WO2000072450A2 - Master oscillator grating coupled power amplifier with angled amplifier section - Google Patents

Master oscillator grating coupled power amplifier with angled amplifier section Download PDF

Info

Publication number
WO2000072450A2
WO2000072450A2 PCT/US2000/012708 US0012708W WO0072450A2 WO 2000072450 A2 WO2000072450 A2 WO 2000072450A2 US 0012708 W US0012708 W US 0012708W WO 0072450 A2 WO0072450 A2 WO 0072450A2
Authority
WO
WIPO (PCT)
Prior art keywords
approximately
master
section
mode
longitudinal axis
Prior art date
Application number
PCT/US2000/012708
Other languages
French (fr)
Other versions
WO2000072450A3 (en
Inventor
Viktor Borisovich Khalfin
Dmitri Zalmanovich Garbuzov
Louis Anthony Dimarco
John Charles Connolly
Original Assignee
Sarnoff Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/468,396 external-priority patent/US6556611B1/en
Priority claimed from US09/546,086 external-priority patent/US6459715B1/en
Application filed by Sarnoff Corporation filed Critical Sarnoff Corporation
Priority to AU70499/00A priority Critical patent/AU7049900A/en
Publication of WO2000072450A2 publication Critical patent/WO2000072450A2/en
Publication of WO2000072450A3 publication Critical patent/WO2000072450A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/50Amplifier structures not provided for in groups H01S5/02 - H01S5/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/065Mode locking; Mode suppression; Mode selection ; Self pulsating
    • H01S5/0651Mode control
    • H01S5/0653Mode suppression, e.g. specific multimode
    • H01S5/0655Single transverse or lateral mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2036Broad area lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Abstract

An apparatus includes a single-mode master-oscillator section and a power amplifier section. The single-mode master-oscillator section includes a waveguide defined by a first end and a second end, the first end including a first distributed Bragg reflector mirror, and the second end including a second distributed Bragg reflector mirror. The single-mode-master-oscillator section also has a first longitudinal axis. The power amplifier section is a broad-contact amplifier coupled to the single-mode-master-oscillator section by a coupling grating that is contained in the waveguide of the single-mode-master-oscillator section. The broad contact amplifier section includes a reflection side, an output side and a second longitudinal axis, the second longitudinal axis being at an angle approximately (90°-β) to said first longitudinal axis, β being in a range between 0° and approximately 20°.

Description

MASTER OSCILLATOR GRATING COUPLED POWER AMPLIFIER WITH ANGLED AMPLIFIER SECTION
PRIORITY
This application claims the benefit of U.S. Provisional Application No. 60/133,393, filed May 10, 1999, and U.S. Application No. 09/468,396, both of which are hereby incorporated herein by reference.
FIELD OF THE INVENTION
The present invention relates to semiconductor lasers. In particular, the present invention relates to master oscillator grating coupled power amplifiers (MOGCPAs). BACKGROUND
Master oscillator power amplifiers (MOP As), as shown in Figure 1, typically include a semiconductor Distributed Feedback (DFB) laser diode 101 acting as a master oscillator optically coupled to a tapered optical power amplifier 102. The diode laser and amplifier are essentially a single unit with an integrated optical alignment. MOP As are known to have potential to provide both high power and a diffraction- limited single-mode output. MOPA designs that produce a high-power single-mode output, however, have a variety of weaknesses. For example, to achieve a single-mode output, the master-oscillator section of the device is very narrow. This often results in the device exhibiting a large lateral beam divergence, thereby requiring an astigmatic lens for practical use. For example, known MOPA devices can exhibit as much as 15 to 20 degrees beam divergence in the lateral direction, creating at least two problems. First, the divergent beam with a wide output aperture requires complicated focusing optics. Second, the divergent beam propagating in the amplifier section requires an amplifier section with a wide aperture. Since the length of the tapered section must not be shorter than 1 mm to provide the amplification, the output aperture can not be narrower than 50-350 μm. Additionally, known designs also tend to exhibit self- focusing and filamentation problems that limit the level of diffraction-limited power and degrade device stability.
Variations of MOP As have been conceived, but all contain unacceptable shortcomings. For example, Figure 2 is a schematic diagram detailing a Master-Oscillator Deflector- Amplifier Grating for Surface Emission (GSE). In this figure, a laser beam generated in master-oscillator section 201 couples directly into deflector-amplifier section 202, which lies along the same axis as master-oscillator section 201. Deflector-amplifier section 202 contains tilted Bragg grating deflector 204. Deflector-amplifier section 202 is optically coupled to GSE section 203 through tilted grating 204, which scatters the laser beam into GSE section 203. GSE section 203 has a grating that scatters the generated laser beam in the direction peφendicular to the structure plane. Thus, this configuration utilizes three regions, with a coupling grating found inside deflector-amplifier section 202, and light is emitted peφendicular to the direction of propagation through the amplifier section. This apparatus, however, has the drawback that, to maintain single-mode operation, deflector-amplifier section 202 must be the same width as master-oscillator section 201, thereby limiting output.
Figure 3 is a configuration of the previously-discussed apparatus in which power is amplified by the addition of post amplifier 302. This configuration has the drawback that, because of the refractive index step at the interface between post amplifier 302 and GSE
303, multimode lasing in the direction peφendicular to the axes of the deflector-amplifier section occurs.
Figure 4 is an apparatus that employs the basic design shown in Figure 2, but includes beam splitters between master-oscillator section 401 and deflector- amplifier sections 402a-402d. The splitters allow for additional GSE sections 403a-403d. Power output is not improved, however, because beam splitters 401a divide the available energy and introduce additional losses.
Figure 5 is the same as the apparatus discussed in Figure 2, except that GSE 503 is rotated at an angle Ω relative to deflector-amplifier section 502. This configuration has drawbacks similar to the configuration displayed in Figure 2.
Figure 6 displays a variety of embodiments that include laser or lasers 601 and GSE 602. These configurations do not include a broad-contact "power supplying" section, and are not limited to a single-mode output.
Thus, a need exists for a type of MOPA with low lateral beam divergence, and which is stable at high power output with a narrow output aperture. SUMMARY OF THE INVENTION
To alleviate the problems inherent in known MOP As, the present invention introduces a master oscillator grating coupled power oscillator (MOGCPA) with a power- oscillator section at an angle to the optical cavity in the master-oscillator section. In one embodiment of the present invention, the MOGCPA contains a single-mode- master-oscillator section with a waveguide defined by a first end and a second end, the first end including a first distributed Bragg reflector mirror, and the second end including a second distributed Bragg reflector mirror, the single-mode-master-oscillator section having a first longitudinal axis. The MOGCPA additionally contains a broad-contact-amplifier section coupled to said single-mode-master-oscillator section by a coupling grating, said broad contact amplifier section including a reflection side, an output side and a second longitudinal axis, the second longitudinal axis being at an angle approximately (90°-β) to said first longitudinal axis, β being in a range between 0° and approximately 20°.
BRIEF DESCRIPTION OF DRAWINGS Figure 1 is a schematic drawing of a cross sectional view of a known MOPA device.
Figure 2 is a schematic drawing of an apparatus previously contemplated by the inventors' employer.
Figure 3 is a schematic drawing of another apparatus previously contemplated by the inventors' employer. Figure 4 is a schematic drawing of another apparatus previously contemplated by the inventors' employer.
Figure 5 is a schematic drawing of another apparatus previously contemplated by the inventors' employer.
Figure 6 is a schematic drawing of three apparatuses previously contemplated by the inventors' employer.
Figure 7 is a schematic drawing of a cross sectional view of a MOGCPA device, according to an embodiment of the present invention. Figure 8 is a schematic diagram of a cross section of a semiconductor laser used as the master-oscillator section of a MOGCPA device, according to an embodiment of the present invention.
Figure 9 is a graph of the coupling coefficients as a function of the thickness of the aftergrating layer.
Figure 10 shows a schematic diagram of a phase-locked array of MOGCPA devices.
Figure 11 is a graph of the coupling coefficient for TE-TE coupling as a function of the angle position of the amplifier section.
Figure 12 is a graph of the coupling coefficients χTE and χ™ as a function of the thickness of the waveguide layer.
DETAILED DESCRIPTION
Embodiments of the present invention involve master-oscillator grating-coupled power amplifiers (MOGCPAs) that emit high-powered single-mode light. In general, an angled distributed Bragg reflector cavity design is used. This design suppresses self- focusing effects and filamentation, and decreases the lateral beam divergence. In all the embodiments discussed herein, the gratings discussed must satisfy the Bragg conditions at lasing wavelength.
Turning now in detail to the drawings, Figure 7 is a schematic drawing of a MOGCPA according to an embodiment of the present invention. In this figure, master- oscillator section 701 is based on a single-mode distributed Bragg reflector (DBR) ridge- laser. Power amplifier section 702 in this embodiment includes a broad contact amplifier section coupled to the master-oscillator section by DBR grating 703.
Master oscillator section 701 includes an optical cavity with a longitudinal axis defined by DBR mirror 701a and 701b placed along the master oscillator's optical axis. The MOGCPA in Figure 7 also includes power-amplifier section 702. Power- amplifier section 702 includes a broad-contact cavity that is coupled to the master oscillator 701 by coupling grating 703. "Broad contact" in this context means that the lateral width of the amplifier section is at least roughly 2 times larger than that for the master oscillator section. The longitudinal axis of power-amplifier section 702 is bounded on one end by coupling grating 703, and on the other end by output face 702a. In one embodiment of the present invention, to achieve a diffraction-limited output divergence of approximately 0.6 degrees, the width of the amplifier section 702 is approximately 100 μm. The output aperture of the power amplifier section 702 (that can be in the range of 5-300 μm) does not depend on the amplifier length, which in one embodiment can have a range of between approximately 1 and approximately 2 mm.
The master oscillator section, in one embodiment of the present invention, can supply seed optical power to the amplifier section that has a distribution approximately matching a quasi-cosine near-field distribution of the broad-contact-amplifier section's zeroth mode.
Power amplifier section 702 is coupled to master oscillator section 701 at an angle to master oscillator section 701. Specifically, the power amplifier's longitudinal axis is placed at an angle approximately (90°-β) to said first longitudinal axis, where βis in a range between 0° and approximately 20°. It should be appreciated by one skilled in the art that the coupling coefficients for
TE-to-TE mode coupling from the master oscillator section to the power-amplifier section, and for TE-to-TM coupling from master oscillator section to the power-amplifier section, χTE and χ™, respectively, is dependent on angle β. The angular dependence for TE-TE coupling is shown in Figure 11. Figure 11 shows a rapid increase of χTE with an increase in the angle β. The maximum value of β is limited by the angle of total internal reflection.
The absolute values of χ and χ depend on the following parameters: (1) the width of the master-oscillator ridge laser (2) the angular position of the grating relative to the axis of the master-oscillator section; (3) the height of the teeth in the coupling grating and (4) the laser's vertical structure. In one embodiment of the present invention, the grating grooves are peφendicular to the bisector of the angle formed by the angle between the axes of the
MO and PA sections. Thus, referring to Figure 7, the grating angle φ equals 45° + β/2. The vertical distribution of the refractive index in the laser structure determines the vertical near- field distribution for the mode, which in turn affects the values of χ and χ .
In one embodiment of the present invention, the coupling grating can have a period that is related to the wavelength λ of the light produced in the master-oscillator section according to the following formula:
A = λ /(2n Sin(45°+β/2)).
Thus, for a wavelength λ of 0.97 μm, and an index of refraction n of 3.6, the grating period will be approximately 0J μm.
The grating can be made by any way known in the art. For example, the grating can be fabricated using reactive ion beam etching, or can be fabricated using ion beam etching.
Figure 8 is a schematic diagram of a cross section of a semiconductor laser used as the master-oscillator section of a MOGCPA device, according to an embodiment of the present invention. The semiconductor laser contains substrate 801 on which consecutive layers of various materials are grown.
In the embodiment shown in Figure 8, an n-type cladding 802 is grown on substrate 801. This n-type cladding can be any n-type cladding known to be suitable for such a semiconductor laser. For example, n-type cladding 802 can include a compound of aluminum gallium arsenide. This n-type cladding can include Al0 6Gao4As with an electron concentration of 1018 cm"3.
On top of n-type cladding lies bottom waveguide 803. Bottom waveguide 803, can be any waveguide material known to be suitable for such lasers. For example, in one embodiment of the present invention, bottom waveguide 803 can include an aluminum gallium arsenide compound. For example, bottom waveguide 803 can include Alo iGao As.
A series of quantum wells 804 are grown on top of bottom waveguide 803. These quantum wells can be any material known to be suitable for such a puφose. For example, in one embodiment of the present invention, these quantum wells can be InGaAs quantum wells, distributed between layers of GaAs that have a thickness of 10 and 20 nm, as shown in Figure 8.
Top waveguide 805 is grown on the quantum well layers. Top waveguide 805, in one embodiment of the present invention, is identical to bottom waveguide 803, but can be any material known in the art to be suitable for such a laser.
On top waveguide 805, grating 8is shown schematically. Grating 806 is, in one embodiment of the present invention, inside the waveguide. The grating can be made from any materials practicable to make a grating. For example, in Fig. 8 grating 806 is formed GaAs and AloGao.4As Aftergrating layer 807 is grown on top of grating layer 806. This aftergrating layer can be within a range of thicknesses between 0.05 and 0J5 μm. The thickness of the aftergrating layer affects the coupling coefficients for TE and TM modes coupled from the MO section into the power-amplifier section of the device, as shown in Figure 9. In one embodiment of the present invention, the aftergrating layer should not exceed 0J5 μm to avoid vertical non-zero modes being generated during the device's operation. At the maximum tolerable thickness 0J5 μm, the value of χTE is doubled and χ™ is halved in comparison with an arrangement having no aftergrating layer.
On top of aftergrating layer 807 is p-type cladding 808. This cladding can be any practicable p-type cladding. For example, p-type cladding can contain Al0.6Gao.4As or Ino.48Gao.52P with a hole concentration of 1018 cm"3.
In one embodiment of the present invention, the laser structure has an asymmetric waveguide with a "bottom" part of approximately 0J 5 μm thickness, and with a "top" waveguide part 0.05 μm thick, and adjacent to the grating. It should be appreciated that the terms "top" and "bottom" are used in relation to the drawings, and do not necessarily imply a definite spatial direction in fabrication or use. Additionally, it should be appreciated by one skilled in the art that, although a specific sequence of grown layers is shown in Figure 9, the layers can be grown in any order practicable. For example, the n-type cladding and p- type cladding shown in Figure 8 can be exchanged with each other.
The laser can be made by any method known in the art. For example, AlGaAs or InGaPAs growth technology can be used.
Figure 10 shows a schematic diagram of a phase-locked array of MOGCPA devices with angled PA sections, according to one embodiment of the present invention. As shown in Figure 10, the master-oscillator section of the apparatus contains semiconductor laser 1001 that has a waveguide divided into subsections 1001a, 1001b, 1001c and lOOld. The subsections are defined by semi-transparent DBR mirrors 1002a, 1002b and 1002c. Thus, the entire master-oscillator section has a structure that is defined at one end by DBR mirror 1003, and at another end by DBR mirror 1004. Between the two ends, the master-oscillator contains semitransparent mirrors 1002a through 1002c. End DBR mirrors have a reflectivity that is high relative to semitransparent mirrors 1002a through 1002c. One skilled in the art would appreciate that the phase locked array can contain an arbitrary number of subsections; four are displayed in Figure 10 for convenience only, and are labeled 1005a through 1005d.
Each subsection 1001a through 100 Id is coupled to a power amplifier section as discussed above by a coupling grating.
Fig. 11 shows the dependence of the coupling coefficient for TE to TE mode on angle β of Fig. 2.
Figure 12 is a graph of the coupling coefficients χTE and χ™ as a function of the thickness of the waveguide layer for a MOGCPA device according to an embodiment of the present invention. As can be seen from the graph, the coupling coefficients decrease as the thickness of the bottom waveguide layer increases, at least up to JO μm.
The present invention has been described in terms of several embodiments solely for the puφose of illustration. Persons skilled in the art will recognize from this description that the invention is not limited to the embodiments described, but may be practiced with modifications and alterations limited only by the spirit and scope of the appended claims. For example, different dimensions can be chosen within the specified constraints, different grating angles can be chosen, etc.

Claims

WHAT IS CLAIMED IS:
1. An apparatus having a master oscillator region coupled to an amplifier region, the apparatus comprising: (a) a single-mode master-oscillator section with a waveguide defined by a first end and a second end, the first end including a first distributed Bragg reflector mirror, and the second end including a second distributed Bragg reflector mirror, said single-mode-master-oscillator section having a first longitudinal axis; and (b) a broad-contact amplifier section coupled to said single-mode-master- oscillator section by a coupling grating disposed within the waveguide of said single-mode-master oscillator section, said broad-contact amplifier section including an output side and a second longitudinal axis, the second longitudinal axis being at an angle approximately (90°-β) to said first longitudinal axis, β being in a range between 0° and approximately 20°.
2. The apparatus of claim 1, wherein said coupling grating is disposed across said amplifier section with grating grooves at an approximate angle 45°+β/2 to the first longitudinal axis.
3. The apparatus of claim 1, wherein said single-mode master-oscillator section is configured to provide a distribution of seed optical power approximately matching a quasi-cosine near field distribution of the broad-contact-amplifier section's zeroth mode.
4. The apparatus of claim 1, wherein the second longitudinal axis has a length defined by the coupling grating and the output facet of said broad-contact amplifier section, the length being between approximately one and approximately two millimeters, and wherein the waveguide in said single-mode-master-oscillator section has a length of between approximately 0.02 centimeters and approximately 0J0 centimeters.
5. The apparatus of claim 1, wherein said broad-contact-amplifier section has a width approximately equal to 100 microns, and having an output with a diffraction- limited divergence approximately equal to 0.6°.
6. The apparatus of claim 1, wherein said single-mode-master-oscillator section includes a waveguide with a bottom part that has a thickness of between approximately 0J0 microns and 0J0 microns, and wherein the waveguide has a top part adjacent to the coupling grating, the top part being between approximately 0.01 microns and 0J0 microns.
7. The apparatus of claim 6, wherein said single-mode-master-oscillator section further includes an aftergrating waveguide layer with a thickness between approximately 0.04 microns and approximately 0J6 microns.
8. An apparatus comprising: (a) a single-mode master-oscillator region having a waveguide defined on a first end by a highly-reflective distributed Bragg reflector (DBR) mirror, and on a second end by a highly reflective DBR mirror, and having at least one semitransparent DBR mirror between the first end and the second end, the waveguide having a first longitudinal axis; (b) a first broad-contact amplifier section coupled to said single-mode-master- oscillator section by a first coupling grating disposed within the waveguide of said single-mode-master-oscillator region, and placed between said first end and said at least one semi-transparent DBR mirror, said broad contact amplifier including, an output side and a second longitudinal axis, the second longitudinal axis being at an angle approximately 90°-β to said first longitudinal axis, where β lies in a range between 0° and approximately 20°; and
(c) a second broad-contact-amplifier section coupled to said single-mode- master-oscillator section by a coupling grating placed between said second end and said at least one semitransparent DBR mirror, said broad contact amplifier including an output side and a third longitudinal axis, the third longitudinal axis being at an angle approximately 90°-β' to said first longitudinal axis, where β' lies in a range between 0° and approximately 20°.
9. The apparatus of claim 8, wherein said first coupling grating is disposed across said amplifier section at an approximate angle 45°+β/2 to the first longitudinal axis.
10. The apparatus of claim 8, wherein said single-mode-master-oscillator section includes a waveguide with a bottom part that has a thickness of between approximately 0J0 microns and 0J0 microns, and wherein the waveguide has a top part adjacent to the coupling grating, the top part being between approximately 0.01 microns and 0J0 microns.
11. The apparatus of claim 10, wherein said single-mode-master-oscillator section further includes an aftergrating waveguide layer with a thickness between approximately 0.04 microns and approximately 0J6 microns.
PCT/US2000/012708 1999-05-10 2000-05-10 Master oscillator grating coupled power amplifier with angled amplifier section WO2000072450A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU70499/00A AU7049900A (en) 1999-05-10 2000-05-10 Master oscillator grating coupled power amplifier with angled amplifier section

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US13339399P 1999-05-10 1999-05-10
US60/133,393 1999-05-10
US09/468,396 US6556611B1 (en) 1999-05-10 1999-12-20 Wide stripe distributed bragg reflector lasers with improved angular and spectral characteristics
US09/468,396 1999-12-20
US09/546,086 2000-04-10
US09/546,086 US6459715B1 (en) 1999-05-10 2000-04-10 Master-oscillator grating coupled power amplifier with angled amplifier section

Publications (2)

Publication Number Publication Date
WO2000072450A2 true WO2000072450A2 (en) 2000-11-30
WO2000072450A3 WO2000072450A3 (en) 2001-04-19

Family

ID=27384421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/012708 WO2000072450A2 (en) 1999-05-10 2000-05-10 Master oscillator grating coupled power amplifier with angled amplifier section

Country Status (2)

Country Link
AU (1) AU7049900A (en)
WO (1) WO2000072450A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077700A2 (en) * 2001-03-22 2002-10-03 Infinite Photonics, Inc. Controlling passive facet reflections
US7194016B2 (en) 2002-03-22 2007-03-20 The Research Foundation Of The University Of Central Florida Laser-to-fiber coupling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103456A (en) * 1990-07-30 1992-04-07 Spectra Diode Laboratories, Inc. Broad beam laser diode with integrated amplifier
US5349602A (en) * 1993-03-15 1994-09-20 Sdl, Inc. Broad-area MOPA device with leaky waveguide beam expander

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103456A (en) * 1990-07-30 1992-04-07 Spectra Diode Laboratories, Inc. Broad beam laser diode with integrated amplifier
US5349602A (en) * 1993-03-15 1994-09-20 Sdl, Inc. Broad-area MOPA device with leaky waveguide beam expander

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OSINSKI J S ET AL: "HIGH-POWER, SPECTRALLY COHERENT ARRAY OF MONOLITHIC FLARED AMPLIFIER-MASTER OSCILLATOR POWER AMPLIFIERS (MFA-MOPAS)" IEEE PHOTONICS TECHNOLOGY LETTERS,US,IEEE INC. NEW YORK, vol. 6, no. 10, 1 October 1994 (1994-10-01), pages 1185-1187, XP000476936 ISSN: 1041-1135 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077700A2 (en) * 2001-03-22 2002-10-03 Infinite Photonics, Inc. Controlling passive facet reflections
WO2002077700A3 (en) * 2001-03-22 2003-03-20 Infinite Photonics Inc Controlling passive facet reflections
US7194016B2 (en) 2002-03-22 2007-03-20 The Research Foundation Of The University Of Central Florida Laser-to-fiber coupling

Also Published As

Publication number Publication date
AU7049900A (en) 2000-12-12
WO2000072450A3 (en) 2001-04-19

Similar Documents

Publication Publication Date Title
US6459715B1 (en) Master-oscillator grating coupled power amplifier with angled amplifier section
US6339607B1 (en) Method and apparatus for modulated integrated optically pumped vertical cavity surface emitting lasers
US6768758B1 (en) Semiconductor laser, semiconductor optical amplifier, and production method thereof
US6760359B2 (en) Grating-outcoupled surface-emitting lasers with flared gain regions
US7450624B2 (en) Grating—outcoupled surface-emitting lasers
US20020176464A1 (en) InGaP etch stop
US6445724B2 (en) Master oscillator vertical emission laser
US20020126942A1 (en) Laterally coupled wave guides
US5272711A (en) High-power semiconductor laser diode
US9077144B2 (en) MOPA laser source with wavelength control
US20070258495A1 (en) Semiconductor Laser Diode, Semiconductor Optical Amplifier, and Optical Communication Device
JP2003304033A (en) Surface mission laser device provided with perpendicular emitter that can be optically pumped
JP2004273906A (en) Surface emitting laser element integral with optical amplifier
US20050169340A1 (en) Optically pumped edge-emitting semiconductor laser
US20020192850A1 (en) Laser diode graded index layer doping
WO2018197015A1 (en) Curved waveguide laser
US6647048B2 (en) Grating-outcoupled surface-emitting lasers using quantum wells with thickness and composition variation
US6636547B2 (en) Multiple grating-outcoupled surface-emitting lasers
JPH10163563A (en) Semiconductor laser
WO2000072450A2 (en) Master oscillator grating coupled power amplifier with angled amplifier section
US6563983B2 (en) Laser diode module
JPH0319292A (en) Semiconductor laser
WO2008103679A2 (en) Vertically emitting laser and method of making the same
US6711199B2 (en) Laser diode with an internal mirror
US20240113504A1 (en) Extended-cavity diode laser component and method for producing same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase in:

Ref country code: JP