レ —ザ光源 1からの照明光 I Lの約 1ノ 2は半透鏡 2 aで反射されてプリ ズム 3に向かう。 そして、 半透鏡 2 aを透過した照明光 I L 5は、 反射 鏡 2 b及び 2 cにより反射されて、 その光路は半透鏡 2 aにより直接反 射された照明光と再び一致するようになっている。 この場合、 半透鏡 2 aを透過した照明光 I L 5は、 半透鏡 2 aにより直接反射された照明光 よりも光路長が長くなるため、 リターダ 2を通過させることによって、 プリズム 3に向かう照明光 I Lの時間的な可干渉性を低下させることが できる。 First, the retarder (optical delay element) 2 is a partial optical delay element composed of a multiple reflection element composed of a semi-transparent mirror 2a and reflection mirrors 2b and 2c. About 1 to 2 of the light IL is reflected by the semi-transparent mirror 2 a and travels to prism 3. Then, the illumination light IL 5 transmitted through the semi-transparent mirror 2a is reflected by the reflection mirrors 2b and 2c, and its optical path again matches the illumination light directly reflected by the semi-transparent mirror 2a. I have. In this case, semi-transparent mirror 2 Since the illumination light IL 5 transmitted through a has a longer optical path length than the illumination light directly reflected by the semi-transparent mirror 2 a, the illumination light IL traveling toward the prism 3 is allowed to pass through the retarder 2 by passing through the retarder 2. Interference can be reduced.
また、 振動反射鏡 4も、 スペックルの発生を低減するための光学素子 である。 振動反射鏡駆動装置 4 aにより振動反射鏡 4を光軸を振動中心 として極短周期で振動させることによって、 照明光 I Lの光路を所定方 向を中心にして微少角度内で振動させ、 微少に光路長を変化させること で、 照明光 I Lの空間的な可千渉性を低下させることができる。 更に本 例では、 2段のフライアイレンズ 5 A, 5 Bを使用することによって、 照明光 I Lの照度分布を更に均一なものとしている。  Further, the vibration reflecting mirror 4 is also an optical element for reducing the occurrence of speckle. By vibrating the vibration reflecting mirror 4 with the vibration axis at the very short period about the optical axis by the vibration reflecting mirror driving device 4a, the light path of the illumination light IL is vibrated within a small angle around the predetermined direction, and the vibration is very small. By changing the optical path length, the spatial responsiveness of the illumination light IL can be reduced. Further, in this example, the use of two-stage fly-eye lenses 5A and 5B makes the illuminance distribution of the illumination light IL more uniform.
なお、 本例のフッ化マグネシウム製のプリズム 3は、 上述の照度分布 均一化用の各光学素子 (リタ一ダ 2、 振動反射鏡 4、 及びフライアイレ ンズ 5 A , 5 B ) の機能を損なうことなく併用できることはいうまでも ない。  Note that the prism 3 made of magnesium fluoride in this example impairs the functions of the above-described optical elements (the retarder 2, the vibration reflecting mirror 4, and the fly-eye lenses 5A and 5B) for uniformizing the illuminance distribution. Needless to say, they can be used together.
また、 本例では、 プリズム 3を形成する光学材料としてフッ化マグネ シゥムを使用したが、 複屈折性で、 かつ露光用の照明光に対して透過率 の高い硝材であれば、 プリズム 3として使用することができることは言 うまでもない。 これによつて、 本例と同様に照明光の照度を低下させる ことなく、 照明光の可干渉性を低下させて、 スペックルの発生を抑える ことができる。  Further, in this example, magnesium fluoride was used as an optical material for forming the prism 3. However, if the glass material is birefringent and has a high transmittance to illumination light for exposure, it is used as the prism 3. It goes without saying that you can do it. As a result, the coherence of the illumination light can be reduced and the generation of speckles can be suppressed without lowering the illuminance of the illumination light as in the present example.
また、 プリズム 3は厚さが一次元方向に変化するプリズムであるが、 それ以外に厚さが例えば二次元方向に変化するプリズム、 即ち照明光学 系の光軸に垂直な面内で互いに交差する 2方向にそれぞれ厚さが次第に 変化するプリズムを使用してもよい。 また、 厚さが 2次以上の高次関数 的に変化するプリズムを使用してもよい。 なお、 前述の実施の形態では 照明光の可干渉性 (空間コヒ一レンシィ) を低減するためにその偏光状 態を変化させる透過型の光学素子としてプリズムを用いるものとしたが、 プリズムと同様に偏光状態を変化させることができれば、 その光学素子 はいかなる形状、 構成であってもよい。 In addition, the prism 3 is a prism whose thickness changes in a one-dimensional direction, but other than that, the prism whose thickness changes in a two-dimensional direction, for example, intersects each other in a plane perpendicular to the optical axis of the illumination optical system. A prism whose thickness changes gradually in two directions may be used. Further, a prism whose thickness changes in a high-order function of second order or more may be used. In the above embodiment, In order to reduce the coherence (spatial coherency) of the illumination light, a prism was used as a transmission type optical element that changes the polarization state. However, if the polarization state can be changed similarly to the prism, The optical element may have any shape and configuration.
また、 前述の実施の形態では、 プリズム 3の他にリターダ 2及び振動 反射鏡 4を併用するものとしたが、 本発明はリ夕ーダ 2及び振動反射鏡 4の併用に限定されるものではなく、 レチクル又はウェハ上での照度均 一性によってはリターダ 2及び振動反射鏡 4の一方のみを用いる、 ある いは両方とも用いないようにしてもよい。 更に、 前述の実施の形態では、 オプティカル ·インテグレー夕 (ホモジナイザー) としてフライアイレ ンズを用いるものとしたが、 その代わりにロッ ド · インテグレー夕を用 いる、 あるいはフライアイレンズとロッ ド ·インテグレー夕とを併用す るようにしてもよい。 勿論、 照明光学系に配置するオプティカル ·イン テグレー夕は 2つに限定されるものではなく、 一つでも、 あるいは 3つ 以上であってもよい。 また、 真空紫外域の光を発生する光源として、 例 えば波長 1 4 6 n mのクリプトンダイマーレーザ (K r 2 レーザ) 、 波 長 1 3 4 n mの K r A r レーザ、 又は波長 1 2 6 n mのアルゴンダイマ —レーザ (A r 2 レーザ) などを用いることも可能である。 In the above-described embodiment, the retarder 2 and the vibration reflecting mirror 4 are used in addition to the prism 3. However, the present invention is not limited to the combination of the retarder 2 and the vibration reflecting mirror 4. Depending on the uniformity of the illuminance on the reticle or wafer, only one of the retarder 2 and the vibration reflecting mirror 4 may be used, or both may not be used. Further, in the above-described embodiment, a fly eye lens is used as an optical integrator (homogenizer). You may use it together. Of course, the number of optical integrators arranged in the illumination optical system is not limited to two, but may be one or three or more. Further, as a light source for generating light in the vacuum ultraviolet region, eg if the wavelength 1 4 6 nm krypton dimer laser (K r 2 laser), wavelength 1 3 4 nm of K r A r laser, or a wavelength 1 2 6 nm It is also possible to use an argon dimer laser (Ar 2 laser).
なお、 照明光 I Lの光路中にプリズム 3を配置することにより光路が シフトしてしまうため、 これを補正するための光学部材 (プリズム等) を更に配置することが望ましい。  Since the optical path is shifted by disposing the prism 3 in the optical path of the illumination light IL, it is desirable to further dispose an optical member (prism or the like) for correcting this.
次に、 上記の実施の形態の投影露光装置を使用した半導体デバイスの 製造工程の一例につき図 4を参照して説明する。  Next, an example of a semiconductor device manufacturing process using the projection exposure apparatus of the above embodiment will be described with reference to FIG.
図 4は、 半導体デバイスの製造工程の一例を示し、 この図 4において、 まずシリコン半導体等からウェハ Wが製造される。 その後、 ウェハ W上 にフォ トレジストを塗布し (ステップ S 1 0 ) 、 次のステップ S 1 2に おいて、 上記の実施の形態 (図 1 ) の投影露光装置のレチクルステージ 上にレチクル R 1をロードし、 レチクル R 1のパターン (符号 Aで表す) をウェハ W上の全部のショッ ト領域 S Eに転写 (露光) する。 なお、 ゥ ェハ Wは例えば直径 3 0 0 mmのウェハ ( 1 2インチウェハ) である。 次に、 ステップ S 1 4において、 現像及びエッチングやイオン注入等を 行うことにより、 ウェハ Wの各ショッ ト領域 S Eに所定のパターンが形 成される。 FIG. 4 shows an example of a semiconductor device manufacturing process. In FIG. 4, first, a wafer W is manufactured from a silicon semiconductor or the like. Then, a photoresist is applied on the wafer W (step S10), and the next step S12 is performed. The reticle R1 is loaded on the reticle stage of the projection exposure apparatus of the above embodiment (FIG. 1), and the pattern (represented by the symbol A) of the reticle R1 is transferred to the entire shot area SE on the wafer W. Transfer (exposure) to The wafer W is, for example, a wafer (12-inch wafer) having a diameter of 300 mm. Next, in step S14, a predetermined pattern is formed in each shot region SE of the wafer W by performing development, etching, ion implantation, and the like.
次に、 ステップ S 1 6において、 ウェハ W上にフォトレジストを塗布 し、 その後ステップ S 1 8において、 上記の実施の形態 (図 1 ) の投影 露光装置のレチクルステージ上にレチクル R 2をロードし、 レチクル R 2のパターン (符号 Bで表す) をウェハ W上の各ショッ ト領域 S Eに転 写 (露光) する。 そして、 ステップ S 2 0において、 ウェハ Wの現像及 びエッチングやイオン注入等を行うことにより、 ウェハ Wの各ショッ ト 領域に所定のパターンが形成される。  Next, in step S16, a photoresist is applied on the wafer W, and then in step S18, the reticle R2 is loaded on the reticle stage of the projection exposure apparatus of the above embodiment (FIG. 1). Then, the pattern (represented by the symbol B) of the reticle R 2 is transferred (exposed) to each shot area SE on the wafer W. Then, in step S20, a predetermined pattern is formed in each shot region of the wafer W by performing development, etching, ion implantation, and the like of the wafer W.
以上の露光工程〜パターン形成工程 (ステップ S 1 6〜ステップ S 2 The above exposure process to pattern formation process (Step S16 to Step S2
0 ) は所望の半導体デバイスを製造するのに必要な回数だけ繰り返され る。 そして、 ウェハ W上の各チップ C Pを 1つ 1つ切り離すダイシング 工程 (ステップ S 2 2 ) や、 ボンディング工程、 及びパッケージングェ 程等 (ステップ S 2 4 ) を経ることによって、 製品としての半導体デバ イス S Pが製造される。 0) is repeated as many times as necessary to produce the desired semiconductor device. Then, through a dicing process (step S22) for separating each chip CP on the wafer W one by one, a bonding process and a packaging process (step S224), a semiconductor device as a product is obtained. Chair SP is manufactured.
なお、 上記の実施の形態の投影露光装置の用途としては半導体製造用 の露光装置に限定されることなく、 例えば、 角型のガラスプレートに液 晶表示素子パターンを露光する液晶用の露光装置、 プラズマディスプレ ィゃ薄膜磁気ヘッ ド、 撮像素子 (C C D等) 、 マイクロマシンなどを製 造するための露光装置にも広く適用できる。 また、 半導体素子等を製造 するデバイス製造用の露光装置で使用するレチクル又はマスクを、 例え ば遠紫外光 (DUV光) 若しくは真空紫外光 (VUV光) を用いる露光 装置で製造する場合にも、 上記の実施の形態の投影露光装置を好適に使 用することができる。 The application of the projection exposure apparatus according to the above-described embodiment is not limited to an exposure apparatus for manufacturing a semiconductor. For example, an exposure apparatus for a liquid crystal that exposes a liquid crystal display element pattern to a square glass plate, It can be widely applied to exposure equipment for manufacturing plasma display thin film magnetic heads, imaging devices (CCD, etc.), micro machines, and the like. Also, a reticle or a mask used in an exposure apparatus for manufacturing a device for manufacturing a semiconductor element or the like may be used, for example. For example, the projection exposure apparatus of the above-described embodiment can be suitably used also when manufacturing with an exposure apparatus using far ultraviolet light (DUV light) or vacuum ultraviolet light (VUV light).
また、 本発明は、 例えば真空紫外光等を露光用照明光として使用する ステップ · アンド · スティツチ方式の縮小投影露光装置や、 露光光とし て真空紫外光等を使用し、 投影光学系を用いることなくマスクと基板と を密接させてマスクのパターンを露光するプロキシミティ方式の露光装 置にも適用することができる。  Also, the present invention provides a step-and-stitch type reduction projection exposure apparatus that uses, for example, vacuum ultraviolet light or the like as exposure illumination light, or a projection optical system that uses vacuum ultraviolet light or the like as exposure light. Alternatively, the present invention can be applied to a proximity type exposure apparatus that exposes a mask pattern by bringing a mask and a substrate into close contact.
また、 露光用照明光としての D F B半導体レーザ又はファイバレーザ から発振される赤外域又は可視域の単一波長レーザを、 例えばエルピウ ム (E r) (又はエルビウムとイッテルビウム (Yb) の両方) がド一 プされたファイバーアンプで増幅し、 かつ非線形光学結晶を用いて紫外 光に波長変換した高調波を用いてもよい。 例えば、 単一波長レーザの発 振波長を 1. 544〜 1. 553 /xmの範囲内とすると、 1 93〜 1 9 4 nmの範囲内の 8倍高調波、 即ち A r Fエキシマレーザとほぼ同一波 長となる紫外光が得られ、 発振波長を 1. 57〜1. 58 01の範囲内 とすると、 1 57〜 1 58 nmの範囲内の 1 0倍高調波、 即ち F 2 レー ザとほぼ同一波長となる紫外光が得られる。 In addition, a single-wavelength laser in the infrared or visible region oscillated from a DFB semiconductor laser or a fiber laser as exposure illumination light, for example, erbium (Er) (or both erbium and ytterbium (Yb)) is used. It is also possible to use harmonics that have been amplified by a coupled fiber amplifier and wavelength-converted to ultraviolet light using a nonlinear optical crystal. For example, if the oscillation wavelength of a single-wavelength laser is in the range of 1.544 to 1.553 / xm, the 8th harmonic in the range of 193 to 194 nm, that is, almost the same as the ArF excimer laser same wave length and comprising the ultraviolet light is obtained, when the oscillation wavelength 1. and 57 to 1.58 01 within the range of 1 0 harmonic in the range of 1. 57 to 1 58 nm, i.e. the F 2 lasers Ultraviolet light having substantially the same wavelength can be obtained.
また、 上述の実施の形態の投影露光装置は、 上述のフッ化マグネシゥ ムのように照明光に対して透過性で、 かつ複屈折性の硝材から形成され たプリズムを備えた照明光学系、 及び投影光学系を露光装置本体に組み 込み光学調整をすると共に、 多数の機械部品からなるレチクルステージ やウェハステージを露光装置本体に取り付けて配線や配管を接続し、 更 に総合調整 (電気調整、 動作確認等) をすることにより製造することが できる。 なお、 投影露光装置の製造は温度及びクリーン度等が管理され たクリーンルームで行うことが望ましい。 なお、 本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱 しない範囲で種々の構成を取り得る。 更に、 明細書、 特許請求の範囲、 図面、 及び要約を含む、 1 9 9 9年 4月 2 8日付提出の日本国特許出願 第 1 1— 1 2 2 9 0 6号の全ての開示内容は、 そっく りそのまま引用し てここに組み込まれている。 産業上の利用の可能性 Further, the projection exposure apparatus according to the above-described embodiment includes an illumination optical system including a prism formed of a birefringent glass material that is transparent to illumination light and is made of birefringent glass material, such as magnesium fluoride described above. The projection optical system is incorporated into the exposure apparatus body to perform optical adjustments, and a reticle stage or wafer stage consisting of a large number of mechanical parts is attached to the exposure apparatus body to connect wiring and piping for further comprehensive adjustment (electrical adjustment, operation Confirmation etc.). It is desirable that the projection exposure apparatus be manufactured in a clean room where the temperature, cleanliness, etc. are controlled. It should be noted that the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the gist of the present invention. Further, all disclosures, including the specification, claims, drawings, and abstract, of Japanese Patent Application No. 11-122 906 filed on April 28, 1999, are as follows: , Which is incorporated here by reference in its entirety. Industrial applicability
本発明の第 1又は第 2の露光方法によれば、 照明光の空間的な可干渉 性が低減され、 スペックルの発生が抑えられるため、 その照明光の照度 分布の均一性の悪化を抑えることができる。 従って、 波長 2 0 0 n m以 下の真空紫外域の照明光を使用して、 均一な照度分布で露光を行うこと ができる。  According to the first or second exposure method of the present invention, the spatial coherence of the illumination light is reduced, and the occurrence of speckle is suppressed, so that the deterioration of the uniformity of the illuminance distribution of the illumination light is suppressed. be able to. Therefore, exposure can be performed with a uniform illuminance distribution using illumination light in a vacuum ultraviolet region having a wavelength of 200 nm or less.
次に、 本発明の第 1又は第 2の照明光学装置によれば、 その照明光の 光軸に垂直な方向にその照明光の偏光状態を次第に変化させることがで き、 照明光の空間的な可干渉性を低減してスペックルの発生を抑え、 そ の照明光の照度の均一性の悪化を抑えることができる。 また、 第 2の照 明光学装置は、 更に振動部材及びォプティカル ·ィンテグレ一夕を備え ているため、 その照明光の照度分布をより均一なものとすることができ る。 特に、 フッ化マグネシウム製のプリズムを使用することによって、 真空紫外光を使用する場合でも、 装置全体としては殆ど変更することな く、 高い照度均一性と低い吸光率とが実現できる。  Next, according to the first or second illumination optical device of the present invention, the polarization state of the illumination light can be gradually changed in a direction perpendicular to the optical axis of the illumination light, and the spatial The coherence can be reduced to suppress the occurrence of speckle, and the deterioration of the uniformity of the illuminance of the illumination light can be suppressed. Further, since the second illumination optical device further includes the vibrating member and the optical integre, the illuminance distribution of the illumination light can be made more uniform. In particular, by using a prism made of magnesium fluoride, even when vacuum ultraviolet light is used, high illuminance uniformity and low extinction coefficient can be realized with almost no change in the entire apparatus.
次に、 本発明の第 1又は第 2の露光装置によれば、 本発明の露光方法 を実施することによって、 マスクのパターンをその基板上に高精度に形 成し、 デバイスのより一層の高集積化や高速化を図ることができる。  Next, according to the first or second exposure apparatus of the present invention, by performing the exposure method of the present invention, the pattern of the mask is formed on the substrate with high precision, and the height of the device is further increased. Integration and high speed can be achieved.
また、 本発明のデバイスの製造方法によれば、 高機能のデバイスを高 スループッ 卜に製造することができる。  Further, according to the device manufacturing method of the present invention, a high-performance device can be manufactured with high throughput.

Claims

請 求 の 範 囲 The scope of the claims
1 . 照明光でマスクを照明し、 前記マスクのパターンを基板上に転写す る露光方法において、 1. An exposure method for illuminating a mask with illumination light and transferring a pattern of the mask onto a substrate,
前記照明光の波長を 1 8 0 n m程度以下とし、 前記照明光が前記マス クに入射するまでの光路上にフッ化マグネシウムで形成される光学素子 を配置して、 前記照明光の光路に実質的に垂直な方向に前記照明光の偏 光状態を次第に変化させるようにしたことを特徴とする露光方法。  The wavelength of the illumination light is set to about 180 nm or less, and an optical element formed of magnesium fluoride is arranged on an optical path until the illumination light enters the mask. An exposure method characterized in that the polarization state of the illumination light is gradually changed in a direction perpendicular to the vertical direction.
2 . 前記照明光の偏光状態を、 前記照明光の光軸に垂直な平面内の少な くとも一つの方向に空間的に連続的に変化させるようにしたことを特徴 とする請求の範囲 1記載の露光方法。  2. The polarization state of the illumination light is spatially and continuously changed in at least one direction in a plane perpendicular to the optical axis of the illumination light. Exposure method.
3 . コヒーレントな照明光でマスクを照明し、 前記マスクを介して前記 照明光で基板を露光する方法において、  3. A method of illuminating a mask with coherent illumination light and exposing a substrate with the illumination light through the mask,
前記照明光の波長を 1 8 0 n m程度以下とし、 前記照明光の可干渉性 を低減するために、 前記マスクへの入射に先立って前記照明光の偏光状 態をフッ化マグネシウムで形成される光学素子で変化させることを特徴 とする露光方法。  In order to reduce the wavelength of the illumination light to about 180 nm or less, and to reduce the coherence of the illumination light, the polarization state of the illumination light is formed of magnesium fluoride prior to incidence on the mask. An exposure method characterized by changing by an optical element.
4 . 光源からの 2 0 0 n m以下の波長の照明光でマスクを照明する照明 光学装置であって、  4. An illumination optical device for illuminating a mask with illumination light having a wavelength of 200 nm or less from a light source,
前記光源と前記マスクとの間の前記照明光の光路上に、 前記照明光に 対して透過性で複屈折性を有する材料より形成されて、 前記照明光学装 置の光軸に交差する方向に厚さが次第に変化するプリズムを配置したこ とを特徴とする照明光学装置。  On the optical path of the illuminating light between the light source and the mask, the illuminating light is formed of a material having a transmissive property and a birefringence with respect to the illuminating light. An illumination optical device comprising a prism having a gradually changing thickness.
5 . 光源からの 2 0 0 n m以下の波長の照明光でマスクを照明する照明 光学装置であって、  5. An illumination optical device for illuminating a mask with illumination light having a wavelength of 200 nm or less from a light source,
前記光源からの照明光の光路上に配置され、 前記照明光に対して透過 性で複屈折性を有する材料より形成されると共に、 前記照明光学装置の 光軸に交差する方向に厚さが次第に変化しているプリズムと、 It is arranged on an optical path of illumination light from the light source, and is transmitted with respect to the illumination light. A prism formed of a material having a birefringent property and having a thickness gradually changing in a direction intersecting the optical axis of the illumination optical device;
該プリズムを通過した照明光を振動させる振動部材と、  A vibrating member for vibrating the illumination light passing through the prism,
該振動部材を通過した照明光より複数の光源像を形成するォプティ力 ル 'インテグレ一夕と、  With the opti-force that forms a plurality of light source images from the illumination light passing through the vibrating member,
該オプティカル ·ィンテグレー夕から射出される照明光を前記マスク に導くコンデンサ光学系と、  A condenser optical system for guiding illumination light emitted from the optical integument to the mask;
を有することを特徴とする照明光学装置。 An illumination optical device, comprising:
6 . 前記光源から射出された照明光は所定方向に直線偏光したコヒーレ ントな光束であり、  6. The illumination light emitted from the light source is a coherent light beam linearly polarized in a predetermined direction,
前記プリズムは、 互いに屈折率が異なる 2つの結晶軸の方向の中間の 方向が前記所定方向に実質的に合致するように配置されたことを特徴と する請求の範囲 4又は 5記載の照明光学装置。  The illumination optical device according to claim 4, wherein the prism is disposed such that a direction intermediate between directions of two crystal axes having different refractive indexes substantially matches the predetermined direction. .
7 . 前記照明光は波長 1 8 0 n m以下のコヒ一レントな所定の偏光状態 を有する光束であり、 前記プリズムの材料はフッ化マグネシウムの結晶 であることを特徴とする請求の範囲 4、 5、 又は 6記載の照明光学装置。 7. The illumination light is a light flux having a predetermined coherent polarization state having a wavelength of 180 nm or less, and the material of the prism is a crystal of magnesium fluoride. 7. The illumination optical device according to claim 6.
8 . 請求の範囲 4〜 7の何れか一項記載の照明光学装置を備えた露光装 置であって、 8. An exposure apparatus provided with the illumination optical device according to any one of claims 4 to 7,
前記照明光学装置からの照明光でマスクを照明し、 該マスクのパ夕一 ンを基板上に転写することを特徴とする露光装置。  An exposure apparatus, comprising: illuminating a mask with illumination light from the illumination optical device; and transferring a pattern of the mask onto a substrate.
9 . 波長が 1 8 0 n m程度以下でコヒーレントな照明光をマスクに照射 する照明光学系を有し、 前記マスクを介して前記照明光で基板を露光す る露光装置において、  9. An exposure apparatus, comprising: an illumination optical system that irradiates a mask with coherent illumination light having a wavelength of about 180 nm or less, and exposing a substrate to the illumination light via the mask.
前記照明光学系内で前記照明光の可干渉性を低減するために、 前記照 明光の偏光状態を変化させる光学素子をフッ化マグネシウムで形成した ことを特徴とする露光装置。 An exposure apparatus, wherein an optical element for changing a polarization state of the illumination light is formed of magnesium fluoride in order to reduce coherence of the illumination light in the illumination optical system.
1 0 . 請求の範囲 4〜 7の何れか一項記載の照明光学装置と、 前記マス クを保持するマスクステージと、 基板を保持する基板ステージと を所定の位置関係で組み上げることを特徴とする露光装置の製造方法。10. The illumination optical device according to any one of claims 4 to 7, a mask stage for holding the mask, and a substrate stage for holding the substrate are assembled in a predetermined positional relationship. A method for manufacturing an exposure apparatus.
1 1 . 請求の範囲 1〜 3の何れか一項記載の露光方法を用いて、 前記照 明光で前記マスクを照明し、 前記マスクのパターンを前記基板上に転写 する工程を含むことを特徴とするデバイスの製造方法。 11. A step of irradiating the mask with the illuminating light using the exposure method according to any one of claims 1 to 3, and transferring a pattern of the mask onto the substrate. Method of manufacturing devices.
PCT/JP2000/002761 1999-04-28 2000-04-27 Exposure method and apparatus WO2000067303A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU41430/00A AU4143000A (en) 1999-04-28 2000-04-27 Exposure method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP12290699 1999-04-28
JP11/122906 1999-04-28

Publications (1)

Publication Number Publication Date
WO2000067303A1 true WO2000067303A1 (en) 2000-11-09

Family

ID=14847549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002761 WO2000067303A1 (en) 1999-04-28 2000-04-27 Exposure method and apparatus

Country Status (2)

Country Link
AU (1) AU4143000A (en)
WO (1) WO2000067303A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002229216A (en) * 2001-02-05 2002-08-14 Dainippon Printing Co Ltd Exposure apparatus
WO2003003429A1 (en) * 2001-06-28 2003-01-09 Nikon Corporation Projection optical system, exposure system and method
US6512780B1 (en) 1999-12-10 2003-01-28 Carl-Zeiss-Stiftung System for compensating directional and positional fluctuations in light produced by a laser
WO2004010483A1 (en) * 2002-07-18 2004-01-29 Nikon Corporation Illuminating optical system, exposure system and exposure method
US6870668B2 (en) 2000-10-10 2005-03-22 Nikon Corporation Method for evaluating image formation performance
WO2005041277A1 (en) * 2003-10-28 2005-05-06 Nikon Corporation Lighting optical device and projection aligner
JP2005289693A (en) * 2004-03-31 2005-10-20 Nikon Corp Artificial quartz member, optical element, optical system, projection aligner, and method for selecting artificial quartz member
EP1589379A2 (en) * 2004-04-23 2005-10-26 Canon Kabushiki Kaisha Optical illumination system, exposure apparatus and device fabrication method
JP2010226117A (en) * 2003-11-20 2010-10-07 Nikon Corp Light flux conversion element, lighting optical device, exposure system, and exposure method
US8339578B2 (en) 2004-01-27 2012-12-25 Nikon Corporation Optical system, exposure system, and exposure method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02215117A (en) * 1989-02-15 1990-08-28 Canon Inc Aligner
JPH03254114A (en) * 1990-03-05 1991-11-13 Nikon Corp Illumination optical device
JPH1164778A (en) * 1997-08-25 1999-03-05 Nikon Corp Illuminating optical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02215117A (en) * 1989-02-15 1990-08-28 Canon Inc Aligner
JPH03254114A (en) * 1990-03-05 1991-11-13 Nikon Corp Illumination optical device
JPH1164778A (en) * 1997-08-25 1999-03-05 Nikon Corp Illuminating optical device

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6512780B1 (en) 1999-12-10 2003-01-28 Carl-Zeiss-Stiftung System for compensating directional and positional fluctuations in light produced by a laser
US7061671B2 (en) 2000-10-10 2006-06-13 Nikon Corporation Method for evaluating image formation performance
US6870668B2 (en) 2000-10-10 2005-03-22 Nikon Corporation Method for evaluating image formation performance
JP2002229216A (en) * 2001-02-05 2002-08-14 Dainippon Printing Co Ltd Exposure apparatus
JP4489982B2 (en) * 2001-02-05 2010-06-23 大日本印刷株式会社 Exposure equipment
WO2003003429A1 (en) * 2001-06-28 2003-01-09 Nikon Corporation Projection optical system, exposure system and method
WO2004010483A1 (en) * 2002-07-18 2004-01-29 Nikon Corporation Illuminating optical system, exposure system and exposure method
US7307693B2 (en) 2002-07-18 2007-12-11 Nikon Corporation Illumination optical device, photolithography machine, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
KR101640327B1 (en) 2003-10-28 2016-07-15 가부시키가이샤 니콘 Illumination optical apparatus, exposure apparatus, exposure method, and device manufacturing method
JP4543341B2 (en) * 2003-10-28 2010-09-15 株式会社ニコン Illumination optical apparatus, projection exposure apparatus, exposure method, and electronic device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2010192914A (en) * 2003-10-28 2010-09-02 Nikon Corp Illumination optical apparatus, and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
WO2005041277A1 (en) * 2003-10-28 2005-05-06 Nikon Corporation Lighting optical device and projection aligner
TWI609409B (en) * 2003-10-28 2017-12-21 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2008182266A (en) * 2003-10-28 2008-08-07 Nikon Corp Illumination optical device, projection exposure apparatus, exposure method, and element producing method
TWI573175B (en) * 2003-10-28 2017-03-01 尼康股份有限公司 Optical illumination device, exposure device, exposure method and device manufacturing method
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2016053718A (en) * 2003-10-28 2016-04-14 株式会社ニコン Illumination optical device and projection exposure device
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP4543331B2 (en) * 2003-10-28 2010-09-15 株式会社ニコン Illumination optical apparatus and projection exposure apparatus
JP2013191858A (en) * 2003-10-28 2013-09-26 Nikon Corp Illumination optical device and projection aligner
JP2013211558A (en) * 2003-10-28 2013-10-10 Nikon Corp Illumination optical device and projection exposure device
JPWO2005041277A1 (en) * 2003-10-28 2007-08-23 株式会社ニコン Illumination optical device and projection exposure apparatus
KR20140027559A (en) * 2003-10-28 2014-03-06 가부시키가이샤 니콘 Illumination optical apparatus
JP2016212434A (en) * 2003-11-20 2016-12-15 株式会社ニコン Light flux conversion element, illumination optical device, exposure apparatus, and exposure method
JP2015008304A (en) * 2003-11-20 2015-01-15 株式会社ニコン Light flux conversion element, illumination optical device, exposure device, and exposure method
JP2016026306A (en) * 2003-11-20 2016-02-12 株式会社ニコン Light flux conversion device, illumination optical device, exposure device and exposure method
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
JP2011233911A (en) * 2003-11-20 2011-11-17 Nikon Corp Light flux conversion element, illumination optical device, exposure device, and exposure method
JP2010226117A (en) * 2003-11-20 2010-10-07 Nikon Corp Light flux conversion element, lighting optical device, exposure system, and exposure method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US8339578B2 (en) 2004-01-27 2012-12-25 Nikon Corporation Optical system, exposure system, and exposure method
US8351021B2 (en) 2004-01-27 2013-01-08 Nikon Corporation Optical system, exposure system, and exposure method
US8436983B2 (en) 2004-01-27 2013-05-07 Nikon Corporation Optical system, exposure system, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2005289693A (en) * 2004-03-31 2005-10-20 Nikon Corp Artificial quartz member, optical element, optical system, projection aligner, and method for selecting artificial quartz member
EP1589379A2 (en) * 2004-04-23 2005-10-26 Canon Kabushiki Kaisha Optical illumination system, exposure apparatus and device fabrication method
EP2012183A3 (en) * 2004-04-23 2011-11-02 Canon Kabushiki Kaisha Optical illumination system, exposure apparatus and device fabrication method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
AU4143000A (en) 2000-11-17

Similar Documents

Publication Publication Date Title
WO2000067303A1 (en) Exposure method and apparatus
US8111378B2 (en) Exposure method and apparatus, and device production method
JP5099933B2 (en) Exposure method and apparatus, and device manufacturing method
JP4923370B2 (en) Illumination optical system, exposure apparatus, and microdevice manufacturing method
US6597430B1 (en) Exposure method, illuminating device, and exposure system
JP4065923B2 (en) Illumination apparatus, projection exposure apparatus including the illumination apparatus, projection exposure method using the illumination apparatus, and adjustment method of the projection exposure apparatus
JP2001284228A (en) Exposure system and device manufacturing method
TWI406107B (en) Exposure apparatus and semiconductor device fabrication method
JPH09288251A (en) Pulse width lengthening optical system and exposure device provided therewith
JPWO2003023832A1 (en) Exposure method and apparatus, and device manufacturing method
JP4178098B2 (en) Optical system for projecting a pattern formed on a reticle onto a wafer, method for forming an image on a wafer, and method for optically transferring an image of a pattern onto a wafer
JP4095376B2 (en) Exposure apparatus and method, and device manufacturing method
JPH0194617A (en) Semiconductor exposure device
KR20060039925A (en) Illuminating optical system, exposure system and exposure method
JP2005166871A (en) Illumination optical device, projection aligner, exposure method and device manufacturing method
US20030147155A1 (en) Optical element holding device
US6335786B1 (en) Exposure apparatus
TWI232968B (en) Projection optical system, exposure apparatus and device fabrication method
JP2003090978A (en) Illumination device, exposure device and method for manufacturing device
JP2005116831A (en) Projection aligner, exposure method, and device manufacturing method
US7099087B2 (en) Catadioptric projection objective
JP2003051438A (en) Reflecting member, method of adjusting the same, aligner method of manufacturing the same, and method of manufacturing microdevice
JP3452057B2 (en) Laser beam harmonic generation apparatus, exposure apparatus using the same, laser beam harmonic generation method, exposure method using the same, and device manufacturing method using the same
JP6140290B2 (en) Optical system for microlithography projection exposure apparatus and microlithography exposure method
JP2913725B2 (en) Exposure equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 616054

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase