WO2000077863A1 - Ga(In, Al) P COMPOUND-BASED LIGHT-EMITTING SEMICONDUCTOR DIODE WITH A ZnO WINDOW LAYER - Google Patents

Ga(In, Al) P COMPOUND-BASED LIGHT-EMITTING SEMICONDUCTOR DIODE WITH A ZnO WINDOW LAYER Download PDF

Info

Publication number
WO2000077863A1
WO2000077863A1 PCT/DE2000/001937 DE0001937W WO0077863A1 WO 2000077863 A1 WO2000077863 A1 WO 2000077863A1 DE 0001937 W DE0001937 W DE 0001937W WO 0077863 A1 WO0077863 A1 WO 0077863A1
Authority
WO
WIPO (PCT)
Prior art keywords
zno
semiconductor diode
led structure
layer
light emission
Prior art date
Application number
PCT/DE2000/001937
Other languages
German (de)
French (fr)
Inventor
Peter Stauss
Berthold Hahn
Konrad Sporrer
Volker HÄRLE
Original Assignee
Osram Opto Semiconductors Gmbh & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh & Co. Ohg filed Critical Osram Opto Semiconductors Gmbh & Co. Ohg
Publication of WO2000077863A1 publication Critical patent/WO2000077863A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2063Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/209Methods of obtaining the confinement using special etching techniques special etch stop layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure

Definitions

  • Light emission semiconductor diode based on Ga (In, A1) P compounds with ZnO window layer
  • the invention relates to a light-emitting semiconductor diode based on Ga (In, Al) P compounds according to the preamble of claim 1.
  • the present invention relates to such a light-emitting semiconductor diode that has a light emission layer made of zinc oxide (ZnO). having.
  • the decoupling of light from light-emitting semiconductor diodes depends to a particular extent on the optically transparent and electrically conductive cover layer used.
  • the important physical parameters for this are the energy gap, the optical refractive index and the electrical conductivity.
  • a 10-20 ⁇ m thick highly doped GaP layer is usually applied to the light output side of the pn junction.
  • such a layer has an electrical conductivity sufficient for electrical contacting and an optical transparency sufficient for coupling out light.
  • the GaP layer cannot easily be made thinner, since this has a disadvantageous effect on the electrical contacting properties of the layer.
  • the present invention is therefore based on the object of specifying a light-emitting semiconductor diode based on Ga (In, AI) P compounds, with which the light yield can be increased.
  • This object is achieved by a light emission semiconductor diode with the features of claim 1.
  • a preferred method for producing the light-emitting semiconductor diode is the subject of claim 9.
  • Advantageous refinements and developments are the subject of claims 2 to 8 and 10 to 13, respectively.
  • a transparent, electrically conductive contact layer made of doped zinc oxide (ZnO) is applied to at least one side of an LED structure of the diode having a pn junction .
  • a light-emitting semiconductor diode according to the invention can be composed of binary, ternary or quaternary III-V compounds which are composed of the elements indium and / or gallium and / or aluminum from III. Main group and the element phosphorus are formed from the fifth main group.
  • ZnO layers can optionally be applied on one side of the pn junction or on both sides. This at least one layer can be applied by MOVPE (metal organic vapor deposition), MBE (molecular beam epitaxy) or by a sputtering process.
  • MOVPE metal organic vapor deposition
  • MBE molecular beam epitaxy
  • the ZnO layer is advantageously produced by the same crystal growth process by which the laser diode was also produced.
  • the layer thickness, the transparency and the doping of the ZnO layer can be adapted in a wide range for optimal light decoupling and electrical contacting of the LEDs on both the n and p sides.
  • Fig.l is a schematic representation of a vertical section through a light emission semiconductor diode according to a first embodiment of the present invention
  • FIG. 2 shows a schematic illustration of a vertical section through a light emission semiconductor diode according to a second exemplary embodiment of the present invention.
  • an n- or p-doped GaAs substrate 1 is provided, onto which an InGaAlP LED structure 2 with a pn junction 2A is matched in a lattice-matched manner by a suitable crystal growth method such as MOVPE (organometallic gas phase epitaxy) or MBE (molecular beam epitaxy). It can start with an n-doped GaAs substrate 1 and end with a p-doped InGaAlP layer, and vice versa.
  • a single or multiple quantum well structure made of layers with alternating small and large bandgaps can also be provided.
  • an n- or p-doped zinc oxide (ZnO) cover layer or window layer 3 is deposited directly on the LED structure 2. Due to the band gap of 3.35 eV of ZnO at room temperature, this window layer 3 is transparent for the wavelength of the InGaAlP laser diode and for other wavelengths of laser diodes of the Ga (In, Al) P material system.
  • the window layer 3 also serves as an electrical contacting layer for the laser diode. It is particularly advantageous for production if the ZnO layer can be grown using the same crystal growth method as the laser diode, that is to say within one and the same crystal growth apparatus. However, the ZnO layer can also be grown using another growth method, such as a sputtering process.
  • the ZnO layer is applied only on one side. On the opposite side, contact is made through the doped GaAs substrate.
  • ZnO layers 31 and 32 are applied on both sides of the pn junction 2A.
  • the manufacture of such a laser diode can be produced in that a laser diode according to FIG. 1 with the grown ZnO layer 31 is glued to any carrier substrate 5, such as a glass substrate, with a preferably transparent adhesive 4.
  • the GaAs substrate is then preferably removed by etching, whereupon a second ZnO layer 32 of a corresponding doping is applied instead of the removed GaAs substrate.
  • a second ZnO layer 32 of a corresponding doping is applied instead of the removed GaAs substrate.
  • the embodiment according to FIG. 2 can be implemented by a transparent adhesive 4 and a transparent carrier substrate 5 in such a way that the light emitted by the LED is emitted on all sides.
  • a reflective layer can be arranged in the vicinity of the interface of the first ZnO layer 31 with the carrier substrate 5, through which the light emitted by the active layer of the LED in the direction of the carrier substrate 5 in the direction of the front side, ie the second ZnO layer 32 is reflected.
  • the reflective layer could, for example, be formed by the adhesive 4 or additionally applied to the ZnO layer.
  • both the adhesive 4 and the carrier substrate 5 can be made non-transparent, also optimally utilizes the light emitted from the rear for the desired front-side emission.
  • the light decoupling of the LED can be further improved by a granular polycrystalline surface structure of the at least one ZnO layer with unchanged electrical and optical properties.

Abstract

The invention relates to a Ga(In, Al) P compound-based light-emitting semiconductor diode. A transparent, electroconductive contact layer (3) consisting of doped zinc oxide (ZnO) is applied on one side of an LID structure (2) of the diode, said structure having a pn junction (2A). This contact layer ensures good optical transparency for the emitted laser radiation by virtue of its considerable energy gap and good electrical contact for the LED structure (2).

Description

Be s ehr e ibungBe honest
Lichtemissions-Halbleiterdiode auf der Basis von Ga(In, A1)P- Verbindungen mit ZnO-FensterschichtLight emission semiconductor diode based on Ga (In, A1) P compounds with ZnO window layer
Die Erfindung bezieht sich auf eine Lichtemissions-Halbleiterdiode auf der Basis von Ga(In, AI ) P-Verbindungen nach dem Oberbegriff des Patentanspruchs 1. Insbesondere bezieht sich die vorliegende Erfindung auf eine solche Lichtemissions- Halbleiterdiode, die eine Lichtaustrittsschicht aus Zinkoxid (ZnO) aufweist.The invention relates to a light-emitting semiconductor diode based on Ga (In, Al) P compounds according to the preamble of claim 1. In particular, the present invention relates to such a light-emitting semiconductor diode that has a light emission layer made of zinc oxide (ZnO). having.
Die Lichtauskopplung aus Lichtemissions-Halbleiterdioden hängt in besonderem Maße von der verwendeten optisch transpa- renten und elektrisch leitenden Deckschicht ab. Die wichtigen physikalischen Kenngrößen sind hierfür die Energielücke, der optische Brechungsindex und die elektrische Leitfähigkeit. Bei Lichtemissions-Halbleiterdioden auf der Basis von InGaAlP wird üblicherweise auf der Lichtausgangsseite des pn-Über- gangs eine 10-20 μm dicke hochdotierte GaP-Schicht aufgebracht. Im allgemeinen weist eine solche Schicht eine für die elektrische Kontaktierung ausreichende elektrische Leitfähigkeit und eine für die Lichtauskopplung ausreichende optische Transparenz auf. Bei Lichtwellenlängen von etwa 565 nm oder weniger ist jedoch aufgrund der Bandlücke von GaP mit einer verstärkten Absorption in der hochdotiertem GaP-Fenster- schicht zu rechnen.The decoupling of light from light-emitting semiconductor diodes depends to a particular extent on the optically transparent and electrically conductive cover layer used. The important physical parameters for this are the energy gap, the optical refractive index and the electrical conductivity. In the case of light emission semiconductor diodes based on InGaAlP, a 10-20 μm thick highly doped GaP layer is usually applied to the light output side of the pn junction. In general, such a layer has an electrical conductivity sufficient for electrical contacting and an optical transparency sufficient for coupling out light. At light wavelengths of around 565 nm or less, however, increased absorption in the highly doped GaP window layer can be expected due to the band gap of GaP.
Die GaP-Schicht kann jedoch nicht ohne weiteres dünner ge- macht werden, da sich dies nachteilig auf die elektrischen Kontaktierungseigenschaften der Schicht auswirkt.However, the GaP layer cannot easily be made thinner, since this has a disadvantageous effect on the electrical contacting properties of the layer.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, eine Lichtemissions-Halbleiterdiode auf der Basis von Ga(In, AI) P-Verbindungen anzugeben, mit welcher die Lichtausbeute gesteigert werden kann. Diese Aufgabe wird durch eine Lichtemissions-Halbleiterdiode mit den Merkmalen des Patentanspruches 1 gelöst. Ein bevorzugtes Verfahren zum Herstellen der Lichtemissions- Halbleiterdiode ist Gegenstand des Patentanspruches 9. Vor- teilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der Patentansprüche 2 bis 8 bzw. 10 bis 13.The present invention is therefore based on the object of specifying a light-emitting semiconductor diode based on Ga (In, AI) P compounds, with which the light yield can be increased. This object is achieved by a light emission semiconductor diode with the features of claim 1. A preferred method for producing the light-emitting semiconductor diode is the subject of claim 9. Advantageous refinements and developments are the subject of claims 2 to 8 and 10 to 13, respectively.
Bei einer erfindungsgemäßen Lichtemissions-Halbleiterdiode auf der Basis von Ga(In, AI) P-Verbindungen ist mindestens auf einer Seite einer einen pn-Übergang aufweisenden LED-Struktur der Diode eine transparente, elektrisch leitende Kontaktie- rungsschicht aus dotiertem Zinkoxid (ZnO) aufgebracht. Eine erfindungsgemäße Lichtemissions-Halbleiterdiode kann aus binären, ternären oder quaternären III-V-Verbindungen zusammen- gesetzt sein, welche durch die Elemente Indium und/oder Gallium und/oder Aluminium aus der III. Hauptgruppe sowie das Element Phosphor aus der V. Hauptgruppe gebildet sind.In a light emission semiconductor diode based on Ga (In, Al) P compounds, a transparent, electrically conductive contact layer made of doped zinc oxide (ZnO) is applied to at least one side of an LED structure of the diode having a pn junction . A light-emitting semiconductor diode according to the invention can be composed of binary, ternary or quaternary III-V compounds which are composed of the elements indium and / or gallium and / or aluminum from III. Main group and the element phosphorus are formed from the fifth main group.
Wahlweise können auf einer Seite des pn-Übergangs oder auf beiden Seiten ZnO-Schichten aufgebracht werden. Diese mindestens eine Schicht kann durch MOVPE (metallorganische Gaspha- senabscheidung) , MBE (Molekularstrahlepitaxie) oder durch einen Sputter-Prozeß aufgebracht werden. In vorteilhafter Weise wird die ZnO-Schicht durch denselben Kristallwachstumsprozeß hergestellt, durch den auch die Laserdiode gefertigt wurde.ZnO layers can optionally be applied on one side of the pn junction or on both sides. This at least one layer can be applied by MOVPE (metal organic vapor deposition), MBE (molecular beam epitaxy) or by a sputtering process. The ZnO layer is advantageously produced by the same crystal growth process by which the laser diode was also produced.
Die Schichtdicke, die Transparenz und die Dotierung der ZnO- Schicht können in einem weiten Bereich für eine optimale Lichtauskopplung und elektrische Kontaktierung der LEDs so- wohl n- als auch p-seitig angepaßt werden.The layer thickness, the transparency and the doping of the ZnO layer can be adapted in a wide range for optimal light decoupling and electrical contacting of the LEDs on both the n and p sides.
Die Erfindung wird im folgenden anhand von Ausführungsbei- spielen in den Zeichnungen näher beschrieben. In den Zeichnungen zeigen: Fig.l eine schematische Darstellung eines vertikalen Schnittes durch eine Lichtemissions-Halbleiterdiode gemäß einem ersten Ausführungsbeispiel der vorliegenden Erfindung;The invention is described below with reference to exemplary embodiments in the drawings. The drawings show: Fig.l is a schematic representation of a vertical section through a light emission semiconductor diode according to a first embodiment of the present invention;
Fig.2 eine schematische Darstellung eines vertikalen Schnittes durch eine Lichtemissions-Halbleiterdiode gemäß einem zweiten Ausführungsbeispiel der vorliegenden Erfindung.2 shows a schematic illustration of a vertical section through a light emission semiconductor diode according to a second exemplary embodiment of the present invention.
In Fig.l ist ein grundlegendes Ausführungsbeispiel einer er- findungsgemäßen Lichtemissions-Halbleiterdiode dargestellt. In diesem wird ein n- oder p-dotiertes GaAs-Substrat 1 bereitgestellt, auf welches durch ein geeignetes Kristallwachstumsverfahren wie MOVPE (metallorganische Gasphasenepitaxie) oder MBE (Molekularstrahlepitaxie) eine InGaAlP-LED-Struktur 2 mit einem pn-Übergang 2A gitterangepaßt aufgewachsen wird. Dabei kann sowohl mit einem n-dotierten GaAs-Substrat 1 begonnen und einer p-dotierten InGaAlP-Schicht abgeschlossen werden als auch umgekehrt. Anstelle eines einfachen pn- Übergangs aus Volumenhalbleitermaterial kann auch eine einfa- ehe oder mehrfache Quantentrogstruktur aus Schichten mit abwechselnd kleiner und großer Bandlücke vorgesehen sein.1 shows a basic embodiment of a light-emitting semiconductor diode according to the invention. In this, an n- or p-doped GaAs substrate 1 is provided, onto which an InGaAlP LED structure 2 with a pn junction 2A is matched in a lattice-matched manner by a suitable crystal growth method such as MOVPE (organometallic gas phase epitaxy) or MBE (molecular beam epitaxy). It can start with an n-doped GaAs substrate 1 and end with a p-doped InGaAlP layer, and vice versa. Instead of a simple pn junction made of bulk semiconductor material, a single or multiple quantum well structure made of layers with alternating small and large bandgaps can also be provided.
Unmittelbar auf der LED-Struktur 2 wird je nach der gewählten Dotierungsabfolge eine n- oder p-dotierte Zinkoxid- (ZnO) Deckschicht oder -Fensterschicht 3 abgeschieden. Aufgrund der Bandlücke von 3,35 eV von ZnO bei Raumtemperatur ist diese Fensterschicht 3 für die Wellenlänge der InGaAlP- Laserdiode und für andere Wellenlängen von Laserdioden des Materialsystems Ga(In, Al)P transparent. Die Fensterschicht 3 dient gleichzeitig als elektrische Kontaktierungsschicht für die Laserdiode. Besonders vorteilhaft für die Herstellung ist es, wenn die ZnO-Schicht mit demselben Kristallwachstumsverfahren wie die Laserdiode, also innerhalb ein- und derselben Kristallwachstumsapparatur aufgewachsen werden kann. Die ZnO- Schicht kann aber auch mit einem anderen Wachstumsverfahren wie beispielsweise einem Sputter-Prozeß aufgewachsen werden. Bei dem Ausführungsbeispiel nach Fig.l wird die ZnO-Schicht nur einseitig aufgebracht. Auf der gegenüberliegenden Seite erfolgt die Kontaktierung durch das dotierte GaAs-Substrat. In dem in Fig.2 dargestellten Ausführungsbeispiel einer er- findungsgemäßen Laserdiode sind demgegenüber auf beiden Seiten des pn-Übergangs 2A ZnO-Schichten 31 und 32 aufgebracht. Die Herstellung einer derartigen Laserdiode kann dadurch hergestellt werden, daß eine Laserdiode nach Fig.l mit der aufgewachsenen ZnO-Schicht 31 an ein beliebiges Trägersubstrat 5, wie beispielsweise ein Glassubstrat, mit einem vorzugsweise transparenten Kleber 4 angeklebt wird. Dann wird das GaAs- Substrat vorzugsweise durch Abätzen entfernt, worauf eine zweite ZnO-Schicht 32 einer entsprechenden Dotierung an Stelle des entfernten GaAs-Substrats aufgebracht wird. Somit be- finden sich beidseits der LED-Struktur 2 jeweils p- und n- dotierte, transparente ZnO-Schichten 31, 32 für die elektrische Kontaktierung der Laserdiode.Depending on the chosen doping sequence, an n- or p-doped zinc oxide (ZnO) cover layer or window layer 3 is deposited directly on the LED structure 2. Due to the band gap of 3.35 eV of ZnO at room temperature, this window layer 3 is transparent for the wavelength of the InGaAlP laser diode and for other wavelengths of laser diodes of the Ga (In, Al) P material system. The window layer 3 also serves as an electrical contacting layer for the laser diode. It is particularly advantageous for production if the ZnO layer can be grown using the same crystal growth method as the laser diode, that is to say within one and the same crystal growth apparatus. However, the ZnO layer can also be grown using another growth method, such as a sputtering process. In the exemplary embodiment according to FIG. 1, the ZnO layer is applied only on one side. On the opposite side, contact is made through the doped GaAs substrate. In contrast, in the exemplary embodiment of a laser diode according to the invention shown in FIG. 2, ZnO layers 31 and 32 are applied on both sides of the pn junction 2A. The manufacture of such a laser diode can be produced in that a laser diode according to FIG. 1 with the grown ZnO layer 31 is glued to any carrier substrate 5, such as a glass substrate, with a preferably transparent adhesive 4. The GaAs substrate is then preferably removed by etching, whereupon a second ZnO layer 32 of a corresponding doping is applied instead of the removed GaAs substrate. Thus there are p- and n-doped, transparent ZnO layers 31, 32 on both sides of the LED structure 2 for the electrical contacting of the laser diode.
Das Ausführungsbeispiel nach Fig.2 kann durch einen transpa- renten Kleber 4 und ein transparentes Trägersubstrat 5 so ausgeführt sein, daß das durch die LED abgestrahlte Licht nach allen Seiten emittiert wird. Es kann jedoch auch vorgesehen sein, daß eine Emission nur nach einer Seite gewünscht ist. Zu diesem Zweck kann in der Nähe der Grenzfläche der er- sten ZnO-Schicht 31 zu dem Trägersubstrat 5 eine reflektierende Schicht angeordnet sein, durch die das von der aktiven Schicht der LED in Richtung auf das Trägersubstrat 5 abgestrahlte Licht in Richtung auf die Vorderseite, d.h. die zweite ZnO-Schicht 32 reflektiert wird. Die reflektierende Schicht könnte beispielsweise durch den Kleber 4 gebildet werden oder zusätzlich auf die ZnO-Schicht aufgebracht werden. Durch eine derartige Ausführungsform, bei der sowohl der Kleber 4 als auch das Trägersubstrat 5 nicht-transparent ausgeführt sein können, wird auch das rückseitig emittierte Licht optimal für die gewünschte Vorderseitenemission ausgenutzt . Weiterhin kann in beiden Ausführungsbeispielen durch eine körnige polykristalline Oberflächenstruktur der mindestens einen ZnO-Schicht bei unveränderten elektrischen und optischen Eigenschaften die Lichtauskopplung der LED weiter ver- bessert werden. The embodiment according to FIG. 2 can be implemented by a transparent adhesive 4 and a transparent carrier substrate 5 in such a way that the light emitted by the LED is emitted on all sides. However, it can also be provided that emission is desired only on one side. For this purpose, a reflective layer can be arranged in the vicinity of the interface of the first ZnO layer 31 with the carrier substrate 5, through which the light emitted by the active layer of the LED in the direction of the carrier substrate 5 in the direction of the front side, ie the second ZnO layer 32 is reflected. The reflective layer could, for example, be formed by the adhesive 4 or additionally applied to the ZnO layer. Such an embodiment, in which both the adhesive 4 and the carrier substrate 5 can be made non-transparent, also optimally utilizes the light emitted from the rear for the desired front-side emission. Furthermore, in both exemplary embodiments, the light decoupling of the LED can be further improved by a granular polycrystalline surface structure of the at least one ZnO layer with unchanged electrical and optical properties.

Claims

Patentansprüche claims
1. Lichtemissions-Halbleiterdiode mit einer LED-Struktur auf der Basis von Ga(In, AI) P-Verbindungen, d a d u r c h g e k e n n z e i c h n e t, daß1. Light emission semiconductor diode with an LED structure based on Ga (In, AI) P compounds, that a d u r c h g e k e n n z e i c h n e t that
- mindestens auf eine Seite der LED-Struktur (2) der Diode eine transparente, elektrisch leitende ZnO- Kontaktierungsschicht (3; 31, 32) aufgebracht ist, die im Wesentlichen aus dotiertem Zinkoxid (ZnO) besteht und denselben Leitungstyp aufweist wie eine an diese angrenzende Seite der LED-Struktur (2) .- At least on one side of the LED structure (2) of the diode, a transparent, electrically conductive ZnO contacting layer (3; 31, 32) is applied, which consists essentially of doped zinc oxide (ZnO) and has the same conductivity type as one of these adjacent side of the LED structure (2).
2. Lichtemissions-Halbleiterdiode nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die LED-Struktur (2) und die ZnO-Kontaktierungsschicht (3; 31, 32) mittels metallorganischer Dampfphasenepitaxie oder mittels Molekularstrahlepitaxie hergestellt sind.2. Light emission semiconductor diode according to claim 1, d a d u r c h g e k e n n z e i c h n e t that the LED structure (2) and the ZnO contacting layer (3; 31, 32) are produced by means of organometallic vapor phase epitaxy or by means of molecular beam epitaxy.
3. Lichtemissions-Halbleiterdiode nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß3. Light emission semiconductor diode according to claim 1 or 2, d a d u r c h g e k e n n z e i c h n e t that
- die ZnO-Kontaktierungsschicht (3; 31, 32) eine körnige polykristalline Oberflächenstruktur aufweist.- The ZnO contacting layer (3; 31, 32) has a granular polycrystalline surface structure.
4. Lichtemissions-Halbleiterdiode nach einem der Ansprüche 1 bis 3 , d a d u r c h g e k e n n z e i c h n e t , daß die LED-Struktur (2) auf einem GaAs-Substrat (1) aufgebracht ist und die ZnO-Kontaktierungsschicht (3; 31, 32) auf einer diesem gegenüberliegenden Seite der LED-Struktur (2) aufgebracht ist.4. Light emission semiconductor diode according to one of claims 1 to 3, characterized in that the LED structure (2) is applied to a GaAs substrate (1) and the ZnO contacting layer (3; 31, 32) on an opposite side thereof the LED structure (2) is applied.
5. Lichtemissions-Halbleiterdiode nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t , daß auf beiden Seiten der LED-Struktur (2) jeweils eine ZnO- Kontaktierungsschicht (31, 32) aufgebracht ist. 5. Light emission semiconductor diode according to one of claims 1 to 4, characterized in that a ZnO contacting layer (31, 32) is applied to both sides of the LED structure (2).
6. Lichtemissions-Halbleiterdiode nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , daß auf mindestens einer der ZnO-Kontaktierungsschichten (31, 32) ein Trägersubstrat (5) aufgeklebt ist.6. light emission semiconductor diode according to claim 5, d a d u r c h g e k e n n z e i c h n e t that on at least one of the ZnO contacting layers (31, 32) a carrier substrate (5) is glued.
7. Lichtemissions-Halbleiterdiode nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß das Trägersubstrat (5) für eine von der LED-Struktur (2) im Betrieb ausgesandte Strahlung transparent ist.7. The light-emitting semiconductor diode as claimed in claim 6, so that the carrier substrate (5) is transparent to a radiation emitted by the LED structure (2) during operation.
8. Lichtemissions-Halbleiterdiode nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , daß zwischen dem Trägersubstrat (5) und der ZnO- Kontaktierungsschicht (31, 32) eine reflektierende Schicht (4) angeordnet ist.8. light emission semiconductor diode according to claim 6, d a d u r c h g e k e n n z e i c h n e t that a reflective layer (4) is arranged between the carrier substrate (5) and the ZnO contacting layer (31, 32).
9. Verfahren zur Herstellung einer Lichtemissions-Halbleiterdiode nach einem der vorhergehenden Ansprüche, mit den Verfahrensschritten : - Bereitstellen eines GaAs-Substrats (1) ,9. A method for producing a light-emitting semiconductor diode according to one of the preceding claims, comprising the method steps: - providing a GaAs substrate (1),
Aufbringen einer LED-Struktur (2) auf das GaAs-SubstratApplication of an LED structure (2) to the GaAs substrate
(1) ,(1) ,
Aufbringen einer ZnO-Kontaktierungsschicht (3; 31, 32) einer entsprechenden Dotierung auf der LED-Struktur (2) .Application of a ZnO contacting layer (3; 31, 32) of a corresponding doping on the LED structure (2).
10. Verfahren nach Anspruch 9 mit den weiteren Verfahrensschritten:10. The method according to claim 9 with the further method steps:
Entfernen des GaAs-Substrats (1) durch Abätzen oder dergleichen, - Aufbringen einer weiteren ZnO-Kontaktierungsschicht (3; 31, 32) einer entsprechenden Dotierung an die Stelle des entfernten GaAs-Substrats .Removing the GaAs substrate (1) by etching or the like, - applying a further ZnO contacting layer (3; 31, 32) of a corresponding doping in the place of the removed GaAs substrate.
11. Verfahren nach Anspruch 10 mit den weiteren Verfahrens- schritten:11. The method according to claim 10 with the further method steps:
Aufbringen eines Trägersubstrats (5) auf eine der ZnO- Kontaktierungsschichten (31, 32). WO 00/77863 PCTtDEOO/01937Applying a carrier substrate (5) to one of the ZnO contacting layers (31, 32). WO 00/77863 PCTtDEOO / 01937
12. Verfahren nach einem der Ansprüche 9 bis 11, d a d u r c h g e k e n n z e i c h n e t , daß die LED-Struktur (2) und die mindestens eine ZnO- Kontaktierungsschicht (3; 31, 32) durch MOVPE oder durch MBE aufgebracht werden.12. The method according to any one of claims 9 to 11, so that the LED structure (2) and the at least one ZnO contacting layer (3; 31, 32) are applied by MOVPE or by MBE.
13. Verfahren nach einem der Ansprüche 9 bis 12, d a d u r c h g e k e n n z e i c h n e t , daß - die ZnO-Kontaktierungsschicht (3; 31, 32) eine körnige polykristalline Oberflächenstruktur aufweist. 13. The method according to any one of claims 9 to 12, so that the ZnO contact layer (3; 31, 32) has a granular polycrystalline surface structure.
PCT/DE2000/001937 1999-06-14 2000-06-14 Ga(In, Al) P COMPOUND-BASED LIGHT-EMITTING SEMICONDUCTOR DIODE WITH A ZnO WINDOW LAYER WO2000077863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19926958A DE19926958B4 (en) 1999-06-14 1999-06-14 GaAs (In, Al) P-type ZnO window layer light emission semiconductor diode
DE19926958.0 1999-06-14

Publications (1)

Publication Number Publication Date
WO2000077863A1 true WO2000077863A1 (en) 2000-12-21

Family

ID=7911106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/001937 WO2000077863A1 (en) 1999-06-14 2000-06-14 Ga(In, Al) P COMPOUND-BASED LIGHT-EMITTING SEMICONDUCTOR DIODE WITH A ZnO WINDOW LAYER

Country Status (2)

Country Link
DE (1) DE19926958B4 (en)
WO (1) WO2000077863A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118447A1 (en) * 2000-11-07 2002-05-16 United Epitaxy Co Ltd Light emitting diode and method for producing the same
DE10118448A1 (en) * 2001-02-06 2002-08-22 United Epitaxy Co Light emitting diode and method for producing the same
GB2413008A (en) * 2004-04-08 2005-10-12 Supernova Optoelectronics Corp GaN-based light-emitting diode
US9437910B2 (en) 2011-08-23 2016-09-06 Mesaplexx Pty Ltd Multi-mode filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047168A1 (en) * 2005-09-30 2007-04-12 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078803A (en) * 1989-09-22 1992-01-07 Siemens Solar Industries L.P. Solar cells incorporating transparent electrodes comprising hazy zinc oxide
EP0475618A2 (en) * 1990-09-13 1992-03-18 Mitsubishi Denki Kabushiki Kaisha Method of fabricating semiconductor laser device
US5717226A (en) * 1996-09-18 1998-02-10 Industrial Technology Research Institute Light-emitting diodes and method of manufacturing the same
US5889295A (en) * 1996-02-26 1999-03-30 Kabushiki Kaisha Toshiba Semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545306B2 (en) * 1991-03-11 1996-10-16 誠 小長井 Method for producing ZnO transparent conductive film
US5300791A (en) * 1992-09-29 1994-04-05 Industrial Technology Research Institute Light emitting diode
JPH0738150A (en) * 1993-07-22 1995-02-07 Toshiba Corp Semiconductor light emitting device
US6057562A (en) * 1997-04-18 2000-05-02 Epistar Corp. High efficiency light emitting diode with distributed Bragg reflector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5078803A (en) * 1989-09-22 1992-01-07 Siemens Solar Industries L.P. Solar cells incorporating transparent electrodes comprising hazy zinc oxide
EP0475618A2 (en) * 1990-09-13 1992-03-18 Mitsubishi Denki Kabushiki Kaisha Method of fabricating semiconductor laser device
US5889295A (en) * 1996-02-26 1999-03-30 Kabushiki Kaisha Toshiba Semiconductor device
US5717226A (en) * 1996-09-18 1998-02-10 Industrial Technology Research Institute Light-emitting diodes and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118447A1 (en) * 2000-11-07 2002-05-16 United Epitaxy Co Ltd Light emitting diode and method for producing the same
DE10118447C2 (en) * 2000-11-07 2003-03-13 United Epitaxy Co Light-emitting diode with a transparent substrate and method for producing one
DE10118448A1 (en) * 2001-02-06 2002-08-22 United Epitaxy Co Light emitting diode and method for producing the same
GB2413008A (en) * 2004-04-08 2005-10-12 Supernova Optoelectronics Corp GaN-based light-emitting diode
GB2413008B (en) * 2004-04-08 2006-06-28 Supernova Optoelectronics Corp GaN-based light-emitting diode structure
US9437910B2 (en) 2011-08-23 2016-09-06 Mesaplexx Pty Ltd Multi-mode filter

Also Published As

Publication number Publication date
DE19926958B4 (en) 2008-07-31
DE19926958A1 (en) 2001-01-11

Similar Documents

Publication Publication Date Title
EP2289113B1 (en) Optoelectronic component and method for the production thereof
EP2248235B1 (en) Edge-emitting semiconductor laser and method for producing an edge-emitting semiconductor laser
EP2559076B1 (en) Light-emitting diode chip with current spreading layer
DE102005048408B4 (en) Thin-film semiconductor body
DE102007029370A1 (en) Semiconductor chip and method for producing a semiconductor chip
EP1277240A1 (en) Radiation-emitting semiconductor element and method for producing the same
EP1630915A2 (en) Lightemitting optoelectronic element with quantum well structure and method of fabrication
DE10008583A1 (en) Production of an optically transparent substrate comprises epitaxially growing a substrate layer on a substrate, connecting the substrate layer to the side with an optically transparent layer, and removing the substrate
EP2057696B1 (en) Optoelectronic semiconductor chip and method for manufacturing the same
DE112017003307T5 (en) A method of manufacturing a semiconductor optical device and an optical semiconductor device
EP1060541B1 (en) Component with a laser diode and a light receiver
EP2191520B1 (en) Light emitting thin-film diode having a mirror layer and method for the production thereof
EP1845564A2 (en) Radiation emitting body and method for manufacturing a radiation emitting body
DE102010032497A1 (en) A radiation-emitting semiconductor chip and method for producing a radiation-emitting semiconductor chip
EP1929551B1 (en) Optoelectronic semiconductor chip
EP1299909B1 (en) Ingan-based light-emitting diode chip and a method for the production thereof
WO2012052415A1 (en) Optoelectronic component and method for producing it
WO2000077863A1 (en) Ga(In, Al) P COMPOUND-BASED LIGHT-EMITTING SEMICONDUCTOR DIODE WITH A ZnO WINDOW LAYER
WO2010048918A1 (en) Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip
DE102011014845B4 (en) Semiconductor light-emitting device and method of manufacturing a semiconductor light-emitting device
WO2023104457A1 (en) Laser diode component and method for producing at least one laser diode component
WO2007036197A1 (en) Optoelectronic semiconductor chip
WO2022122347A1 (en) Semiconductor laser and method for producing a semiconductor laser
WO2023078912A1 (en) Surface emitting semiconductor laser and method for producing a surface emitting semiconductor laser
DE102021133904A1 (en) SEMICONDUCTOR LASER AND METHOD OF MANUFACTURING A SEMICONDUCTOR LASER

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP