WO2000071154A2 - Stability, biocompatibility optimized adjuvant (sba) for enhancing humoral and cellular immune response - Google Patents

Stability, biocompatibility optimized adjuvant (sba) for enhancing humoral and cellular immune response Download PDF

Info

Publication number
WO2000071154A2
WO2000071154A2 PCT/EP2000/004565 EP0004565W WO0071154A2 WO 2000071154 A2 WO2000071154 A2 WO 2000071154A2 EP 0004565 W EP0004565 W EP 0004565W WO 0071154 A2 WO0071154 A2 WO 0071154A2
Authority
WO
WIPO (PCT)
Prior art keywords
sba
composition according
particles
oil
adjuvant
Prior art date
Application number
PCT/EP2000/004565
Other languages
German (de)
French (fr)
Other versions
WO2000071154A3 (en
Inventor
Rainer Helmut MÜLLER
Nikolaus Grubhofer
Carsten Olbrich
Original Assignee
Pharmasol Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pharmasol Gmbh filed Critical Pharmasol Gmbh
Priority to AU52142/00A priority Critical patent/AU5214200A/en
Priority to BR0010823-5A priority patent/BR0010823A/en
Priority to MXPA01011660A priority patent/MXPA01011660A/en
Priority to JP2000619456A priority patent/JP2003500365A/en
Priority to EP00936761A priority patent/EP1183045A2/en
Priority to CA002373239A priority patent/CA2373239A1/en
Priority to KR1020017014653A priority patent/KR20020012221A/en
Publication of WO2000071154A2 publication Critical patent/WO2000071154A2/en
Publication of WO2000071154A3 publication Critical patent/WO2000071154A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants

Definitions

  • Antigens are applied to animals and humans to produce antibodies.
  • the goals are, for example, the immunization of humans or animals to protect against diseases or the production of antibodies, which are subsequently isolated and processed into products.
  • the most common application route for antigens is parenteral administration, alternative routes are e.g. oral, nasal and topical application.
  • a common problem is that often the strength of the immune response to the administered antigen is insufficient for the intended purpose. Sometimes the problem can be solved by greatly increasing the administered dose of the antigen.
  • a serious problem, however, is that antigens are often very expensive and the dose increase leads to a corresponding increase in the price of the vaccine. These costs lead to a heavy burden on the health system, for many sections of the population - especially in the Third World - the vaccine becomes too expensive and desirable mass vaccinations cannot be carried out.
  • butyricum proposed by Freund to complete the adjuvant are also poorly tolerated. They also cause granulomas and fever as well as abscesses at the injection site [Brown, E.A. Rev Allergy 1969 23 (5): 389-400].
  • the task therefore is to find a more tolerable adjuvant, in particular from the point of view of inexpensive vaccines. make desirable worldwide vaccinations against certain diseases that can only be financed with an inexpensive vaccine and the increasing importance of immunological production techniques and products. Even with increasing awareness of the need for protection of animals and corresponding pressure from legislation, a more compatible, (ie biocompatible) equally efficient, but at the same time inexpensive adjuvant must be found. In addition, it must be physically stable so that admixing before the injection can be omitted and fluctuations in efficiency - for example due to different dispersions - are eliminated.
  • the most commonly used adjuvant approved for human use today is a fine suspension of aluminum hydroxide, the roots of which are even more archaic than those of Freund's emulsion [Glenny, A.T. et al. J. Pathol. 1926, 29 31-40]. It is based on the assumption that antigens are better recognized by the immune system if they are adsorbed on the surface of the aluminum hydroxide particles. However, it is disadvantageous that aluminum hydroxide is less efficient than Freund's adjuvant and it can also cause granulomas.
  • emulsions have recently been described which consist of more compatible materials such as, for. B. Squalan and Sqalen, [Sanchez-Pestador, L. et al. J. Immunol. 1988 141, 1720-1727, Masihi KN, Lunge, W., Bremer W., Ribi, E. Int. J. Immunopharmacol. 1986 8 (3), 339-45, Hunter RL, Bennett, B. Scand J Immunol. 1986 23 (3), 287-300, Allison AC, et al. Semin Immunol. 1990 2 (5), 369-74].
  • One of these systems is MF59 (European Patent Application 0399843A2).
  • MDP N-acetylmuramyl-L-alanyl-D-isoglutamine
  • Thr-MDP threonyl analogue of the MDP
  • GMDP N-acetylglucosaminyl-N-acetylmuramyl dipeptide
  • the new emulsions are by no means always tolerated without reaction, the synthetic macromolecules such as glycopeptides have so far not been shown to be superior to the mycobacteria in addition, they are far too expensive. Solid particles have approval problems. Many adjuvants show too high toxicity and thus too little biocompatibility. There are also problems with physical stability (avoidance of aggregation or coalescence). The FIA emulsion must be freshly prepared and injected, long-term storage is not possible. Sufficient physical storage stability is, however, the essential prerequisite for a marketable product - especially for pharmaceuticals.
  • GMDP had to be used in a mixture with colloidally disperse solid lipid particles in a particle size ⁇ 200 nm to increase the immunostimulating effect (US Patent Gerbu, processing number of the US Patent Office is 08 / 816,787).
  • the structure of the particles was systematically modified in studies for this invention (e.g. surfactants, stabilizers) to find lipid particles that could further increase the immunostimulating effect of GMDP. More surprising
  • lipid particles alone are just as efficient as the combination of lipid particles and GMDP (Example 9).
  • the expensive GMDP can be dispensed with in the invention and a comparably high humoral immune stimulation can be achieved by an inexpensive lipid particle alone.
  • the strength of the immunostimulating effect depends on the surface properties of the particles (surfactants used, particle charge) and the particle size. If the lipid particle is negatively charged, the efficacy is approx. 1/3 of FIA; if a positively charged lipid particle is generated by adding EQ 1, the efficacy is comparable to FIA (no significant difference, t-test) (Example 9).
  • the desired potency can thus be set in a targeted manner via the composition of the lipid particles used. This avoids over-reactions of the organism.
  • SBA consist of in water or aqueous liquids or non-aqueous, e.g. oily liquids dispersed lipid particles, which can, but need not, be stabilized by surfactants or polymers. With a sufficiently high viscosity of the outer phase or fineness of the particles, a physically stable dispersion is obtained. The same applies to low-viscosity outer phases, if the particles carry a sufficiently high charge in the same direction and the sediments formed can be easily redispersed.
  • the SBA is produced by dispersion or precipitation, generally known methods described in textbooks in pharmacy and process engineering being used. During dispersing, coarsely dispersed lipids are broken up by mechanical methods. The lipids can be in the solid state (e.g. mortar mill) or in the liquid state (eg emulsification of molten lipids by stirrers). To produce the SBA dispersion, the lipids can first be comminuted and then dispersed in the outer (eg aqueous) phase or alternatively can be comminuted directly in the outer phase. For the production of SBA dispersions by dispersing tion can z. B. used include: piston-gap homogenizers (e.g.
  • APV homogenizers French Press
  • jet stream homogenistors e.g. microfluidizers
  • rotor-stator stirrers e.g. Ultraturax, Silverson homogenizers
  • static mixers on a microscale and macroscale e.g. mixers from Sulzer
  • gas jet mill e.g. gas jet mill
  • rotor-stator colloid mill e.g. mortar mill
  • SBA dispersions show sufficient long-term physical stability. Determination of the particle size with photon correlation spectroscopy (PCS) and laser diffractometry (LD) showed no or negligible particle growth over periods of 1 to 3 years (example 3).
  • PCS photon correlation spectroscopy
  • LD laser diffractometry
  • the stability of SBA dispersions is far superior to that of Freund's incomplete adjuvant (FIA) (example 1); higher stability is also shown compared to newer adjuvant emulsions (example 2).
  • FIA Freund's incomplete adjuvant
  • SBA dispersions represent a simple system. In contrast to glycopeptides, the additives used are chemically simple and robust. The use of heat in sterilization processes does not lead to chemical decomposition, the dispersion remains physically stable and particle aggregation does not occur.
  • Example 4 shows an example of the sterilization of SBA dispersions by autoclaving (121 ° C., 15 minutes, 2 bar). FIA shows phase separation under the same conditions.
  • Biocompatibility Low toxicity and good biocompatibility are essential for a widely used adjuvant.
  • SBA dispersion In a sheep study, no abnormalities were observed at the application site after application of SBA dispersion (example 6). The good tolerance is explained by the extremely low toxicity of lipids observed in vitro in cell cultures. Compared to polymers approved by the German regulatory authorities and the FDA for parenteral administration, they show a viability at least approximately 20 times higher at high particle concentrations (example 5). The good biocompatibility is attributed to the fact that body proteins generally only adsorb to a small extent on the particle surface - in contrast to other particles (Example 7). In addition, there are no proteins on the surface that promote intolerance reactions.
  • the properties of the adjuvant should be such that it can be mixed with a number of different antigens.
  • the mixture should be applied in physiological saline or other isotonized solution. Due to the reduction of the zeta potential, physiological saline leads to destabilization in dispersions and subsequent aggregation [Lucks, JS et al., Int. J. Pharm 1990 58, 229-235].
  • the SBA adjuvant should be physically stable for a sufficiently long time after being added to the antigen in isotonic solution.
  • Example 8 shows that the lipid particles according to Zumi to physiological saline are stable for over 6 hours, measurable aggregation does not occur.
  • surface properties such as loading can also be set in a targeted manner and the SBA adjuvant can thus be produced in a species-specific manner.
  • Positive and negative charges can be generated by adding appropriately charged surfactants or stabilizers.
  • the strength of the load can be adjusted via the concentration of the additive.
  • the ideal addition is charged substances, which, like cetylpyridinium chloride, are approved as preservatives for parenteral application (example 12).
  • lipids can be used to produce SBA dispersions. These are both chemically uniform lipids and their mixtures.
  • the lipids are characterized in that they are present in the end product SBA dispersion in the crystalline state (e.g. ⁇ -, ßi-modification) or in the liquid-crystalline state ( ⁇ -modification) or in a mixture thereof.
  • liquid lipids e.g. oils, lipophilic hydrocarbons, lipophilic organic liquids such as oleyl alcohol
  • solid lipids e.g. glycerides, lipophilic hydrocarbons such as hard paraffin
  • lipids as a dispersed phase and can be used as an individual component or as a mixture: natural or synthetic triglycerides or mixtures thereof, monoglycerides and diglycerides, alone or mixtures thereof or with, for example, triglycerides, self-emulsifying modified lipids, natural and synthetic waxes, fatty alcohols, including their esters and ethers as well as in the form of lipid peptides, or any mixtures thereof.
  • Synthetic monoglycerides, diglycerides and triglycerides are particularly suitable as individual substances or as a mixture (eg hard fat), Imwitor 900, triglycerides (eg glycerol trilaurate, glycerol myristate, glycerol palmitate, glycerol stearate and glycerol behenate) and waxes such as cetyl palmitate and white. Also hydrocarbons, such as hard paraffin.
  • the proportion of the inner or lipid phase based on the total formulation is 0.1% to 80% (m / m) and is preferably in the range from 1% to 40% (m / m).
  • dispersion stabilizing additives e.g. Emulsifiers, in order to be able to produce stable dispersion, can be incorporated in the form of pure substances or in the form of mixtures in order to stabilize the particles.
  • the amount of such additives, which can be added in relation to the total weight of the aqueous dispersion, is in the range from 0.01% to 30% and preferably in the range from 0.5% to 20%.
  • the surfactants, stabilizers and polymers which are generally known from the production of dispersions can be used to stabilize the SBA dispersions or to specifically modify their surfaces. Examples include:
  • sterically stabilizing substances such as poloxamers and poloxamines (polyoxyethylene-polyoxypropylene block copolymers), ethoxylated sorbitan fatty acid esters, especially polysorbates (eg Polysorbate 80 or Tween 80®), ethoxylated mono- and diglycerides, ethoxylated lipids, ethoxylated fatty alcohols or fatty acids, and esters and ethers of sugars or of Sugar alcohols with fatty acids or fatty alcohols (eg sucrose monostearate, sucrose distearate, sucrose cocoat, sucrose stearate, sucrose dipalmitate, sucrose palmitate, sucrose laurate, sucrose octanoate, sucrose oleate).
  • poloxamers and poloxamines polyoxyethylene-polyoxypropylene block copolymers
  • ethoxylated sorbitan fatty acid esters especially polysorbates (eg Polysorbate 80 or Tween
  • charged ionic stabilizers such as diacetyl phosphates, phosphatidylglycerol, lecithins of various origins (eg egg lecithin or soy lecithin), chemically modified lecithins (eg hydrogenated lecithins), as well as phospholipids and sphingolipids, mixture of lecithins with phospholipids, sterols (eg cholesterol Cholesterol derivatives, as well as stigmasterol) and also saturated and unsaturated fatty acids, sodium cholate, sodium glycocholate, sodium taurocholate, sodium deoxycholate or their mixtures, amino acids or anti-flocculants, such as Sodium citrate, sodium pyrophosphate, sodium sorbate [Lucks, J.S.
  • Zwitterionic surfactants such as (3 - [(3-cholamidopropyl) dimethylammonio] -2-hydroxy-l-propanesulfonate) [CHAPSO], (3 - [(3-cholamidopropyl) dimethylarnmonio] - 1-propanesulfonate) [CHAPS] and N-dodecyl- N, N-dimethyl-3-ammonio-propane sulfonate.
  • Cationic surfactants especially compounds used as preservatives, e.g. Benzyldimethylhexadecylammonium chloride, methylbenzethonium chloride, benzalkonium chloride, cetpyridinium chloride.
  • cellulose ethers and cellulose esters e.g. methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium carboxymethyl cellulose
  • polyvinyl derivatives and polyvinyl alcohol polyvinyl pyrrolidone
  • polyvinyl acetate alginates
  • polyacrylates e.g. carbopol
  • xanthans and xanthans and xanthans are preferably present in the SBA dispersion in an amount of 0.01% to 20% (m / m) and in particular in an amount of 0.05% to 10%.
  • viscosity-increasing substances are incorporated in the formulation in a similar ratio, preferably in an amount of 0.01-20% and in particular in an amount of 0.1% to 10% (m / m) and preferably in the range between 0.5% and 5%.
  • the outer phase can be water, aqueous solutions or liquids miscible with water, as well as glycerin or polyethylene glycol and oily liquids such as miglyols (medium chain triglycerides - MCT) and other oils (castor, peanut, soybean, cotton seeds -, rapeseed, linseed, olive, sunflower, and safflower oil can be used.
  • miglyols medium chain triglycerides - MCT
  • other oils castor, peanut, soybean, cotton seeds -, rapeseed, linseed, olive, sunflower, and safflower oil can be used.
  • Surfactant-free SBAs are produced by dispersing the lipid phase in an aqueous solution which contains one or more viscosity-increasing substances, either alone or in combination with other substances, and also sugars, sugar alcohols, especially glucose, mannose, trehalose, mannitol, sorbitol and others. Furthermore, it is possible to use a combination of the viscosity-increasing substances or the combination of these with sugars or sugar alcohols, or in a further combination with charge stabilizers or anti-flocculants.
  • SBA dispersions can be used as an adjuvant to many different antigens for vaccination against various diseases.
  • Glycoproteins such as Gonococcal Protein I, Brucella abortus antigen, Tetanus toxoid, Diphteria toxoid, Listeria monocytogenes, virus antigens such as Semliki Forest Virus, Enceohalomyocarditis virus, Porcine rarovirus, Pseudorabies virus, Newcastle desease virus, Bovine virus, HIV, Influenza diarrheal virus , Herpes simplex, hepatitis C, measles, parasites such as malaria, Eimeria spp.,
  • the SBA dispersions provide an adjuvant that:
  • SBA dispersions can be widely used to reduce the antigen dose and thus the costs with toxicologically acceptable excipients, since the addition of SBA at a low antigen dose achieves the same immunostimulating effect.
  • Antigens with previously insufficient antigenicity for a vaccine can be converted into an efficient vaccine by adding immune response-stimulating SBA. Due to the inexpensive manufacture of existing comparable
  • SBA dispersions are suitable as an adjuvant for vaccinations in the veterinary field, where for profitability reasons only very low-priced
  • Vaccines can be used.
  • Adjuvants used to date have focused on increasing the humoral immune response. In view of the efficiency of action of SBA dispersions, it is no longer necessary to add another adjuvant to the SBA lipid particles, or to add adjuvants such as GMDP bring no further increase in the humoral immune response. Obviously the immune system is at its maximum capacity of response, additional adjuvant can no longer bring an additional effect. Thus, additives to SBA have no advantage for the humoral response, additives as described in the Gerbu patent (patent specification DE 1961 1235 C1) are superfluous due to the surprisingly found potency of the SBA described in the invention.
  • the invention opens up the possibility of increasing the cellular immune response in the case of a second vaccination by combining SBA dispersions with other adjuvants.
  • the adjuvants can also be incorporated into the lipid particles. Incorporation is possible by incorporation in the solid particle matrix, enrichment in the interface in the case of amphiphilic adjuvants or by simple adsorption on the particle surface. Adjuvants can be incorporated during particle production or subsequently (for example in the case of incorporation, example 16).
  • adjuvants are dissolved, solubilized or dispersed in the molten lipid phase and the lipid phase containing adjuvants is then further processed.
  • these can also be dissolved in the outer phase of the SBA dispersion and then accumulate in the particle interface or by adsorption on the surface. Incorporation of adjuvants leads to prolonged release by diffusion or in the course of particle degradation by enzymes. Delayed release over a longer period increases the immune response.
  • Another attractive area of application is antibody production in animals.
  • the antibody yield can be significantly increased by adding the adjuvant.
  • Example 1 Determination of the physical stability of SBA versus Freund's Incomplete Adjuvant (FIA): An aqueous SBA dispersion was prepared by high pressure homogenization at 95 ° C. from 20% beeswax, 2% Tween 80 (PCS diameter 289 nm polydispersity index 0.101). FIA was produced according to the method described by Freund [Freund, JJ Immunology 1948, 60, 383-398]. SBA and FIA were stored at the temperatures of the climatic zones that are used in the stability testing of drugs [EMEA guideline CPMP / QWP / 159/96, January 1998)]. The storage temperatures were: 5 ° C, 25 ° C, 40 ° C.
  • FIA The physical stability was determined by measuring the particle size with laser diffractometry, characterization parameters were the diameter 50% and the diameter 95% (50% and 95% of the particles are below the specified size, sensitive parameters for particle aggregation).
  • FIA showed significant particle growth after just a few minutes of storage - even at room temperature - so FIA is not a storage-stable adjuvant.
  • the particle sizes of SBA remain unchanged over a period of 1 year under the 3 storage conditions (Table 1).
  • Example 2 Determination of the physical stability of SBA versus squalene adjuvant: SBA was prepared as described under 1, it contained 10% cetyl palmitate and 1.2% miranol (PCS diameter 210 nm, PCS polydispersity index 0.189). Squalene adjuvant was prepared as described in European patent application 0 399 843 with filing date May 25, 1990 (adjuvant MF59). Particle size measurement was carried out using laser diffractometry, storage was carried out as in Example 1 at 3 temperatures (Table 2). In addition, an accelerated stability test was carried out, SBA and MF59 dispersions were shaken at 40 ° with a frequency of 50 Hz (Table 3). SBA shows increased stability both in normal storage and in the stress test. Table 2: Investigation of the stability of SBA (10% cetyl palmitate, 1, 2% miranol) in comparison with MF59
  • Table 3 Stability of MF 59 against SBA at 40 ° C and a shaking frequency of 50 Hz
  • Example 3 Long-term stability of SBA: SBA dispersion consisting of 20% beeswax, 2% Tween 80 was stored at 4-6 ° C for one year. The PCS data and laser diffractometer diameter showed little or no change (Table 4).
  • Example 4 Heat stability of SBA on autoclaving (heat, pressure) versus FIA and MF59:
  • the SBA dispersion was composed of 18% hard paraffin, 4% Tween 80 / Span 85 (7/3) and water. Sterilization of 20 mL was carried out in injection vials according to the standard conditions of the European Pharmacopoeia (121 ° C, 2 bar, 15 minutes). Particle size was determined using PCS and laser diffractometry (LD 95%) (PI: polydispersity index, measure for the width of the particle distribution, MW: mean from 3 measurements, staff: standard deviation, PI polydispersity index) (Table 5).
  • the FIA emulsion showed after autoclaving Phase separation, MF59 a clear particle growth. SBA is physically stable and can be sterilized by accretion.
  • Table 5 Heat stability of SBA upon autoclaving (heat, pressure) versus FIA and MF59: The SBA dispersion was composed of 18% hard paraffin, 4% Tween 89 / Span 85, 7/3 and water. Sterilization of 20 mL each in injection vials at 121 ° C, 2 bar, 15 minutes. Particle size was determined using PCS and laser diffractometry.
  • Example 5 Physiological tolerance: To assess the tolerance, the cytotoxicity of SBA in cell cultures was determined (human granulocytes, HL60 cells). To quantify the toxicity, the viability of the cells was assessed using the MTT test [Mosmann, T., J. Immunol. Meth. 1993, 65, 55-63]. The SBA dispersion was composed of 10% cetyl palmitate, 0.5% poloxamer 188 and water. The number of cells per well was 200,000 for human granulocytes and 200,000 for HL60 cells. Incubation was for 12 hours. In SBA the viability was 80% for the granulocytes and 85% for the HL60 cells.
  • the viability of nanoparticles made of PLA was only 5%, for nanoparticles made of PLA / GA it dropped to 0%.
  • the tolerance of SBA in cell cultures is at least a factor of about 20 better than that of the FDA-approved polymers for parenteral administration.
  • Example 7 Biocompatibility - Interaction with Body Proteins:
  • the SBA dispersion was composed of 10 compritol, 2.5% Poloxamer 407 and water. Production was carried out with high pressure homogenization. The particles were incubated for 5 minutes with human plasma, then separated from the plasma and the body proteins adsorbed on the particle surface using two-dimensional polyacrylamide gel electrophoresis [Blunk, T et al. Electrophoresis 14, 1382-1387 (1993)].
  • Example 8 Stability in phosphate-buffered physiological saline (PBS): SBA composed of 20% hard paraffin, 5% Tween 80 / Span85 (7/3) and water were mixed with PBS (2 mL SBA + 2 mL saline). The physical stability in the physiological saline solution was determined as a function of time using laser diffractometry. There was no increase in particle size over 6 hours
  • Example 9 Adjuvant effect in comparison to molecular adjuvant (GMDP - N-acet lglucosaminyl-N-acetylmuramyl dipeptide) and FIA: sheep were vaccinated with the strain Mycoplasma Bovis PG 45 R9.
  • the vaccine antigen was cultivated in stand culture over 72 hours under microaerophilic conditions in Hayflick medium. Inactivation was carried out by adding 0.1% ⁇ -propiolactone. The cells were separated, washed with phosphate buffer pH 7.4 and adjusted to a content of 1 x 10 10 CFU / mL. The sterility of the preparation was checked in accordance with the German Pharmacopoeia Edition 10. The dry matter determination showed a content of 1 mg / mL Mycoplasma Bovis antigen.
  • the adjuvant SBA, GMDP and FIA were mixed equally with the antigen in buffer. Injection volume was 5mL, spread over 4 injection sites.
  • composition of SBA was 4% hard paraffin, 1% EQ 1 (N, N di- ( ⁇ -stearoylethyl) - N, N-dimethylammonium chloride) and 4% Tween 80 / Span 85 (7/3).
  • the composition of the GMDP adjuvant was 5% lipid and 0.5% surfactant.
  • FIA was made as in Example 1.
  • Blood was drawn on day 0 before vaccination, on day 35 and on day 63.
  • the antibodies were determined using ELISA.
  • a commercially available marked anti-IgG sheep from Sigma was used for the ELISA test.
  • SBA showed a comparable intensity of action as the combination of lipid particles with GMDP. Furthermore, SBA was comparable in effectiveness to FIA ( Figure 1). There was no significant difference in the intensity of action between the three adjuvants.
  • FIG. 1 Adjuvant effect compared to molecular adjuvant (GMDP - N-acetylglucosaminyl-N-acetylmuramyl dipeptide) and FIA.
  • Composition of SBA was 4% hard paraffin, 1% EQ 1 (N, N di- ( ⁇ -stearoylethyl) - N, N-dimethylammonium chloride) and 4% Tween 80 / Span 85 (7/3).
  • the composition of the GMDP adjuvant was 5% EQ 1 and 0.5% Montanide 888.
  • FIA according to Example 1.
  • Example 10 Effect of SBA composition on immune titer: SBA dispersions were prepared with identical lipid but different surfactants on the surface, ie. H. they differ in their surface properties.
  • the formulation SBA-1 consists of 4% hard paraffin, 4% Tween 80 / Span 85 (7/3) and water, the formulation SBA-2 contains 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3) and water.
  • the efficiency for increasing the immune titer was tested analogously to Example 9, FIA served as a comparison.
  • FIA served as a comparison.
  • Figure 2 Effect of SBA composition on immunotiter: Formulation SBA-1 consists of 4% hard paraffin, 4% Tween 80 / Span 85 (7/3) and water, formulation SBA-2 contains 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3) and water.
  • Example 11 Storage stability of SBA-2: The SBA dispersion SBA-2 from Example 11 was stored at different temperatures and the physical stability was determined by measuring the particle size with PCS. Particle growth did not occur ( Figure 3).
  • FIG. 3 Storage stability of SBA-2: The SBA dispersion SBA-2 from Example 11 was stored at different temperatures and the physical stability was determined by measuring the particle size with PCS.
  • Example 12 Surface modification of SBA dispersions: To modify the surface charge, SBA dispersions were prepared with surface-active positively charged stabilizers (EQ 1 - distearoylethyldiamonium chloride, cetylpyridinium chloride) and negatively charged stabilizers (sodium lauryl sulfate, (SDS)).
  • the composition of the SBA dispersions was: SBA-EQ 1 (20% cetyl palmitate, 4% Tween 80 / Span 85 (7/3), 1% EQ1), SBA-CPC (18% lipid, 10% surfactant, 0.1) % Cetylpyridinium chloride) and SBA-SDS (20% cetyl palmitate, 1% SDS 80).
  • the zeta potential was measured in millivolts (mV) as a measure of the charge
  • Example 13 Increased cellular immune response in booster chickens treated with GMDP-containing adjuvant (SBA) at the time of primary immunization.
  • SBA 5% EQ 1, 0.5% Montanide 888 was mixed 1: 1 with the antigen (IgG from rabbit) and injected subcutaneously.
  • SBA contained 5 ⁇ g GMDP and the immunization schedule was as follows: first immunization and two boosters on day 14 and day 28. The antibody determination took place on day 42 and the IgY titer was measured in the egg yolk. To check for a strengthened cellular immune response, antigen contact was repeated on day 100 (renewed vaccination) and the antibody determination on day 120. The results show that in the case of the first immunization (day 14 and 28) with SBA containing GMDP, with renewed contact with the antigen, significantly increased antibody production takes place.
  • FIG. 4 Antibody production in chickens after basic immunization and renewed antigen contact on day 100. The last antibody determination of the basic immunization took place on day 42, that of the booster vaccination (day 100) on day 120.
  • the composition of the vaccines of Examples 1-5 as follows:
  • Example 14 The adsorption of GMDP on SBA particles was investigated using PCS.
  • GMDP was mixed with SBA (4% hard paraffin, 4% Tween 80 / Span 85 (7/3) and left for 30 minutes at room temperature to allow adsorption of the GMDP to the particles.
  • the final concentration was 1.435 mg / ml
  • the size increase is 3.9 nm. (PCS diameter without GMDP: 99.4 nm, standard deviation: 0.764, diameter with GMDP: 103.3 nm, standard deviation: 0.755).
  • Example 15 Modification of the particle size: The SBA dispersion with EQ 1 from Example 12 (SBA-EQ 1) was produced using various production processes in order to vary the particle size. The particle size was measured using laser diffractometry (laser diffractometer LS 230, Coulter Electronics-Germany, measuring range: 40 nm - 2000 ⁇ m). The diameter 50% of the particles is given as the characterization parameter. The following manufacturing methods were used:
  • the raw emulsion was prepared as described under a) and homogenized with a micro fluidizer (device type 1 10N, Microfluidix lnc, USA). Homogenization parameters were 700 bar, 10 minutes circulation time. The average particle diameter was 0.452 ⁇ m.
  • Rotor-stator dispersion The raw emulsion was prepared as described under a) and then with an Ultraturrax (type T25, Jahnke and Kunkel, Staufen, Germany) at one
  • Static mixer Lipid and aqueous surfactant solution from a) were heated to 80 ° C. and mixed in a static mixer (Sulzer, Germany). The particle size was 15.8 ⁇ m.
  • Example 16 Molecular adjuvant to increase the cellular immune response incorporated in SBA: GMDP was dissolved in Span 85 (W / O) emulsifier and cetyl palmitate was added. The mixture was melted at 70 ° C. and, after re-cooling, was ground in a mortar mill with the addition of liquid nitrogen. The ground lipid-GMDP mixture was dispersed in a 2.5 percent Tween 80 solution and predispersed with the Ultraturrax for 1 minute at 8000 rpm. This dispersion was homogenized at 4 ° C. by means of high pressure homogenization in 3 cycles at 1000 bar. The PCS diameter is 260 nm with a polydispersity index of 0.430.
  • Example 17 Molecular adjuvant for increasing the cellular immune response incorporated in the interface: Saponins are generally known for increasing the cellular immune response. The particles were produced using a rotor stator analogous to Example 15. The composition of the SBA dispersion is 5% cetyl palmitate, 0.5% saponin (Quil A saponin) and water. The saponin was dissolved in the aqueous phase, this was heated to 80 ° and the melted lipid was added. Production was carried out with an Ultraturrax, stirring at 10,000 RPM for 5 minutes. The diameter 50% determined with the laser diffractometer was 2.28 ⁇ m.
  • Example 18 Production of SBA in the presence of an amphiphilic adjuvant.
  • amphiphilic surfactant CHAPS has been described in the literature as an agent for increasing the immune response.
  • the particles consist of 5% cetyl palmitate and 0.5% CHAPS.
  • the particles were produced analogously to example 20.
  • the diameter 50%, determined by means of laser diffractometry, is 1,897 ⁇ m.
  • Example 19 Comparison of SBA versus pure molecular adjuvant: SBA dispersion No. 2 from example 10 (SBA-2) was tested in sheep (conditions as in example 9) against molecular adjuvant, ie. H. pure GMDP (N-acetylglucosaminyl-N-acetylmuramyl dipeptide). The concentration of GMDP (0.1 mg / ml) was analogous to Example 9. The in vivo testing was carried out as described in Example 9. SBA 2 shows a higher active intensity than pure GMDP (Fig. 5). Composition of SBA-2: 4% hard paraffin, 1% EQ 1 (N, N Di- (ß-
  • Example 20 Effect of charge (surface property) on the immune response (sheep study analogous to Example 9): There is no difference in the potency between the positively charged particles SBA 4 and SBA 2. EQ 1 from SBA 2 can be replaced without loss of effectiveness by the toxicologically examined and approved as a pharmaceutical preservative cetylpyridinium chloride (SBA 4). One observes in relation to the negatively charged particles of the formulation SBA 5 a stronger effect of the positively charged particle formulations (Fig. 6).
  • the SBA formulations have the following composition: SBA 4: 4% hard paraffin, 4% Tween 80 / Span 85 (7/3), 0.5% cetylpyridinium chloride. SBA 5: 4% hard paraffin, sodium deoxycholate 0.2%, sodium cholate 0.2%, sodium oleate 1%, lipoid E80 2%. SBA 2: 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3). The surface charge (zeta potential) was determined in conductivity water with a conductivity of 50 ⁇ S / cm: SBA 4: +41, 2 mV, SBA 2: +40.5 mV, SBA 5: -36.4 mV.
  • PCS diameter and polydispersity index (P.I.) were: SBA 4: 103 nm (P.I. 0, 1 10), SBA 5: 107 nm (P.I. 0, 115), SBA 2: 10 nm (P.I. 0, 101).
  • Example 21 Species independence of the effect (chickens): The antigen from Example 9 was mixed with SBA 1 and SBA 2 in a ratio of 1: 1 and 0.5 ml was injected per chicken. The antibody titers were determined from the hen's eggs. An ELISA test was used for quantification. In contrast to the description in Example 9, a labeled anti-IgG chicken was used in the ELISA test. The first immunization took place on day 0. A booster with the same preparations took place on day 31. Analogous to the results in example 10, the formulation SBA 2 had a stronger effect (FIG. 7).
  • composition SBA 1 4% hard paraffin and 4% Tween 80 / Span 85 (7/3), PCS diameter: 107 nm (PI 0, 112) and SBA 2: 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3), PCS diameter: lOnnm (PI 0.101).
  • Example 22 Influence of the lipid matrix on the adjuvant effect: In the formulation SBA 2, the non-biodegradable hard paraffin was exchanged for the biodegradable glycerol tribehenate (SBA 3). The intensity of the effect does not differ; Hard paraffin can be replaced by glycerol tribehenate (Fig. 8)
  • composition SBA 2 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3), PCS diameter: 10 lnm (PI 0, 101)
  • SBA 3 4% glycerol tribehenate, 1% EQ 1 and 4 % Tween 80 / Span 85 (7/3), PCS diameter: 105nm (PI 0, 1 12).
  • Example 23 Formulations SBA 1 and SBA 2 were tested in comparison to aluminum hydroxide (procedure analogous to Example 9). The effect of SBA 1 and SBA 2 is the same as that of aluminum hydroxide (control: antigen in PBS). Analogous to Example 9, SBA 2 is more effective than SBA 1 (Fig. 9).
  • composition SBA 2 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3), PCS diameter: 10 lnm (PI 0, 101)
  • SBA 1 4% hard paraffin, 4% Tween 80 / Span 85 (7/3), PCS diameter: 107 nm (PI 0, 112).
  • Figure 1 Adjuvant effect compared to molecular adjuvant (GMDP N-acetylglucosaminyl-N-acetylmuramyl dipeptide) and FIA.
  • Figure 2 Effect of SBA composition on immune titer.
  • FIG. 4 Antibody production in chickens after basic immunization and renewed antigen contact on day 100, the last antibody determination of the basic immunization took place on day 42, that of the booster vaccination (day 100) on day 120.

Abstract

The invention relates to a stability and biocompatibility-optimized adjuvant (SBA) for enhancing the humoral and cellular immune response by jointly injecting said adjuvant with one or more antigens. The adjuvant consists of particles based on solid lipids or solid lipid mixtures and can be used in the production of more efficient and compatible vaccines, the inoculation of human beings and animals and for obtaining antibodies. The strength of the immune response can be modulated in a targeted manner and additionally adapted to the specific species by selecting the size, charge and surface characteristics of the particles. Other adjuvants, e.g. molecular adjuvants such as GMDP, can be added to the SBA, whereby the cellular immune response is additionally enhanced. The SBA is more effective and cost-efficient and easier to use than existing products and is well tolerated in vivo.

Description

Stabilitäts-, Biokompatibilitäts-optimiertes Adjuvans (SBA) zur Erhöhung der humoralen und zellulären Immunantwort Stability-, biocompatibility-optimized adjuvant (SBA) to increase the humoral and cellular immune response
1. Hintergrund der Erfindung1. Background of the Invention
Antigene werden Tieren und Menschen appliziert, um Antikörper zu er- zeugen. Ziele sind dabei zum Beispiel die Immunisierung von Menschen oder Tieren zum Schutz vor Erkrankungen oder die Erzeugung von Antikörpern, die nachher isoliert und zu Produkten verarbeitet werden. Der häufigste Applikationsweg für Antigene ist die parenterale Verabreichung, alternative Wege sind z.B. die orale, nasale und topische Applikation.Antigens are applied to animals and humans to produce antibodies. The goals are, for example, the immunization of humans or animals to protect against diseases or the production of antibodies, which are subsequently isolated and processed into products. The most common application route for antigens is parenteral administration, alternative routes are e.g. oral, nasal and topical application.
Ein häufiges Problem ist, daß oft die Stärke der Immunantwort auf das verabreichte Antigen für den beabsichtigten Zweck nicht ausreicht. Manchmal kann das Problem dadurch gelöst werden, daß die verabreichte Dosis des Antigens stark erhöht wird. Ein ernsthaftes Problem ist jedoch, daß Antigene oft sehr teuer sind und die Dosiserhöhung zu einer entsprechenden Verteuerung des Impfstoffes führt. Diese Kosten führen zu einer starken Belastung des Gesundheitssystems, für viele Bevölkerungsschichten - insbesondere in der Dritten Welt - wird der Impfstoff zu teuer und wünschenswerte Massenimpfungen können nicht durchgeführt wer- den.A common problem is that often the strength of the immune response to the administered antigen is insufficient for the intended purpose. Sometimes the problem can be solved by greatly increasing the administered dose of the antigen. A serious problem, however, is that antigens are often very expensive and the dose increase leads to a corresponding increase in the price of the vaccine. These costs lead to a heavy burden on the health system, for many sections of the population - especially in the Third World - the vaccine becomes too expensive and desirable mass vaccinations cannot be carried out.
Ein alternativer Lösungsansatz ist die Verabreichung von Antigenen zusammen mit einem Adjuvans, das die Antigenwirkung verstärkt und so zu einem höheren Antikörpertiter führt. Das Adjuvans-Prinzip wurde erstma- lig 1948 von Jules Freund beschrieben [Freund, J. J. Immunology 1948, 60, 383-398] und durch zwei Emulsionen auf der Basis von Mineralöl realisiert. Freunds unvollständiges Adjuvans (Freund's Incomplete Adjuvant - FIA) ist eine Mischung von Mineralöl mit Mannide Monooleat (Montanide, Arlacel). Zur Anwendung mischt man es mit der Antigenlösung und injiziert die gebildete Emulsion. Die dadurch hervorgerufene Verstärkung der Immunantwort ist so groß, daß FIA immer noch als "Goldstandard" herangezogen wird, wenn neue Adjuvantien entwickelt und getestet werden. Man bewertet ihre Effizienz und Qualität durch Vergleich mit FIA, wobei jedoch viele neu entwickelte Adjuvantien deutlich unterhalb der Effizienz von FIA bleiben (z. B. bei 0,2, FIA = 1,0).An alternative solution is the administration of antigens together with an adjuvant, which increases the antigenic effect and thus leads to a higher antibody titer. The adjuvant principle was first lig 1948 described by Jules Freund [Freund, JJ Immunology 1948, 60, 383-398] and realized by two emulsions based on mineral oil. Freund's Incomplete Adjuvant (Freund's Incomplete Adjuvant - FIA) is a blend of mineral oil with mannide monooleate (Montanide, Arlacel). To use it, mix it with the antigen solution and inject the emulsion formed. The resulting strengthening of the immune response is so great that FIA is still used as the "gold standard" when new adjuvants are developed and tested. Their efficiency and quality are assessed by comparison with FIA, although many newly developed adjuvants remain well below the efficiency of FIA (e.g. at 0.2, FIA = 1.0).
Der Zusatz von abgetöteten Mycobakterien zu FIA (z. B. M. tuberculosis) erhöhte weiterhin die Immunantwort. Diese Mischung wird als Freunds komplettes Adjuvans bezeichnet (Freund's Complete Adjuvant - FCA). Die Ölemulsion nach Freund erzeugt jedoch entzündliche und ulzerierende Geschwülste (Granulome) an der Injektionsstelle, teilweise brechen sie auf und gehen in sich ausbreitende Abszesse über. Nach heutigem Standard steht daher die Anwendung der Ölemulsion nach Freund am Menschen außerhalb jeglicher Frage. Teilweise erfolgt die Anwendung bei Tieren. Oft ist das Allgemeinbefinden der Tiere so stark beeinträchtigt, daß es zu unwirtschaftlichen Ausfällen kommt. Die von Freund zur Komplettierung des Adjuvans vorgeschlagenen Mycobakterien M. tuberculosis oder M. buty- ricum sind ebenfalls schlecht verträglich. Auch sie rufen Granulome und Fieber sowie Abszesse an der Einstichstelle hervor [Brown, E.A. Rev Aller- gy 1969 23(5):389-400].The addition of killed mycobacteria to FIA (e.g. M. tuberculosis) further increased the immune response. This mixture is called Freund's Complete Adjuvant (Freund's Complete Adjuvant - FCA). Freund's oil emulsion, however, produces inflammatory and ulcerating tumors (granulomas) at the injection site, in some cases they break open and spread into spreading abscesses. According to today's standard, the use of Freund's oil emulsion on humans is therefore out of the question. It is sometimes used in animals. The general well-being of the animals is often so severely affected that there are uneconomical failures. The mycobacteria M. tuberculosis or M. butyricum proposed by Freund to complete the adjuvant are also poorly tolerated. They also cause granulomas and fever as well as abscesses at the injection site [Brown, E.A. Rev Allergy 1969 23 (5): 389-400].
Es besteht daher die Aufgabe, ein verträglicheres Adjuvans zu finden, insbesondere unter den Gesichtspunkten kostengünstige Impfstoffe herzu- stellen, wünschenswerten weltweiten Impfungen gegen bestimmte Erkrankungen, die nur mit einem kostengünstigen Impfstoff finanziell realisierbar sind und der zunehmenden Bedeutung immunologischer Produktionstechniken und Produkte. Auch unter zunehmendem Bewußtsein für die Schutzbedürftigkeit von Tieren und entsprechendem Druck der Gesetzgebung muß ein verträglicheres, (d.h. biokompatibles) gleich effizientes, aber gleichzeitig kostengünstiges Adjuvans gefunden werden. Zusätzlich muß es physikalisch stabil sein, damit eine Zumischung vor der Injektion entfallen kann und Schwankungen in der Effizienz - z.B. durch unterschiedliche Dispergierung - eliminiert werden.The task therefore is to find a more tolerable adjuvant, in particular from the point of view of inexpensive vaccines. make desirable worldwide vaccinations against certain diseases that can only be financed with an inexpensive vaccine and the increasing importance of immunological production techniques and products. Even with increasing awareness of the need for protection of animals and corresponding pressure from legislation, a more compatible, (ie biocompatible) equally efficient, but at the same time inexpensive adjuvant must be found. In addition, it must be physically stable so that admixing before the injection can be omitted and fluctuations in efficiency - for example due to different dispersions - are eliminated.
Das heutzutage am häufigsten eingesetzte Adjuvans mit Zulassung zur Anwendung am Menschen ist eine feine Suspension von Aluminiumhydroxid, dessen Wurzeln noch archaischer sind als die der Emulsion von Freund [Glenny, A.T. et al. J. Pathol. 1926, 29 31-40]. Es basiert auf der Annahme, daß Antigene vom Immunsystem besser erkannt werden, wenn sie auf der Oberfläche der Aluminiumhydroxid-Partikel adsorbiert sind. Nachteilig ist jedoch, daß Aluminiumhydroxid weniger effizient ist als Freunds Adjuvans und es ebenfalls Granulome bewirken kann.The most commonly used adjuvant approved for human use today is a fine suspension of aluminum hydroxide, the roots of which are even more archaic than those of Freund's emulsion [Glenny, A.T. et al. J. Pathol. 1926, 29 31-40]. It is based on the assumption that antigens are better recognized by the immune system if they are adsorbed on the surface of the aluminum hydroxide particles. However, it is disadvantageous that aluminum hydroxide is less efficient than Freund's adjuvant and it can also cause granulomas.
Ausgehend von Freunds Emulsion wurden neuerdings Emulsionen beschrieben, welche aus verträglicheren Materialien bestehen wie z. B. Squalan und Sqalen, [Sanchez-Pestador, L. et al. J. Immunol. 1988 141, 1720-1727, Masihi KN, Lunge,W., Bremer W., Ribi, E. Int. J. Immuno- pharmacol. 1986 8(3),339-45, Hunter R.L., Bennett, B. Scand J Immunol. 1986 23(3), 287-300, Allison AC, et al. Semin Immunol. 1990 2(5), 369- 74]. Eines dieser Systeme ist MF59 (European Patent Application 0399843A2). Basierend auf den Suspensionen nach Glenny wurden Partikel aus unterschiedlichen Polymeren bis hin zu diversen anorganischen und organischen Partikeln (z. B. Kohlenstoff) eingesetzt [O'Hagan, D.T., Jeffrey, H., Roberts M.J., McGee, J.P., Davies, S.S. Vaccine. 1991 9(10), 68-71, Glenny, A.T. et al. J. Pathol. 1926, 29 31-40]. Nachteile dieser Systeme sind die Zytotoxizität einiger Polymere (z. B. Formaldehydbildung bei Po- lyalkylcyanoacrylaten), fehlende oder zu langsame Abbaugeschwindigkeit im Organismus (z. B. Polystyrol oder Polymethacrylatderivate) , unzureichende Biokompatibilität (z. B. Kapselbildung bei PLA- Partikeln, pH- Verschiebung bis zu pH2) sowie mangelnde Zulassungsfähigkeit durch die Registrierungsbehörden (z. B. Rußpartikel).Starting from Freund's emulsion, emulsions have recently been described which consist of more compatible materials such as, for. B. Squalan and Sqalen, [Sanchez-Pestador, L. et al. J. Immunol. 1988 141, 1720-1727, Masihi KN, Lunge, W., Bremer W., Ribi, E. Int. J. Immunopharmacol. 1986 8 (3), 339-45, Hunter RL, Bennett, B. Scand J Immunol. 1986 23 (3), 287-300, Allison AC, et al. Semin Immunol. 1990 2 (5), 369-74]. One of these systems is MF59 (European Patent Application 0399843A2). Based on the suspensions according to Glenny, particles from different polymers up to various inorganic and organic particles (e.g. carbon) were used [O'Hagan, DT, Jeffrey, H., Roberts MJ, McGee, JP, Davies, SS Vaccine . 1991 9 (10), 68-71, Glenny, AT et al. J. Pathol. 1926, 29 31-40]. Disadvantages of these systems are the cytotoxicity of some polymers (e.g. formaldehyde formation in polyalkylcyanoacrylates), missing or too slow degradation rate in the organism (e.g. polystyrene or polymethacrylate derivatives), insufficient biocompatibility (e.g. capsule formation in PLA particles, pH shift up to pH2) and inadequate approval by the registration authorities (e.g. soot particles).
Ein alternativer Weg zur Verwendung von partikulären Adjuvantien wie Öltropfen oder Feststoffpartikeln ist der Einsatz von makromolekularen Adjuvantien. Es wurde gezeigt, daß die von Freund beschriebenen Mycobakterien durch Bausteine aus deren Kapselsubstanz ersetzt werden können, welche größere Körperverträglichkeit aufweisen. Besonders beschrieben und synthetisiert wurden MDP (N-acetylmuramyl-L-alanyl-D- isoglutamin) [Adam, A., Lederer, E. Med. Res. Rev. 1984 4, 111- 152] Thr- MDP (threonyl Analog des MDP) [Byars NE, et al. Vaccine. 1987 5(3), 223- 8] und das aus dem Joghurtbazillus stammende GMDP (N- acetylglucosaminyl-N-acetylmuramyl-dipeptide) [Grubhofer, N. Immunolo- gy Letters 1995 44, 19-24]. GMDP ist ein Homolog des MDP, für GMDP wurde inzwischen eine gesteigerte immunstimulierende Wirkung nachge- wiesen (Patentschrift DE 19611235 Cl).An alternative way to use particulate adjuvants such as oil drops or solid particles is to use macromolecular adjuvants. It has been shown that the mycobacteria described by Freund can be replaced by building blocks from their capsule substance, which have greater physical tolerance. MDP (N-acetylmuramyl-L-alanyl-D-isoglutamine) [Adam, A., Lederer, E. Med. Res. Rev. 1984 4, 111-152] Thr-MDP (threonyl analogue of the MDP ) [Byars NE, et al. Vaccine. 1987 5 (3), 223-8] and the GMDP (N-acetylglucosaminyl-N-acetylmuramyl dipeptide) derived from the yoghurt bacillus [Grubhofer, N. Immunology Letters 1995 44, 19-24]. GMDP is a homologue of the MDP, an increased immunostimulatory effect has now been demonstrated for GMDP (patent specification DE 19611235 Cl).
Weitere Ansätze bei der Entwicklung eines Adjuvans waren die Verwendung von molekularen Adjuvantien in hoher Konzentration, so daß die Löslichkeit überschritten wurde und man eine Suspension erhielt (z. B. DDA (Dimethyldioctadecylammoniumbromid) [Grubhofer, N. Immunology Letters 1995 44, 19-24] und zur Erhöhung der humoralen Antwort die Mischung von makromolekularen Adjuvantien wie Glykopeptiden mit Feststoffpartikeln (z. B. GMDP mit kolloidalen Partikeln) [Grubhofer, N. Im- munology Letters 1995 44, 19-24].Other approaches in the development of an adjuvant were the use of molecular adjuvants in high concentrations so that the solubility was exceeded and a suspension was obtained (e.g. DDA (dimethyldioctadecylammonium bromide) [Grubhofer, N. Immunology Letters 1995 44, 19-24] and to increase the humoral response, the mixture of macromolecular adjuvants such as glycopeptides with solid particles (e.g. GMDP with colloidal particles) [Grubhofer, N. Im- Munology Letters 1995 44, 19-24].
Bis jetzt ist jedoch noch keine Lösung gefunden worden, welche eine gleiche Wirkungseffizienz wie Freunds Adjuvans aufweist und gleichzeitig den übrigen Anforderungen entspricht: Die neuen Emulsionen werden keines- wegs immer reaktionsfrei vertragen, die synthetischen Makromoleküle wie Glykopeptide haben sich bislang den Mycobakterien nicht überlegen gezeigt, zusätzlich sind sie viel zu teuer. Feststoffpartikel haben Zulassungsprobleme. Viele Adjuvantien zeigen zu hohe Toxizität und somit zu geringe Biokompatibilität. Hinzu kommen Probleme mit der physikali- sehen Stabilität (Vermeidung von Aggregation bzw. Koaleszenz). So muß die FIA-Emulsion frisch hergestellt und injiziert werden, langfristige Lagerung ist nicht möglich. Ausreichend physikalische Lagerstabilität ist jedoch die essentielle Voraussetzung für ein vermarktbares Produkt - insbesondere für Arzneimittel.So far, however, no solution has been found that has the same effectiveness as Freund's adjuvant and at the same time meets the other requirements: the new emulsions are by no means always tolerated without reaction, the synthetic macromolecules such as glycopeptides have so far not been shown to be superior to the mycobacteria in addition, they are far too expensive. Solid particles have approval problems. Many adjuvants show too high toxicity and thus too little biocompatibility. There are also problems with physical stability (avoidance of aggregation or coalescence). The FIA emulsion must be freshly prepared and injected, long-term storage is not possible. Sufficient physical storage stability is, however, the essential prerequisite for a marketable product - especially for pharmaceuticals.
Ziele sind somit die Herstellung eines neuen Adjuvans mit:The goals are thus the production of a new adjuvant with:
1. ausreichend physikalischer Stabilität1. sufficient physical stability
2. geringer Zyto toxizität und ausreichender Biokompatibilität2. low cytotoxicity and sufficient biocompatibility
3. vergleichbarer Wirkungseffizienz zu FIA 4. kostengünstiger Herstellung. 1. Beschreibung der Erfindung3. Efficiency comparable to FIA 4. Cost-effective production. 1. Description of the invention
Bisher mußte zur Erhöhung der immunstimulierenden Wirkung GMDP in Mischung mit kolloiddispersen festen Lipidpartikeln in einer Partikelgröße <200 nm eingesetzt werden (USA Patent Gerbu, Bearbeitungsnummer des US Patentamtes ist 08/816,787). Der Aufbau der Partikel wurde in Untersuchungen für diese Erfindung systematisch modifiziert (z.B. eingesetzte Tenside, Stabilisatoren) um Lipidpartikel zu finden, die die immunstimu- lierende Wirkung von GMDP weiter erhöhen könnten. ÜberraschenderUp to now, GMDP had to be used in a mixture with colloidally disperse solid lipid particles in a particle size <200 nm to increase the immunostimulating effect (US Patent Gerbu, processing number of the US Patent Office is 08 / 816,787). The structure of the particles was systematically modified in studies for this invention (e.g. surfactants, stabilizers) to find lipid particles that could further increase the immunostimulating effect of GMDP. More surprising
Weise wurde hierbei gefunden, daß Lipidpartikel alleine genau so effizient sind wie die Kombination aus Lipidpartikeln und GMDP (Beispiel 9). Somit kann in der Erfindung auf das teure GMDP verzichtet werden und eine vergleichbar hohe humorale Immunstimulierung durch ein kostengünsti- ges Lipidpartikel alleine erzielt werden.It was found that lipid particles alone are just as efficient as the combination of lipid particles and GMDP (Example 9). Thus, the expensive GMDP can be dispensed with in the invention and a comparably high humoral immune stimulation can be achieved by an inexpensive lipid particle alone.
Die Stärke der immunstimulierenden Wirkung hängt hierbei von den Oberflächeneigenschaften der Partikel (verwendete Tenside, Partikelladung) und von der Partikelgröße ab. Bei negativer Ladung des Lipidparti- kels beträgt die Wirkungseffizienz ca. 1 /3 von FIA, bei Erzeugung eines positiv geladenen Lipidpartikels durch Zusatz von EQ 1 ist die Wirkungseffizienz vergleichbar FIA (kein signifikanter Unterschied, t-Test) (Beispiel 9). Über die Zusammensetzung der verwendeten Lipidpartikel kann somit die gewünschte Wirkungsstärke gezielt eingestellt werden. Dies vermeidet Überreaktionen des Organismus.The strength of the immunostimulating effect depends on the surface properties of the particles (surfactants used, particle charge) and the particle size. If the lipid particle is negatively charged, the efficacy is approx. 1/3 of FIA; if a positively charged lipid particle is generated by adding EQ 1, the efficacy is comparable to FIA (no significant difference, t-test) (Example 9). The desired potency can thus be set in a targeted manner via the composition of the lipid particles used. This avoids over-reactions of the organism.
Aus der bisherigen Adjuvans-Forschung an anorganischen und Polymer- Suspensionen ist bekannt, daß es für jedes Antigen eine Partikelgröße mit maximaler Wirkungseffizenz gibt, ebenso ist eine Speziesabhängigkeit be- kannt. So wird die am besten geeignete Partikelgröße von Aluminiumhydroxid-Suspensionen für einen Impfstoff empirisch ermittelt, Polymerpartikel als Adjuvans zur Immunisierung hatten einen unterschiedlichen Effekt als Funktion ihrer Größe [Kreuter J, et al. Vaccine. 1986, 4, 125- 9]. Das gleiche wurde trotz des sehr unterschiedlichen Matrixmaterials überraschenderweise für die Lipidpartikel gefunden, so daß die Wirkungsstärke über Veränderung der Partikelgröße antigenspezifisch und speziesspezifisch moduliert werden kann.From previous research into adjuvants on inorganic and polymer suspensions it is known that there is a particle size with maximum efficiency for each antigen. knows. For example, the most suitable particle size of aluminum hydroxide suspensions for a vaccine is determined empirically; polymer particles as adjuvants for immunization had a different effect as a function of their size [Kreuter J, et al. Vaccine. 1986, 4, 125-9]. The same was surprisingly found for the lipid particles despite the very different matrix material, so that the potency can be modulated by changing the particle size in an antigen-specific and species-specific manner.
Die Lipidpartikel-Dispersionen des stabilen biokompatiblen AdjuvansThe lipid particle dispersions of the stable biocompatible adjuvant
(SBA) bestehen aus in Wasser oder wäßrigen Flüssigkeiten oder nichtwäßrigen, z.B. öligen Flüssigkeiten dispergierten Lipidpartikeln, wobei diese durch Tenside oder Polymere stabilisiert werden können, aber nicht müssen. Bei ausreichend hoher Viskosität der äußeren Phase oder Feinheit der Partikel wird eine physikalisch stabile Dispersion erhalten. Gleiches gilt auch bei niedrig viskosen äußeren Phasen, wenn die Partikel eine ausreichend hohe gleichsinnige Ladung tragen und somit gebildete Sedimente leicht redispergiert werden können.(SBA) consist of in water or aqueous liquids or non-aqueous, e.g. oily liquids dispersed lipid particles, which can, but need not, be stabilized by surfactants or polymers. With a sufficiently high viscosity of the outer phase or fineness of the particles, a physically stable dispersion is obtained. The same applies to low-viscosity outer phases, if the particles carry a sufficiently high charge in the same direction and the sediments formed can be easily redispersed.
Die Herstellung der SBA erfolgt durch Dispergierung oder Präzipitation, wobei in Lehrbüchern der Pharmazie und Verfahrenstechnik beschriebene allgemein bekannte Methoden eingesetzt werden. Bei der Dispergierung zerteilt man grobdisperse Lipide durch mechanische Verfahren. Die Lipide können sich hierbei im festen Aggregatzustand (z. B. Mörsermühle) oder im flüssigen Aggregatzustand befinden (z.B. Emulgierung geschmolzener Lipide durch Rührer). Zur Herstellung der SBA-Dispersion können die Lipide zuerst zerkleinert und anschließend in der äußeren (z.B. wäßrigen) Phase dispergiert werden oder alternativ direkt in der äußeren Phase zerkleinert werden. Zur Herstellung von SBA-Dispersionen durch Dispergie- rung können z. B. u. a. eingesetzt werden: Kolben-Spalt-Homogenisatoren (z. B. APV Homogenistoren, French Press), Jet Stream Homogenistoren (z. B. Microfluidizer), Rotor-Stator- Rührer (z. B. Ultraturax, Silverson Homogenisatoren), statische Mischer im Mikromaßstab und Makromaßstab (z. B. Mischer der Firma Sulzer), Gasstrahlmühle, Rotor-Stator-Kolloidmühle und Mörsermühle (Beispiel 15).The SBA is produced by dispersion or precipitation, generally known methods described in textbooks in pharmacy and process engineering being used. During dispersing, coarsely dispersed lipids are broken up by mechanical methods. The lipids can be in the solid state (e.g. mortar mill) or in the liquid state (eg emulsification of molten lipids by stirrers). To produce the SBA dispersion, the lipids can first be comminuted and then dispersed in the outer (eg aqueous) phase or alternatively can be comminuted directly in the outer phase. For the production of SBA dispersions by dispersing tion can z. B. used include: piston-gap homogenizers (e.g. APV homogenizers, French Press), jet stream homogenistors (e.g. microfluidizers), rotor-stator stirrers (e.g. Ultraturax, Silverson homogenizers), static mixers on a microscale and macroscale (e.g. mixers from Sulzer), gas jet mill, rotor-stator colloid mill and mortar mill (example 15).
SBA-Dispersionen zeigen eine ausreichende physikalische Langzeitstabilität. Bestimmung der Partikelgröße mit Photonenkorrelationsspektrosko- pie (PCS) und Laserdiffraktometrie (LD) zeigten kein oder vernachlässigbares Partikelwachstum über Zeiträume von 1 - 3 Jahren (Beispiel 3). Die Stabilität von SBA-Dispersionen ist der von Freunds unvollständigem Adjuvant (FIA) weit überlegen (Beispiel 1), auch gegenüber neueren Adju- vans-Emulsionen zeigt sich eine höhere Stabilität (Beispiel 2).SBA dispersions show sufficient long-term physical stability. Determination of the particle size with photon correlation spectroscopy (PCS) and laser diffractometry (LD) showed no or negligible particle growth over periods of 1 to 3 years (example 3). The stability of SBA dispersions is far superior to that of Freund's incomplete adjuvant (FIA) (example 1); higher stability is also shown compared to newer adjuvant emulsions (example 2).
Stabilität: SBA-Dispersionen stellen ein einfaches System dar. Im Gegensatz zu Glykopeptiden sind die eingesetzten Hilfsstoffe chemisch einfach strukturiert und robust. Anwendung von Hitze bei Sterilisationsprozessen führt zu keiner chemischen Zersetzung, die Dispersion bleibt physikalisch stabil und Partikelaggregation tritt nicht ein. Ein Beispiel für die Sterilisation von SBA-Dispersionen durch Autoklavieren (121°C, 15 Minuten, 2 bar) zeigt Beispiel 4. FIA zeigt unter gleichen Bedingungen Phasenseparation.Stability: SBA dispersions represent a simple system. In contrast to glycopeptides, the additives used are chemically simple and robust. The use of heat in sterilization processes does not lead to chemical decomposition, the dispersion remains physically stable and particle aggregation does not occur. Example 4 shows an example of the sterilization of SBA dispersions by autoclaving (121 ° C., 15 minutes, 2 bar). FIA shows phase separation under the same conditions.
Viele Impfstoffe werden bei niedriger Temperatur gelagert (4 - 6°C). Bei optimierten SBA-Dispersionen ist auch Lagerung bei Raumtemperatur und auch noch höheren Temperaturen möglich, ohne daß physikalische Destabilisierung auftritt (Beispiel 11). Dies vereinfacht die Handhabung der Produkte auf der Basis von SBA, insbesondere für heißere Klimazonen (z.B. Einsatz als Adjuvans bei Massenimpfungen in Ländern der Dritten Welt).Many vaccines are stored at a low temperature (4 - 6 ° C). With optimized SBA dispersions, storage at room temperature and even higher temperatures is possible without physical destabilization occurring (Example 11). This simplifies the handling of products based on SBA, especially for hotter climates (eg use as an adjuvant for mass vaccinations in Third World countries).
Biokompatibilität: Essentiell für ein breit einsetzbares Adjuvans ist geringe Toxizität und gute Biokompatibilität. In einer Schaf-Studie wurden nach Applikation von SBA-Dispersion keine Auffälligkeiten am Applikationsort beobachtet (Beispiel 6). Die gute Verträglichkeit wird erklärt mit der in vitro in Zellkulturen beobachteten extrem geringen Toxizität von Lipiden. Im Vergleich zu von den deutschen Zulassungsbehörden und von der FDA zur parenteralen Applikation zugelassenen Polymeren zeigen sie eine um mindestens ca. Faktor 20 höhere Viabilität bei hohen Partikelkonzentrationen (Beispiel 5). Die gute Biokompatibilität wird darauf zurückgeführt, daß allgemein Körperproteine nur zu einem geringen Ausmaß auf die Partikeloberfläche adsorbieren - im Gegensatz zu anderen Partikeln (Beispiel 7). Hinzu kommt, daß auf der Oberfläche keine Proteine nachgewiesen wurden, die Unverträglichkeitsreaktionen fördern.Biocompatibility: Low toxicity and good biocompatibility are essential for a widely used adjuvant. In a sheep study, no abnormalities were observed at the application site after application of SBA dispersion (example 6). The good tolerance is explained by the extremely low toxicity of lipids observed in vitro in cell cultures. Compared to polymers approved by the German regulatory authorities and the FDA for parenteral administration, they show a viability at least approximately 20 times higher at high particle concentrations (example 5). The good biocompatibility is attributed to the fact that body proteins generally only adsorb to a small extent on the particle surface - in contrast to other particles (Example 7). In addition, there are no proteins on the surface that promote intolerance reactions.
Für einen breiten Einsatz eines Adjuvans bietet es sich aus Kostengründen an, ein Adjuvans-Präparat herzustellen, das vor der Anwendung der Antigenlösung zugemischt wird. Idealerweise sollte dabei das Adjuvans in seinen Eigenschaften so hergestellt sein, daß es bei einer Reihe unterschiedlicher Antigene zugemischt werden kann. Zur Verringerung des Injektionsschmerzes sollte die Mischung in physiologischer Kochsalzlösung oder anderweitig isotonisierter Lösung appliziert werden. Physiologische Kochsalzlösung führt aufgrund der Reduktion des Zetapotentials zu einer Destabilisierung in Dispersionen und nachfolgender Aggregation [Lucks, J. S. et al., Int. J. Pharm 1990 58, 229 - 235]. Das SBA-Adjuvans sollte nach Zumischung zum Antigen in isotonischer Lösung ausreichend lange physikalisch stabil sein. Beispiel 8 zeigt, daß die Lipidpartikel nach Zumi- schung zu physiologischer Kochsalzlösung sogar über 6 Stunden stabil sind, meßbare Aggregation tritt nicht auf.For widespread use of an adjuvant, it is advisable for cost reasons to produce an adjuvant preparation which is admixed before the antigen solution is used. Ideally, the properties of the adjuvant should be such that it can be mixed with a number of different antigens. To reduce the pain of injection, the mixture should be applied in physiological saline or other isotonized solution. Due to the reduction of the zeta potential, physiological saline leads to destabilization in dispersions and subsequent aggregation [Lucks, JS et al., Int. J. Pharm 1990 58, 229-235]. The SBA adjuvant should be physically stable for a sufficiently long time after being added to the antigen in isotonic solution. Example 8 shows that the lipid particles according to Zumi to physiological saline are stable for over 6 hours, measurable aggregation does not occur.
Neben der Partikelgröße können auch Oberflächeneigenschaften wie La- düng gezielt eingestellt und so das SBA-Adjuvanz in Wirkungsstärke speziesspezifisch hergestellt werden. Positive und negative Ladungen können durch Zumischung entsprechend geladener Tenside oder Stabilisatoren erzeugt werden. Über die Konzentration des Zusatzes kann die Stärke der Ladung eingestellt werden. Idealer Zusatz sind dabei geladene Substan- zen, die wie Cetylpyridiniumchlorid als Konservierungsmittel für die pa- renterale Appliktion zugelassen sind (Beispiel 12).In addition to the particle size, surface properties such as loading can also be set in a targeted manner and the SBA adjuvant can thus be produced in a species-specific manner. Positive and negative charges can be generated by adding appropriately charged surfactants or stabilizers. The strength of the load can be adjusted via the concentration of the additive. The ideal addition is charged substances, which, like cetylpyridinium chloride, are approved as preservatives for parenteral application (example 12).
Eine Vielzahl unterschiedlicher Lipide kann zur Herstellung von SBA- Dispersionen eingesetzt werden. Dies sind sowohl chemisch einheitliche Lipide als auch ihre Mischungen. Charakterisiert sind die Lipide dadurch, daß sie im Endprodukt SBA-Dispersion im kristallinen Zustand (z.B. ß-, ßi-Modifikation) oder im flüssig-kristallinen Zustand (α-Modifikation) vorliegen bzw. in deren Mischung. Bei eingesetzten Lipidmischungen können auch flüssige Lipide (z.B. Öle, lipophile Kohlenwasserstoffe, lipophile orga- nische Flüssigkeiten wie Oleylalkohol) den festen Lipiden (z. B. Glyceride, lipophile Kohlenwasserstoffe wie Hartparaffin) zugemischt werden (sog. "lipid blends").A variety of different lipids can be used to produce SBA dispersions. These are both chemically uniform lipids and their mixtures. The lipids are characterized in that they are present in the end product SBA dispersion in the crystalline state (e.g. β-, ßi-modification) or in the liquid-crystalline state (α-modification) or in a mixture thereof. When lipid mixtures are used, liquid lipids (e.g. oils, lipophilic hydrocarbons, lipophilic organic liquids such as oleyl alcohol) can also be mixed with the solid lipids (e.g. glycerides, lipophilic hydrocarbons such as hard paraffin) (so-called "lipid blends").
Einsatz finden z. B. folgende Lipide als dispergierte Phase und können als individuelle Komponente oder als Mischung angewendet werden: Natürliche oder synthetische Triglyceride bzw. Mischungen derselben, Monogly- ceride und Diglyceride, alleine oder Mischungen derselben oder mit z.B. Triglyceriden, selbst-emulgierende modifizierte Lipide, natürliche und synthetische Wachse, Fettalkohole, einschliesslich ihrer Ester und Ether sowie in Form von Lipidpeptiden, oder irgendwelche Mischungen derselben. Besonders geeignet sind synthetische Monoglyceride, Diglyceride und Triglyceride als individuelle Substanzen oder als Mischung (z.B. Hartfett), Imwitor 900, Triglyceride (z.B. Glyceroltrilaurat, Glycerolmyristat, Gly- cerolpalmitat, Glycerolstearat und Glycerolbehenat) und Wachse wie z.B. Cetylpalmitat und weisses Wachs (DAB) . Außerdem Kohlenwasserstoffe, wie z.B. Hartparaffin.Find z. B. the following lipids as a dispersed phase and can be used as an individual component or as a mixture: natural or synthetic triglycerides or mixtures thereof, monoglycerides and diglycerides, alone or mixtures thereof or with, for example, triglycerides, self-emulsifying modified lipids, natural and synthetic waxes, fatty alcohols, including their esters and ethers as well as in the form of lipid peptides, or any mixtures thereof. Synthetic monoglycerides, diglycerides and triglycerides are particularly suitable as individual substances or as a mixture (eg hard fat), Imwitor 900, triglycerides (eg glycerol trilaurate, glycerol myristate, glycerol palmitate, glycerol stearate and glycerol behenate) and waxes such as cetyl palmitate and white. Also hydrocarbons, such as hard paraffin.
Der Anteil der inneren oder Lipidphase bezogen auf die Gesamtformulie- rung ist 0, 1% bis 80% (m/m) und liegt vorzugsweise im Bereich von 1% bis 40% (m/m). Sollte der Zusatz von dispersionsstabilisierenden Additiven notwendig oder gewünscht sein, z.B. Emulgatoren, um stabile Dispersion zu produzieren zu können, so können diese in Form von reinen Substanzen oder in Form von Mischungen eingearbeitet sein, um die Partikel zu stabilisieren.The proportion of the inner or lipid phase based on the total formulation is 0.1% to 80% (m / m) and is preferably in the range from 1% to 40% (m / m). Should the addition of dispersion stabilizing additives be necessary or desirable, e.g. Emulsifiers, in order to be able to produce stable dispersion, can be incorporated in the form of pure substances or in the form of mixtures in order to stabilize the particles.
Die Menge an solchen Additiven, die im Verhältnis zu der gesamten Einwaage der wäßrigen Dispersion zugesetzt werden können, liegt im Bereich von 0,01% bis 30% und vorzugsweise im Bereich von 0,5% bis 20%. Zur Stabilisierung der SBA-Dispersionen oder zu ihrer gezielten Oberflächenmodifikation können die Tenside, Stabilisatoren und Polymere eingesetzt werden, die allgemein aus der Herstellung von Dispersionen bekannt sind. Beispiele dafür sind:The amount of such additives, which can be added in relation to the total weight of the aqueous dispersion, is in the range from 0.01% to 30% and preferably in the range from 0.5% to 20%. The surfactants, stabilizers and polymers which are generally known from the production of dispersions can be used to stabilize the SBA dispersions or to specifically modify their surfaces. Examples include:
l.sterisch stabilisierende Substanzen wie Poloxamere und Poloxamine (Polyoxyethylen-Polyoxypropylen-Block-Copolymere), ethoxylierte Sorbi- tanfettsäure-Ester, besonders Polysorbate (z.B. Polysorbat 80 bzw. Tween 80®), ethoxylierte Mono- und Diglyceride, ethoxylierte Lipide, ethoxylierte Fettalkohole oder Fettsäuren, und Ester und Ether von Zuckern oder von Zuckeralkoholen mit Fettsäuren oder Fettalkoholen (z.B. Sucrose Mono- stearat, Sucrose Distearat, Sucrose Cocoat, Sucrose Stearat, Sucrose Di- palmitat, Sucrose Palmitat, Sucrose Laurat, Sucrose Octanoat, Sucrose Oleat).sterically stabilizing substances such as poloxamers and poloxamines (polyoxyethylene-polyoxypropylene block copolymers), ethoxylated sorbitan fatty acid esters, especially polysorbates (eg Polysorbate 80 or Tween 80®), ethoxylated mono- and diglycerides, ethoxylated lipids, ethoxylated fatty alcohols or fatty acids, and esters and ethers of sugars or of Sugar alcohols with fatty acids or fatty alcohols (eg sucrose monostearate, sucrose distearate, sucrose cocoat, sucrose stearate, sucrose dipalmitate, sucrose palmitate, sucrose laurate, sucrose octanoate, sucrose oleate).
2. geladene ionische Stabilisatoren so wie Diacetylphosphate, Phosphati- dylglycerin, Lecithine unterschiedlicher Herkunft (z.B. Eilecithinoder So- jalecithin), chemisch modifizierte Lecithine (z.B. hydrierte Lecithine), genauso wie Phospholipide und Sphingolipide, Mischung von Lecithinen mit Phospholipiden, Sterolen (z.B. Cholesterol und Cholesterol-Derivate, genauso wie Stigmasterin) und ebenfalls gesättigte und ungesättigte Fettsäuren, Natriumcholat, Natriumglycocholat, Natriumtaurocholat, Natri- umdeoxycholat oder ihrer Mischungen, Aminosäuren oder Anti- Flokkulantien, wie z.B. Natriumeitrat, Natriumpyrophosphat, Natriumsor- bat [Lucks, J.S. et al. Int. J. Pharm., 1990, 58, 229 - 235]. Zwitterionische Tenside wie z.B. (3-[(3-cholamidopropyl)-dimethylammonio]-2-hydroxy- l- propanesulfonate) [CHAPSO], (3-[(3-cholamidopropyl)-dimethylarnmonio]- 1-propanesulfonate) [CHAPS] und N-dodecyl-N,N-dimethyl-3-ammonio- lpropansulfonat. Kationische Tenside, insbesondere als Konservierungs- mittel eingesetzte Verbindungen, wie z.B. Benzyldimethylhexadecylammo- niumchlorid, Methylbenzethoniumchlorid, Benzalkonium-chlorid, Cet lpy- ridiniumchlorid .2. charged ionic stabilizers such as diacetyl phosphates, phosphatidylglycerol, lecithins of various origins (eg egg lecithin or soy lecithin), chemically modified lecithins (eg hydrogenated lecithins), as well as phospholipids and sphingolipids, mixture of lecithins with phospholipids, sterols (eg cholesterol Cholesterol derivatives, as well as stigmasterol) and also saturated and unsaturated fatty acids, sodium cholate, sodium glycocholate, sodium taurocholate, sodium deoxycholate or their mixtures, amino acids or anti-flocculants, such as Sodium citrate, sodium pyrophosphate, sodium sorbate [Lucks, J.S. et al. Int. J. Pharm., 1990, 58, 229-235]. Zwitterionic surfactants such as (3 - [(3-cholamidopropyl) dimethylammonio] -2-hydroxy-l-propanesulfonate) [CHAPSO], (3 - [(3-cholamidopropyl) dimethylarnmonio] - 1-propanesulfonate) [CHAPS] and N-dodecyl- N, N-dimethyl-3-ammonio-propane sulfonate. Cationic surfactants, especially compounds used as preservatives, e.g. Benzyldimethylhexadecylammonium chloride, methylbenzethonium chloride, benzalkonium chloride, cetpyridinium chloride.
3.Viskositätserhoehende Substanzen wie z.B. Cellulose-Ether und Cellulo- se-Ester (z.B. Methylcellulose, Hydroxyethylcellulose, Hydroxypropylcel- lulose, Natriumcarboxymethyl-cellulose), Polyvinylderivate sowie Po- lyvinylalkohol, Polyvinylpyrrolidon, Polyvinylacetat, Alginate, Polyacrylate (z.B.Carbopol), Xanthane und Pektine. Die geladenen Stabilisatoren sind, wenn notwendig oder gewünscht, vorzugsweise mit 0,01% bis 20% (m/m) und insbesondere in einer Menge von 0,05% bis zu 10% in der SBA-Dispersion enthalten. Viskositätserhöhende Substanzen sind, wenn notwendig oder erwünscht, im ähnlichen Verhältnis in der Formulierung eingearbeitet, vorzugsweise in einer Menge von 0,01-20% und insbesondere in einer Menge von 0, 1% bis 10% (m/m) und vorzugsweise im Bereich zwischen 0,5% und 5%.3.Viscosity-increasing substances such as cellulose ethers and cellulose esters (e.g. methyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, sodium carboxymethyl cellulose), polyvinyl derivatives and polyvinyl alcohol, polyvinyl pyrrolidone, polyvinyl acetate, alginates, polyacrylates (e.g. carbopol), xanthans and xanthans and xanthans . If necessary or desired, the charged stabilizers are preferably present in the SBA dispersion in an amount of 0.01% to 20% (m / m) and in particular in an amount of 0.05% to 10%. If necessary or desired, viscosity-increasing substances are incorporated in the formulation in a similar ratio, preferably in an amount of 0.01-20% and in particular in an amount of 0.1% to 10% (m / m) and preferably in the range between 0.5% and 5%.
Als äußere Phase (Dispersionsmedium, kontinuierliche Phase) können Wasser, wässrige Lösungen oder Flüssigkeiten mischbar mit Wasser, sowie Glycerin oder Polyethylenglykol und ölige Flüssigkeiten wie Miglyole (medium chain triglycerides - MCT) und andere Öle (Rizinus-, Erdnuß-, Soja-, Baumwollsamen-, Raps-, Leinsamen-, Oliven-, Sonnenblumen-, Di- stelöl eingesetzt werden.The outer phase (dispersion medium, continuous phase) can be water, aqueous solutions or liquids miscible with water, as well as glycerin or polyethylene glycol and oily liquids such as miglyols (medium chain triglycerides - MCT) and other oils (castor, peanut, soybean, cotton seeds -, rapeseed, linseed, olive, sunflower, and safflower oil can be used.
Tensidfreie SBA werden hergestellt durch Dispergierung der Lipidphase in einer wäßrigen Lösung, die eine oder mehrere viskositätserhöhende Substanzen enthält, entweder allein oder in Kombination mit anderen Sub- stanzen, sowie Zucker, Zuckeralkohole, besonders Glukose, Mannose, Trehalose, Mannitol, Sorbitol sowie andere. Desweiteren ist es möglich, eine Kombination der viskositätserhöhenden Stoffe oder die Kombination dieser mit Zuckern oder Zuckeralkoholen, oder in einer weiteren Kombination mit Ladungsstabilisatoren oder Anti-Flokkulantien zu gebrauchen.Surfactant-free SBAs are produced by dispersing the lipid phase in an aqueous solution which contains one or more viscosity-increasing substances, either alone or in combination with other substances, and also sugars, sugar alcohols, especially glucose, mannose, trehalose, mannitol, sorbitol and others. Furthermore, it is possible to use a combination of the viscosity-increasing substances or the combination of these with sugars or sugar alcohols, or in a further combination with charge stabilizers or anti-flocculants.
SBA-Dispersionen können als Adjuvans zu vielen unterschiedlichen Antigenen zur Impfung gegen unterschiedliche Erkrankungen eingesetzt werden. Beispiele dafür sind: Glykoproteine wie z.B. Gonococcal Protein I, Brucella abortus Antigen, Tetanus toxoid, Diphteria toxoid, Listeria monocytogenes, Virusantigene wie Z.B. Semliki Forest Virus, Enceohalomyocarditis virus, Porcine rarovirus, Pseudorabiesvirus, Newcastle desease virus, Bovine vi- ral diarrhea, HIV, Influenza, Cytomegalievirus, Herpes Simplex, Hepatitis- C, Masern, Parasiten, wie z.B. Malaria, Eimeria Spp.,SBA dispersions can be used as an adjuvant to many different antigens for vaccination against various diseases. Examples include: Glycoproteins such as Gonococcal Protein I, Brucella abortus antigen, Tetanus toxoid, Diphteria toxoid, Listeria monocytogenes, virus antigens such as Semliki Forest Virus, Enceohalomyocarditis virus, Porcine rarovirus, Pseudorabies virus, Newcastle desease virus, Bovine virus, HIV, Influenza diarrheal virus , Herpes simplex, hepatitis C, measles, parasites such as malaria, Eimeria spp.,
Zusammenfassend ist zu sagen, daß mit den SBA-Dispersionen ein Adju- vans zur Verfügung steht, das:In summary, it can be said that the SBA dispersions provide an adjuvant that:
1. eine ausreichende physikalische Stabilität besitzt, um als Produkt und speziell als Arzneimittel hergestellt zu werden,1. has sufficient physical stability to be manufactured as a product and especially as a pharmaceutical,
2. eine niedrige Toxizität und gute Biokompatibilität besitzt, insbesondere wenn biologisch abbaubare Lipide wie Glyceride eingesetzt werden,2. has low toxicity and good biocompatibility, especially if biodegradable lipids such as glycerides are used,
3. eine vergleichbare Wirkung wie Freunds unvollständiges Adjuvans (FIA) besitzt und3. has a comparable effect as Freund's incomplete adjuvant (FIA) and
4. kostengünstig aus niedrigpreisigen Hilfsstoffen mit kostengünstigen Herstellungsverfahren produziert werden kann.4. can be produced inexpensively from low-cost auxiliaries using inexpensive manufacturing processes.
SBA-Dispersionen können breite Anwendung finden, um mit toxikologisch akzeptablen Hilfsstoffen die Antigendosis und damit die Kosten zu reduzieren, da durch Zusatz von SBA bei niedriger Antigendosis die gleiche immunstimulierende Wirkung erzielt wird.SBA dispersions can be widely used to reduce the antigen dose and thus the costs with toxicologically acceptable excipients, since the addition of SBA at a low antigen dose achieves the same immunostimulating effect.
Antigene mit bisher unzureichender Antigenität für einen Impfstoff können durch Zusatz von Immunantwort stimulierendem SBA in einen effizienten Impfstoff überführt werden. Aufgrund der kostengünstigen Herstellung bei vorhandener vergleichbarerAntigens with previously insufficient antigenicity for a vaccine can be converted into an efficient vaccine by adding immune response-stimulating SBA. Due to the inexpensive manufacture of existing comparable
Effizienz zu FIA eignen sich SBA-Dispersionen als Adjuvans für Impfungen im Veterinärbereich, wo aus Rentabilitätsgründen nur sehr niedrigpreisigeEfficiency to FIA, SBA dispersions are suitable as an adjuvant for vaccinations in the veterinary field, where for profitability reasons only very low-priced
Impfstoffe eingesetzt werden können.Vaccines can be used.
Bisher eingesetzte Adjuvantien haben sich fokussiert auf die Steigerung der humoralen Immunantwort. Angesichts der Wirkungseffizienz von SBA- Dispersionen ist es nicht mehr notwendig, ein weiteres Adjuvans den SBA- Lipidpartikeln zuzusetzen bzw. Zusatz von Adjuvantien wie GMDP bringen keine weitere Steigerung der humoralen Immunantwort. Offensichtlich ist das Immunsystem an seiner maximalen Kapazität der Antwort, zusätzliches Adjuvans kann keinen zusätzlichen Effekt mehr bringen. Somit bringen Zusätze zu SBA für die humorale Antwort keinen Vorteil, Zusätze wie in dem Patent der Firma Gerbu (Patentschrift DE 1961 1235 C l) beschrie- ben, werden durch die überraschend gefundene Wirkstärke der in der Erfindung beschriebenen SBA überflüssig.Adjuvants used to date have focused on increasing the humoral immune response. In view of the efficiency of action of SBA dispersions, it is no longer necessary to add another adjuvant to the SBA lipid particles, or to add adjuvants such as GMDP bring no further increase in the humoral immune response. Obviously the immune system is at its maximum capacity of response, additional adjuvant can no longer bring an additional effect. Thus, additives to SBA have no advantage for the humoral response, additives as described in the Gerbu patent (patent specification DE 1961 1235 C1) are superfluous due to the surprisingly found potency of the SBA described in the invention.
Überraschenderweise wurde jedoch festgestellt, daß es nach Applikation von GMDP in Kombination mit SBA-Dispersionen bei einer erneuten spä- teren Impfung zu einer deutlich gesteigerten zellulären Immunantwort kam als wenn vorher nur SBA-Dispersion alleine als Adjuvans eingesetzt wurde. Somit wurde neu gefunden, daß eine Kombination von SBA- Dispersion spezifisch zur Steigerung der zellulären Immunantwort bei erneuter Impfung geeignet ist. Es kommt zu einer erhöhten Immunantwort bei späterer Zweitimpfung, wenn vorher ein zusätzliches Adjuvans wie GMDP in Mischung mit SBA Dispersion verwendet wurde (Beispiel 13).Surprisingly, however, it was found that after application of GMDP in combination with SBA dispersions, a renewed later vaccination resulted in a significantly increased cellular immune response than if only SBA dispersion alone had previously been used as an adjuvant. It was thus newly found that a combination of SBA dispersion is specifically suitable for increasing the cellular immune response when vaccinated again. There is an increased immune response in the case of a subsequent second vaccination if an additional adjuvant such as GMDP was used beforehand in a mixture with SBA dispersion (example 13).
Zur Herstellung eines Adjuvans mit Ziel einer Erhöhung der zellulären Immunantwort ist es somit vorteilhaft, die SBA-Dispersion mit einem weiteren Adjuvans zu kombinieren. Mögliche Adjuvantien für eine Kombination sind: N-Acetylglucosaminyl-(ßl-4)-N-acetylmuramyl-L-alanyl-D- isoglutamin [GMDP], Dimethyldioctadecylammoniumbromid [DDA], N- acetylmuramyl-L-alanyl-D-isoglutamin [MDP], N,N Di-(ß-Stearoylethyl)- N,N-dimethylammoniumchlorid [EQ 1], Glykopeptide, Bestandteile derTo produce an adjuvant with the aim of increasing the cellular immune response, it is therefore advantageous to use the SBA dispersion with a to combine another adjuvant. Possible adjuvants for a combination are: N-acetylglucosaminyl- (ßl-4) -N-acetylmuramyl-L-alanyl-D-isoglutamine [GMDP], dimethyldioctadecylammonium bromide [DDA], N-acetylmuramyl-L-alanyl-D-isoglutamine [ ], N, N di- (ß-stearoylethyl) - N, N-dimethylammonium chloride [EQ 1], glycopeptides, components of the
Zellwand von Mycobakterien, Saponine, quaternäre Amine, wie z.B. Cetyl- pyridiniumchlorid und Benzalkoniumchlorid, zwitterionische Amine wie CHAPS (3-[(3-cholamidopropyl)dimethylammonio]- l-propanesulfonate), Dextransulfat, Dextran, 3-Odesacyl-4'-monophosphoryl lipid A [MPL®], N- Acetyl-L-Alanyl-Disoglutaminyl-L-Alanin- 82) - 1 ,2 dipalmitoyl - sn glycero - 3-(hydroxy-phosphoryloxy))ethylamid, Mononatriumsalz [MTP-PE], Gra- nulocyten-Makrophagen-Kolonien stimulierender Faktor [GM-CSF], Block- copolymere, z.B. P1205, Poloxamer 401 (Pluronic L121), Dimyristoyl- phosphatidylcholin [DMPC], Dehydroepiandrosterone-3ß-01- 17-on [DHEA], Dimyristoylphosphatidylglycerol [DMPG], Deoxycholsäure- Natriumsalz, Cytokine, Imiquimod, DTP-GDP, Saponine, 7-Allyl-8-Oxoguanosin, Montanide ISA 51, Montanide ISA 720, MPL, Murametid, Murapalmitin, D- Murapalmitin, 1-Monopalmitoyl-rac-glycerol, Dicetylphosphat, Polyme- thylmethacrylat [PMMA], PEG-Sorbitanfettsäureester wie Polysorbat 80 (TWEEN® 80), Quil A Saponin, Sorbitanfettsäureester wie Sorbitantrioleat (SPAN®85, Arlacel85), DTP-DPP, Stearyl-Tyrosin, N,N dioctadecyl-N',N'- bis(2hydroxyethyl) Propandiamin, Calcitriol.Cell wall of mycobacteria, saponins, quaternary amines, such as, for example, cetylpyridinium chloride and benzalkonium chloride, zwitterionic amines, such as CHAPS (3 - [(3-cholamidopropyl) dimethylammonio] - l-propanesulfonate), dextran sulfate, dextran, 3-odesophyl-4'-monosacyl-4 ' lipid A [MPL®], N-acetyl-L-alanyl-disoglutaminyl-L-alanine-82) - 1, 2 dipalmitoyl - sn glycero - 3- (hydroxy-phosphoryloxy)) ethylamide, monosodium salt [MTP-PE], Gra - Nulocyte-macrophage colonies stimulating factor [GM-CSF], block copolymers, for example P1205, Poloxamer 401 (Pluronic L121), dimyristoyl-phosphatidylcholine [DMPC], dehydroepiandrosterone-3ß-01- 17-one [DHEA], dimyristoylcerolphosphat DMPG], deoxycholic acid sodium salt, cytokines, imiquimod, DTP-GDP, saponins, 7-allyl-8-oxoguanosine, Montanide ISA 51, Montanide ISA 720, MPL, murametide, murapalmitin, D-murapalmitin, 1-monopalmitoloyl-rac-glycerol , Dicetyl phosphate, methyl methacrylate [PMMA], PEG sorbitan fatty acid esters such as Polysorbate 80 (TWEEN® 80), Quil A Saponin, sorbitan fatty acid esters such as sorbitan trioleate (SPAN®85, Arlacel85), DTP-DPP, stearyl-tyrosine, N, N dioctadecyl-N ', N'- bis (2hydroxyethyl) propanediamine, calcitriol.
Neben der Steigerung der humoralen Immunantwort durch SBA- Dispersionen eröffnet sich durch die Erfindung die Möglichkeit zur Steigerung der zellulären Immunantwort bei Zweitimpfung durch Kombination von SBA-Dispersionen mit anderen Adjuvantien. Anstelle einer Zumischung von Adjuvantien zur Erhöhung der zellulären Immunantwort können die Adjuvantien auch in die Lipidpartikel inkorporiert werden. Inkorporation ist möglich durch Einlagerung in die feste Partikelmatrix, Anreicherung in der Grenzfläche im Falle von amphiphilen Adjuvantien oder durch einfache Adsorption auf die Partikeloberfläche. Die Inkorporation von Adjuvantien kann während der Partikelherstellung oder nachträglich erfolgen (z. B. im Falle der Inkorporation, Beispiel 16). Zur Inkorporation während der Herstellung werden Adjuvantien in der geschmolzenen Lipidphase gelöst, solubilisiert oder dispergiert und die Ad- juvans beinhaltende Lipidphase dann weiterverarbeitet. Im Falle von amphiphilen Adjuvantien können diese auch in der äußeren Phase der SBA- Dispersion gelöst werden und reichern sich dann in der Partikelgrenzfläche oder durch Adsorption auf der Oberfläche an. Durch Inkorporation von Adjuvantien kommt es zu einer verlängerten Freisetzung durch die Diffusion oder im Zuge des Partikelabbaus durch Enzyme. Eine verzögerte Freisetzung über einen längeren Zeitraum erhöht die Immunantwort.In addition to increasing the humoral immune response through SBA dispersions, the invention opens up the possibility of increasing the cellular immune response in the case of a second vaccination by combining SBA dispersions with other adjuvants. Instead of admixing adjuvants to increase the cellular immune response, the adjuvants can also be incorporated into the lipid particles. Incorporation is possible by incorporation in the solid particle matrix, enrichment in the interface in the case of amphiphilic adjuvants or by simple adsorption on the particle surface. Adjuvants can be incorporated during particle production or subsequently (for example in the case of incorporation, example 16). For incorporation during manufacture, adjuvants are dissolved, solubilized or dispersed in the molten lipid phase and the lipid phase containing adjuvants is then further processed. In the case of amphiphilic adjuvants, these can also be dissolved in the outer phase of the SBA dispersion and then accumulate in the particle interface or by adsorption on the surface. Incorporation of adjuvants leads to prolonged release by diffusion or in the course of particle degradation by enzymes. Delayed release over a longer period increases the immune response.
Ein weiteres attraktives Anwendungsgebiet ist die Antikörperproduktion im Tier. Durch Zusatz des Adjuvans kann die Antikörperausbeute deutlich erhöht werden.Another attractive area of application is antibody production in animals. The antibody yield can be significantly increased by adding the adjuvant.
BeispieleExamples
Beispiel 1 : Bestimmung der physikalischen Stabilität von SBA versus Freunds Incomplete Adjuvant (FIA): Eine wäßrige SBA-Dispersion wurde durch Hochdruckhomogenisation bei 95°C aus 20 % Bienenwachs, 2 % Tween 80 hergestellt (PCS-Durchmesser 289 nm Polydispersitätsindex 0,101). FIA wurde nach der von Freund beschriebenen Methode hergestellt [Freund, J. J. Immunology 1948, 60, 383-398]. SBA und FIA wurden bei den Temperaturen der Klimazonen gelagert, die bei der Stabilitätsprüfung von Arzneimitteln eingesetzt werden [EMEA Richtlinie CPMP/QWP/ 159/96, Januar 1998)]. Die Lagertemperaturen waren: 5°C, 25°C, 40°C. Bestimmung der physikalischen Stabilität erfolgte über Messung der Partikelgröße mit Laserdiffraktometrie, Charakterisierungsparameter waren der Durchmesser 50 % und der Durchmesser 95 % (50 % bzw. 95 % der Partikel sind unter der angegebenen Größe, sensitiver Parameter für Partikelaggregation) . FIA zeigte bereits nach wenigen Minuten Lagerung - sogar bei Raumtemperatur - ein deutliches Partikelwachstum, FIA ist somit kein lagerstabiles Adjuvans. Demgegenüber bleiben die Partikelgrößen von SBA unter den 3 Lagerbedingungen über einen Zeitraum von 1 Jahr unverändert (Tabelle 1).Example 1: Determination of the physical stability of SBA versus Freund's Incomplete Adjuvant (FIA): An aqueous SBA dispersion was prepared by high pressure homogenization at 95 ° C. from 20% beeswax, 2% Tween 80 (PCS diameter 289 nm polydispersity index 0.101). FIA was produced according to the method described by Freund [Freund, JJ Immunology 1948, 60, 383-398]. SBA and FIA were stored at the temperatures of the climatic zones that are used in the stability testing of drugs [EMEA guideline CPMP / QWP / 159/96, January 1998)]. The storage temperatures were: 5 ° C, 25 ° C, 40 ° C. The physical stability was determined by measuring the particle size with laser diffractometry, characterization parameters were the diameter 50% and the diameter 95% (50% and 95% of the particles are below the specified size, sensitive parameters for particle aggregation). FIA showed significant particle growth after just a few minutes of storage - even at room temperature - so FIA is not a storage-stable adjuvant. In contrast, the particle sizes of SBA remain unchanged over a period of 1 year under the 3 storage conditions (Table 1).
Tabelle 1: Untersuchung der Stabilität von SBA (20% Bienenwachs, 2 % Tween 80) im Vergleich mit Freunds unvollständigem Adjuvans (FIA)Table 1: Investigation of the stability of SBA (20% beeswax, 2% Tween 80) in comparison with Freund's incomplete adjuvant (FIA)
Figure imgf000019_0001
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000020_0001
Beispiel 2: Bestimmung der physikalischen Stabilität von SBA versus Squalen-Adjuvans: SBA wurde hergestellt wie unter 1 beschrieben, es enthielt 10% Cetylpalmitat und 1 ,2% Miranol (PCS-Durchmesser 210 nm, PCS-Polydispersitätsindex 0, 189). Squalen-Adjuvans wurde hergestellt nach der Beschreibung in der europäischen Patentanmeldung 0 399 843 mit Anmeldedatum 25. Mai 1990 (Adjuvans MF59). Partikelgrößenmessung erfolgte mit Laserdiffraktometrie, Lagerung wurde wie in Beispiel 1 bei 3 Temperaturen durchgeführt (Tabelle 2) . Zusätzlich wurde ein beschleunigter Stabilitätstest durchgeführt, SBA und MF59 Dispersionen wurden bei 40° mit einer Frequenz von 50 Hz geschüttelt (Tabelle 3). Sowohl bei normaler Lagerung, als auch im Streßtest zeigt SBA eine erhöhte Stabilität. Tabelle 2: Untersuchung der Stabilität von SBA ( 10% Cetylpalmitat, 1 ,2 % Miranol) im Vergleich mit MF59Example 2: Determination of the physical stability of SBA versus squalene adjuvant: SBA was prepared as described under 1, it contained 10% cetyl palmitate and 1.2% miranol (PCS diameter 210 nm, PCS polydispersity index 0.189). Squalene adjuvant was prepared as described in European patent application 0 399 843 with filing date May 25, 1990 (adjuvant MF59). Particle size measurement was carried out using laser diffractometry, storage was carried out as in Example 1 at 3 temperatures (Table 2). In addition, an accelerated stability test was carried out, SBA and MF59 dispersions were shaken at 40 ° with a frequency of 50 Hz (Table 3). SBA shows increased stability both in normal storage and in the stress test. Table 2: Investigation of the stability of SBA (10% cetyl palmitate, 1, 2% miranol) in comparison with MF59
Figure imgf000021_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000022_0001
Tabelle 3: Stabilität von MF 59 gegen SBA bei 40°C und einer Schüttelfrequenz von 50 HzTable 3: Stability of MF 59 against SBA at 40 ° C and a shaking frequency of 50 Hz
Figure imgf000022_0002
Beispiel 3. Langzeitstabilität von SBA: SBA-Dispersion bestehend aus 20% Bienenwachs, 2% Tween 80 wurde bei 4 - 6°C ein Jahr gelagert. Die PCS- Daten und Laserdiffraktometer-Durchmesser zeigten wenig oder keine Veränderung (Tabelle 4).
Figure imgf000022_0002
Example 3. Long-term stability of SBA: SBA dispersion consisting of 20% beeswax, 2% Tween 80 was stored at 4-6 ° C for one year. The PCS data and laser diffractometer diameter showed little or no change (Table 4).
Tabelle 4: Langzeitstabilität von SBA: SBA-Dispersion bestehend aus 20% Bienenwachs, 2% Tween 80 wurde bei 4-6 °C ein Jahr gelagert.Table 4: Long-term stability of SBA: SBA dispersion consisting of 20% beeswax, 2% Tween 80 was stored at 4-6 ° C for one year.
Figure imgf000023_0001
Figure imgf000023_0001
Beispiel 4. Hitzestabilität von SBA bei Autoklavierung (Hitze, Druck) versus FIA und MF59: Die SBA-Dispersion war zusammengesetzt aus 18% Hartparaffin, 4% Tween 80/ Span 85 (7/3) und Wasser. Sterilisation von jeweils 20 mL erfolgte in Injektionsfläschchen nach den Standardbedin- gungen des europäischen Arzneibuches (121°C, 2 bar, 15 Minuten). Partikelgrößenbestimmung erfolgte mit PCS und Laserdiffraktometrie (LD 95%) (P.I. :Polydispersitätsindex, Maß für die Breite der Partikelverteilung, MW: Mittelwert aus 3 Messungen, Stabw.: Standardabweichung, P.I. Polydis- persitätsindex) (Tabelle 5) . Die FIA-Emulsion zeigte nach Autoklavieren Phasentrennung, MF59 ein deutliches Partikel Wachstum. SBA ist physikalisch stabil und kann durch A toklavieren sterilisiert werden.Example 4. Heat stability of SBA on autoclaving (heat, pressure) versus FIA and MF59: The SBA dispersion was composed of 18% hard paraffin, 4% Tween 80 / Span 85 (7/3) and water. Sterilization of 20 mL was carried out in injection vials according to the standard conditions of the European Pharmacopoeia (121 ° C, 2 bar, 15 minutes). Particle size was determined using PCS and laser diffractometry (LD 95%) (PI: polydispersity index, measure for the width of the particle distribution, MW: mean from 3 measurements, staff: standard deviation, PI polydispersity index) (Table 5). The FIA emulsion showed after autoclaving Phase separation, MF59 a clear particle growth. SBA is physically stable and can be sterilized by accretion.
Tabelle 5: Hitzestabilität von SBA bei Autoklavierung (Hitze, Druck) versus FIA und MF59: Die SBA-Dispersion war zusammengesetzt aus 18% Hartparaffin, 4% Tween 89/Span 85, 7/3 und Wasser. Sterilisation von jeweils 20 mL in Injektionsfläschchen bei 121°C, 2 bar, 15 Minuten. Partikelgrößenbestimmung erfolgte mit PCS und Laserdiffraktometrie.Table 5: Heat stability of SBA upon autoclaving (heat, pressure) versus FIA and MF59: The SBA dispersion was composed of 18% hard paraffin, 4% Tween 89 / Span 85, 7/3 and water. Sterilization of 20 mL each in injection vials at 121 ° C, 2 bar, 15 minutes. Particle size was determined using PCS and laser diffractometry.
Figure imgf000024_0001
Beispiel 5. Physiologische Verträglichkeit: Zur Abschätzung der Verträglichkeit wurde die Zytotoxizität von SBA in Zellkulturen bestimmt (humane Granulozyten, HL60 Zellen). Zur Quantifizierung der Toxizität wurde die Viabilität der Zellen mit dem MTT-Test [Mosmann, T., J. Immu- nol. Meth. 1993, 65, 55-63] bestimmt. Die SBA-Dispersion war zusammengesetzt aus 10% Cetylpalmitat, 0,5% Poloxamer 188 und Wasser. Die Zellzahl pro well betrug 200.000 bei Humangranulozyten und 200.000 bei HL60 Zellen. Inkubation erfolgte für 12 Stunden. Bei SBA betrug die Viabilität 80 % bei den Granulozyten und 85 % bei den HL60 Zellen. Bei Nanopartikeln aus PLA betrug die Viabilität lediglich 5 %, bei Nanopartikeln aus PLA/GA sank sie auf 0 %. Die Verträglichkeit von SBA ist in den Zellkulturen um mindestens Faktor ca. 20 besser als die der FDA zugelassenen Polymere zur parenteralen Applikation.
Figure imgf000024_0001
Example 5. Physiological tolerance: To assess the tolerance, the cytotoxicity of SBA in cell cultures was determined (human granulocytes, HL60 cells). To quantify the toxicity, the viability of the cells was assessed using the MTT test [Mosmann, T., J. Immunol. Meth. 1993, 65, 55-63]. The SBA dispersion was composed of 10% cetyl palmitate, 0.5% poloxamer 188 and water. The number of cells per well was 200,000 for human granulocytes and 200,000 for HL60 cells. Incubation was for 12 hours. In SBA the viability was 80% for the granulocytes and 85% for the HL60 cells. The viability of nanoparticles made of PLA was only 5%, for nanoparticles made of PLA / GA it dropped to 0%. The tolerance of SBA in cell cultures is at least a factor of about 20 better than that of the FDA-approved polymers for parenteral administration.
Beispiel 6: Verträglichkeit nach parenteraler Applikation: Eingesetzt wurde wäßrige SBA-Dispersion mit der Zusammensetzung 5% Hartparaffin, 5% Tween 80/ Span 85 (7/3) und Wasser. Es erfolgte parenterale Injektion in Schafe (n = 30), Injektionsort war die seitliche Brustwand, das Injektionsvolumen betrug 5 mL verteilt auf 4 Injektionsorte. Die Schafe zeigten keine Auffälligkeiten, weder am Injektionsort, noch in Ihrem Verhalten.Example 6: Compatibility after parenteral application: Aqueous SBA dispersion with the composition 5% hard paraffin, 5% Tween 80 / Span 85 (7/3) and water was used. Parenteral injection was carried out in sheep (n = 30), the injection site was the lateral chest wall, the injection volume was 5 mL distributed over 4 injection sites. The sheep showed no abnormalities, neither at the injection site nor in their behavior.
Beispiel 7: Biokompatibilität - Interaktion mit Körperproteinen: Die SBA- Dispersion war zusammengesetzt aus 10 Compritol, 2,5% Poloxamer 407 und Wasser. Herstellung erfolgte mit Hochdruckhomogenisation. Die Par- tikel wurden 5 Minuten inkubiert mit humanem Plasma, anschließend vom Plasma abgetrennt und die auf der Partikeloberfläche adsorbierten Körperproteine mit zweidimensionaler Polyacrylamidgelelektrophorese [Blunk, T et al. Electrophoresis 14, 1382-1387 (1993)] bestimmt. Bei ver- gleichbaren Partikeloberflächen adsorbierte auf SBA mit 96,41 cpm (counts per minute) im Vergleich zu Emulsionen eine sehr geringe Proteinmenge (Vergleichswerte: 472cpm auf Emulsion, 390 cpm auf Polystyrolpartikeln [Harnisch, S. et al. Elektrophoresis 1998, 19, 349-354, Blunk, T., Electrophoresis 1993, 14, 1382- 1387]. Komplementfaktoren, die eine Unverträglichkeit fördern, wurden auf der SBA-Oberfläche nicht detek- tiert.Example 7: Biocompatibility - Interaction with Body Proteins: The SBA dispersion was composed of 10 compritol, 2.5% Poloxamer 407 and water. Production was carried out with high pressure homogenization. The particles were incubated for 5 minutes with human plasma, then separated from the plasma and the body proteins adsorbed on the particle surface using two-dimensional polyacrylamide gel electrophoresis [Blunk, T et al. Electrophoresis 14, 1382-1387 (1993)]. In case of Similar particle surfaces adsorbed a very small amount of protein on SBA with 96.41 cpm (counts per minute) compared to emulsions (comparison values: 472 cpm on emulsion, 390 cpm on polystyrene particles [Harnisch, S. et al. Elektrophoresis 1998, 19, 349-354 , Blunk, T., Electrophoresis 1993, 14, 1382-1387]. Complement factors that promote intolerance were not detected on the SBA surface.
Beispiel 8: Stabilität in phosphatgepufferter physiologischer Kochsalzlösung (PBS): SBA zusammengesetzt aus 20% Hartparaffin, 5% Tween 80/ Span85 (7/3) und Wasser wurden mit PBS gemischt (2 mL SBA + 2 mL Salzlösung). Die physikalische Stabilität in der physiologischen Kochsalzlösung wurde mit Laserdiffraktometrie als Funktion der Zeit bestimmt. Über 6 Stunden kam es zu keinem Anstieg der PartikelgrößeExample 8: Stability in phosphate-buffered physiological saline (PBS): SBA composed of 20% hard paraffin, 5% Tween 80 / Span85 (7/3) and water were mixed with PBS (2 mL SBA + 2 mL saline). The physical stability in the physiological saline solution was determined as a function of time using laser diffractometry. There was no increase in particle size over 6 hours
(Durchmesser 90% und 95%, Tabelle 6) (Stabw.: Standardabweichung).(Diameters 90% and 95%, Table 6) (staff: standard deviation).
Tabelle 6: Stabilität in phosphatgepufferter physiologischer Kochsalzlösung (PBS) SBA (20% Hartparaffin. 5% Tween 80/Span85 (7/3)) wurden mit PBS gemischt (2 mL SBA + 2 mL Salzlösung). Bestimmung der physikalischen Stabilität in der physiologischen Kochsalzlösung mit Laserdiffraktometrie als Funktion der Zeit. Table 6: Stability in phosphate buffered saline (PBS) SBA (20% hard paraffin. 5% Tween 80 / Span85 (7/3)) was mixed with PBS (2 mL SBA + 2 mL saline). Determination of physical stability in physiological saline using laser diffractometry as a function of time.
Figure imgf000027_0001
Figure imgf000027_0001
Beispiel 9: Adjuvans-Effekt im Vergleich zu molekularem Adjuvant (GMDP - N-acet lglucosaminyl-N-acetylmuramyl-dipeptide) und FIA: Schafe wurden geimpft mit dem Stamm Mycoplasma Bovis PG 45 R9. Die Kultivierung des Impfantigens erfolgte in Standkultur über 72 Stunden unter mi- kroaerophilen Bedingungen in Hayflick-Medium. Inaktivierung erfolgte durch Zugabe von 0, 1 % ß-Propiolacton. Die Zellen wurden separiert, mit Phosphatpuffer pH 7,4 gewaschen und auf einen Gehalt von 1 x 1010 CFU/mL eingestellt. Die Sterilität der Präparation wurde gemäß Deutschem Arzneibuch Ausgabe 10 geprüft. Die Trockenmassebestimmung ergab einen Gehalt 1 mg/mL Mycoplasma Bovis-Antigen. Das Adjuvans SBA, GMDP und FIA wurde zu gleichen Teilen mit dem Antigen in Puffer gemischt. Injektionsvolumen war 5mL, verteilt auf 4 Injektionsorte.Example 9: Adjuvant effect in comparison to molecular adjuvant (GMDP - N-acet lglucosaminyl-N-acetylmuramyl dipeptide) and FIA: sheep were vaccinated with the strain Mycoplasma Bovis PG 45 R9. The vaccine antigen was cultivated in stand culture over 72 hours under microaerophilic conditions in Hayflick medium. Inactivation was carried out by adding 0.1% β-propiolactone. The cells were separated, washed with phosphate buffer pH 7.4 and adjusted to a content of 1 x 10 10 CFU / mL. The sterility of the preparation was checked in accordance with the German Pharmacopoeia Edition 10. The dry matter determination showed a content of 1 mg / mL Mycoplasma Bovis antigen. The adjuvant SBA, GMDP and FIA were mixed equally with the antigen in buffer. Injection volume was 5mL, spread over 4 injection sites.
Zusammensetzung von SBA war 4% Hartparaffin, 1% EQ 1 (N,N Di-(ß- Stearoylethyl)- N,N-dimethylammoniumchlorid) und 4% Tween 80/ Span 85 (7/3). Zusammensetzung des GMDP-Adjuvans war 5% Lipid und 0,5%Tensid. FIA wurde wie in Beispiel 1 hergestellt.The composition of SBA was 4% hard paraffin, 1% EQ 1 (N, N di- (β-stearoylethyl) - N, N-dimethylammonium chloride) and 4% Tween 80 / Span 85 (7/3). The composition of the GMDP adjuvant was 5% lipid and 0.5% surfactant. FIA was made as in Example 1.
Blutentnahme erfolgte am Tag 0 vor Impfung, am Tag 35 und am Tag 63. Bestimmung der Antikörper erfolgte mit ELISA. Für den ELISA-Test wurde ein handelsüblicher markierter Anti-IgG-Sheep der Firma Sigma eingesetzt.Blood was drawn on day 0 before vaccination, on day 35 and on day 63. The antibodies were determined using ELISA. A commercially available marked anti-IgG sheep from Sigma was used for the ELISA test.
SBA zeigte dabei eine vergleichbare Wirkintensität wie die Kombination von Lipidpartikeln mit GMDP. Weiterhin war SBA von vergleichbarer Effektivität wie FIA (Figur 1). Es bestand kein signifikanter Unterschied in der Wirkintensität zwischen den drei Adjuvantien.SBA showed a comparable intensity of action as the combination of lipid particles with GMDP. Furthermore, SBA was comparable in effectiveness to FIA (Figure 1). There was no significant difference in the intensity of action between the three adjuvants.
Figur 1 : Adjuvans-Effekt im Vergleich zu molekularem Adjuvant (GMDP - N-acetylglucosaminyl-N-acetylmuramyl-dipeptide) und FIA. Zusammensetzung von SBA war 4% Hartparaffin, 1% EQ 1 (N,N Di-(ß-Stearoylethyl)- N,N-dimethylammoniumchlorid) und 4% Tween 80/ Span 85 (7/3) . Zusammensetzung des GMDP-Adjuvans war 5% EQ 1 und 0,5% Montanide 888. FIA lt. Beispiel 1.Figure 1: Adjuvant effect compared to molecular adjuvant (GMDP - N-acetylglucosaminyl-N-acetylmuramyl dipeptide) and FIA. Composition of SBA was 4% hard paraffin, 1% EQ 1 (N, N di- (β-stearoylethyl) - N, N-dimethylammonium chloride) and 4% Tween 80 / Span 85 (7/3). The composition of the GMDP adjuvant was 5% EQ 1 and 0.5% Montanide 888. FIA according to Example 1.
Beispiel 10: Effekt von SBA-Zusammensetzung auf Immuntiter: SBA- Dispersionen wurden mit identischem Lipid, aber unterschiedlichen Ten- siden auf der Oberfläche hergestellt, d. h. sie unterscheiden sich in ihren Oberflächeneigenschaften. Die Formulierung SBA-1 besteht aus 4% Hart- paraffin, 4% Tween 80/ Span 85 (7/3) und Wasser, die Formulierung SBA- 2 enthält 4% Hartparaffin, 1% EQ 1 und 4% Tween 80/ Span 85 (7/3) und Wasser. Die Effizienz zur Steigerung des Immuntiters wurde analog Beispiel 9 getestet, als Vergleich diente FIA. In Abhängigkeit von den Oberflä- cheneigenschaften ergeben sich unterschiedlich hohe ImmunantwortenExample 10: Effect of SBA composition on immune titer: SBA dispersions were prepared with identical lipid but different surfactants on the surface, ie. H. they differ in their surface properties. The formulation SBA-1 consists of 4% hard paraffin, 4% Tween 80 / Span 85 (7/3) and water, the formulation SBA-2 contains 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3) and water. The efficiency for increasing the immune titer was tested analogously to Example 9, FIA served as a comparison. Depending on the surface properties, there are different levels of immune responses
BERICHTIGTES BLATT (REGEL 91) ISA / EP für die beiden SBA-Dispersionen (Figur 2). Die Stärke der gewünschten Immunantwort kann somit durch Variation der Oberflächeneigenschaften (Tenside, Stabilisatoren, Ladung etc.) eingestellt werden.CORRECTED SHEET (RULE 91) ISA / EP for the two SBA dispersions (Figure 2). The strength of the desired immune response can thus be adjusted by varying the surface properties (surfactants, stabilizers, charge, etc.).
Figur 2: Effekt der SBA-Zusammensetzung auf Immuntiter: Formulierung SBA- 1 besteht aus 4% Hartparaffin, 4% Tween 80/Span 85 (7/3) und Wasser, Formulierung SBA-2 enthält 4% Hartparaffin, 1% EQ 1 und 4% Tween 80/ Span 85 (7/3) und Wasser.Figure 2: Effect of SBA composition on immunotiter: Formulation SBA-1 consists of 4% hard paraffin, 4% Tween 80 / Span 85 (7/3) and water, formulation SBA-2 contains 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3) and water.
Beispiel 11: Lagerstabilität von SBA-2: Die SBA-Dispersion SBA-2 aus Beispiel 11 wurde bei verschiedenen Temperaturen gelagert und die physikalische Stabilität über Messung der Partikelgröße mit PCS bestimmt. Ein Partikelwachstum trat nicht auf (Figur 3).Example 11: Storage stability of SBA-2: The SBA dispersion SBA-2 from Example 11 was stored at different temperatures and the physical stability was determined by measuring the particle size with PCS. Particle growth did not occur (Figure 3).
Figur 3: Lagerstabilität von SBA-2: Die SBA-Dispersion SBA-2 aus Beispiel 11 wurde bei verschiedenen Temperaturen gelagert und die physikalische Stabilität über Messung der Partikelgröße mit PCS bestimmt.Figure 3: Storage stability of SBA-2: The SBA dispersion SBA-2 from Example 11 was stored at different temperatures and the physical stability was determined by measuring the particle size with PCS.
Beispiel 12: Oberflächenmodifikation von SBA-Dispersionen: Zur Modifikation der Oberflächenladung wurden SBA-Dispersionen mit grenzflächenaktiven positiv geladenen Stabilisatoren (EQ 1 - Distearoylethyldia- moniumchlorid, Cetylpyridiniumchlorid) und negativ geladenen Stabilisatoren (Natriumlaurylsulfat, (SDS)) hergestellt. Die Zusammensetzung der SBA-Dispersionen war: SBA-EQ l (20% Cetylpalmitat, 4%Tween 80/ Span 85 (7/3), 1% EQ1), SBA-CPC (18% Lipid, 10 % Tensid, 0, 1% Cetylpyridiniumchlorid) und SBA-SDS (20% Cetylpalmitat, 1% SDS 80. Als Maß für die Ladung wurde das Zetapotential in Millivolt (mV) gemessenExample 12: Surface modification of SBA dispersions: To modify the surface charge, SBA dispersions were prepared with surface-active positively charged stabilizers (EQ 1 - distearoylethyldiamonium chloride, cetylpyridinium chloride) and negatively charged stabilizers (sodium lauryl sulfate, (SDS)). The composition of the SBA dispersions was: SBA-EQ 1 (20% cetyl palmitate, 4% Tween 80 / Span 85 (7/3), 1% EQ1), SBA-CPC (18% lipid, 10% surfactant, 0.1) % Cetylpyridinium chloride) and SBA-SDS (20% cetyl palmitate, 1% SDS 80). The zeta potential was measured in millivolts (mV) as a measure of the charge
BERICHTIGTES BLATT (REGEL 91) (Elektrophorese-Messung), Zetasizer4 (Malvern Instruments, UK). Umwandlung der elektrophoretischen Mobilität in das Zetapotential erfolgte mit der Helmholtz-Smoluchowski-Gleichung. Die Zetapotentiale betrugen +40 mV, +28 mV und -35 mV für die 3 SBA-Dispersionen.CORRECTED SHEET (RULE 91) (Electrophoresis measurement), Zetasizer4 (Malvern Instruments, UK). The Helmholtz-Smoluchowski equation was used to convert the electrophoretic mobility into the zeta potential. The zeta potentials were +40 mV, +28 mV and -35 mV for the 3 SBA dispersions.
Beispiel 13: Erhöhte zelluläre Immunantwort bei Hühnern bei Auffrischungsimpfung, die bei der Erstimmunisierung mit GMDP enthaltendem Adjuvans (SBA) behandelt worden waren. SBA (5% EQ 1 , 0,5% Montanide 888 wurde 1: 1 mit dem Antigen (IgG vom Kanninchen) gemischt und subcutan injiziert. SBA enthielt 5μg GMDP und das Immunisierungsschema war wie folgt: Erstimmunisierung und zwei Auffrischungsimpfungen an Tag 14 und Tag 28. Die Antikörperbestimmung fand am Tag 42 statt und gemessen wurde der IgY Titer im Eigelb. Zur Untersuchung auf eine verstärkte zelluläre Immunantwort fand an Tag 100 ein erneuter An- tigenkontakt statt (erneute Auffrischungsimpfung) und am Tag 120 die Antikörperbestimmung. Die Ergebnisse zeigen, daß im Falle der Erstimmunisierung (Tag 14 und 28) mit GMDP enthaltendem SBA bei erneutem Antigenkontakt eine deutlich verstärkte Antikörperproduktion stattfindet. Säulen 2,3 und 4, Figur 4.Example 13: Increased cellular immune response in booster chickens treated with GMDP-containing adjuvant (SBA) at the time of primary immunization. SBA (5% EQ 1, 0.5% Montanide 888 was mixed 1: 1 with the antigen (IgG from rabbit) and injected subcutaneously. SBA contained 5 µg GMDP and the immunization schedule was as follows: first immunization and two boosters on day 14 and day 28. The antibody determination took place on day 42 and the IgY titer was measured in the egg yolk. To check for a strengthened cellular immune response, antigen contact was repeated on day 100 (renewed vaccination) and the antibody determination on day 120. The results show that in the case of the first immunization (day 14 and 28) with SBA containing GMDP, with renewed contact with the antigen, significantly increased antibody production takes place.
Figur 4: Antikδrperproduktion in Hühnern nach erfolgter Grundimmunisierung und erneutem Antigenkontakt an Tag 100. Die letzte Antikörperbestimmung der Grundimmunisierung fand am Tag 42 statt, die der Auf- frischungsimpfung (Tag 100) an Tag 120. Die Zusammensetzung der Impfstoffe der Beispiele 1-5 ist wie folgt:Figure 4: Antibody production in chickens after basic immunization and renewed antigen contact on day 100. The last antibody determination of the basic immunization took place on day 42, that of the booster vaccination (day 100) on day 120. The composition of the vaccines of Examples 1-5 as follows:
BERICHTIGTES BLATT (REGEL 91) ISA / EP 1. Tag 42: Antigen in PBS, Tag 100: Antigen in PBS (k.A. : kein Adjuvant, Antigen in PBS)CORRECTED SHEET (RULE 91) ISA / EP 1. Day 42: antigen in PBS, day 100: antigen in PBS (n / a: no adjuvant, antigen in PBS)
2. Tag 42: Antigen in SBA mit GMDP, Tag 100: Antigen in SBADay 42: Antigen in SBA with GMDP, Day 100: Antigen in SBA
3. Tag 42: Antigen in SBA mit GMDP, Tag 100: Antigen in FCA (FCA=Freunds komplettes Adjuvans)3. Day 42: Antigen in SBA with GMDP, Day 100: Antigen in FCA (FCA = Freund's complete adjuvant)
4. Tag 42: Antigen in SBA mit GMDP, Tag 100: Antigen in PBS4. Day 42: Antigen in SBA with GMDP, Day 100: Antigen in PBS
5. Tag 42: Antigen in FCA, Tag 100: Antigen in PBS5. Day 42: antigen in FCA, day 100: antigen in PBS
Beispiel 14: Die Adsorption von GMDP auf SBA Partikel wurde mittels PCS untersucht. GMDP wurde mit SBA gemischt (4% Hartparaffin, 4% Tween 80/ Span 85 (7/3) und 30 Minuten bei Raumtemperatur stehen gelassen, um eine Adsorption des GMDP an die Partikel zu ermöglichen. Die Endkonzentration betrug 1 ,435 mg/ ml. Der Größenzuwachs beträgt 3,9 nm. (PCS Durchmesser ohne GMDP: 99,4 nm, Standardabweichung: 0,764, Durchmesser mit GMDP: 103,3 nm, Standardabweichung: 0,755).Example 14: The adsorption of GMDP on SBA particles was investigated using PCS. GMDP was mixed with SBA (4% hard paraffin, 4% Tween 80 / Span 85 (7/3) and left for 30 minutes at room temperature to allow adsorption of the GMDP to the particles. The final concentration was 1.435 mg / ml The size increase is 3.9 nm. (PCS diameter without GMDP: 99.4 nm, standard deviation: 0.764, diameter with GMDP: 103.3 nm, standard deviation: 0.755).
Beispiel 15: Modifikation der Partikelgröße: Die SBA-Dispersion mit EQ 1 aus Beispiel 12 (SBA-EQ l) wurde mit verschiedenen Herstellungsverfahren produziert, um die Partikelgröße zu variieren. Die Messung der Partikelgröße erfolgte mit Laserdiffraktometrie (Laserdiffraktometer LS 230, Firma Coulter Electronics-Germany, Meßbereich: 40 nm - 2000 μm). Als Charakterisierungsparameter ist der Durchmesser 50% der Partikel ange- geben. Folgende Herstellungsmethoden wurden eingesetzt:Example 15: Modification of the particle size: The SBA dispersion with EQ 1 from Example 12 (SBA-EQ 1) was produced using various production processes in order to vary the particle size. The particle size was measured using laser diffractometry (laser diffractometer LS 230, Coulter Electronics-Germany, measuring range: 40 nm - 2000 μm). The diameter 50% of the particles is given as the characterization parameter. The following manufacturing methods were used:
a) Hochdruckhomogenisation: Das Lipid wurde geschmolzen, in die wäßrige Tensidlösung gegeben, mit einem Rührer dispergiert und die erhaltene Rohemulsion bei 80°C mit einem Hochdruckhomogenisator homogenisiert (Micron LAB 40, APV Gaulin Homogeniser GmbH, Germany). Homogenisationsparameter waren 500 bar Druck, 3 Homogenisationszyklen. Der Partikeldurchmesser 50 % betrug 0, 15 μm.a) High pressure homogenization: The lipid was melted, added to the aqueous surfactant solution, dispersed with a stirrer and the crude emulsion obtained is homogenized at 80 ° C. using a high-pressure homogenizer (Micron LAB 40, APV Gaulin Homogeniser GmbH, Germany). Homogenization parameters were 500 bar pressure, 3 homogenization cycles. The particle diameter 50% was 0.15 μm.
b) Die Rohemulsion wurde wie unter a) beschrieben hergestellt und mit einem Micro fluidizer homogenisiert (Gerättyp 1 10N, Microflui- dix lnc, USA). Homogenisationsparameter waren 700 bar, 10 Minuten Zirkulationszeit. Der mittlere Partikeldurchmesser betrug 0,452 μm.b) The raw emulsion was prepared as described under a) and homogenized with a micro fluidizer (device type 1 10N, Microfluidix lnc, USA). Homogenization parameters were 700 bar, 10 minutes circulation time. The average particle diameter was 0.452 μm.
c) Rotor-Stator-Dispergierung: Die Rohemulsion wurde wie unter a) beschrieben hergestellt und anschließend mit einem Ultraturrax (Typ T25, Firma Jahnke und Kunkel, Staufen, Germany) bei einerc) Rotor-stator dispersion: The raw emulsion was prepared as described under a) and then with an Ultraturrax (type T25, Jahnke and Kunkel, Staufen, Germany) at one
Umdrehungsgeschwindigkeit von 10000 Umdrehungen pro Minute für 1 Minute und 10 Minuten dispergiert, Dispergiertemperatur 80° C. Die Partikeldurchmesser betrugen 7,5 und 1,2 μmSpeed of rotation of 10,000 revolutions per minute for 1 minute and 10 minutes dispersed, dispersion temperature 80 ° C. The particle diameters were 7.5 and 1.2 μm
d) Statischer Mischer: Lipid und wäßrige Tensidlösung aus a) wurden auf 80° C erhitzt und in einem statischen Mischer (Firma Sulzer, Germany) gemischt. Die Partikelgröße betrug 15,8 μm.d) Static mixer: Lipid and aqueous surfactant solution from a) were heated to 80 ° C. and mixed in a static mixer (Sulzer, Germany). The particle size was 15.8 μm.
a) Gasstrahlmühle: Behensäure Triglycerid wurde luftstrahlgemahlen (Jetmill, Mosokawa Alpine AG) und anschließend unter Rühren in der wäßrigen Tensidlösung bei Raumtemperatur dispergiert. Der Partikeldurchmesser 50 % betrug 37,03 μm. e) Mörsermühle: Das grob gepulverte Lipid wurde in einer Mörsermühle unter Zusatz von flüssigem Stickstoff für 3 Minuten und 15 Minuten gemahlen (Retsch Mörsermühle, Firma Reetsch, Germany). Das Lipid wurde wie in e) in Wasser dispergiert. Die mittlere Parti- kelgröße betrug 40 μm .a) Gas jet mill: behenic acid triglyceride was air jet milled (Jetmill, Mosokawa Alpine AG) and then dispersed with stirring in the aqueous surfactant solution at room temperature. The particle diameter 50% was 37.03 μm. e) Mortar mill: The coarsely powdered lipid was ground in a mortar mill with the addition of liquid nitrogen for 3 minutes and 15 minutes (Retsch Mörsermühle, Reetsch, Germany). The lipid was dispersed in water as in e). The average particle size was 40 μm.
Beispiel 16: Molekulares Adjuvans zur Erhöhung der zellulären Immunantwort inkorporiert in SBA: GMDP wurde in Span 85 (W/O) Emul- gator gelöst und Cetylpalmitat dazugegeben. Die Mischung wurde bei 70 °C geschmolzen und nach dem Wiederererkalten in der Mörsermühle unter Zugabe von flüssigem Stickstoff gemahlen. Die gemahlene Lipid- GMDP- Mischung wurde in einer 2,5 prozentigen Tween 80 Lösung dispergiert und mit dem Ultraturrax 1 Minute bei 8000 U/min vordispergiert. Diese Dispersion wurde bei 4°C mittels Hochdruckhomogenisation in 3 Zyklen bei 1000 bar homogenisiert. Der PCS Durchmesser beträgt 260 nm mit einem Polydispersitätsindex von 0,430.Example 16: Molecular adjuvant to increase the cellular immune response incorporated in SBA: GMDP was dissolved in Span 85 (W / O) emulsifier and cetyl palmitate was added. The mixture was melted at 70 ° C. and, after re-cooling, was ground in a mortar mill with the addition of liquid nitrogen. The ground lipid-GMDP mixture was dispersed in a 2.5 percent Tween 80 solution and predispersed with the Ultraturrax for 1 minute at 8000 rpm. This dispersion was homogenized at 4 ° C. by means of high pressure homogenization in 3 cycles at 1000 bar. The PCS diameter is 260 nm with a polydispersity index of 0.430.
Beispiel 17: Molekulares Adjuvans zur Erhöhung der zellulären Immunantwort inkorporiert in die Grenzfläche: Saponine sind allgemein be- kannt zur Erhöhung der zellulären Immunantwort. Die Herstellung der Partikel erfolgte mit einem Rotor-Stator analog zu Beispiel 15. Die Zusammensetzung der SBA-Dispersion ist 5% Cetylpalmitat, 0,5% Saponin (Quil A Saponin) und Wasser. Das Saponin wurde in der wäßrigen Phase gelöst, diese auf 80° erhitzt und das geschmolzene Lipid zugegeben. Her- Stellung erfolgte mit einem Ultraturrax, rühren mit 10000 RPM für 5 Minuten. Der mit dem Laserdiffraktometer bestimmte Durchmesser 50 % betrug 2,28 μm. Beispiel 18: Produktion von SBA in Gegenwart eines amphiphilen Adjuvant. Das amphiphile Tensid CHAPS ist in der Literatur beschrieben als Mittel zur Erhöhung der Immunantwort. Die Partikel bestehen aus 5% Cetylpalmitat und 0,5% CHAPS. Die Herstellung der Partikel erfolgte ana- log Beispiel 20. Der Durchmesser 50% mittels Laserdiffraktometrie bestimmt beträgt 1 ,897 μm.Example 17: Molecular adjuvant for increasing the cellular immune response incorporated in the interface: Saponins are generally known for increasing the cellular immune response. The particles were produced using a rotor stator analogous to Example 15. The composition of the SBA dispersion is 5% cetyl palmitate, 0.5% saponin (Quil A saponin) and water. The saponin was dissolved in the aqueous phase, this was heated to 80 ° and the melted lipid was added. Production was carried out with an Ultraturrax, stirring at 10,000 RPM for 5 minutes. The diameter 50% determined with the laser diffractometer was 2.28 μm. Example 18: Production of SBA in the presence of an amphiphilic adjuvant. The amphiphilic surfactant CHAPS has been described in the literature as an agent for increasing the immune response. The particles consist of 5% cetyl palmitate and 0.5% CHAPS. The particles were produced analogously to example 20. The diameter 50%, determined by means of laser diffractometry, is 1,897 μm.
Beispiel 19: Vergleich SBA versus reines molekulares Adjuvant: Die SBA- Dispersion Nr. 2 aus Beispiel 10 (SBA-2) wurde in Schafen getestet (Bedingungen wie in Beispiel 9) gegen molekulares Adjuvant, d. h. reines GMDP ( N-acetylglucosaminyl-N-acetylmuramyl-dipeptid). Die Konzentration an GMDP (0, lmg/ml) war analog zu Beispiel 9. Die in- vivo Testung erfolgte wie in Beispiel 9 beschrieben. SBA 2 zeigt eine höhere Wirkintensität als reines GMDP (Abb. 5). Zusammensetzung von SBA-2: 4% Hartparaffin, 1% EQ 1 (N,N Di-(ß-Example 19: Comparison of SBA versus pure molecular adjuvant: SBA dispersion No. 2 from example 10 (SBA-2) was tested in sheep (conditions as in example 9) against molecular adjuvant, ie. H. pure GMDP (N-acetylglucosaminyl-N-acetylmuramyl dipeptide). The concentration of GMDP (0.1 mg / ml) was analogous to Example 9. The in vivo testing was carried out as described in Example 9. SBA 2 shows a higher active intensity than pure GMDP (Fig. 5). Composition of SBA-2: 4% hard paraffin, 1% EQ 1 (N, N Di- (ß-
Stearoylethyl)- N,N-dimethylammoniumchlorid) und 4% Tween 80/ Span 85 (7/3).Stearoylethyl) - N, N-dimethylammonium chloride) and 4% Tween 80 / Span 85 (7/3).
Beispiel 20: Effekt der Ladung (Oberflächeneigenschaft) auf die Immunantwort (Schaf-Studie analog Beispiel 9): Zwischen den positiv geladenen Partikeln SBA 4 und SBA 2 ist kein Unterschied in der Wirkstärke feststellbar. EQ 1 aus SBA 2 kann ohne Wirkungsverlust durch das toxi- kologisch untersuchte und als pharmazeutisches Konservierungsmittel zugelassene Cetylpyridiniumchlorid ersetzt werden (SBA 4). Gegenüber den negativ geladenen Partikeln der Formulierung SBA 5 beobachtet man eine stärkere Wirkung der positiv geladenen Partikelformulierungen (Abb. 6).Example 20: Effect of charge (surface property) on the immune response (sheep study analogous to Example 9): There is no difference in the potency between the positively charged particles SBA 4 and SBA 2. EQ 1 from SBA 2 can be replaced without loss of effectiveness by the toxicologically examined and approved as a pharmaceutical preservative cetylpyridinium chloride (SBA 4). One observes in relation to the negatively charged particles of the formulation SBA 5 a stronger effect of the positively charged particle formulations (Fig. 6).
Die SBA Formulierungen haben die folgende Zusammensetzung: SBA 4: 4% Hartparaffin, 4% Tween 80/ Span 85 (7/3), 0,5% Cetylpyridiniumchlo- rid. SBA 5: 4% Hartparaffin, Natriumdeoxycholat 0,2%, Natriumcholat 0,2%, Natriumoleat 1%, Lipoid E80 2%. SBA 2: 4% Hartparaffin, 1% EQ 1 und 4% Tween 80/ Span 85 (7/3) . Die Oberflächenladungen (Zetapotential) wurde in Leitfähigkeitswasser mit einer Leitfähigkeit von 50μS/cm bestimmt: SBA 4: +41 ,2 mV, SBA 2: +40,5 mV, SBA 5: -36,4 mV. Die Größen (PCS Durchmesser und Polydispersitätsmdex (P.I.)) waren: SBA 4: 103 nm (P.I. 0, 1 10), SBA 5: 107 nm (P.I. 0, 115), SBA 2: lOlnm (P.I. 0, 101).The SBA formulations have the following composition: SBA 4: 4% hard paraffin, 4% Tween 80 / Span 85 (7/3), 0.5% cetylpyridinium chloride. SBA 5: 4% hard paraffin, sodium deoxycholate 0.2%, sodium cholate 0.2%, sodium oleate 1%, lipoid E80 2%. SBA 2: 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3). The surface charge (zeta potential) was determined in conductivity water with a conductivity of 50μS / cm: SBA 4: +41, 2 mV, SBA 2: +40.5 mV, SBA 5: -36.4 mV. The sizes (PCS diameter and polydispersity index (P.I.)) were: SBA 4: 103 nm (P.I. 0, 1 10), SBA 5: 107 nm (P.I. 0, 115), SBA 2: 10 nm (P.I. 0, 101).
Beispiel 21 : Speziesunabhängigkeit des Effektes (Hühner): Das Antigen aus Beispiel 9 wurde mit SBA 1 und SBA 2 im Verhältnis 1 : 1 gemischt und 0,5 ml je Huhn injiziert. Die Antikörpertiter wurden aus den Hühnereiern bestimmt. Zur Quantifizierung diente ein ELISA Test. Im Gegensatz zur Beschreibung in Beispiel 9 wurde im ELISA-Test ein markierter Anti- IgG-chicken verwendet. Die Erste Immunisierung fand am Tag 0 stattt. Eine Boosterung mit den gleichen Zubereitungen erfolgte an Tag 31. Analog zu den Ergebnissen in Beispiel 10 zeigt sich eine stärkere Wirkung der Formulierung SBA 2 (Abb. 7). Zusammensetzung SBA 1 : 4% Hartparaffin und 4% Tween 80/ Span 85 (7/3), PCS Durchmesser: 107 nm ( P.I. 0, 112) und SBA 2: 4% Hartparaffin, 1% EQ 1 und 4% Tween 80/ Span 85 (7/3), PCS Durchmesser: lOlnm (P.I. 0,101). Beispiel 22: Einfluß der Lipidmatrix auf die Adjuvanswirkung: Bei der Formulierung SBA 2 wurde das nicht bioabbaubare Hartparaffin gegen das bioabbaubares Glyceroltribehenat ausgetauscht (SBA 3). Die Intensität der Wirkung unterscheidet sich nicht; Hartparaffin kann durch Glyceroltribehenat ersetzt werden (Abb. 8)Example 21: Species independence of the effect (chickens): The antigen from Example 9 was mixed with SBA 1 and SBA 2 in a ratio of 1: 1 and 0.5 ml was injected per chicken. The antibody titers were determined from the hen's eggs. An ELISA test was used for quantification. In contrast to the description in Example 9, a labeled anti-IgG chicken was used in the ELISA test. The first immunization took place on day 0. A booster with the same preparations took place on day 31. Analogous to the results in example 10, the formulation SBA 2 had a stronger effect (FIG. 7). Composition SBA 1: 4% hard paraffin and 4% Tween 80 / Span 85 (7/3), PCS diameter: 107 nm (PI 0, 112) and SBA 2: 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3), PCS diameter: lOnnm (PI 0.101). Example 22: Influence of the lipid matrix on the adjuvant effect: In the formulation SBA 2, the non-biodegradable hard paraffin was exchanged for the biodegradable glycerol tribehenate (SBA 3). The intensity of the effect does not differ; Hard paraffin can be replaced by glycerol tribehenate (Fig. 8)
Zusammensetzung SBA 2: 4% Hartparaffin, 1% EQ 1 und 4% Tween 80/ Span 85 (7/3), PCS Durchmesser: lO lnm (P.I. 0, 101) SBA 3: 4% Glyceroltribehenat, 1% EQ 1 und 4% Tween 80/ Span 85 (7/ 3), PCS Durchmesser: 105nm (P.I. 0, 1 12).Composition SBA 2: 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3), PCS diameter: 10 lnm (PI 0, 101) SBA 3: 4% glycerol tribehenate, 1% EQ 1 and 4 % Tween 80 / Span 85 (7/3), PCS diameter: 105nm (PI 0, 1 12).
Beispiel 23: Die Formulierungen SBA 1 und SBA 2 wurden im Vergleich zu Aluminiumhydroxid getestet (Durchführung analog Beispiel 9). Die Wirkung von SBA 1 und von SBA 2 ist gleich der Wirkung von Alumini- umhydroxid (Kontrolle: Antigen in PBS). Analog Beispiel 9 ist SBA 2 stärker wirksam als SBA 1 (Abb. 9).Example 23: Formulations SBA 1 and SBA 2 were tested in comparison to aluminum hydroxide (procedure analogous to Example 9). The effect of SBA 1 and SBA 2 is the same as that of aluminum hydroxide (control: antigen in PBS). Analogous to Example 9, SBA 2 is more effective than SBA 1 (Fig. 9).
Zusammensetzung SBA 2: 4% Hartparaffin, 1% EQ 1 und 4% Tween 80/Span 85 (7/3), PCS Durchmesser: lO lnm (P.I. 0, 101) SBA 1 : 4% Hartparaffin, 4% Tween 80/ Span 85 (7/3), PCS Durchmesser: 107 nm (P.I. 0, 112). Composition SBA 2: 4% hard paraffin, 1% EQ 1 and 4% Tween 80 / Span 85 (7/3), PCS diameter: 10 lnm (PI 0, 101) SBA 1: 4% hard paraffin, 4% Tween 80 / Span 85 (7/3), PCS diameter: 107 nm (PI 0, 112).
Liste der Figuren:List of figures:
Figur 1: Adjuvans-Effekt im Vergleich zu molekularem Adjuvant (GMDP N-acetylglucosaminyl-N-acetylmuramyl-dipeptide) und FIA.Figure 1: Adjuvant effect compared to molecular adjuvant (GMDP N-acetylglucosaminyl-N-acetylmuramyl dipeptide) and FIA.
Figur 2: Effekt der SBA-Zusammensetzung auf Immuntiter.Figure 2: Effect of SBA composition on immune titer.
Figur 3: Lagerstabilität von SBA-2.Figure 3: Storage stability of SBA-2.
Figur 4: Antikörperproduktion in Hühnern nach erfolgter Grundimmunisierung und erneutem Antigenkontakt an Tag 100, die letzte Antikörperbestimmung der Grundimmunisierung fand am Tag 42 statt, die der Auffrischungsimpfung (Tag 100) an Tag 120.Figure 4: Antibody production in chickens after basic immunization and renewed antigen contact on day 100, the last antibody determination of the basic immunization took place on day 42, that of the booster vaccination (day 100) on day 120.
Figur 5: Adjuvans-Effekt von SBA im Vergleich zu molekularem Adjuvans GMDP (Beispiel 19)Figure 5: Adjuvant effect of SBA compared to molecular adjuvant GMDP (Example 19)
Figur 6: Wirkung unterschiedlicher Partikelladung (Beispiel 20)Figure 6: Effect of different particle charge (Example 20)
Figur 7: Adjuvanswirkung in Hühnern (Beispiel 21)Figure 7: Adjuvant effect in chickens (Example 21)
Figur 8: Einfluß der Lipidmatrix auf die Adjuvanswirkung (Beispiel 22)Figure 8: Influence of the lipid matrix on the adjuvant effect (Example 22)
Figur 9: Vergleich der Wirkung von SBA 1 und SBA 2 mit Aluminiumhydroxid (Beispiel 23)Figure 9: Comparison of the effect of SBA 1 and SBA 2 with aluminum hydroxide (Example 23)
BERICHTIGTES BLATT (REGEL 91) CORRECTED SHEET (RULE 91)

Claims

Patentansprüche claims
1. Mittel zur Steigerung der Immunantwort bei Impfungen von Men- sehen und Tieren sowie zur Steigerung der Ausbeute von Antikörpern in der Immunologie und Antikörperproduktion, dadurch gekennzeichnet, daß es sich um bei Raumtemperatur (= 20°C) feste Lipidpartikel handelt, welche in einer für das jeweilige zu immunisierende Subjekt charakteristischen Optimaldosis, sowie optimaler Par- tikelgröße, Partikelladung sowie Oberflächeneigenschaften1. Means to increase the immune response in vaccinations of humans and animals and to increase the yield of antibodies in immunology and antibody production, characterized in that it is solid at room temperature (= 20 ° C) lipid particles which are in a for the respective subject to be immunized, the optimal dose, as well as the optimum particle size, particle charge and surface properties
(stabilisierende Tensidschicht) appliziert werden, wobei sie der Lösung des Antigens einfach zugemischt werden.(stabilizing surfactant layer) are applied, whereby they are simply mixed into the solution of the antigen.
2. Mittel nach Anspruch 1 , wobei es sich um Partikel im Bereich von 10- 1000 nm handelt.2. Composition according to claim 1, wherein it is particles in the range of 10- 1000 nm.
3. Mittel nach Anspruch 1, wobei es sich um Partikel im Bereich von 1- 10 μm handelt.3. Composition according to claim 1, wherein it is particles in the range of 1- 10 microns.
4. Mittel nach Anspruch 1 , wobei es sich um Partikel im Bereich von 10-200 μm, insbesondere um Partikel im Bereich von 10-100 μm handelt.4. Composition according to claim 1, wherein it is particles in the range of 10-200 microns, in particular particles in the range of 10-100 microns.
5. Mittel nach Anspruch 1, wobei es sich um Partikel im Bereich von 200-1000 μm, insbesondere um Partikel im Bereich von 200-500 μm handelt.5. Composition according to claim 1, wherein it is particles in the range of 200-1000 microns, in particular particles in the range of 200-500 microns.
6. Mittel nach den Ansprüchen 1-5, dadurch gekennzeichnet, daß die zur Herstellung der Lipidpartikel eingesetzten Lipide bei Raumtempe- ratur fest sind, beispielsweise Ethylstearat, Octadecan, DDA, Natürli- ehe oder synthetische Triglyceride bzw. Mischungen derselben, Mo- noglyceride und Diglyceride, alleine oder Mischungen derselben oder mit z.B. Triglyceriden, selbst-emulgierende modifizierte Lipide, natürliche und synthetische Wachse, Fettalkohole, einschliesslich ihrer Ester und Ether sowie in Form von Lipidpeptiden, oder irgendwelche6. Composition according to claims 1-5, characterized in that the lipids used to produce the lipid particles are solid at room temperature, for example ethyl stearate, octadecane, DDA, natural before or synthetic triglycerides or mixtures thereof, monoglycerides and diglycerides, alone or mixtures thereof or with, for example, triglycerides, self-emulsifying modified lipids, natural and synthetic waxes, fatty alcohols, including their esters and ethers, and in the form of lipid peptides, or any
Mischungen derselben. Besonders geeignet sind synthetische Mono- glyceride, Diglyceride und Triglyceride als individuelle Substanzen oder als Mischung (z.B. Hartfett), Imwitor 900, Triglyceride (z.B. Gly- ceroltrilaurat, Glycerolmyristat, Glycerolpalmitat, Glycerolstearat und Glycerolbehenat) und Wachse wie z.B. Cetylpalmitat und weissesMixtures of the same. Synthetic monoglycerides, diglycerides and triglycerides are particularly suitable as individual substances or as a mixture (e.g. hard fat), Imwitor 900, triglycerides (e.g. glycerol trilaurate, glycerol myristate, glycerol palmitate, glycerol stearate and glycerol behenate) and waxes such as e.g. Cetyl palmitate and white
Wachs (DAB) , wobei sie einzeln oder in Mischungen verwendet werden können, außerdem Kohlenwasserstoffe, wie z.B. Hartparaffin.Wax (DAB), which can be used individually or in mixtures, and also hydrocarbons, such as Hard paraffin.
7. Mittel nach dem Anspruch 6, dadurch gekennzeichnet, daß den zur Herstellung der Lipidpartikel eingesetzten festen Lipiden flüssige Lipide wie flüssige Gyceride (Miglyole), Erdnußöl, Rizinusöl, Sojaöl, Baumwollsamenöl, Rapsöl, Leinsamenöl, Olivenöl, Sonnenblumenöl, Distelöl zugemischt werden, wobei die daraus hergestellten Partikel bei Raumtemperatur (20° C) fest sind.7. Composition according to claim 6, characterized in that liquid lipids such as liquid gycerides (miglyols), peanut oil, castor oil, soybean oil, cottonseed oil, rapeseed oil, linseed oil, olive oil, sunflower oil, safflower oil are added to the solid lipids used to produce the lipid particles the particles made from it are solid at room temperature (20 ° C).
8. Mittel nach den Ansprüchen 1-7, dadurch gekennzeichnet, daß sie positiv geladen sind.8. Composition according to claims 1-7, characterized in that they are positively charged.
9. Mittel nach Anspruch 8, dadurch gekennzeichnet, daß zur Erzeugung der positiven Ladung bei der Herstellung der Lipidpartikel die Substanzen Benzyldimethyl-hexadecylammoniumchlorid, Methylbenze- thoniumchlorid, Benzalkoniumchlorid, Cetylpyridiniumchlorid, N,N Di-(ß-Stearoylethyl)-N,N-dimethylammoniumchlorid, Dimethyldiocta- decylammoniumbromid einzeln oder in Mischung miteinander zugesetzt werden.9. Composition according to claim 8, characterized in that to produce the positive charge in the production of the lipid particles, the substances benzyldimethylhexadecylammonium chloride, methylbenzethonium chloride, benzalkonium chloride, cetylpyridinium chloride, N, N di- (ß-stearoylethyl) -N, N- dimethylammonium chloride, dimethyldiocta- decylammonium bromide can be added individually or in a mixture with one another.
10. Mittel nach den Ansprüchen 1-7, dadurch gekennzeichnet, daß sie negativ geladen sind10. Composition according to claims 1-7, characterized in that they are negatively charged
1 1. Mittel nach Anspruch 10, dadurch gekennzeichnet, daß zur Erzeugung der negativen Ladung bei der Herstellung der Lipidpartikel die folgenden Verbindungen: Diacetylphosphate, Phosphatidylglycerin, Lecithine unterschiedlicher Herkunft (z.B. Eilecithinoder Sojalecit- hin), chemisch modifizierte Lecithine (z.B. hydrierte Lecithine), genauso wie Phospholipide und Sphingolipide, Mischung von Lecithi- nen mit Phospholipiden, Sterolen (z.B. Cholesterol und Cholesterol- Derivate, genauso wie Stigmasterin) und ebenfalls gesättigte und un- gesättigte Fettsäuren, Natriumcholat, Natriumglycocholat, Natrium- taurocholat, Natriumdeoxycholat, einzeln oder in Mischung miteinander zugesetzt werden.1 1. Agent according to claim 10, characterized in that to generate the negative charge in the production of the lipid particles, the following compounds: diacetyl phosphates, phosphatidylglycerol, lecithins of different origins (eg egg lecithin or soy lecithin), chemically modified lecithins (eg hydrogenated lecithins), just like phospholipids and sphingolipids, mixture of lecithins with phospholipids, sterols (eg cholesterol and cholesterol derivatives, just like stigmasterol) and also saturated and unsaturated fatty acids, sodium cholate, sodium glycocholate, sodium taurocholate, sodium deoxycholate, individually or in a mixture are added together.
12. Mittel nach den Ansprüchen 1-7, dadurch gekennzeichnet, daß sie ungeladen oder nur gering geladen sind12. Composition according to claims 1-7, characterized in that they are uncharged or only slightly charged
13. Mittel nach Anspruch 12, dadurch gekennzeichnet, daß zur ihrer Erzeugung bei der Herstellung der Lipidpartikel ungeladene Substanzen wie Polyethylenglykol-Sorbitanfetsäureester (insbesondere die Tween Reihe wie Tween 80), Polyoxyethylenpolyoxypropylenkopolymere13. Composition according to claim 12, characterized in that for their production in the production of the lipid particles uncharged substances such as polyethylene glycol sorbitan fatty acid esters (in particular the Tween series such as Tween 80), polyoxyethylene polyoxypropylene copolymers
(insbesondere die Poloxamer-Reihe und die Poloxamine-Reihe), ethoxylierte Mono- und Diglyceride, ethoxylierte Lipide, ethoxylierte Fettalkohole oder Fettsäuren, und Ester und Ether von Zuckern oder von Zuckeralkoholen mit Fettsäuren oder Fettalkoholen (z.B. Saccha- rose-Monostearat) einzeln oder in Mischung miteinander zugesetzt werden.(in particular the Poloxamer series and the Poloxamine series), ethoxylated mono- and diglycerides, ethoxylated lipids, ethoxylated fatty alcohols or fatty acids, and esters and ethers of sugars or of sugar alcohols with fatty acids or fatty alcohols (e.g. saccharas rose monostearate) may be added individually or as a mixture with one another.
14. Mittel nach den Ansprüchen 1- 13, dadurch gekennzeichnet, daß ih- nen ein oder mehrere Adjuvantien zugesetzt sind.14. Composition according to claims 1- 13, characterized in that one or more adjuvants are added to them.
15. Mittel nach dem Anspruch 14, dadurch gekennzeichnet, daß es molekulare Adjuvantien wie N-Acetylglucosaminyl-(ßl-4)-N- acetylmuramyl-L-alanyl-D-isoglutamin [GMDP], Dimethyldioctadecy- lammoniumbromid [DDA], N-acetylmuramyl-L-alanyl-D-isoglutamin15. Composition according to claim 14, characterized in that there are molecular adjuvants such as N-acetylglucosaminyl- (ßl-4) -N- acetylmuramyl-L-alanyl-D-isoglutamine [GMDP], dimethyldioctadecylammonium bromide [DDA], N- acetylmuramyl-L-alanyl-D-isoglutamine
[MDP], N,N Di-(ß-Stearoylethyl)- N,N-dimethylammoniumchlorid [EQ 1], Glykopeptide, Bestandteile der Zellwand von Mycobakterien, Saponine, quaternäre Amine, wie z.B. Cetylpyridiniumchlorid und Benzalkoniumchlorid, zwitterionische Amine wie CHAPS (3-[(3- cholamidopropyl)dimethylammonio]- 1 -propanesulfonate) , Dextran- sulfat, Dextran, 3-Odesacyl-4'-monophosphoryl lipid A [MPL®], N- Acetyl-L-Alanyl-Disoglutaminyl-L-Alanin- 82) - 1,2 dipalmitoyl - sn glycero - 3-(hydroxy-phosphoryloxy))ethylamid, Mononatriumsalz [MTP-PE], Granulocyten-Makrophagen-Kolonien stimulierender Fak- tor [GM-CSF], Blockcopolymere, z.B. P1205, Poloxamer 401 (Pluronic[MDP], N, N di- (ß-stearoylethyl) - N, N-dimethylammonium chloride [EQ 1], glycopeptides, components of the cell wall of mycobacteria, saponins, quaternary amines such as cetylpyridinium chloride and benzalkonium chloride, zwitterionic amines such as CHAPS (3 - [(3-cholamidopropyl) dimethylammonio] - 1-propanesulfonate), dextran sulfate, dextran, 3-odesacyl-4 ' -monophosphoryl lipid A [MPL®], N-acetyl-L-alanyl-disoglutaminyl-L-alanine 82) - 1,2 dipalmitoyl - sn glycero - 3- (hydroxy-phosphoryloxy)) ethylamide, monosodium salt [MTP-PE], granulocyte-macrophage colony stimulating factor [GM-CSF], block copolymers, for example P1205, poloxamer 401 (Pluronic
L121), Dimyristoylphosphatidylcholin [DMPC], Dehydroepiandro- sterone-3ß-01- 17-on [DHEA], Dimyristoylphosphatidylglycerol [DMPG], Deoxycholsäure- Natriumsalz, Cytokine, Imiquimod, DTP- GDP, Saponine, 7-Allyl-8-Oxoguanosin, Montanide ISA 51, Montani- de ISA 720, MPL, Murametid, Murapalmitin, D-Murapalmitin, 1-L121), Dimyristoylphosphatidylcholine [DMPC], Dehydroepiandrosterone-3ß-01- 17-one [DHEA], Dimyristoylphosphatidylglycerol [DMPG], Deoxycholic Acid Sodium Salt, Cytokines, Imiquimod, DTP-GDP, Sapuanosine, 7-Aloglyosine, 7-Aloglyosine, 7-Aloglyosine Montanide ISA 51, Montanide ISA 720, MPL, Murametid, Murapalmitin, D-Murapalmitin, 1-
Monopalmitoyl-rac-glycerol, Dicetylphosphat, Polymethylmethacrylat [PMMA], PEG-Sorbitanfettsäureester wie Polysorbat 80 (TWEEN® 80), Quil A Saponin, Sorbitanfettsäureester wie Sorbitantrioleat (SPAN®85, Arlacel85), DTP-DPP, Stearyl-Tyrosin, N,N dioctadecyl- N',N'-bis(2hydroxyethyl) Propandiamin, Calcitriol, enthält.Monopalmitoyl-rac-glycerol, dicetyl phosphate, polymethyl methacrylate [PMMA], PEG sorbitan fatty acid esters such as Polysorbate 80 (TWEEN® 80), Quil A saponin, sorbitan fatty acid esters such as sorbitan trioleate (SPAN®85, Arlacel85), DTP-DPP, stearyl-tyrosine, N, N dioctadecyl-N ', N'-bis (2hydroxyethyl) propanediamine, calcitriol.
16. Mittel nach dem Anspruch 14, dadurch gekennzeichnet, daß es par- tikuläre Adjuvantien wie z.B. Aluminiumhydroxid, Polymerpartikel,16. Composition according to claim 14, characterized in that it contains particulate adjuvants such as e.g. Aluminum hydroxide, polymer particles,
Liposomen, sind.Liposomes.
17. Mittel nach Anspruch 14, dadurch gekennzeichnet, daß ihnen die Wirksamkeit von Adjuvantien steigernde Substanzen aus der Gruppe der zweiwertigen Übergangsmetallionen, quaternären Aminen, Dex- tran, Dextransulfat, Vitamin-E-Derivate wie Vitamin-E-Phosphat und Vitamin-E-Hemisuccinat, und Isoprinosin zugestzt wurden.17. Composition according to claim 14, characterized in that they increase the effectiveness of adjuvants substances from the group of divalent transition metal ions, quaternary amines, dextran, dextran sulfate, vitamin E derivatives such as vitamin E phosphate and vitamin E Hemisuccinate, and isoprinosine were added.
18. Mittel nach den Ansprüchen 1- 17 dadurch hergestellt, daß die Li- pidpartikel durch Zerkleinerung von Lipiden im festen Aggregatzustand hergestellt wurden, z.B. Mörsermühle, Gasstrahlmühle, Elek- trosputtering, Hochdruckhomogenisation, Mikrofluidisation.18. Agent according to claims 1-17 prepared in that the lipid particles were produced by comminution of lipids in the solid state, e.g. Mortar mill, gas jet mill, electro sputtering, high pressure homogenization, microfluidization.
19. Mittel nach den Ansprüchen 1- 17 dadurch hergestellt, daß die Li- pidpartikel durch Zerkleinerung von Lipiden im geschmolzenen Zustand unter Dispergierung in einer äußeren Phase (z.B. hochtourige Rührer, statische Mischer im Mikromaßstab und Makromaßstab, Rotor-Stator-Mühlen, Kolloidmühlen, Hochdruckhomogenisation, Mikrofluidisation, Sprühverfahren wie Sprühtrocknung und Elektro- Sprayverfahren) hergestellt werden, wobei die äußere Phase flüssig19. Composition according to claims 1- 17, characterized in that the lipid particles by comminution of lipids in the molten state with dispersion in an external phase (eg high-speed stirrers, static mixers on a microscale and macroscale, rotor-stator mills, colloid mills, High pressure homogenization, microfluidization, spray processes such as spray drying and electro-spray processes) can be produced, the outer phase being liquid
(Wasser, organische Flüsigkeiten, Öle oder deren Mischungen) oder gasförmig (Luft, Stickstoff, Edelgas) sein kann. (Water, organic liquids, oils or their mixtures) or gaseous (air, nitrogen, noble gas).
20. Mittel nach den Ansprüchen 1- 19, dadurch gekennzeichnet, daß die Lipidpartikel und ggf. das zusätzliche Adjuvants in einer äußeren Phase dispergiert sind, z.B. wäßrige Flüssigkeiten wie Wasser, isotonische Zuckerlösungen und isotonischer Natriumchloridlösung, nichtwäßrige Flüssigkeiten wie PEG 400 oder 600, organische Flüssigkeiten wie Öle (Miglyole, Erdnußöl, Rizinusöl, Sojaöl, Baumwoll- samenöl, Rapsöl, Leinsamenöl, Olivenöl, Sonnenblumenöl, Distelöl und andere Öle oder deren Mischungen.20. Composition according to claims 1- 19, characterized in that the lipid particles and optionally the additional adjuvant are dispersed in an outer phase, e.g. aqueous liquids such as water, isotonic sugar solutions and isotonic sodium chloride solution, non-aqueous liquids such as PEG 400 or 600, organic liquids such as oils (miglyols, peanut oil, castor oil, soybean oil, cottonseed oil, rapeseed oil, linseed oil, olive oil, sunflower oil, safflower oil and other oils or their oils Mixtures.
21. Mittel nach dem Anspruch 20, dadurch gekennzeichnet, daß der äußeren Phase viskositätserhöhende Substanzen zugestezt wurden, z.B.21. Composition according to claim 20, characterized in that viscosity-increasing substances have been added to the outer phase, e.g.
22. Mittel nach den Ansprüchen 1- 19, dadurch gekennzeichnet, daß die Lipidpartikel und ggf. das zusätzliche Adjuvants in einer trockenen Form vorliegen, z.B. als Lyophilisat, sprühgetrocknetes Produkt, feste22. Composition according to claims 1- 19, characterized in that the lipid particles and optionally the additional adjuvant are in a dry form, e.g. as a lyophilisate, spray-dried product, solid
Dispersion, Pellet oder Tablette. Dispersion, pellet or tablet.
PCT/EP2000/004565 1999-05-20 2000-05-19 Stability, biocompatibility optimized adjuvant (sba) for enhancing humoral and cellular immune response WO2000071154A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU52142/00A AU5214200A (en) 1999-05-20 2000-05-19 Stability, biocompatibility optimized adjuvant (sba) for enhancing humoral and cellular immune response
BR0010823-5A BR0010823A (en) 1999-05-20 2000-05-19 Stability adjuvant, optimized biocompatibility (sba) to enhance the humoral and cellular immune response
MXPA01011660A MXPA01011660A (en) 1999-05-20 2000-05-19 Stability, biocompatibility optimized adjuvant (sba) for enhancing humoral and cellular immune response.
JP2000619456A JP2003500365A (en) 1999-05-20 2000-05-19 Stability, biocompatibility optimized adjuvant (SBA) to enhance humoral and cellular immune responses
EP00936761A EP1183045A2 (en) 1999-05-20 2000-05-19 Stability, biocompatibility optimized adjuvant (sba) for enhancing humoral and cellular immune response
CA002373239A CA2373239A1 (en) 1999-05-20 2000-05-19 Stability, biocompatibility optimized adjuvant (sba) for enhancing humoral and cellular immune response
KR1020017014653A KR20020012221A (en) 1999-05-20 2000-05-19 Stability, biocompatibility optimized adjuvant(sba) for enhancing humoral and cellular immune response

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19923256.3 1999-05-20
DE19923256 1999-05-20

Publications (2)

Publication Number Publication Date
WO2000071154A2 true WO2000071154A2 (en) 2000-11-30
WO2000071154A3 WO2000071154A3 (en) 2001-06-28

Family

ID=7908697

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/EP2000/004565 WO2000071154A2 (en) 1999-05-20 2000-05-19 Stability, biocompatibility optimized adjuvant (sba) for enhancing humoral and cellular immune response
PCT/EP2000/004644 WO2000071077A2 (en) 1999-05-20 2000-05-22 Adjuvant which is optimized with regard to stability and biocompatibility (sba) and which is provided for increasing the humoral and cellular immune response

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/004644 WO2000071077A2 (en) 1999-05-20 2000-05-22 Adjuvant which is optimized with regard to stability and biocompatibility (sba) and which is provided for increasing the humoral and cellular immune response

Country Status (11)

Country Link
EP (1) EP1183045A2 (en)
JP (1) JP2003500365A (en)
KR (1) KR20020012221A (en)
AU (2) AU5214200A (en)
BR (1) BR0010823A (en)
CA (1) CA2373239A1 (en)
DE (1) DE10024788A1 (en)
MX (1) MXPA01011660A (en)
TR (1) TR200103333T2 (en)
WO (2) WO2000071154A2 (en)
ZA (1) ZA200109147B (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8052978B2 (en) 2004-07-22 2011-11-08 Agence National De Securite Sanitaire De L'alimentation, De L'environnement Et Du Travail Vaccine composition against Rhodococcus equi
US8748609B2 (en) 2004-08-20 2014-06-10 Mannkind Corporation Catalysis of diketopiperazine synthesis
US8906926B2 (en) 2008-12-29 2014-12-09 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
US9066881B2 (en) 2005-09-14 2015-06-30 Mannkind Corporation Method of drug formulation based on increasing the affinity of active agents for crystalline microparticle surfaces
US9192675B2 (en) 2008-06-13 2015-11-24 Mankind Corporation Dry powder inhaler and system for drug delivery
US9233159B2 (en) 2011-10-24 2016-01-12 Mannkind Corporation Methods and compositions for treating pain
US9241903B2 (en) 2006-02-22 2016-01-26 Mannkind Corporation Method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent
US9364436B2 (en) 2011-06-17 2016-06-14 Mannkind Corporation High capacity diketopiperazine microparticles and methods
US9364619B2 (en) 2008-06-20 2016-06-14 Mannkind Corporation Interactive apparatus and method for real-time profiling of inhalation efforts
US9630930B2 (en) 2009-06-12 2017-04-25 Mannkind Corporation Diketopiperazine microparticles with defined specific surface areas
US9662461B2 (en) 2008-06-13 2017-05-30 Mannkind Corporation Dry powder drug delivery system and methods
US9675674B2 (en) 2004-08-23 2017-06-13 Mannkind Corporation Diketopiperazine salts for drug delivery and related methods
US9700690B2 (en) 2002-03-20 2017-07-11 Mannkind Corporation Inhalation apparatus
US9706944B2 (en) 2009-11-03 2017-07-18 Mannkind Corporation Apparatus and method for simulating inhalation efforts
US9801925B2 (en) 1999-06-29 2017-10-31 Mannkind Corporation Potentiation of glucose elimination
US9802012B2 (en) 2012-07-12 2017-10-31 Mannkind Corporation Dry powder drug delivery system and methods
US9925144B2 (en) 2013-07-18 2018-03-27 Mannkind Corporation Heat-stable dry powder pharmaceutical compositions and methods
US9943571B2 (en) 2008-08-11 2018-04-17 Mannkind Corporation Use of ultrarapid acting insulin
US9983108B2 (en) 2009-03-11 2018-05-29 Mannkind Corporation Apparatus, system and method for measuring resistance of an inhaler
US10159644B2 (en) 2012-10-26 2018-12-25 Mannkind Corporation Inhalable vaccine compositions and methods
US10307464B2 (en) 2014-03-28 2019-06-04 Mannkind Corporation Use of ultrarapid acting insulin
US10342938B2 (en) 2008-06-13 2019-07-09 Mannkind Corporation Dry powder drug delivery system
US10421729B2 (en) 2013-03-15 2019-09-24 Mannkind Corporation Microcrystalline diketopiperazine compositions and methods
US10561806B2 (en) 2014-10-02 2020-02-18 Mannkind Corporation Mouthpiece cover for an inhaler
US10625034B2 (en) 2011-04-01 2020-04-21 Mannkind Corporation Blister package for pharmaceutical cartridges
US11446127B2 (en) 2013-08-05 2022-09-20 Mannkind Corporation Insufflation apparatus and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003500365A (en) * 1999-05-20 2003-01-07 ファルマソル ゲーエムベーハー Stability, biocompatibility optimized adjuvant (SBA) to enhance humoral and cellular immune responses
EP1675869B1 (en) * 2003-10-23 2012-02-15 Novartis Vaccines and Diagnostics, Inc. Stabilised compositions
EP2844195B1 (en) 2012-04-30 2019-03-20 Össur HF Prosthetic device, system and method for increasing vacuum attachment
US20180318415A1 (en) * 2015-12-08 2018-11-08 Glaxosmithkline Biologicals, Sa Novel adjuvant formulations

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19745950A1 (en) * 1997-10-17 1999-04-22 Dds Drug Delivery Service Ges Drug carrier particle for site specific drug delivery, especially to CNS
WO2000006120A1 (en) * 1998-07-31 2000-02-10 Korea Institute Of Science And Technology Lipid emulsion and solid lipid nanoparticle as a gene or drug carrier
DE10024788A1 (en) * 1999-05-20 2000-11-23 Gerbu Gmbh Substance for increasing an immune response during vaccinations or for increasing the production of antibodies, comprises solid lipid particles of a specific size and charge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19745950A1 (en) * 1997-10-17 1999-04-22 Dds Drug Delivery Service Ges Drug carrier particle for site specific drug delivery, especially to CNS
WO2000006120A1 (en) * 1998-07-31 2000-02-10 Korea Institute Of Science And Technology Lipid emulsion and solid lipid nanoparticle as a gene or drug carrier
DE10024788A1 (en) * 1999-05-20 2000-11-23 Gerbu Gmbh Substance for increasing an immune response during vaccinations or for increasing the production of antibodies, comprises solid lipid particles of a specific size and charge

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE CHEMABS [Online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; OLBRICH, C. ET AL: "Solid lipid nanoparticles (SLN) as vaccine adjuvant - study in sheep with a mycoplasma bovis antigen and stability testing" retrieved from STN XP002155569 & PROC. INT. SYMP. CONTROLLED RELEASE BIOACT. MATER. (2000), 27TH, 293-294 , *
HILGERS L A ET AL: "A novel non-mineral oil-based adjuvant. I. Efficacy of a synthetic sulfolipopolysaccharide in a squalane-in-water emulsion in laboratory animals." VACCINE, (1994 MAY) 12 (7) 653-60. , XP002155567 *
MULLER R H ET AL: "Solid lipid nanoparticles (SLN) as potential carrier for human use: interaction with human granulocytes" JOURNAL OF CONTROLLED RELEASE,NL,ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM, Bd. 47, Nr. 3, 8. September 1997 (1997-09-08), Seiten 261-269, XP004125818 ISSN: 0168-3659 *
SCHOLER N. ET AL: "Effect of solid lipid nanoparticles (SLN) on cytokine production and the viability of murine peritoneal macrophages." JOURNAL OF MICROENCAPSULATION, (2000) 17/5 (639-650). , XP002155568 *
ZUR MUHLEN A ET AL: "Solid lipid nanoparticles (SLN) for controlled drug delivery--drug release and release mechanism." EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, (1998 MAR) 45 (2) 149-55. , XP000738298 *

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9801925B2 (en) 1999-06-29 2017-10-31 Mannkind Corporation Potentiation of glucose elimination
US9700690B2 (en) 2002-03-20 2017-07-11 Mannkind Corporation Inhalation apparatus
US8052978B2 (en) 2004-07-22 2011-11-08 Agence National De Securite Sanitaire De L'alimentation, De L'environnement Et Du Travail Vaccine composition against Rhodococcus equi
US9346766B2 (en) 2004-08-20 2016-05-24 Mannkind Corporation Catalysis of diketopiperazine synthesis
US8748609B2 (en) 2004-08-20 2014-06-10 Mannkind Corporation Catalysis of diketopiperazine synthesis
US9796688B2 (en) 2004-08-20 2017-10-24 Mannkind Corporation Catalysis of diketopiperazine synthesis
US9675674B2 (en) 2004-08-23 2017-06-13 Mannkind Corporation Diketopiperazine salts for drug delivery and related methods
US10130685B2 (en) 2004-08-23 2018-11-20 Mannkind Corporation Diketopiperazine salts for drug delivery and related methods
US10143655B2 (en) 2005-09-14 2018-12-04 Mannkind Corporation Method of drug formulation
US9717689B2 (en) 2005-09-14 2017-08-01 Mannkind Corporation Method of drug formulation based on increasing the affinity of crystalline microparticle surfaces for active agents
US9283193B2 (en) 2005-09-14 2016-03-15 Mannkind Corporation Method of drug formulation based on increasing the affinity of crystalline microparticle surfaces for active agents
US9066881B2 (en) 2005-09-14 2015-06-30 Mannkind Corporation Method of drug formulation based on increasing the affinity of active agents for crystalline microparticle surfaces
US9446001B2 (en) 2005-09-14 2016-09-20 Mannkind Corporation Increasing drug affinity for crystalline microparticle surfaces
US9089497B2 (en) 2005-09-14 2015-07-28 Mannkind Corporation Method of drug formulation based on increasing the affinity of active agents for crystalline microparticle surfaces
US10130581B2 (en) 2006-02-22 2018-11-20 Mannkind Corporation Method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent
US9241903B2 (en) 2006-02-22 2016-01-26 Mannkind Corporation Method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent
US9446133B2 (en) 2008-06-13 2016-09-20 Mannkind Corporation Dry powder inhaler and system for drug delivery
US10751488B2 (en) 2008-06-13 2020-08-25 Mannkind Corporation Dry powder inhaler and system for drug delivery
US9662461B2 (en) 2008-06-13 2017-05-30 Mannkind Corporation Dry powder drug delivery system and methods
US9511198B2 (en) 2008-06-13 2016-12-06 Mannkind Corporation Dry powder inhaler and system for drug delivery
US10342938B2 (en) 2008-06-13 2019-07-09 Mannkind Corporation Dry powder drug delivery system
US10201672B2 (en) 2008-06-13 2019-02-12 Mannkind Corporation Dry powder inhaler and system for drug delivery
US9192675B2 (en) 2008-06-13 2015-11-24 Mankind Corporation Dry powder inhaler and system for drug delivery
US9339615B2 (en) 2008-06-13 2016-05-17 Mannkind Corporation Dry powder inhaler and system for drug delivery
US10675421B2 (en) 2008-06-20 2020-06-09 Mannkind Corporation Interactive apparatus and method for real-time profiling of inhalation efforts
US9364619B2 (en) 2008-06-20 2016-06-14 Mannkind Corporation Interactive apparatus and method for real-time profiling of inhalation efforts
US9943571B2 (en) 2008-08-11 2018-04-17 Mannkind Corporation Use of ultrarapid acting insulin
US9220687B2 (en) 2008-12-29 2015-12-29 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
US8906926B2 (en) 2008-12-29 2014-12-09 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
US9655850B2 (en) 2008-12-29 2017-05-23 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
US10172850B2 (en) 2008-12-29 2019-01-08 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
US9983108B2 (en) 2009-03-11 2018-05-29 Mannkind Corporation Apparatus, system and method for measuring resistance of an inhaler
US9630930B2 (en) 2009-06-12 2017-04-25 Mannkind Corporation Diketopiperazine microparticles with defined specific surface areas
US9706944B2 (en) 2009-11-03 2017-07-18 Mannkind Corporation Apparatus and method for simulating inhalation efforts
US10625034B2 (en) 2011-04-01 2020-04-21 Mannkind Corporation Blister package for pharmaceutical cartridges
US10130709B2 (en) 2011-06-17 2018-11-20 Mannkind Corporation High capacity diketopiperazine microparticles and methods
US9364436B2 (en) 2011-06-17 2016-06-14 Mannkind Corporation High capacity diketopiperazine microparticles and methods
US9233159B2 (en) 2011-10-24 2016-01-12 Mannkind Corporation Methods and compositions for treating pain
US9610351B2 (en) 2011-10-24 2017-04-04 Mannkind Corporation Methods and compositions for treating pain
US10258664B2 (en) 2011-10-24 2019-04-16 Mannkind Corporation Methods and compositions for treating pain
US9802012B2 (en) 2012-07-12 2017-10-31 Mannkind Corporation Dry powder drug delivery system and methods
US10159644B2 (en) 2012-10-26 2018-12-25 Mannkind Corporation Inhalable vaccine compositions and methods
US10421729B2 (en) 2013-03-15 2019-09-24 Mannkind Corporation Microcrystalline diketopiperazine compositions and methods
US9925144B2 (en) 2013-07-18 2018-03-27 Mannkind Corporation Heat-stable dry powder pharmaceutical compositions and methods
US11446127B2 (en) 2013-08-05 2022-09-20 Mannkind Corporation Insufflation apparatus and methods
US10307464B2 (en) 2014-03-28 2019-06-04 Mannkind Corporation Use of ultrarapid acting insulin
US10561806B2 (en) 2014-10-02 2020-02-18 Mannkind Corporation Mouthpiece cover for an inhaler

Also Published As

Publication number Publication date
JP2003500365A (en) 2003-01-07
WO2000071077A2 (en) 2000-11-30
EP1183045A2 (en) 2002-03-06
CA2373239A1 (en) 2000-11-30
DE10024788A1 (en) 2000-11-23
MXPA01011660A (en) 2004-04-05
ZA200109147B (en) 2002-05-08
BR0010823A (en) 2002-03-05
AU5809100A (en) 2000-12-12
AU5214200A (en) 2000-12-12
KR20020012221A (en) 2002-02-15
WO2000071154A3 (en) 2001-06-28
TR200103333T2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
WO2000071154A2 (en) Stability, biocompatibility optimized adjuvant (sba) for enhancing humoral and cellular immune response
DE69632395T2 (en) COCHLEATE DELIVERY VALVE FOR BIOLOGICALLY RELEVANT MOLECULES
DE69836429T2 (en) Hepatitis B vaccines containing oil in water emulsions
DE69920686T2 (en) Improvements in the encapsulation of bioactive agents
DE60002650T2 (en) Oil-vaccinated vaccine
DE69836268T2 (en) Immune-enhancing composition in solid administration form with collagen or polydimethylsiloxane as carrier substances
DE69636889T2 (en) Oil-filled vaccine and process for its preparation
DE69533693T2 (en) Vaccines containing paucilamellar lipid vesicles as adjuvant
WO1999038528A2 (en) Vaccine formulations
JPH04506521A (en) Liquid vaccines and active ingredient carriers containing metabolizable oils
JP2007522205A (en) Multilamellar liposome and production method thereof
KR101762416B1 (en) Micelle composition for cosmetic
DE112018002827T5 (en) New methods of making an adjuvant
US20200405846A1 (en) Emulsion adjuvant for intramuscular, intradermal and subcutaneous administration
JP6751672B2 (en) Nanosuspension of natural materials and its preparation method
DE69910253T2 (en) METHOD FOR PRODUCING INACTIVATED, W / O EMULSION ADJUVED, VACCINALS
DE602004005460T2 (en) ADJUVIAN COMBINATIONS OF LIPOSOMES AND MYCOBACTERIAL LIPIDS FOR IMMUNIZATION COMPOSITIONS AND VACCINES
DE2603321A1 (en) EMULSION BASED ON A METABOLIZABLE VEGETABLE OIL AND WATER
EP1420818B1 (en) Antigenic compositions
DE69838324T2 (en) PH SENSITIVE LIPOSOMES AND OTHER TYPES OF IMMUNOMODULATORS OF CONTAINED VACCINES AND METHOD AND METHOD OF PREPARATION THEREOF
CN110035770A (en) New method
DE60031243T2 (en) VACCINATION OF VACCINES AGAINST TUBERCULOSIS WITH MONOGLYCERIDES OR FATTY ACIDS AS ADJUVANT
DE69827837T2 (en) ANTIGEN VECTORS CONSISTING OF MULTILAMELLAR BLOOMS
DE69926342T2 (en) DELIVERY OF IMMUNOGENIC MOLECULES USING HBSAG PARTICLES
CN111166890A (en) Slow-release vaccine carrier and preparation method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001/09147

Country of ref document: ZA

Ref document number: 200109147

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2001/011660

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 515530

Country of ref document: NZ

Ref document number: 1020017014653

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2373239

Country of ref document: CA

Ref document number: 2373239

Country of ref document: CA

Kind code of ref document: A

Ref document number: 2000 619456

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001/03333

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 52142/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2000936761

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017014653

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000936761

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09959927

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 1020017014653

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000936761

Country of ref document: EP