WO2001003170A1 - Exposure method and device - Google Patents

Exposure method and device Download PDF

Info

Publication number
WO2001003170A1
WO2001003170A1 PCT/JP1999/003534 JP9903534W WO0103170A1 WO 2001003170 A1 WO2001003170 A1 WO 2001003170A1 JP 9903534 W JP9903534 W JP 9903534W WO 0103170 A1 WO0103170 A1 WO 0103170A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
optical system
transmittance
light
illumination
Prior art date
Application number
PCT/JP1999/003534
Other languages
French (fr)
Japanese (ja)
Inventor
Taro Ogata
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU43950/99A priority Critical patent/AU4395099A/en
Priority to PCT/JP1999/003534 priority patent/WO2001003170A1/en
Publication of WO2001003170A1 publication Critical patent/WO2001003170A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Definitions

  • the present invention relates to a lithographic apparatus for manufacturing a device such as a semiconductor device, an image pickup device (CCD or the like), a liquid crystal display device, a plasma display device or a thin film magnetic head.
  • a device such as a semiconductor device, an image pickup device (CCD or the like), a liquid crystal display device, a plasma display device or a thin film magnetic head.
  • the present invention relates to an exposure method for transferring onto a substrate, an exposure apparatus, and a device manufacturing method.
  • the lithography process (typically consisting of a resist coating process, an exposure process, and a resist development process) for manufacturing semiconductor devices has been performed.
  • the apparatus it is required to further improve the resolution, transfer accuracy, and the like.
  • high-precision exposure dose control for exposing the resist applied on the wafer as a substrate with an appropriate exposure dose.
  • the amount of illumination light branched in the illumination optical system immediately before exposure and the optical system (part of the illumination optical system and the projection optical system) arranged in the optical path from the branched position to the wafer surface The amount of exposure on the surface of jehachi was calculated from the transmittance, and the amount of exposure was controlled based on the calculation result.
  • a step-and-repeat type exposure apparatus stepper
  • the exposure time is controlled so that the calculated integrated value of the exposure amount becomes a predetermined value
  • a step-and-scan type exposure apparatus is provided. So, its calculated The output of the light source or the scanning speed was controlled so that the exposure amount became a constant value.
  • the wavelength of the exposure light used in the exposure apparatus has been decreasing year by year.
  • the mainstream exposure wavelength is the KrF excimer laser at 248 nm, and the shorter wavelength ArF excimer laser at 193 nm is being put into practical use. Therefore, when ultraviolet pulse light (wavelength of about 250 nm or less) from these excimer laser light sources is used as exposure light, the glass material of the illumination optical system or projection optical system is used for the exposure.
  • Exposure amount control is performed based on the exposure amount on the wafer surface calculated from the amount of illumination light branched in the illumination optical system and the transmittance of the optical system measured in advance. .
  • an exposure apparatus such as an ArF excimer laser beam, which uses ultraviolet pulsed light in a substantially vacuum ultraviolet region as exposure light
  • solar irradiation is generated by irradiation of the ultraviolet pulsed light.
  • the optical constant of the synthetic quartz glass used as a glass material in the optical system or the like changes, and the transmittance may gradually decrease with the irradiation of the ultraviolet pulse light.
  • the decrease in transmittance due to this solarization is a reversible change.
  • damage to the synthetic quartz glass due to the solarization is gradually recovered, and the transmittance is gradually recovered.
  • the change rate and time constant of transmittance due to solarization vary depending on the type of glass material, and the higher the pulse energy, peak power, average power, or duty ratio of the ultraviolet pulse light, the higher the transmittance due to solarization. Rate change The change rate of becomes large and the time constant becomes short.
  • a trace amount of an organic substance in the atmosphere around the optical member causes a chemical reaction by ultraviolet light to produce a cloudy substance, thereby causing the transmittance or the reflectance of the optical member to change. May change.
  • the transmittance or reflectance of the optical member changes over time due to the irradiation of the ultraviolet pulse light (exposure light)
  • the amount of the illumination light branched in the illumination optical system and the transmittance of the optical system before the exposure are changed. Since the exposure light amount on the wafer surface calculated from the above is different from the actual exposure amount on the wafer surface, accurate exposure amount control becomes difficult.
  • the present invention provides an exposure method capable of preventing deterioration of exposure amount control accuracy due to a change in transmittance or reflectance of an optical member such as an illumination optical system or a projection optical system due to irradiation of exposure light.
  • the purpose is to: Another object of the present invention is to provide an exposure apparatus capable of performing such an exposure method.
  • Another object of the present invention is to provide a device manufacturing method capable of manufacturing a highly accurate device using such an exposure apparatus.
  • a first exposure method illuminates a first object (R) with illumination light from an illumination optical system (1, 6, 7A, 7B, 11 to 19), and In an exposure method for transferring a pattern onto a second object (W) via a projection optical system (PL), the transmittance or reflectance of the illumination optical system and at least a part of the optical members in the projection optical system is determined.
  • the intensity of the illumination light is controlled so as to suppress the fluctuation amount.
  • the irradiation of the illumination light causes, for example, solarization ⁇ the adhesion of a cloudy substance, and the illumination optical system or If the transmittance or reflectance of a predetermined optical member in the projection optical system fluctuates, the intensity of the illumination light and the transmittance or reflection of the optical member due to the irradiation of the illumination light are determined in advance. Measure the relationship with the rate variation. Then, for example, when exposing a layer having a high exposure amount control accuracy, the intensity of the illumination light is reduced so as to reduce the fluctuation of the transmittance or the reflectance of the optical member based on the above relationship.
  • the illuminance fluctuation on the second object can be suppressed within an allowable range, and the exposure amount can be controlled with high accuracy.
  • the second exposure method illuminates the first object (R) with illumination light from the illumination optical system (1, 6, 7A, 7B, 11 to 19).
  • the transmittance or transmittance of at least some of the optical members in the illumination optical system and the projection optical system The amount of change in reflectance is predicted according to the exposure process, and the intensity of the illumination light is controlled so as to suppress the predicted amount of change.
  • the intensity of the illuminating light is large, and the variation of the transmittance or the reflectance of the predetermined optical member is expected to exceed the allowable range.
  • the intensity of the illumination light is reduced even if the throughput is slightly reduced, so that the amount of change in the transmittance or reflectance of the optical member during exposure is reduced. Thereby, required exposure amount control accuracy on the second object can be obtained.
  • the first object (R) is illuminated with the illumination light from the light source (1), and the pattern of the first object is transferred onto the second object (W).
  • the intensity of the illuminating light is controlled so as to suppress the variation of the transmittance or the reflectance of at least some of the optical members arranged in the optical path of the illuminating light.
  • the transmittance or the reflectance of the optical member arranged in the optical path of the illumination light fluctuates beyond the allowable range.
  • the intensity of the illuminating light by reducing the intensity of the illuminating light, the amount of change in the transmittance or the like of the optical member can be reduced, and highly accurate exposure amount control can be performed on the second object.
  • the illumination light is ultraviolet pulse light having a wavelength of 300 nm or less, such as ArF excimer laser light
  • the intensity of the illumination light it is preferable to control the peak power or the oscillation frequency of the illumination light.
  • the control of the peak power includes a method of indirectly controlling the power by inserting or removing an optical filter having a predetermined transmittance.
  • the exposure apparatus includes an illumination optical system (1, 6, 7A, 7B, 11 to: L9) for illuminating a first object with illumination light, and the first object (R).
  • An exposure system having a projection optical system (PL) for transferring the above pattern onto a second object (W), an intensity control system (40, 41) for controlling the intensity of the illumination light,
  • An arithmetic control system (3) that controls the intensity of the illumination light via the intensity control system so as to suppress the amount of change in the transmittance or the reflectance of at least some of the optical members in the optical system and the projection optical system. 0) and.
  • the intensity control system is provided through the intensity control system so as to suppress the variation of the transmittance or the reflectance of at least some of the optical members in the illumination optical system and the projection optical system.
  • the first, second and third exposure methods of the present invention can be performed.
  • an exposure light from the exposure light source (1) is used to transfer an image of a predetermined circuit pattern to a substrate (W) via an optical system, and to divide the device.
  • a device manufacturing method for manufacturing a semiconductor device an image of the predetermined circuit pattern is formed while controlling the intensity of the exposure light so as to suppress a variation in transmittance or reflectance of the optical system with respect to the exposure light. It is transferred onto the substrate.
  • high-precision exposure amount control is performed by controlling the intensity of the exposure light so as to suppress the fluctuation amount of the transmittance or the reflectance of the optical system.
  • high-performance devices can be obtained.
  • FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus used in an example of an embodiment of the present invention, with a part cut away.
  • FIG. 2 is a diagram showing an example of a measurement result of the transmittance of the projection optical system by irradiation of the ultraviolet pulse light.
  • Fig. 3 (a) is a diagram showing the ND filter 41 of Fig. 1
  • Fig. 3 (b) is a diagram showing another example of an optical filter that can be used in place of the ND filter 41
  • Fig. 3 (c) is It is a figure which shows another example of the optical filter.
  • FIG. 4 is a diagram illustrating an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a schematic configuration of the projection exposure apparatus of the present example.
  • Ultraviolet pulse light IL as the illumination light (exposure light) for exposure narrowed at a wavelength of 193 nm from the ArF excimer laser light source 1 is used to positionally match the optical path with the exposure apparatus body. Beam including a movable mirror etc.
  • the light passes through a matching unit (BMU) 3 and enters a sub-chamber 35 containing a predetermined optical system via a cylindrical pipe 5 made of a light-shielding material.
  • an ND filter for reducing the illuminance (an example of the intensity) of the ultraviolet pulse light IL is provided so that it can be inserted into and removed from the optical path by the drive mode.
  • ND Filler 41 has a stable transmittance even for ultraviolet pulsed light.
  • the transmittance of the ND filter 41 is set to be very small, for example, about 0.5 (50).
  • the transmittance for the ultraviolet pulse light IL can be largely switched between two stages of 100% and, for example, about 50%.
  • the ND filter 41 and the drive mode 40 correspond to the optical filter and the drive member of the present invention, respectively, and both correspond to the intensity control system.
  • the value of “1—transmittance”, ie, the value of “100—transmittance (%)” in% is referred to as “dimming rate”.
  • the ultraviolet pulse light IL that has passed near the ND filter 41, or when the ND filter 41 is installed on the optical path the ultraviolet pulse light IL that has passed through the ND filter 41 Enters the variable attenuator 6 as a light athens overnight.
  • a pulsed laser light source is used as the exposure light source as in this example, since there is energy variation for each pulsed light, a certain number (hereinafter referred to as “minimum exposure pulse number”) for each point on the wafer Exposure with a plurality of pulsed light beams as described above provides desired reproducibility of exposure amount control accuracy.
  • the target integrated exposure amount is small, so if the laser light from the pulse laser light source is used as it is, the minimum exposure Exposure with more than the pulse number becomes impossible. Therefore, in this example, a certain degree of control of the output of the laser light source itself is combined with a control of the dimming rate for the pulsed light by the variable dimmer 6 as a dimming mechanism installed on the optical path. Exposure is performed with a pulse number equal to or greater than the minimum exposure pulse number.
  • the variable dimmer 6 of the present example is composed of two rotatable variable dimmers 6 c and 6 b and drive motors 6 d and 6 a for respectively rotating these dimmers.
  • These ND filters are formed of a fluorite substrate whose transmittance is stable, for example, even for ultraviolet pulsed light.
  • Each of the variable neutral density plates 6c and 6b includes a transparent portion having a light attenuation rate of 0. For example, if the number of ND filters is set to 5, the light attenuation rate for the ultraviolet pulse light IL is 0.
  • variable dimmer 6 of the present example can switch the dimming rate for the ultraviolet pulse light IL within a predetermined range and in several steps with a step amount of about several percent.
  • the output can be controlled relatively easily and continuously as long as the output is within a range of about several%, which is the step amount of the change of the dimming rate in the variable dimmer 6.
  • the ultraviolet pulse light IL after passing through the variable attenuator 6 The average output is controlled almost continuously within the range of several 10%, for example.
  • the exposure control unit 30 for controlling the exposure amount of the resist on the wafer controls the start and stop of the light emission of the ArF excimer laser light source 1, and the output determined by the oscillation frequency and the pulse energy.
  • the extinction ratio for the ultraviolet pulse light in the variator 6 is adjusted stepwise.
  • the operation of the exposure control unit 30 is controlled by a main control system 30 composed of a combination unit that supervises and controls the operation of the entire apparatus.
  • a pair of glass substrates with variable tilt angles is arranged on the output side of the variable dimmer 6, and the tilt angles of these glass substrates are adjusted.
  • the output of the ultraviolet pulse light IL may be continuously controlled within a range of about several percent.
  • wavelength 2 4 8 nm of K r F excimer laser light or a wavelength 1 5 7 nm of fluorine laser (F 2 laser), etc. or a YAG laser harmonic, wavelength 3 0 0 nm approximately
  • the present invention is also applied to the case where the following ultraviolet pulse light is used.
  • the ultraviolet pulse light IL that has passed through the variable dimmer 6 passes through an optical integrator through a beam shaping optical system composed of lens systems 7A and 7B arranged along the optical axis of the illumination optical system.
  • the fly-eye lens 11 is incident on the lens.
  • the fly-eye lens 1 1
  • An aperture stop system 12 of an illumination system is arranged on the exit surface of the fly-eye lens 11.
  • the aperture stop system 12 includes a circular aperture stop for normal illumination and an aperture stop for deformed illumination consisting of multiple eccentric small apertures.
  • an aperture stop for orbicular illumination and the like are arranged to be switchable.
  • the ultraviolet pulse light IL emitted from the fly-eye lens 11 and passing through a predetermined aperture stop in the aperture stop system 12 is a fluorite having a high transmittance, a low reflectance, and a stable transmittance (reflectance). It is incident on beam splitter 8 consisting of The ultraviolet pulse light reflected by the beam splitter 8 enters an integral sensor 9 composed of a photoelectric detector, and a detection signal of the integral sensor 9 is supplied to an exposure control unit 30.
  • the transmittance and the reflectance of the beam splitter 8 are measured with high precision in advance and stored in a memory in the exposure control unit 30. Further, the measured values of the transmittance of the illumination system and the projection optical system PL after the beam splitter 8 before the start of exposure are also stored in the memory of the exposure control unit 30, and the exposure control unit 30.
  • the projection optical system PL and, consequently, the incident light amount of the ultraviolet pulse light IL to the wafer W to be exposed and the integrated value thereof can be monitored indirectly from the detection signal of the integer sensor 9.
  • a beam splitter is arranged in front of the lens system 7A (on the side of the ArF excimer laser light source 1 than the lens system 7A).
  • the reflected light from the beam splitter may be received by a photoelectric detector, and the detection signal may be supplied to the exposure control unit 30.
  • the transmittance of the variable dimmer 6 and the ND filter 41 is limited. Even if it fluctuates to the extent, the amount of the fluctuation can be monitored. Therefore, quartz glass or the like may be used as a substrate for the variable dimmers 6 c and 6 b of the variable dimmer 6 and the ND filter 41.
  • the ultraviolet pulse light IL transmitted through the beam splitter 8 passes through the reflection mirror 13 and the condenser lens system 14 and is fixed in the reticle blind mechanism 16.
  • Constant blind (fixed illumination field stop) 15 A is incident on an opening formed to extend in a straight slit or rectangular shape (hereinafter collectively referred to as “slit shape”) at 15A.
  • a movable blind 15 B for changing the width of the illumination visual field in the scanning exposure direction is provided separately from the fixed blind 15 A.
  • the movable blind 15 B reduces the scanning stroke of the reticle stage and the width of the reticle scale light-shielding band.
  • the value obtained by multiplying the incident light amount obtained from the detection signal of the integrate sensor 9 by the aperture ratio of the fixed blind 15A and the movable blind 15B is the actual incident light amount to the projection optical system PL.
  • the ultraviolet pulse light IL shaped into a slit with the fixed blind 15 A of the reticle blind mechanism 16 is passed through the reticle through the imaging lens system 17, the reflection mirror 18, and the main condenser lens system 19.
  • a slit-shaped illumination area on the R circuit pattern area is illuminated with a uniform illuminance distribution. That is, the arrangement surface of the opening of the fixed blind 15A and the opening of the movable blind 15B is almost conjugate with the pattern surface of the reticle R.
  • the illumination optical system is composed of the mirror 13 to the main condenser lens system 19, etc., and the optical components (also called the “illumination system”) from the variable dimmer 6 to the main condenser lens system 19 are the illumination sub-chamber 3. 5 is stored inside. Further, in the illumination optical system of this example, immediately before the variable dimmer 6 in the sub-chamber 35, which is a position close to the ArF excimer laser light source 1, the ND filter can be inserted into and removed from the optical path. 4 1 are arranged.
  • the image of the circuit pattern in the illumination area of the reticle R is on both sides (or one side on the wafer side) Telecentric projection optical system PL
  • a predetermined projection magnification j3 (/ 3 is, for example, 1Z4, 1Z5, etc.)
  • Reticle R and wafer W correspond to the first object and the second object of the present invention, respectively.
  • the exposure area on the wafer W is located on one of the plurality of shot areas on the wafer.
  • the projection optical system PL of this example is a dioptric system (refractive system), but it is needless to say that a power dioptric system (catadioptric system) can also be used.
  • the Z axis is taken in parallel with the optical axis AX of the projection optical system PL, and the X axis is set in the scanning direction 4 2 (here, the direction parallel to the plane of FIG. 1) indicated by an arrow in a plane perpendicular to the Z axis.
  • the Y-axis in the non-scanning direction orthogonal to the scanning direction 42 here, the direction perpendicular to the plane of FIG. 1).
  • the reticle R is held by suction on the reticle stage 2OA, and the reticle stage 20A can move at a constant speed in the X direction on the reticle base 20B, and can move slightly in the X, Y, and rotation directions. It is placed in.
  • the two-dimensional position and rotation angle of the reticle stage 2 O A (reticle R) are measured in real time by a laser interferometer in the drive control unit 22.
  • the driving modes linear mode, voice coil mode, etc.
  • the drive control unit 22 are controlled by the scanning speed of the reticle stage 20A, and Control the position.
  • the wafer W is suction-held on the Z tilt stage 24 Z via the wafer holder WH, and the Z tilt stage 24 Z moves two-dimensionally along an XY plane parallel to the image plane of the projection optical system PL.
  • the XY stage 24 is fixed on the XY, and the Z tilt stage 24 Z and the XY stage 24 XY constitute a wafer stage 24.
  • the Z tilt stage 2 4 Z controls the focus position (position in the Z direction) and the tilt angle of the wafer W to control the wafer W.
  • the surface of the wafer W is aligned with the image plane of the projection optical system PL by an autofocus method, and the XY stage 24 XY performs constant-speed movement of the wafer W in the X direction and stepping in the X and Y directions.
  • the two-dimensional position and rotation angle of the Z tilt stage 24 Z (wafer W) are measured in real time by a laser interferometer in the drive control unit 25.
  • the drive motor linear motor, etc.
  • the rotation error of the wafer W is corrected, for example, by rotating the reticle stage 20A via the main control system 27 and the drive control unit 22.
  • the main control system 27 sends various information such as the moving position, moving speed, moving acceleration, and position offset of each of the reticle stage 20 A and the XY stage 24 XY to the drive control units 22 and 25.
  • the reticle R is scanned in the + X direction (or one X direction) at a speed Vr with respect to the illumination area of the ultraviolet pulse light IL via the reticle stage 20A.
  • the wafer W moves in the ⁇ X direction (or + X direction) to the exposure area of the pattern image of the reticle R via the XY stage 24 XY 3 Vr (3 is the projection from the reticle R to the wafer W) (Magnification).
  • the reason that the scanning directions of the reticle R and the wafer W are opposite is that the projection optical system PL performs reverse projection, and when the projection optical system PL projects an erect image, the scanning directions of both are the same. Turn.
  • the main control system 27 is provided for synchronizing the movement of each blade of the movable blind 15 B provided in the reticle blind mechanism 16 with the movement of the reticle stage 20 A during scanning exposure. Perform control. Further, the main control system 27 sets various exposure conditions for scanning and exposing the resist in each shot area on the wafer W with an appropriate exposure amount in cooperation with the exposure control unit 30. And execute the optimal exposure sequence. Then, at the end of the scanning exposure on the shot area, the emission of the ArF excimer laser light source 1 is stopped.
  • an irradiation amount monitor 32 composed of a photoelectric detector is installed near the wafer holder WH on the Z tilt stage 24 Z in this example, and a detection signal of the irradiation amount monitor 32 is also supplied to the exposure control unit 30. ing.
  • the irradiation dose monitor 32 has a light receiving surface large enough to cover the entire slit-shaped exposure area by the projection optical system PL.
  • the XY stage 24 drives the XY stage to cover the light receiving surface with the exposed area.
  • the amount of ultraviolet pulse light IL that has passed through the projection optical system PL can be measured.
  • the transmittance of the projection optical system PL is measured using the detection signals of the integrator sensor 9 and the irradiation amount monitor 32.
  • an uneven illuminance sensor having a pinhole-shaped light receiving portion for measuring the light amount distribution in the exposure area may be used.
  • an uneven illuminance sensor it is preferable to arrange a large number of pinhole-shaped light receiving units in a two-dimensional direction so that uneven illuminance of the entire exposure area can be measured at a time.
  • an ArF excimer laser beam (wavelength: 193 nm) is used as the exposure light.
  • light in the vacuum ultraviolet region having a wavelength of about 200 nm or less has an absorption amount by oxygen.
  • the sub-chamber 35 in which most of the optical path of the illumination optical system of this example is housed blocks the internal optical path from the outside air, and the entire inside of the sub-chamber 35 has an acid through a pipe 36. Dry nitrogen gas (N 2 ) with extremely low element content is supplied.
  • dry nitrogen gas is supplied to the entire space inside the lens barrel of the projection optical system PL (space between multiple lens elements) via the pipe 37, and the ultraviolet pulse light IL is attenuated on the optical path. The amount has become extremely small.
  • dry nitrogen gas May be provided by providing a pipe between each lens element constituting the illumination optical system and the projection optical system.
  • a reticle chamber is formed between the sub-chamber 35 and the projection optical system PL, that is, around the reticle stage from outside air
  • a reticle chamber is formed between the projection optical system PL and the wafer, that is, around the wafer stage.
  • the wafer chamber may be configured to shut off from outside air, and dry nitrogen gas may be supplied to each chamber.
  • the reticle chamber and the wafer chamber are not configured, and the sub-chamber 35 and the projection optics are simply provided. Dry nitrogen gas may always be supplied (flow) between the system PL and between the projection optical system PL and the wafer.
  • the supply of the dry nitrogen gas does not need to be performed so frequently after the air has been completely replaced once.
  • transmittance fluctuations caused by water molecules and hydrocarbon molecules generated from various substances (glass materials, coating materials, adhesives, paints, metals, ceramics, etc.) existing in the optical path adhere to the surface of the optical element.
  • it is necessary to remove these impurity molecules by using a chemical filter and an electrostatic filter while forcing the temperature-controlled nitrogen gas to flow in the optical path.
  • the supply pipe for supplying the dry nitrogen gas is made of a material that generates less impurity gas (and degassed), such as stainless steel, tetrafluoroethylene, tetrafluoroethylene-terfluoro (alkyl vinyl ether), or tetrafluoroethylene. It is desirable to form with various fluorine polymers such as hexafluoropropene copolymer. Further, in place of the dry nitrogen gas, an inert gas such as helium (He), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn) may be used.
  • helium He
  • Ar argon
  • Kr krypton
  • Xe xenon
  • Rn radon
  • the glass material having a sufficient transmittance practical in to light of up to about 1 6 0 nm wavelength vacuum ultraviolet region synthetic quartz (S i ⁇ 2), fluorine-doped
  • synthetic quartz S i ⁇ 2
  • Most of the glass material of the refractive optical member in the illumination optical system and the projection optical system PL of this example is made of synthetic quartz because it is limited to synthetic quartz and fluorite, etc., and fluorite is expensive.
  • synthetic quartz is continuously irradiated with ultraviolet pulse light, the transmittance tends to reversibly decrease due to solarization.
  • an optical member of a projection exposure apparatus that the exposure light source A r F excimer laser light source, synthetic quartz or calcium fluoride (C a F 2) single crystal of fluoride and the like are generally used.
  • the image forming optical system of the projection exposure apparatus is composed of a large number of large-diameter thick lenses (optical members) of, for example, ⁇ 200 mm x t 20 mm, so that the optical path length becomes extremely long. Therefore, in order to increase the transmittance of the entire optical system, it is necessary to increase the transmittance of each optical member.
  • the temperature of the optical member rises due to absorption of the illumination light, causing a non-uniform refractive index distribution. Deformation causes a decrease in optical performance.
  • the optical member has an internal transmittance of 99.5% / cm or more. Further, if there is uneven or distortion of the refractive index distribution in the optical element (secondary refraction), since the imaging performance (resolution) is reduced, uniformity ⁇ refractive index distribution 4 X 1 0- 6 or less, distortion Desirably, it is 4 nmZcm or less.
  • the ArF excimer laser is a high-energy pulsed laser, and even if synthetic quartz is stable compared to other optical materials, the transmittance and the structure due to the generation of defects due to the irradiation of the ArF excimer laser are increased. Changes, so-called laser damage.
  • optical thin films of various configurations are formed on optical members of the projection exposure apparatus to maintain desired optical characteristics, and the film materials are also formed by absorption of exposure light, such as ArF excimer laser light. It is necessary to use a material that is unlikely to cause a change in the substrate surface or film destruction due to loss of light amount or absorption heat generation, that is, a material having high transmittance and high durability to ArF excimer laser light.
  • a cloudy substance may gradually adhere to the surface of the refractive optical member and the reflective optical member (mirror or the like) due to a chemical reaction or the like due to ultraviolet pulse light, and the transmittance or the reflectance may fluctuate.
  • a cloudy substance can be removed by, for example, light washing in which an ultraviolet pulse light whose output is larger than usual is irradiated.
  • the transmittance and reflectance of such a cloudy substance are reduced. Fluctuations are kept very small.
  • the dose monitor When measuring the transmittance of the projection optical system PL, the dose monitor The light receiving surface of evening 32 is set in the exposure area of projection optical system PL, and the total aperture ratio of fixed blind 15A and movable blind 15B is set to 100%.
  • the reticle R is removed from the reticle stage 2OA, and the reticle stage 20A is not scanned. Then, the extinction rate of the variable dimmer 6 is set to a reference value, for example, 0% (transmittance is 100%), and the ND filter 41 is retracted from the optical path, and A r
  • the pulse emission of the F excimer laser light source 1 starts at an average output.
  • the exposure control unit 30 takes in the photoelectric conversion signals of the integrator sensor 9 and the irradiation amount monitor 32 in parallel to form a detection signal S i corresponding to the actual incident energy E i to the projection optical system PL. , And a detection signal S o corresponding to the transmitted energy E o actually passing through the projection optical system PL.
  • a peak hold circuit and an AZD converter are connected to the outputs of the integrator sensor 9 and the dose monitor 32, respectively.
  • S i and S 0 are captured as digital data.
  • the exposure control unit 30 calculates the incident energy Ei and the transmitted energy Eo by multiplying the detection signals S i and S o by a coefficient obtained in advance.
  • a sample-and-hold circuit is used instead of the peak-and-hold circuit to detect the detection signal.
  • E o and E i are The transmittance T is calculated by sequentially detecting at the pulling rate, and the incident energy Ei may be integrated.
  • each point on the wafer W is exposed with a pulse number equal to or more than the minimum exposure pulse number, that is, a certain fixed number or more of a plurality of pulse lights.
  • the transmittance T and the total incident energy e are calculated at measurement intervals sufficiently short with respect to the exposure time of the shot.
  • the measurement time is set so that the total incident energy e at the end of the measurement is sufficiently larger than the total incident energy accumulated during the normal one-shot exposure.
  • the measurement time is, for example, several seconds to ten seconds.
  • the transmittance T of the projection optical system PL is approximated by a function of the quadratic or higher order of the total incident energy e or an exponential function of the incident energy e, and the transmittance T of the transmittance T is calculated from the approximated function.
  • the saturated value and the time constant of the change amount are obtained (details will be described later), and the obtained saturated value and the time constant are stored in the memory in the exposure control unit 30.
  • the emission frequency of the ultraviolet pulse light IL is almost uniform and the average value of the pulse energy is also almost uniform, the total incident energy e is almost proportional to the elapsed time t from the start of the measurement.
  • the transmittance T can be regarded as a function T (q, t) of the illuminance q of the ultraviolet pulse light and the elapsed time t, for example. Accordingly, the saturation value and the time constant of the change amount of the transmittance T can be expressed by a primary or secondary function of the illuminance Q, respectively.
  • the transmittance change due to the solarization is a reversible change, and when the irradiation of the ultraviolet pulse light is stopped, the transmittance T of the projection optical system PL gradually recovers. It also measures the transmittance T of the projection optical system PL. Specifically, after stopping the emission of the ArF excimer laser light source 1, the ArF excimer laser light source 1 emits as few pulses as possible at predetermined time intervals, and the exposure control unit. In 30, ⁇
  • the measurement of the transmittance T is repeated a predetermined number of times, and after the measurement is completed, the transmittance T of the projection optical system PL is, for example, a function T (Tst , t '), and the time constant at which the transmittance T recovers from this function T (Tst, t') is calculated as a first-order or second-order function of the transmittance Tst, and the time constant is calculated as It is stored in the memory in the exposure control unit 30.
  • Fig. 2 shows an example of the change in the transmittance T of the projection optical system PL due to the irradiation of the ArF excimer laser light.
  • the horizontal axis indicates the progress from the start of the irradiation of the ArF excimer laser light.
  • the ND filter 41 is retracted from the optical path, the extinction ratio of the variable dimmer 6 is set to 0, and the illuminance of the ultraviolet pulse light IL is almost maximized.
  • the measurement result of the relative value of the transmittance T of the projection optical system PL when the ultraviolet pulse light IL is emitted until the value of the curve is 43 A.
  • the characteristic after the time t1 indicates a change in the transmittance T after the irradiation of the ultraviolet pulse light IL is stopped.
  • the time t1 is set to a time (time constant) until the transmittance T saturates to a substantially predetermined value when the variation of the transmittance T becomes small.
  • the transmittance T of the projection optical system PL decreases rapidly at first due to the transmittance fluctuation of the synthetic quartz, and gradually becomes the initial value. It is saturated to a value that is about 2% lower than. After stopping irradiation of the ultraviolet pulse light IL at time t1, the damage of the synthetic quartz glass due to the solarization is gradually repaired, and the projection light The transmittance T of the academic PL gradually recovers toward the initial value.
  • the saturation value and time constant of the change in the transmittance ⁇ ⁇ ⁇ due to this solarization vary depending on the illuminance of the ultraviolet pulse light IL and the type of glass material, etc., but when the illuminance of the ultraviolet pulse light IL is close to the maximum, the average
  • the saturation value of the change in the transmittance ⁇ is about 2 to 3% of the initial value TO
  • the time constant of the change in the transmittance T is about 2 to 3 for the decrease in the transmittance during irradiation with ultraviolet pulse light.
  • the recovery of the transmittance after stopping irradiation of the UV pulse light for 3 min is about 10 to 20 min.
  • the ND filter 41 is retracted from the optical path and the dimming rate of the variable dimmer 6 is variously set, the ND filter 41 is further placed on the optical path. Even when the variable extinction device 6 is arranged and the extinction ratio of the variable extinction device 6 is variously set, the transmittance T of the projection optical system PL is measured during emission of the ultraviolet pulse light IL and emission stop thereof.
  • illumination conditions such as the size of the aperture stop and the type of deformed illumination
  • the exposure such as the numerical aperture of the projection optical system Since the light conditions are changed as appropriate, the transmittance T of the projection optical system PL is measured for each exposure condition.
  • a configuration for measuring the transmittance (time change of optical characteristics) for each exposure condition is described in Japanese Patent Application No. 9-19710. Therefore, the transmittance T of the projection optical system PL is measured in advance for each exposure condition, or the transmittance T of the projection optical system PL is measured immediately after the change of the exposure condition.
  • the measurement results of the saturation value of the change amount of the transmittance T and the time constant of the change are stored in the memory in the exposure control unit 30.
  • the change amount of the transmittance T can be calculated.
  • the saturation value and time constant can be obtained.
  • the illumination conditions such as the illuminance of the ultraviolet pulse light IL at the time of scanning exposure, the number of exposure pulses, and the scanning speed are determined based on the conditions such as the pattern abundance ratio.
  • the output Ea is a value obtained by multiplying the transmittance of the ND filter 41 and the variable dimmer 6 by the transmittance calculated from the known pattern existence ratio of the reticle R.
  • N (L / Vw a) f a ⁇ Nmin (2)
  • equation (1) since E aZ S is the illuminance of the ultraviolet pulse light IL on the wafer, controlling the output E a is equivalent to controlling the illuminance.
  • the scanning speed Vwa and the oscillation frequency f a are determined based on the equation (2), and then the output Ea of the ultraviolet pulse light IL is determined based on the equation (1). In this case, the output E a is multiplied by the transmittance of the ND filter 41 and the variable dimmer 6.
  • the transmittance fluctuation of the projection optical system P which occurs when the exposure is performed under these exposure conditions, is determined by the illuminance of the ultraviolet pulse light IL stored in the memory in the exposure control unit 30 and the projection optical system PL. Predict from the relationship with the change in transmittance (saturation value and time constant). Then, it is determined whether or not the fluctuation amount of the transmittance of the projection optical system PL becomes larger than a predetermined allowable value during the exposure of each wafer according to the predicted change amount of the transmittance. The amount of change in transmittance If the allowable value is exceeded, adjust the intensity of the ultraviolet pulse light IL.
  • the integrated exposure amount for each shot area on the wafer falls within the allowable range defined by the resist and the exposure process, and the integrated exposure amount falls within the allowable range.
  • the ND filter 41 is installed on the optical path of the ultraviolet pulse light IL via the driving mode 40 in FIG. Output (and thus illuminance) to about 50%.
  • the dimming rate of the variable dimmer 6 is selected again and the output of the ArF excimer laser light source 1 is finely adjusted from the equations (2) and (1). As a result, as shown in FIG.
  • the amount of change in the transmittance of the projection optical system PL during the exposure is approximately 1 to 2, so that the integrated exposure amount falls within the allowable range.
  • the control accuracy of the exposure amount is improved.
  • a low-sensitivity (high value of the resist sensitivity I) resist is used in a plurality of layers on a wafer, for example, in a critical layer including a pattern with an extremely narrow line width.
  • the tolerance of the error of the integrated exposure amount is quite narrow.
  • the resist sensitivity I (the target value of the integrated exposure amount) is about l OmJZ cm 2 in a normal layer, but the resist sensitivity I force is about 10 Om J Zcm 2 in a critical layer.
  • the allowable range of the error of the integrated exposure amount is, for example, about 1/2 or less of that of a normal layer in order to increase the control accuracy of the line width.
  • the fluctuation of the transmittance of the projection optical system PL after stopping the irradiation of the ultraviolet pulse light IL is considered in controlling the exposure amount.
  • the transmittance may not be sufficiently restored to the initial state after the exposure of one shot is completed and before the exposure of the next shot is started.
  • the recovery of the transmittance between shots may be insufficient. For this reason, the variation of the transmittance of the projection optical system PL when the irradiation of the ultraviolet pulse light IL is interrupted between shots
  • the exposure amount can be controlled with higher accuracy.
  • FIG. 4 shows an example of a semiconductor device manufacturing process.
  • a semiconductor device when manufacturing a semiconductor device, first, for example, a single crystal silicon ingot SI is sliced and polished to manufacture a wafer W. (Step ST1). At this time, a notch (a notch or the like) serving as a reference for wafer alignment is provided on the outer periphery of the wafer W.
  • step ST2 for example, a metal film, an insulating film, or the like is deposited on the wafer W, and a photoresist PR1 is applied.
  • step ST3 a change in the transmittance of the projection optical system PL or the like is predicted from the exposure conditions.
  • the ND filter 41 in FIG. 1 is retracted from the optical path.
  • the exposure condition is set, and the image of the pattern PA 1 (represented by the symbol A) of the reticle R 1 is irradiated with the ultraviolet pulse light IL 1 to each shot area S on the wafer W. Expose to C.
  • a pattern PW1 is formed in each shot area on the wafer W by performing development, etching, and the like.
  • step ST5 When exposing the next layer, first, in step ST5, for example, a metal film, an insulating film, or the like is deposited on the wafer W and a photoresist PR 2 is applied. Predict the transmittance fluctuation of the system PL etc.
  • This layer is assumed to be a layer with low registration sensitivity and high control accuracy of the integrated exposure, and the ND filter 41 in Fig. 1 is arranged on the optical path to reduce the illuminance of the ultraviolet pulse light. Set the exposure conditions. Then, the pattern P A 2 of the reticle R 2 by the ultraviolet pulse light I L 2
  • step ST7 a pattern P W2 is formed in each shot area on the wafer W by performing development and etching of the wafer W.
  • step ST2 to step ST4 or step ST5 to step ST7 are repeated as many times as necessary to manufacture a desired semiconductor device.
  • a semiconductor device SP as a product is manufactured through a dicing process (step ST8) for separating each chip CP on the wafer W, a bonding process, a packaging process, and the like (step ST9).
  • step ST8 for separating each chip CP on the wafer W, a bonding process, a packaging process, and the like.
  • step ST9 the illuminance of the ultraviolet pulse light is reduced to suppress the fluctuation of the transmittance of the projection optical system PL.
  • a desired circuit pattern can be formed on the wafer W with high transfer fidelity.
  • the ND filter 41 is set on the optical path of the ultraviolet pulse light IL by the drive motor 40, and the illuminance as the intensity of the ultraviolet pulse light is adjusted. It is carried out.
  • a glass substrate 41A made of synthetic quartz or the like is used as an optical filter, and this glass substrate 41A is moved with respect to the optical path of the ultraviolet pulse light IL by, for example, 5 mm.
  • the intensity of the ultraviolet pulse light IL may be adjusted by arranging it at an angle such that a reflectance of about 0% is obtained.
  • a metal mesh plate 41B with a light shielding area of about 50% was used as an optical filter, and this metal mesh plate 41B was inserted into the optical path of the ultraviolet pulse light. You may come off.
  • the transmittance of the ND filter 41 or the like as the optical filter is about 50%, but the transmittance may be about 30% to 70%. If the transmittance is less than 30%, the throughput will be too low, and if the transmittance is more than 70%, the variable dimmer 6 can be used instead of switching the dimming rate, so the equipment tends to overlap. Because. Further, the ND filter 41 has a simple device configuration because the UV pulse light is substantially switched in two steps, but for example, in three or four steps within a range of about 30 to 70%. The transmittance may be roughly switched.
  • the insertion position of the ND filter 41 in Fig. 1 is set to the Ar F excimer laser light source as much as possible in order to reduce the variation of the transmittance or reflectance of the optical member in the illumination optical system due to the irradiation of the ultraviolet pulse light IL. It is desirable to place it near 1.
  • the transmittance variation of the projection optical system PL is considered as a problem.
  • the intensity of the ultraviolet pulse light is reduced by the ND filter 41, the amount of cloudy substance generated is reduced. Since the amount of change in the reflectance of the reflecting member also decreases, the amount of change in the transmittance of the entire optical system (reflectance (Including the fluctuations of).
  • the method of adjusting the intensity of the ultraviolet pulse light IL is not limited to the method of inserting an optical filter such as the ND filter 41 on the optical path, but the oscillation of the ultraviolet pulse light IL in the ArF excimer laser light source 1 is described.
  • the frequency may be reduced, or the output itself may be significantly reduced.
  • the output of the ArF excimer laser light source 1 may be finely adjusted according to the transmittance of the projection optical system P for each pulse emission.
  • the illumination optical system from the power beam splitter 8 to the reticle R has been described in which the transmittance variation of the projection optical system PL is described as the transmittance variation on the optical path from the beam splitter 8 to the wafer W.
  • the transmittance fluctuation amount greatly contributes, it is desirable to consider the transmittance fluctuation of the illumination optical system and the projection optical system disposed between the beam splitter 8 and the wafer W.
  • synthetic quartz or synthetic quartz doped with a predetermined impurity is used in the projection optical system PL.
  • fluorite or the like is mainly used as a refractive member of the projection optical system PL.
  • the required exposure amount control accuracy can be obtained by applying the present invention.
  • a reticle R that emits light may be used to scan it in the same manner as in actual exposure.
  • the total amount of light incident on the projection optical system PL while scanning the reticle R to a certain arbitrary position from the start of scanning is the same between the time of measurement and the time of scanning exposure.
  • the pattern transmittance is also a value obtained by subtracting the pattern existence rate from 1, this pattern existence rate may be used.
  • the transmitted energy E o measured via the irradiation amount monitor 32 is obtained by multiplying the incident light amount by the transmittance of the pattern of the reticle R and the transmittance of the projection optical system PL.
  • the pattern existence rate is known as a function of the position of the reticle R from the design data of the reticle R.
  • the pattern transmittance of the reticle R it is possible to more accurately detect the variation in the transmittance of the projection optical system PL during the actual scanning exposure, and to perform highly accurate exposure control.
  • the shape of the function representing the transmittance T of the projection optical system PL may slightly change depending on the scanning direction, the function is obtained for each scanning direction, and the function is determined according to the scanning direction during scanning exposure. May be used properly. Accordingly, even when the reticle pattern transmittance is not symmetric or the reticle substrate itself has a non-symmetric transmittance, exposure amount control is performed with high accuracy.
  • the function representing the variation of the transmittance T of the projection optical system P L due to solarization may change depending on the irradiation time of the ultraviolet pulse light and the like. Therefore, it is desirable to measure the transmittance T of the projection optical system PL periodically (for example, every three months or every six months).
  • the present invention is applied to a step-and-scan method.
  • the present invention is applied to an exposure apparatus of a type, the present invention can also be applied to a case where exposure is performed by an exposure apparatus (stepper) of a step-and-repeat method.
  • the exposure time is controlled so that the integrated exposure amount to the shot area on the wafer becomes a predetermined value.
  • the exposure apparatus of the present embodiment can be applied to a proximity exposure apparatus that exposes a mask pattern by bringing a mask and a substrate into close contact with each other without using a projection optical system.
  • the application of the exposure apparatus is not limited to an exposure apparatus for manufacturing semiconductors.
  • an exposure apparatus for a liquid crystal that exposes a liquid crystal display element pattern to a square glass plate, a thin film magnetic head Can also be widely applied to an exposure apparatus for manufacturing a semiconductor device.
  • the present invention can be applied to a case where the transmittance of at least some of the optical members (lenses, reflection mirrors, and the like) constituting the illumination optical system and the projection optical system changes.
  • the transmittance of at least some of the optical members (lenses, reflection mirrors, and the like) constituting the illumination optical system and the projection optical system changes.
  • the optical members for example, g-ray (4 3 6 nm), i-rays (3 6 5 nm), K r F excimer one The (2 4 8 nm), or by using the F 2 laser (1 5 7 nm), the transmission It can also be applied when the rate changes.
  • magnification of the projection optical system may be not only a reduction system but also any of an equal magnification and an enlargement system.
  • the projection optical system if using a far ultraviolet ray such as an excimer laser using a material which transmits far ultraviolet quartz and fluorite as glass material, F 2 Les - if used The or X-ray catadioptric Or a refraction type optical system.
  • the projection exposure apparatus includes the components shown in FIG. 1 (illumination optical system, projection optical system, reticle stage, wafer stage, light source, and other elements shown in FIG. 1). It is manufactured by assembling to maintain the prescribed mechanical, electrical, and optical accuracy. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, and mechanical accuracy for various mechanical systems are performed before and after this assembly to ensure these various accuracies.
  • Adjustments to achieve, and various electrical systems are adjusted to achieve electrical accuracy.
  • the process of assembling the exposure apparatus from various subsystems includes mechanical connection between various subsystems, wiring connection of electric circuits, and connection of pneumatic circuits. It goes without saying that there is an assembly process for each of the various subsystems before the assembly process from these various subsystems to the exposure apparatus. When the assembly process for the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed. Therefore, various precisions of the entire exposure apparatus are ensured. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
  • the transmittance or the reflectance of the illumination optical system and a predetermined optical member in the projection optical system fluctuates beyond an allowable range.
  • the intensity of the illumination light by reducing the intensity of the illumination light, the amount of change in the transmittance or the like of the optical member can be reduced, and highly accurate exposure amount control can be performed on the second object.
  • the intensity of the illuminating light is controlled based on the amount of change in the transmittance or the like of the predetermined optical member that is predicted in advance.
  • the exposure amount can be controlled with high accuracy.
  • the third exposure method of the present invention it is possible to perform high-precision exposure control on the second object by reducing the amount of change in the transmittance or the like of the optical member.
  • the first, second, and third exposure methods of the present invention can be performed, and the exposure amount can be controlled with high precision as necessary. Therefore, for example, high-performance semiconductor devices can be mass-produced with high throughput and high yield as a whole.
  • high-precision exposure amount control is performed by controlling the intensity of the exposure light so as to suppress the variation amount of the transmittance or the reflectance of the optical system. As a result, high-performance devices can be obtained.

Abstract

An exposure method and device capable of restricting illuminance variations on a wafer to be caused by the transmittance variations of optical members such as a projection optical system on receiving an illuminating light and controlling a luminous exposure with high accuracy, wherein variations in transmittance with respect to an ultraviolet pulse beam (IL) of a projection optical system (PL) is predicted before an exposure operation based on exposure conditions (such as intensity of ultraviolet pulse beam (IL)), whether or not a luminous exposure with respect to a wafer (W) falls within an allowable range is judged, and, if not, an ND filter (41) for reducing the intensity of the ultraviolet pulse beam (IL) is inserted in an optical path between an ArF eximer laser light source (1) and a variable radiation attenuator (6) in an illumination optical system so that the luminous exposure is within the allowable range during an exposure operation.

Description

明 細 露光方法及び装置 技術分野  Description Exposure method and apparatus
本発明は、 例えば半導体素子、 撮像素子 (C C D等) 、 液晶表示素子, プラズマディスプレイ素子又は薄膜磁気へッ ド等のデバイスを製造する ためのリソグラフイエ程で、 マスクパターンを投影光学系を介して基板 上に転写するための露光方法、 露光装置、 及びデバイスの製造方法に関 する。 背景技術  The present invention relates to a lithographic apparatus for manufacturing a device such as a semiconductor device, an image pickup device (CCD or the like), a liquid crystal display device, a plasma display device or a thin film magnetic head. The present invention relates to an exposure method for transferring onto a substrate, an exposure apparatus, and a device manufacturing method. Background art
近年、 半導体デバイスの集積度及び微細度の向上に対応するため、 半 導体デバイスを製造するためのリソグラフイエ程 (代表的にはレジスト 塗布工程、 露光工程、 及びレジスト現像工程からなる) を担う露光装置 においては、 解像力、 及び転写精度等をより高めることが要求されてい る。 露光装置の解像力、 及び転写精度を高めるためには、 先ず基板とし てのウェハ上に塗布されたレジス卜を適正露光量で露光するための露光 量制御を高精度に行う必要がある。  In recent years, in order to respond to the improvement in the integration and fineness of semiconductor devices, the lithography process (typically consisting of a resist coating process, an exposure process, and a resist development process) for manufacturing semiconductor devices has been performed. In the apparatus, it is required to further improve the resolution, transfer accuracy, and the like. In order to increase the resolution and transfer accuracy of the exposure apparatus, it is necessary to perform high-precision exposure dose control for exposing the resist applied on the wafer as a substrate with an appropriate exposure dose.
従来は、 例えば露光直前に照明光学系内で分岐された照明光の光量と 分岐された位置からウェハ表面に至る光路中に配置された光学系 (照明 光学系の一部及び投影光学系) の透過率とからゥェ八の表面での露光量 を計算し、 この計算結果に基づいて露光量制御を行っていた。 そして、 ステップ · アンド · リピート方式の露光装置 (ステッパー) では、 その 計算される露光量の積算値が所定値となるように露光時間を制御し、 ま た、 ステップ · アンド · スキャン方式の露光装置では、 その計算される 露光量が一定の値になるように光源の出力、 又は走査速度等を制御して いた。 Conventionally, for example, the amount of illumination light branched in the illumination optical system immediately before exposure and the optical system (part of the illumination optical system and the projection optical system) arranged in the optical path from the branched position to the wafer surface The amount of exposure on the surface of jehachi was calculated from the transmittance, and the amount of exposure was controlled based on the calculation result. In a step-and-repeat type exposure apparatus (stepper), the exposure time is controlled so that the calculated integrated value of the exposure amount becomes a predetermined value, and a step-and-scan type exposure apparatus is provided. So, its calculated The output of the light source or the scanning speed was controlled so that the exposure amount became a constant value.
また、 露光装置の解像力は、 露光光の波長が短くなるほど高くなるた め、 露光装置で使用される露光光の波長は年々短波長化してきている。 そして、 現在主流の露光波長は、 K r Fエキシマレーザの 2 4 8 n mで ある力 更に短波長の A r Fエキシマレーザの 1 9 3 n mも実用化され つつある。 そこで、 これらエキシマレーザ光源からの紫外パルス光 (波 長 2 5 0 n m程度以下) を露光光として使用する場合には、 照明光学系 や投影光学系の硝材に、 これらの紫外パルス光に対して比較的高い透過 率を有する硝材、 例えば合成石英ガラス (S i 〇2 ) 等が使用される。 上記の如く従来の露光装置では、 照明光学系内で、 照明光を分岐した 位置からウェハ表面に至る光路中に配置された光学系の透過率や反射率 が短時間には変動しないことを前提として、 照明光学系内で分岐された 照明光の光量と予め測定しておいた光学系の透過率とから計算されるゥ ェハ表面での露光量に基づいて、 露光量制御を行っていた。 In addition, since the resolution of an exposure apparatus increases as the wavelength of the exposure light decreases, the wavelength of the exposure light used in the exposure apparatus has been decreasing year by year. The mainstream exposure wavelength is the KrF excimer laser at 248 nm, and the shorter wavelength ArF excimer laser at 193 nm is being put into practical use. Therefore, when ultraviolet pulse light (wavelength of about 250 nm or less) from these excimer laser light sources is used as exposure light, the glass material of the illumination optical system or projection optical system is used for the exposure. A glass material having a relatively high transmittance, for example, synthetic quartz glass (Si 2 ) is used. As described above, in the conventional exposure apparatus, it is assumed that the transmittance and reflectivity of the optical system arranged in the optical path from the position where the illumination light is branched to the wafer surface in the illumination optical system do not fluctuate in a short time. Exposure amount control is performed based on the exposure amount on the wafer surface calculated from the amount of illumination light branched in the illumination optical system and the transmittance of the optical system measured in advance. .
しかしながら、 例えば A r Fエキシマレーザ光のようなほぼ真空紫外 域の紫外パルス光を露光光として使用する露光装置では、 その紫外パル ス光の照射によりソラリゼーシヨン (so l ar i zat ion) が発生して、 上記 光学系等に硝材として使用されている合成石英ガラスの光学定数が変化 し、 その紫外パルス光の照射に伴って透過率が徐々に低下していく場合 がある。 このソラリゼ一ションによる透過率の低下は可逆的な変化であ り、 紫外パルス光の照射を停止するとソラリゼーションによる合成石英 ガラスのダメージは徐々に回復し、 透過率も徐々に回復する。 また、 ソ ラリゼーションによる透過率の変化率や時定数は、 硝材の種類等によつ て異なり、 紫外パルス光のパルスエネルギー、 ピークパワー、 平均パヮ 一、 又はデューティ比が高いほど、 ソラリゼーシヨンによる透過率変化 の変化率は大きくなり、 時定数は短くなる。 However, in an exposure apparatus such as an ArF excimer laser beam, which uses ultraviolet pulsed light in a substantially vacuum ultraviolet region as exposure light, solar irradiation is generated by irradiation of the ultraviolet pulsed light. As a result, the optical constant of the synthetic quartz glass used as a glass material in the optical system or the like changes, and the transmittance may gradually decrease with the irradiation of the ultraviolet pulse light. The decrease in transmittance due to this solarization is a reversible change. When irradiation with ultraviolet pulse light is stopped, damage to the synthetic quartz glass due to the solarization is gradually recovered, and the transmittance is gradually recovered. The change rate and time constant of transmittance due to solarization vary depending on the type of glass material, and the higher the pulse energy, peak power, average power, or duty ratio of the ultraviolet pulse light, the higher the transmittance due to solarization. Rate change The change rate of becomes large and the time constant becomes short.
また、 ソラリゼーシヨン以外にも、 例えば光学部材の周囲の雰囲気中 の微量の有機物質等が紫外光によって化学反応を起こして曇り物質を生 成し、 これによつてその光学部材の透過率又は反射率の変化が生じるこ とがある。  In addition to the solarization, for example, a trace amount of an organic substance in the atmosphere around the optical member causes a chemical reaction by ultraviolet light to produce a cloudy substance, thereby causing the transmittance or the reflectance of the optical member to change. May change.
このように紫外パルス光 (露光光) の照射によって光学部材の透過率 又は反射率が経時的に変化すると、 照明光学系内で分岐された照明光の 光量と露光前の上記光学系の透過率とから計算されるウェハ表面での露 光量が、 実際のウェハ表面での露光量とは異なったものとなってしまう ため、 正確な露光量制御が困難になってしまう。  When the transmittance or reflectance of the optical member changes over time due to the irradiation of the ultraviolet pulse light (exposure light), the amount of the illumination light branched in the illumination optical system and the transmittance of the optical system before the exposure are changed. Since the exposure light amount on the wafer surface calculated from the above is different from the actual exposure amount on the wafer surface, accurate exposure amount control becomes difficult.
本発明は斯かる点に鑑み、 露光光の照射による照明光学系や投影光学 系等の光学部材の透過率又は反射率の変動に起因した露光量制御精度の 劣化を防止できる露光方法を提供することを目的とする。 更に本発明は、 そのような露光方法を実施できる露光装置を提供することをも目的とす る。 また、 本発明は、 そのような露光装置を使用して高精度なデバイス を製造できるデバイス製造方法を提供することをも目的とする。  In view of the above, the present invention provides an exposure method capable of preventing deterioration of exposure amount control accuracy due to a change in transmittance or reflectance of an optical member such as an illumination optical system or a projection optical system due to irradiation of exposure light. The purpose is to: Another object of the present invention is to provide an exposure apparatus capable of performing such an exposure method. Another object of the present invention is to provide a device manufacturing method capable of manufacturing a highly accurate device using such an exposure apparatus.
発明の開示 Disclosure of the invention
本発明による第 1の露光方法は、 照明光学系 ( 1 , 6, 7 A , 7 B , 1 1〜 1 9 ) からの照明光で第 1物体 (R ) を照明し、 この第 1物体の パターンを投影光学系 (P L ) を介して第 2物体 (W) 上に転写する露 光方法において、 その照明光学系及びその投影光学系中の少なくとも一 部の光学部材の透過率又は反射率の変動量を抑制するように、 その照明 光の強度を制御するものである。  A first exposure method according to the present invention illuminates a first object (R) with illumination light from an illumination optical system (1, 6, 7A, 7B, 11 to 19), and In an exposure method for transferring a pattern onto a second object (W) via a projection optical system (PL), the transmittance or reflectance of the illumination optical system and at least a part of the optical members in the projection optical system is determined. The intensity of the illumination light is controlled so as to suppress the fluctuation amount.
斯かる本発明の第 1の露光方法によれば、 その照明光の照射によって 例えばソラリゼーションゃ曇り物質の付着が生じ、 その照明光学系又は その投影光学系中の所定の光学部材の透過率又は反射率が変動してしま うような場合には、 予めその照明光の強度とその照明光の照射によるそ の光学部材の透過率又は反射率の変動量との関係を計測しておく。 そし て、 例えば露光量制御精度が高いレイヤに対して露光を行うような場合 には、 上記の関係に基づいてその光学部材の透過率又は反射率の変動を 低減するようにその照明光の強度を制御することによって、 その第 2物 体上での照度変動を許容範囲内に抑えて、 高精度な露光量制御を行うこ とができる。 According to the first exposure method of the present invention, the irradiation of the illumination light causes, for example, solarization ゃ the adhesion of a cloudy substance, and the illumination optical system or If the transmittance or reflectance of a predetermined optical member in the projection optical system fluctuates, the intensity of the illumination light and the transmittance or reflection of the optical member due to the irradiation of the illumination light are determined in advance. Measure the relationship with the rate variation. Then, for example, when exposing a layer having a high exposure amount control accuracy, the intensity of the illumination light is reduced so as to reduce the fluctuation of the transmittance or the reflectance of the optical member based on the above relationship. By controlling the illuminance, the illuminance fluctuation on the second object can be suppressed within an allowable range, and the exposure amount can be controlled with high accuracy.
次に、 本発明による第 2の露光方法は、 照明光学系 ( 1, 6, 7 A , 7 B , 1 1〜 1 9 ) からの照明光で第 1物体 (R ) を照明し、 この第 1 物体のパターンを投影光学系 (P L ) を介して第 2物体 (W) 上に転写 する露光方法において、 その照明光学系及びその投影光学系中の少なく とも一部の光学部材の透過率又は反射率の変動量を露光プロセスに応じ て予測し、 この予測される変動量を抑制するように、 その照明光の強度 を制御するものである。  Next, the second exposure method according to the present invention illuminates the first object (R) with illumination light from the illumination optical system (1, 6, 7A, 7B, 11 to 19). 1 In an exposure method for transferring a pattern of an object onto a second object (W) via a projection optical system (PL), the transmittance or transmittance of at least some of the optical members in the illumination optical system and the projection optical system The amount of change in reflectance is predicted according to the exposure process, and the intensity of the illumination light is controlled so as to suppress the predicted amount of change.
斯かる本発明の第 2の露光方法によれば、 当初の露光プロセスでは照 明光の強度が大きく、 所定の光学部材の透過率又は反射率の変動量が許 容範囲を超えると予測されるような場合には、 例えばスループットは多 少低下しても照明光の強度を落として、 露光中でのその光学部材の透過 率や反射率の変動量を小さくさせる。 これによつて、 その第 2物体上で 必要な露光量制御精度が得られる。  According to the second exposure method of the present invention, in the initial exposure process, the intensity of the illuminating light is large, and the variation of the transmittance or the reflectance of the predetermined optical member is expected to exceed the allowable range. In such a case, for example, the intensity of the illumination light is reduced even if the throughput is slightly reduced, so that the amount of change in the transmittance or reflectance of the optical member during exposure is reduced. Thereby, required exposure amount control accuracy on the second object can be obtained.
次に、 本発明の第 3の露光方法は、 光源 ( 1 ) からの照明光で、 第 1 物体 (R ) を照明し、 この第 1物体のパターンを第 2物体 (W) 上に転 写する露光方法において、 その照明光の光路中に配置される少なくとも 一部の光学部材の透過率又は反射率の変動量を抑制するように、 その照 明光の強度を制御するものである。 斯かる本発明の第 3の露光方法によれば、 例えばその照明光の照射に よって、 その照明光の光路中に配置される光学部材の透過率又は反射率 が許容範囲を超えて変動するような場合には、 その照明光の強度を低下 させることによって、 その光学部材の透過率等の変動量を小さくして、 第 2物体上で高精度な露光量制御を行うことができる。 Next, in the third exposure method of the present invention, the first object (R) is illuminated with the illumination light from the light source (1), and the pattern of the first object is transferred onto the second object (W). In the exposure method described above, the intensity of the illuminating light is controlled so as to suppress the variation of the transmittance or the reflectance of at least some of the optical members arranged in the optical path of the illuminating light. According to the third exposure method of the present invention, for example, by the irradiation of the illumination light, the transmittance or the reflectance of the optical member arranged in the optical path of the illumination light fluctuates beyond the allowable range. In such a case, by reducing the intensity of the illuminating light, the amount of change in the transmittance or the like of the optical member can be reduced, and highly accurate exposure amount control can be performed on the second object.
また、 本発明の第 1、 第 2、 及び第 3の露光方法において、 その照明 光が例えば A r Fエキシマレ一ザ光のような波長 3 0 0 n m以下の紫外 パルス光である場合には、 その照明光の強度を制御する際にその照明光 のピークパワー、 又は発振周波数を制御することが好ましい。 そのピ一 クパワーの制御には、 所定の透過率を持つ光学フィル夕の挿脱等によつ て間接的にパワーを制御する方法も含まれている。  Further, in the first, second, and third exposure methods of the present invention, when the illumination light is ultraviolet pulse light having a wavelength of 300 nm or less, such as ArF excimer laser light, When controlling the intensity of the illumination light, it is preferable to control the peak power or the oscillation frequency of the illumination light. The control of the peak power includes a method of indirectly controlling the power by inserting or removing an optical filter having a predetermined transmittance.
次に、 本発明による露光装置は、 照明光で第 1物体を照明する照明光 学系 ( 1 , 6 , 7 A , 7 B , 1 1〜: L 9 ) と、 その第 1物体 (R ) のパ ターンを第 2物体 (W) 上に転写する投影光学系 (P L ) とを有する露 光装置において、 その照明光の強度を制御する強度制御系 (4 0, 4 1 ) と、 その照明光学系及びその投影光学系中の少なくとも一部の光学部材 の透過率又は反射率の変動量を抑制するように、 その強度制御系を介し てその照明光の強度を制御する演算制御系 (3 0 ) と、 を設けたもので ある。  Next, the exposure apparatus according to the present invention includes an illumination optical system (1, 6, 7A, 7B, 11 to: L9) for illuminating a first object with illumination light, and the first object (R). An exposure system having a projection optical system (PL) for transferring the above pattern onto a second object (W), an intensity control system (40, 41) for controlling the intensity of the illumination light, An arithmetic control system (3) that controls the intensity of the illumination light via the intensity control system so as to suppress the amount of change in the transmittance or the reflectance of at least some of the optical members in the optical system and the projection optical system. 0) and.
斯かる本発明の露光装置によれば、 その照明光学系及びその投影光学 系中の少なくとも一部の光学部材の透過率又は反射率の変動量を抑制す るように、 その強度制御系を介してその照明光の照度を制御することに よって、 本発明の第 1、 第 2及び第 3の露光方法を実施することができ る。  According to such an exposure apparatus of the present invention, the intensity control system is provided through the intensity control system so as to suppress the variation of the transmittance or the reflectance of at least some of the optical members in the illumination optical system and the projection optical system. By controlling the illuminance of the illumination light, the first, second and third exposure methods of the present invention can be performed.
次に本発明のデバイス製造方法は、 露光光源 ( 1 ) からの露光光で、 所定の回路パターンの像を光学系を介して基板 (W) に転写してデバイ スを製造するデバイス製造方法において、 その露光光に対するその光学 系の透過率又は反射率の変動量を抑制するように、 その露光光の強度を 制御しながら、 その所定の回路パターンの像をその基板上に転写するも のである。 Next, in the device manufacturing method of the present invention, an exposure light from the exposure light source (1) is used to transfer an image of a predetermined circuit pattern to a substrate (W) via an optical system, and to divide the device. In a device manufacturing method for manufacturing a semiconductor device, an image of the predetermined circuit pattern is formed while controlling the intensity of the exposure light so as to suppress a variation in transmittance or reflectance of the optical system with respect to the exposure light. It is transferred onto the substrate.
斯かる本発明のデバイス製造方法によれば、 その光学系の透過率又は 反射率の変動量を抑制するように、 その露光光の強度を制御することに よって、 高精度な露光量制御を行うことができ、 結果として高性能のデ バイスが得られる。 図面の簡単な説明  According to such a device manufacturing method of the present invention, high-precision exposure amount control is performed by controlling the intensity of the exposure light so as to suppress the fluctuation amount of the transmittance or the reflectance of the optical system. As a result, high-performance devices can be obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態の一例で使用される投影露光装置を示す 一部を切り欠いた概略構成図である。 図 2は、 紫外パルス光の照射によ る投影光学系の透過率の計測結果の一例を示す図である。 図 3 ( a ) は 図 1の N Dフィルタ 4 1を示す図、 図 3 ( b ) は N Dフィル夕 4 1の代 わりに使用できる光学フィル夕の別の例を示す図、 図 3 ( c ) はその光 学フィル夕の更に別の例を示す図である。 図 4は、 半導体デバイスの製 造工程の一例を示す図である。 発明を実施するための最良の形態  FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus used in an example of an embodiment of the present invention, with a part cut away. FIG. 2 is a diagram showing an example of a measurement result of the transmittance of the projection optical system by irradiation of the ultraviolet pulse light. Fig. 3 (a) is a diagram showing the ND filter 41 of Fig. 1, Fig. 3 (b) is a diagram showing another example of an optical filter that can be used in place of the ND filter 41, and Fig. 3 (c) is It is a figure which shows another example of the optical filter. FIG. 4 is a diagram illustrating an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適な実施の形態の一例につき図面を参照して説明す る。 本例は、 ステップ, アンド · スキャン方式の投影露光装置で露光を 行う場合に本発明を適用したものである。  Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings. In this example, the present invention is applied to the case where exposure is performed by a projection exposure apparatus of a step and scan type.
図 1は、 本例の投影露光装置の概略構成を示し、 この図 1において、 FIG. 1 shows a schematic configuration of the projection exposure apparatus of the present example.
A r Fエキシマレーザ光源 1からの波長 1 9 3 n mで狭帯化された露光 用の照明光 (露光光) としての紫外パルス光 I Lは、 露光装置本体との 間で光路を位置的にマッチングさせるための可動ミラー等を含むビーム マッチングユニット (BMU) 3を通り、 遮光性の材料からなる円筒状 のパイプ 5を介して所定の光学系を格納しているサブチャンバ 35内に 入射する。 サブチャンバ 35内の入射口の近傍には、 紫外パルス光 I L の照度 (強度の一例) を低減させるための NDフィル夕 41力 駆動モ —夕 40によって光路に対して挿脱自在に設けられている。 NDフィル 夕 4 1は、 紫外パルス光に対しても透過率が安定している例えば蛍石Ultraviolet pulse light IL as the illumination light (exposure light) for exposure narrowed at a wavelength of 193 nm from the ArF excimer laser light source 1 is used to positionally match the optical path with the exposure apparatus body. Beam including a movable mirror etc. The light passes through a matching unit (BMU) 3 and enters a sub-chamber 35 containing a predetermined optical system via a cylindrical pipe 5 made of a light-shielding material. In the vicinity of the entrance in the sub-chamber 35, an ND filter for reducing the illuminance (an example of the intensity) of the ultraviolet pulse light IL is provided so that it can be inserted into and removed from the optical path by the drive mode. I have. ND Filler 41 has a stable transmittance even for ultraviolet pulsed light.
(C a F2 ) の基板に対して、 所定の透過率が得られるように数 m角 程度の微小な金属膜等の遮光膜をほぼ均等に分布させたフィル夕である。 NDフィル夕 4 1の透過率は、 例えば 0. 5 (50 ) 程度とかなり小 さく設定されている。 This is a filter in which a light-shielding film such as a fine metal film of several m square is distributed almost evenly so that a predetermined transmittance can be obtained with respect to the (C a F 2 ) substrate. The transmittance of the ND filter 41 is set to be very small, for example, about 0.5 (50).
本例の NDフィル夕 41及び駆動モータ 40によって、 紫外パルス光 I Lに対する透過率を 1 00 %と例えば 50 %程度との 2段階に大きく 切り換えることができる。 NDフィル夕 41及び駆動モー夕 40がそれ ぞれ本発明の光学フィル夕及び駆動部材に対応し、 両者が強度制御系に 対応している。 また、 以下では 「1一透過率」 の値、 即ち%表示では 「 1 00—透過率 (%) 」 の値を 「減光率」 と呼ぶ。  By the ND filter 41 and the drive motor 40 of this example, the transmittance for the ultraviolet pulse light IL can be largely switched between two stages of 100% and, for example, about 50%. The ND filter 41 and the drive mode 40 correspond to the optical filter and the drive member of the present invention, respectively, and both correspond to the intensity control system. In the following, the value of “1—transmittance”, ie, the value of “100—transmittance (%)” in%, is referred to as “dimming rate”.
NDフィルタ 41が光路から待避しているときには NDフィル夕 41 の近傍を通過した紫外パルス光 I L、 又は NDフィルタ 4 1が光路上に 設置されているときには NDフィル夕 41を透過した紫外パルス光 I L は、 光アツテネ一夕としての可変減光器 6に入射する。 本例のように露 光光源としてパルスレーザ光源を用いる場合には、 パルス光毎にエネル ギーのばらつきを有するため、 ウェハ上の各点に対して或る一定数 (以 下 「最小露光パルス数」 と呼ぶ) 以上の複数のパルス光で露光すること により、 所望の露光量制御精度の再現性を得ることになる。 この塲合、 例えば高感度レジストを露光する際には、 目標積算露光量が小さいため、 パルスレーザ光源からのレーザ光をそのまま使用したのでは、 最小露光 パルス数以上での露光ができなくなる。 従って、 本例ではレーザ光源自 体の出力の或る程度の制御と、 光路上に設置された減光機構としての可 変減光器 6によるパルス光に対する減光率の制御とを組み合わせること により、 最小露光パルス数以上のパルス数での露光を行うようにしてい る。 When the ND filter 41 is retracted from the optical path, the ultraviolet pulse light IL that has passed near the ND filter 41, or when the ND filter 41 is installed on the optical path, the ultraviolet pulse light IL that has passed through the ND filter 41 Enters the variable attenuator 6 as a light athens overnight. When a pulsed laser light source is used as the exposure light source as in this example, since there is energy variation for each pulsed light, a certain number (hereinafter referred to as “minimum exposure pulse number”) for each point on the wafer Exposure with a plurality of pulsed light beams as described above provides desired reproducibility of exposure amount control accuracy. For example, when exposing a high-sensitivity resist, the target integrated exposure amount is small, so if the laser light from the pulse laser light source is used as it is, the minimum exposure Exposure with more than the pulse number becomes impossible. Therefore, in this example, a certain degree of control of the output of the laser light source itself is combined with a control of the dimming rate for the pulsed light by the variable dimmer 6 as a dimming mechanism installed on the optical path. Exposure is performed with a pulse number equal to or greater than the minimum exposure pulse number.
本例の可変減光器 6は、 2つの回転自在の可変減光板 6 c, 6 bと、 これらをそれぞれ回転駆動するための駆動モー夕 6 d, 6 aとから構成 されており、 可変減光板 6 b, 6 c上には、 それぞれ紫外パルス光 I L に対して互いに異なる減光率 (= 1一透過率) を有する複数個 (例えば 5個) の N Dフィル夕が配置されている。 これらの N Dフィルタは、 例 えば紫外パルス光に対しても透過率が安定している蛍石の基板より形成 されている。 可変減光板 6 c, 6 b中にはそれぞれ減光率が 0の素通し 部も含まれており、 例えばそれぞれの N Dフィルタの個数を 5個とする と、 紫外パルス光 I Lに対する減光率を 0から例えば 1〜 3 %程度のス テツプ量で 2 5段階に亘つて切り換えることができる。 このように本例 の可変減光器 6は、 紫外パルス光 I Lに対する減光率を所定の範囲内で、 かつ数%程度のステツプ量で複数段階に亘つて切り換えることができる。 また、 A r Fエキシマレ一ザ光源 1の出力 (=パルスエネルギー X発 振周波数) は、 例えば数 1 0 %程度の広い範囲内で高精度に制御するこ とは、 現状では必ずしも容易ではないが、 その出力は、 可変減光器 6に おける減光率の変化のステップ量である数%程度の範囲内であれば比較 的容易に連続的に制御することができる。 従って、 本例では、 可変減光 器 6における減光率の切り換えと、 A r Fエキシマレーザ光源 1の出力 制御とを組み合わせることによって、 可変減光器 6を通過した後の紫外 パルス光 I Lの平均出力を例えば数 1 0 %程度の範囲内でほぼ連続的に 制御する。 ウェハ上のレジストに対する露光量を制御するための露光制御ュニッ ト 3 0は、 A r Fエキシマレーザ光源 1の発光の開始及び停止、 並びに 発振周波数、 及びパルスエネルギーで定まる出力を制御すると共に、 可 変減光器 6における紫外パルス光に対する減光率を段階的に調整する。 露光制御ユニッ ト 3 0の動作は、 装置全体の動作を統轄制御するコンビ ユー夕よりなる主制御系 3 0によって制御されている。 なお、 A r Fェ キシマレーザ光源 1の出力制御を行う代わりに、 例えば可変減光器 6の 出力側に、 傾斜角可変の 1対のガラス基板を配置して、 これらのガラス 基板の傾斜角を対称に制御することで、 数%程度の範囲内で紫外パルス 光 I Lの出力を連続的に制御するようにしてもよい。 The variable dimmer 6 of the present example is composed of two rotatable variable dimmers 6 c and 6 b and drive motors 6 d and 6 a for respectively rotating these dimmers. On the light plates 6b and 6c, a plurality (for example, five) of ND filters having different dimming rates (= 1 one transmittance) with respect to the ultraviolet pulse light IL are arranged. These ND filters are formed of a fluorite substrate whose transmittance is stable, for example, even for ultraviolet pulsed light. Each of the variable neutral density plates 6c and 6b includes a transparent portion having a light attenuation rate of 0. For example, if the number of ND filters is set to 5, the light attenuation rate for the ultraviolet pulse light IL is 0. Thus, for example, switching can be performed over 25 steps with a step amount of about 1 to 3%. As described above, the variable dimmer 6 of the present example can switch the dimming rate for the ultraviolet pulse light IL within a predetermined range and in several steps with a step amount of about several percent. At present, it is not always easy to control the output (= pulse energy X oscillation frequency) of the ArF excimer laser light source 1 with high accuracy within a wide range of, for example, about 10%. However, the output can be controlled relatively easily and continuously as long as the output is within a range of about several%, which is the step amount of the change of the dimming rate in the variable dimmer 6. Therefore, in this example, by switching the dimming rate in the variable attenuator 6 and controlling the output of the ArF excimer laser light source 1, the ultraviolet pulse light IL after passing through the variable attenuator 6 The average output is controlled almost continuously within the range of several 10%, for example. The exposure control unit 30 for controlling the exposure amount of the resist on the wafer controls the start and stop of the light emission of the ArF excimer laser light source 1, and the output determined by the oscillation frequency and the pulse energy. The extinction ratio for the ultraviolet pulse light in the variator 6 is adjusted stepwise. The operation of the exposure control unit 30 is controlled by a main control system 30 composed of a combination unit that supervises and controls the operation of the entire apparatus. Instead of controlling the output of the ArF excimer laser light source 1, for example, a pair of glass substrates with variable tilt angles is arranged on the output side of the variable dimmer 6, and the tilt angles of these glass substrates are adjusted. By controlling symmetrically, the output of the ultraviolet pulse light IL may be continuously controlled within a range of about several percent.
なお、 露光光としては、 波長 2 4 8 n mの K r Fエキシマレーザ光、 又は波長 1 5 7 n mのフッ素レーザ光 (F 2 レーザ光) や Y A Gレーザ の高調波など、 波長 3 0 0 n m程度以下の紫外パルス光を使用する場合 にも本発明が適用される。 As the exposure light, wavelength 2 4 8 nm of K r F excimer laser light, or a wavelength 1 5 7 nm of fluorine laser (F 2 laser), etc. or a YAG laser harmonic, wavelength 3 0 0 nm approximately The present invention is also applied to the case where the following ultraviolet pulse light is used.
図 1において、 可変減光器 6を通過した紫外パルス光 I Lは、 照明光 学系の光軸に沿って配置されるレンズ系 7 A, 7 Bよりなるビーム整形 光学系を経てオプティカル ·インテグレー夕 (ホモジナイザー) として のフライアイレンズ 1 1に入射する。 本例ではフライアイレンズ 1 1は In FIG. 1, the ultraviolet pulse light IL that has passed through the variable dimmer 6 passes through an optical integrator through a beam shaping optical system composed of lens systems 7A and 7B arranged along the optical axis of the illumination optical system. (Homogenizer) The fly-eye lens 11 is incident on the lens. In this example, the fly-eye lens 1 1
1段であるが、 照度分布均一性を高めるために、 例えば日本国特開平 1 — 2 3 5 2 8 9号公報に開示されているように、 オプティカル 'インテ グレー夕を直列に 2段配置するようにしてもよい。 また、 フライアイレ ンズの代わりにロッド型のオプティカル · インテグレー夕を用いてもよ く、 フライアイレンズとロッド型のオプティカル 'インテグレー夕とを 組み合わせて用いてもよい。 フライアイレンズ 1 1の射出面には照明系 の開口絞り系 1 2が配置されている。 開口絞り系 1 2には、 通常照明用 の円形の開口絞り、 複数の偏心した小開口よりなる変形照明用の開口絞 り、 輪帯照明用の開口絞り等が切り換え自在に配置されている。 フライ アイレンズ 1 1から射出されて開口絞り系 1 2中の所定の開口絞りを通 過した紫外パルス光 I Lは、 透過率が高く反射率が低いと共に透過率 (反射率) が安定な蛍石等からなるビームスプリツ夕 8に入射する。 ビ 一ムスプリッ夕 8で反射された紫外パルス光は、 光電検出器よりなるィ ンテグレ一夕センサ 9に入射し、 ィンテグレー夕センサ 9の検出信号は 露光制御ュニット 3 0に供給されている。 Although it is one stage, in order to improve the uniformity of the illuminance distribution, for example, as disclosed in Japanese Patent Application Laid-Open No. 1-25392 / 89, two stages of optical 'integers are arranged in series. You may do so. Also, a rod-type optical integrator may be used instead of the fly-eye lens, or a fly-eye lens and a rod-type optical integrator may be used in combination. An aperture stop system 12 of an illumination system is arranged on the exit surface of the fly-eye lens 11. The aperture stop system 12 includes a circular aperture stop for normal illumination and an aperture stop for deformed illumination consisting of multiple eccentric small apertures. In addition, an aperture stop for orbicular illumination and the like are arranged to be switchable. The ultraviolet pulse light IL emitted from the fly-eye lens 11 and passing through a predetermined aperture stop in the aperture stop system 12 is a fluorite having a high transmittance, a low reflectance, and a stable transmittance (reflectance). It is incident on beam splitter 8 consisting of The ultraviolet pulse light reflected by the beam splitter 8 enters an integral sensor 9 composed of a photoelectric detector, and a detection signal of the integral sensor 9 is supplied to an exposure control unit 30.
ビームスプリッ夕 8の透過率、 及び反射率は予め高精度に計測されて、 露光制御ユニッ ト 3 0内のメモリに記憶されている。 更に、 露光開始前 のビームスプリツ夕 8以降の照明系、 及び投影光学系 P Lの透過率の計 測値も露光制御ュニッ ト 3 0内のメモリに記憶されており、 露光制御ュ ニッ ト 3 0は、 ィンテグレー夕センサ 9の検出信号より間接的に投影光 学系 P L、 ひいては露光対象のウェハ Wに対する紫外パルス光 I Lの入 射光量、 及びその積分値をモニタできるように構成されている。 なお、 投影光学系 P L、 ひいてはウェハ Wに対する入射光量をモニタするため には、 例えばレンズ系 7 Aの前 (レンズ系 7 Aよりも A r Fエキシマレ 一ザ光源 1側) にビームスプリッ夕を配置し、 このビームスプリッ夕か らの反射光を光電検出器で受光し、 その検出信号を露光制御ュニッ ト 3 0に供給するようにしてもよい。  The transmittance and the reflectance of the beam splitter 8 are measured with high precision in advance and stored in a memory in the exposure control unit 30. Further, the measured values of the transmittance of the illumination system and the projection optical system PL after the beam splitter 8 before the start of exposure are also stored in the memory of the exposure control unit 30, and the exposure control unit 30 The projection optical system PL and, consequently, the incident light amount of the ultraviolet pulse light IL to the wafer W to be exposed and the integrated value thereof can be monitored indirectly from the detection signal of the integer sensor 9. In order to monitor the amount of light incident on the projection optical system PL and, consequently, the wafer W, for example, a beam splitter is arranged in front of the lens system 7A (on the side of the ArF excimer laser light source 1 than the lens system 7A). Alternatively, the reflected light from the beam splitter may be received by a photoelectric detector, and the detection signal may be supplied to the exposure control unit 30.
また、 本例ではインテグレー夕センサ 9によってフライアイレンズ 1 1の出力側での紫外パルス光 I Lの出力をモニタしているため、 可変減 光器 6及び N Dフィル夕 4 1の透過率が或る程度変動してもその変動量 がモニタできる。 従って、 可変減光器 6の可変減光板 6 c, 6 b及び N Dフィル夕 4 1用の基板として石英ガラス等を使用してもよい。  In this example, since the output of the ultraviolet pulse light IL at the output side of the fly-eye lens 11 is monitored by the integrator sensor 9, the transmittance of the variable dimmer 6 and the ND filter 41 is limited. Even if it fluctuates to the extent, the amount of the fluctuation can be monitored. Therefore, quartz glass or the like may be used as a substrate for the variable dimmers 6 c and 6 b of the variable dimmer 6 and the ND filter 41.
ビームスプリツ夕 8を透過した紫外パルス光 I Lは、 反射ミラー 1 3 及びコンデンサレンズ系 1 4を経てレチクルブラインド機構 1 6内の固 定ブラインド (固定照明視野絞り) 1 5 Aに直線スリッ ト状、 又は矩形 状 (以下、 まとめて 「スリッ ト状」 と言う) に伸びるように形成された 開口部上に入射する。 更に、 レチクルブラインド機構 1 6内には、 固定 ブラインド 1 5 Aとは別に照明視野領域の走査露光方向の幅を可変とす るための可動ブラインド 1 5 Bが設けられ、 この可動ブライン卜 1 5 B によってレチクルステージの走査移動ストロークの低減、 レチクル尺の 遮光帯の幅の低減を図っている。 ィンテグレー夕センサ 9の検出信号か ら求められる入射光量に固定ブラインド 1 5 A及び可動ブラインド 1 5 Bの開口率を乗じた値が、 投影光学系 P Lに対する実際の入射光量とな る。 The ultraviolet pulse light IL transmitted through the beam splitter 8 passes through the reflection mirror 13 and the condenser lens system 14 and is fixed in the reticle blind mechanism 16. Constant blind (fixed illumination field stop) 15 A is incident on an opening formed to extend in a straight slit or rectangular shape (hereinafter collectively referred to as “slit shape”) at 15A. Further, in the reticle blind mechanism 16, a movable blind 15 B for changing the width of the illumination visual field in the scanning exposure direction is provided separately from the fixed blind 15 A. The movable blind 15 B reduces the scanning stroke of the reticle stage and the width of the reticle scale light-shielding band. The value obtained by multiplying the incident light amount obtained from the detection signal of the integrate sensor 9 by the aperture ratio of the fixed blind 15A and the movable blind 15B is the actual incident light amount to the projection optical system PL.
レチクルブラインド機構 1 6の固定ブラインド 1 5 Aでスリッ 卜状に 整形された紫外パルス光 I Lは、 結像用レンズ系 1 7、 反射ミラー 1 8、 及び主コンデンサレンズ系 1 9を介して、 レチクル Rの回路パターン領 域上のスリッ ト状の照明領域を一様な照度分布で照射する。 即ち、 固定 ブラインド 1 5 Aの開口部及び可動ブラインド 1 5 Bの開口部の配置面 は、 レチクル Rのパターン面とほぼ共役となっている。 A r Fエキシマ レーザ光源 1、 ビームマッチングユニッ ト (B M U ) 3、 可変減光器 6、 ビーム整形光学系 (レンズ系 7 A, 7 B ) 、 フライアイレンズ 1 1、 開 口絞り系 1 2、 ミラー 1 3〜主コンデンサレンズ系 1 9等から照明光学 系が構成され、 可変減光器 6〜主コンデンサレンズ系 1 9までの光学部 材 ( 「照明系」 とも呼ぶ) が照明系サブチャンバ 3 5内に収納されてい る。 更に、 本例の照明光学系中において、 A r Fエキシマレ一ザ光源 1 に近い位置であるサブチャンバ 3 5内の可変減光器 6の直前に、 光路に 対して挿脱自在に N Dフィル夕 4 1が配置されている。  The ultraviolet pulse light IL shaped into a slit with the fixed blind 15 A of the reticle blind mechanism 16 is passed through the reticle through the imaging lens system 17, the reflection mirror 18, and the main condenser lens system 19. A slit-shaped illumination area on the R circuit pattern area is illuminated with a uniform illuminance distribution. That is, the arrangement surface of the opening of the fixed blind 15A and the opening of the movable blind 15B is almost conjugate with the pattern surface of the reticle R. A r F excimer laser light source 1, beam matching unit (BMU) 3, variable dimmer 6, beam shaping optics (lens systems 7A, 7B), fly-eye lens 11, aperture stop system 12, The illumination optical system is composed of the mirror 13 to the main condenser lens system 19, etc., and the optical components (also called the “illumination system”) from the variable dimmer 6 to the main condenser lens system 19 are the illumination sub-chamber 3. 5 is stored inside. Further, in the illumination optical system of this example, immediately before the variable dimmer 6 in the sub-chamber 35, which is a position close to the ArF excimer laser light source 1, the ND filter can be inserted into and removed from the optical path. 4 1 are arranged.
紫外パルス光 I Lのもとで、 レチクル Rの照明領域内の回路パターン の像が両側 (又はウェハ側に片側) テレセン卜リックな投影光学系 P L を介して所定の投影倍率 j3 ( /3は例えば 1 Z 4, 1 Z 5等) で、 投影光 学系 P Lの結像面に配置されたウェハ W上のレジスト層のスリット状の 露光領域に転写される。 レチクル R及びウェハ Wがそれぞれ本発明の第 1物体及び第 2物体に対応している。 ウェハ W上の露光領域は、 ウェハ 上の複数のショッ ト領域のうちの 1つのショッ ト領域上に位置している。 本例の投影光学系 P Lは、 ジォプトリック系 (屈折系) であるが、 力夕 ジォプトリック系 (反射屈折系) も使用できることは言うまでもない。 以下、 投影光学系 P Lの光軸 A Xに平行に Z軸を取り、 Z軸に垂直な平 面内で矢印で示される走査方向 4 2 (ここでは図 1の紙面に平行な方向) に X軸を取り、 走査方向 4 2に直交する非走査方向 (ここでは図 1の紙 面に垂直な方向) に Y軸を取って説明する。 Under the ultraviolet pulse light IL, the image of the circuit pattern in the illumination area of the reticle R is on both sides (or one side on the wafer side) Telecentric projection optical system PL At a predetermined projection magnification j3 (/ 3 is, for example, 1Z4, 1Z5, etc.), the slit-like exposure area of the resist layer on the wafer W placed on the image plane of the projection optical system PL Transcribed. Reticle R and wafer W correspond to the first object and the second object of the present invention, respectively. The exposure area on the wafer W is located on one of the plurality of shot areas on the wafer. The projection optical system PL of this example is a dioptric system (refractive system), but it is needless to say that a power dioptric system (catadioptric system) can also be used. Hereinafter, the Z axis is taken in parallel with the optical axis AX of the projection optical system PL, and the X axis is set in the scanning direction 4 2 (here, the direction parallel to the plane of FIG. 1) indicated by an arrow in a plane perpendicular to the Z axis. And the Y-axis in the non-scanning direction orthogonal to the scanning direction 42 (here, the direction perpendicular to the plane of FIG. 1).
レチクル Rは、 レチクルステージ 2 O A上に吸着保持され、 レチクル ステージ 2 0 Aは、 レチクルベース 2 0 B上で X方向に等速移動できる と共に、 X方向、 Y方向、 及び回転方向に微動できるように載置されて いる。 レチクルステージ 2 O A (レチクル R ) の 2次元的な位置、 及び 回転角は駆動制御ュニッ ト 2 2内のレーザ干渉計によってリアルタイム に計測されている。 この計測結果、 及び主制御系 2 7からの制御情報に 基づいて、 駆動制御ユニッ ト 2 2内の駆動モー夕 (リニアモー夕やボイ スコイルモー夕等) は、 レチクルステージ 2 0 Aの走査速度、 及び位置 の制御を行う。  The reticle R is held by suction on the reticle stage 2OA, and the reticle stage 20A can move at a constant speed in the X direction on the reticle base 20B, and can move slightly in the X, Y, and rotation directions. It is placed in. The two-dimensional position and rotation angle of the reticle stage 2 O A (reticle R) are measured in real time by a laser interferometer in the drive control unit 22. Based on the measurement results and the control information from the main control system 27, the driving modes (linear mode, voice coil mode, etc.) in the drive control unit 22 are controlled by the scanning speed of the reticle stage 20A, and Control the position.
一方、 ウェハ Wは、 ウェハホルダ W Hを介して Zチルトステージ 2 4 Z上に吸着保持され、 Zチルトステージ 2 4 Zは、 投影光学系 P Lの像 面と平行な X Y平面に沿って 2次元移動する X Yステージ 2 4 X Y上に 固定され、 Zチルトステージ 2 4 Z及び X Yステージ 2 4 X Yよりゥェ ハステージ 2 4が構成されている。 Zチル卜ステージ 2 4 Zは、 ウェハ Wのフォーカス位置 (Z方向の位置) 、 及び傾斜角を制御してウェハ W の表面をォートフォーカス方式で投影光学系 P Lの像面に合わせ込み、 X Yステージ 2 4 X Yはウェハ Wの X方向への等速走查、 及び X方向、 Y方向へのステッピングを行う。 Zチルトステージ 2 4 Z (ウェハ W) の 2次元的な位置、 及び回転角は駆動制御ュニッ ト 2 5内のレーザ干渉 計によってリアルタイムに計測されている。 この計測結果及び主制御系 2 7からの制御情報に基づいて、 駆動制御ュニッ ト 2 5内の駆動モー夕 (リニアモー夕等) は、 X Yステージ 2 4 X Yの走査速度、 及び位置の 制御を行う。 ウェハ Wの回転誤差は、 一例として主制御系 2 7及び駆動 制御ュニッ ト 2 2を介してレチクルステージ 2 0 Aを回転することで補 正される。 On the other hand, the wafer W is suction-held on the Z tilt stage 24 Z via the wafer holder WH, and the Z tilt stage 24 Z moves two-dimensionally along an XY plane parallel to the image plane of the projection optical system PL. The XY stage 24 is fixed on the XY, and the Z tilt stage 24 Z and the XY stage 24 XY constitute a wafer stage 24. The Z tilt stage 2 4 Z controls the focus position (position in the Z direction) and the tilt angle of the wafer W to control the wafer W. The surface of the wafer W is aligned with the image plane of the projection optical system PL by an autofocus method, and the XY stage 24 XY performs constant-speed movement of the wafer W in the X direction and stepping in the X and Y directions. The two-dimensional position and rotation angle of the Z tilt stage 24 Z (wafer W) are measured in real time by a laser interferometer in the drive control unit 25. Based on the measurement results and the control information from the main control system 27, the drive motor (linear motor, etc.) in the drive control unit 25 controls the scanning speed and position of the XY stage 24 XY. . The rotation error of the wafer W is corrected, for example, by rotating the reticle stage 20A via the main control system 27 and the drive control unit 22.
主制御系 2 7は、 レチクルステージ 2 0 A、 及び X Yステージ 2 4 X Yのそれぞれの移動位置、 移動速度、 移動加速度、 位置オフセッ ト等の 各種情報を駆動制御ユニット 2 2及び 2 5に送る。 そして、 走査露光時 には、 レチクルステージ 2 0 Aを介して紫外パルス光 I Lの照明領域に 対してレチクル Rが + X方向 (又は一 X方向) に速度 V rで走査される のに同期して、 X Yステージ 2 4 X Yを介してレチクル Rのパターン像 の露光領域に対してウェハ Wがー X方向 (又は + X方向) に速度 3 · V r ( 3はレチクル Rからウェハ Wへの投影倍率) で走査される。 レチク ル Rとウェハ Wとの走査方向が逆であるのは、 投影光学系 P Lが反転投 影を行うからであり、 投影光学系 P Lが正立像を投影する場合には両者 の走査方向は同じ向きになる。  The main control system 27 sends various information such as the moving position, moving speed, moving acceleration, and position offset of each of the reticle stage 20 A and the XY stage 24 XY to the drive control units 22 and 25. At the time of scanning exposure, the reticle R is scanned in the + X direction (or one X direction) at a speed Vr with respect to the illumination area of the ultraviolet pulse light IL via the reticle stage 20A. The wafer W moves in the −X direction (or + X direction) to the exposure area of the pattern image of the reticle R via the XY stage 24 XY 3 Vr (3 is the projection from the reticle R to the wafer W) (Magnification). The reason that the scanning directions of the reticle R and the wafer W are opposite is that the projection optical system PL performs reverse projection, and when the projection optical system PL projects an erect image, the scanning directions of both are the same. Turn.
また、 主制御系 2 7は、 上述のレチクルブラインド機構 1 6内に設け られている可動ブラインド 1 5 Bの各ブレードの移動を走査露光時のレ チクルステージ 2 0 Aの移動と同期するための制御を行う。 更に主制御 系 2 7は、 露光制御ユニット 3 0とも連携してウェハ W上の各ショッ ト 領域のレジストを適正露光量で走査露光するための各種露光条件を設定 して、 最適な露光シーケンスを実行する。 そして、 当該ショッ ト領域へ の走査露光の終了時に、 A r Fエキシマレ一ザ光源 1の発光が停止され る。 The main control system 27 is provided for synchronizing the movement of each blade of the movable blind 15 B provided in the reticle blind mechanism 16 with the movement of the reticle stage 20 A during scanning exposure. Perform control. Further, the main control system 27 sets various exposure conditions for scanning and exposing the resist in each shot area on the wafer W with an appropriate exposure amount in cooperation with the exposure control unit 30. And execute the optimal exposure sequence. Then, at the end of the scanning exposure on the shot area, the emission of the ArF excimer laser light source 1 is stopped.
また、 本例の Zチルトステージ 2 4 Z上のウェハホルダ WHの近傍に は光電検出器よりなる照射量モニタ 3 2が設置され、 照射量モニタ 3 2 の検出信号も露光制御ュニット 3 0に供給されている。 照射量モニタ 3 2は、 投影光学系 P Lによるスリッ 卜状の露光領域の全体を覆う大きさ の受光面を備え、 X Yステージ 2 4 X Yを駆動してその受光面をその露 光領域を覆う位置に設定することで、 投影光学系 P Lを通過した紫外パ ルス光 I Lの光量を計測できる。 本例では、 インテグレー夕センサ 9及 び照射量モニタ 3 2の検出信号を用いて投影光学系 P Lの透過率を計測 する。 なお、 照射量モニタ 3 2の代わりに、 その露光領域内での光量分 布を計測するためのピンホール状の受光部を有する照度むらセンサを使 用してもよい。 照度むらセンサを用いる場合は、 露光領域内全体の照度 むらを一括で計測可能とするために、 ピンホール状の受光部を 2次元方 向に多数配置して構成することが好ましい。  In addition, an irradiation amount monitor 32 composed of a photoelectric detector is installed near the wafer holder WH on the Z tilt stage 24 Z in this example, and a detection signal of the irradiation amount monitor 32 is also supplied to the exposure control unit 30. ing. The irradiation dose monitor 32 has a light receiving surface large enough to cover the entire slit-shaped exposure area by the projection optical system PL. The XY stage 24 drives the XY stage to cover the light receiving surface with the exposed area. By setting to, the amount of ultraviolet pulse light IL that has passed through the projection optical system PL can be measured. In this example, the transmittance of the projection optical system PL is measured using the detection signals of the integrator sensor 9 and the irradiation amount monitor 32. Instead of the irradiation amount monitor 32, an uneven illuminance sensor having a pinhole-shaped light receiving portion for measuring the light amount distribution in the exposure area may be used. When an uneven illuminance sensor is used, it is preferable to arrange a large number of pinhole-shaped light receiving units in a two-dimensional direction so that uneven illuminance of the entire exposure area can be measured at a time.
本例では露光光として A r Fエキシマレーザ光 (波長 1 9 3 n m) が 使用されているが、 このように波長がほぼ 2 0 0 n m程度以下の真空紫 外域の光は酸素による吸収量が大きくなつて、 空気中ではウェハ W上で の照度が大きく低下してしまう。 そのため、 本例の照明光学系の大部分 の光路が収納されているサブチャンバ 3 5は、 内部の光路を外気から遮 断すると共に、 そのサブチャンバ 3 5内の全体には配管 3 6を通して酸 素含有率を極めて低く抑えた乾燥窒素ガス (N 2)が供給されている。 同 様に、 投影光学系 P Lの鏡筒内部の空間 (複数のレンズ素子間の空間) の全体にも配管 3 7を介して乾燥窒素ガスが供給され、 紫外パルス光 I Lの光路上での減衰量が極めて小さくなつている。 なお、 乾燥窒素ガス の供給は、 照明光学系、 投影光学系を構成するレンズ素子間毎に配管を 設けて行ってもよい。 In this example, an ArF excimer laser beam (wavelength: 193 nm) is used as the exposure light. In this manner, light in the vacuum ultraviolet region having a wavelength of about 200 nm or less has an absorption amount by oxygen. As the size increases, the illuminance on the wafer W drops significantly in the air. Therefore, the sub-chamber 35 in which most of the optical path of the illumination optical system of this example is housed blocks the internal optical path from the outside air, and the entire inside of the sub-chamber 35 has an acid through a pipe 36. Dry nitrogen gas (N 2 ) with extremely low element content is supplied. Similarly, dry nitrogen gas is supplied to the entire space inside the lens barrel of the projection optical system PL (space between multiple lens elements) via the pipe 37, and the ultraviolet pulse light IL is attenuated on the optical path. The amount has become extremely small. In addition, dry nitrogen gas May be provided by providing a pipe between each lens element constituting the illumination optical system and the projection optical system.
また、 サブチャンバ 3 5と投影光学系 P Lとの間、 即ちレチクルステ ージの周りを外気から遮断するためにレチクル室を構成し、 投影光学系 P Lとウェハとの間、 即ちウェハステージの周りを外気から遮断するた めにウェハ室を構成し、 各室に乾燥窒素ガスを供給するようにしてもよ レ また、 レチクル室及びウェハ室を構成せずに、 単に、 サブチャンバ 3 5と投影光学系 P Lとの間及び投影光学系 P Lとウェハとの間に、 乾 燥窒素ガスを常時供給 (フロー) してもよい。  In addition, a reticle chamber is formed between the sub-chamber 35 and the projection optical system PL, that is, around the reticle stage from outside air, and a reticle chamber is formed between the projection optical system PL and the wafer, that is, around the wafer stage. The wafer chamber may be configured to shut off from outside air, and dry nitrogen gas may be supplied to each chamber. In addition, the reticle chamber and the wafer chamber are not configured, and the sub-chamber 35 and the projection optics are simply provided. Dry nitrogen gas may always be supplied (flow) between the system PL and between the projection optical system PL and the wafer.
その乾燥窒素ガスの供給は、 そのサブチャンバ 3 5や投影光学系 P L の鏡筒の気密性が高い場合は、 一度大気との完全な置換が行われた後は それ程頻繁に行う必要はない。 しかしながら、 光路内に存在する各種の 物質 (硝材、 コート材、 接着剤、 塗料、 金属、 セラミックス等) から生 じる水分子や炭化水素分子等が光学素子の表面に付着して起こる透過率 変動を考慮すると、 温度制御された窒素ガスを光路内で強制的にフロー させつつ、 ケミカルフィル夕ゃ静電フィル夕によってそれらの不純物分 子を除去していくことも必要である。  If the sub-chamber 35 and the lens barrel of the projection optical system PL have high airtightness, the supply of the dry nitrogen gas does not need to be performed so frequently after the air has been completely replaced once. However, transmittance fluctuations caused by water molecules and hydrocarbon molecules generated from various substances (glass materials, coating materials, adhesives, paints, metals, ceramics, etc.) existing in the optical path adhere to the surface of the optical element. In view of this, it is necessary to remove these impurity molecules by using a chemical filter and an electrostatic filter while forcing the temperature-controlled nitrogen gas to flow in the optical path.
また、 乾燥窒素ガスを供給する供給管は、 不純物ガス (及び脱ガス) の発生の少ない材質、 例えばステンレス鋼、 四フッ化工チレン、 テトラ フルォロエチレン—テルフルォロ (アルキルビニルエーテル) 、 又はテ トラフルォロエチレン一へキサフルォロプロペン共重合体等の各種フッ 素ポリマーで形成することが望ましい。 また、 乾燥窒素ガスの代わりに、 ヘリウム (H e ) 、 アルゴン (A r ) 、 クリプトン (K r ) 、 キセノン ( X e ) 、 ラドン (R n ) 等の不活性ガスを用いてもよい。  The supply pipe for supplying the dry nitrogen gas is made of a material that generates less impurity gas (and degassed), such as stainless steel, tetrafluoroethylene, tetrafluoroethylene-terfluoro (alkyl vinyl ether), or tetrafluoroethylene. It is desirable to form with various fluorine polymers such as hexafluoropropene copolymer. Further, in place of the dry nitrogen gas, an inert gas such as helium (He), argon (Ar), krypton (Kr), xenon (Xe), radon (Rn) may be used.
更に、 真空紫外域で波長が 1 6 0 n m程度までの光に対して実用上で 十分な透過率を持つ硝材は、 合成石英 (S i 〇2 )、 フッ素をドープした 合成石英、 及び蛍石等に限られると共に、 蛍石は高価であるため、 本例 の照明光学系及び投影光学系 P L中の屈折光学部材の硝材の大部分は、 合成石英より形成されている。 しかしながら、 合成石英は、 紫外パルス 光を継続して照射するとソラリゼ一シヨンによつて透過率が可逆的に減 少する傾向がある。 Furthermore, the glass material having a sufficient transmittance practical in to light of up to about 1 6 0 nm wavelength vacuum ultraviolet region, synthetic quartz (S i 〇 2), fluorine-doped Most of the glass material of the refractive optical member in the illumination optical system and the projection optical system PL of this example is made of synthetic quartz because it is limited to synthetic quartz and fluorite, etc., and fluorite is expensive. . However, when synthetic quartz is continuously irradiated with ultraviolet pulse light, the transmittance tends to reversibly decrease due to solarization.
ここで、 投影露光装置に用いられる合成石英について詳細に説明する Here, the synthetic quartz used in the projection exposure apparatus will be described in detail.
A r Fエキシマレーザ光源を露光光源とする投影露光装置の光学部材と しては、 合成石英やフッ化カルシウム (C a F 2)等のフッ化物の単結晶 が一般的に用いられる。 投影露光装置の結像光学系は、 例えば Φ 200 mmx t 20 mm等の大口怪で厚いレンズ (光学部材) を多数用いて構 成されるため、 光路長が非常に長くなる。 従って、 光学系全体での透過 率を高めるには、 個々の光学部材の透過率を高めることが要求される。 And an optical member of a projection exposure apparatus that the exposure light source A r F excimer laser light source, synthetic quartz or calcium fluoride (C a F 2) single crystal of fluoride and the like are generally used. The image forming optical system of the projection exposure apparatus is composed of a large number of large-diameter thick lenses (optical members) of, for example, Φ 200 mm x t 20 mm, so that the optical path length becomes extremely long. Therefore, in order to increase the transmittance of the entire optical system, it is necessary to increase the transmittance of each optical member.
また、 透過率が低い光学部材を用いると、 照明光を吸収することによ つて光学部材の温度が上昇し屈折率分布の不均一が生じたり、 さらには 光学部材の局所的熱膨張によって表面が変形したりすることによって、 光学性能の低下が生じる。  In addition, when an optical member having a low transmittance is used, the temperature of the optical member rises due to absorption of the illumination light, causing a non-uniform refractive index distribution. Deformation causes a decrease in optical performance.
すなわち、 光学部材としては内部透過率が 99. 5%/cm以上のも のが望ましい。 また、 光学部材に屈折率分布の不均一や歪 (副屈折) が あると、 結像性能 (解像度) が低下するため、 屈折率分布の均一性 Δη は 4 X 1 0— 6以下、 歪は 4 nmZcm以下であることが望ましい。 That is, it is desirable that the optical member has an internal transmittance of 99.5% / cm or more. Further, if there is uneven or distortion of the refractive index distribution in the optical element (secondary refraction), since the imaging performance (resolution) is reduced, uniformity Δη refractive index distribution 4 X 1 0- 6 or less, distortion Desirably, it is 4 nmZcm or less.
また、 A r Fエキシマレーザは高エネルギーのパルスレーザであり、 他の光学材料に比べて安定な合成石英であっても、 A r Fエキシマレー ザの照射による欠陥の生成に伴う透過率や構造の変化、 いわゆるレーザ ダメージが起こる。  In addition, the ArF excimer laser is a high-energy pulsed laser, and even if synthetic quartz is stable compared to other optical materials, the transmittance and the structure due to the generation of defects due to the irradiation of the ArF excimer laser are increased. Changes, so-called laser damage.
そこで、 このようなレーザダメージの少ない合成石英として、 OH基 濃度が 800〜1 000 p pm、 水素分子濃度が 2 X 1 01 'molecules/ cm3 以上のものが用いられる。 また、 合成石英のレーザに対する耐久性 を高める方法として、 フッ素又は水素をドープすることも提案されてい る。 Therefore, as little synthetic silica of such laser damage, OH group concentration of from 800 to 1 000 p pm, the hydrogen molecule concentration is 2 X 1 0 1 'molecules / cm 3 or more is used. Doping with fluorine or hydrogen has also been proposed as a method for improving the durability of synthetic quartz to laser light.
また、 投影露光装置の光学部材には、 所望の光学特性を保持させるた めに様々な構成の光学薄膜を形成するが、 その膜材料に関しても露光光 である A r Fエキシマレーザ光の吸収による光量損失及び吸収発熱によ る基板面変化や膜破壊等を起こしにくい材料、 即ち A r Fエキシマレ一 ザ光に対して高い透過性及び高い耐久性を持つ材料を使用する必要があ る。  Further, optical thin films of various configurations are formed on optical members of the projection exposure apparatus to maintain desired optical characteristics, and the film materials are also formed by absorption of exposure light, such as ArF excimer laser light. It is necessary to use a material that is unlikely to cause a change in the substrate surface or film destruction due to loss of light amount or absorption heat generation, that is, a material having high transmittance and high durability to ArF excimer laser light.
また、 屈折光学部材及び反射光学部材 (ミラー等) の表面に、 紫外パ ルス光による化学反応等によって次第に曇り物質が付着して、 透過率や 反射率が変動する場合がある。 このような曇り物質は、 例えば出力を通 常よりも大きくした紫外パルス光を照射する光洗净によって除去できる 場合がある。 但し、 本例では上記のようにサブチャンバ 3 5及び投影光 学系 P Lの内部には不純物を除去した乾燥窒素ガスが供給されているた め、 そのような曇り物質による透過率や反射率の変動は極めて小さく抑 えられている。  Further, a cloudy substance may gradually adhere to the surface of the refractive optical member and the reflective optical member (mirror or the like) due to a chemical reaction or the like due to ultraviolet pulse light, and the transmittance or the reflectance may fluctuate. In some cases, such a cloudy substance can be removed by, for example, light washing in which an ultraviolet pulse light whose output is larger than usual is irradiated. However, in this example, as described above, since dry nitrogen gas from which impurities have been removed is supplied to the inside of the sub-chamber 35 and the projection optical system PL, the transmittance and reflectance of such a cloudy substance are reduced. Fluctuations are kept very small.
また、 照明光学系中に比べると、 投影光学系 P L中の方が屈折光学部 材の枚数がかなり多いため、 ビームスプリッ夕 8からウェハ Wまでの光 路上での透過率の変動量の大部分は投影光学系 P Lの透過率変動分とみ なすことができる。 そこで、 以下では、 紫外パルス光 I Lの照射によつ て生じる投影光学系 P Lの透過率変動による露光量制御精度の低下を防 止する方法につき説明する。 先ず、 紫外パルス光 I Lの照射エネルギー の積算値と投影光学系 P Lの透過率の経時変化量との関係の計測方法に ついて説明する。  In addition, since the number of refractive optical members in the projection optical system PL is considerably larger than that in the illumination optical system, most of the variation in transmittance on the optical path from the beam splitter 8 to the wafer W Can be regarded as the transmittance variation of the projection optical system PL. Therefore, a method for preventing a decrease in exposure amount control accuracy due to a change in transmittance of the projection optical system PL caused by irradiation with the ultraviolet pulse light IL will be described below. First, a method of measuring the relationship between the integrated value of the irradiation energy of the ultraviolet pulse light IL and the amount of change with time in the transmittance of the projection optical system PL will be described.
投影光学系 P Lの透過率を計測する際には、 図 1において照射量モニ 夕 3 2の受光面が投影光学系 P Lの露光領域に設定され、 固定ブライン ド 1 5 A及び可動ブラインド 1 5 Bの総合的な開口率が 1 0 0 %に設定 される。 ここでは、 投影光学系 P Lに対する入射エネルギーと透過率と の関係を求めるのが目的であるため、 レチクル Rがレチクルステージ 2 O Aから取り外され、 レチクルステージ 2 0 Aの走査も行われない。 そ して、 可変減光器 6の減光率を基準値である例えば 0 % (透過率が 1 0 0 % ) に設定し、 N Dフィル夕 4 1を光路から待避させた状態で、 A r Fエキシマレーザ光源 1のパルス発光が平均的な出力で開始される。 続いて、 露光制御ュニッ ト 3 0ではインテグレー夕センサ 9及び照射 量モニタ 3 2の光電変換信号を並列に取り込むことによって、 投影光学 系 P Lへの実際の入射エネルギー E i に対応する検出信号 S i、 及び投 影光学系 P Lを実際に通過する透過エネルギー E oに対応する検出信号 S oを検出する。 紫外パルス光 I Lを検出するために、 インテグレー夕 センサ 9及び照射量モニタ 3 2の出力部にはそれぞれピークホールド回 路及び A Z D変換器が接続され、 紫外パルス光 I Lのパルス発光毎に検 出信号 S i及び S 0がデジタルデ一夕として取り込まれる。 露光制御ュ ニッ ト 3 0では、 検出信号 S i及び S oに予め求められている係数を乗 算することによって入射エネルギー E i及び透過エネルギー E oを算出 する。 When measuring the transmittance of the projection optical system PL, the dose monitor The light receiving surface of evening 32 is set in the exposure area of projection optical system PL, and the total aperture ratio of fixed blind 15A and movable blind 15B is set to 100%. Here, since the purpose is to find the relationship between the incident energy and the transmittance with respect to the projection optical system PL, the reticle R is removed from the reticle stage 2OA, and the reticle stage 20A is not scanned. Then, the extinction rate of the variable dimmer 6 is set to a reference value, for example, 0% (transmittance is 100%), and the ND filter 41 is retracted from the optical path, and A r The pulse emission of the F excimer laser light source 1 starts at an average output. Subsequently, the exposure control unit 30 takes in the photoelectric conversion signals of the integrator sensor 9 and the irradiation amount monitor 32 in parallel to form a detection signal S i corresponding to the actual incident energy E i to the projection optical system PL. , And a detection signal S o corresponding to the transmitted energy E o actually passing through the projection optical system PL. In order to detect the ultraviolet pulse light IL, a peak hold circuit and an AZD converter are connected to the outputs of the integrator sensor 9 and the dose monitor 32, respectively. S i and S 0 are captured as digital data. The exposure control unit 30 calculates the incident energy Ei and the transmitted energy Eo by multiplying the detection signals S i and S o by a coefficient obtained in advance.
そして、 パルス発光毎に、 露光制御ユニット 3 0では、 透過エネルギ 一 E oを入射エネルギー E iで除算して透過率 T ( = E o / E i ) を求 めると共に、 入射エネルギー E i を積算してそれまでの入射総エネルギ 一 eを算出する。 この動作は計測終了まで連続的に実行される。 なお、 露光光として A r Fエキシマレーザ光 (パルス光) の代わりに、 これと ほぼ同一波長の連続光を用いた場合には、 ピークホールド回路の変わり にサンプルホールド回路を使用して、 検出信号 E o , E i を所定のサン プリングレートで順次検出して透過率 Tを算出すると共に、 入射エネル ギ一 E i を積算すればよい。 Then, for each pulse emission, the exposure control unit 30 calculates the transmittance T (= Eo / Ei) by dividing the transmitted energy Eo by the incident energy Ei, and calculates the incident energy Ei. Integrate and calculate the total incident energy-e up to that point. This operation is continuously performed until the end of the measurement. When a continuous light of almost the same wavelength is used instead of the ArF excimer laser light (pulse light) as the exposure light, a sample-and-hold circuit is used instead of the peak-and-hold circuit to detect the detection signal. E o and E i are The transmittance T is calculated by sequentially detecting at the pulling rate, and the incident energy Ei may be integrated.
紫外パルス光 I Lをパルス発光毎に検出する場合、 ウェハ W上の各点 に対して最小露光パルス数以上のパルス数、 即ち或る一定数以上の複数 のパルス光で露光が行われるため、 1ショッ トの露光時間に対して十分 短い計測間隔で、 透過率 T及び入射総エネルギー eが算出される。 また、 計測終了時の入射総エネルギー eが通常の 1ショッ 卜の露光の間に蓄積 される入射総エネルギーに対して十分大きくなるように、 その計測時間 が設定されている。 計測時間は、 一例として数 s e c〜数 1 0 s e cで ある。 そして、 その計測の終了後に、 投影光学系 P Lの透過率 Tを入射 総エネルギー eの 2次以上の関数、 又は入射エネルギー eの指数関数等 によって近似し、 近似された関数よりその透過率 Tの変化量の飽和値及 び時定数を求め (詳細後述) 、 求められた飽和値及び時定数を露光制御 ユニット 3 0内のメモリに格納する。 この場合、 紫外パルス光 I Lの発 光周波数はほぼ均一で、 パルスエネルギーの平均値もほぼ均一であるた め、 入射総エネルギー eは計測を開始してからの経過時間 tにほぼ比例 する。 従って、 透過率 Tは、 例えば紫外パルス光の照度 qと経過時間 t との関数 T ( q , t ) とみなすこともできる。 これより、 上記の透過率 Tの変化量の飽和値及び時定数はそれぞれ照度 Qの 1次又は 2次以上の 関数で表すことができる。  When the ultraviolet pulse light IL is detected for each pulse emission, each point on the wafer W is exposed with a pulse number equal to or more than the minimum exposure pulse number, that is, a certain fixed number or more of a plurality of pulse lights. The transmittance T and the total incident energy e are calculated at measurement intervals sufficiently short with respect to the exposure time of the shot. The measurement time is set so that the total incident energy e at the end of the measurement is sufficiently larger than the total incident energy accumulated during the normal one-shot exposure. The measurement time is, for example, several seconds to ten seconds. After the measurement is completed, the transmittance T of the projection optical system PL is approximated by a function of the quadratic or higher order of the total incident energy e or an exponential function of the incident energy e, and the transmittance T of the transmittance T is calculated from the approximated function. The saturated value and the time constant of the change amount are obtained (details will be described later), and the obtained saturated value and the time constant are stored in the memory in the exposure control unit 30. In this case, since the emission frequency of the ultraviolet pulse light IL is almost uniform and the average value of the pulse energy is also almost uniform, the total incident energy e is almost proportional to the elapsed time t from the start of the measurement. Therefore, the transmittance T can be regarded as a function T (q, t) of the illuminance q of the ultraviolet pulse light and the elapsed time t, for example. Accordingly, the saturation value and the time constant of the change amount of the transmittance T can be expressed by a primary or secondary function of the illuminance Q, respectively.
また、 ソラリゼーシヨンによる透過率変化は可逆的な変化であり、 紫 外パルス光の照射を停止すると、 投影光学系 P Lの透過率 Tは徐々に回 復するため、 紫外パルス光 I Lの照射停止後の投影光学系 P Lの透過率 Tの計測も行う。 具体的には、 A r Fエキシマレ一ザ光源 1の発光を停 止した後、 所定の時間間隔で A r Fエキシマレーザ光源 1に可能な限り 少ないパルス数の発光を行わせて、 露光制御ュニッ ト 3 0において、 诱 過エネルギー E o及び入射エネルギー E i より投影光学系 P Lの透過率 T ( = E o Z E i ) を算出する。 この際の入射総エネルギーはほぼ 0と みなすことができる。 この透過率 Tの計測を所定回数繰り返し、 計測終 了後、 投影光学系 P Lの透過率 Tを例えば照射停止時の透過率 T s t及 び照射停止からの経過時間 t ' の関数 T ( T s t , t ' ) として近似し、 この関数 T ( T s t , t ' ) からその透過率 Tが回復する際の時定数を 透過率 T s tの 1次又は 2次以上の関数として求め、 その時定数を露光 制御ュニッ ト 3 0内のメモリに記憶する。 The transmittance change due to the solarization is a reversible change, and when the irradiation of the ultraviolet pulse light is stopped, the transmittance T of the projection optical system PL gradually recovers. It also measures the transmittance T of the projection optical system PL. Specifically, after stopping the emission of the ArF excimer laser light source 1, the ArF excimer laser light source 1 emits as few pulses as possible at predetermined time intervals, and the exposure control unit. In 30, ト The transmissivity T (= E o ZE i) of the projection optical system PL is calculated from the over energy E o and the incident energy E i. The total incident energy at this time can be regarded as almost zero. The measurement of the transmittance T is repeated a predetermined number of times, and after the measurement is completed, the transmittance T of the projection optical system PL is, for example, a function T (Tst , t '), and the time constant at which the transmittance T recovers from this function T (Tst, t') is calculated as a first-order or second-order function of the transmittance Tst, and the time constant is calculated as It is stored in the memory in the exposure control unit 30.
図 2は、 A r Fエキシマレ一ザ光の照射による投影光学系 P Lの透過 率 Tの変化の一例を示し、 この図 2において、 横軸は A r Fエキシマレ 一ザ光の照射開始からの経過時間 t [m i n ] であり、 縦軸は投影光学 系 P Lの透過率 Tを A r Fエキシマレーザ光の照射開始前の初期透過率 T aで除算した値、 即ち透過率 Tの相対値 (= T Z T a ) である。 図 1 において、 N Dフィル夕 4 1を光路から退避させて、 可変減光器 6の減 光率を 0として、 ほぼ紫外パルス光 I Lの照度を最大にした状態で、 経 過時間 tが t 1となるまで紫外パルス光 I Lを発光させたときの投影光 学系 P Lの透過率 Tの相対値の計測結果が曲線 4 3 Aである。 曲線 4 3 Aにおいて、 時間 t 1以降の特性は紫外パルス光 I Lの照射停止後の透 過率 Tの変化を表している。 また、 時間 t 1は、 透過率 Tの変化量が小 さくなつて透過率 Tがほぼ所定の値に飽和するまでの時間 (時定数) 程 度に設定されている。  Fig. 2 shows an example of the change in the transmittance T of the projection optical system PL due to the irradiation of the ArF excimer laser light. In Fig. 2, the horizontal axis indicates the progress from the start of the irradiation of the ArF excimer laser light. The time t [min], and the vertical axis is the value obtained by dividing the transmittance T of the projection optical system PL by the initial transmittance Ta before the start of the irradiation of the ArF excimer laser beam, that is, the relative value of the transmittance T (= TZT a). In FIG. 1, the ND filter 41 is retracted from the optical path, the extinction ratio of the variable dimmer 6 is set to 0, and the illuminance of the ultraviolet pulse light IL is almost maximized. The measurement result of the relative value of the transmittance T of the projection optical system PL when the ultraviolet pulse light IL is emitted until the value of the curve is 43 A. In the curve 43A, the characteristic after the time t1 indicates a change in the transmittance T after the irradiation of the ultraviolet pulse light IL is stopped. In addition, the time t1 is set to a time (time constant) until the transmittance T saturates to a substantially predetermined value when the variation of the transmittance T becomes small.
曲線 4 3 Aより分かるように、 紫外パルス光 I Lの照射を開始すると、 合成石英の透過率変動に起因して投影光学系 P Lの透過率 Tは最初は急 速に低下して、 次第に初期値から 2 %程度低下した値に飽和している。 そして、 時間 t 1で紫外パルス光 I Lの照射を停止した後は、 ソラリゼ ーションによる合成石英ガラスのダメージは徐々に修復されて、 投影光 学系 P Lの透過率 Tは次第に初期値に向けて回復する。 As can be seen from the curve 43A, when the irradiation of the ultraviolet pulsed light IL is started, the transmittance T of the projection optical system PL decreases rapidly at first due to the transmittance fluctuation of the synthetic quartz, and gradually becomes the initial value. It is saturated to a value that is about 2% lower than. After stopping irradiation of the ultraviolet pulse light IL at time t1, the damage of the synthetic quartz glass due to the solarization is gradually repaired, and the projection light The transmittance T of the academic PL gradually recovers toward the initial value.
このソラリゼーションによる透過率 Τの変化量の飽和値や時定数は、 紫外パルス光 I Lの照度及び硝材の種類等によって異なるが、 紫外パル ス光 I Lの照度が最大に近い場合には、 平均的に透過率 Τの変化量の飽 和値は初期値 T Oに対して約 2〜 3 %であり、 透過率 Tの変化の時定数 は、 紫外パルス光照射中の透過率の低下については約 2〜 3 m i n、 紫 外パルス光の照射停止後の透過率の回復については約 1 0〜 2 O m i n である。  The saturation value and time constant of the change in the transmittance に よ る due to this solarization vary depending on the illuminance of the ultraviolet pulse light IL and the type of glass material, etc., but when the illuminance of the ultraviolet pulse light IL is close to the maximum, the average The saturation value of the change in the transmittance Τ is about 2 to 3% of the initial value TO, and the time constant of the change in the transmittance T is about 2 to 3 for the decrease in the transmittance during irradiation with ultraviolet pulse light. The recovery of the transmittance after stopping irradiation of the UV pulse light for 3 min is about 10 to 20 min.
次に、 図 1において、 紫外パルス光 I Lの光路に透過率がほぼ 5 0 % の N Dフィル夕 4を設置した状態で、 上記の計測と同様にして投影光学 系 P Lの透過率 Tの計測を行った結果が、 図 2の点線の曲線 4 3 Bであ る。 曲線 4 3 Bの場合には、 透過率 Tがほぼ飽和するまでの時間 t 2が 時間 t 1よりも長くなつており、 かつ透過率 Tは初期値に対してほぼ 1 %程度低下した値で飽和している。 これより、 照射される紫外パルス光 I Lの照度 (パルスエネルギー、 ピークパワー、 平均パワー、 又は光ェ ネルギ一がハイレベルとなる期間のデューティ比等でも代用できる) 力 低くなると、 投影光学系 P Lの透過率 Tの変化量の飽和値は小さくなり、 透過率 Tの変化の時定数は長くなることが分かる。 本例ではこれを利用 して必要に応じて露光量の制御精度を高める。  Next, in Fig. 1, measurement of the transmittance T of the projection optical system PL was performed in the same manner as above, with the ND filter 4 having a transmittance of approximately 50% installed in the optical path of the ultraviolet pulsed light IL. The result is the dotted curve 43B in FIG. In the case of the curve 43B, the time t2 until the transmittance T is substantially saturated is longer than the time t1, and the transmittance T is a value that is reduced by about 1% from the initial value. Saturated. From this, the illuminance of the irradiated ultraviolet pulse light IL (pulse energy, peak power, average power, or the duty ratio during the period when the light energy is at a high level, etc.) can be reduced. It can be seen that the saturation value of the change in the transmittance T decreases and the time constant of the change in the transmittance T increases. In this example, this is used to increase the control accuracy of the exposure amount as needed.
また、 実際には、 図 1において、 例えば N Dフィル夕 4 1を光路から 待避させて、 可変減光器 6の減光率を種々に設定した状態でも、 更に N Dフィル夕 4 1を光路上に配置して可変減光器 6の減光率を種々に設定 した状態でも、 それぞれ紫外パルス光 I Lの発光中及び発光停止中の投 影光学系 P Lの透過率 Tの計測が行われる。  Actually, in FIG. 1, for example, even when the ND filter 41 is retracted from the optical path and the dimming rate of the variable dimmer 6 is variously set, the ND filter 41 is further placed on the optical path. Even when the variable extinction device 6 is arranged and the extinction ratio of the variable extinction device 6 is variously set, the transmittance T of the projection optical system PL is measured during emission of the ultraviolet pulse light IL and emission stop thereof.
また、 投影露光装置では、 1ショッ トに対する積算露光量、 照明条件 (開口絞りの大きさや変形照明の種類等) 、 投影光学系の開口数等の露 光条件は適宜変更されるため、 露光条件毎に投影光学系 P Lの透過率 T の計測を行う。 この露光条件毎に透過率 (光学特性の時間変化) を計測 する構成は、 日本国特許出願第 9 - 1 9 9 7 1 0号に記載されている。 このため、 予め露光条件毎に投影光学系 P Lの透過率 Tの計測を行って おくか、 露光条件の変更直後に投影光学系 P Lの透過率 Tの計測を行う ようにする。 In a projection exposure apparatus, the integrated exposure amount for one shot, illumination conditions (such as the size of the aperture stop and the type of deformed illumination), and the exposure such as the numerical aperture of the projection optical system Since the light conditions are changed as appropriate, the transmittance T of the projection optical system PL is measured for each exposure condition. A configuration for measuring the transmittance (time change of optical characteristics) for each exposure condition is described in Japanese Patent Application No. 9-19710. Therefore, the transmittance T of the projection optical system PL is measured in advance for each exposure condition, or the transmittance T of the projection optical system PL is measured immediately after the change of the exposure condition.
そして、 例えばィンテグレ一夕センサ 9で計測される紫外パルス光 I Lの平均的な照度 Qの関数として、 又は照度 Qに対応させたテーブルの 形で、 紫外パルス光 I Lの照射時の投影光学系 P Lの透過率 Tの変化量 の飽和値、 及び変化の時定数の計測結果が露光制御ュニッ ト 3 0内のメ モリに記憶される。 また、 テーブルの形で記憶させた場合には、 紫外パ ルス光 I Lの照度 Qの計測値が無い領域では、 例えばその近傍の計測デ 一夕を補間することによって、 透過率 Tの変化量の飽和値及び時定数を 求めることができる。  Then, for example, the projection optical system PL when irradiating the ultraviolet pulse light IL as a function of the average illuminance Q of the ultraviolet pulse light IL measured by the integration sensor 9 or in the form of a table corresponding to the illuminance Q. The measurement results of the saturation value of the change amount of the transmittance T and the time constant of the change are stored in the memory in the exposure control unit 30. In the case where the data is stored in the form of a table, in a region where there is no measured value of the illuminance Q of the ultraviolet pulse light IL, for example, by interpolating the measurement data in the vicinity thereof, the change amount of the transmittance T can be calculated. The saturation value and time constant can be obtained.
次に、 実際に例えば 1ロッ トのウェハに対して露光を行う露光工程で は、 先ず照明条件、 ウェハ上のレジスト感度 (ドーズ) 、 この積算露光 量に対する許容誤差、 及び露光に使用するレチクル Rのパターン存在率 等の条件から、 走査露光時の紫外パルス光 I Lの照度、 露光パルス数、 及び走査速度等の露光条件を決定する。  Next, for example, in the exposure step of actually exposing one lot of wafers, first, the illumination conditions, the resist sensitivity (dose) on the wafer, the tolerance for the integrated exposure amount, and the reticle R used for exposure are used. The exposure conditions such as the illuminance of the ultraviolet pulse light IL at the time of scanning exposure, the number of exposure pulses, and the scanning speed are determined based on the conditions such as the pattern abundance ratio.
ここで、 A r Fエキシマレ一ザ光源 1の単位時間当たりの出力 (=発 振周波数 Xパルスエネルギー) を E a [W] とする。 更に、 以下ではそ の出力 E aは、 N Dフィル夕 4 1及び可変減光器 6での透過率と、 レチ クル Rの既知のパターン存在率から算出される透過率とを乗じた値とす る。 そして、 投影光学系 P Lの初期透過率を T a、 スリッ ト状の露光領 域の面積を S [ c m 2 ] 、 その露光領域の走査方向の幅を L [ c m] 、 レジスト感度を I [ J Z c m 2 ] とすると、 走査露光時のウェハステー ジ 2 4の走査速度の初期値 Vw a [c m/ s e c ] は、 次のようになる。 Vw a = (L - E a - T a) / ( I - S) ( 1 ) Here, the output per unit time of the ArF excimer laser light source 1 (= oscillation frequency X pulse energy) is Ea [W]. Further, hereinafter, the output Ea is a value obtained by multiplying the transmittance of the ND filter 41 and the variable dimmer 6 by the transmittance calculated from the known pattern existence ratio of the reticle R. You. The initial transmittance of the projection optical system PL is Ta, the area of the slit-shaped exposure area is S [cm 2 ], the width of the exposure area in the scanning direction is L [cm], and the resist sensitivity is I [JZ]. cm 2 ], the wafer stay during scanning exposure The initial value Vwa [cm / sec] of the scanning speed of di 24 is as follows. Vw a = (L-E a-T a) / (I-S) (1)
また、 ゥェ八上の各点に対する露光パルス数を N (≥最小露光パルス 数 Nm i n) 、 紫外パルス光 I Lの平均発振周波数を f a [ 1ノ s e c ] とすると、 紫外パルス光 I Lの平均パルスエネルギーは E a/ f aであ るため、 次の関係が成立する。  Also, assuming that the number of exposure pulses for each point on page 8 is N (≥ minimum exposure pulse number Nmin) and the average oscillation frequency of ultraviolet pulse light IL is fa [1 sec], the average pulse of ultraviolet pulse light IL Since the energy is E a / fa, the following relationship holds.
N= (L/Vw a ) · f a≥Nm i n ( 2)  N = (L / Vw a) f a≥Nmin (2)
E a/ f a = I /N ( 3 )  E a / f a = I / N (3)
実際には、 (3) 式に (2) 式を代入すると ( 1 ) 式が得られるため、 ( 3 ) 式と ( 1 ) 式とは等価である。 また、 ( 1 ) 式において、 E aZ Sが紫外パルス光 I Lのウェハ上での照度となるため、 出力 E aを制御 することは照度を制御することと等価である。 本例では、 先ず (2) 式 に基づいて走査速度 Vw a及び発振周波数 f aが決定された後、 ( 1 ) 式に基づいて紫外パルス光 I Lの出力 E aが決定される。 この場合の出 力 E aには、 NDフィル夕 4 1及び可変減光器 6での透過率が乗じられ ている力 通常は NDフィル夕 4 1は光路から待避されており、 可変減 光器 6での透過率 (= 1 一減光率) が選択された後に、 A r Fエキシマ レーザ光源 1の出力が微調整される。 これらの値は露光制御ュニッ ト 3 0から可変減光器 6及び A r Fエキシマレーザ光源 1に対して設定され る。  In practice, substituting equation (2) into equation (3) yields equation (1), so equations (3) and (1) are equivalent. In equation (1), since E aZ S is the illuminance of the ultraviolet pulse light IL on the wafer, controlling the output E a is equivalent to controlling the illuminance. In this example, first, the scanning speed Vwa and the oscillation frequency f a are determined based on the equation (2), and then the output Ea of the ultraviolet pulse light IL is determined based on the equation (1). In this case, the output E a is multiplied by the transmittance of the ND filter 41 and the variable dimmer 6. Normally, the ND filter 41 is retracted from the optical path, and the variable dimmer is After the transmittance at 6 (= 1 extinction) is selected, the output of the ArF excimer laser light source 1 is fine-tuned. These values are set for the variable dimmer 6 and the ArF excimer laser light source 1 from the exposure control unit 30.
その後、 この露光条件で露光を行った場合に生じる投影光学系 P乙の 透過率変動を、 露光制御ュニッ ト 3 0内のメモリに記憶された紫外パル ス光 I Lの照度と投影光学系 P Lの透過率の変化量との関係 (飽和値及 び時定数) から予測する。 そして、 予測された透過率の変化量に応じて、 各ウェハへの露光中に、 投影光学系 P Lの透過率の変動量が、 予め設定 された許容値より大きくなるかどうかを判定し、 その透過率の変動量が 許容値を超えた場合には、 紫外パルス光 I Lの強度を調整する。 即ち、 各ウェハへの露光中にウェハ上の各ショッ 卜領域に対する積算露光量が それぞれレジスト及び露光プロセスによって定められている許容範囲内 に収まるかどうかを判定し、 積算露光量がその許容範囲内に収まらない と判定された場合には、 本例では、 図 1の駆動モー夕 40を介して紫外 パルス光 I Lの光路上に NDフィルタ 41を設置して、 紫外パルス光 I Lのウェハ W上での出力 (ひいては照度) を約 50 %程度に低下させる。 その後、 (2) 式及び ( 1) 式より再び可変減光器 6の減光率の選択、 及び A r Fエキシマレーザ光源 1の出力の微調整を行う。 これによつて、 図 2に示すように、 露光中での投影光学系 P Lの透過率の変動量はほぼ 1ノ 2程度になるため、 積算露光量は許容範囲内に収まるようになる。 この場合には、 紫外パルス光 I Lの照度が低下してスループッ トは低下 するが、 露光量の制御精度は向上することになる。 Then, the transmittance fluctuation of the projection optical system P, which occurs when the exposure is performed under these exposure conditions, is determined by the illuminance of the ultraviolet pulse light IL stored in the memory in the exposure control unit 30 and the projection optical system PL. Predict from the relationship with the change in transmittance (saturation value and time constant). Then, it is determined whether or not the fluctuation amount of the transmittance of the projection optical system PL becomes larger than a predetermined allowable value during the exposure of each wafer according to the predicted change amount of the transmittance. The amount of change in transmittance If the allowable value is exceeded, adjust the intensity of the ultraviolet pulse light IL. That is, during exposure of each wafer, it is determined whether the integrated exposure amount for each shot area on the wafer falls within the allowable range defined by the resist and the exposure process, and the integrated exposure amount falls within the allowable range. In this example, if it is determined that the laser beam does not fall within the range, the ND filter 41 is installed on the optical path of the ultraviolet pulse light IL via the driving mode 40 in FIG. Output (and thus illuminance) to about 50%. After that, the dimming rate of the variable dimmer 6 is selected again and the output of the ArF excimer laser light source 1 is finely adjusted from the equations (2) and (1). As a result, as shown in FIG. 2, the amount of change in the transmittance of the projection optical system PL during the exposure is approximately 1 to 2, so that the integrated exposure amount falls within the allowable range. In this case, although the illuminance of the ultraviolet pulse light IL is reduced and the throughput is reduced, the control accuracy of the exposure amount is improved.
これに関して、 半導体デバイス等を製造する際に、 ウェハ上の複数の レイヤ中で、 例えば極めて狭い線幅のパターンを含むクリティカルレイ ャ等では、 低感度 (レジスト感度 Iの値は大きい) のレジストを使用し て積算露光量の誤差の許容範囲がかなり狭い場合がある。 具体的に、 通 常のレイヤではレジスト感度 I (積算露光量の目標値) は、 l OmJZ cm2 程度であるが、 クリティカルレイヤ等の中にはレジス卜感度 I力 1 0 Om J Zcm2 程度となる特殊なレイヤがある。 そして、 このよう な特殊なレイヤでは線幅の制御精度を高めるために、 積算露光量の誤差 の許容範囲が通常のレイヤに比べて例えば 1 /2程度以下になっている。 そこで、 レジスト感度が 1 Om JZcm2 程度の通常のレイヤでは、 N Dフィル夕 4 1を光路から待避させて露光を行い、 レジス卜感度が 1 0 OmJZcm2 程度となるレイヤでは N Dフィル夕 41を光路上に設定 して露光を行うことで、 全体の露光工程のスループットを殆ど低下させ ることなく、 積算露光量の制御精度が高いレイヤに対しては必要な制御 精度を得ることができる。 In this regard, when manufacturing semiconductor devices, etc., a low-sensitivity (high value of the resist sensitivity I) resist is used in a plurality of layers on a wafer, for example, in a critical layer including a pattern with an extremely narrow line width. In some cases, the tolerance of the error of the integrated exposure amount is quite narrow. Specifically, the resist sensitivity I (the target value of the integrated exposure amount) is about l OmJZ cm 2 in a normal layer, but the resist sensitivity I force is about 10 Om J Zcm 2 in a critical layer. There is a special layer that becomes In such a special layer, the allowable range of the error of the integrated exposure amount is, for example, about 1/2 or less of that of a normal layer in order to increase the control accuracy of the line width. Therefore, in the resist sensitivity is 1 Om JZcm 2 about normal Layer, exposure is performed is retracted the ND fill evening 4 1 from the optical path, the light of the ND fill evening 41 is a layer Regis Bok sensitivity is 1 0 OmJZcm 2 about By setting the exposure on the road and performing exposure, the throughput of the entire exposure process is almost reduced. Thus, the required control accuracy can be obtained for a layer having a high control accuracy of the integrated exposure amount.
また、 本例では露光量制御に際して、 紫外パルス光 I Lの照射停止後 の投影光学系 P Lの透過率の変動をも考慮している。 紫外パルス光 I L の照射停止後の透過率の回復速度によっては或るショッ 卜の露光終了後、 次のショッ 卜の露光開始までに透過率が初期状態まで十分回復しないこ とがあり得る。 また、 露光装置のスループットの向上を図るためにショ ッ 卜間のステツビング時間等を短縮する場合にも、 ショッ ト間での透過 率の回復が不十分となる恐れがある。 このため、 ショッ ト間で紫外パル ス光 I Lの照射が中断されている際の投影光学系 P Lの透過率の変動  Further, in this example, the fluctuation of the transmittance of the projection optical system PL after stopping the irradiation of the ultraviolet pulse light IL is considered in controlling the exposure amount. Depending on the recovery rate of the transmittance after stopping the irradiation of the ultraviolet pulse light I L, the transmittance may not be sufficiently restored to the initial state after the exposure of one shot is completed and before the exposure of the next shot is started. In addition, even when the stepping time between shots is shortened in order to improve the throughput of the exposure apparatus, the recovery of the transmittance between shots may be insufficient. For this reason, the variation of the transmittance of the projection optical system PL when the irradiation of the ultraviolet pulse light IL is interrupted between shots
(回復) も考慮することにより、 より高精度に露光量制御を行うことが できる。  By taking into account (recovery), the exposure amount can be controlled with higher accuracy.
次に、 本例の露光装置を用いた半導体デバイスの製造工程の一例につ き図 4を参照して説明する。  Next, an example of a manufacturing process of a semiconductor device using the exposure apparatus of the present embodiment will be described with reference to FIG.
図 4は、 半導体デバイスの製造工程の一例を示し、 この図 4において、 半導体デバイスを製造する際には、 先ず、 例えば単結晶のシリコンイン ゴッ ト S Iをスライス及び研磨してウェハ Wを製造する (ステップ S T 1 ) 。 この際に、 ウェハ Wの外周にウェハァライメントの基準となる切 欠き部 (ノッチ等) を設けておく。 次に、 ステップ S T 2において、 ゥ ェハ W上に例えば金属膜や絶縁膜等を蒸着し、 フォトレジスト P R 1を 塗布する。 そして、 ステップ S T 3において、 露光条件から投影光学系 P L等の透過率変動を予測する。 ここで、 露光するレイヤが通常のレイ ャであり、 それ程レジス卜感度の値が大きくなく積算露光量の制御精度 が通常である場合には、 図 1の N Dフィル夕 4 1を光路から待避させて 露光条件を設定し、 紫外パルス光 I L 1によりレチクル R 1のパターン P A 1 (符号 Aで表されている) の像をウェハ W上の各ショッ ト領域 S Cに露光する。 そして、 ステップ S T 4において、 現像及びエッチング 等を行うことにより、 ウェハ W上の各ショッ ト領域にパターン P W 1が 形成される。 FIG. 4 shows an example of a semiconductor device manufacturing process. In FIG. 4, when manufacturing a semiconductor device, first, for example, a single crystal silicon ingot SI is sliced and polished to manufacture a wafer W. (Step ST1). At this time, a notch (a notch or the like) serving as a reference for wafer alignment is provided on the outer periphery of the wafer W. Next, in step ST2, for example, a metal film, an insulating film, or the like is deposited on the wafer W, and a photoresist PR1 is applied. Then, in step ST3, a change in the transmittance of the projection optical system PL or the like is predicted from the exposure conditions. Here, if the layer to be exposed is a normal layer and the value of the register sensitivity is not so large and the control accuracy of the integrated exposure amount is normal, the ND filter 41 in FIG. 1 is retracted from the optical path. The exposure condition is set, and the image of the pattern PA 1 (represented by the symbol A) of the reticle R 1 is irradiated with the ultraviolet pulse light IL 1 to each shot area S on the wafer W. Expose to C. Then, in step ST4, a pattern PW1 is formed in each shot area on the wafer W by performing development, etching, and the like.
次のレイヤへの露光に際にも、 先ずステップ S T 5において、 ウェハ W上に例えば金属膜や絶縁膜等を蒸着してフォ トレジスト P R 2を塗布 し、 ステップ S T 6において、 露光条件から投影光学系 P L等の透過率 変動を予測する。 このレイヤは、 レジス卜感度が低く、 積算露光量の制 御精度が高いレイヤであるとして、 図 1の N Dフィルタ 4 1を光路上に 配置して、 紫外パルス光の照度を低下させた状態で露光条件を設定する。 そして、 紫外パルス光 I L 2によってレチクル R 2のパターン P A 2 When exposing the next layer, first, in step ST5, for example, a metal film, an insulating film, or the like is deposited on the wafer W and a photoresist PR 2 is applied. Predict the transmittance fluctuation of the system PL etc. This layer is assumed to be a layer with low registration sensitivity and high control accuracy of the integrated exposure, and the ND filter 41 in Fig. 1 is arranged on the optical path to reduce the illuminance of the ultraviolet pulse light. Set the exposure conditions. Then, the pattern P A 2 of the reticle R 2 by the ultraviolet pulse light I L 2
(符号 Bで表されている) の像をウェハ W上の各ショッ ト領域 S Cに露 光する。 そして、 ステップ S T 7において、 ウェハ Wの現像及びエッチ ング等を行うことにより、 ウェハ W上の各ショット領域にパターン P W 2が形成される。 The image (represented by the symbol B) is exposed to each shot area SC on the wafer W. Then, in step ST7, a pattern P W2 is formed in each shot area on the wafer W by performing development and etching of the wafer W.
以上のフォトレジスト塗布工程〜パ夕一ン形成工程 (ステップ S T 2 〜ステップ S T 4又はステップ S T 5〜ステップ S T 7 ) は、 所望の半 導体デバイスを製造するのに必要な回数だけ繰り返される。 そして、 ゥ ェハ W上の各チップ C Pを切り離すダイシング工程 (ステップ S T 8 ) や、 ボンディング工程、 及びパッケージング工程等 (ステップ S T 9 ) を経ることによって、 製品としての半導体デバイス S Pが製造される。 この際に本例では、 積算露光量の制御精度が高いレイヤでは、 紫外パル ス光の照度を低下させて投影光学系 P Lの透過率変動を抑えているため、 高精度な露光量制御を行ってウェハ W上に所望の回路パターンを高い転 写忠実度で形成することができる。 従って、 スループットを殆ど低下さ せることなく、 高機能の半導体デバイスの歩留りの向上を図ることがで きる。 なお、 本例では、 図 3 ( a ) に示すように、 駆動モータ 4 0により紫 外パルス光 I Lの光路上に N Dフィル夕 4 1を設置して、 紫外パルス光 の強度としての照度の調整を行っている。 それ以外に、 図 3 ( b ) に示 すように、 光学フィル夕として合成石英等のガラス基板 4 1 Aを用いて、 このガラス基板 4 1 Aを紫外パルス光 I Lの光路に対して例えば 5 0 % 程度の反射率が得られるような角度だけ傾斜させて配置することによつ て、 紫外パルス光 I Lの強度の調整を行うようにしてもよい。 また、 図 3 ( c ) に示すように、 光学フィル夕として遮光面積が 5 0 %程度の金 属メッシュ板 4 1 Bを用いて、 この金属メッシュ板 4 1 Bを紫外パルス 光の光路に挿脱してもよい。 The above-described photoresist coating process to power forming process (step ST2 to step ST4 or step ST5 to step ST7) are repeated as many times as necessary to manufacture a desired semiconductor device. Then, a semiconductor device SP as a product is manufactured through a dicing process (step ST8) for separating each chip CP on the wafer W, a bonding process, a packaging process, and the like (step ST9). . At this time, in this example, in the layer having high control accuracy of the integrated exposure amount, the illuminance of the ultraviolet pulse light is reduced to suppress the fluctuation of the transmittance of the projection optical system PL. Thus, a desired circuit pattern can be formed on the wafer W with high transfer fidelity. Therefore, the yield of high-performance semiconductor devices can be improved without substantially lowering the throughput. In this example, as shown in Fig. 3 (a), the ND filter 41 is set on the optical path of the ultraviolet pulse light IL by the drive motor 40, and the illuminance as the intensity of the ultraviolet pulse light is adjusted. It is carried out. In addition, as shown in FIG. 3 (b), a glass substrate 41A made of synthetic quartz or the like is used as an optical filter, and this glass substrate 41A is moved with respect to the optical path of the ultraviolet pulse light IL by, for example, 5 mm. The intensity of the ultraviolet pulse light IL may be adjusted by arranging it at an angle such that a reflectance of about 0% is obtained. As shown in Fig. 3 (c), a metal mesh plate 41B with a light shielding area of about 50% was used as an optical filter, and this metal mesh plate 41B was inserted into the optical path of the ultraviolet pulse light. You may come off.
また、 上記の実施の形態では、 光学フィル夕としての N Dフィルタ 4 1等の透過率は 5 0 %程度であるが、 その透過率は 3 0 %〜 7 0 %程度 であればよい。 透過率が 3 0 %以下になるとスループットが低下し過ぎ ると共に、 透過率が 7 0 %以上になると、 可変減光器 6による減光率の 切り換えで代用できるため、 設備が重複する傾向があるからである。 ま た、 N Dフィル夕 4 1は実質的に紫外パルス光を 2段階に切り換えてい るため装置構成は単純であるが、 例えば 3 0〜 7 0 %程度の範囲内で 3 段階又は 4段階程度で透過率を大まかに切り換えるようにしてもよい。  In the above embodiment, the transmittance of the ND filter 41 or the like as the optical filter is about 50%, but the transmittance may be about 30% to 70%. If the transmittance is less than 30%, the throughput will be too low, and if the transmittance is more than 70%, the variable dimmer 6 can be used instead of switching the dimming rate, so the equipment tends to overlap. Because. Further, the ND filter 41 has a simple device configuration because the UV pulse light is substantially switched in two steps, but for example, in three or four steps within a range of about 30 to 70%. The transmittance may be roughly switched.
また、 図 1における N Dフィル夕 4 1の挿入位置は、 紫外パルス光 I Lの照射による照明光学系中の光学部材の透過率又は反射率の変動量を 低減するため、 できるだけ A r Fエキシマレーザ光源 1に近い位置に配 置することが望ましい。  In addition, the insertion position of the ND filter 41 in Fig. 1 is set to the Ar F excimer laser light source as much as possible in order to reduce the variation of the transmittance or reflectance of the optical member in the illumination optical system due to the irradiation of the ultraviolet pulse light IL. It is desirable to place it near 1.
また、 上記の実施の形態では、 投影光学系 P Lの透過率変動を問題に しているが、 N Dフィル夕 4 1によって紫外パルス光の強度を低下させ た場合には、 曇り物質の生成量が少なくなるため、 反射部材の反射率の 変動量も少なくなるため、 光学系全体としての透過率の変動量 (反射率 の変動分を含む) が少なくなる。 Further, in the above embodiment, the transmittance variation of the projection optical system PL is considered as a problem. However, when the intensity of the ultraviolet pulse light is reduced by the ND filter 41, the amount of cloudy substance generated is reduced. Since the amount of change in the reflectance of the reflecting member also decreases, the amount of change in the transmittance of the entire optical system (reflectance (Including the fluctuations of).
更に、 紫外パルス光 I Lの強度の調整方法は、 N Dフィルタ 4 1等の 光学フィル夕を光路上に挿入する方法に限られるものではなく、 A r F エキシマレーザ光源 1において紫外パルス光 I Lの発振周波数を低下さ せたり、 その出力自体を大きく低下させたりするようにしてもよい。 現 状では、 A r Fエキシマレーザ光源 1の出力を広い範囲で安定に変化さ せるのは必ずしも容易ではないが、 将来的にその出力が容易に広い範囲 で制御できるようになった場合には、 N Dフィル夕 4 1等が不要になる ため、 装置構成が簡素化される。  Further, the method of adjusting the intensity of the ultraviolet pulse light IL is not limited to the method of inserting an optical filter such as the ND filter 41 on the optical path, but the oscillation of the ultraviolet pulse light IL in the ArF excimer laser light source 1 is described. The frequency may be reduced, or the output itself may be significantly reduced. At present, it is not always easy to change the output of the ArF excimer laser light source 1 stably over a wide range, but if the output can be easily controlled over a wide range in the future, Since the ND filter 41 and the like are not required, the device configuration is simplified.
なお、 上述の実施の形態において、 パルス発光毎に投影光学系 Pしの 透過率に応じて A r Fエキシマレーザ光源 1の出力を微調整するように してもよい。  In the above embodiment, the output of the ArF excimer laser light source 1 may be finely adjusted according to the transmittance of the projection optical system P for each pulse emission.
なお、 本実施の形態では、 投影光学系 P Lの透過率変動量をビームス プリッ夕 8からウェハ Wまでの光路上での透過率変動分として説明した 力 ビームスプリツ夕 8からレチクル Rまでの照明光学系の透過率変動 量が大きく寄与する場合は、 ビームスプリッ夕 8からウェハ Wの間に配 置された照明光学系及び投影光学系の透過率変動を考慮することが望ま しい。  In this embodiment, the illumination optical system from the power beam splitter 8 to the reticle R has been described in which the transmittance variation of the projection optical system PL is described as the transmittance variation on the optical path from the beam splitter 8 to the wafer W. In the case where the transmittance fluctuation amount greatly contributes, it is desirable to consider the transmittance fluctuation of the illumination optical system and the projection optical system disposed between the beam splitter 8 and the wafer W.
なお、 上記の実施の形態では、 投影光学系 P L中に合成石英、 又は所 定の不純物がドープされた合成石英が使用されているが、 投影光学系 P Lの屈折部材として蛍石等を主に使用する場合にも、 将来的に半導体素 子等の集積度が向上してより高い露光量制御精度が要求されるようにな ると、 その僅かな屈折率変動が露光量制御精度を劣化させる場合が生じ うる。 このような場合には、 本発明を適用することで必要な露光量制御 精度が得られる。  In the above embodiment, synthetic quartz or synthetic quartz doped with a predetermined impurity is used in the projection optical system PL. However, fluorite or the like is mainly used as a refractive member of the projection optical system PL. Even in the case of use, if the degree of integration of semiconductor devices and the like increases in the future and higher exposure control accuracy is required, slight fluctuations in the refractive index will deteriorate the exposure control accuracy. Cases may arise. In such a case, the required exposure amount control accuracy can be obtained by applying the present invention.
また、 投影光学系 P L等の透過率の変化を計測する際には、 実際に露 光するレチクル Rを使用してこれを実際の露光時と同様に走査させるよ うにしてもよい。 この場合、 走査開始から或る任意の位置までレチクル Rを走査する間に投影光学系 P Lに入射する総光量が、 計測時と走査露 光時とで同一になるようにする。 投影光学系 P Lに実際に入射する光量 は、 インテグレー夕センサ 9で計測される入射エネルギー E i にレチク ル Rのパターン透過率 (=照明領域内の透過部の面積ノレチクル R上の 照明領域の面積) を掛け合わせた光量になる。 なお、 パターン透過率は 1からパターン存在率を差し引いた値でもあるため、 このパターン存在 率を使用してもよい。 また、 照射量モニタ 3 2を介して計測される透過 エネルギー E oは、 入射する光量にレチクル Rのパターン透過率と、 投 影光学系 P Lの透過率とを掛け合わせたものとなる。 また、 パターン存 在率はレチクル Rの設計データよりレチクル Rの位置の関数として既知 である。 When measuring the change in transmittance of the projection optical system PL, etc., A reticle R that emits light may be used to scan it in the same manner as in actual exposure. In this case, the total amount of light incident on the projection optical system PL while scanning the reticle R to a certain arbitrary position from the start of scanning is the same between the time of measurement and the time of scanning exposure. The amount of light that is actually incident on the projection optical system PL is calculated by adding the incident energy E i measured by the integrator sensor 9 to the pattern transmittance of the reticle R (= the area of the transmission part in the illumination area, the area of the illumination area on the reticle R) ) Is multiplied by. Since the pattern transmittance is also a value obtained by subtracting the pattern existence rate from 1, this pattern existence rate may be used. The transmitted energy E o measured via the irradiation amount monitor 32 is obtained by multiplying the incident light amount by the transmittance of the pattern of the reticle R and the transmittance of the projection optical system PL. Also, the pattern existence rate is known as a function of the position of the reticle R from the design data of the reticle R.
このように、 レチクル Rのパターン透過率も考慮することにより、 実 際の走査露光時の投影光学系 P Lの透過率の変動をより高精度に検出で き、 高精度な露光量制御を行うことができる利点がある。 なお、 走査方 向によって投影光学系 P Lの透過率 Tを表す関数の形が微妙に変化する 恐れもあるため、 走査方向毎にその関数を求めておき、 走査露光時には 走査方向に応じてその関数を使い分けるようにしてもよい。 これによつ て、 レチクルのパターン透過率が対称でない場合や、 レチクルの基板自 体の透過率が対称でない場合等にも、 高精度に露光量制御が行われる。  Thus, by taking into account the pattern transmittance of the reticle R, it is possible to more accurately detect the variation in the transmittance of the projection optical system PL during the actual scanning exposure, and to perform highly accurate exposure control. There are advantages that can be. Since the shape of the function representing the transmittance T of the projection optical system PL may slightly change depending on the scanning direction, the function is obtained for each scanning direction, and the function is determined according to the scanning direction during scanning exposure. May be used properly. Accordingly, even when the reticle pattern transmittance is not symmetric or the reticle substrate itself has a non-symmetric transmittance, exposure amount control is performed with high accuracy.
また、 ソラリゼーションによる投影光学系 P Lの透過率 Tの変動を表 す関数は、 紫外パルス光の照射時間等により、 変化する可能性がある。 そこで、 投影光学系 P Lの透過率 Tを定期的 (例えば 3ヶ月又は半年毎 等) に計測することが望ましい。  Also, the function representing the variation of the transmittance T of the projection optical system P L due to solarization may change depending on the irradiation time of the ultraviolet pulse light and the like. Therefore, it is desirable to measure the transmittance T of the projection optical system PL periodically (for example, every three months or every six months).
なお、 上記の実施の形態は、 本発明をステップ · アンド · スキャン方 式の露光装置に適用したものであるが、 本発明はステップ ' アンド · リ ピー卜方式の露光装置 (ステッパー) で露光する場合にも適用すること ができる。 ステッパーの場合には、 例えばウェハ上のショッ ト領域への 積算露光量が所定の値になるように露光時間が制御される。 In the above embodiment, the present invention is applied to a step-and-scan method. Although the present invention is applied to an exposure apparatus of a type, the present invention can also be applied to a case where exposure is performed by an exposure apparatus (stepper) of a step-and-repeat method. In the case of a stepper, for example, the exposure time is controlled so that the integrated exposure amount to the shot area on the wafer becomes a predetermined value.
また、 本実施の形態の露光装置として、 投影光学系を用いることなく マスクと基板とを密接させてマスクのパターンを露光するプロキシミテ ィ露光装置にも適用することができる。 露光装置の用途としては、 半導 体製造用の露光装置に限定されることなく、 例えば、 角型のガラスプレ 一卜に液晶表示素子パターンを露光する液晶用の露光装置や、 薄膜磁気 へッ ドを製造するための露光装置にも広く適用できる。  Further, the exposure apparatus of the present embodiment can be applied to a proximity exposure apparatus that exposes a mask pattern by bringing a mask and a substrate into close contact with each other without using a projection optical system. The application of the exposure apparatus is not limited to an exposure apparatus for manufacturing semiconductors. For example, an exposure apparatus for a liquid crystal that exposes a liquid crystal display element pattern to a square glass plate, a thin film magnetic head Can also be widely applied to an exposure apparatus for manufacturing a semiconductor device.
本発明は、 照明光学系、 投影光学系を構成する少なくとも一部の光学 部材 (レンズ、 反射ミラー等) の透過率が変化する場合に適用すること ができる。 例えば、 g線 (4 3 6 n m) 、 i線 (3 6 5 n m) 、 K r F エキシマレ一ザ (2 4 8 n m) 、 又は F 2 レーザ ( 1 5 7 n m) を使用 して、 上記透過率の変化が生じる場合にも適用することができる。 INDUSTRIAL APPLICABILITY The present invention can be applied to a case where the transmittance of at least some of the optical members (lenses, reflection mirrors, and the like) constituting the illumination optical system and the projection optical system changes. For example, g-ray (4 3 6 nm), i-rays (3 6 5 nm), K r F excimer one The (2 4 8 nm), or by using the F 2 laser (1 5 7 nm), the transmission It can also be applied when the rate changes.
また、 投影光学系の倍率は縮小系のみならず等倍及び拡大系のいずれ でもよい。  Further, the magnification of the projection optical system may be not only a reduction system but also any of an equal magnification and an enlargement system.
なお、 投影光学系としては、 エキシマレーザ等の遠紫外線を用いる場 合は硝材として石英や蛍石等の遠紫外線を透過する材料を用い、 F 2 レ —ザや X線を用いる場合は反射屈折系又は屈折系の光学系にすればよい。 以上のように、 本実施の形態の投影露光装置は、 図 1に示す各構成要 素 (照明光学系、 投影光学系、 レチクルステージ、 ウェハステージ、 光 源、 その他図 1に記載された要素) を、 所定の機械的精度、 電気的精度、 光学的精度を保つように、 組み立てることで製造される。 これら各種精 度を確保するために、 この組み立ての前後には、 各種光学系については 光学的精度を達成するための調整、 各種機械系については機械的精度を 達成するための調整、 各種電気系については電気的精度を達成するため の調整が行われる。 各種サブシステムから露光装置への組立工程は、 各 種サブシステム相互の機械的接続、 電気回路の配線接続、 気圧回路の配 管接続等が含まれる。 この各種サブシステムから露光装置への組立工程 の前に、 各種サブシステム個々の組立工程があることはいうまでもない, 各種サブシステムから露光装置への組立工程が終了したら、 総合調整が 行われ、 露光装置全体としての各種精度が確保される。 なお、 露光装置 の製造は温度及びクリーン度等が管理されたクリーンルームで行うこと が望ましい。 As the projection optical system, if using a far ultraviolet ray such as an excimer laser using a material which transmits far ultraviolet quartz and fluorite as glass material, F 2 Les - if used The or X-ray catadioptric Or a refraction type optical system. As described above, the projection exposure apparatus according to the present embodiment includes the components shown in FIG. 1 (illumination optical system, projection optical system, reticle stage, wafer stage, light source, and other elements shown in FIG. 1). It is manufactured by assembling to maintain the prescribed mechanical, electrical, and optical accuracy. Before and after this assembly, adjustments to achieve optical accuracy for various optical systems, and mechanical accuracy for various mechanical systems are performed before and after this assembly to ensure these various accuracies. Adjustments to achieve, and various electrical systems are adjusted to achieve electrical accuracy. The process of assembling the exposure apparatus from various subsystems includes mechanical connection between various subsystems, wiring connection of electric circuits, and connection of pneumatic circuits. It goes without saying that there is an assembly process for each of the various subsystems before the assembly process from these various subsystems to the exposure apparatus. When the assembly process for the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed. Therefore, various precisions of the entire exposure apparatus are ensured. It is desirable to manufacture the exposure apparatus in a clean room where the temperature and cleanliness are controlled.
なお、 本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱 しない範囲で種々の構成を取り得ることは勿論である。 産業上の利用の可能性  It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention. Industrial applicability
本発明の第 1の露光方法によれば、 例えばその照明光の照射によって、 その照明光学系及びその投影光学系中の所定の光学部材の透過率又は反 射率が許容範囲を超えて変動するような場合には、 その照明光の強度を 低下させることによって、 その光学部材の透過率等の変動量を小さくし て、 第 2物体上で高精度な露光量制御を行うことができる。  According to the first exposure method of the present invention, for example, due to the irradiation of the illumination light, the transmittance or the reflectance of the illumination optical system and a predetermined optical member in the projection optical system fluctuates beyond an allowable range. In such a case, by reducing the intensity of the illumination light, the amount of change in the transmittance or the like of the optical member can be reduced, and highly accurate exposure amount control can be performed on the second object.
次に、 本発明の第 2の露光方法によれば、 予め予測される所定の光学 部材の透過率等の変動量に基づいてその照明光の強度を制御しているた め、 第 2物体上で高精度な露光量制御を行うことができる。  Next, according to the second exposure method of the present invention, the intensity of the illuminating light is controlled based on the amount of change in the transmittance or the like of the predetermined optical member that is predicted in advance. Thus, the exposure amount can be controlled with high accuracy.
また、 本発明の第 3の露光方法によれば、 その光学部材の透過率等の 変動量を小さくして、 第 2物体上で高精度な露光量制御を行うことがで きる。  Further, according to the third exposure method of the present invention, it is possible to perform high-precision exposure control on the second object by reducing the amount of change in the transmittance or the like of the optical member.
次に、 本発明の露光装置によれば、 本発明の第 1、 第 2、 及び第 3の 露光方法を実施することができ、 必要に応じて高精度な露光量制御を行 うことができるため、 例えば高機能の半導体デバイス等を全体として高 いスループッ トで、 かつ高い歩留りで量産することができる。 Next, according to the exposure apparatus of the present invention, the first, second, and third exposure methods of the present invention can be performed, and the exposure amount can be controlled with high precision as necessary. Therefore, for example, high-performance semiconductor devices can be mass-produced with high throughput and high yield as a whole.
また、 本発明のデバイス製造方法によれば、 その光学系の透過率又は 反射率の変動量を抑制するように、 その露光光の強度を制御することに よって、 高精度な露光量制御を行うことができ、 結果として高性能のデ バイスが得られる。  Further, according to the device manufacturing method of the present invention, high-precision exposure amount control is performed by controlling the intensity of the exposure light so as to suppress the variation amount of the transmittance or the reflectance of the optical system. As a result, high-performance devices can be obtained.

Claims

請 求 の 範 囲 The scope of the claims
1 . 照明光学系からの照明光で第 1物体を照明し、 該第 1物体のパター ンを投影光学系を介して第 2物体上に転写する露光方法において、 前記照明光学系及び前記投影光学系中の少なくとも一部の光学部材の 透過率又は反射率の変動量を抑制するように、 前記照明光の強度を制御 することを特徴とする露光方法。 1. An exposure method for illuminating a first object with illumination light from an illumination optical system and transferring a pattern of the first object onto a second object via a projection optical system, wherein the illumination optical system and the projection optical An exposure method, comprising: controlling the intensity of the illumination light so as to suppress a variation in transmittance or reflectance of at least some of the optical members in the system.
2 . 露光動作前に、 前記照明光の強度に基づいて前記照明光学系及び前 記投影光学系中の少なくとも一部の光学部材の前記照明光の強度に対す る透過率又は反射率の変動量を予測し、  2. Before the exposure operation, the amount of change in transmittance or reflectance of at least some of the optical members in the illumination optical system and the projection optical system with respect to the intensity of the illumination light based on the intensity of the illumination light. Predict
該予測結果に基づいて前記第 2物体に対する露光量が許容範囲内に収 まるかどうかを判定し、  It is determined whether or not the exposure amount for the second object falls within an allowable range based on the prediction result,
前記露光量が前記許容範囲内に収まらないと判定された場合には、 露 光動作中に前記露光量が前記許容範囲内に収まるように前記照明光の強 度を調整することを特徴とする請求の範囲 1記載の露光方法。  When it is determined that the exposure amount does not fall within the allowable range, the intensity of the illumination light is adjusted so that the exposure amount falls within the allowable range during the exposure operation. The exposure method according to claim 1.
3 . 前記照明光の強度は、 前記照明光学系の光路中に挿脱可能に配置さ れる光学フィル夕によって調整されることを特徴とする請求の範囲 2記 載の露光方法。  3. The exposure method according to claim 2, wherein the intensity of the illumination light is adjusted by an optical filter that is inserted and removed in an optical path of the illumination optical system.
4 . 前記照明光の強度の調整の際には、 前記照明光のピークパワー及び 発振周波数の少なくとも一方を制御することを特徴とする請求の範囲 2 記載の露光方法。  4. The exposure method according to claim 2, wherein, when adjusting the intensity of the illumination light, at least one of a peak power and an oscillation frequency of the illumination light is controlled.
5 . 前記透過率又は反射率の変動量の予測は、 予め計測された前記照明 光の照射時の前記透過率又は反射率の変動量に基づいて行われることを 特徴とする請求の範囲 2記載の露光方法。  5. The method according to claim 2, wherein the estimation of the variation of the transmittance or the reflectance is performed based on the variation of the transmittance or the reflectance when the illumination light is measured in advance. Exposure method.
6 . 前記透過率又は反射率の変動量の予測は、 予め計測された前記照明 光の照射を停止した後の、 前記透過率又は反射率の変動量に基づいて行 われることを特徴とする請求の範囲 2記載の露光方法。 6. The estimation of the variation of the transmittance or the reflectance is performed based on the variation of the transmittance or the reflectance after stopping the irradiation of the illumination light measured in advance. 3. The exposure method according to claim 2, wherein the exposure method is performed.
7 . 前記照明光は波長が 3 0 0 n m以下の紫外パルス光であり、 前記照明光の照射を停止した後の前記光学部材の前記透過率又は反射 率の変動量の計測は、 転写時の前記照明光のパルス数より少ないパルス 数で行われることを特徴とする請求の範囲 6記載の露光方法。  7. The illumination light is ultraviolet pulse light having a wavelength of 300 nm or less, and the measurement of the amount of change in the transmittance or the reflectance of the optical member after the irradiation of the illumination light is stopped is performed during transfer. 7. The exposure method according to claim 6, wherein the number of pulses is smaller than the number of pulses of the illumination light.
8 . 前記光学部材は、 合成石英を主材料とする屈折光学素子であること を特徴とする請求の範囲 1記載の露光方法。  8. The exposure method according to claim 1, wherein the optical member is a refractive optical element whose main material is synthetic quartz.
9 . 照明光学系からの照明光で第 1物体を照明し、 該第 1物体のパター ンを投影光学系を介して第 2物体上に転写する露光方法において、 前記照明光学系及び前記投影光学系中の少なくとも一部の光学部材の 透過率又は反射率の変動量を露光プロセスに応じて予測し、  9. An exposure method for illuminating a first object with illumination light from an illumination optical system and transferring a pattern of the first object onto a second object via a projection optical system, wherein the illumination optical system and the projection optical Predict the amount of change in transmittance or reflectance of at least some optical members in the system according to the exposure process,
該予測される変動量を抑制するように、 前記照明光の強度を制御する ことを特徴とする露光方法。  An exposure method, comprising: controlling the intensity of the illumination light so as to suppress the predicted fluctuation amount.
1 0 . 前記第 2物体は、 感光材が塗布された感光基板であり、  10. The second object is a photosensitive substrate coated with a photosensitive material,
前記露光プロセスは、 前記感光材の感度であることを特徴とする請求 の範囲 9記載の露光方法。  The exposure method according to claim 9, wherein the exposure process is a sensitivity of the photosensitive material.
1 1 . 前記露光プロセスは、 前記第 1物体のパ夕一ンを前記第 2物体上 に転写する際の転写条件であることを特徴とする請求の範囲 9記載の露 光方法。  11. The exposure method according to claim 9, wherein the exposure process is a transfer condition for transferring a pattern of the first object onto the second object.
1 2 . 前記投影光学系は合成石英を主材料とする屈折部材を含み、 前記照明光は波長が 3 0 0 n m以下の紫外パルス光であり、  12. The projection optical system includes a refractive member mainly composed of synthetic quartz, and the illumination light is ultraviolet pulsed light having a wavelength of 300 nm or less.
前記照明光の強度を変更する際に前記照明光のピークパワー及び発振 周波数の少なくとも一方を制御することを特徴とする請求の範囲 9記載 の露光方法。  10. The exposure method according to claim 9, wherein when changing the intensity of the illumination light, at least one of a peak power and an oscillation frequency of the illumination light is controlled.
1 3 . 光源からの照明光で、 第 1物体を照明し、 該第 1物体のパターン を第 2物体上に転写する露光方法において、 前記照明光の光路中に配置される少なくとも一部の光学部材の透過率 又は反射率の変動量を抑制するように、 前記照明光の強度を制御するこ とを特徴とする露光方法。 13. An exposure method for illuminating a first object with illumination light from a light source and transferring a pattern of the first object onto a second object. An exposure method, comprising: controlling the intensity of the illumination light so as to suppress a variation in transmittance or reflectance of at least a part of the optical members arranged in an optical path of the illumination light.
1 4 . 前記照明光の光路中には、 前記照明光で前記第 1物体を照明する 照明光学系と、 前記第 1物体のパターンを前記第 2物体上に転写する投 影光学系との少なくとも一方を備えることを特徴とする請求の範囲 1 3 記載の露光方法。  14. In the optical path of the illumination light, at least an illumination optical system that illuminates the first object with the illumination light, and a projection optical system that transfers a pattern of the first object onto the second object. 14. The exposure method according to claim 13, comprising one of them.
1 5 . 照明光で第 1物体を照明する照明光学系と、 前記第 1物体のパ夕 一ンを第 2物体上に転写する投影光学系とを有する露光装置において、 前記照明光の強度を制御する強度制御系と、  15. An exposure apparatus comprising: an illumination optical system that illuminates a first object with illumination light; and a projection optical system that transfers a pattern of the first object onto a second object. An intensity control system for controlling,
前記照明光学系及び前記投影光学系中の少なくとも一部の光学部材の 透過率又は反射率の変動量を抑制するように、 前記強度制御系を介して 前記照明光の強度を制御する演算制御系と、  An arithmetic and control system for controlling the intensity of the illumination light via the intensity control system so as to suppress a variation in transmittance or reflectance of at least some of the optical members in the illumination optical system and the projection optical system. When,
を設けたことを特徴とする露光装置。 An exposure apparatus comprising:
1 6 . 前記照明光学系は、 前記照明光を供給する露光光源と、 前記照明 光を前記第 1物体に導く光学系と、 を備え、  16. The illumination optical system includes: an exposure light source that supplies the illumination light; and an optical system that guides the illumination light to the first object.
前記強度制御系は、 前記照明光の強度を調整する光学フィル夕と、 該 光学フィル夕を前記露光光源と前記光学系との間の光路中に揷脱する駆 動部材と、 を備えたことを特徴とする請求の範囲 1 5記載の露光装置。  The intensity control system includes: an optical filter that adjusts the intensity of the illumination light; and a driving member that moves the optical filter into and out of an optical path between the exposure light source and the optical system. The exposure apparatus according to claim 15, wherein:
1 7 . 前記照明光学系は、 前記照明光を供給する露光光源を有し、 前記強度制御系は、 前記照明光のピークパワー及び発振周波数の少な くとも一方を制御することを特徴とする請求の範囲 1 5記載の露光装置。 17. The illumination optical system has an exposure light source for supplying the illumination light, and the intensity control system controls at least one of a peak power and an oscillation frequency of the illumination light. Exposure apparatus according to the above item 15.
1 8 . 露光光源からの露光光で、 所定の回路パターンの像を光学系を介 して基板に転写してデバイスを製造するデバイス製造方法において、 前記露光光に対する前記光学系の透過率又は反射率の変動量を抑制す るように、 前記露光光の強度を制御しながら、 前記所定の回路パターン の像を前記基板上に転写することを特徴とするデバイス製造方法。 18. A device manufacturing method for manufacturing a device by transferring an image of a predetermined circuit pattern to a substrate via an optical system with exposure light from an exposure light source, wherein the transmittance or reflection of the optical system with respect to the exposure light The predetermined circuit pattern is controlled while controlling the intensity of the exposure light so as to suppress the variation of the rate. Transferring the image of (1) onto the substrate.
1 9 . 前記光学系は、 前記露光光源からの露光光で、 前記所定の回路パ ターンが形成されたマスクを照明する照明光学系であることを特徴とす る請求の範囲 1 8記載のデバイス製造方法。 19. The device according to claim 18, wherein the optical system is an illumination optical system that illuminates a mask on which the predetermined circuit pattern is formed with exposure light from the exposure light source. Production method.
2 0 . 前記光学系は、 前記所定の回路パターンの像を前記基板上に転写 する投影光学系であることを特徴とする請求の範囲 1 8記載のデバイス 製造方法。  20. The device manufacturing method according to claim 18, wherein the optical system is a projection optical system that transfers an image of the predetermined circuit pattern onto the substrate.
PCT/JP1999/003534 1999-06-30 1999-06-30 Exposure method and device WO2001003170A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU43950/99A AU4395099A (en) 1999-06-30 1999-06-30 Exposure method and device
PCT/JP1999/003534 WO2001003170A1 (en) 1999-06-30 1999-06-30 Exposure method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/003534 WO2001003170A1 (en) 1999-06-30 1999-06-30 Exposure method and device

Publications (1)

Publication Number Publication Date
WO2001003170A1 true WO2001003170A1 (en) 2001-01-11

Family

ID=14236127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003534 WO2001003170A1 (en) 1999-06-30 1999-06-30 Exposure method and device

Country Status (2)

Country Link
AU (1) AU4395099A (en)
WO (1) WO2001003170A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073052A1 (en) * 2003-02-17 2004-08-26 Nikon Corporation Exposure apparatus and optical member for exposure apparatus
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041226A (en) * 1997-04-07 1998-02-13 Nikon Corp Projection optical device and method for adjusting image forming characteristic
JPH1116816A (en) * 1997-06-25 1999-01-22 Nikon Corp Projection aligner, method for exposure with the device, and method for manufacturing circuit device using the device
JPH11135428A (en) * 1997-08-27 1999-05-21 Nikon Corp Projection light alignment and projection aligner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041226A (en) * 1997-04-07 1998-02-13 Nikon Corp Projection optical device and method for adjusting image forming characteristic
JPH1116816A (en) * 1997-06-25 1999-01-22 Nikon Corp Projection aligner, method for exposure with the device, and method for manufacturing circuit device using the device
JPH11135428A (en) * 1997-08-27 1999-05-21 Nikon Corp Projection light alignment and projection aligner

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004073052A1 (en) * 2003-02-17 2004-08-26 Nikon Corporation Exposure apparatus and optical member for exposure apparatus
JPWO2004073052A1 (en) * 2003-02-17 2006-06-01 株式会社ニコン Exposure apparatus and optical member for exposure apparatus
US7072026B2 (en) 2003-02-17 2006-07-04 Nikon Corporation Exposure apparatus and optical component for the same
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method

Also Published As

Publication number Publication date
AU4395099A (en) 2001-01-22

Similar Documents

Publication Publication Date Title
US7889320B2 (en) Variable slit apparatus, illumination apparatus, exposure apparatus, exposure method, and device fabrication method
US6252650B1 (en) Exposure apparatus, output control method for energy source, laser device using the control method, and method of producing microdevice
KR0139309B1 (en) Exposure apparatus and manufacuring method for device using the same
EP1589792B1 (en) Light source apparatus and exposure apparatus having the same
US8125613B2 (en) Exposure apparatus, exposure method, and device manufacturing method
WO1998059364A1 (en) Projection aligner, method of manufacturing the aligner, method of exposure using the aligner, and method of manufacturing circuit devices by using the aligner
US20060238749A1 (en) Flare measuring method and flare measuring apparatus, exposure method and exposure apparatus, and exposure apparatus adjusting method
TWI406107B (en) Exposure apparatus and semiconductor device fabrication method
WO1998048452A1 (en) Method and device for exposure control, method and device for exposure, and method of manufacture of device
JP2001110710A (en) Aligner, exposing method and manufacturing method of semiconductor device
WO2001003170A1 (en) Exposure method and device
JPWO2003023832A1 (en) Exposure method and apparatus, and device manufacturing method
JP2005093948A (en) Aligner and its adjustment method, exposure method, and device manufacturing method
JP2004063847A (en) Aligner, exposure method, and stage device
US6211947B1 (en) Illuminance distribution measuring method, exposing method and device manufacturing method
US6542222B1 (en) Beam output control method, beam output apparatus and exposure system, and device manufacturing method using the exposure system
JP2001326159A (en) Laser, aligner, and device manufacturing method using the same aligner
JP2011109014A (en) Scanning exposure apparatus
JP4366098B2 (en) Projection exposure apparatus and method, and device manufacturing method
JP3620612B2 (en) Exposure amount control device
JP2006134932A (en) Variable slit device, illumination optical device, aligner, and method of exposure
JP2003318095A (en) Flame measuring method and flare measuring device, aligning method and aligner, and method for adjusting aligner
JP3245026B2 (en) Exposure method, exposure apparatus, and device manufacturing method using the same
JP3884968B2 (en) Exposure apparatus, exposure method, device manufacturing method, and device
JP2004319780A (en) Exposure method and exposure system, and method for manufacturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 508486

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: GB

Ref document number: 200209075

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase