WO2001005575A1 - Production method and device for photo-cured shaped matter - Google Patents

Production method and device for photo-cured shaped matter Download PDF

Info

Publication number
WO2001005575A1
WO2001005575A1 PCT/JP2000/004727 JP0004727W WO0105575A1 WO 2001005575 A1 WO2001005575 A1 WO 2001005575A1 JP 0004727 W JP0004727 W JP 0004727W WO 0105575 A1 WO0105575 A1 WO 0105575A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
resin
layer
image
thin layer
Prior art date
Application number
PCT/JP2000/004727
Other languages
French (fr)
Japanese (ja)
Inventor
Kiyotaka Hara
Yukinori Hirata
Original Assignee
Edward Jefferson Horne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edward Jefferson Horne filed Critical Edward Jefferson Horne
Publication of WO2001005575A1 publication Critical patent/WO2001005575A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask

Definitions

  • the present invention provides a method for irradiating a thin layer made of a melt or a solution of a photo-curable resin corresponding to the thickness of a photo-cured product to be formed with image light, thereby hardening the resin of the thin layer.
  • the present invention relates to a method and an apparatus for producing a photo-cured object having a shape corresponding to a two-dimensional planar image of a light-cured object or a three-dimensional light-cured object formed by laminating a plurality of resin cured layers.
  • a photo-curing molding method irradiates the surface of a thin layer of a liquid photo-curable resin with light to cure it, thereby forming a molded article composed of a thin resin cured layer in which only the irradiated area is cured. It is.
  • many light sources use laser light. However, when laser light is used, it is necessary to expose portions to be cured one by one, so that the exposure time is long. Therefore, for example, as disclosed in Japanese Patent Application Laid-Open No.
  • a liquid crystal mask is used to form an exposure pattern corresponding to the shape of a model to be manufactured on the liquid crystal mask.
  • a method has been proposed for manufacturing a molded object in a short time by performing a collective exposure in which light emitted from an ultra-high pressure mercury lamp through this exposure pattern is applied to the surface of a thin layer of a photocurable resin. ing.
  • the present invention has been made to solve such a problem, and a method and apparatus for manufacturing a photo-cured molded article capable of producing a highly accurate molded article with a short molding time, a simple configuration, and a simple structure.
  • the purpose is to provide Disclosure of the invention
  • a method for producing a photocured molded article according to the present invention comprises the steps of: Irradiating and curing the resin of the thin layer to produce a three-dimensionally shaped photo-cured product in which a plurality of resin cured layers having a shape corresponding to the two-dimensional planar image of the image light are laminated.
  • the control data for forming a two-dimensional plane image is input to the fine mirror element in which the fine mirrors are arranged on a flat plate, and the reflection angle of each fine mirror with respect to the incident light from the light source is controlled.
  • Reflected light corresponding to
  • a resin cured layer having a shape corresponding to a two-dimensional planar image of the image light is laminated. It is characterized by producing a three-dimensionally shaped photocured object.
  • the manufacturing apparatus of the present invention irradiates image light to a thin layer made of a melt or a solution of a photocurable resin corresponding to the layer thickness of a photocured product to be formed, and cures the resin of the thin layer.
  • a micromirror element in which micromirrors are arranged on a flat plate, a light source for inputting light to the micromirror element, and control data for forming a two-dimensional plane image in the micromirror element are inputted. Controlling the reflection angle of the fine mirror with respect to the incident light from the light source, emitting reflected light corresponding to the two-dimensional planar image, irradiating the reflected light as the image light to the thin layer, And a controller for repeatedly controlling the step of curing the number of times equal to the number of resin cured layers constituting the three-dimensional shape.
  • a thin layer made of a melt or a solution of a photocurable resin corresponding to the thickness of the photocured product to be formed is irradiated with image light to cure the resin of the thin layer.
  • a sheet having the photocurable resin and the adhesive property is formed on the lower surface side of the double-sided bonding member. Joining the shaped members.
  • the double-sided bonding member is heated, and the sheet bonding member including the sheet member is heated.
  • the method further comprises a step of peeling off the laminated photocured shaped object.
  • the lower surface side of the lowermost resin cured layer has an adhesive property with the photocurable resin.
  • a transparent sheet-like member not interposed, a light-transmissive plate member is inserted into the lower surface of the transparent sheet-like member, and a melt of the photocurable resin is placed on the lower surface of the lowermost resin cured layer.
  • the method includes a step of bringing the solution into close contact.
  • the third step and the fourth step are performed with the light-transmitting plate member being inserted, and the transparent sheet-shaped member is changed before the fifth step is performed.
  • Pull the light transmissive plate A step of peeling the transparent sheet-like member from the lower surface of the lowermost resin-hardened layer while moving it in the punching direction is provided.
  • the third step and the fourth step are performed with the light transmitting plate member being inserted, and the light transmitting plate member is pulled out before the fifth step is performed.
  • the transparent sheet-shaped member is moved while moving a peeling member that presses the transparent sheet-shaped member in a direction of a space formed between the plate member and the lower surface of the lowermost resin cured layer.
  • the method includes a step of peeling the member from the lower surface of the lowermost resin cured layer.
  • the third and fourth steps are performed with the light-transmitting plate member inserted, and the transparent sheet-shaped member and the light-transmitting member are set before performing the fifth step.
  • the method further comprises a step of sucking the transparent sheet-shaped member from a suction hole provided in a part of the light-transmitting plate member to bring the transparent sheet member into close contact therewith.
  • the manufacturing apparatus of the present invention irradiates image light to a thin layer made of a melt or a solution of a photocurable resin corresponding to the layer thickness of a photocured product to be formed, and cures the resin of the thin layer.
  • Means a fourth means for raising the stage after a curing time of the thin layer irradiated with the image light has passed, and an operation of the second means to the fourth means, wherein the operation of the second means to the fourth means is performed by a resin cured layer forming a three-dimensional shape.
  • Fifth means for repeatedly executing the same number of times as the number of layers.
  • a recording medium on which a control program for realizing the manufacturing method of the present invention is recorded includes a processing step for positioning a stage holding a photocured product at an initial position, and a light corresponding to the thin layer on the lower surface side of the positioned stage.
  • the processing step of raising the stage and the second to fifth steps are performed the number of times equal to the number of resin cured layers constituting the three-dimensional shape. It is characterized in that a control program including a processing step to be repeatedly executed is recorded.
  • FIG. 1 is a configuration diagram showing a first embodiment of a photocured object manufacturing apparatus to which the present invention is applied.
  • FIG. 2 is an explanatory diagram of molding data.
  • Fig. 3 is an explanatory diagram showing the relationship between the modeling data, the DMU, and the image plane. is there.
  • FIG. 4 is a flowchart showing a control procedure in the configuration of FIG.
  • FIG. 5 is an explanatory view showing a process for producing a cured resin.
  • FIG. 6 is an explanatory view showing a continuation of FIG.
  • FIG. 7 is a configuration diagram showing a second embodiment of a photocured molded article manufacturing apparatus to which the present invention is applied.
  • FIG. 8 is a flowchart showing a control procedure in the configuration of FIG.
  • FIG. 9 is an explanatory diagram showing a production process of the cured resin in the configuration of FIG.
  • FIG. 10 is an explanatory diagram showing a continuation of FIG. 9;
  • FIG. 11 is a main part configuration diagram showing a third embodiment of a photocured object manufacturing apparatus to which the present invention is applied.
  • FIG. 12 is a main part configuration diagram showing a fourth embodiment of the photocured object manufacturing apparatus to which the present invention is applied.
  • FIG. 13 is a diagram showing an example of a case where the photocured object is separated from the holding stage.
  • FIG. 14 is a diagram showing an embodiment of the present invention in which the photocured object is separated from the holding stage.
  • FIG. 15 is a view showing a step that follows the step of FIG.
  • FIG. 16 is a view showing an embodiment of a method for adhering a photocurable resin in a resin cured layer next to the latest resin cured layer in the present invention.
  • FIG. 17 is a diagram showing a first example of a method of peeling a transparent sheet-like member in order to fill a photocurable resin in a resin cured layer next to a latest resin cured layer in the present invention. is there.
  • FIG. 18 is a diagram showing a second example of a method of peeling a transparent sheet-like member in order to fill a photocurable resin of a resin cured layer next to a latest resin cured layer in the present invention. It is.
  • FIG. 19 is a diagram showing a third example of a method of peeling a transparent sheet-like member in order to fill a photocurable resin in a resin cured layer next to a latest resin cured layer in the present invention.
  • FIG. 20 is a view showing a method of bringing the transparent sheet-like member shown in FIGS. 17 to 19 into close contact with a light-transmitting plate member in the present invention.
  • FIG. 1 is a configuration diagram showing one embodiment of a photocured product manufacturing apparatus according to the present invention.
  • this photocured product manufacturing equipment is a liquid that contains a light source 1, a color filter 2, a condenser lens 3, a shirt 4, a micromirror element unit 5, an imaging lens 6, and a photocurable resin liquid 7.
  • Vessel 8 Z-axis operation stage 9 for holding the photo-cured object, drive mechanism 10 for moving this Z-axis operation stage 9 in the Z-axis direction (vertical direction), and photo-curing resin liquid
  • injection valve 12 for injecting required amount of sap 7 into sap 8 and injection pipe 13
  • personal computer 14 as control device to control modeling operation
  • modeling Modeling data storage device 15 that stores data, keyboard 16 for inputting modeling conditions, etc.
  • Keyboard and pointing device (mouse) 17 display device 18 that is a man-machine interface with Opera, injection It has a valve driver 19, a Z-axis operation stage driver 20, and a DMU driver 21 for inputting control data to the micromirror unit 5.
  • the drive mechanism 10 is composed of a rod 23 having a spiral groove formed on the rotation shaft of the motor 22 and an arm member 24 having one end rotatably engaged with the rod 23.
  • a Z-axis operation stage 9 is supported on the other end of the arm member 24, and the Z-axis operation stage 9 is configured to move up and down by clockwise and counterclockwise rotation of the motor 22.
  • a light source that emits visible light or ultraviolet light is used as the light source 1.
  • visible light for example, a metal highlight lamp or a halogen lamp is used.
  • ultraviolet light an ultra-high pressure mercury lamp or an ultraviolet fluorescent lamp is used.
  • visible light a resin that is cured by irradiation with visible light, for example, a visible light curable resin; a resin liquid such as VL-003 (trade name) is used.
  • ultraviolet light the resin is irradiated with ultraviolet light.
  • a curable resin for example, an ultraviolet curable resin; a resin liquid such as RP-5001A (trade name) is used.
  • the visible light refers to light whose main wavelength component is in the visible light region, and does not prevent light having a wavelength component outside the visible light region.
  • ultraviolet rays refer to those whose main wavelength components are in the ultraviolet region, and do not prevent those having wavelength components outside the ultraviolet region.
  • the Micromirror Unit 5 is a device in which a number of micromirrors are spread over a single silicon chip.
  • DMU Digital Micromirror Device
  • Texas Instruments, Inc. in the United States is used. Can be.
  • This DMD consists of a series of 16-micron-square aluminum micromirrors with high reflectivity, and these micromirrors are 16.4 x 12.3 mm by CMOS semiconductor technology. Approximately 780,000 pieces are spread on a corner silicon memory chip, and each micromirror is supported by a mirror holding post on a yoke that rotates in two stable states around a diagonal line.
  • each micromirror controls the amount of light reflected from the light source.
  • Each micromirror corresponds to one pixel (dot). If 12.3 mm is represented by 768 dots, one dot has an accuracy of 0.26 mm.
  • the reflection angle of each micromirror is controlled according to the control data, and reflected light corresponding to the two-dimensional plane image is obtained.
  • the reflected light is applied to a thin layer of a photocurable resin to produce a resin cured layer having a shape corresponding to a two-dimensional planar image.
  • the modeling data storage device 15 stores modeling data for causing the DMU 5 to emit reflected light of a two-dimensional planar image.
  • the data obtained by slicing the CAD data in the layer direction is used.
  • the CAD data of this object 201 is sliced over N layers in the layer direction, and slice data for N layers is obtained.
  • the modeling data storage device 15 stores the slice data SD1 to SDN for the N layers with the layer number N and the data ID added.
  • CAD data When generating slice data SD1 to SDN from the evening, it can be easily generated by using a dedicated generation program or conversion program.
  • the light emitted from the light source 1 passes through the color filter 2, is focused by the condenser lens 3, and then enters the shirt 4. If shirt 4 is open, it passes through shirt 4 and enters DMU 5.
  • the reflection function of the DMU 5 irradiates the surface of the liquid tank 8 through the imaging lens 6 as image light of a two-dimensional planar image. Note that the color filter 2 can usually be omitted.
  • the shirt 4 can be attached to another optical path portion other than the position shown in FIG.
  • this function can be omitted because it can be replaced by full black drawing.
  • the same function can be realized by turning on and off the light source 1 instead of opening and closing the shirt.
  • FIG. 3 is a diagram schematically showing the relationship between the pixel configuration of the slice data, the pixel configuration of the DMU 5, the imaging lens, and the pixel configuration of the imaging plane according to the present embodiment.
  • the plane of mm X 267 mm is represented by 768 X 104 dots
  • the DMU 5 has the area of 12.3 mm X 164 mm, 768 X 104 dots.
  • the imaging plane is configured to express a plane of 200 mm x 267 mm by 768 x 1024 dots. If 200 mm is represented by 768 dots, one dot has an accuracy of 0.26 mm.
  • the imaging lens 6 is configured by a lens that enlarges each pixel of the DMU 5 so as to correspond to each pixel on the imaging surface.
  • the imaging lens 6 can be omitted.
  • Pixel configuration of slice data in the present invention DM
  • the relationship between the pixel configuration of the U5, the imaging lens, and the pixel configuration of the image plane is not limited to the relationship shown in Fig. 3, but the dot configuration of the DMU5 and the dot of the slice data per unit area. These relationships are set according to the target configuration and manufacturing target accuracy.
  • the layer thickness is determined by the positioning accuracy in the Z-axis direction.
  • FIG. 1 shows an embodiment in which the Z-axis operation stage 9 is lowered into the liquid tank. The configuration when the Z-axis operation stage 9 is raised from the liquid tank 8 will be described later with reference to FIG.
  • the control procedure shown in FIG. 4 is executed by a control program incorporated in the personal computer 14 in advance.
  • the mechanism section and the control section are initialized (step 401).
  • the Z-axis operation stage 9 is positioned at the initial position where the sap does not exist in the liquid tank 8 as shown in FIG. 5 (a).
  • Various counters in the personal computer 14 are set to initial values.
  • the apparatus status such as whether or not the Z-axis operation stage 9 is positioned at the initial position is checked (step 402). If there is no abnormality, next, the conditions such as the layer thickness and the one-layer curing time are set (Step 403).
  • This condition setting is input using the keyboard 16 and the pointing device 17 in accordance with the message displayed on the display device 18. For example, a value such as 0.1 mm is set as the layer thickness t.
  • the injection valve 12 is controlled via the injection valve driver 19, and the sap 7 necessary for forming the resin cured layer of N layers is supplied from the sap tank 11 to the liquid tank 8 (Step 4 0 4).
  • “1” is set as the layer number N in the layer counter (not shown) in the personal computer 14 (step 405).
  • the modeling data (slice data) of the Nth layer specified by the value of the layer count is read from the modeling data storage device 15 and input as control data to the DMU 5 (step 400). ).
  • a drive signal is input to the motor 22 of the Z-axis drive mechanism 10 via the Z-axis operation stage driver 20 to lower the Z-axis operation stage 9 from the liquid level by the layer thickness t.
  • the Z-axis operation stage 9 is positioned at a position lower than the liquid level by the layer thickness t, as shown in FIG. 5 (b).
  • the shirt 4 is controlled to the open state (step 408), and the light emitted from the light source 1 is incident on the DMU 5.
  • the modeling data of the Nth layer is input to the DMU 5 in step 406 as control data, and the reflection angle of each micromirror is controlled in accordance with the modeling data. Reflected according to data. Of these, the reflected light corresponding to the pixel that cures the sap is radiated to the liquid surface of the liquid tank 8 via the imaging lens 6, and the reflected light corresponding to the pixel that does not cure the sap is leaked to the outside. It is focused on an absorber (not shown).
  • the personal computer 14 monitors the time after the shirt 4 is opened.
  • the personal computer 14 controls the shirt 4 Input a signal and control to close (Step 410).
  • the image light of the two-dimensional plane image based on the modeling data is applied to the thin layer of one liquid level of the liquid tank 8 when the shutter 4 is opened Only for a while.
  • a laminate of four resin cured layers 6 1 is formed on the Z-axis operation stage 9.
  • the Z-axis operation stage 9 is moved to the liquid tank as shown in Fig. 6 (b). Pull it out of step 8 (step 4 13).
  • the lifted laminate 6001 is peeled off from the Z-axis operation stage 9, and is provided as a molded object for use.
  • N A method for manufacturing a laminated body of a resin cured layer composed of layers and an apparatus configuration will be described with reference to a second embodiment shown in FIG.
  • the difference from the embodiment of FIG. 1 is that instead of the liquid layer 8 of FIG. 1, a liquid layer 30 having a shallow depth is provided, and the bottom surface of the liquid layer 30 has good permeability. It is composed of a light-transmitting member 31 such as glass, and irradiates image light to one layer of sap injected into the liquid layer 30 through the light-transmitting member 31 so that one layer of resin cured product is formed. Once formed, the Z-axis drive mechanism 10 raises the Z-axis operation stage 9 by one layer, then injects the next one layer of sap and forms the next resin cured layer. Is repeated. Therefore, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the control procedure shown in FIG. 8 is executed by a control program incorporated in the personal computer 14 in advance.
  • the mechanical unit and the control unit are initialized (step 801).
  • the Z-axis operation stage 9 is positioned as shown in FIG. 9 (a).
  • various counters in the personal computer 14 are set to the initial values.
  • the apparatus status such as whether or not the Z-axis operation stage 9 is positioned at the initial position (the lowest part of the liquid tank 8) is checked (Step 802). If there is no abnormality, the conditions such as the layer thickness and the curing time for one layer are set (Step 803).
  • This condition setting is input using the keyboard 16 ⁇ pointing device 17 according to the message displayed on the display device 18.
  • the layer thickness t for example, a value such as 0.1 mm is set.
  • Step 804 moves the Z-axis operation stage 9 above the liquid level.
  • Step 804 This is to prevent the Z-axis operation stage 9 from becoming an obstacle when injecting sap.
  • “1” is set as the layer number N in the layer counter (not shown) in the personal computer 14 (step 805).
  • the modeling data (slice data) of the Nth layer specified by the value of the layer count is read from the modeling data storage device 15 and input to the DMU 5 as control data (step 806).
  • the injection valve 12 is controlled via the injection valve driver 19 to inject the sap 32 necessary for forming one resin cured layer into the liquid tank 30 from the sap ink 11. Yes (step 807).
  • the Z-axis stage 9 is positioned at a position separated (upward) by the layer thickness from the molding position of the previous layer (step 808).
  • the Z-axis operation stage 9 is set so that the lower surface of the Z-axis operation stage 9 is at the surface position of the thin layer of the first layer of sap.
  • the operating stage 9 is positioned by lowering from the home position.
  • step 809 Light emitted from the light source 1 enters the DMU 5.
  • step 806 the modeling data of the Nth layer is input to the DMU 5 as control data, and the reflection angle of each fine mirror is controlled in accordance with the modeling data. Is reflected according to the modeling data.
  • the reflected light corresponding to the pixel that cures the sap is radiated to one layer of sap 32 through the light transmission member 31 on the bottom of the liquid tank 8 via the imaging lens 6, and to the pixels that do not cure the sap.
  • the corresponding reflected light is focused on an absorber (not shown) so as not to leak outside.
  • the value of the layer number count is updated to “N + 1” (step 8 12), and further to the Nth layer (final layer). It is determined whether or not formation has been completed (step 813). If not, a drive signal is sent to the motor 22 of the Z-axis drive mechanism 10 via the Z-axis operation stage driver 20. Then, the Z-axis operation stage 9 is moved (elevated) to a fixed position on the liquid surface (step 814). This is to prevent the Z-axis operation stage 9 from hindering the sap injection as described above.
  • the flow returns to step 806, and the modeling data of the “N + 1” layer is read from the modeling data storage device 15 and input to the DMU 5 as control data.
  • the injection valve 12 is controlled via the injection valve driver 19 to inject the sap 32 necessary for forming one resin cured layer from the sap tank 11 into the liquid tank 30 ( Step 807).
  • the Z-axis stage 9 is positioned at a position separated (upward) by the layer thickness from the molding position of the previous layer (step 808).
  • the Z-axis operation is performed so that the lower surface of the first resin cured layer 901 contacts the upper surface of the second thin layer. Positioning is performed by lowering the stage 9 from the home position.
  • the Z-axis drive mechanism 10 is controlled so that the lower surface of the second resin cured layer 802 is in contact with the upper surface of the third thin layer as shown in FIG. 10 (b). Position the Z-axis operation stage 9 to form the next resin cured layer.
  • the Z-axis operation stage 9 is pulled up above the liquid tank 30 (step 813). As a result, the production of the intended laminated body 903 of the resin cured layer composed of the N layers is completed.
  • the present invention is not limited to the above-described embodiment.
  • two systems of image light are focused at the same position by two imaging lenses 6A and 6B.
  • the exposure energy can be doubled, and a configuration in which the curing time of one layer is further reduced can be achieved.
  • one layer to be formed By forming the resin cured layer 1201 by dividing it by the image light passing through the two imaging lenses 6A and 6B, a resin cured layer with a large area of Wl + W2 is formed. 1 201 can be formed in a short time.
  • FIG. 13 (a) which is an enlarged view of the broken line portion 1301
  • FIG. 13 (b) is an enlarged view of the lamination body 903, the cutting blade 13
  • the cut surface often has irregularities, and the quality of the first layer deteriorates. Therefore, it is necessary to create a layer corresponding to the cutting margin 1304 before the original first layer, as shown in FIG.
  • post-processing for shaping the boundary cut surface between the cutting margin 1304 and the first layer is required, so that the number of processes increases and the cost also increases. There is a problem.
  • a heat-peelable double-sided joining member is attached to the lower surface side of the Z-axis stage 9.
  • a sheet-like member 1442 having an adhesive property with the photocurable resin is bonded to the lower surface side of the two-sided bonding member 1401.
  • the sheet-like member 1442 a sheet-like member having good adhesion to the photocurable resin, for example, an aluminum sheet or a copper foil is used.
  • the first layer is formed on the lower surface side of the sheet-like member 1402.
  • the process is repeated for the number of times equal to the number of the resin cured layers constituting the three-dimensional shape, and when the laminated body 93 is formed, as shown in FIG.
  • the entire laminated body 903 including 401 and the sheet-shaped member 1402 is placed in a hot water tank 1403 at a temperature slightly higher than 90 ° C and heated. Due to this heating, the adhesiveness of the double-sided bonding member 1401 is lost, and as shown in FIG. 15 (a), the entire laminated body 903 including the sheet-like member 1442 is Z It can be peeled off from the shaft operation stage 9. Thereafter, the sheet-like member 1442 is peeled off from the laminate 903 so as to be wound up as shown in FIG. 15 (b).
  • the second resin cured layer 90 2 next to the first resin cured layer 90 1 In the method of filling a layer of a photo-curable resin liquid equivalent to one layer, a photo-curable resin liquid of the next layer is formed on the lower surface of the first resin cured layer 91. Bubbles are generated upon contact.
  • the lower surface of the first resin cured layer 901 is not a perfect plane as shown in FIG. 16 (a) but has a fine uneven surface 1601. From.
  • the photocurable resin liquid 1607 is injected, before the image light is irradiated, as shown in FIG. 16 (b).
  • the lowermost resin cured layer (the latest cured layer), in the example shown in Fig. 16, has an adhesive property with the photocurable resin on the lower surface side of the first resin cured layer 901.
  • No transparent sheet material 1 6 0 2 In the state where the transparent sheet-like member 1602 is interposed, a light-transmissive plate member 1603 is inserted from the direction of the arrow 1604 into the lower surface side of the transparent sheet-like member 1602, and the resin of the first layer is cured. While extruding bubbles existing in the photocurable resin liquid 1607 on the lower surface side of the layer 901, the melt or solution of the photocurable resin is brought into close contact. Then, as shown in FIG. 16 (c), the image light is irradiated with the light-transmitting plate member 1603 inserted.
  • a take-up roll 1606 holds one end of a light-transmitting plate member 1603 at a fulcrum 1605.
  • Fig. 17 (c) including the take-up roll 1606, the transparent sheet-like member 1602, and the light transmitting member 31. While moving in the direction of arrow 1701, the transparent sheet-like member 1602 was gradually peeled off from the lower surface of the lowermost resin cured layer.
  • the Z-axis stage 9 lifts the transparent sheet-like member 1602 from the lower surface of the lowermost resin cured layer by one layer.
  • the force acting on the lower surface of the lowermost resin cured layer 905 (the force pulled in the direction of the transparent sheet-like member 1602) is reduced, and the lowermost resin cured layer 905 is reduced.
  • the transparent sheet-like member 1602 can be safely peeled from the substrate.
  • FIG. 18 a method as shown in FIG. 18 can be adopted. That is, the light-transmissive plate member 1604 is pulled out from the state shown in FIG. 18 (a) as shown in FIG. 18 (b), and then the transparent sheet-like member 1602 is removed from the plate member 1602.
  • the peeling member 1801 which presses in the direction of the space formed between the lower surface of the lowermost resin cured layer 905 and the resin cured layer 905, is moved in the direction of the arrow 1802 in the figure (the plate member 1603).
  • FIG. 19 a method as shown in FIG. 19 can be adopted. That is, as shown in FIG. 18 (a) from the state shown in FIG. 18 (a), as shown in FIG. 18 (b), the rotation fulcrum on one side of the transparent sheet-like member 1602 and the light-transmissive plate member 1603.
  • the transparent sheet member 1602 and the light-transmissive plate member 1603 are gradually inclined with the center at 1901, and the transparent sheet member 1602 is the lowermost resin cured layer. This is a method of peeling from the lower surface of 905.
  • the transparent sheet-shaped member 1 It can be completely peeled off.
  • the transparent sheet-like member 1602 and the light-transmitting plate member 1603 are not bonded to each other. Irregularities occur on the front and back surfaces of the resin layer, and air bubbles existing in the irregularities cause irregularities on the boundary surface of the cured resin layer, weakening the bonding strength between the layers, and may cause the layers to fall off during the lamination process.
  • a suction hole 2 provided in a part of the light transmitting plate member 1603 and the light transmitting member 31 is provided.
  • the air existing between the transparent sheet-like member 1602 and the light-transmissive plate member 1603 is sucked from the substrate 101, and the transparent sheet-like member 1602 is turned into the light-transparent plate.
  • the member was brought into close contact with 163.
  • a rectangular groove 2002 is formed as shown in FIG. 20 (b). Air is sucked in from a suction hole 2001, which is opened to a part of the groove 2002.
  • the number of suction holes and the shape of the grooves can be configured in an arbitrary number and in an arbitrary shape depending on the size of the light-transmitting plate member 1603 and the transparent sheet-like member 1602. .
  • the transparent sheet-like member 1602 is brought into close contact with the light-transmissive plate member 1603, and it is possible to prevent a decrease in bonding strength between layers due to bubbles.
  • the control program operating in the personal computer can be provided to a general user by being recorded on a recording medium such as a CD-ROM.
  • a recording medium such as a CD-ROM.
  • the control program may be combined with a conversion program for slicing CAD data and recorded on one recording medium.
  • the fine mirrors are arranged on a flat plate.
  • Control data for forming a two-dimensional plane image is input to the element, the reflection angle of each fine mirror with respect to the incident light from the light source is controlled, and the reflected light corresponding to the two-dimensional plane image is extracted. Since the reflected light is applied to the thin layer as the image light, loss of light energy is reduced, and a photocured object having a shape corresponding to a two-dimensional plane image can be manufactured in a short time.
  • the black-and-white contrast ratio is improved, and a highly accurate photocured object can be manufactured. Furthermore, since there is no obstacle such as a mesh electrode in the optical path, means for avoiding the obstacle is not required, and the device configuration can be simplified.
  • the reflection angle of the mirror By controlling the reflection angle of the mirror with respect to the incident light from the light source, extracting the reflected light corresponding to the two-dimensional plane image, and irradiating the reflected light as the image light to the thin layer, the same as above.
  • the device configuration can be simplified, and this is extremely useful when creating three-dimensional three-dimensional models of various shaped objects.

Abstract

Control data are input for forming a two-dimensional plane image on a fine mirror element formed by arraying fine mirrors on a flat plate, a reflection angle for an incident light from a light source of each fine mirror is controlled, a reflection light corresponding to the above two-dimensional plane image is picked up, the reflection light is shone on a thin layer as an image light, and resin in the thin layer is cured. The above steps are repeated to produce a 3-D photo-cured shaped matter formed by laminating resin cured layers corresponding in shape to the two-dimensional plane image having the image light.

Description

明 細 書 光硬化造形物の製造方法および装置 技術分野  Description Method and apparatus for manufacturing photocured molded articles
この発明は、 形成すべき光硬化物の厚さに相当する光硬化性樹脂 の融液または溶液から成る薄層に像光を照射し、 該薄層の樹脂を硬 化させることによって前記像光の 2次元平面像に対応する形状の光 硬化造形物、 あるいは複数の樹脂硬化層が積層された立体形状の光 硬化造形物を製造する光硬化造形物の製造方法および装置に関する, 背景技術  The present invention provides a method for irradiating a thin layer made of a melt or a solution of a photo-curable resin corresponding to the thickness of a photo-cured product to be formed with image light, thereby hardening the resin of the thin layer. BACKGROUND OF THE INVENTION The present invention relates to a method and an apparatus for producing a photo-cured object having a shape corresponding to a two-dimensional planar image of a light-cured object or a three-dimensional light-cured object formed by laminating a plurality of resin cured layers.
従来において、 3次元の立体モデル等を造形する方法として、 光 硬化造形法が知られている。 この光硬化造形法は、 液状の光硬化性 樹脂の薄層の表面に光を照射して硬化させることにより、 光を照射 した領域だけが硬化した薄い樹脂硬化層から成る造形物を形成する ものである。 この場合、 光源としては、 レーザ光を用いるものが多 いが、 レーザ光を用いた場合には硬化したい部分を 1点ずつ露光す ることが必要になるため、 露光時間が長くかかってしまう。 そこで、 例えば特開平 7 — 2 2 5 3 6 2号公報に開示されているように、 液 晶マスクを用い、 この液晶マスク上に製造すべき造形物の形状に対 応した露光パターンを形成し、 この露光パターンを通して超高圧水 銀灯から出射させた光を光硬化性樹脂の薄層の表面に照射するとい う一括露光を行う ことにより、 短時間で造形物を製造する方法が提 案されている。  Conventionally, as a method of forming a three-dimensional solid model or the like, a photo-curing molding method is known. This photo-curing molding method irradiates the surface of a thin layer of a liquid photo-curable resin with light to cure it, thereby forming a molded article composed of a thin resin cured layer in which only the irradiated area is cured. It is. In this case, many light sources use laser light. However, when laser light is used, it is necessary to expose portions to be cured one by one, so that the exposure time is long. Therefore, for example, as disclosed in Japanese Patent Application Laid-Open No. 7-22532, a liquid crystal mask is used to form an exposure pattern corresponding to the shape of a model to be manufactured on the liquid crystal mask. However, a method has been proposed for manufacturing a molded object in a short time by performing a collective exposure in which light emitted from an ultra-high pressure mercury lamp through this exposure pattern is applied to the surface of a thin layer of a photocurable resin. ing.
しかしながら、 上記の液晶マスクを用いる光硬化造形法にあって は、 光源から出た光が液晶マスクを透過する際の透過損失が大きい ため、 その透過損失を補う分だけ露光時間を長く しなければならな いという問題がある。 However, in the photocuring molding method using the liquid crystal mask described above, However, since the light emitted from the light source has a large transmission loss when passing through the liquid crystal mask, there is a problem that the exposure time must be lengthened to compensate for the transmission loss.
また、 液晶マスク自身の性質上、 露光させたくない部分 (光を透 過させない部分) においても完全に光を遮断することはできない。 このため、 露光パターンにおける白黒コン トラス ト比が低下し、 高 精度の微細な造形をすることができないという問題がある。さ らに、 液晶マスク自身のメッシュ電極の部分が暗部となり、 この喑部によ る影響で造形精度が低下しないようにするためのマイクロレンズァ レイなどの光学系を付加しなければならず、 装置構成が複雑になつ てしまうという問題がある。  Also, due to the nature of the liquid crystal mask itself, it is not possible to completely block light even in areas where exposure is not desired (parts that do not transmit light). For this reason, the black-and-white contrast ratio in the exposure pattern is reduced, and there is a problem that high-precision fine modeling cannot be performed. In addition, an optical system such as a microlens array must be added to prevent the shading accuracy from being degraded due to the influence of the 喑 part because the mesh electrode part of the liquid crystal mask itself becomes a dark part. There is a problem that the device configuration becomes complicated.
本発明は、 このような問題点を解決すべくなされたものであり、 短い造形時間で、 かつ簡単な構成で精度の高い造形物を製造するこ とができる光硬化造形物の製造方法および装置を提供することを目 的とするものである。 発明の開示  The present invention has been made to solve such a problem, and a method and apparatus for manufacturing a photo-cured molded article capable of producing a highly accurate molded article with a short molding time, a simple configuration, and a simple structure. The purpose is to provide Disclosure of the invention
上記目的を達成するため、 本発明に係る光硬化造形物の製造方法 は、 形成すべき光硬化物の層厚に相当する光硬化性樹脂の融液また は溶液から成る薄層に像光を照射し、 該薄層の樹脂を硬化させるこ とによって前記像光の 2次元平面像に対応する形状の複数の樹脂硬 化層が積層された立体形状の光硬化造形物を製造する光硬化造形物 の製造方法であって、  In order to achieve the above object, a method for producing a photocured molded article according to the present invention comprises the steps of: Irradiating and curing the resin of the thin layer to produce a three-dimensionally shaped photo-cured product in which a plurality of resin cured layers having a shape corresponding to the two-dimensional planar image of the image light are laminated. A method of manufacturing a product,
微細ミラーを平板上に並べた微細ミラー素子に 2次元平面像を形 成するための制御データを入力し、 各微細ミラ一の光源からの入射 光に対する反射角を制御し、 前記 2次元平面像に対応する反射光を 取り出し、 該反射光を前記像光として前記薄層に照射し、 該薄層の 樹脂を硬化させる工程を繰返すことによって、 前記像光の 2次元平 面像に対応する形状の樹脂硬化層を積層した立体形状の光硬化造形 物を製造することを特徴とする。 The control data for forming a two-dimensional plane image is input to the fine mirror element in which the fine mirrors are arranged on a flat plate, and the reflection angle of each fine mirror with respect to the incident light from the light source is controlled. Reflected light corresponding to By taking out and irradiating the reflected light as the image light to the thin layer and curing the resin of the thin layer, a resin cured layer having a shape corresponding to a two-dimensional planar image of the image light is laminated. It is characterized by producing a three-dimensionally shaped photocured object.
また、 本発明の製造装置は、 形成すべき光硬化物の層厚に相当す る光硬化性樹脂の融液または溶液から成る薄層に像光を照射し、 該 薄層の樹脂を硬化させることによって前記像光の 2次元平面像に対 応する形状の複数の樹脂硬化層が積層された立体形状の光硬化造形 物を製造する光硬化造形物の製造装置であって、  Further, the manufacturing apparatus of the present invention irradiates image light to a thin layer made of a melt or a solution of a photocurable resin corresponding to the layer thickness of a photocured product to be formed, and cures the resin of the thin layer. A photocured object manufacturing apparatus for producing a three-dimensional shaped photocured object formed by laminating a plurality of resin cured layers having a shape corresponding to the two-dimensional planar image of the image light,
微細ミ ラーを平板上に並べた微細ミラー素子と、 該微細ミラー素 子に光を入射する光源と、 前記微細ミラ一素子に 2次元平面像を形 成するための制御データを入力し、 各微細ミラーの光源からの入射 光に対する反射角を制御し、 前記 2次元平面像に対応する反射光を 出射させ、 該反射光を前記像光として前記薄層に照射させ、 該薄層 の樹脂を硬化させる工程を、 立体形状を構成する樹脂硬化層の層数 に等しい回数だけ繰返し制御する制御装置とを備えることを特徴と する。  A micromirror element in which micromirrors are arranged on a flat plate, a light source for inputting light to the micromirror element, and control data for forming a two-dimensional plane image in the micromirror element are inputted. Controlling the reflection angle of the fine mirror with respect to the incident light from the light source, emitting reflected light corresponding to the two-dimensional planar image, irradiating the reflected light as the image light to the thin layer, And a controller for repeatedly controlling the step of curing the number of times equal to the number of resin cured layers constituting the three-dimensional shape.
さらに本発明の製造方法は、 形成すべき光硬化物の層厚に相当す る光硬化性榭脂の融液または溶液から成る薄層に像光を照射し、 該 薄層の樹脂を硬化させることによって前記像光の 2次元平面像に対 応する形状の複数の樹脂硬化層が積層された立体形状の光硬化造形 物を製造する光硬化造形物の製造方法であって、  Further, in the production method of the present invention, a thin layer made of a melt or a solution of a photocurable resin corresponding to the thickness of the photocured product to be formed is irradiated with image light to cure the resin of the thin layer. A method for producing a three-dimensionally shaped light-cured product in which a plurality of resin-cured layers having a shape corresponding to the two-dimensional planar image of the image light are laminated.
前記光硬化物を保持するステージを初期位置に位置決めする第 1 のステップと、 位置決めされたステージの下面側に前記薄層に相当 する光硬化性樹脂の融液または溶液を注入させる第 2のステップと、 微細ミラーを平板上に並べた微細ミラー素子に 2次元平面像を形成 するための制御データを入力し、 各微細ミラーの光源からの入射光 に対する反射角を制御し、 前記 2次元平面像に対応する反射光を前 記像光として前記薄層に照射させる第 3のステップと、 像光を照射 した薄層の硬化時間を待つ第 4のステツプと、 硬化時間経過後に、 前記ステージを上昇させる第 5のステップとを含み、 前記第 2のス テツプから第 5のステップを立体形状を構成する樹脂硬化層の層数 に等しい回数だけ繰返し、 前記像光の 2次元平面像に対応する形状 の複数の樹脂硬化層が積層された立体形状の光硬化造形物を製造す ることを特徴とする。 A first step of positioning a stage holding the photocured material at an initial position; and a second step of injecting a melt or solution of a photocurable resin corresponding to the thin layer into the lower surface of the positioned stage. And a two-dimensional plane image on a micromirror element with micromirrors arranged on a flat plate Inputting control data for controlling the reflection angle of each fine mirror with respect to the incident light from the light source, and irradiating the thin layer with the reflected light corresponding to the two-dimensional plane image as the image light. A fourth step of waiting for a curing time of the thin layer irradiated with the image light, and a fifth step of raising the stage after a lapse of the curing time, wherein a fifth step from the second step is performed. Is repeated by the number of times equal to the number of resin cured layers constituting the three-dimensional shape, to produce a three-dimensionally shaped photocured product in which a plurality of resin cured layers having a shape corresponding to the two-dimensional planar image of the image light are laminated. It is characterized by that.
また、 前記第 1 のステップの前に、 前記ステージの下面側に、 熱 剥離性の両面接合部材を接合した後、 該両面接合部材の下面側に前 記光硬化性樹脂と接着性を有するシート状部材を接合するステップ を備えることを特徴とする。  Further, before the first step, after bonding a heat-peelable double-sided bonding member to the lower surface side of the stage, a sheet having the photocurable resin and the adhesive property is formed on the lower surface side of the double-sided bonding member. Joining the shaped members.
また、 前記第 2のステップから第 5のステップを、 立体形状を構 成する樹脂硬化層の層数に等しい回数だけ繰返した後、 前記両面接 合部材を加熱し、 前記シー ト部材を含む前記積層された光硬化造形 物を剥離するステップを備えることを特徴とする。  Further, after repeating the second step to the fifth step by the number of times equal to the number of the resin cured layers constituting the three-dimensional shape, the double-sided bonding member is heated, and the sheet bonding member including the sheet member is heated. The method further comprises a step of peeling off the laminated photocured shaped object.
また、 次の樹脂硬化層を形成する際の前記第 2のステップの終了 後における前記第 3のステップの開始前に、 最下層の樹脂硬化層の 下面側に光硬化性樹脂と接着性を有しない透明シー卜状部材を介在 させた状態で、 該透明シート状部材の下面側に光透過性のプレート 部材を揷入し、 最下層の樹脂硬化層の下面側に光硬化性樹脂の融液 または溶液を密着させるステップを備えることを特徴とする。  Further, after the completion of the second step when forming the next resin cured layer and before the start of the third step, the lower surface side of the lowermost resin cured layer has an adhesive property with the photocurable resin. With a transparent sheet-like member not interposed, a light-transmissive plate member is inserted into the lower surface of the transparent sheet-like member, and a melt of the photocurable resin is placed on the lower surface of the lowermost resin cured layer. Alternatively, the method includes a step of bringing the solution into close contact.
また、 前記光透過性のプレート部材を揷入状態で前記第 3のステ ップおよび第 4のステップを実行し、 前記第 5のステップを実行す る前に、 前記透明シー ト状部材を前記光透過性のプレート部材を引 き抜く方向に移動させながら、 前記透明シー ト状部材を最下層の樹 脂硬化層の下面から剥離するステツプを備えることを特徴とする。 Further, the third step and the fourth step are performed with the light-transmitting plate member being inserted, and the transparent sheet-shaped member is changed before the fifth step is performed. Pull the light transmissive plate A step of peeling the transparent sheet-like member from the lower surface of the lowermost resin-hardened layer while moving it in the punching direction is provided.
また、 前記光透過性のプレート部材を挿入状態で前記第 3のステ ップおよび第 4のステップを実行し、 前記第 5のステップを実行す る前に、 前記光透過性のプレート部材を引き抜いた後、 前記透明シ — ト状部材を前記プレー ト部材と最下層の樹脂硬化層の下面との間 に形成された空間の方向に押圧する剥離用部材を移動しながら、 前 記透明シート状部材を最下層の樹脂硬化層の下面から剥離するステ ップを備えることを特徴とする。  Further, the third step and the fourth step are performed with the light transmitting plate member being inserted, and the light transmitting plate member is pulled out before the fifth step is performed. After that, the transparent sheet-shaped member is moved while moving a peeling member that presses the transparent sheet-shaped member in a direction of a space formed between the plate member and the lower surface of the lowermost resin cured layer. The method includes a step of peeling the member from the lower surface of the lowermost resin cured layer.
また、 前記光透過性のプレート部材を揷入状態で前記第 3のステ ップおよび第 4のステツプを実行し、 前記第 5のステツプを実行す る前に、 前記透明シート状部材および光透過性のプレート部材の片 側を下面方向に傾斜させ、 前記透明シー ト状部材を最下層の樹脂硬 化層の下面から剥離するステップを備えることを特徵とする。  In addition, the third and fourth steps are performed with the light-transmitting plate member inserted, and the transparent sheet-shaped member and the light-transmitting member are set before performing the fifth step. A step of inclining one side of the transparent plate member in the lower surface direction and peeling the transparent sheet member from the lower surface of the lowermost resin hardened layer.
さらに、 前記光透過性のプレート部材の一部に設けた吸引穴から 前記透明シー ト状部材を吸引して密着させるステップを備えること を特徴とする。  Further, the method further comprises a step of sucking the transparent sheet-shaped member from a suction hole provided in a part of the light-transmitting plate member to bring the transparent sheet member into close contact therewith.
また、 本発明の製造装置は、 形成すべき光硬化物の層厚に相当す る光硬化性樹脂の融液または溶液から成る薄層に像光を照射し、 該 薄層の樹脂を硬化させることによって前記像光の 2次元平面像に対 応する形状の複数の樹脂硬化層が積層された立体形状の光硬化造形 物を製造する光硬化造形物の製造装置であって、  Further, the manufacturing apparatus of the present invention irradiates image light to a thin layer made of a melt or a solution of a photocurable resin corresponding to the layer thickness of a photocured product to be formed, and cures the resin of the thin layer. A photocured object manufacturing apparatus for producing a three-dimensional shaped photocured object formed by laminating a plurality of resin cured layers having a shape corresponding to the two-dimensional planar image of the image light,
前記光硬化物を保持するステージを初期位置に位置決めする第 1 の手段と、 位置決めされたステージの下面側に前記薄層に相当する 光硬化性樹脂の融液または溶液を注入させる第 2の手段と、 微細ミ ラーを平板上に並べた微細ミラ一素子に 2次元平面像を形成するた めの制御データを入力し、 各微細ミラーの光源からの入射光に対す る反射角を制御し、 前記 2次元平面像に対応する反射光を前記像光 として前記薄層に照射させる第 3の手段と、 像光を照射した薄層の 硬化時間経過後に、 前記ステージを上昇させる第 4の手段と、 前記 第 2の手段から第 4の手段の動作を、 立体形状を構成する樹脂硬化 層の層数に等しい回数だけ繰返し実行させる第 5の手段とを備える ことを特徴とする。 First means for positioning a stage for holding the photocured product at an initial position; and second means for injecting a melt or solution of a photocurable resin corresponding to the thin layer into the lower surface of the positioned stage. To form a two-dimensional planar image on a micromirror device in which micromirrors are arranged on a flat plate. Control data for controlling the reflection angle of each fine mirror with respect to the incident light from the light source, and irradiating the thin layer with the reflected light corresponding to the two-dimensional plane image as the image light. Means, a fourth means for raising the stage after a curing time of the thin layer irradiated with the image light has passed, and an operation of the second means to the fourth means, wherein the operation of the second means to the fourth means is performed by a resin cured layer forming a three-dimensional shape. Fifth means for repeatedly executing the same number of times as the number of layers.
本発明の製造方法を実現する制御プログラムを記録した記録媒体 は、 光硬化物を保持するステージを初期位置に位置決めする処理ス テツプと、 位置決めされたステージの下面側に前記薄層に相当する 光硬化性樹脂の融液または溶液を注入させる処理ステツプと、 微細 ミラーを平板上に並べた微細ミラー素子に 2次元平面像を形成する ための制御データを入力し、 各微細ミラーの光源からの入射光に対 する反射角を制御し、 前記 2次元平面像に対応する反射光を前記像 光として前記薄層に照射させる処理ステップと、 像光を照射した薄 層の硬化時間を待つ処理ステップと、 硬化時間経過後に、 前記ステ —ジを上昇させる処理ステップと、 前記第 2のステップから第 5の ステップを、 立体形状を構成する樹脂硬化層の層数に等しい回数だ け繰返し実行させる処理ステップとを含む制御プログラムが記録さ れていることを特徴とする。 図面の簡単な説明  A recording medium on which a control program for realizing the manufacturing method of the present invention is recorded includes a processing step for positioning a stage holding a photocured product at an initial position, and a light corresponding to the thin layer on the lower surface side of the positioned stage. A process step for injecting a melt or solution of the curable resin, and control data for forming a two-dimensional plane image on a micromirror element in which micromirrors are arranged on a flat plate, input from each micromirror from the light source A processing step of controlling a reflection angle with respect to light and irradiating the thin layer with reflected light corresponding to the two-dimensional planar image as the image light; and a processing step of waiting for a curing time of the thin layer irradiated with the image light. After the curing time has elapsed, the processing step of raising the stage and the second to fifth steps are performed the number of times equal to the number of resin cured layers constituting the three-dimensional shape. It is characterized in that a control program including a processing step to be repeatedly executed is recorded. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明を適用した光硬化造形物製造装置の第 1 の実施 形態を示す構成図である。  FIG. 1 is a configuration diagram showing a first embodiment of a photocured object manufacturing apparatus to which the present invention is applied.
第 2図は、 造形データの説明図である。  FIG. 2 is an explanatory diagram of molding data.
第 3図は、 造形データ、 D M U、 結像面との関係を示す説明図で ある。 Fig. 3 is an explanatory diagram showing the relationship between the modeling data, the DMU, and the image plane. is there.
第 4図は、 図 1 の構成における制御手順を示すフローチャートで ある。  FIG. 4 is a flowchart showing a control procedure in the configuration of FIG.
第 5図は、 樹脂硬化物の製造過程を示す説明図である。  FIG. 5 is an explanatory view showing a process for producing a cured resin.
第 6図は、 第 5図の続きを示す説明図である。  FIG. 6 is an explanatory view showing a continuation of FIG.
第 7図は、 本発明を適用した光硬化造形物製造装置の第 2の実施 形態を示す構成図である。  FIG. 7 is a configuration diagram showing a second embodiment of a photocured molded article manufacturing apparatus to which the present invention is applied.
第 8図は、 第 7図の構成における制御手順を示すフローチヤ一ト である。  FIG. 8 is a flowchart showing a control procedure in the configuration of FIG.
第 9図は、 第 7図の構成における樹脂硬化物の製造過程を示す説 明図である。  FIG. 9 is an explanatory diagram showing a production process of the cured resin in the configuration of FIG.
第 1 0図は、 第 9図の続きを示す説明図である。  FIG. 10 is an explanatory diagram showing a continuation of FIG. 9;
第 1 1 図は、 本発明を適用した光硬化造形物製造装置の第 3の実 施形態を示す主要部構成図である。  FIG. 11 is a main part configuration diagram showing a third embodiment of a photocured object manufacturing apparatus to which the present invention is applied.
第 1 2図は、 本発明を適用した光硬化造形物製造装置の第 4の実 施形態を示す主要部構成図である。  FIG. 12 is a main part configuration diagram showing a fourth embodiment of the photocured object manufacturing apparatus to which the present invention is applied.
第 1 3図は、 光硬化造形物を保持ステージから切り離す場合の例 を示す図である。  FIG. 13 is a diagram showing an example of a case where the photocured object is separated from the holding stage.
第 1 4図は、 本発明において光硬化造形物を保持ステージから切 り離す場合の実施形態を示す図である。  FIG. 14 is a diagram showing an embodiment of the present invention in which the photocured object is separated from the holding stage.
第 1 5図は、 第 1 4図の続きの工程を示す図である。  FIG. 15 is a view showing a step that follows the step of FIG.
第 1 6図は、 本発明において、 最新の樹脂硬化層の次の樹脂硬化 層の光硬化性樹脂を密着させる方法の実施形態を示す図である。 第 1 7図は、 本発明において、 最新の樹脂硬化層の次の樹脂硬化 層の光硬化性樹脂を充填するために、 透明シー ト状部材を剥離する 方法の第 1 の例を示す図である。 第 1 8図は、 本発明において、 最新の樹脂硬化層の次の樹脂硬化 層の光硬化性榭脂を充填するために、 透明シー ト状部材を剥離する 方法の第 2の例を示す図である。 FIG. 16 is a view showing an embodiment of a method for adhering a photocurable resin in a resin cured layer next to the latest resin cured layer in the present invention. FIG. 17 is a diagram showing a first example of a method of peeling a transparent sheet-like member in order to fill a photocurable resin in a resin cured layer next to a latest resin cured layer in the present invention. is there. FIG. 18 is a diagram showing a second example of a method of peeling a transparent sheet-like member in order to fill a photocurable resin of a resin cured layer next to a latest resin cured layer in the present invention. It is.
第 1 9図は、 本発明において、 最新の樹脂硬化層の次の樹脂硬化 層の光硬化性樹脂を充填するために、 透明シート状部材を剥離する 方法の第 3の例を示す図である。  FIG. 19 is a diagram showing a third example of a method of peeling a transparent sheet-like member in order to fill a photocurable resin in a resin cured layer next to a latest resin cured layer in the present invention. .
第 2 0図は、 本発明において、 第 1 7図から第 1 9図の透明シ一 ト状部材を光透過性のプレート部材に密着させる方法を示す図であ る。 発明を実施するための最良の形態  FIG. 20 is a view showing a method of bringing the transparent sheet-like member shown in FIGS. 17 to 19 into close contact with a light-transmitting plate member in the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明に係わる光硬化造形物の製造方法及び装置の実施 の形態を添付図面を参照して詳細に説明する。  Hereinafter, embodiments of a method and an apparatus for manufacturing a photocured molded article according to the present invention will be described in detail with reference to the accompanying drawings.
第 1 図は、 この発明に係わる光硬化物製造装置の一実施の形態を 示す構成図である。  FIG. 1 is a configuration diagram showing one embodiment of a photocured product manufacturing apparatus according to the present invention.
第 1 図において、 この光硬化物製造装置は、 光源 1、 カラーフィ ル夕 2、 コンデンサレンズ 3、 シャツ夕 4、 微細ミラ一素子ュニッ ト 5、 結像レンズ 6、 光硬化樹脂液 7 を入れる液槽 8、 光硬化造形 物を保持する Z軸稼動ステージ 9、 この Z軸稼動ステージ 9 を Z軸 方向 (上下方向) に移動させるための駆動機構 1 0、 光硬化樹脂液 (以下、 樹液) が蓄えられている樹液タンク 1 1 、 液槽 8内に必要 量の樹液 7 を注入するための注入弁 1 2および注入管 1 3、 造形動 作を制御する制御装置としてのパーソナルコンピュータ 1 4、 造形 データを記憶した造形データ記憶装置 1 5、 造形条件等を入力する キーボード 1 6およびポイ ンティ ングデバイス (マウス) 1 7、 ォ ペレ一夕とのマンマシンイ ンタフェースである表示装置 1 8、 注入 弁ドライゾ' 1 9、 Z軸稼動ステージドライバ 2 0、 微細ミラー素子 ュニッ ト 5に制御デ一夕を入力する D M Uドライバ 2 1 とを備えて いる。 In Fig. 1, this photocured product manufacturing equipment is a liquid that contains a light source 1, a color filter 2, a condenser lens 3, a shirt 4, a micromirror element unit 5, an imaging lens 6, and a photocurable resin liquid 7. Vessel 8, Z-axis operation stage 9 for holding the photo-cured object, drive mechanism 10 for moving this Z-axis operation stage 9 in the Z-axis direction (vertical direction), and photo-curing resin liquid Stored sap tank 1 1, injection valve 12 for injecting required amount of sap 7 into sap 8 and injection pipe 13, personal computer 14 as control device to control modeling operation, modeling Modeling data storage device 15 that stores data, keyboard 16 for inputting modeling conditions, etc. Keyboard and pointing device (mouse) 17, display device 18 that is a man-machine interface with Opera, injection It has a valve driver 19, a Z-axis operation stage driver 20, and a DMU driver 21 for inputting control data to the micromirror unit 5.
駆動機構 1 0は、 モータ 2 2の回転軸に螺旋溝を形成したロッ ド 2 3 と、 このロッ ド 2 3に一端が回動可能に係合された腕部材 2 4 とで構成され、 この腕部材 2 4の他端部に Z軸稼動ステージ 9が支 持され、 Z軸稼動ステージ 9をモータ 2 2の時計回りおよび反時計 回りの回転によって上下動させる構成になっている。  The drive mechanism 10 is composed of a rod 23 having a spiral groove formed on the rotation shaft of the motor 22 and an arm member 24 having one end rotatably engaged with the rod 23. A Z-axis operation stage 9 is supported on the other end of the arm member 24, and the Z-axis operation stage 9 is configured to move up and down by clockwise and counterclockwise rotation of the motor 22.
本発明は、 基本的には一括露光方式であるため、 光源 1 としては、 可視光線または紫外線を出射する光源が用いられる。 可視光線を用 いる場合、 例えば、 メタルハイライ ドランプ、 ハロゲンランプなど が用いられる。 紫外線を用いる場合、 超高圧水銀灯や紫外線蛍光ラ ンプなどが用いられる。 可視光線を用いる場合、 可視光線の照射に よって硬化する樹脂、 例えば可視光硬化樹脂 ; V L— 0 0 3 (商品 名) などの樹脂液が用いられ、 紫外線を用いる場合には紫外線の照 射によって硬化する樹脂、 例えば紫外線硬化樹脂 ; R P— 5 0 0 1 A (商品名) などの樹脂液が用いられる。 なお、 可視光線とは、 主 たる波長成分が可視光領域にあるものを指し、 可視光領域外の波長 成分が含まれるものを妨げるものではない。 同様に、 紫外線とは、 主たる波長成分が紫外線領域にあるものを指し、 紫外線領域外の波 長成分が含まれるものを妨げるものではない。  Since the present invention is basically a one-shot exposure method, a light source that emits visible light or ultraviolet light is used as the light source 1. When using visible light, for example, a metal highlight lamp or a halogen lamp is used. When ultraviolet light is used, an ultra-high pressure mercury lamp or an ultraviolet fluorescent lamp is used. When using visible light, a resin that is cured by irradiation with visible light, for example, a visible light curable resin; a resin liquid such as VL-003 (trade name) is used. When using ultraviolet light, the resin is irradiated with ultraviolet light. A curable resin, for example, an ultraviolet curable resin; a resin liquid such as RP-5001A (trade name) is used. Note that the visible light refers to light whose main wavelength component is in the visible light region, and does not prevent light having a wavelength component outside the visible light region. Similarly, ultraviolet rays refer to those whose main wavelength components are in the ultraviolet region, and do not prevent those having wavelength components outside the ultraviolet region.
微細ミ ラ一素子ユニッ ト 5 (以下、 D MU ; Digi tal Micromirror Uni t と言う) は、 1枚のシリコンチップ上に多数の微細ミラーを敷 き詰めた構成の素子である。 この DMU 5 としては、 例えば米国テ キサスインスツルメンッ社が開発した D MD (Digital Micromirror Device; テキサスイ ンスツルメンッ社の登録商標) を採用すること ができる。 この DMDは、 反射率の高い約 1 6 ミクロン角のアルミ ニュームの微細ミラーを並べたもので構成され、 それらの微細ミ ラ 一は C MO S半導体技術により 1 6. 4 x 1 2. 3 mm角のシリ コ ンメモリチップ上に約 7 8万個敷き詰めた構造になっており、 それ ぞれの微細ミラーは対角線を中心に安定した 2つの状態で回転する ヨーク上にミラー保持ポス トで支持され、 水平方向に ± 1 0度程度 を保ちながら回転し、 それぞれの微細ミラーで光源からの光の反射 量を制御するものである。 微細ミラーの 1つ 1つが 1画素 (ドッ ト) に対応する。 1 2. 3 mmを 7 6 8 ドッ トで表現した場合、 1 ドッ 卜は 0. 2 6 mmの精度になる。 この DMDに対し、 2次元平面像 を形成するための制御データを入力することにより、 その制御デ一 夕に従って各微細ミラーの反射角が制御され、 2次元平面像に対応 する反射光が得られる。 本発明は、 この反射光を光硬化樹脂の薄層 に照射し、 2次元平面像に対応した形状の樹脂硬化層を製造するも のである。 The Micromirror Unit 5 (DMU) is a device in which a number of micromirrors are spread over a single silicon chip. As the DMU 5, for example, DMD (Digital Micromirror Device; a registered trademark of Texas Instruments) developed by Texas Instruments, Inc. in the United States is used. Can be. This DMD consists of a series of 16-micron-square aluminum micromirrors with high reflectivity, and these micromirrors are 16.4 x 12.3 mm by CMOS semiconductor technology. Approximately 780,000 pieces are spread on a corner silicon memory chip, and each micromirror is supported by a mirror holding post on a yoke that rotates in two stable states around a diagonal line. The mirrors rotate while maintaining about ± 10 degrees in the horizontal direction, and each micromirror controls the amount of light reflected from the light source. Each micromirror corresponds to one pixel (dot). If 12.3 mm is represented by 768 dots, one dot has an accuracy of 0.26 mm. By inputting control data for forming a two-dimensional plane image to this DMD, the reflection angle of each micromirror is controlled according to the control data, and reflected light corresponding to the two-dimensional plane image is obtained. . In the present invention, the reflected light is applied to a thin layer of a photocurable resin to produce a resin cured layer having a shape corresponding to a two-dimensional planar image.
なお、 本発明は、 上記 D MDに限定されるものでなく、 機能上、 同等のものを採用できることは言うまでもない。  It is needless to say that the present invention is not limited to the above-mentioned DMD, but can employ functionally equivalent ones.
造形データ記憶装置 1 5には、 DMU 5に対し、 2次元平面像の 反射光を出射させるための造形データが記憶されている。 この造形 デ一夕は、 立体形状の造形物を作る場合、 その C ADデータを層方 向にスライスすることによって得たデータが使用される。 例えば、 第 2図に示すようなビラミ ツ ド形状の造形物 2 0 1を作る場合、 こ の造形物 2 0 1の C ADデータを層方向に N層にわたってスライス し、 N層分のスライスデータ S D 1〜 S D Nを生成する。 造形デー 夕記憶装置 1 5には、 この N層分のスライスデ一タ S D 1〜 S D N が層番号 N、 デ一夕 I Dを付加して記憶される。 なお、 C ADデ一 夕からスライスデータ S D 1〜 S D Nを生成する場合、 専用の生成 プログラムあるいは変換プログラムを用いることにより、 容易に生 成することができる。 The modeling data storage device 15 stores modeling data for causing the DMU 5 to emit reflected light of a two-dimensional planar image. When creating a three-dimensional object, the data obtained by slicing the CAD data in the layer direction is used. For example, when making a vibrato-shaped object 201 as shown in Fig. 2, the CAD data of this object 201 is sliced over N layers in the layer direction, and slice data for N layers is obtained. Generate SD1 to SDN. The modeling data storage device 15 stores the slice data SD1 to SDN for the N layers with the layer number N and the data ID added. In addition, CAD data When generating slice data SD1 to SDN from the evening, it can be easily generated by using a dedicated generation program or conversion program.
第 1図に戻り、 光源 1から発せられた光はカラ一フィルタ 2を通 り、 コンデンサレンズ 3で集束された後、 シャツ夕 4に入射される。 シャツ夕 4が開いている状態であれば、 このシャツ夕 4を通過し、 DMU 5に入射される。 そして、 DMU 5の反射機能により、 2次 元平面像の像光として結象レンズ 6を通して液槽 8の表面に照射さ れる。 なお、 カラーフィルタ 2は通常は省略することができる。  Returning to FIG. 1, the light emitted from the light source 1 passes through the color filter 2, is focused by the condenser lens 3, and then enters the shirt 4. If shirt 4 is open, it passes through shirt 4 and enters DMU 5. The reflection function of the DMU 5 irradiates the surface of the liquid tank 8 through the imaging lens 6 as image light of a two-dimensional planar image. Note that the color filter 2 can usually be omitted.
また、 シャツ夕 4は第 1図の位置でない他の光路部分に取り付け ることもできる。  In addition, the shirt 4 can be attached to another optical path portion other than the position shown in FIG.
また、 この機能は全面黒の描画によって代替できるので省略する ことも可能である。 また、 シャツ夕の開閉に代えて光源 1のオン ' オフによって同等機能を実現することができる。  In addition, this function can be omitted because it can be replaced by full black drawing. The same function can be realized by turning on and off the light source 1 instead of opening and closing the shirt.
第 3図は、 本実施形態におけるスライスデータの画素構成、 DM U 5の画素構成、 結像レンズ、 結像面の画素構成の関係を模式的に 示した図であり、 スライスデータは 2 0 0 mm X 2 6 7 mmの平面 を 7 6 8 X 1 0 2 4 ドッ トで表現し、 DMU 5は 1 2. 3 mm X 1 6. 4 mmの面積を 7 6 8 X 1 0 2 4 ドッ トで構成し、 結像面は 2 0 0 mm X 2 6 7 mmの平面を 7 6 8 X 1 0 2 4 ドッ 卜で表現する 構成になっている。 2 0 0 mmを 7 6 8 ドッ トで表現した場合、 1 ドッ トは 0. 2 6 m mの精度になる。 結像レンズ 6は、 D M U 5の 各画素と結像面の各画素とを対応付けるように拡大するレンズで構 成される。 なお、 スライスデータ、 DMU 5、 結像面における単位 面積当りの ドッ ト構成が同じである場合は、 結像レンズ 6は省略す ることができる。 本発明におけるスライスデータの画素構成、 DM U 5の画素構成、 結像レンズ、 結像面の画素構成の関係は、 第 3図 の関係に限定されるものではなく、 D M U 5の ドッ ト構成や単位面 積当りのスライスデ一夕の ドッ ト構成、 製造目標とする精度に応じ て、 これらの関係が設定されるものである。 なお、 層厚は Z軸方向 の位置決め精度によって定まる。 FIG. 3 is a diagram schematically showing the relationship between the pixel configuration of the slice data, the pixel configuration of the DMU 5, the imaging lens, and the pixel configuration of the imaging plane according to the present embodiment. The plane of mm X 267 mm is represented by 768 X 104 dots, and the DMU 5 has the area of 12.3 mm X 164 mm, 768 X 104 dots. The imaging plane is configured to express a plane of 200 mm x 267 mm by 768 x 1024 dots. If 200 mm is represented by 768 dots, one dot has an accuracy of 0.26 mm. The imaging lens 6 is configured by a lens that enlarges each pixel of the DMU 5 so as to correspond to each pixel on the imaging surface. When the slice data, the DMU 5, and the dot configuration per unit area on the imaging plane are the same, the imaging lens 6 can be omitted. Pixel configuration of slice data in the present invention, DM The relationship between the pixel configuration of the U5, the imaging lens, and the pixel configuration of the image plane is not limited to the relationship shown in Fig. 3, but the dot configuration of the DMU5 and the dot of the slice data per unit area. These relationships are set according to the target configuration and manufacturing target accuracy. The layer thickness is determined by the positioning accuracy in the Z-axis direction.
N層の樹脂硬化層を積層して立体形状の造形物を製造する場合、 1層毎に Z軸稼動ステージ 9 を液槽 8内に降下させる方法と、 逆に 上昇させる方法があるが、 第 1 図の実施形態では Z軸稼動ステージ 9 を液槽内に降下させる場合の構成を示している。 Z軸稼動ステ一 ジ 9 を液槽 8から上昇させる場合の構成については、 後述の第 7図 で説明する。  When manufacturing a three-dimensional molded object by laminating N resin cured layers, there are a method of lowering the Z-axis operation stage 9 into the liquid tank 8 for each layer and a method of raising the Z-axis operation stage conversely. FIG. 1 shows an embodiment in which the Z-axis operation stage 9 is lowered into the liquid tank. The configuration when the Z-axis operation stage 9 is raised from the liquid tank 8 will be described later with reference to FIG.
以下、 本実施形態において、 N層の樹脂硬化層を積層して第 2図 に示したような立体形状の造形物を製造する場合の手順について第 4図のフローチャートを参照して説明する。  Hereinafter, in the present embodiment, a procedure for manufacturing a three-dimensionally shaped object as shown in FIG. 2 by laminating N resin cured layers will be described with reference to the flowchart of FIG.
第 4図に示す制御手順は、 パーソナルコンピュータ 1 4に予め組 み込まれた制御プログラムによって実行されるものである。 まず、 機構部および制御部を初期化する (ステツプ 4 0 1 )。 これにより、 Z軸稼動ステージ 9が第 5図 ( a ) に示すように液槽 8の樹液が存 在しない初期位置に位置決めされる。 また、 パーソナルコンピュー 夕 1 4内の各種カウン夕等が初期値に設定される。  The control procedure shown in FIG. 4 is executed by a control program incorporated in the personal computer 14 in advance. First, the mechanism section and the control section are initialized (step 401). As a result, the Z-axis operation stage 9 is positioned at the initial position where the sap does not exist in the liquid tank 8 as shown in FIG. 5 (a). Various counters in the personal computer 14 are set to initial values.
次に、 Z軸稼動ステージ 9が初期位置に位置決めされているかど うかなどの装置状態をチェックする(ステップ 4 0 2 )。 異常がなけ れば、 次に、 層厚、 1層硬化時間等の条件設定を行う (ステップ 4 0 3 )。 この条件設定は、 表示装置 1 8に表示されるメッセージに従 つてキーボード 1 6ゃポインティ ングデバイス 1 7 を用いて入力す る。 層厚 t としては、 例えば 0 . 1 m mといった値が設定される。 条件設定が終了したならば、 注入弁ドライバ 1 9 を介して注入弁 1 2 を制御し、 N層分の樹脂硬化層を形成するのに必要な樹液 7 を 樹液夕ンク 1 1から液槽 8 に注入する (ステップ 4 0 4 )。 次に、 パ 一ソナルコンピュータ 1 4内の層カウン夕 (図示せず) に層番号 N として 「 1」 を設定する (ステップ 4 0 5 )。 次に、 層カウン夕の値 で指定される N層目の造形デ一夕 (スライスデータ) を造形デ一夕 記憶装置 1 5から読込み、 D M U 5 に制御データとして入力する(ス テツプ 4 0 6 )。 次に、 Z軸駆動機構 1 0のモー夕 2 2 に Z軸稼動ス テージドライバ 2 0 を介して駆動信号を入力し、 Z軸稼動ステージ 9 を液面から層厚 t分だけ降下させる。 これにより、 Z軸稼動ステ ージ 9は、 第 5図 ( b ) に示すように、 液面から層厚 t分だけ降下 した位置に位置決めされる。 Next, the apparatus status such as whether or not the Z-axis operation stage 9 is positioned at the initial position is checked (step 402). If there is no abnormality, next, the conditions such as the layer thickness and the one-layer curing time are set (Step 403). This condition setting is input using the keyboard 16 and the pointing device 17 in accordance with the message displayed on the display device 18. For example, a value such as 0.1 mm is set as the layer thickness t. When the setting of the conditions is completed, the injection valve 12 is controlled via the injection valve driver 19, and the sap 7 necessary for forming the resin cured layer of N layers is supplied from the sap tank 11 to the liquid tank 8 (Step 4 0 4). Next, “1” is set as the layer number N in the layer counter (not shown) in the personal computer 14 (step 405). Next, the modeling data (slice data) of the Nth layer specified by the value of the layer count is read from the modeling data storage device 15 and input as control data to the DMU 5 (step 400). ). Next, a drive signal is input to the motor 22 of the Z-axis drive mechanism 10 via the Z-axis operation stage driver 20 to lower the Z-axis operation stage 9 from the liquid level by the layer thickness t. As a result, the Z-axis operation stage 9 is positioned at a position lower than the liquid level by the layer thickness t, as shown in FIG. 5 (b).
次に、 シャツ夕 4を開状態に制御し (ステップ 4 0 8 )、 光源 1か ら発せられた光を D M U 5 に入射する。  Next, the shirt 4 is controlled to the open state (step 408), and the light emitted from the light source 1 is incident on the DMU 5.
D M U 5には、 ステップ 4 0 6で N層目の造形データが制御デー 夕として入力され、 各微細ミラーの反射角が該造形データに対応し て制御されているので、 入射された光は造形データに従って反射さ れる。 このうち、 樹液を硬化させる画素に対応する反射光は結像レ ンズ 6 を介して液槽 8の液面に照射され、 樹液を硬化させない画素 に対応する反射光は、 外部に漏れないように図示しないアブソ一バ に集束される。  The modeling data of the Nth layer is input to the DMU 5 in step 406 as control data, and the reflection angle of each micromirror is controlled in accordance with the modeling data. Reflected according to data. Of these, the reflected light corresponding to the pixel that cures the sap is radiated to the liquid surface of the liquid tank 8 via the imaging lens 6, and the reflected light corresponding to the pixel that does not cure the sap is leaked to the outside. It is focused on an absorber (not shown).
パーソナルコンピュータ 1 4は、 シャツ夕 4を開いた後、 その時 間を監視しているが、 条件設定で設定された 1層硬化時間に達した ならば (ステップ 4 0 9 )、 シャツ夕 4に制御信号を入力し、 閉状態 に制御する (ステップ 4 1 0 )。 これにより、 液槽 8の液面の 1層分 の薄層に造形データによる 2次元平面像の像光がシャッ夕 4の開時 間だけ照射されることになる。 そして、 1層硬化時間経過後には、 第 5図 ( c ) に示すように、 N= l層目の樹脂硬化層 5 0 1が形成 される。 The personal computer 14 monitors the time after the shirt 4 is opened. When the one-layer curing time set in the condition setting has been reached (step 409), the personal computer 14 controls the shirt 4 Input a signal and control to close (Step 410). As a result, the image light of the two-dimensional plane image based on the modeling data is applied to the thin layer of one liquid level of the liquid tank 8 when the shutter 4 is opened Only for a while. Then, after the elapse of the one-layer curing time, an N = l-th resin cured layer 501 is formed as shown in FIG. 5 (c).
次に、 N= 2層目の樹脂硬化層を形成するために、 層番号カウン 夕の値を 「N + 1」 に更新し (ステップ 4 1 1 )、 さらに第 N層まで の形成を終了したか否かを判定し(ステップ 4 1 2 )、 終了していな ければ、 ステップ 4 0 6に戻り、 「 N + 1」 層目の造形デ一夕を造形 データ記憶装置 1 5から読込み、 DMU 5に制御データとして入力 する。 この後、 Z軸駆動機構 1 0のモー夕 2 2に Z軸稼動ステージ ドライバ 2 0を介して駆動信号を入力し、 Z軸稼動ステージ 9を N = 1層目の樹脂硬化層 5 0 1 の上面から層厚 t分だけ降下させる (ステップ 4 0 7 )。 これにより、 N = 1の樹脂硬化層 5 0 1の上面 に 1層分の薄層が形成される。 この状態で、 シャツ夕 4を開状態に 制御し (ステップ 4 0 8 )、 光源 1から発せられた光を D MU 5に入 射する。 そして、 N= l層目の樹脂硬化層 5 0 1 を形成した場合と 同様に、 1層硬化時間経過後にシャッ夕 4を閉じる(ステップ 4 0 9 4 1 0 )ことにより、 N = N + 1層目の樹脂硬化層が形成される。 同様の動作を N = N層まで繰返すことにより、 第 6図 ( a) に示 す様に、 N層から成る樹脂硬化層、 第 6図 ( a) では 4層から成る 樹脂硬化層の積層体 6 0 1が Z軸稼動ステージ 9の上に形成される, 必要な層数の樹脂硬化層が形成されたならば、 第 6図 ( b) に示 す様に Z軸稼動ステージ 9を液槽 8の外部に引き上げる (ステツプ 4 1 3 )。 これにより、 目的とする N層から成る樹脂硬化層の積層体 6 0 1の製造が完了する。 引き上げた積層体 6 0 1は Z軸稼動ステ ージ 9から剥がし取られ、 造形物として使用目的に提供される。 次に、 Z軸稼動ステージ 9を液槽から 1層毎に引き上げながら N 層から成る樹脂硬化層の積層体を製造する方法と装置構成について 第 7図に示す第 2の実施形態を参照して説明する。 Next, in order to form the N = second resin cured layer, the value of the layer number count was updated to “N + 1” (step 4 11 1), and the formation up to the Nth layer was completed. It is determined whether or not the processing is completed (step 4 12). If the processing is not completed, the flow returns to step 4 06 to read the modeling data of the “N + 1” layer from the modeling data storage device 15, and the DMU Input to 5 as control data. Thereafter, a drive signal is input to the motor 22 of the Z-axis drive mechanism 10 via the Z-axis operation stage driver 20 to move the Z-axis operation stage 9 to the N = first resin cured layer 501. It is lowered by the layer thickness t from the upper surface (step 4 07). Thereby, one thin layer is formed on the upper surface of the cured resin layer 501 with N = 1. In this state, the shirt 4 is controlled to the open state (step 408), and the light emitted from the light source 1 enters the DMU 5. Then, similarly to the case where the N = l-th resin cured layer 501 is formed, the shutter 4 is closed after the lapse of the first-layer curing time (step 4 0 9 4 10), so that N = N + 1 A resin cured layer of the layer is formed. By repeating the same operation up to N = N layers, as shown in Fig. 6 (a), a resin cured layer consisting of N layers, and in Fig. 6 (a), a laminate of four resin cured layers 6 1 is formed on the Z-axis operation stage 9. Once the required number of resin cured layers have been formed, the Z-axis operation stage 9 is moved to the liquid tank as shown in Fig. 6 (b). Pull it out of step 8 (step 4 13). This completes the production of the intended laminated body 61 of the resin cured layer composed of the N layers. The lifted laminate 6001 is peeled off from the Z-axis operation stage 9, and is provided as a molded object for use. Next, while raising the Z-axis operation stage 9 from the liquid tank for each layer, N A method for manufacturing a laminated body of a resin cured layer composed of layers and an apparatus configuration will be described with reference to a second embodiment shown in FIG.
第 7図において、 第 1 図の実施形態と異なるのは、 第 1 図の液層 8の代わりに、 深さが浅い液層 3 0 とし、 かつ該液層 3 0の底面は 透過性の良いガラスなどの光透過部材 3 1で構成し、 この光透過部 材 3 1 を通して液層 3 0内に注入した 1層分の樹液に対し像光を照 射し、 1層分の樹脂硬化物が形成されたならば、 Z軸駆動機構 1 0 によって Z軸稼動ステージ 9を 1層分だけ上昇させたのち、 次の 1 層分の樹液を注入し、 次の層の樹脂硬化層を形成する動作を繰返す ように構成したことである。 したがって、 第 1 図と同一部分は同一 符号で示し、 その説明は省略する。  7, the difference from the embodiment of FIG. 1 is that instead of the liquid layer 8 of FIG. 1, a liquid layer 30 having a shallow depth is provided, and the bottom surface of the liquid layer 30 has good permeability. It is composed of a light-transmitting member 31 such as glass, and irradiates image light to one layer of sap injected into the liquid layer 30 through the light-transmitting member 31 so that one layer of resin cured product is formed. Once formed, the Z-axis drive mechanism 10 raises the Z-axis operation stage 9 by one layer, then injects the next one layer of sap and forms the next resin cured layer. Is repeated. Therefore, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
以下、 第 8図のフローチャートを参照して説明する。  Hereinafter, description will be made with reference to the flowchart of FIG.
第 8図に示す制御手順は、 パーソナルコンピュー夕 1 4に予め組 み込まれた制御プログラムによって実行されるものである。 まず、 機構部および制御部を初期化する (ステップ 8 0 1 )。 これにより、 Z軸稼動ステージ 9が第 9図 ( a ) に示すようにに位置決めされる。 また、 パーソナルコンピュータ 1 4内の各種カウン夕等が初期値に The control procedure shown in FIG. 8 is executed by a control program incorporated in the personal computer 14 in advance. First, the mechanical unit and the control unit are initialized (step 801). Thus, the Z-axis operation stage 9 is positioned as shown in FIG. 9 (a). Also, various counters in the personal computer 14 are set to the initial values.
5又疋される。 It will be sent five times.
次に、 Z軸稼動ステージ 9が初期位置 (液槽 8の最低部) に位置 決めされているかどうかなどの装置状態をチェックする(ステップ 8 0 2 )。 異常がなければ、 次に、 層厚、 1層硬化時間等の条件設定 を行う (ステツプ 8 0 3 )。 この条件設定は、 表示装置 1 8に表示さ れるメッセージに従ってキーボード 1 6ゃポインティ ングデバイス 1 7 を用いて入力する。 層厚 t としては、 例えば 0 . 1 m mといつ た値が設定される。  Next, the apparatus status such as whether or not the Z-axis operation stage 9 is positioned at the initial position (the lowest part of the liquid tank 8) is checked (Step 802). If there is no abnormality, the conditions such as the layer thickness and the curing time for one layer are set (Step 803). This condition setting is input using the keyboard 16 ゃ pointing device 17 according to the message displayed on the display device 18. As the layer thickness t, for example, a value such as 0.1 mm is set.
条件設定が終了したならば、 次に、 Z軸稼動ステージ 9 を液面上 の定位置まで移動 (上昇) させる(ステップ 8 0 4 )。 これは、 樹液 を注入する際に Z軸稼動ステージ 9が障害にならないようにするた めである。 次に、 パーソナルコンピュータ 1 4内の層カウン夕 (図 示せず) に層番号 Nとして 「 1」 を設定する (ステップ 8 0 5 )。 次 に、 層カウン夕の値で指定される N層目の造形データ (スライスデ 一夕) を造形データ記憶装置 1 5から読込み、 D M U 5 に制御デー 夕として入力する (ステップ 8 0 6 )。 次に、 注入弁ドライバ 1 9を 介して注入弁 1 2 を制御し、 1層分の樹脂硬化層を形成するのに必 要な樹液 3 2 を樹液夕ンク 1 1から液槽 3 0 に注入する (ステツプ 8 0 7 )。 After setting the conditions, move the Z-axis operation stage 9 above the liquid level. (Step 804). This is to prevent the Z-axis operation stage 9 from becoming an obstacle when injecting sap. Next, “1” is set as the layer number N in the layer counter (not shown) in the personal computer 14 (step 805). Next, the modeling data (slice data) of the Nth layer specified by the value of the layer count is read from the modeling data storage device 15 and input to the DMU 5 as control data (step 806). Next, the injection valve 12 is controlled via the injection valve driver 19 to inject the sap 32 necessary for forming one resin cured layer into the liquid tank 30 from the sap ink 11. Yes (step 807).
次に、 Z軸ステージ 9 を前層の造形位置より層厚分だけ離れた(上 昇した) 位置に位置決めする (ステップ 8 0 8 )。 第 1層目の場合は 前の層がないため、 図 9 ( b ) に示すように、 Z軸稼動ステージ 9 の下面が 1層目の樹液の薄層の表面位置になるように、 Z軸稼動ス テ一ジ 9 を前記定位置から下降させることによって位置決めする。  Next, the Z-axis stage 9 is positioned at a position separated (upward) by the layer thickness from the molding position of the previous layer (step 808). In the case of the first layer, since there is no previous layer, as shown in Fig. 9 (b), the Z-axis operation stage 9 is set so that the lower surface of the Z-axis operation stage 9 is at the surface position of the thin layer of the first layer of sap. The operating stage 9 is positioned by lowering from the home position.
この状態で、 Z軸稼動ステージ 9の下面側に第 1層目の樹液の薄 層が形成されたことになるので、 次に、 シャツ夕 4を開状態に制御 し (ステップ 8 0 9 )、 光源 1から発せられた光を D M U 5に入射す る。 D M U 5 には、 ステップ 8 0 6で N層目の造形データが制御デ —夕として入力され、 各微細ミラ一の反射角が該造形データに対応 して制御されているので、 入射された光は造形データに従って反射 される。 このうち、 樹液を硬化させる画素に対応する反射光は結像 レンズ 6 を介して液槽 8の底面の光透過部材 3 1 を通して 1層分の 樹液 3 2 に照射され、樹液を硬化させない画素に対応する反射光は、 外部に漏れないように図示しないァブソーバに集束される。  In this state, a thin layer of the first sap is formed on the lower surface side of the Z-axis operation stage 9. Next, the shirt 4 is controlled to the open state (step 809), Light emitted from the light source 1 enters the DMU 5. In step 806, the modeling data of the Nth layer is input to the DMU 5 as control data, and the reflection angle of each fine mirror is controlled in accordance with the modeling data. Is reflected according to the modeling data. Of these, the reflected light corresponding to the pixel that cures the sap is radiated to one layer of sap 32 through the light transmission member 31 on the bottom of the liquid tank 8 via the imaging lens 6, and to the pixels that do not cure the sap. The corresponding reflected light is focused on an absorber (not shown) so as not to leak outside.
パーソナルコンピュータ 1 4は、 シャツ夕 4を開いた後、 その時 間を監視しているが、 条件設定で設定された 1層硬化時間に達した ならば (ステップ 8 1 0 )、 シャツ夕 4に制御信号を入力し、 閉状態 に制御する (ステップ 8 1 1 )。 これにより、 液槽 3 0の 1層分の薄 層に造形データによる 2次元平面像の像光がシャッ夕 4の開時間だ け照射されることになる。 そして、 1層硬化時間経過後には、 第 9 図 ( c ) に示すように、 N = 1層目の樹脂硬化層 9 0 1が形成され る。 After opening the shirt 4 at the time, the personal computer 14 When the one-layer curing time set in the condition setting has been reached (step 8110), a control signal is input to the shirt 4 to control the shirt to the closed state (step 811). ). As a result, the image light of the two-dimensional plane image based on the modeling data is irradiated to the thin layer of the liquid tank 30 only for the opening time of the shutter 4. Then, after the elapse of the one-layer curing time, as shown in FIG. 9 (c), N = the first resin cured layer 901 is formed.
次に、 N = 2層目の樹脂硬化層を形成するために、 層番号カウン 夕の値を 「N + 1」 に更新し (ステップ 8 1 2 )、 さらに第 N層 (最 終層) までの形成を終了したか否かを判定し(ステップ 8 1 3 )、 終 了していなければ、 Z軸駆動機構 1 0のモータ 2 2 に Z軸稼動ステ 一ジドライバ 2 0 を介して駆動信号を入力し、 Z軸稼動ステージ 9 を液面上の定位置まで移動 (上昇) させる(ステップ 8 1 4 )。 これ は、 前述のように、 樹液を注入する際に Z軸稼動ステージ 9が障害 にならないようにするためである。  Next, in order to form the N = second resin cured layer, the value of the layer number count is updated to “N + 1” (step 8 12), and further to the Nth layer (final layer). It is determined whether or not formation has been completed (step 813). If not, a drive signal is sent to the motor 22 of the Z-axis drive mechanism 10 via the Z-axis operation stage driver 20. Then, the Z-axis operation stage 9 is moved (elevated) to a fixed position on the liquid surface (step 814). This is to prevent the Z-axis operation stage 9 from hindering the sap injection as described above.
この後、 ステップ 8 0 6 に戻り、 「N + 1」 層目の造形データを造 形データ記憶装置 1 5から読込み、 D M U 5 に制御データとして入 力する。 この後、 注入弁ドライバ 1 9 を介して注入弁 1 2 を制御し、 1層分の樹脂硬化層を形成するのに必要な樹液 3 2 を樹液タンク 1 1から液槽 3 0に注入する (ステップ 8 0 7 )。 次に、 Z軸ステージ 9 を前層の造形位置より層厚分だけ離れた (上昇した) 位置に位置 決めする (ステップ 8 0 8 )。 第 2層目の場合は、 第 9図 ( d ) に示 すように、 1層目の樹脂硬化層 9 0 1 の下面が第 2層目の薄層の上 面に接するように Z軸稼動ステージ 9 を前記定位置から下降させる ことによって位置決めする。  Thereafter, the flow returns to step 806, and the modeling data of the “N + 1” layer is read from the modeling data storage device 15 and input to the DMU 5 as control data. Thereafter, the injection valve 12 is controlled via the injection valve driver 19 to inject the sap 32 necessary for forming one resin cured layer from the sap tank 11 into the liquid tank 30 ( Step 807). Next, the Z-axis stage 9 is positioned at a position separated (upward) by the layer thickness from the molding position of the previous layer (step 808). In the case of the second layer, as shown in Fig. 9 (d), the Z-axis operation is performed so that the lower surface of the first resin cured layer 901 contacts the upper surface of the second thin layer. Positioning is performed by lowering the stage 9 from the home position.
この状態で、 シャツ夕 4を開状態に制御し (ステップ 8 0 9 )、 光 源 1から発せられた光を DMU 5に入射する。 そして、 N= l層目 の樹脂硬化層 8 0 1 を形成した場合と同様に、 1層硬化時間経過後 にシャツ夕 4を閉じる(ステップ 8 1 0 , 8 1 1 )ことにより、 第 1 0図 ( a ) に示す様に、 N = N + 1層目の樹脂硬化層 9 0 2が形成 される。 In this state, control the shirt 4 to the open state (step 809), and Light emitted from source 1 is incident on DMU 5. Then, as in the case of forming the N = l-th resin cured layer 801, the shirt 4 is closed after the lapse of the one-layer curing time (steps 810, 811), thereby obtaining the 10th layer. As shown in FIG. 7A, the N = N + 1 first cured resin layer 902 is formed.
以降、 Z軸駆動機構 1 0を制御し、 第 1 0図 ( b) に示す様に、 2層目の樹脂硬化層 8 0 2の下面が第 3層目の薄層の上面に接する ように Z軸稼動ステージ 9を位置決めし、 次の層の樹脂硬化層を形 成する。  Thereafter, the Z-axis drive mechanism 10 is controlled so that the lower surface of the second resin cured layer 802 is in contact with the upper surface of the third thin layer as shown in FIG. 10 (b). Position the Z-axis operation stage 9 to form the next resin cured layer.
同様の動作を N = N層まで繰返すことにより、 第 1 0図 ( C ) に 示す様に、 N層から成る樹脂硬化層、 第 1 0図 ( c ) では 5層から 成る樹脂硬化層の積層体 9 0 3が Z軸稼動ステージ 9の下面側に形 成される。  By repeating the same operation up to N = N layers, as shown in Fig. 10 (C), a laminated resin cured layer consisting of N layers, and in Fig. 10 (c), a laminated resin cured layer consisting of 5 layers A body 903 is formed on the lower surface side of the Z-axis operation stage 9.
このようにして、 必要な層数の樹脂硬化層が形成されたならば、 Z軸稼動ステージ 9を液槽 3 0の上方に引き上げる (ステップ 8 1 3 )。 これにより、 目的とする N層から成る樹脂硬化層の積層体 9 0 3の製造が完了する。  When the required number of cured resin layers have been formed in this way, the Z-axis operation stage 9 is pulled up above the liquid tank 30 (step 813). As a result, the production of the intended laminated body 903 of the resin cured layer composed of the N layers is completed.
この第 7図の実施形態によれば、 液層 3 0に 1層分の樹液を順次 注入することを繰返すため、 第 1図の実施形態と比べて樹液量が少 なくて済むという利点がある。  According to the embodiment of FIG. 7, since the sap of one layer is sequentially injected into the liquid layer 30, there is an advantage that the amount of sap can be reduced as compared with the embodiment of FIG. .
なお、 本発明は上記実施形態に限定されるものではなく、 第 1 1 図の第 3の実施形態に示す様に、 2系統の像光を 2つの結像レンズ 6 A, 6 Bで同じ位置に結像させる構成にすることにより、 露光ェ ネルギーを 2倍にし、 1層の硬化時間をさらに短縮する構成にする ことができる。  The present invention is not limited to the above-described embodiment. As shown in the third embodiment of FIG. 11, two systems of image light are focused at the same position by two imaging lenses 6A and 6B. By adopting a configuration in which an image is formed on the substrate, the exposure energy can be doubled, and a configuration in which the curing time of one layer is further reduced can be achieved.
また、 第 1 2図の第 4の実施形態に示す様に、 形成すべき 1層の 樹脂硬化層 1 2 0 1 を 2系統の結像レンズ 6 A, 6 Bを通した像光 により分割して形成する構成にすることにより、 W l +W 2から成 る面積の大きな樹脂硬化層 1 2 0 1 を短時間で形成することができ る。 Also, as shown in the fourth embodiment of FIG. 12, one layer to be formed By forming the resin cured layer 1201 by dividing it by the image light passing through the two imaging lenses 6A and 6B, a resin cured layer with a large area of Wl + W2 is formed. 1 201 can be formed in a short time.
ところで、 上記第 7図の実施形態において、 積層体 9 0 3を形成 し終わったならば、 該積層体 9 0 3を Z軸稼動ステージ 9の下面か ら切り離す必要がある。 この切り離し方法としては、 第 1 3図 ( a) の破線部分 1 3 0 1の拡大図である同図 ( b ) に示すように、 積層 体 9 0 3の片側端部に切断刃 1 3 0 2を挿入しながら切り離すこと が考えられる。 しかし、 単に第 1層目を切断する方法では、 切断面 に凹凸ができる場合が多くなり、第 1層目の品質が低下してしまう。 そこで、 本来の第 1層目の前に、 同図 ( c ) に示すように、 切り代 1 3 0 4に相当する層を作成しておく必要がある。 しかし、 このよ うにした場合であっても、 切り代 1 3 0 4と第 1層目との境界切断 面を整形する後処理が必要になって工程数が増加すると共に、 コス トも上昇するという問題がある。  By the way, in the embodiment of FIG. 7, when the laminate 903 has been formed, it is necessary to separate the laminate 903 from the lower surface of the Z-axis operation stage 9. As shown in FIG. 13 (a), which is an enlarged view of the broken line portion 1301, FIG. 13 (b) is an enlarged view of the lamination body 903, the cutting blade 13 It is conceivable to insert and disconnect while inserting 2. However, in the method of simply cutting the first layer, the cut surface often has irregularities, and the quality of the first layer deteriorates. Therefore, it is necessary to create a layer corresponding to the cutting margin 1304 before the original first layer, as shown in FIG. However, even in this case, post-processing for shaping the boundary cut surface between the cutting margin 1304 and the first layer is required, so that the number of processes increases and the cost also increases. There is a problem.
そこで、 本発明においては、 第 1 4図 ( a ) に示すように、 Z軸 稼動ステージ 9を初期位置に位置決めする前に、 該 Z軸ステージ 9 の下面側に、 熱剥離性の両面接合部材 1 4 0 1を接合した後、 該両 面接合部材 1 4 0 1の下面側に光硬化性樹脂と接着性を有するシー ト状部材 1 4 0 2を接合しておく。  Therefore, in the present invention, as shown in FIG. 14 (a), before positioning the Z-axis operation stage 9 at the initial position, a heat-peelable double-sided joining member is attached to the lower surface side of the Z-axis stage 9. After joining the four-sided bonding member 1401, a sheet-like member 1442 having an adhesive property with the photocurable resin is bonded to the lower surface side of the two-sided bonding member 1401.
ここで、 両面接合部材 1 4 0 1は、 9 0度 C前後で接着性を失う 両面接着シー トまたはテープを使用するのが望ましい。 また、 シ一 ト状部材 1 4 0 2 としては、 光硬化性樹脂と接着性の良いシー ト状 部材、 例えばアルミシート、 銅箔を用いる。  Here, it is desirable to use a double-sided adhesive sheet or tape that loses adhesiveness at around 90 ° C. for the double-sided bonding member 1401. Further, as the sheet-like member 1442, a sheet-like member having good adhesion to the photocurable resin, for example, an aluminum sheet or a copper foil is used.
そして、 第 1層目はシート状部材 1 4 0 2の下面側に形成する。 立体形状を構成する樹脂硬化層の層数に等しい回数だけの工程を繰 り返し、 積層体 9 0 3が形成されたならば、 第 1 4図 ( b ) に示す ように、 両面接合部材 1 4 0 1およびシー ト状部材 1 4 0 2 を含む 積層体 9 0 3全体を 9 0度 Cよりやや高い温度の温水槽 1 4 0 3内 に入れ、 加熱する。 この加熱によって、 両面接合部材 1 4 0 1 の接 着性が失われ、 第 1 5図 ( a ) に示すように積層体 9 0 3全体をシ — ト状部材 1 4 0 2 を含めて Z軸稼動ステージ 9から剥離すること ができる。 この後は、 シート状部材 1 4 0 2 を第 1 5図 ( b ) に示 すように巻き取るようにして積層体 9 0 3から剥離する。 Then, the first layer is formed on the lower surface side of the sheet-like member 1402. The process is repeated for the number of times equal to the number of the resin cured layers constituting the three-dimensional shape, and when the laminated body 93 is formed, as shown in FIG. The entire laminated body 903 including 401 and the sheet-shaped member 1402 is placed in a hot water tank 1403 at a temperature slightly higher than 90 ° C and heated. Due to this heating, the adhesiveness of the double-sided bonding member 1401 is lost, and as shown in FIG. 15 (a), the entire laminated body 903 including the sheet-like member 1442 is Z It can be peeled off from the shaft operation stage 9. Thereafter, the sheet-like member 1442 is peeled off from the laminate 903 so as to be wound up as shown in FIG. 15 (b).
このようにすることによって、 切り代に相当する層を形成する必 要がなくなり、 かつ第 1層目の品質も低下しない。 また、 整形処理 も必要としないので、 製造時間及びコス トも減少する。  By doing so, there is no need to form a layer corresponding to the cutting margin, and the quality of the first layer does not deteriorate. Also, since no shaping is required, manufacturing time and cost are reduced.
一方、 第 n層目の次の層を形成する場合、 例えば第 1 6図に示す ように、 第 1層目の樹脂硬化層 9 0 1 の次の第 2層目の樹脂硬化層 9 0 2 を形成する場合、 1層分相当の光硬化性樹脂液を充填する方 法にあっては、 第 1層目の樹脂硬化層 9 0 1 の下面に次の層の光硬 化性樹脂液を接触させる際に気泡が発生する。 この気泡は、 第 1層 目の樹脂硬化層 9 0 1 の下面が第 1 6図 ( a ) に示すように完全な 平面ではなく、 微細な凹凸面 1 6 0 1 になっていることが多いから である。  On the other hand, when forming the layer next to the n-th layer, as shown in FIG. 16, for example, as shown in FIG. 16, the second resin cured layer 90 2 next to the first resin cured layer 90 1 In the method of filling a layer of a photo-curable resin liquid equivalent to one layer, a photo-curable resin liquid of the next layer is formed on the lower surface of the first resin cured layer 91. Bubbles are generated upon contact. In many cases, the lower surface of the first resin cured layer 901 is not a perfect plane as shown in FIG. 16 (a) but has a fine uneven surface 1601. From.
もしも、 気泡が生じたままの状態で硬化させると、 造形後の品質 が低下してしまう。 そこで、 本発明では、 第 1 6図 ( b ) に示すよ うに、 光硬化性樹脂液 1 6 0 7 を注入したならば、 像光を照射する 前に、 第 1 6図 ( b ) に示すように、 最下層の樹脂硬化層 (最新に 硬化させた層)、第 1 6図の例では第 1層目の樹脂硬化層 9 0 1 の下 面側に光硬化性樹脂と接着性を有しない透明シート状部材 1 6 0 2 を介在させた状態で、 該透明シー ト状部材 1 6 0 2の下面側に光透 過性のプレート部材 1 6 0 3を矢印 1 6 0 4方向から挿入し、 第 1 層目の樹脂硬化層 9 0 1 の下面側の光硬化性樹脂液 1 6 0 7内に存 在する気泡を押し出しながら光硬化性樹脂の融液または溶液を密着 させる。 そして、 像光は、 第 1 6図 ( c ) に示すように、 光透過性 のプレー ト部材 1 6 0 3 を挿入したままの状態で照射する。 If it is cured with air bubbles, the quality after molding will be reduced. Therefore, according to the present invention, as shown in FIG. 16 (b), if the photocurable resin liquid 1607 is injected, before the image light is irradiated, as shown in FIG. 16 (b). As shown in the figure, the lowermost resin cured layer (the latest cured layer), in the example shown in Fig. 16, has an adhesive property with the photocurable resin on the lower surface side of the first resin cured layer 901. No transparent sheet material 1 6 0 2 In the state where the transparent sheet-like member 1602 is interposed, a light-transmissive plate member 1603 is inserted from the direction of the arrow 1604 into the lower surface side of the transparent sheet-like member 1602, and the resin of the first layer is cured. While extruding bubbles existing in the photocurable resin liquid 1607 on the lower surface side of the layer 901, the melt or solution of the photocurable resin is brought into close contact. Then, as shown in FIG. 16 (c), the image light is irradiated with the light-transmitting plate member 1603 inserted.
これにより、 最新に硬化させた層と次の層とが気泡によって剥離 し易くなるといった品質の低下を防止することができる。  As a result, it is possible to prevent a deterioration in quality such that the layer most recently cured and the next layer are easily separated by bubbles.
一方また、 第 1 6図のように、 透明シー ト状部材 1 6 0 3 を介在 させた場合、 第 n層目の次の層を形成する場合には、 次の層の光硬 化性樹脂の融液または溶液を新たに密着させるために、 Z軸ステー ジ 9 を 1層厚さ分だけ上昇させる必要がある。 例えば第 1 7図 ( a ) に示す状態で第 5層目の硬化層 9 0 5の下面を 1層厚さ分だけ上昇 させる必要がある。 しかし、 単純に Z軸ステージ 9 を 1層厚さ分だ け上昇させると、 第 5層目の硬化層 9 0 5の下面の全体と透明シー ト状部材 1 6 0 2 との間に大きな力が瞬時に加わり、 それまで造形 した層を破壊してしまう。  On the other hand, as shown in FIG. 16, when the transparent sheet-like member 1603 is interposed, when the next layer of the nth layer is formed, the photocurable resin of the next layer is formed. It is necessary to raise the Z-axis stage 9 by one layer thickness in order to make the melt or solution of the above newly adhere. For example, it is necessary to raise the lower surface of the fifth hardened layer 905 by one layer thickness in the state shown in FIG. 17 (a). However, when the Z-axis stage 9 is simply raised by one layer thickness, a large force is applied between the entire lower surface of the fifth hardened layer 905 and the transparent sheet-like member 162. Is instantaneously added, destroying the layer that was formed up to that point.
そこで、 本発明では、 第 1 7図 ( b ) に示すように、 光透過性の プレー ト部材 1 6 0 3の一端を支点 1 6 0 5で保持した状態で巻取 り ロール 1 6 0 6 を介して矢印 1 7 0 1 の方向に牽引し、 第 1 7図 ( c ) に示すように、 巻き取りロール 1 6 0 6、 透明シート状部材 1 6 0 2及び光透過部材 3 1 を含めて矢印 1 7 0 1 の方向に移動さ せながら、 透明シート状部材 1 6 0 2 を最下層の樹脂硬化層の下面 から徐々に剥離するようにした。 Z軸ステージ 9は、 最下層の樹脂 硬化層の下面から透明シート状部材 1 6 0 2 を剥離した後に、 1層 分だけ上昇させる。 このようにすることによって、 最下層の樹脂硬化層 9 0 5の下面 に働く力 (透明シート状部材 1 6 0 2の方向に引っ張られる力) が 減少し、 最下層の樹脂硬化層 9 0 5から透明シー ト状部材 1 6 0 2 を安全に剥離することができる。 Therefore, in the present invention, as shown in FIG. 17 (b), a take-up roll 1606 holds one end of a light-transmitting plate member 1603 at a fulcrum 1605. , And in the direction of the arrow 1701, as shown in Fig. 17 (c), including the take-up roll 1606, the transparent sheet-like member 1602, and the light transmitting member 31. While moving in the direction of arrow 1701, the transparent sheet-like member 1602 was gradually peeled off from the lower surface of the lowermost resin cured layer. The Z-axis stage 9 lifts the transparent sheet-like member 1602 from the lower surface of the lowermost resin cured layer by one layer. By doing so, the force acting on the lower surface of the lowermost resin cured layer 905 (the force pulled in the direction of the transparent sheet-like member 1602) is reduced, and the lowermost resin cured layer 905 is reduced. The transparent sheet-like member 1602 can be safely peeled from the substrate.
この場合、 第 1 8図に示すような方法を採用することもできる。 すなわち光透過性のプレー ト部材 1 6 0 4を第 1 8図 ( a ) の状態 から同図 ( b ) に示すように引き抜いた後、 透明シート状部材 1 6 0 2 をプレート部材 1 6 0 3 と最下層の樹脂硬化層 9 0 5の下面と の間に形成された空間の方向に押圧する剥離用部材 1 8 0 1 を図の 矢印 1 8 0 2方向(プレー ト部材 1 6 0 3の引き抜き方向と逆方向) に移動しながら、 透明シー ト状部材 1 6 0 2 を最下層の樹脂硬化層 9 0 5の下面から徐々に剥離する方法である。  In this case, a method as shown in FIG. 18 can be adopted. That is, the light-transmissive plate member 1604 is pulled out from the state shown in FIG. 18 (a) as shown in FIG. 18 (b), and then the transparent sheet-like member 1602 is removed from the plate member 1602. The peeling member 1801, which presses in the direction of the space formed between the lower surface of the lowermost resin cured layer 905 and the resin cured layer 905, is moved in the direction of the arrow 1802 in the figure (the plate member 1603). This is a method in which the transparent sheet-like member 1602 is gradually peeled off from the lower surface of the lowermost resin cured layer 905 while moving in the direction opposite to the pull-out direction.
このようにすることによつても、 最下層の樹脂硬化層の下面に働 く力 (透明シート状部材 1 6 0 2の方向に引っ張られる力) が減少 し、 最下層の樹脂硬化層 9 0 5から透明シー ト状部材 1 6 0 2 を安 全に剥離することができる。  This also reduces the force acting on the lower surface of the lowermost resin cured layer (the force pulled in the direction of the transparent sheet member 1602), and reduces the lowermost resin cured layer 90. From FIG. 5, the transparent sheet-like member 1602 can be peeled off safely.
また、 第 1 9図に示すような方法を採用することもできる。 すな わち第 1 8図 ( a ) の状態から同図 ( b ) に示すように、 透明シー ト状部材 1 6 0 2および光透過性のプレート部材 1 6 0 3の片側の 回動支点 1 9 0 1 を中心に、 透明シート状部材 1 6 0 2および光透 過性のプレー ト部材 1 6 0 3 を徐々に傾斜させ、 透明シート状部材 1 6 0 2 を最下層の樹脂硬化層 9 0 5の下面から剥離するという方 法である。  Also, a method as shown in FIG. 19 can be adopted. That is, as shown in FIG. 18 (a) from the state shown in FIG. 18 (a), as shown in FIG. 18 (b), the rotation fulcrum on one side of the transparent sheet-like member 1602 and the light-transmissive plate member 1603. The transparent sheet member 1602 and the light-transmissive plate member 1603 are gradually inclined with the center at 1901, and the transparent sheet member 1602 is the lowermost resin cured layer. This is a method of peeling from the lower surface of 905.
このようにすることによつても、 最下層の樹脂硬化層の下面に働 く力 (透明シート状部材 1 6 0 2の方向に引っ張られる力) が減少 し、 最下層の樹脂硬化層 9 0 5から透明シート状部材 1 6 0 2 を安 全に剥離することができる。 This also reduces the force acting on the lower surface of the lowermost resin cured layer (the force pulled in the direction of the transparent sheet member 1602), and reduces the lowermost resin cured layer 90. The transparent sheet-shaped member 1 It can be completely peeled off.
一方また、 上記方法を採用する場合に、 透明シー ト状部材 1 6 0 2および光透過性のプレー ト部材 1 6 0 3 とは接着されていないた め、 透明シー ト状部材 1 6 0 2の表裏に凹凸が生じ、 この凹凸部の 中に存在する気泡によって樹脂硬化層の境界面に凹凸が生じ、 層間 の接合力が弱くなり、 積層過程で脱落してしまう恐れがある。  On the other hand, when the above method is adopted, the transparent sheet-like member 1602 and the light-transmitting plate member 1603 are not bonded to each other. Irregularities occur on the front and back surfaces of the resin layer, and air bubbles existing in the irregularities cause irregularities on the boundary surface of the cured resin layer, weakening the bonding strength between the layers, and may cause the layers to fall off during the lamination process.
そこで、 本発明では、 第 2 0図 ( a ) , ( b ) に示すように、 光透 過性のプレー ト部材 1 6 0 3及び光透過部材 3 1 の一部に設けた吸 引穴 2 0 0 1から、 透明シート状部材 1 6 0 2 と光透過性のプレー 卜部材 1 6 0 3の間に存在する空気を吸引し、 透明シート状部材 1 6 0 2 を光透過性のプレー ト部材 1 6 0 3に密着させるようにした。 なお、 光透過性のプレート部材 1 6 0 3が透明シート状部材 1 6 0 2 に接する面には、 第 2 0図 ( b ) に示すように例えば矩形の溝 2 0 0 2が形成され、 この溝 2 0 0 2の一部に開通した吸引穴 2 0 0 1から吸気するようになっている。  Accordingly, in the present invention, as shown in FIGS. 20 (a) and (b), a suction hole 2 provided in a part of the light transmitting plate member 1603 and the light transmitting member 31 is provided. The air existing between the transparent sheet-like member 1602 and the light-transmissive plate member 1603 is sucked from the substrate 101, and the transparent sheet-like member 1602 is turned into the light-transparent plate. The member was brought into close contact with 163. In addition, on the surface where the light-transmitting plate member 1603 contacts the transparent sheet-like member 1602, for example, a rectangular groove 2002 is formed as shown in FIG. 20 (b). Air is sucked in from a suction hole 2001, which is opened to a part of the groove 2002.
この場合、 吸気穴の数、 溝の形状は光透過性のプレート部材 1 6 0 3や透明シー ト状部材 1 6 0 2の大きさなどによって任意の数、 任意の形状に構成できることは言うまでもない。  In this case, it goes without saying that the number of suction holes and the shape of the grooves can be configured in an arbitrary number and in an arbitrary shape depending on the size of the light-transmitting plate member 1603 and the transparent sheet-like member 1602. .
このようにすることによって、 透明シート状部材 1 6 0 2 を光透 過性のプレート部材 1 6 0 3 に密着させ、 気泡による層間の接合力 の低下を防止することができる。  By doing so, the transparent sheet-like member 1602 is brought into close contact with the light-transmissive plate member 1603, and it is possible to prevent a decrease in bonding strength between layers due to bubbles.
また、 前記各実施形態において、 パーソナルコンピュータ内で動 作する制御プログラムは、 C D— R〇 Mなどの記録媒体に記録して 一般ユーザに提供することができる。 このような記録媒体を汎用の パーソナルコンピュータにインス トールして光源、 シャツ夕、 D M U , Z軸稼動ステージ等を制御することにより、 前述したような造 形物を作成することができる。 この場合、 制御プログラムに対し、 C A Dデータをスライスする変換プログラムを組み合わせて 1つの 記録媒体に記録するようにしてもよい。 In each of the above embodiments, the control program operating in the personal computer can be provided to a general user by being recorded on a recording medium such as a CD-ROM. By installing such a recording medium in a general-purpose personal computer and controlling the light source, shirt, DMU, Z-axis operation stage, etc., Shapes can be created. In this case, the control program may be combined with a conversion program for slicing CAD data and recorded on one recording medium.
産業上の利用可能性 Industrial applicability
以上説明したようにこの発明によれば、 光硬化性樹脂の融液また は溶液から成る薄層に 2次元平面像の像光を照射する際に、 微細ミ ラーを平板上に並べた微細ミラー素子に 2次元平面像を形成するた めの制御データを入力し、 各微細ミラーの光源からの入射光に対す る反射角を制御し、前記 2次元平面像に対応する反射光を取り出し、 該反射光を前記像光として前記薄層に照射するようにしたため、 光 エネルギーの損失が少なくなり、 短い造形時間で 2次元平面像に対 応する形状の光硬化造形物を製造することができる。 また、 像光を マスクパターンで生成するのに対し、 白黒コン トラス ト比が良くな り、 精度の高い光硬化造形物を製造することができる。 さらに、 光 路中に、 メッシュ電極等の障害物がないため、 その障害を回避する ための手段が不要になり、 装置構成を簡単にすることができる。  As described above, according to the present invention, when irradiating a thin layer made of a melt or a solution of a photocurable resin with image light of a two-dimensional planar image, the fine mirrors are arranged on a flat plate. Control data for forming a two-dimensional plane image is input to the element, the reflection angle of each fine mirror with respect to the incident light from the light source is controlled, and the reflected light corresponding to the two-dimensional plane image is extracted. Since the reflected light is applied to the thin layer as the image light, loss of light energy is reduced, and a photocured object having a shape corresponding to a two-dimensional plane image can be manufactured in a short time. Also, while the image light is generated by the mask pattern, the black-and-white contrast ratio is improved, and a highly accurate photocured object can be manufactured. Furthermore, since there is no obstacle such as a mesh electrode in the optical path, means for avoiding the obstacle is not required, and the device configuration can be simplified.
同様に、 光硬化性樹脂の融液または溶液から成る薄層に 2次元平 面像の像光を照射した後、 硬化させる工程を繰返すことによって、 像光の 2次元平面像に対応する形状の樹脂硬化層を積層した立体形 状の光硬化造形物を製造する際に、 微細ミラーを平板上に並べた微 細ミラー素子に 2次元平面像を形成するための制御データを入力し、 各微細ミラーの光源からの入射光に対する反射角を制御し、 前記 2 次元平面像に対応する反射光を取り出し、 該反射光を前記像光とし て前記薄層に照射するようにしたため、 前記と同様に、 短い造形時 間で 2次元平面像に対応する形状の光硬化造形物を製造することが できる。 また、 精度の高い光硬化造形物を製造することができる。 さらに、 装置構成を簡単にすることができ、 各種造形物の 3次元の 立体モデルを作成する場合に極めて有用な効果を奏する。 Similarly, by irradiating a thin layer made of a melt or solution of a photocurable resin with image light of a two-dimensional planar image and repeating the curing process, a shape corresponding to the two-dimensional planar image of the image light is obtained. When manufacturing a three-dimensional photocured molded product in which resin cured layers are laminated, control data for forming a two-dimensional planar image on a micromirror element in which micromirrors are arranged on a flat plate are input, and each micromirror is input. By controlling the reflection angle of the mirror with respect to the incident light from the light source, extracting the reflected light corresponding to the two-dimensional plane image, and irradiating the reflected light as the image light to the thin layer, the same as above. In addition, it is possible to manufacture a light-cured molded article having a shape corresponding to a two-dimensional plane image in a short molding time. In addition, it is possible to manufacture a photo-cured molded article with high accuracy. Furthermore, the device configuration can be simplified, and this is extremely useful when creating three-dimensional three-dimensional models of various shaped objects.

Claims

請 求 の 範 囲 The scope of the claims
1 . 形成すべき光硬化物の層厚に相当する光硬化性樹脂の融液また は溶液から成る薄層に像光を照射し、 該薄層の樹脂を硬化させるこ とによって前記像光の 2次元平面像に対応する形状の複数の樹脂硬 化層が積層された立体形状の光硬化造形物を製造する光硬化造形物 の製造方法であって、  1. A thin layer made of a melt or a solution of a photocurable resin corresponding to the layer thickness of the photocured product to be formed is irradiated with image light, and the resin of the thin layer is cured to form the image light. A method for producing a three-dimensional light-cured molded article in which a plurality of resin-cured layers having a shape corresponding to a two-dimensional planar image are laminated, the method comprising:
微細ミラーを平板上に並べた微細ミラー素子に 2次元平面像を形 成するための制御データを入力し、 各微細ミラーの光源からの入射 光に対する反射角を制御し、 前記 2次元平面像に対応する反射光を 取り出し、 該反射光を前記像光として前記薄層に照射し、 該薄層の 樹脂を硬化させる工程を繰返すことによって、 前記像光の 2次元平 面像に対応する形状の樹脂硬化層を積層した立体形状の光硬化造形 物を製造することを特徴とする光硬化造形物の製造方法。  Control data for forming a two-dimensional plane image is input to the fine mirror element in which the fine mirrors are arranged on a flat plate, and the reflection angle of each fine mirror with respect to the incident light from the light source is controlled. By taking out the corresponding reflected light, irradiating the reflected light to the thin layer as the image light, and curing the resin of the thin layer, a process of forming a shape corresponding to the two-dimensional planar image of the image light is repeated. A method for producing a photocured molded article, comprising producing a three-dimensionally shaped photocured molded article in which resin cured layers are laminated.
2 . 形成すべき光硬化物の層厚に相当する光硬化性樹脂の融液また は溶液から成る薄層に像光を照射し、 該薄層の樹脂を硬化させるこ とによって前記像光の 2次元平面像に対応する形状の複数の樹脂硬 化層が積層された立体形状の光硬化造形物を製造する光硬化造形物 の製造装置であって、  2. Irradiating image light to a thin layer made of a melt or solution of a photocurable resin corresponding to the layer thickness of the photocured material to be formed, and curing the thin layer resin to form the image light. An apparatus for producing a three-dimensional photocured object in which a plurality of resin cured layers having a shape corresponding to a two-dimensional planar image are laminated, the apparatus comprising:
微細ミラーを平板上に並べた微細ミラー素子と、  A fine mirror element in which fine mirrors are arranged on a flat plate,
該微細ミラ一素子に光を入射する光源と、  A light source for emitting light to the fine mirror element,
前記微細ミラ一素子に 2次元平面像を形成するための制御データ を入力し、 各微細ミラーの光源からの入射光に対する反射角を制御 し、 前記 2次元平面像に対応する反射光を出射させ、 該反射光を前 記像光として前記薄層に照射させ、 該薄層の樹脂を硬化させる工程 を、 立体形状を構成する樹脂硬化層の層数に等しい回数だけ繰返し 制御する制御装置と を備えることを特徴とする光硬化造形物の製造装置。 Control data for forming a two-dimensional plane image is input to the micromirror element, a reflection angle of each micromirror with respect to incident light from a light source is controlled, and reflected light corresponding to the two-dimensional plane image is emitted. Irradiating the reflected light on the thin layer as the image light and curing the resin of the thin layer, a control device for repeatedly controlling the number of times equal to the number of resin cured layers constituting the three-dimensional shape; An apparatus for producing a photo-cured molded article, comprising:
3 . 形成すべき光硬化物の層厚に相当する光硬化性樹脂の融液また は溶液から成る薄層に像光を照射し、 該薄層の樹脂を硬化させるこ とによって前記像光の 2次元平面像に対応する形状の複数の樹脂硬 化層が積層された立体形状の光硬化造形物を製造する光硬化造形物 の製造方法であって、 3. Irradiating image light to a thin layer made of a melt or solution of a photo-curable resin corresponding to the layer thickness of the photo-cured material to be formed, and curing the thin layer resin to form the image light. A method for producing a three-dimensional light-cured molded article in which a plurality of resin-cured layers having a shape corresponding to a two-dimensional planar image are laminated, the method comprising:
前記光硬化物を保持するステージを初期位置に位置決めする第 1 のステップと、  A first step of positioning the stage holding the photocured product at an initial position,
位置決めされたステージの下面側に前記薄層に相当する光硬化性 樹脂の融液または溶液を注入させる第 2のステップと、  A second step of injecting a melt or solution of a photocurable resin corresponding to the thin layer into the lower surface side of the positioned stage;
微細ミラーを平板上に並べた微細ミラー素子に 2次元平面像を形 成するための制御データを入力し、 各微細ミラーの光源からの入射 光に対する反射角を制御し、 前記 2次元平面像に対応する反射光を 前記像光として前記薄層に照射させる第 3のステップと、  Control data for forming a two-dimensional plane image is input to the fine mirror element in which the fine mirrors are arranged on a flat plate, and the reflection angle of each fine mirror with respect to the incident light from the light source is controlled. A third step of irradiating the thin layer with corresponding reflected light as the image light;
像光を照射した薄層の硬化時間を待つ第 4のステップと、 硬化時間経過後に、 前記ステージを上昇させる第 5のステップと を含み、 前記第 2のステップから第 5のステップを、 立体形状を構 成する樹脂硬化層の層数に等しい回数だけ繰返し、 前記像光の 2次 元平面像に対応する形状の複数の樹脂硬化層が積層された立体形状 の光硬化造形物を製造することを特徴とする光硬化造形物の製造方 法。  A fourth step of waiting for a curing time of the thin layer irradiated with the image light, and a fifth step of elevating the stage after the lapse of the curing time, wherein the second to fifth steps are performed in a three-dimensional shape. Is repeated by the number of times equal to the number of resin cured layers constituting the above, to produce a three-dimensional photocured molded article in which a plurality of resin cured layers having a shape corresponding to the two-dimensional planar image of the image light are laminated. A method for producing a photo-cured molded article characterized by the following.
4 . 前記第 1 のステップの前に、 前記ステージの下面側に、 熱剥離 性の両面接合部材を接合した後、 該両面接合部材の下面側に前記光 硬化性樹脂と接着性を有するシート状部材を接合するステップを備 えることを特徴とする請求項 3に記載の光硬化造形物の製造方法。 4. Before the first step, a heat-peelable double-sided bonding member is bonded to the lower surface side of the stage, and then a sheet-like sheet having adhesive properties with the photocurable resin is formed on the lower surface side of the double-sided bonding member. 4. The method according to claim 3, further comprising a step of joining the members.
5 . 前記第 2のステップから第 5のステップを、 立体形状を構成す る樹脂硬化層の層数に等しい回数だけ繰返した後、 前記両面接合部 材を加熱し、 前記シー ト状部材を含む前記積層された光硬化造形物 を剥離するステップを備えることを特徴とする請求項 4に記載の光 硬化造形物の製造方法。 5. The second to fifth steps are performed to construct a three-dimensional shape. After repeating the same number of times as the number of resin cured layers, the method includes a step of heating the double-sided joint member and peeling off the laminated photocured molded article including the sheet-like member. A method for producing a light-cured molded article according to claim 4.
6 . 次の樹脂硬化層を形成する際の前記第 2のステップの終了後に おける前記第 3のステップの開始前に、 最下層の樹脂硬化層の下面 側に光硬化性樹脂と接着性を有しない透明シー ト状部材を介在させ た状態で、 該透明シー ト状部材の下面側に光透過性のプレート部材 を挿入し、 最下層の樹脂硬化層の下面側に光硬化性樹脂の融液また は溶液を密着させるステップを備えることを特徴とする請求項 3〜 5のいずれか一項に記載の光硬化造形物の製造方法。 6. Before the start of the third step after the completion of the second step when forming the next resin cured layer, the lower surface side of the lowermost resin cured layer has an adhesive property with the photocurable resin. With a transparent sheet-like member not interposed, a light-transmissive plate member is inserted into the lower surface of the transparent sheet-like member, and a photo-curable resin melt is placed on the lower surface of the lowermost resin cured layer. The method for producing a photocured molded article according to any one of claims 3 to 5, further comprising a step of bringing the solution into close contact.
7 . 前記光透過性のプレー ト部材を挿入状態で前記第 3のステツプ および第 4のステツプを実行し、 前記第 5のステツプを実行する前 に、 前記透明シー ト状部材を前記光透過性のプレート部材を引き抜 く方向に移動させながら、 前記透明シート状部材を最下層の樹脂硬 化層の下面から剥離するステップを備えることを特徴とする請求項 6 に記載の光硬化造形物の製造方法。  7. The third and fourth steps are performed with the light-transmitting plate member inserted, and before the fifth step, the transparent sheet-like member is moved to the light-transmitting state. The method according to claim 6, further comprising a step of peeling the transparent sheet-shaped member from the lower surface of the lowermost resin cured layer while moving the plate member in the pulling-out direction. Production method.
8 . 前記光透過性のプレー ト部材を挿入状態で前記第 3のステツプ および第 4のステツプを実行し、 前記第 5のステップを実行する前 に、 前記光透過性のプレー ト部材を引き抜いた後、 前記透明シー ト 状部材を前記プレート部材と最下層の樹脂硬化層の下面との間に形 成された空間の方向に押圧する剥離用部材を移動しながら、 前記透 明シート状部材を最下層の樹脂硬化層の下面から剥離するステツプ を備えることを特徴とする請求項 6 に記載の光硬化造形物の製造方 法。  8. The third and fourth steps are executed with the light-transmitting plate member inserted, and the light-transmitting plate member is pulled out before the fifth step is executed. Thereafter, the transparent sheet-like member is moved while moving a peeling member that presses the transparent sheet-like member in a direction of a space formed between the plate member and the lower surface of the lowermost resin cured layer. The method for producing a photocured molded article according to claim 6, further comprising a step of peeling off the lower surface of the lowermost resin cured layer.
9 . 前記光透過性のプレー ト部材を挿入状態で前記第 3のステップ および第 4のステツプを実行し、 前記第 5のステツプを実行する前 に、 前記透明シー ト状部材および光透過性のプレート部材の片側を 下面方向に傾斜させ、 前記透明シート状部材を最下層の樹脂硬化層 の下面から剥離するステップを備えることを特徴とする請求項 6 に 記載の光硬化造形物の製造方法。 9. The third step with the light-transmissive plate member inserted And performing the fourth step, before performing the fifth step, inclining one side of the transparent sheet-like member and the light-transmitting plate member toward the lower surface, and placing the transparent sheet-like member in the lowermost layer. The method for producing a photo-cured molded article according to claim 6, further comprising a step of peeling off the resin cured layer from the lower surface.
1 0 . 前記光透過性のプレー ト部材の一部に設けた吸引穴から前記 透明シー ト状部材を吸引して密着させるステップを備えることを特 徴とする請求項項 6 に記載の光硬化造形物の製造方法。  10. The photo-curing according to claim 6, further comprising a step of sucking the transparent sheet-like member through a suction hole provided in a part of the light-transmitting plate member to bring the transparent sheet-like member into close contact therewith. A method for manufacturing a molded article.
1 1 . 形成すべき光硬化物の層厚に相当する光硬化性榭脂の融液ま たは溶液から成る薄層に像光を照射し、 該薄層の樹脂を硬化させる ことによって前記像光の 2次元平面像に対応する形状の複数の樹脂 硬化層が積層された立体形状の光硬化造形物を製造する光硬化造形 物の製造装置であって、 11. A thin layer composed of a melt or solution of a photocurable resin corresponding to the layer thickness of the photocured product to be formed is irradiated with image light to cure the resin of the thin layer. An apparatus for manufacturing a three-dimensional photocured object in which a plurality of resin cured layers having a shape corresponding to a two-dimensional planar image of light are stacked,
前記光硬化物を保持するステージを初期位置に位置決めする第 1 の手段と、  First means for positioning a stage holding the photocured product at an initial position,
位置決めされたステージの下面側に前記薄層に相当する光硬化性 樹脂の融液または溶液を注入させる第 2の手段と、  Second means for injecting a melt or solution of a photocurable resin corresponding to the thin layer into the lower surface of the positioned stage,
微細ミ ラーを平板上に並べた微細ミラー素子に 2次元平面像を形 成するための制御データを入力し、 各微細ミラ一の光源からの入射 光に対する反射角を制御し、 前記 2次元平面像に対応する反射光を 前記像光として前記薄層に照射させる第 3の手段と、  Control data for forming a two-dimensional plane image is input to a fine mirror element in which fine mirrors are arranged on a flat plate, and a reflection angle of each fine mirror with respect to incident light from a light source is controlled. Third means for irradiating the thin layer with reflected light corresponding to an image as the image light,
像光を照射した薄層の硬化時間経過後に、 前記ステージを上昇さ せる第 4の手段と、  Fourth means for raising the stage after a lapse of the curing time of the thin layer irradiated with the image light,
前記第 2の手段から第 4の手段の動作を、 立体形状を構成する樹 脂硬化層の層数に等しい回数だけ繰返し実行させる第 5の手段と を備えることを特徴とする光硬化造形物の製造装置。 And a fifth means for repeatedly performing the operations of the second means to the fourth means a number of times equal to the number of resin-cured layers constituting the three-dimensional shape. manufacturing device.
1 2 . 形成すべき光硬化物の層厚に相当する光硬化性樹脂の融液ま たは溶液から成る薄層に像光を照射し、 該薄層の樹脂を硬化させる ことによって前記像光の 2次元平面像に対応する形状の複数の樹脂 硬化層が積層された立体形状の光硬化造形物をコンピュー夕制御に よって製造するための制御プログラムを記録した記録媒体であって. 前記光硬化物を保持するステージを初期位置に位置決めする処理 ステップと、 12. A thin layer composed of a melt or a solution of a photocurable resin corresponding to the thickness of the photocured product to be formed is irradiated with image light, and the resin of the thin layer is cured to form the image light. A recording medium storing a control program for manufacturing, by computer control, a three-dimensional light-cured molded article in which a plurality of resin cured layers having a shape corresponding to the two-dimensional planar image of the above are laminated. A processing step of positioning a stage holding an object at an initial position;
位置決めされたステージの下面側に前記薄層に相当する光硬化性 樹脂の融液または溶液を注入させる処理ステツプと、  A process step of injecting a melt or a solution of a photocurable resin corresponding to the thin layer into the lower surface side of the positioned stage;
微細ミラーを平板上に並べた微細ミラー素子に 2次元平面像を形 成するための制御データを入力し、 各微細ミラーの光源からの入射 光に対する反射角を制御し、 前記 2次元平面像に対応する反射光を 前記像光として前記薄層に照射させる処理ステップと、  Control data for forming a two-dimensional plane image is input to the fine mirror element in which the fine mirrors are arranged on a flat plate, and the reflection angle of each fine mirror with respect to the incident light from the light source is controlled. Irradiating the thin layer with the corresponding reflected light as the image light,
像光を照射した薄層の硬化時間を待つ処理ステップと、  A processing step of waiting for the curing time of the thin layer irradiated with image light,
硬化時間経過後に、 前記ステージを上昇させる処理ステップと 前記第 2のステツプから第 5のステツプを、 立体形状を構成する 樹脂硬化層の層数に等しい回数だけ繰返し実行させる処理ステップ と  After the curing time elapses, a processing step of raising the stage, and a processing step of repeatedly executing the second to fifth steps by the number of times equal to the number of resin cured layers constituting the three-dimensional shape.
を含む制御プログラムが記録されていることを特徴とするコンビュ —夕が読取り可能な記録媒体。 A recording medium on which a control program including a computer is recorded.
PCT/JP2000/004727 1999-07-15 2000-07-14 Production method and device for photo-cured shaped matter WO2001005575A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/201264 1999-07-15
JP20126499 1999-07-15

Publications (1)

Publication Number Publication Date
WO2001005575A1 true WO2001005575A1 (en) 2001-01-25

Family

ID=16438076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004727 WO2001005575A1 (en) 1999-07-15 2000-07-14 Production method and device for photo-cured shaped matter

Country Status (1)

Country Link
WO (1) WO2001005575A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2235606A1 (en) * 2003-06-20 2005-07-01 Universidad De Alicante Disperse laser based polymerization system, comprises reorientation mirrors with cooling, for polymerization as a function of process requirements
WO2014201486A1 (en) 2013-06-17 2014-12-24 Way To Production Gmbh System for layered construction of a body and pan therefor
WO2016049666A1 (en) 2014-09-29 2016-04-07 Way To Production Gmbh System for the layered construction of a body and releasing device therefor
JP2020524623A (en) * 2017-06-21 2020-08-20 エシロール・アンテルナシオナル Stereolithography product manufacturing method and stereolithography apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
JPH02128829A (en) * 1988-11-08 1990-05-17 Osaka Prefecture Optical molding method
JPH06246838A (en) * 1993-02-26 1994-09-06 Teijin Seiki Co Ltd Optically shaping device
US5447822A (en) * 1989-09-28 1995-09-05 3D Systems, Inc. Apparatus and related method for forming a substantially flat stereolithographic working surface
JPH08192469A (en) * 1995-01-20 1996-07-30 Ushio Inc Photo-setting resin curing method
EP0775570A2 (en) * 1995-11-21 1997-05-28 CMET, Inc. Intensity homogenized surface exposure type photo-solidification modeling apparatus
JPH09141749A (en) * 1995-09-22 1997-06-03 M S Tec:Kk Forming of three-dimensional image and device therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4575330A (en) * 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US4575330B1 (en) * 1984-08-08 1989-12-19
JPH02128829A (en) * 1988-11-08 1990-05-17 Osaka Prefecture Optical molding method
US5447822A (en) * 1989-09-28 1995-09-05 3D Systems, Inc. Apparatus and related method for forming a substantially flat stereolithographic working surface
JPH06246838A (en) * 1993-02-26 1994-09-06 Teijin Seiki Co Ltd Optically shaping device
JPH08192469A (en) * 1995-01-20 1996-07-30 Ushio Inc Photo-setting resin curing method
JPH09141749A (en) * 1995-09-22 1997-06-03 M S Tec:Kk Forming of three-dimensional image and device therefor
EP0775570A2 (en) * 1995-11-21 1997-05-28 CMET, Inc. Intensity homogenized surface exposure type photo-solidification modeling apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2235606A1 (en) * 2003-06-20 2005-07-01 Universidad De Alicante Disperse laser based polymerization system, comprises reorientation mirrors with cooling, for polymerization as a function of process requirements
WO2014201486A1 (en) 2013-06-17 2014-12-24 Way To Production Gmbh System for layered construction of a body and pan therefor
WO2016049666A1 (en) 2014-09-29 2016-04-07 Way To Production Gmbh System for the layered construction of a body and releasing device therefor
JP2020524623A (en) * 2017-06-21 2020-08-20 エシロール・アンテルナシオナル Stereolithography product manufacturing method and stereolithography apparatus

Similar Documents

Publication Publication Date Title
US6500378B1 (en) Method and apparatus for creating three-dimensional objects by cross-sectional lithography
KR20180028012A (en) Three-dimensional manufacturing apparatus, three-dimensional manufactured object producing method, and container for three-dimensional manufacturing apparatus
WO2006109425A1 (en) Seterolithography method
TW201637824A (en) Additive manufacturing device with release mechanism
CN104760291A (en) 3D printing device and method
JP2009166447A (en) Optical shaping apparatus and optical shaping method
JPH06246838A (en) Optically shaping device
JP4928345B2 (en) 3D modeling equipment
CN112265262B (en) Photo-curing type 3D printing device
JP4669843B2 (en) Stereolithography apparatus and stereolithography method
CN110524874B (en) Photocuring 3D printing device and printing method thereof
WO2001005575A1 (en) Production method and device for photo-cured shaped matter
JP2024022666A (en) Stereolithography device and stereolithography method using the device
JPS63141725A (en) Apparatus for forming three dimensional shape
WO2021165881A1 (en) Systems, apparatuses, and methods for manufacturing three dimensional objects via continuously curing photopolymers, utilising a vessel containing an interface fluid
JP2007008004A (en) Optical component, manufacturing method of optical component and manufacturing method of mold for optical component
JP3805749B2 (en) Thin film curing stereolithography equipment
JP5045402B2 (en) Stereolithography equipment
JPH10249943A (en) Apparatus for stereo lithography
JPH06246839A (en) Optically shaping device
JP2004155156A (en) Three-dimensionally shaping method and device
JPH04305438A (en) Optical three-dimensional shaping method
JP2007062130A (en) Manufacturing method of micro-optical device, manufacturing method of mold for micro-optical device and micro-optical device
JP2011081104A (en) Liquid crystal element and method for manufacturing the same
JP6783586B2 (en) Manufacturing method of 3D modeling equipment and 3D modeled objects

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP