WO2000076038A1 - Hermetically sealed semiconductor laser device - Google Patents

Hermetically sealed semiconductor laser device Download PDF

Info

Publication number
WO2000076038A1
WO2000076038A1 PCT/US2000/011928 US0011928W WO0076038A1 WO 2000076038 A1 WO2000076038 A1 WO 2000076038A1 US 0011928 W US0011928 W US 0011928W WO 0076038 A1 WO0076038 A1 WO 0076038A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
seal
laser
seal cap
cap
Prior art date
Application number
PCT/US2000/011928
Other languages
French (fr)
Inventor
Constance J. Chang-Hasnain
Renato Dato
Philip Worland
Rang-Chen Yu
Original Assignee
Bandwidth9, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bandwidth9, Inc. filed Critical Bandwidth9, Inc.
Priority to AU45025/00A priority Critical patent/AU4502500A/en
Priority to CA002375692A priority patent/CA2375692A1/en
Priority to EP00926503A priority patent/EP1183759A1/en
Publication of WO2000076038A1 publication Critical patent/WO2000076038A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/0222Gas-filled housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0201Separation of the wafer into individual elements, e.g. by dicing, cleaving, etching or directly during growth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0208Semi-insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18363Structure of the reflectors, e.g. hybrid mirrors comprising air layers
    • H01S5/18366Membrane DBR, i.e. a movable DBR on top of the VCSEL

Definitions

  • This invention relates generally to semiconductor laser assemblies, and more particularly to semiconductor lasers that hermetically sealed with a seal cap.
  • a variety of devices are formed on wafers including but not limited to lasers, photodetectors, filters electronic circuits and MEMs. These devices are formed on the wafers utilizing a variety of standard multi-processing steps and procedures. The wafer is typically moved from one process station to another until the final device is completed on the wafer. The devices are then tested. Following testing, the wafer is diced and individual devices are then mounted, electrical connections are made and then there is a final sealing.
  • Laser diodes typically include an n-type substrate, an active layer, a p-type clad layer and a p-type cap layer that is laminated over the n-type substrate.
  • the n-type substrate is formed of AlGaAs and the active layer is formed of GaAs.
  • An electrode is selectively formed on the obverse surface of the laser diode in an opening of the p-type cap layer.
  • a rear electrode is formed on the reverse surface of the substrate.
  • the resulting structure is a laser diode chip more commonly known as a double hetero structure (DM structure). This laser diode chip can be mounted on a radiation plate. The assembly is then encapsulated to hermetically seal the device.
  • DM structure double hetero structure
  • the output beam has a power 5 mW and an oscillation wavelength of 780 nm is continuously oscillated in a state close to its maximum rating.
  • a conical broken area with a bottom diameter is formed in the encapsulating resin layer in the vicinity of the light-emitting end face after about 1000 hours of operation. Additionally, the encapsulating resins layer often melts and breaks.
  • Another object of the present invention is to provide micro- optomechanical, micro-electromechanical and micro-optoelectrical devices that are sealed at the wafer level.
  • a further object of the invention is to provide a wafer assembly of a plurality of micro-optomechanical, micro-electromechanical or micro- optoelectrical devices formed and individually sealed on the wafer.
  • Yet another object of the present invention is to provide a wafer sealed tunable semiconductor laser assembly.
  • Figure 2(a) is an exploded perspective view of one embodiment of the present invention with a micro-optomechanical, micro-electromechanical or micro-optoelectronic device positioned on a substrate with a seal cap.
  • Figure 3 is a top down perspective view of one embodiment of the present invention illustrating a microlaser positioned on a substrate and sealed with a seal cap made of a transparent material.
  • Figure 4 is a perspective view of an interior of a seal cap used with the present invention illustrating the inclusion of contact pads that are formed on an interior surface of the seal cap.
  • Figure 5 is an exploded perspective view on one embodiment of a wafer assembly of the present invention illustrating a substrate with a plurality of micro-optomechanical, micro-electromechanical or micro-optoelectronic devices and a seal cap with a plurality of contact pads.
  • Figure 6 is a perspective view of the wafer assembly of Figure 5 with the seal cap coupled to the substrate.
  • Figure 7 is a perspective view of the wafer assembly of Figure 6 illustrating the sawing of the wafer assembly into individual components.
  • Figure 8 is a side perspective view of a micro-optoelectronic device that is VCSEL.
  • Figure 9 illustrates one embodiment of the present invention with a heat sink coupled to the a VCSEL.
  • substrate 12 can include from 1 to several thousand individual devices 14.
  • the number of devices 14 can vary. On any one substrate 12, it is preferred that all individual devices 14 are identical. However, different types of devices 14 can be formed on the same substrate 12.
  • One suitable device 14 is a microlaser including but not limited to a VCSEL, as more fully described hereafter.
  • each device 14 positioned on substrate 12 has a seal cap 16 with a seal ring 18.
  • Seal cap 16 is distanced from devices 14 and is not positioned on a surface of device 14.
  • Seal rings 18 are joined to a seal surface 20 of each device 14 and form a hermetic seal that is impervious to air.
  • the hermetic seal has a leak rate of no more than lxl 0 "7 cc of air/sec at 1 atm. differential pressure.
  • a joining material is used to seal cap 16 and substrate 12, Suitable joining materials include but are not limited to solder, adhesives and the like.
  • the joining material is preferably electrically conductive.
  • Cap 16 can be made of a polymer, a multi-layer ceramic, a single crystal material, or another semiconductor device. Additionally, cap 16 can include conductive traces. The conductive traces can be formed by methods well known to those skilled in the art. Deposited onto the top of substrate 12, which is electrically insulating, is a pattern of highly conductive material. The conductive pattern on the top side of substrate 12 defines the connections pads 52 and 53. Deposited on the opposite, bottom side of substrate 12 is a second conductive pattern of highly conductive material. This defines two contact pads 28 and 30 and the seal ring 18. Contact pads 52 and 53 are coated with a layer of solder or conductive adhesive to provide the electrical contact to contact pads 22 and 24. Seal ring 18 is also coated with the same layer of solder or conductive adhesive to provide the seal. Seal ring 18 can be coated with a different material that applied to contact pads 52 and 53.
  • Contact pads 52 and 53 are electrically connected to contact pads 22 and 24 by apertures 32 and 51 that are filled with an electrically conductive material. This material also seals apertures 32 and 51. In this manner, contact pads 52 and 53 serve as external terminals to device 14.
  • Sealing cap 16 and substrate 12 on a wafer scale offers numerous advantages.
  • Device 14 is protected from environmental degradation at a early stage in the fabrication process. Additionally, wafer level testing is done without contaminating devices 14.
  • Sealing devices 14 on a wafer level reduces degradation of device 14 by oxygen, moisture and the like. The delicate structures of any device 14 are protected from degradation at a very early stage. Devices 14 are then less fragile and easier to handle due to the early sealing.
  • an inert gas can be sealed inside the cavity to improve thermal performance and to dampen vibration on a cantilever 40.
  • Each device 14 includes at least first and second electrical contact pads 22 and 24.
  • contact pads can be positioned at a surface of semiconductor laser 14, preferably adjacent to the active area of the laser.
  • a semiconductor laser 14 of the present invention is a VCSEL, illustrated in Figure 3.
  • VCSEL VCSEL
  • One preferred embodiment of a suitable VCSEL 14 is described below. It will be appreciated that the present invention is not limited to VCSEL devices 14.
  • cap 16 includes a surface 26, shown in Figure 4, that becomes an interior surface when device 14 is sealed with cap 16. As previously mentioned, surface 26 remains distanced from the top of device 14.
  • first and second contact pads 28 and 30 are formed on surface 26.
  • a semiconductor device 31 including but not limited to one or more tunable or non-tunable photodiodes, etalons, tunable or non-tunable filters, tunable or non- tunable attenuators or semiconductor devices with driver circuitry.
  • device 14 is a microlaser and semiconductor device 31 is a photodiode or an etalon. A more complete description of this embodiment is described in U.S. Patent Application, Attorney Docket no. 21 123-701 , filed on the same date as this application and incorporated herein by reference.
  • device 14 is a laser as disclosed in U.S. Patent Application,
  • Contact pads 28 and 30 are positioned to be electrically engaged with contact pads 22 and 24.
  • contact pads 22 and 24 arc made of a first material, while contact pads 28 and 30 arc made of a second, different material.
  • Suitable materials include but are not limited to, tin, gold and the like.
  • the first and second materials of contact pads 22, 24, 28 and 30 can form an alloy when joined together.
  • Seal cap includes a conductive via 32 that includes an electrically conductive material. Contact pads 24 and 26, as well as device 14 arc electrically coupled to conductive via 32.
  • EPI layers arc deposited on surface 20 of substrate 12.
  • Substrate is made of silicon, InP, GaAs, and the like.
  • Substrate 12 goes from processing to processing station until devices 14 are made.
  • Another wafer is used as cap 16.
  • Cap 16 is made of silicon, InP, GaAs, or any single crystal material.
  • Vias 32 are drilled in cap 16 and are then filled with a conductor such as metal.
  • Preferred conductors include but are not limited to gold, tin, lead, silver and the like.
  • Substrate 12 and cap 16 are metallized and etched to create a desired pattern, as illustrated in Figure 5. This is then followed by deposition of the joining material in seal ring 18 and also on contact pads 22, 24, 28 and 30.
  • Substrate 12 and cap 16 are aligned and heated in a furnace where the joining material is cured if it is an epoxy, of melts if it is a solder.
  • a downward pressure can be applied during the sealing step.
  • a cool down process then begins.
  • FIG 6 illustrates the sealed wafer assembly 10.
  • Sealed wafer assembly 10 can have atmosphere, an inert gas, or any other type of gas in individual sealed assemblies of assembly 10. Sealed wafer assembly 10 is then separated into individual components or arrays of components by sawing, scribing and breaking and the like, as shown in Figure 7. Other methods of separation include but are not limited to laser cutting.
  • device 14 is a tunable semiconductor laser with a VCSEL laser 14 that is a cantilever apparatus that uses an electrostatic force that pulls on a cantilever arm. The mechanical deflection resulting from this electrostatic force is used to change the length of a Fabry-Perot microcavity of laser 14 and consequently to the resonance wavelength.
  • Laser 34 has a cantilever structure consisting of a base 36, an arm 38 and an active head 40.
  • the bulk of cantilever structure may consist of a plurality of reflective layers 42 which form a distributed Bragg reflector (DBR).
  • Layers 42 can be formed of different materials including but not limited to AlGaAs. Different compositional ratios are used for individual layers 42, e.g., Al 09 Ga 9] As/Al 58 Ga 42 As.
  • the topmost layer of layers 42 is heavily doped to ensure good contact with an electrical tuning contact 44 deposited on top of the cantilever structure.
  • the actual number of layers 42 may vary from 1 to 20 and more, depending on the desired reflectivity of the DBR. Furthermore, any suitable reflecting material other than AlGaAs may be used to produce layers 42. Active head 40 is made of layers. However, arm 38 and base 36 do not need to be made of layers.
  • Base 36 can have a variety of different geometric configurations and large enough to maintain dimensional stability of the cantilever structure.
  • the width of arm 38 ranges typically from 2 to 8 microns while its length is 25 to 100 mu m or more.
  • the stiffness of arm 38 increases as its length decreases. Consequently, shorter cantilevers require greater forces to achieve bending but shorter cantilevers also resonate at a higher frequency.
  • the preferred diameter of active head 40 falls between 5 and 40 microns. Other dimensions are suitable.
  • Electrical tuning contact 44 resides on all or only a portion of a top of the cantilever structure. Electrical tuning contact 44 be sufficiently large to allow application of a first tuning voltage V bland.
  • a support 46 rests on a substrate 48 across which a voltage can be sustained.
  • Substrate 48 can include a second DBR 50. Support 46 can be made of the same material as layers 42. A voltage difference between layers 42 and substrate 48 causes a deflection of arm 38 towards substrate 48. If layers 42 and substrate 48 are oppositely doped, then a reverse bias voltage can be established between them.
  • Substrate 48 is sufficiently thick to provide mechanical stability to the entire cantilever apparatus. Inside substrate 48 and directly under active head 40 are one or more sets of reflective layers with each set forming a second DBR. A more complete description of the cantilever apparatus is disclosed in U.S. Patent No. 5,629,951 , incorporated herein by reference.
  • device 14 can be positioned on substrate 12 which is a heatsink can then be sealed with cap 16.
  • device 14 is a semiconductor laser, including but not limited to a VCSEL
  • a window is formed in heatsink 12.
  • Heatsink 12 is an excellent thermal conductivity and electrical insulator.
  • positioned on surface 20, it can be a photodetector or other device, as previously described.

Abstract

A wafer assembly that includes a wafer substrate. A plurality of micro-optomechanical or micro-optoelectrical devices are positioned on a surface of the wafer substrate. Each micro-optomechanical or micro-optoelectrical device has a seal surface. A plurality of seal caps are coupled to the micro-optomechanical or micro-optoelectrical devices. Each seal cap has a seal ring. The seal cap seal ring is coupled to a seal surface of the micro-optomechanical or micro-optoelectrical device to form a hermetic seal.

Description

HERMETICALLY SEALED SEMICONDUCTOR LASER DEVICE
BACKGROUND OF THE INVENTION
Field of the Invention
This invention relates generally to semiconductor laser assemblies, and more particularly to semiconductor lasers that hermetically sealed with a seal cap.
Description of Related Art
A variety of devices are formed on wafers including but not limited to lasers, photodetectors, filters electronic circuits and MEMs. These devices are formed on the wafers utilizing a variety of standard multi-processing steps and procedures. The wafer is typically moved from one process station to another until the final device is completed on the wafer. The devices are then tested. Following testing, the wafer is diced and individual devices are then mounted, electrical connections are made and then there is a final sealing.
This type of wafer scale manufacturing exposes the individual devices to contaminants and corrosive elements found in the atmosphere because of the lengthy time it takes to complete the manufacturing process. Corrosive elements, such as moisture and oxygen, can cause a degradation in the device that is made.
Laser diodes typically include an n-type substrate, an active layer, a p-type clad layer and a p-type cap layer that is laminated over the n-type substrate. In one such semiconductor laser, the n-type substrate is formed of AlGaAs and the active layer is formed of GaAs. An electrode is selectively formed on the obverse surface of the laser diode in an opening of the p-type cap layer. A rear electrode is formed on the reverse surface of the substrate. The resulting structure is a laser diode chip more commonly known as a double hetero structure (DM structure). This laser diode chip can be mounted on a radiation plate. The assembly is then encapsulated to hermetically seal the device. Different methods of encapsulation include the use of metal packages or caps with a light transmitting window, lenses or optical fibers. Wafer scale encapsulation is used on low power light emitting devices where the devices are typically encapsulated with an encapsulating resin layer typically formed of a transparent epoxy resin or the like.
Because the epoxy resin abuts directly against a light-emitting end face of the laser diode from which an output beam is emitted, the resin can become decomposed due to the heat from the output beam. As the degradation increases, the light emission efficiency of the laser diode declines. In some cases, the promoted decomposition results in the formation of a cavity in the encapsulating resin layer in the vicinity of the light-emitting end face.
In one diode laser chip, the output beam has a power 5 mW and an oscillation wavelength of 780 nm is continuously oscillated in a state close to its maximum rating. A conical broken area with a bottom diameter is formed in the encapsulating resin layer in the vicinity of the light-emitting end face after about 1000 hours of operation. Additionally, the encapsulating resins layer often melts and breaks.
There is a need for improvement in wafer scale manufacturing processes and procedures along with the resultant devices that are created. There is a further need to seal the individual devices on the wafer before corrosive environment elements create a degradation.
SUMMARY OF THE INVENTION
Accordingly, an object of the present invention is to provide sealed micro-optomechanical, micro-electromechanical and micro-optoelectrical devices.
Another object of the present invention is to provide micro- optomechanical, micro-electromechanical and micro-optoelectrical devices that are sealed at the wafer level. A further object of the invention is to provide a wafer assembly of a plurality of micro-optomechanical, micro-electromechanical or micro- optoelectrical devices formed and individually sealed on the wafer.
Yet another object of the present invention is to provide a wafer sealed tunable semiconductor laser assembly.
These and other objects of the present invention are achieved in a wafer assembly that includes a wafer substrate. A plurality of micro-optomechanical, micro-electromechanical or micro-optoelectrical devices are positioned on a surface of the wafer substrate. Each micro-optomechanical, micro- electromechanical or micro-optoelectrical device has a seal surface. A plurality of seal caps are coupled to the micro-optomechanical, micro-electromechanical or micro-optoelectrical devices. Each seal cap has a seal ring. The seal cap seal ring is coupled to a seal surface of the micro-optomechanical, micro- electromechanical or micro-optoelectrical device to form a hermetic seal. In another embodiment, a tunable semiconductor laser assembly includes a laser with a seal surface. A semiconductor active region is positioned between upper and lower confining regions of an opposite type semiconductor material. First and second reflective members are positioned at opposing edges of the active and confining regions. A seal cap is provided which includes a seal ring. The seal cap seal ring is coupled to the seal surface to form a hermetic seal.
In another embodiment, a tunable semiconductor laser assembly includes a heatsink. A laser is coupled to the heatsink. The laser includes a semiconductor active region positioned between upper and lower confining regions of opposite type semiconductor material. First and second reflective members are positioned at opposing edges of the active and confining regions. A seal cap includes a seal ring. The seal cap seal ring is coupled to the seal surface to form a hermetic seal.
BRIEF DESCRIPTION OF THE FIGURES Figure 1 is a perspective view of one embodiment of a wafer assembly of the present invention.
Figure 2(a) is an exploded perspective view of one embodiment of the present invention with a micro-optomechanical, micro-electromechanical or micro-optoelectronic device positioned on a substrate with a seal cap.
Figure 2(b) is a side perspective view of the embodiment illustrated in Figure 2(a).
Figure 3 is a top down perspective view of one embodiment of the present invention illustrating a microlaser positioned on a substrate and sealed with a seal cap made of a transparent material.
Figure 4 is a perspective view of an interior of a seal cap used with the present invention illustrating the inclusion of contact pads that are formed on an interior surface of the seal cap.
Figure 5 is an exploded perspective view on one embodiment of a wafer assembly of the present invention illustrating a substrate with a plurality of micro-optomechanical, micro-electromechanical or micro-optoelectronic devices and a seal cap with a plurality of contact pads.
Figure 6 is a perspective view of the wafer assembly of Figure 5 with the seal cap coupled to the substrate. Figure 7 is a perspective view of the wafer assembly of Figure 6 illustrating the sawing of the wafer assembly into individual components.
Figure 8 is a side perspective view of a micro-optoelectronic device that is VCSEL.
Figure 9 illustrates one embodiment of the present invention with a heat sink coupled to the a VCSEL.
DETAILED DESCRIPTION
Referring to Figure 1, a wafer assembly 10 includes a wafer substrate 12 and a plurality of micro-optomechanical, micro-electromechanical, micro- optoelectronic, micro-optical or micro-electronic devices 14, positioned on a surface 16 of substrate 12. Devices 14 include but are not limited to lasers, particularly tunable VCSEL's, photodetectors, filters, etalons, circuits, heatsinks and the like. Devices 14 are made by conventional methods well know to those skilled in the art including but not limited to, chemical vapor deposition (CVD), molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), wet and dry etching processes, regrowth and the like.
In one embodiment, substrate 12 can include from 1 to several thousand individual devices 14. The number of devices 14 can vary. On any one substrate 12, it is preferred that all individual devices 14 are identical. However, different types of devices 14 can be formed on the same substrate 12. One suitable device 14 is a microlaser including but not limited to a VCSEL, as more fully described hereafter.
As shown in Figures 2(a) and 2(b), each device 14 positioned on substrate 12 has a seal cap 16 with a seal ring 18. Seal cap 16 is distanced from devices 14 and is not positioned on a surface of device 14. Seal rings 18 are joined to a seal surface 20 of each device 14 and form a hermetic seal that is impervious to air. In one embodiment, the hermetic seal has a leak rate of no more than lxl 0"7cc of air/sec at 1 atm. differential pressure.
A joining material is used to seal cap 16 and substrate 12, Suitable joining materials include but are not limited to solder, adhesives and the like. The joining material is preferably electrically conductive.
Cap 16 can be made of a polymer, a multi-layer ceramic, a single crystal material, or another semiconductor device. Additionally, cap 16 can include conductive traces. The conductive traces can be formed by methods well known to those skilled in the art. Deposited onto the top of substrate 12, which is electrically insulating, is a pattern of highly conductive material. The conductive pattern on the top side of substrate 12 defines the connections pads 52 and 53. Deposited on the opposite, bottom side of substrate 12 is a second conductive pattern of highly conductive material. This defines two contact pads 28 and 30 and the seal ring 18. Contact pads 52 and 53 are coated with a layer of solder or conductive adhesive to provide the electrical contact to contact pads 22 and 24. Seal ring 18 is also coated with the same layer of solder or conductive adhesive to provide the seal. Seal ring 18 can be coated with a different material that applied to contact pads 52 and 53.
Contact pads 52 and 53 are electrically connected to contact pads 22 and 24 by apertures 32 and 51 that are filled with an electrically conductive material. This material also seals apertures 32 and 51. In this manner, contact pads 52 and 53 serve as external terminals to device 14.
Sealing cap 16 and substrate 12 on a wafer scale offers numerous advantages. Device 14 is protected from environmental degradation at a early stage in the fabrication process. Additionally, wafer level testing is done without contaminating devices 14. Sealing devices 14 on a wafer level reduces degradation of device 14 by oxygen, moisture and the like. The delicate structures of any device 14 are protected from degradation at a very early stage. Devices 14 are then less fragile and easier to handle due to the early sealing. During the sealing process, an inert gas can be sealed inside the cavity to improve thermal performance and to dampen vibration on a cantilever 40.
Each device 14 includes at least first and second electrical contact pads 22 and 24. When device 14 is a semiconductor laser, contact pads can be positioned at a surface of semiconductor laser 14, preferably adjacent to the active area of the laser. One specific type of a semiconductor laser 14 of the present invention is a VCSEL, illustrated in Figure 3. One preferred embodiment of a suitable VCSEL 14 is described below. It will be appreciated that the present invention is not limited to VCSEL devices 14.
Referring now to Figure 3, cap 16 includes a surface 26, shown in Figure 4, that becomes an interior surface when device 14 is sealed with cap 16. As previously mentioned, surface 26 remains distanced from the top of device 14. Referring now to Figure 4, first and second contact pads 28 and 30 are formed on surface 26. Optionally formed or mounted on surface 26 is a semiconductor device 31 including but not limited to one or more tunable or non-tunable photodiodes, etalons, tunable or non-tunable filters, tunable or non- tunable attenuators or semiconductor devices with driver circuitry. In one embodiment, device 14 is a microlaser and semiconductor device 31 is a photodiode or an etalon. A more complete description of this embodiment is described in U.S. Patent Application, Attorney Docket no. 21 123-701 , filed on the same date as this application and incorporated herein by reference. In other embodiments, device 14 is a laser as disclosed in U.S. Patent Application,
Attorney Docket No. 21 123-702, filed on the same date as this application and incorporated herein by reference.
Contact pads 28 and 30 are positioned to be electrically engaged with contact pads 22 and 24. In one embodiment, contact pads 22 and 24 arc made of a first material, while contact pads 28 and 30 arc made of a second, different material. Suitable materials include but are not limited to, tin, gold and the like.
The first and second materials of contact pads 22, 24, 28 and 30 can form an alloy when joined together.
Seal cap includes a conductive via 32 that includes an electrically conductive material. Contact pads 24 and 26, as well as device 14 arc electrically coupled to conductive via 32.
Referring now to Figures 5-7, the assembly of substrate with cap 16 to form wafer assembly 10 is illustrated. In one embodiment, EPI layers arc deposited on surface 20 of substrate 12. Substrate is made of silicon, InP, GaAs, and the like. Substrate 12 goes from processing to processing station until devices 14 are made. Another wafer is used as cap 16. Cap 16 is made of silicon, InP, GaAs, or any single crystal material.
Vias 32 are drilled in cap 16 and are then filled with a conductor such as metal. Preferred conductors include but are not limited to gold, tin, lead, silver and the like. Substrate 12 and cap 16 are metallized and etched to create a desired pattern, as illustrated in Figure 5. This is then followed by deposition of the joining material in seal ring 18 and also on contact pads 22, 24, 28 and 30. Substrate 12 and cap 16 are aligned and heated in a furnace where the joining material is cured if it is an epoxy, of melts if it is a solder. As previously mentioned, other types of joining materials can be utilized and the actual mechanism of sealing in the furnace depends on the type of joining material. A downward pressure can be applied during the sealing step. A cool down process then begins. Figure 6 illustrates the sealed wafer assembly 10. Sealed wafer assembly 10 can have atmosphere, an inert gas, or any other type of gas in individual sealed assemblies of assembly 10. Sealed wafer assembly 10 is then separated into individual components or arrays of components by sawing, scribing and breaking and the like, as shown in Figure 7. Other methods of separation include but are not limited to laser cutting.
In one embodiment of the invention, illustrated in Figure 8, device 14 is a tunable semiconductor laser with a VCSEL laser 14 that is a cantilever apparatus that uses an electrostatic force that pulls on a cantilever arm. The mechanical deflection resulting from this electrostatic force is used to change the length of a Fabry-Perot microcavity of laser 14 and consequently to the resonance wavelength.
Laser 34 has a cantilever structure consisting of a base 36, an arm 38 and an active head 40. The bulk of cantilever structure may consist of a plurality of reflective layers 42 which form a distributed Bragg reflector (DBR). Layers 42 can be formed of different materials including but not limited to AlGaAs. Different compositional ratios are used for individual layers 42, e.g., Al 09 Ga9] As/Al 58 Ga42As. The topmost layer of layers 42 is heavily doped to ensure good contact with an electrical tuning contact 44 deposited on top of the cantilever structure.
The actual number of layers 42 may vary from 1 to 20 and more, depending on the desired reflectivity of the DBR. Furthermore, any suitable reflecting material other than AlGaAs may be used to produce layers 42. Active head 40 is made of layers. However, arm 38 and base 36 do not need to be made of layers.
Base 36 can have a variety of different geometric configurations and large enough to maintain dimensional stability of the cantilever structure. The width of arm 38 ranges typically from 2 to 8 microns while its length is 25 to 100 mu m or more. The stiffness of arm 38 increases as its length decreases. Consequently, shorter cantilevers require greater forces to achieve bending but shorter cantilevers also resonate at a higher frequency. The preferred diameter of active head 40 falls between 5 and 40 microns. Other dimensions are suitable.
Electrical tuning contact 44 resides on all or only a portion of a top of the cantilever structure. Electrical tuning contact 44 be sufficiently large to allow application of a first tuning voltage V„. A support 46 rests on a substrate 48 across which a voltage can be sustained. Substrate 48 can include a second DBR 50. Support 46 can be made of the same material as layers 42. A voltage difference between layers 42 and substrate 48 causes a deflection of arm 38 towards substrate 48. If layers 42 and substrate 48 are oppositely doped, then a reverse bias voltage can be established between them. Substrate 48 is sufficiently thick to provide mechanical stability to the entire cantilever apparatus. Inside substrate 48 and directly under active head 40 are one or more sets of reflective layers with each set forming a second DBR. A more complete description of the cantilever apparatus is disclosed in U.S. Patent No. 5,629,951 , incorporated herein by reference.
Referring now to Figure 9, device 14 can be positioned on substrate 12 which is a heatsink can then be sealed with cap 16. When device 14 is a semiconductor laser, including but not limited to a VCSEL, a window is formed in heatsink 12. Heatsink 12 is an excellent thermal conductivity and electrical insulator. Additionally, positioned on surface 20, it can be a photodetector or other device, as previously described.
All devices 14 disclosed in this application can be utilized as in the multiplexers or de-multiplexers of U.S. Patent Applications, Attorney Docket Nos. 21 123-705 and 21 123-706, filed on the same date as this application, and incorporated herein by reference.
The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. It is intended that the scope of the invention be defined by the following claims and their equivalents. What is claimed is:

Claims

1. A tunable semiconductor laser assembly, comprising: a laser including a seal surface, a semiconductor active region positioned between upper and lower confining regions of opposite type semiconductor material, first and second reflective members positioned at opposing edges of the active and confining regions; and a seal cap including a seal ring, wherein the seal cap seal ring is coupled to the seal surface to form a hermetic seal.
2. The assembly of claim 1 , further comprising: a semiconductor device coupled to the seal cap, wherein the laser and the semiconductor device are each in a hermetically sealed housing defined by the seal cap and the laser.
3 The assembly of claim 2, wherein the semiconductor device is selected from a photodiode a filter a tunable filter and a semiconductor device with driver circuitry.
4. The laser assembly of claim 1 , further comprising: a joining material coupling the seal cap seal ring to the seal surface.
5. The laser assembly of claim 4, wherein the joining material is an electrically conductive material.
6. The assembly of claim 1 , wherein the laser further includes a first and a second electrical contact pad positioned at a surface of the laser.
7. The assembly of claim 1 , wherein the first and a second electrical contact pad are positioned at a surface of the laser adjacent to the active area.
8. The assembly of claim 1 , wherein the seal cap includes a first and a second electrical contact pads formed on an interior surface of the seal cap, and the laser includes first and second electrical contacts positioned to be engaged with seal caps first and second electrical contact pads.
9. The assembly of claim 8, wherein the laser first and second contact pads are made of a first material, and the seal cap first and second contact pads are made of a second material.
10. The assembly of claim 9, wherein the first and second materials are joined and form an alloy.
1 1. The assembly of claim 9, wherein the first material includes gold and the second material includes tin.
12. The assembly of claim 8, wherein the seal cap includes a conductive via positioned in the seal cap, wherein the first and second electrical pads of the laser and the seal cap are coupled to the conductive via.
13. The assembly of claim 8, further comprising: an energy source coupled to the conductive via.
14. The assembly of claim 1 , wherein the seal cap is made of a transparent material.
15. The assembly of claim 1 , wherein the seal cap is made of sapphire.
16. The assembly of claim 1 , wherein the seal cap includes conductive traces.
17. The assembly of claim 1 , wherein the seal cap includes a ceramic with conductive traces.
18. The assembly of claim 1 , wherein the seal cap is a multilayer ceramic that includes conductive traces.
19. A tunable semiconductor laser assembly, comprising: a heatsink; a laser coupled to the heatsink, the laser including a semiconductor active region positioned between upper and lower confining regions of opposite type semiconductor material, first and second reflective members positioned at opposing edges of the active and confining regions; and a seal cap including a seal ring, wherein the seal cap seal ring is coupled to the seal surface to form a hermetic seal.
20. The assembly of claim 19, further comprising: a semiconductor device coupled to the seal cap, wherein the laser and the semiconductor device are each in a hermetically sealed housing defined by the seal cap and the laser.
21. The assembly of claim 20, wherein the semiconductor device is selected from a photodiode a filter a tunable filter and a semiconductor device with driver circuitry.
22. The assembly of claim 19, wherein the heatsink includes first and second electrical contact pads, and a conductive via coupled to the first and second electrical contact pads.
23. The assembly of claim 19, further comprising: a photodiode positioned to receive an output from the laser.
24. A tunable semiconductor laser assembly, comprising: a laser including, an electrically responsive substrate including a substrate seal ring; a support block positioned on the electrically responsive substrate; a top reflecting member and a bottom reflecting member; a cantilever structure including a base section resting on the support block, a deformable section extending above the electrically responsive substrate and creating an air gap between the deformable section and the electrically responsive substrate, and an active head positioned at a predetermined location on the deformable section and including at least a portion of the top reflecting member; and a seal cap including a seal ring, wherein the seal cap seal ring is coupled to the substrate seal ring and form a hermetic seal.
25. The assembly of claim 24, further comprising: a semiconductor device coupled to the seal cap, wherein the laser and the semiconductor device are each in a hermetically sealed housing defined by the seal cap and the laser.
26. The assembly of claim 25, wherein the semiconductor device is selected from a photodiode a filter a tunable filter and a semiconductor device with driver circuitry.
27. The laser assembly of claim 24, further comprising: a joining material coupling the seal cap seal ring to the substrate seal ring.
28. The laser assembly of claim 27, wherein the joining material is an electrically conductive material.
29. The assembly of claim 24. wherein the laser further includes a first and a second electrical contact pad positioned at a surface of the laser.
30. The assembly of claim 24, wherein the first and a second electrical contact pads arc positioned at a surface of the laser adjacent to the active area.
31 . The assembly of claim 24, wherein the seal cap includes a first and a second electrical contact pads formed on an interior surface of the seal cap, and the laser includes first and second electrical contacts positioned to be engaged with seal caps first and second electrical contact pads.
32. The assembly of claim 31 , wherein the seal cap includes a conductive via positioned in the seal cap, wherein the first and second electrical pads of the laser and the seal cap are coupled to the conductive via.
33. A wafer assembly, comprising: a wafer substrate; a plurality of optoelectrical devices positioned on a surface of the wafer substrate, each of an optoelectrical device including a seal surface; and a plurality of seal caps, each of a seal cap including a seal ring, wherein the seal cap seal ring is coupled to a seal surface of an optoelectrical device and form a hermetic seal.
34. The assembly of claim 33. further comprising: a semiconductor device coupled to the seal cap, wherein the laser and the semiconductor device are each in a hermetically sealed housing defined by the seal cap and the laser.
35. The assembly of claim 34, wherein the semiconductor device is selected from a photodiode a filter a tunable filter and a semiconductor device with driver circuitry.
36. The assembly of claim 33, wherein the optoelectrical device is a semiconductor laser.
37. The assembly of claim 33. wherein the optoelectrical device is a photodiode.
38. The assembly of claim 33. wherein the optoelectrical device is a tunable photodiode.
39. The assembly of claim 33, further comprising: a joining material coupling the seal cap seal ring to the seal surface.
40. The assembly of claim 39, wherein the joining material is an electrically conductive material.
41. The assembly of claim 33, wherein each of an optoelectronic device further includes a first and a second electrical contact pad positioned at a surface of the optoelectrical device.
42. The assembly of claim 33, wherein the first and a second electrical contact pad are positioned at a surface of the optoelectrical device adjacent to the active area.
43. The assembly of claim 33, wherein each of a seal cap includes a first and a second electrical contact pads formed on an interior surface of the seal cap, and each of an optoelectrical device includes first and second electrical contacts positioned to be engaged with a seal cap's first and second electrical contact pads.
44. The assembly of claim 33, wherein each of a seal cap includes a conductive via positioned in the seal cap.
45. A wafer assembly, comprising: a wafer substrate; a plurality of micro-optomechanical devices positioned on a surface of the wafer substrate, each of a micro-optoelectrical device including a seal surface; and a plurality of seal caps, each of a seal cap including a seal ring, wherein the seal cap seal ring is coupled to a seal surface of a micro-optomechanical device and form a hermetic seal.
46. The assembly of claim 45, further comprising: a semiconductor device coupled to the seal cap. wherein the laser and the semiconductor device are each in a hermetically scaled housing defined by the seal cap and the laser.
47. The assembly of claim 46. wherein the semiconductor device is selected from a photodiode a filter a tunable filter and a semiconductor device with driver circuitry.
48. The assembly of claim 45, each of a micro-optomechanical device of the plurality includes a cantilever tuner.
49. The assembly of claim 45, further comprising: a joining material coupling the seal cap seal ring to the seal surface.
50. The assembly of claim 49, wherein the joining material is an electrically conductive material.
51. The assembly of claim 45, wherein each of an optomechanical device further includes a first and a second electrical contact pad positioned at a surface of the micro-optomechanical device
52. The assembly of claim 45, wherein the first and a second electrical contact pad are positioned at a surface of the micro-optomechanical device adjacent to the active area.
53. The assembly of claim 45, wherein each of a seal cap includes a first and a second electrical contact pads formed on an interior surface of the seal cap, and each of a micro-optomechanical device includes first and second electrical contacts positioned to be engaged with a seal cap's first and second electrical contact pads.
54. The assembly of claim 45, wherein each of a seal cap includes a conductive via positioned in the seal cap.
55. An array of tunable semiconductor laser assemblies, comprising: an array of lasers, each of a laser including a seal surface, a semiconductor active region positioned between upper and lower confining regions of opposite type semiconductor materials, first and second reflective members positioned at opposing edges of the active and confining regions; and an array of seal caps, each of a seal cap including a seal ring, wherein each seal cap seal ring is coupled to the seal surface of the laser to form a hermetic seal.
PCT/US2000/011928 1999-06-04 2000-05-02 Hermetically sealed semiconductor laser device WO2000076038A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU45025/00A AU4502500A (en) 1999-06-04 2000-05-02 Hermetically sealed semiconductor laser device
CA002375692A CA2375692A1 (en) 1999-06-04 2000-05-02 Hermetically sealed semiconductor laser device
EP00926503A EP1183759A1 (en) 1999-06-04 2000-05-02 Hermetically sealed semiconductor laser device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/326,159 1999-06-04
US09/326,159 US6275513B1 (en) 1999-06-04 1999-06-04 Hermetically sealed semiconductor laser device

Publications (1)

Publication Number Publication Date
WO2000076038A1 true WO2000076038A1 (en) 2000-12-14

Family

ID=23271052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/011928 WO2000076038A1 (en) 1999-06-04 2000-05-02 Hermetically sealed semiconductor laser device

Country Status (6)

Country Link
US (1) US6275513B1 (en)
EP (1) EP1183759A1 (en)
AU (1) AU4502500A (en)
CA (1) CA2375692A1 (en)
TW (1) TW480793B (en)
WO (1) WO2000076038A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9438009B2 (en) 2013-05-31 2016-09-06 Danmarks Tekniske Universitet Wavelength tunable photon source with sealed inner volume
US11418003B2 (en) * 2018-06-07 2022-08-16 Ii-Vi Delaware, Inc. Chip on carrier

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7004644B1 (en) 1999-06-29 2006-02-28 Finisar Corporation Hermetic chip-scale package for photonic devices
US6750521B1 (en) * 1999-10-22 2004-06-15 Delphi Technologies, Inc. Surface mount package for a micromachined device
US7343535B2 (en) 2002-02-06 2008-03-11 Avago Technologies General Ip Dte Ltd Embedded testing capability for integrated serializer/deserializers
FR2839812B1 (en) * 2002-05-17 2005-07-01 Atmel Grenoble Sa COLLECTIVE MANUFACTURING METHOD OF OPTICAL FILTER COMPONENTS AND COMPONENT WAFER
US7061957B2 (en) 2002-06-04 2006-06-13 Agilent Technologies, Inc. External cavity laser having a set atmosphere
WO2005005554A2 (en) * 2003-06-13 2005-01-20 Ers Company Moisture-resistant nano-particle material and its applications
EP1515364B1 (en) 2003-09-15 2016-04-13 Nuvotronics, LLC Device package and methods for the fabrication and testing thereof
US6982437B2 (en) * 2003-09-19 2006-01-03 Agilent Technologies, Inc. Surface emitting laser package having integrated optical element and alignment post
US7520679B2 (en) * 2003-09-19 2009-04-21 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Optical device package with turning mirror and alignment post
US20050063648A1 (en) * 2003-09-19 2005-03-24 Wilson Robert Edward Alignment post for optical subassemblies made with cylindrical rods, tubes, spheres, or similar features
US6953990B2 (en) * 2003-09-19 2005-10-11 Agilent Technologies, Inc. Wafer-level packaging of optoelectronic devices
US20050063431A1 (en) * 2003-09-19 2005-03-24 Gallup Kendra J. Integrated optics and electronics
US20050213995A1 (en) * 2004-03-26 2005-09-29 Myunghee Lee Low power and low jitter optical receiver for fiber optic communication link
JP2009094332A (en) * 2007-10-10 2009-04-30 Fuji Xerox Co Ltd Surface-emitting semiconductor laser device, and manufacturing method thereof
US10666020B2 (en) * 2017-09-20 2020-05-26 Lumentum Operations Llc Reconfigurable emitter array
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US11283240B2 (en) * 2018-01-09 2022-03-22 Oepic Semiconductors, Inc. Pillar confined backside emitting VCSEL
US11233377B2 (en) * 2018-01-26 2022-01-25 Oepic Semiconductors Inc. Planarization of backside emitting VCSEL and method of manufacturing the same for array application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134956A (en) * 1987-11-20 1989-05-26 Hitachi Ltd Assembly of semiconductor device
US5448587A (en) * 1994-12-27 1995-09-05 Huang; Chaochi Structure of laser module
US5629951A (en) * 1995-10-13 1997-05-13 Chang-Hasnain; Constance J. Electrostatically-controlled cantilever apparatus for continuous tuning of the resonance wavelength of a fabry-perot cavity
JPH10112520A (en) * 1996-10-07 1998-04-28 Shinko Electric Ind Co Ltd Semiconductor device
JPH1197797A (en) * 1997-09-22 1999-04-09 Nippon Telegr & Teleph Corp <Ntt> Optical element mounting body

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54103055A (en) 1978-01-31 1979-08-14 Nippon Telegr & Teleph Corp <Ntt> Spectrometer
US4577209A (en) 1982-09-10 1986-03-18 At&T Bell Laboratories Photodiodes having a hole extending therethrough
US4709413A (en) 1982-09-10 1987-11-24 American Telephone And Telegraph Company, At&T Bell Laboratories Bidirectional fiber optic systems
US4493113A (en) 1982-09-10 1985-01-08 At&T Bell Laboratories Bidirectional fiber optic transmission systems and photodiodes for use in such systems
US4577207A (en) 1982-12-30 1986-03-18 At&T Bell Laboratories Dual wavelength optical source
USH147H (en) 1983-05-31 1986-11-04 At&T Bell Laboratories High resistivity group III-V compounds by helium bombardment
US4888624A (en) 1984-06-15 1989-12-19 American Telephone And Telegraph Company, At&T Bell Laboratories Semiconductor devices employing high resistivity in-based compound group III-IV epitaxial layer for current confinement
US4999315A (en) 1984-06-15 1991-03-12 At&T Bell Laboratories Method of controlling dopant incorporation in high resistivity In-based compound Group III-V epitaxial layers
US4595454A (en) 1984-06-15 1986-06-17 At&T Bell Laboratories Fabrication of grooved semiconductor devices
US4660208A (en) 1984-06-15 1987-04-21 American Telephone And Telegraph Company, At&T Bell Laboratories Semiconductor devices employing Fe-doped MOCVD InP-based layer for current confinement
US4605942A (en) 1984-10-09 1986-08-12 At&T Bell Laboratories Multiple wavelength light emitting devices
US4700210A (en) 1984-11-21 1987-10-13 American Telephone And Telegraph Company, At&T Bell Laboratories Asymmetric chip design for LEDS
US4756590A (en) 1985-09-03 1988-07-12 American Telephone And Telegraph Company, At&T Bell Laboratories Optical component package
CA1278714C (en) 1986-02-06 1991-01-08 Hideki Isono Optical branching filter
US4768070A (en) 1986-03-20 1988-08-30 Hitachi, Ltd Optoelectronics device
US4774554A (en) 1986-12-16 1988-09-27 American Telephone And Telegraph Company, At&T Bell Laboratories Semiconductor devices employing Ti-doped Group III-V epitaxial layer
US4843280A (en) 1988-01-15 1989-06-27 Siemens Corporate Research & Support, Inc. A modular surface mount component for an electrical device or led's
US4999842A (en) 1989-03-01 1991-03-12 At&T Bell Laboratories Quantum well vertical cavity laser
JPH02277008A (en) 1989-04-19 1990-11-13 Fujitsu Ltd Multiplex wavelength optical transmission equipment
US4991179A (en) 1989-04-26 1991-02-05 At&T Bell Laboratories Electrically pumped vertical cavity laser
US5034344A (en) 1989-07-17 1991-07-23 Bell Communications Research, Inc. Method of making a surface emitting semiconductor laser
US4949350A (en) 1989-07-17 1990-08-14 Bell Communications Research, Inc. Surface emitting semiconductor laser
US5102812A (en) 1989-11-09 1992-04-07 Bell Communications Research Method of making a lateral bipolar heterojunction structure
US4999843A (en) 1990-01-09 1991-03-12 At&T Bell Laboratories Vertical semiconductor laser with lateral electrode contact
US5018157A (en) 1990-01-30 1991-05-21 At&T Bell Laboratories Vertical cavity semiconductor lasers
US5034958A (en) 1990-04-19 1991-07-23 Bell Communications Research, Inc. Front-surface emitting diode laser
US5214838A (en) 1990-04-20 1993-06-01 Globe Products Inc. Method for inserting stator coil lead wires into terminals having wire-receiving channels
US5068868A (en) 1990-05-21 1991-11-26 At&T Bell Laboratories Vertical cavity surface emitting lasers with electrically conducting mirrors
US5158908A (en) 1990-08-31 1992-10-27 At&T Bell Laboratories Distributed bragg reflectors and devices incorporating same
US5101460A (en) 1990-09-04 1992-03-31 Motorola, Inc. Simultaneous bidirectional optical interconnect
US5223723A (en) 1990-10-19 1993-06-29 At&T Bell Laboratories Light emitting device
US5288657A (en) 1990-11-01 1994-02-22 At&T Bell Laboratories Device fabrication
US5104824A (en) 1990-11-06 1992-04-14 Bell Communications Research, Inc. Selective area regrowth for surface-emitting lasers and other sharp features
EP0484887B1 (en) 1990-11-07 1996-04-03 Fuji Electric Co., Ltd. Laser diode device having a protective layer on its light-emitting end face
US5073041A (en) 1990-11-13 1991-12-17 Bell Communications Research, Inc. Integrated assembly comprising vertical cavity surface-emitting laser array with Fresnel microlenses
US5063569A (en) 1990-12-19 1991-11-05 At&T Bell Laboratories Vertical-cavity surface-emitting laser with non-epitaxial multilayered dielectric reflectors located on both surfaces
US5262360A (en) 1990-12-31 1993-11-16 The Board Of Trustees Of The University Of Illinois AlGaAs native oxide
US5115441A (en) 1991-01-03 1992-05-19 At&T Bell Laboratories Vertical cavity surface emmitting lasers with transparent electrodes
US5146078A (en) 1991-01-10 1992-09-08 At&T Bell Laboratories Articles and systems comprising optically communicating logic elements including an electro-optical logic element
US5171704A (en) 1991-02-28 1992-12-15 At&T Bell Laboratories Gaas device fabrication utilizing metalorganic molecular beam epitaxy (mombe)
US5257648A (en) 1991-03-29 1993-11-02 American Brass & Aluminum Foundry Company, Inc. Pressure testing of tubular fitting installed to a ported wall
US5135605A (en) 1991-04-29 1992-08-04 At&T Bell Laboratories Methods for making mirrors
US5136603A (en) 1991-04-29 1992-08-04 At&T Bell Laboratories Self-monitoring semiconductor laser device
US5182787A (en) 1991-04-29 1993-01-26 At&T Bell Laboratories Optical waveguide structure including reflective asymmetric cavity
US5206526A (en) 1991-05-13 1993-04-27 At&T Bell Laboratories Staircase bandgap photodetector using recombination
US5164949A (en) 1991-09-09 1992-11-17 Motorola, Inc. Vertical cavity surface emitting laser with lateral injection
CA2068899C (en) 1991-09-17 1997-06-17 Samuel Leverte Mccall Whispering mode micro-resonator
US5170407A (en) 1991-10-11 1992-12-08 At&T Bell Laboratories Elimination of heterojunction band discontinuities
US5206872A (en) 1991-11-01 1993-04-27 At&T Bell Laboratories Surface emitting laser
US5227006A (en) 1991-11-27 1993-07-13 At&T Bell Laboratories Method for selectively growing gallium-containing layers
US5226053A (en) 1991-12-27 1993-07-06 At&T Bell Laboratories Light emitting diode
US5206871A (en) 1991-12-27 1993-04-27 At&T Bell Laboratories Optical devices with electron-beam evaporated multilayer mirror
US5216686A (en) 1992-02-03 1993-06-01 Motorola, Inc. Integrated HBT and VCSEL structure and method of fabrication
US5212702A (en) 1992-03-25 1993-05-18 At&T Bell Laboratories Semiconductor surface emitting laser having reduced threshold voltage and enhanced optical output
US5212701A (en) 1992-03-25 1993-05-18 At&T Bell Laboratories Semiconductor surface emitting laser having enhanced optical confinement
US5258316A (en) 1992-03-26 1993-11-02 Motorola, Inc. Patterened mirror vertical cavity surface emitting laser
US5223704A (en) 1992-03-31 1993-06-29 At&T Bell Laboratories Planar buried quantum well photodetector
US5216727A (en) 1992-05-08 1993-06-01 At&T Bell Laboratories Integrated nonlinear waveguide spectrometer
US5244749A (en) 1992-08-03 1993-09-14 At&T Bell Laboratories Article comprising an epitaxial multilayer mirror
DE69329223T2 (en) 1992-08-05 2001-04-05 Motorola Inc Side-emitting superluminescent diode
US5317587A (en) 1992-08-06 1994-05-31 Motorola, Inc. VCSEL with separate control of current distribution and optical mode
US5331658A (en) 1992-08-26 1994-07-19 Motorola, Inc. Vertical cavity surface emitting laser and sensor
US5291502A (en) 1992-09-04 1994-03-01 The Board Of Trustees Of The Leland Stanford, Jr. University Electrostatically tunable optical device and optical interconnect for processors
US5351262A (en) 1992-09-10 1994-09-27 Bell Communications Research, Inc. Multi-stripe array grating integrated cavity laser
JPH0770791B2 (en) 1992-12-22 1995-07-31 日本電気株式会社 Semiconductor laser and manufacturing method thereof
US5362977A (en) 1992-12-28 1994-11-08 At&T Bell Laboratories Single mirror light-emitting diodes with enhanced intensity
US5337327A (en) 1993-02-22 1994-08-09 Motorola, Inc. VCSEL with lateral index guide
US5311526A (en) 1993-02-25 1994-05-10 At&T Bell Laboratories Article that comprises a semiconductor laser, and method of operating the article
US5351257A (en) 1993-03-08 1994-09-27 Motorola, Inc. VCSEL with vertical offset operating region providing a lateral waveguide and current limiting and method of fabrication
US5328854A (en) 1993-03-31 1994-07-12 At&T Bell Laboratories Fabrication of electronic devices with an internal window
US5351261A (en) 1993-04-14 1994-09-27 At&T Bell Laboratories Integrated optics
US5323416A (en) 1993-08-20 1994-06-21 Bell Communications Research, Inc. Planarized interference mirror
US5446752A (en) 1993-09-21 1995-08-29 Motorola VCSEL with current blocking layer offset
US5457760A (en) 1994-05-06 1995-10-10 At&T Ipm Corp. Wavelength division optical multiplexing elements
US5418183A (en) 1994-09-19 1995-05-23 At&T Corp. Method for a reflective digitally tunable laser
GB2295269A (en) 1994-11-14 1996-05-22 Sharp Kk Resonant cavity laser having oxide spacer region
GB2295270A (en) 1994-11-14 1996-05-22 Sharp Kk Surface-emitting laser with profiled active region
US5495360A (en) 1994-12-02 1996-02-27 Bell Communications Research Inc. 1.5 μm wavelength asymmetric fabry-perot modulator with negative chirp
US5493577A (en) 1994-12-21 1996-02-20 Sandia Corporation Efficient semiconductor light-emitting device and method
US5574744A (en) 1995-02-03 1996-11-12 Motorola Optical coupler
US5661075A (en) 1995-02-06 1997-08-26 Motorola Method of making a VCSEL with passivation
US5638392A (en) 1995-05-15 1997-06-10 Motorola Short wavelength VCSEL
US5659640A (en) 1995-06-27 1997-08-19 Lucent Technologies Inc. Integrated waveguide having an internal optical grating
US5719891A (en) 1995-12-18 1998-02-17 Picolight Incorporated Conductive element with lateral oxidation barrier
US5737104A (en) 1995-12-18 1998-04-07 Dicon Fiberoptics Wavelength division multiplexer and demultiplexer
US5619609A (en) 1996-02-02 1997-04-08 E-Tek Dynamics, Inc. Fiberoptic support clip
US5748350A (en) 1996-06-19 1998-05-05 E-Tek Dynamics, Inc. Dense wavelength division multiplexer and demultiplexer devices
US5757836A (en) 1996-07-01 1998-05-26 Motorola, Inc. Vertical cavity surface emitting laser with laterally integrated photodetector
US5751757A (en) 1996-07-01 1998-05-12 Motorola, Inc. VCSEL with integrated MSM photodetector
US5742630A (en) 1996-07-01 1998-04-21 Motorola, Inc. VCSEL with integrated pin diode
US5719893A (en) 1996-07-17 1998-02-17 Motorola, Inc. Passivated vertical cavity surface emitting laser
US5805624A (en) 1996-07-30 1998-09-08 Hewlett-Packard Company Long-wavelength infra-red vertical cavity surface-emitting laser on a gallium arsenide substrate
US5760419A (en) 1996-07-31 1998-06-02 The Board Of Trustees Of The Leland Stanford Junior University Monolithic wavelength meter and photodetector using a wavelength dependent reflector
US5764679A (en) 1996-08-23 1998-06-09 Motorola, Inc. Mode locked laser with negative differential resistance diode
US5764671A (en) 1996-10-21 1998-06-09 Motorola, Inc. VCSEL with selective oxide transition regions
US5978408A (en) 1997-02-07 1999-11-02 Xerox Corporation Highly compact vertical cavity surface emitting lasers
US5903586A (en) 1997-07-30 1999-05-11 Motorola, Inc. Long wavelength vertical cavity surface emitting laser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134956A (en) * 1987-11-20 1989-05-26 Hitachi Ltd Assembly of semiconductor device
US5448587A (en) * 1994-12-27 1995-09-05 Huang; Chaochi Structure of laser module
US5629951A (en) * 1995-10-13 1997-05-13 Chang-Hasnain; Constance J. Electrostatically-controlled cantilever apparatus for continuous tuning of the resonance wavelength of a fabry-perot cavity
JPH10112520A (en) * 1996-10-07 1998-04-28 Shinko Electric Ind Co Ltd Semiconductor device
JPH1197797A (en) * 1997-09-22 1999-04-09 Nippon Telegr & Teleph Corp <Ntt> Optical element mounting body

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Derwent World Patents Index; AN 1998-308323 *
DATABASE WPI Derwent World Patents Index; AN 1999-294272, XP002145102 *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 386 (E - 812) 25 August 1989 (1989-08-25) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 09 31 July 1998 (1998-07-31) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 09 30 July 1999 (1999-07-30) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9438009B2 (en) 2013-05-31 2016-09-06 Danmarks Tekniske Universitet Wavelength tunable photon source with sealed inner volume
US11418003B2 (en) * 2018-06-07 2022-08-16 Ii-Vi Delaware, Inc. Chip on carrier

Also Published As

Publication number Publication date
TW480793B (en) 2002-03-21
EP1183759A1 (en) 2002-03-06
US6275513B1 (en) 2001-08-14
AU4502500A (en) 2000-12-28
CA2375692A1 (en) 2000-12-14

Similar Documents

Publication Publication Date Title
US6275513B1 (en) Hermetically sealed semiconductor laser device
US7085300B2 (en) Integral vertical cavity surface emitting laser and power monitor
US6327287B1 (en) Tunable semiconductor laser system
EP1705764B1 (en) Semiconductor light-emitting device and its manufacturing method
EP1744417B1 (en) Semiconductor light emitting element and manufacturing method thereof
US6970491B2 (en) Planar and wafer level packaging of semiconductor lasers and photo detectors for transmitter optical sub-assemblies
US7164193B2 (en) Optical semiconductor apparatus
US6368890B1 (en) Top contact VCSEL with monitor
US20050098790A1 (en) Surface emitting laser package having integrated optical element and alignment post
US11257998B2 (en) Semiconductor element package and autofocusing device
US6984076B2 (en) Compact package design for vertical cavity surface emitting laser array to optical fiber cable connection
US8335242B2 (en) Nitride semiconductor laser device mounted on a stem
JP2003107301A (en) Module for optical communication
KR20080104079A (en) Topside active optical device apparatus and method
Pu et al. Comparison of techniques for bonding VCSELs directly to ICs
US6853007B2 (en) Submount for vertical cavity surface emitting lasers and detectors
JP5381198B2 (en) Surface emitting semiconductor laser, optical transmission device, and method of manufacturing the same
CN111727535B (en) Quantum dot lasers integrated on silicon pedestals using mechanical features and through silicon vias
KR101025428B1 (en) Submount for photo diode
KR102338179B1 (en) Semiconductor light emitting device and method of manufacturing the same
JP2024516090A (en) Optoelectronics Semiconductor Components
CN117223114A (en) Optoelectronic semiconductor component
EP1079484A2 (en) Semiconductor laser device, semiconductor laser module, and fiber module
Grabherr et al. Fabricating VCSELs in a high-tech start-up
Ryu et al. Optical interconnects for high-speed data links

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000926503

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2375692

Country of ref document: CA

Ref country code: CA

Ref document number: 2375692

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000926503

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000926503

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP