WO2001008799A9 - Mikrofluidischer reaktionsträger mit drei strömungsebenen und transparenter deckschicht - Google Patents

Mikrofluidischer reaktionsträger mit drei strömungsebenen und transparenter deckschicht

Info

Publication number
WO2001008799A9
WO2001008799A9 PCT/EP2000/007445 EP0007445W WO0108799A9 WO 2001008799 A9 WO2001008799 A9 WO 2001008799A9 EP 0007445 W EP0007445 W EP 0007445W WO 0108799 A9 WO0108799 A9 WO 0108799A9
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
carrier according
reaction carrier
channels
microfluidic
Prior art date
Application number
PCT/EP2000/007445
Other languages
English (en)
French (fr)
Other versions
WO2001008799A1 (de
Inventor
Cord Friedrich Staehler
Manfred Mueller
Peer Friedrich Staehler
Original Assignee
Febit Ferrarius Biotech Gmbh
Cord Friedrich Staehler
Manfred Mueller
Peer Friedrich Staehler
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Febit Ferrarius Biotech Gmbh, Cord Friedrich Staehler, Manfred Mueller, Peer Friedrich Staehler filed Critical Febit Ferrarius Biotech Gmbh
Priority to AT00953136T priority Critical patent/ATE309041T1/de
Priority to DE50011574T priority patent/DE50011574D1/de
Priority to CA002379787A priority patent/CA2379787A1/en
Priority to US10/030,182 priority patent/US7361314B1/en
Priority to AU65692/00A priority patent/AU6569200A/en
Priority to EP00953136A priority patent/EP1198294B1/de
Publication of WO2001008799A1 publication Critical patent/WO2001008799A1/de
Publication of WO2001008799A9 publication Critical patent/WO2001008799A9/de
Priority to US12/003,826 priority patent/US20080132430A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/12Libraries containing saccharides or polysaccharides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/14Libraries containing macromolecular compounds and not covered by groups C40B40/06 - C40B40/12
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B50/00Methods of creating libraries, e.g. combinatorial synthesis
    • C40B50/14Solid phase synthesis, i.e. wherein one or more library building blocks are bound to a solid support during library creation; Particular methods of cleavage from the solid support
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/08Integrated apparatus specially adapted for both creating and screening libraries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00281Individual reactor vessels
    • B01J2219/00286Reactor vessels with top and bottom openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00319Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks the blocks being mounted in stacked arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00389Feeding through valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00427Means for dispensing and evacuation of reagents using masks
    • B01J2219/0043Means for dispensing and evacuation of reagents using masks for direct application of reagents, e.g. through openings in a shutter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00511Walls of reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00527Sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/0059Sequential processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/0061The surface being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00612Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports the surface being inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • B01J2219/00614Delimitation of the attachment areas
    • B01J2219/00621Delimitation of the attachment areas by physical means, e.g. trenches, raised areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00702Processes involving means for analysing and characterising the products
    • B01J2219/00704Processes involving means for analysing and characterising the products integrated with the reactor apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00709Type of synthesis
    • B01J2219/00711Light-directed synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00729Peptide nucleic acids [PNA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00731Saccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00831Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0095Control aspects
    • B01J2219/00952Sensing operations
    • B01J2219/00968Type of sensors
    • B01J2219/0097Optical sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/0099Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0819Microarrays; Biochips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0848Specific forms of parts of containers
    • B01L2300/0858Side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0877Flow chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/08Regulating or influencing the flow resistance
    • B01L2400/084Passive control of flow resistance
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00237Handling microquantities of analyte, e.g. microvalves, capillary networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/2575Volumetric liquid transfer

Definitions

  • the present invention relates to a microfluidic reaction carrier which, depending on the embodiment, enables purely fluid or light-controlled synthesis and analysis of oligomers or polymers.
  • any other application as a miniaturized chemical or biochemical synthesis and analysis platform is conceivable, for example, for use in combinatorial chemistry.
  • Microfluidic systems are generally still at the beginning of their development. However, they are already an important area e.g. in the field of micropumps or microvalves. The focus of current work in this area is on the production of miniaturized structures, preferably using methods from semiconductor technology.
  • Microdosing systems link microminiaturized pumps and valves with sensors for control and regulation circuits. Such systems are currently being developed and tested for special applications, e.g. for drug dosing or the dosing of the smallest amounts of liquid in a free jet according to the principle of an inkjet printer. These are used, for example, for the production of polymer probe arrays by spraying various biochemical substances onto defined positions on a carrier body.
  • microfluid analysis systems has so far only been carried out in some cases, e.g. in systems for analyzing the heavy metal content in groundwater.
  • Various established silicon technologies such as, for example, isotropic and anisotropic etching, are preferably used for the production of test and functional samples of such microfluid analysis systems.
  • micro-injection molding miniaturized hot molding
  • LIGA light-induced galvano-molding
  • the aim is therefore to develop a technology which can be used to analyze in the range of 10 8 and more bases per hour and to prepare the data so that a meaningful interaction between the operator and the device to be used is possible.
  • the heart of such a device is the subject of this invention and will be described below as a microfluidic reaction carrier.
  • This reaction carrier according to the invention is intended to represent, for example, the central component of systems for the automatic fragment synthesis and analysis of oligomers or polymers. Such a system is described in patent application 1 9924327.1.
  • the reaction carrier according to the invention contains a structure of microchannels of different sizes, geometries and functions. Part of the microchannels is used for fluid supply and discharge. All other channels serve as reaction areas, and depending on the application, fluid reservoirs etc. can optionally be integrated into the microstructure.
  • the reaction carrier is flowed through either in a two- or a three-dimensional structure.
  • the two-dimensional design variant consists of at least one supply and one discharge channel in one flow plane. These two channels are connected by several channels running approximately perpendicularly thereto, these vertical connecting channels serving as preferred reaction areas.
  • the reaction channels thus created can likewise be subdivided into smaller channels, each reaction channel comprising one or more reaction areas. These reaction areas can for example be arranged along the channel.
  • the more complex three-dimensional version consists of three flow levels.
  • the feed channels are each parallel to one another in a first flow level and the discharge ducts are each arranged parallel to one another in a third flow plane, feed and discharge ducts being arranged in a vertical projection either parallel to one another or at an angle to one another, this angle preferably being selected approximately equal to 90 °.
  • vertical channels are also arranged, which form a third flow level and connect the feed channels of the first to the discharge channels of the third level.
  • the fluids are discharged from the reaction areas without these fluids coming into contact with another reaction area of the entire reaction support. This is particularly relevant for reactions whose waste products could damage or destroy other reaction areas.
  • All three variants of the microfluidic reaction carrier according to the invention each have one on the top and the bottom
  • Feed and discharge channels of the three-dimensional structure is at least one of the cover layers is designed to be transparent in order to enable light-controlled photoactivation in the individual reaction areas by individual exposure, for example by means of a programmable light source matrix as described in patent application 199 07 080.6. All three variants are preferably made with two transparent cover layers to enable permanent optical process control in the reaction support and the measurement of detection reactions in transmitted light.
  • each individual reaction area from the vertically arranged microchannels. This is done in each case by a feed channel flushed with fluid and fluid is discharged through a discharge duct. The fluid flows through the supply channel into the vertical microreaction channels and out of the reaction carrier through the discharge channel. In the same way, several reaction areas can also be flushed simultaneously, and this even with different fluids.
  • the microfluidic reaction carrier according to the invention with the "cross structure" caused by the angled arrangement thus opens up a variety of applications in combinatorial chemistry or DNA analysis.
  • Another application is the alternating flow of feed materials to all supply and discharge channels, the function of the fluid supply and removal of the supply and discharge channels changing from cycle to cycle. If, for example, each channel is flushed with a different building block of a polymer probe to be synthesized, a large variety of oligomer or polymer probes can be generated in the individual reaction areas of a reaction support in a few cycles by using the cross structure. The synthesis of any specific individual probes in a reaction area is possible without problems by the individual control of a reaction area described above.
  • the microfluidic reaction carrier according to the invention with the cross structure thus offers the possibility of efficient wet chemical oligomer probe or polymer probe synthesis of probe arrays. This procedure is referred to below as fluid multiplexing. In situ synthesis using process monitoring and integrated synthesis and analysis are also possible.
  • microfluidic reaction carrier is integrated as a fixed component in a device and is, for example, chemically cleaned between applications and only has to be changed for maintenance purposes. If the microfluidic reaction carrier is replaced after each use, however, direct integration is not sensible. Rather, it is then advisable to arrange the components in the system accordingly.
  • the invention also relates to the supply of the microfluidic reaction carrier with the corresponding fluids.
  • a new, integrated valve system was also designed for this purpose. This allows a large number of fluids to be provided quickly on the feed and discharge channels of the microstructure.
  • This fluid supply system is designed for the use of the microfluidic reaction carrier according to the invention for the construction of oligomer or polymer probe arrays in the reaction areas.
  • the supply system is the same in the connections and components for the upper and lower feed and discharge channels. From one side, all channels are individually supplied via a multiplex valve described below. All channels are brought together at the associated other channel end, this joining being used for the supply and discharge with uniform purging of all reaction areas. In the synthesis of oligomer or polymer probes in the reaction areas, these are all cycles apart from the supply of the specific individual building blocks, for example consisting of one or more nucleotides in the case of DNA synthesis.
  • the valve is required to feed the specific modules. This connects the microchannels of the reaction carrier on one side with a maximum equal number of individual tanks as well as a collective connection on the other side. In one position of the valve, a tank is connected to one or more channels of the reaction carrier. If the fluid of a tank is to get into more than one channel or a channel bundle of the reaction carrier in one cycle, only one channel and then further channels are supplied serially.
  • the collective connection corresponds to the merging of the channels on the opposite side of the reaction carrier. It is used for the efficient flushing of the valve and reaction carrier.
  • connection of the microfluidic reaction carrier to its fluid supply and disposal is an important element. If the reaction carrier is cleaned and reused again and again in the specific application, a complex connection technology, for example to the multiplex valve, can be provided.
  • a complex connection technology for example to the multiplex valve.
  • this version has the disadvantage of the risk of deposits in the bends and kinks of the individual microchannels.
  • Backwashing can be provided here to avoid carryover.
  • fast connections that do not seal are necessary. there can, for example, be connected flat to the front of the reaction support with a continuous bend-free channel. The risk of carry-over is therefore minimal.
  • a second alternative is to press the underside of the reaction carrier onto the fluid supply. Suitable chemical-resistant seals must be provided.
  • One aspect of the invention is to be understood as a cleaning, in particular a complete regeneration of the reaction carrier. In the regenerated state, this can then be used again for a new polymer synthesis.
  • chemical cleaning it is preferable to ensure that the connection point necessary for the connection of a first polymer component is not destroyed.
  • the predetermined breaking point required for chemical cleaning can be split by chemical (e.g. wet chemical, photochemical, electrochemical) or by a biological (e.g. enzymatic) transformation. This can be done through a one-step or multi-step process.
  • the predetermined breaking point is preferably provided during the first surface derivatization of the microfluidic reaction carrier - preferably in the linker system that connects the surface with the first polymer component. It is ensured in each case that the predetermined breaking point cannot be broken by the analytes or reagents used, neither during synthesis nor during analysis.
  • the predetermined breaking point is broken by a single transformation.
  • these are base-labile linkers, acid-labile linkers, oxidation-labile linkers or degradation with the aid of suitable enzymes.
  • enzymatic cleaning of the reaction carrier can also be carried out.
  • the polymer or oligomer probes linked to the reaction carrier are cleaved with a DNA or RNA-degrading enzyme or a peptide Enzyme split or "digested", which leads to a partial or complete degradation of the probes.
  • the reaction support can then be used again for the synthesis of new probes.
  • Suitable enzymes are nucleases such as exonucleases or endonucleases, which attack a strand of nucleic acid from the ends or within the probe strand and leave nucleotides or nucleosides as cleavage products.
  • nucleases such as exonucleases or endonucleases
  • RNAsen such as RNAse H etc.
  • the regeneration of a reaction carrier with DNA probes can also be achieved by using DNAsen (DNAse I, DNAse II, etc.), whereby both single-stranded and double-stranded DNA can be degraded.
  • Peptide-cleaving enzymes can also be used as a predetermined breaking point for the degradation of peptide probes or peptide sequence sections.
  • the predetermined breaking point is broken in a multi-stage process, i.e. the predetermined breaking point is masked in a form. For this it is necessary that this masking is first removed in one or more steps before the predetermined breaking point can then ultimately be broken in the subsequent step.
  • a masked photolabile linker can be used, in which an o-nitro function necessary for the photolability is only generated by an upstream transformation. This can be done, for example, by oxidation of an amino function. This - not necessarily specific - oxidation step can be enzymatic or wet chemical respectively. Once the o-nitro function has been generated, the predetermined breaking point can then be split by exposure to light.
  • a double-stranded DNA sequence can be generated in a first step by adding an analyte complementary to the linker, which is then recognized in the following step by a special enzyme (restriction enzyme) and specifically cleaved.
  • a special enzyme restriction enzyme
  • RNA section is used as a probe “base”
  • chemical regeneration of the reaction carrier can also take place in several stages.
  • the synthesis is first carried out using 2'-OH-protected phosphitamide building blocks. After hybridization and analysis, the protective group of the RNA section is split off for regeneration, resulting in a free 2'-OH group.
  • the ribose sugar can then be cleaved in a subsequent chemical reaction step using periodate or other oxidizing agents and the probe can be removed from the reaction carrier by ⁇ -elimination.
  • the receptor cleavage or molecule cleavage in the sense explained above can also be carried out to collect cleaved molecules and to use them for further chemical processes, for example for a synthesis step.
  • the cleaning processes can be viewed as steps to obtain molecules synthesized on a carrier.
  • the microfluidic reaction carrier according to the invention is constructed in several layers, as is also customary in semiconductor microtechnology. A distinction can be made between a division of the microstructure into functional layers and construction-related layers.
  • a three-dimensional structure consists of at least five functional layers. These functional layers are described in more detail below. In production, several of these functional layers can often be integrated into a construction-related layer using suitable manufacturing processes.
  • the functional layers of the two-dimensional structure contain a middle structure layer, into which the microflow structure comprising channels, reaction areas and reservoirs is introduced. It is connected to an upper and a lower cover layer and can be made of glass, plastic or silicon. Depending on the version, the material used can be transparent or opaque. For example, Futoran glass from Schott, silicon or Teflon is recommended as the opaque material.
  • the three-dimensional structures consist of five functional layers.
  • the reaction support is constructed in mirror image to a middle level. The production does not necessarily have to be based on the functional layers. So is one Integration of the feed and discharge structure possible in the middle layer as well as in the top layer.
  • the middle layer with the vertical microchannels as reaction areas for example, suitable silicon wafers from semiconductor technology with etched pores from Siemens or fused glass fibers (fiberglass wafers) from Schott with etched out souls and a size ratio between wall thickness and channel cross section of preferably 1 5 can be used.
  • the middle functional level can be supplemented by an upper and a lower intermediate layer. This prevents or impedes an unwanted inflow of fluids (hydrophilic or hydrophobic barriers).
  • Bonding processes are used as connection technologies for silicon, glass and fiberglass wafers (with and without core).
  • the parts, such as the various wafers, are manufactured using etching techniques as well as sawing and polishing.
  • Processes such as injection molding, hot stamping or LIGA are used to use plastics such as Teflon, which is opaque, and COC or polystyrene, which is transparent.
  • the connection of components is e.g. by means of gluing or ultrasonic welding or by mechanical pressure sealing using a holder or a frame.
  • the top cover layer closes off the underlying microflow structure to the outside. This creates the microchannels.
  • the layer is designed to be translucent for the entry of light into these channels.
  • microlenses in glass from the company Mikroglas or Kunststoff (IMM Mainz) can also be used. It is also possible to use a honeycomb structure made of melted glass fibers, which was developed by Schott or ITT, for example, and is used for night vision devices, for example. This will take a long time Glass fiber bundles heated so that they melt together and form a unit. This creates a rod from which thin slices are then sawn off and polished in a manner analogous to silicon technology. These can then be bonded with glass or silicon or glued or welded with plastics.
  • the intended use of the microfluidic reaction carrier according to the invention is used as follows: First, a group of reaction areas is controlled by the microchannels of a two- or three-dimensional microstructure. After the reaction there, the reaction products formed in the individual reaction areas are discharged through microchannels without the reaction products flowing through a further reaction area.
  • a control of the reaction areas in the described three-dimensional cross structure for the purely fluidic synthesis of oligomers or polymers from mono-, oligo- or polymers, or also to accelerate the light-controlled synthesis or a combined wet-chemical and light-controlled synthesis of oligomers or polymers by the described intelligent multiplexing of the input materials can be used.
  • reaction areas and microchannels are visually checked using transparent cover layers as a platform for in-situ synthesis, permanent process control and regulation of the processes in the microstructure.
  • Light signals from detection reactions which arise in the reaction areas by chemical (for example luminescence), biochemical (for example bioluminescence) or light-induced (for example fluorescence) reactions can be carried out in an integrated synthesis and analysis device surrounding the fluidic microprocessor, as described in patent application 1 9924327.1 is described.
  • Absorption measurements in the reaction carrier are also possible through the detection of light signals which cross the microchannels and reaction areas in the transmitted light process or are reflected in the rear light process. This can be used, for example, for extended qualitative quality assurance.
  • reaction products are removed from each reaction area without another reaction area coming into contact with the reaction products. This enables reactions for synthesis and analysis to be carried out in the reaction areas, which produce reaction products (end products or intermediates) which would be harmful to other reaction areas.
  • the three-dimensional microchannels Compared to planar surfaces, the three-dimensional microchannels have a larger surface that can be used as a solid phase.
  • microstructures reduces the amount of fluid required for the reactions and at the same time increases the reaction speed. This applies both to covalent bonds and, for example, to the hybridization times in applications in DNA, RNA, PNA, LNA analysis or in protein applications.
  • Transparent cover layers enable photoreactions, for example for the light-controlled synthesis of DNA, RNA, PNA, LNA or proteins, etc.
  • the transparent cover layers enable permanent process control for the regulation of the reactions as well as the fluidics in the reaction carrier. This significantly reduces errors in both production and detection, which increases the number of measurements that can be evaluated per use of material and time.
  • a suitable design of the geometry of the individual reaction areas and of the microchannels between the reaction areas allows the beam paths to be influenced in a targeted manner, taking into account the refractive indices that occur in the reaction support.
  • the fluidic microprocessors according to the invention can be designed as simple components for single use. In principle, inexpensive plastic structures are preferred here, but glass and silicon or material combinations are also possible. The fast and inexpensive production will enable a variety of individual applications, in which e.g. probe arrays can be specifically synthesized and analyzed on the Internet, taking sequence and gene databases into account.
  • reaction areas are always three-dimensional and have a considerably larger surface area than the planar base area.
  • This three-dimensional geometry therefore greatly increases the usable reaction surface.
  • This size of the surface is of great importance for use as a solid phase. For example, it can be just as important for the attachment of oligonucleotides during synthesis in the reaction support as for the attachment of sample fragments flowing past during analysis in the reaction support.
  • the three-dimensional cross structure enables applications, for example in oligonucleotide analysis or in combinatorial chemistry, etc.
  • a large number of different combinations of oligomers or polymers can be quickly generated in the individual reaction areas of the reaction support.
  • This enables a very efficient wet chemical synthesis of an oligomer or polymer probe array in a reaction carrier. This can be done under computer control, which means the generation of any combination of nucleotides in each reaction area is made possible.
  • the analysis can also be carried out directly in the reaction carrier, whereby permanent process control is possible.
  • the number of production cycles of "probe arrays" can be reduced by appropriate multiplexing of the fluids.
  • For the site-specific generation of a large number of different oligo or polymer probes, for example 20 bases in length, on a planar surface by means of local photoactivation, four synthesis cycles are required in each level, which is due to the four different bases. In total, 4 x 20 80 cycles are required. There is no systematic way to reduce the number of synthesis cycles. In the synthesis in the microfluidic reaction carrier, on the other hand, there is the possibility of simultaneously distributing the starting materials, that is to say the monomers or oligomers, over microfluidic sub-areas.
  • the synthesis cycles can be reduced to a minimum of 5 cycles when using tetramers, for example.
  • the exact number of cycles required for a specific probe array is individual for each probe pattern and can only be given as a statistical average if the number of reaction areas in the reaction support, the number of parallel fluidic subspaces and the length of the oligomers to be synthesized are specified.
  • reaction support In addition to the synthesis of oligomers and polymers up to whole genes and genomes, there is the possibility of "de novo sequencing of unknown polymers such as DNA, RNA, PNA, LNA, proteins and others by one Sequence comparison with prepared sample material It is also possible to re - sequence polymers, that is to say to compare known and unknown sequences, with the known sequences being specifically selected it is possible to produce substance libraries for screening and analysis methods, in particular for nucleic acid analysis via hybridization.
  • All processes from synthesis to analysis of simple or complex molecules can be integrated in the microfluidic reaction carrier according to the invention and these can be carried out very efficiently.
  • This enables, for example, the flexible and cost-saving analysis of a large number of polymers by providing a large number of individual and specific polymer probes in miniaturized format with subsequent comparison of the probes with analytes of the sample material.
  • a large amount of measurement data can be generated in screening and analysis processes and thus the wealth of information in biological systems can be managed holistically and efficiently in the shortest possible time.
  • Fields of application are also methods and devices for continuous, discrete fragment analysis, which are accelerated by the present invention and thus made usable efficiently, and in principle all applications of oligo / polymer analysis such as in liquid chromatography / high pressure liquid id chromatography, gas chromatography, thin layer chromatography, Gel electrophoresis, capillary electrophoresis, mass spectrometry etc. as well as all applications of "probe arrays". It also supports substance development and the testing of corresponding substances, among others. in pharmaceutical research. Other important areas of application are molecular diagnostics, DNA and / or RNA analysis, screening for molecular interactions, for example in immunology, molecular biology, histology and combinatorial chemistry.
  • Fig. La shows a two-dimensional structure of the microfluidic
  • Reaction carrier in top view. 1 b and 1 c show the associated sectional views: the microchannel structure 1 is located in the middle flow plane 30 of the reaction carrier. This middle flow level is closed by the lower cover layer 10 and the upper cover layer 20.
  • the flow structure consists of feed channels 2 and discharge channels 3, as well as the intermediate reaction channels 4, each with at least one reaction area.
  • the microchannel structure 100 consists of the lower fluid supply structure 32 with the microchannels 1 0 2 and the upper discharge channel structure 31 with the microchannels 1 03.
  • the middle layer 40 contains the approximately vertical for the supply and discharge arranged connection or reaction channels in the
  • the cover layers 20 and 30 are optionally transparent or opaque.
  • FIGS. 2a, 2b and 2c again show the representations of FIGS. 2a, 2b and 2c.
  • the sectional views illustrate the
  • Reaction carrier in top view. 4b, 4c, 4d and 4e show the associated sectional views:
  • the Microchannel structure 200 is located in the lower fluid supply and discharge structure 32 with the microchannels 202 and the upper fluid supply and discharge structure 31 with the microchannels 203, in each case rotated through 90 ° to one another. In between are located in the middle layer 40 the connection or reaction channels arranged perpendicular to the feed and discharge in the reaction areas 204.
  • the cover layers 20 and 30 are optionally transparent or opaque.
  • Microstructure 200 the flow through the
  • Fig. 6 shows the representation of a single two-dimensional
  • FIG. 1 Flow structure analogous to FIG. 1 with modified cross sections of the feed channels 2 and the discharge channels 3 for targeted flow control.
  • the cross section of the reaction channels 4, each with at least one reaction region, is unchanged here, but can also be modified.
  • Figure 7a shows a single two-dimensional analog to Figure 6
  • Flow structure with cross sections of the feed channels 2 and of the discharge channels 3 which are changed in the height of the channels in order to influence the flow in a targeted manner.
  • the reaction channels 4, each with at least one reaction area, are also changed in cross section here and are not uniform in size.
  • the structure is closed by the obliquely arranged cover layers 10 and 20.
  • Fig. 8 shows the representation of the reid i mio nals
  • FIG. 9 shows a representation analogous to FIG. 8, the
  • Reaction areas 104 have different sizes corresponding to the size of the feed channels 102 and discharge channels 103.
  • Fig. 0a, 10b and 10c show an analog to Fig. 3a, 3b and 3c
  • the reaction regions 104 and the reaction channels 101 are uniformly long, owing to the thickness of the middle structural layer 40.
  • 1 a, 1 1 b, 1 1 c, 1 1 d and 1 1 e show a three-dimensional cross structure of the flow in a representation analogous to FIGS. 4a, 4b, 4c, 4d and 4e and 5a, 5b and 5c changed cross-sections of the supply channels 202 and discharge channels 203 for targeted flow control.
  • the reaction channels in the reaction areas 204 are of unchanged size.
  • Fig. 2a shows the representation of Fig. 5c of the cross structure with two
  • the detail 1 2b shows the structure of the cover layers 10 and 20 and a middle one
  • reaction channels 201 and the feed channels 202 and the discharge channels 203 are each replaced by a three-layer microstructure. This comprises two layers 301 and 303 for smoothing and stabilizing the inflow and outflow 202 and 203 and an actual one
  • Reaction layer 302 made of further microchannels or, for example, a glass tile.
  • FIG. 13 shows a connection variant of the micro cross structure 200 according to FIGS. 4a, 4b, 4c, 4d, 4e and 5a, 5b and 5c with two
  • Micro-flow channel variants 401 and 402. Both variants connect a channel for the fluid supply 400 to all parallel channels 202 and 203 of the two levels. In this way, all reaction areas 204 can be flushed with fluid simultaneously on different inlet and outlet variants.
  • Fig. 14 shows a representation similar to Fig. 13 with two in the
  • Fluid supply integrated valves 500 These supply the microchannel structure 200 via the channels in one level
  • reaction channels in the reaction areas 204 can be flushed with fluid.
  • One, more, or all of the reaction areas 204 can be flushed with fluid simultaneously.
  • Reaction channels can be quickly implemented any fluid supply cycles. For this purpose, only the valves 500 need to be adjusted and subjected to negative or positive pressure.
  • the uniform feeds 400 here with the channel variant 402, can also be integrated into the fluid cycles.
  • Fig. 5a shows a variant of the valve 500 from Fig. 14 with further sectional views 15b and 15c.
  • the valve is designed horizontally using micro technology. It essentially consists of a disk 509 and a plate 600.
  • the plate is connected to the microstructure 200 via channels 601 to 604, so that the fluids of the feed channels or of the micro tanks behind the channels 501 to 504 are optionally in the channels 202 of the microstructure can be pumped.
  • the assignment can be changed in series by turning the valve disc 509. According to FIG.
  • this valve 500 can also be connected to both channel structures 202 and 203 of the cross structure 200.
  • the reaction channels can thus be individually wetted with fluid.
  • Via a central feed 510 in the valve 500, the individual are analogous to the rigid mergers 401 and 402 from FIG. 14
  • Microchannels 601 to 604 optionally connected, for example for uniform rinsing during cleaning or other uniform steps e.g. in the case of spatially resolved synthesis in the reaction carrier.
  • 16a shows a further embodiment variant of the multiplex valve
  • the individual supply channels 501 to 51 6 are arranged in a circle around the reaction carrier 200.
  • the principle corresponds to Fig.1 5a, 1 5b, 1 5c. However, it can do more or larger
  • the disk 509 is again on a two-layer base plate 600 and 610.
  • Fig. 7 shows a fluidic reaction carrier in cross section, which is received by a clamping device which is provided with two opposing clamping jaws 701 and 702 with an integrated flow guide 703, wherein this Flow guidance in a flow plane 202 manages without bending, etc. in the channels.
  • the same arrangement is also possible for the channels 203.
  • a narrow sealing surface 705 is also shown.
  • Fig. 18 shows a further connection variant with flow guidance
  • a wide sealing surface 705 in the support 710 is also shown.
  • Fig.1 9 shows a further connection variant with flow guidance
  • Micro legs 721 analogous to a processor from semiconductor technology, connect the receiving socket 720 to the reaction carrier 200 or the channels 202.
  • the channels 203 can be connected in an analog manner.
  • the micro-legs 721 seal by gluing or inserting.
  • micro legs 721 are anchored in the reaction support in the lower cover layer 10.
  • liquid can be flushed into the corners 803 in a targeted manner via the channels 802 and thereby a deposit can be avoided or eliminated.

Abstract

Gegenstand der vorliegenden Erfindung ist ein mikrofluidischer Reaktionsträger, der eine rein fluidische oder auch eine lichtgesteuerte Synthese und Analyse von Oligomeren oder Polymeren ermöglicht. Der Reaktionsträger enthält eine Strömungskanalstruktur für das Durchleiten von Fluiden, wobei Zuführungen u. zu ihnen parallele Ableitungskanüle unter einem Winkel zur Ebene der Strömungskanalstruktur (Reaktionsbereiche) liegen.

Description

Mikrofluidischer Reaktionsträger
Beschreibung
Gegenstand der vorliegenden Erfindung ist ein mikrofluidischer Reaktionsträger, der je nach Ausführungsform eine rein f luidische oder auch eine lichtgesteuerte Synthese und Analyse von Oligomeren oder Polymeren ermöglicht. Es ist darüber hinaus prinzipiell jede andere Anwendung als miniaturisierte chemische oder biochemische Synthese- und Analyseplattform beispielsweise zur Anwendung in der Kombinatorischen Chemie denkbar.
Mikrofluidische Systeme stehen allgemein noch am Anfang ihrer Entwicklung. Jedoch stellen sie schon jetzt ein wichtiges Gebiet z.B. im Bereich der Mikropumpen oder Mikroventile dar. Der Schwerpunkt derzeitiger Arbeiten auf diesem Gebiet liegt in der Herstellung miniaturisierter Strukturen bevorzugt unter Einsatz von Verfahren aus der Halbleitertechnik.
Mikrodosiersysteme verknüpfen mikrominiaturisierte Pumpen und Ventile mit Sensoren für Ansteuer- und Regelschaltungen. Solche Systeme werden derzeit für spezielle Anwendungen entwickelt und erprobt, z.B. für die Medikamentendosierung oder die Dosierung von kleinsten Flüssigkeitsmengen im Freistrahl nach dem Prinzip eines Tintenstrahldruckers. Diese werden beispielsweise für die Herstellung von Polymersonden-Arrays verwendet, indem verschiedene biochemische Substanzen auf definierte Positionen eines Trägerkörpers aufgespritzt werden.
Die Vermischung von Medien in Mikrofluidsystemen, etwa in chemischen Mikroreaktoren oder in Bioreaktoren, aber auch in chemischen
Analysesystemen ist bisher noch wenig untersucht. Besteht die Notwendigkeit einer sehr raschen Vermischung, so lassen sich jedoch durch den Einsatz speziell konstruierter Wirbelstrecken, oder durch die Verwendung eines ebenfalls miniaturisierten Mischers sehr hohe Mischungsraten erzielen. Die Entwicklung von Mikromischern hat noch keine Marktreife erreicht und befindet sich größtenteils noch im experimentellen Stadium. Die Interaktion von Fluid und Wand, wie sie für den erfindungsgemäßen mikrofluidischen Reaktionsträgers von Bedeutung ist, wurde bisher noch nicht näher untersucht.
Die Realisierung kompletter Mikrofluidanalyse-Systeme wurde bisher nur in einigen Fällen durchgeführt, z.B. in Systemen zur Analyse des Schwermetallgehalts im Grundwasser. Für die Herstellung von Test- und Funktionsmustern solcher Mikrofluidanalyse-Systeme werden bevorzugt verschiedene etablierte Silizium-Technologien, wie zum Beispiel isotropes und anisotropes Ätzen, verwendet.
Ein großer Nachteil der Silizumtechnik ist der relativ hohe Materialpreis. Deshalb werden aktuell verschiedene kostengünstige Technologien entwickelt, welche die Herstellung von MikroStrukturen als "Wegwerfartikel" erlauben. Drei dieser Verfahren sind Mikro-Spritzguß, miniaturisierte Heißprägeverfahren {hot molding) oder die sogenannte LIGA (Lichtinduzierte Galvanoabformung) Technik. Diese Verfahren erlauben im Versuchsstadium die Herstellung von MikroStrukturen mit Abmessungen kleiner 1 μm.
Heute werden diese Entwicklungen beispielsweise in der DNA-Analytik angewendet. Hierbei ist das aktuelle Forschungsthema eine möglichst schnelle und daher hochparallele Detektion. Die Kombination von Hybridisierung als Nachweisprinzip und optischer Signaldetektion ist am weitesten fortgeschritten. In den USA wird die Entwicklung dieser miniaturisierten Detektions-Chips mit enormem Aufwand vorangetrieben. Die Leistungsfähigkeit in der Analyse liegt hier im Bereich von 104 bis maximal 105 Basen pro Stunde.
Ziel ist daher die Entwicklung einer Technologie, mit Hilfe deren man im Bereich von 108 und mehr Basen pro Stunde analysieren und die ermittelten Daten so aufbereiten kann, daß eine sinnvolle Interaktion zwischen Bediener und dem einzusetzenden Gerät möglich ist. Das Herzstück eines solchen Gerätes ist der Gegenstand dieser Erfindung und soll im folgenden als mikrofluidischer Reaktionsträger beschrieben werden. Dieser erfindungsgemäße Reaktionsträger soll beispielsweise das zentrale Bauteil von Systemen zur automatischen Fragmentsynthese und -analyse von Oligo- bzw. Polymeren darstellen. Ein solches System ist in der Patentanmeldung 1 9924327.1 beschrieben.
Der erfindungsgemäße Reaktionsträger beinhaltet eine Struktur aus Mikrokanälen unterschiedlicher Größe, Geometrie und Funktion. Ein Teil der Mikrokanäle dient der Fluidzufuhr und abfuhr. Alle weiteren Kanäle dienen als Reaktionsbereiche, wobei je nach Anwendung optional auch Fluidreservoirs etc. in die MikroStruktur integriert werden können. Der Reaktionsträger wird entweder in einer zwei- oder einer dreidimensionalen Struktur durchströmt. Die zweidimensionale Ausführungsvariante besteht aus mindestens jeweils einem Zuführungs- und einem Abführungskanal in einer Strömungsebene. Diese beiden Kanäle sind durch mehrere etwa senkrecht hierzu verlaufende Kanäle verbunden, wobei diese senkrechten Verbindungskanäle als bevorzugte Reaktionsbereiche dienen. Die somit entstehenden Reaktionskanäle können ebenfalls wieder in kleinere Kanäle unterteilt sein, wobei jeder Reaktionskanal einen oder mehrere Reaktionsbereiche umfaßt. Diese Reaktionsbereiche können zum Beispiel entlang des Kanals angeordnet sein.
Die komplexere dreidimensionale Ausführungsvariante besteht aus drei Strömungsebenen. Die Zuführungskanäle sind jeweils zueinander parallel in einer ersten Strömungsebene und die Abführungskanäle jeweils zueinander parallel in einer dritten Strömungsebene angeordnet, wobei Zuführungs- und Abführungskanäle in einer senkrechten Projektion entweder parallel zueinander oder unter einem Winkel zueinander angeordnet sind, wobei dieser Winkel vorzugsweise annähernd gleich 90° gewählt wird. An den Kreuzungspunkten der Kanäle in deren senkrechter Projektion in der gewinkelten Anordnung oder entlang der Kanäle in der parallelen Anordnung sind außerdem senkrechte Kanäle angeordnet, die eine dritte Strömungsebene bilden und die Zuführungskanäle der ersten mit den Abführungskanälen der dritten Ebene verbinden. Diese Verbindungskanäle sind wesentlich enger als die Zuführungs- und Abführungskanäle. Damit wird ein Überströmen der Reaktionsbereiche in den Zuführungs- und Abführungskanälen ohne Eindringen von Fluid in die Reaktionskanäle ermöglicht. Mehrere Reaktionskanäle zusammen bilden einen Reaktionsbereich.
Damit sind die technischen Voraussetzungen für eine sehr schnelle, effiziente und damit kostengünstige Bereitstellung einer Vielzahl von Reaktionsbereichen geschaffen, zum Beispiel für die integrierte Synthese einer Vielzahl von Polymersonden und die Analyse einer Vielzahl von Polymerfragmenten mittels dieser Sonden.
In allen Ausführungsvarianten werden die Fluide ausden Reaktionsbereichen abgeführt, ohne daß dabei ein Kontakt dieser Fluide mit einem anderen Reaktionsbereich des gesamten Reaktionsträgers erfolgen würde. Dies ist vor allem bei Reaktionen relevant, deren Abfallprodukte andere Reaktionsbereiche schädigen oder zerstören könnten.
Alle drei Varianten des erfindungsgemäßen mikrofluidischen Reaktionsträgers haben auf der Ober- und der Unterseite jeweils eine
Deckschicht. Bei der zweidimensionalen Struktur sowie bei den parallelen
Zuführungs- und Abführungskanälen der dreidimensionalen Struktur ist mindestens eine der Deckschichten transparent ausgebildet, um eine lichtgesteuerte Photoaktivierung in den einzelnen Reaktionsbereichen durch individuelle Belichtung z.B. mittels einer programmierbaren Lichtquellenmatrix zu ermöglichen wie sie in der Patentanmeldung 199 07 080.6 beschrieben ist. Alle drei Varianten werden bevorzugt mit zwei transparenten Deckschichten ausgeführt um eine permanente optische Prozesskontrolle im Reaktionsträger sowie die Messung von Nachweisreaktionen im Durchlicht zu ermöglichen.
Für lichtabhängige Photoaktivierung sind verschiedene Schutzgruppen bekannt und verfügbar, die zum Teil auch bei der Synthese von Microarrays zur Anwendung kommen. Hierzu zählen als Beispiele MeNPOC, NPPOC und dessen Derivate sowie einige ältere Schutzgruppen, wie sie von Pillai (Synthesis, 1 980); Hadrisan und Pillai (Proc. Indian nat. Sei. Acad. 53, 1 987) oder Birr et al (Liebigs Ann. Chem. 763, 1 972) beschrieben wurden.
Außerdem sind auch Methoden bekannt, bei denen die Photoaktivierung indirekt über die lichtabhängige Aktivierung einer säure (Photosäure) zu einer anschließenden ortsaufgelösten Abspaltung einer säurelabilen Schutzgruppe wie z.B. DMT führt (siehe Gao et al in WO 9941007). Einen ähnlichen Mechanismus kann man sich zunutze machen, wenn man geeignete Photolacke auf den Reaktionsträger aufbringt (siehe McGall in PNAS 93, S. 13555-13560, 1996).
Über diese chemischen Methoden hinaus ist außerdem denkbar, die Synthese durch Photoaktivierung und Photo-Deaktivierung von Enzymen zu steuern.
Die komplexere dreidimensionale Struktur mit den um einen Winkel gedrehten Zuführungs- und Abführungskanälen ermöglicht das individuelle
Bespülen jedes einzelnen Reaktionsbereiches aus den senkrecht angeordneten Mikrokanälen. Dies erfolgt indem jeweils ein Zuführungskanal mit Fluid bespült und an einem Abführungskanal Fluid abgeführt wird. Das Fluid fließt durch den Zuführungskanal in die senkrechten Mikroreaktionskanäle und durch den Abführungskanal wieder aus dem Reaktionsträger hinaus. Genauso können auch mehrere Reaktionsbereiche gleichzeitig und dies sogar mit unterschiedlichen Fluiden bespült werden. Damit erschließt der erfindungsgemäße mikrofluidische Reaktionsträger mit der durch die gewinkelte Anordnung bedingten "Kreuzstruktur" eine Vielfalt an Anwendungen aus der Kombinatorischen Chemie oder der DNA-Analytik.
Eine weitere Anwendung ist das abwechselnde Beströmen zunächst aller Zuführungs- und Abführungskanäle mit Einsatzstoffen, wobei die Funktion der Fluidzufuhr und -abfuhr der Zuführungs- und Abführungskanäle von Zyklus zu Zyklus wechselt. Wird beispielsweise jeder Kanal mit einem anderen Baustein einer zu synthetisierenden Polymersonde bespült, so kann durch die Anwendung der Kreuzstruktur in wenigen Zyklen eine große Vielfalt an Oligomer- oder Polymersonden in den einzelnen Reaktionsbereichen eines Reaktionsträgers erzeugt werden. Die Synthese beliebig spezifischer Einzelsonden in einem Reaktionsbereich ist durch die zuvor beschriebene Einzelansteuerung eines Reaktionsbereiches in Ergänzung problemlos möglich. Damit bietet der erfindungsgemäße mikrofluidische Reaktionsträger mit der Kreuzstruktur die Möglichkeit zur effizienten naßchemischen Oligomersonden- oder Polymersondensynthese von Sonden-Arrays. Diese Vorgehensweise soll im folgenden als f luidisches Multiplexen bezeichnet werden. Auch die In-situ-Synthese mittels Prozessüberwachung sowie die integrierte Synthese- und Analyse sind damit möglich.
Für die rein fluidische Reaktionssteuerung sind keine lichtdurchlässigen Deckschichten notwendig, jedoch ebenfalls sinnvoll für die optische Prozesskontrolle und die Erfassung von Nachweisreaktionen. Die Detektion kann hierbei ebenfalls entweder im Durchlicht oder auch im Rücklicht von einer Seite erfolgen. Kombiniert man die dreidimensionale Kreuzstruktur mit ihren um einen Winkel gedreht angeordneten Zuführungs- und Abführungskanälen mit der lichtgesteuerten Photoaktivierung der Reaktionsbereiche aus Mikrokanälen, so kann man die Effizienz der Synthese von Oligomer- oder Polymersonden noch weiter erhöhen. Sowohl die Lichtquellenmatrix als Lichtquelle als auch der benötigte Detektor können in den mikrofluidischen Reaktionsträger integriert werden. Gleiches gilt für die Integration einer CCD-Matrix als zweite gegenüberliegende Deckschicht. Auch eine direkter Anschluß einer programmierbaren Lichtquellenmatrix als Deckschicht ist möglich. Dies ist insbesondere dann naheliegend, wenn der mikrofluidische Reaktionsträger als festes Bauteil in ein Gerät integriert ist und zwischen den Anwendungen z.B. chemisch gereinigt wird und nur zu Wartungszwecken gewechselt werden muß. Wird der mikrofluidische Reaktionsträger nach jeder Verwendung ausgewechselt, so ist eine direkte Integration jedoch nicht sinnvoll. Vielmehr empfiehlt es sich dann, die Komponenten im System entsprechend anzuordnen.
Ebenfalls Gegenstand der Erfindung ist die Versorgung des mikrofluidische Reaktionsträgers mit den entsprechenden Fluiden. Hierzu wurde ein ebenfalls neuartiges, integriertes Ventilsystem konzipiert. Dies erlaubt eine schnelle Bereitstellung einer Vielzahl an Fluiden an den Zuführungs- und Abführungskanälen der MikroStruktur.
Dieses Fluidversorgungssystem ist für die Anwendung des erfindungsgemäßen mikrofluidischen Reaktionsträgers für den Aufbau von Oligomer- oder Polymersondenarrays in den Reaktionsbereichen konzipiert. Das Versorgungssystem gleicht sich in den Anschlüssen und Komponenten für die oberen und die unteren Zuführungs- und Abführungskanäle. Von der einen Seite her werden alle Kanäle individuell über ein im folgenden beschriebenes Multiplexventil versorgt. Am jeweils dazugehörigen anderen Kanalende werden alle Kanäle zusammengeführt, wobei diese Zusammenführung für die Zu- und Abführung bei einheitlicher Bespülung aller Reaktionsbereiche verwendet wird. Bei der Synthese von Oligomer- oder Polymersonden in den Reaktionsbereichen sind dies alle Zyklen außer der Zuführung der spezifischen einzelnen Bausteine, beispielsweise bestehend aus einem oder mehreren Nukleotiden im Fall der DNA-Synthese. Will man alle Reaktionsbereiche erreichen und nicht spezifisch auswählen, so ist es besser, eine strömungsoptimierte Zuführung wie beispielsweise eine duale Verästelung zu wählen, als über das Multiplexventil mit dem höheren Verschleppungsrisiko. Für das Zuführen der spezifischen Bausteine benötigt man jedoch das Ventil. Dieses verbindet die Mikrokanäle des Reaktionsträgers auf der einen Seite mit einer maximal gleich großen Anzahl an individuellen Tanks sowie einem Sammelanschluß auf der anderen Seite. In einer Position des Ventils wird jeweils ein Tank mit einem oder mehreren Kanälen des Reaktionsträgers verbunden. Soll das Fluid eines Tanks in einem Zyklus in mehr als einen Kanal bzw. ein Kanalbündel des Reaktionsträgers gelangen, so wird erst ein Kanal und anschließend weitere Kanäle seriell versorgt. Der Sammelanschluß entspricht der Zusammenführung der Kanäle auf der jeweils gegenüberliegenden Seite des Reaktionsträgers. Er dient der effizienten Spülung von Ventil und Reaktionsträger.
Die Anschlüsse des mikrofluidischen Reaktionsträgers an seine Fluidversorgung und Fluidentsorgung ist ein wichtiges Element. Wird der Reaktionsträger in der spezifischen Anwendung immer wieder gereinigt und wiederverwendet, so kann eine aufwendiger Anschlußtechnik, beispielsweise an das Multiplexventil vorgesehen werden. Hierbei ist, insbesondere bei einer großen Anzahl von Kanälen, eine Ausführung analog der Halbleiterprozessortechnik mit einer Vielzahl an kleinsten Kanälen in sogenannten "Beinen" möglich. Diese Ausführung hat strömungstechisch den Nachteil der Gefahr von Ablagerungen in den Biegungen und Knicken der einzelnen Mikrokanäle. Hier kann eine Hinterspülung wie zur Vermeidung von Verschleppungen vorgesehen werden. Bei der Anwendungsvariante, in welcher der Reaktionsträger nach jeder Anwendung ausgewechselt wird, sind schnelle und ohne Klebung dichtende Anschlüsse notwendig. Dabei kann zum Beispiel flächig an der Stirnseite des Reaktionsträgers mit durchgehendem biegungsfreiem Kanalverlauf angeschlossen werden. Somit ist das Verschleppungsrisiko minimal. Eine zweite Alternative ist das Aufpressen der Unterseite des Reaktionsträgers auf die Fluidzuführung. Geeignetechemikalienbeständige Dichtungen sind dabei jeweils vorzusehen.
Unter einem Aspekt der Erfindung soll unter einer Reinigung insbesondere eine vollständige Regenerierung des Reaktionsträgers verstanden werden. Im regenerierten Zustand kann dieser dann wieder zu einer neuen Polymer- synthese benutzt werden. Bei der chemischen Reinigung ist vorzugsweise zu beachten, dass die für die Anbindung eines ersten Polymerbausteins notwendige Anknüpfungsstelle nicht zerstört wird. Die für die chemische Reinigung notwendige Sollbruchstelle kann durch chemische (z.B. nasschemische, photochemische, elektrochemische) oder durch eine biologische (z.B. enzymatische) Transformation gespalten werden. Dies kann durch einen ein- oder mehrstufigen Prozess erfolgen. Vorzugsweise wird die Sollbruchstelle bei der ersten Oberflächenderivatisierung des mikrofluidischen Reaktionsträgers - vorzugsweise im Linkersystem, das die Oberfläche mit dem ersten Polymerbaustein verbindet - bereitgestellt. Es ist jeweils sichergestellt, dass die Sollbruchstelle weder während der Synthese noch während der Analyse durch die verwendeten Analyten oder Reagenzien gebrochen werden kann.
Einstufiger Prozess: Die Sollbruchstelle wird durch eine einzige Transformation gebrochen. Beispiele hierfür sind basenlabile Linker, säurelabile Linker, oxidationslabile Linker oder der Abbau mit Hilfe von geeigneten Enzymen.
Neben einer chemischen Reinigung kann damit auch eine enzymatische Reinigung des Reaktionsträgers durchgeführt werden. Hierbei werden die mit dem Reaktionsträger verknüpften Polymer- bzw. Oligomersonden mit einem DNA- bzw. RNA-abbauenden Enzym oder einem Peptid-spaltenden Enzym gespalten bzw. "verdaut", wodurch es zu einem teilweisen oder vollständigen Abbau der Sonden kommt. Im Anschluss kann der Reaktionsträger erneut zur Synthese neuer Sonden verwendet werden.
Als Enzyme kommen Nucleasen wie Exonucleasen oder Endonucleasen in Frage, die einen Nucleinsäurestrang von den Enden bzw. innerhalb des Sondenstrangs angreifen und Nucleotide bzw. Nucleoside als Spaltprodukte hinterlassen. Im Falle von RNA ist die Verwendung von RNAsen (wie RNAse H usw.) möglich, die bei Ausbildung eines RNA-DNA-Doppelstrangs selektiv den RNA-Teil zerschneiden, wodurch bei RNA-Sonden die gesamte Sonde und bei RNA-Teilabschnitten als Sollbruchstelle der RNA-Abschnitt gespalten wird. Die Regeneration eines Reaktionsträgers mit DNA-Sonden kann ebenfalls durch Einsatz von DNAsen (DNAse I, DNAse II, etc.) erreicht werden, wodurch sowohl einzelsträngige als auch doppelsträngige DNA abgebaut werden kann.
Ebenfalls können Peptid-spaltende Enzyme für den Abbau von Peptidsonden bzw. Peptid-Sequenzabschnitten als Sollbruchstelle eingesetzt werden.
Mehrstufiger Prozess:
Die Sollbruchstelle wird in einem mehrstufigen Prozess gebrochen, d.h. die Sollbruchstelle ist in einer Form maskiert. Hierzu ist notwendig, dass diese Maskierung in einem oder mehreren Schritten zunächst entfernt wird, bevor im darauffolgenden Schritt die Sollbruchstelle dann letzendlich gebrochen werden kann.
Als ein Beispiel kann ein maskierter photolabiler Linker verwendet werden, in dem durch eine vorgeschaltete Transformation eine für die Photolabilität notwendige o-Nitrofunktion erst generiert wird. Das kann z.B. durch Oxidation einer Aminofunktion erfolgen. Dieser - nicht notwendigerweise spezifische - Oxidationsschritt kann enzymatisch oder nasschemisch erfolgen. Ist die o-Nitrofunktion erzeugt, kann dann die Spaltung der Sollbruchstelle durch Lichteinstrahlung erfolgen.
Als eine weitere Lösung kann in einem ersten Schritt eine doppelsträngige DNA-Sequenz durch Zugabe eines zum Linker komplementären Analyten erzeugt werden, die dann im folgenden Schritt durch ein spezielles Enzym (Restriktionsenzym) erkannt und spezifisch abgespalten wird.
Bei Verwendung eines RNA-Teilabschnitts als Sonden-"Sockel" kann eine chemische Regeneration des Reaktionsträgers ebenfalls in mehreren Stufen erfolgen. Dabei wird zunächst die Synthese unter Verwendung von 2'-OH- geschützten Phosphitamidbausteinen durchgeführt. Nach Hybridisierung und Analyse wird für die Regeneration die Schutzgruppe des RNA-Teilabschnitts abgespalten, woraus eine freie 2'-OH-Gruppe resultiert. Daraufhin kann in einem folgenden chemischen Reaktionsschritt mit Hilfe von Perjodat oder anderen Oxidationsmitteln der Ribosezucker gespalten und die Sonde durch ß-Eliminierung vom Reaktionsträger entfernt werden.
Den vorstehend beschriebenen Prozessen der Reinigung (Rezeptorabspal- tung) kommt im Rahmen der Erfindung selbständige Bedeutung unabhängig von einer speziellen Träger-Ausgestaltung zu. Der Anmelder behält sich vor, ggf. selbständige Patentansprüche zu der beschriebenen Technologie der Reinigung bzw. Rezeptorabspaltung aufzustellen.
Es sei darauf hingewiesen, dass die Rezeptorabspaltung bzw. Molekülabspaltung im vorstehend erläuterten Sinne auch dazu durchgeführt werden kann, abgespaltene Moleküle zu sammeln und für weitere chemische Prozesse, z.B. für einen Syntheseschritt, einzusetzen. In diesem Sinne können die Reinigungsprozesse als Schritte zur Gewinnung von auf einem Träger synthetisierten Molekülen betrachtet werden. Der Aufbau des erfindungsgemäßen mikrofluidische Reaktionsträger erfolgt wie dies auch in der Halbleiter-Mikrotechnik üblich ist in mehreren Schichten. Hierbei kann zwischen einer Einteilung der MikroStruktur in funktionale Schichten und konstruktionsbedingte Schichten unterschieden werden.
Während es in einer zweidimensionalen Struktur mindestens drei funktionale Schichten gibt, besteht eine dreidimensionale Struktur aus mindestens fünf funktionalen Schichten. Diese funktionalen Schichten sind nachfolgend näher beschrieben. In der Produktion lassen sich oft mehrere dieser funktionalen Schichten mittels geeigneter Herstellungsverfahren in eine konstruktionsbedingte Schicht integrieren.
Die funktionalen Schichten der zweidimensionalen Struktur enthalten eine mittlere Strukturschicht, in welche die Mikroströmungsstruktur aus Kanälen, Reaktionsbereichen und Reservoirs eingebracht ist. Sie wird mit einer oberen und einer unteren Deckschicht verbunden und kann aus Glas, Kunststoff oder Silizium beschaffen sein. Je nach Ausführung kann das verwendete Material transparent oder auch lichtundurchlässig sein. Beispielsweise empfiehlt sich als lichtundurchlässiges Material Futoran-Glas der Firma Schott, Silizium oder Teflon.
Die dreidimensionalen Strukturen bestehen aus fünf Funktionalen Schichten. Einer ersten, oberen Deckschicht, einer darunterliegenden Struktur aus Mikrokanälen für die Fluidzuführung und Abführung in zur zweidimensionalen Struktur analogen Weise, einer mittleren Ebene aus senkrechten, (bevorzugt um mindestens den Faktor 10) kleineren Mikrokanälen, welche als Reaktionsbereiche dienen. Auf der Unterseite schließen sich wieder eine Ebene für Fluidversorgung und eine Deckschicht an, die beide analog zur Oberseite ausgebildet sind. Insgesamt ist der Reaktionsträger spiegelbildlich zu einer mittleren Ebene aufgebaut. Die Herstellung muß sich nicht unbedingt nach den funktionalen Schichten richten. So ist eine Integration der Zuführungs- und Abführungsstruktur sowohl in der mittleren Schicht als auch in der Deckschicht möglich. Für die mittlere Schicht mit den senkrechten Mikrokanälen als Reaktionsbereiche können beispielsweise geeignete Silizium-Wafer aus der Halbleitertechnik mit geätzten Poren der Firma Siemens oder zusammengeschmolzene Glasfasern (Fiberglas-Waf ern) der Firma Schott mit herausgeätzten Seelen und einem Größenverhältnis zwischen Wandstärke und Kanalquerschnitt von vorzugsweise 1 zu 5 verwendet werden. Um die exakte Bespülung nur der angesteuerten Reaktionskanäle zu verbessern, kann die mittlere funktionale Ebene durch eine obere und eine untere Zwischenschicht ergänzt werden. Diese verhindert bzw. erschwert ein ungewolltes Einströmen von Fluiden (hydrophile bzw. hydrophobe Barrieren) .
Die notwendigen Herstellungsverfahren unterscheiden sich je nach dem verwendeten Material. Bei Silizium-, Glas- und Fiberglaswafern (mit und ohne Seele) kommen als Verbindungstechniken Bonding-Verfahren zum Einsatz. Die Teile, wie zum Beispiel die verschieden Wafer, werden durch Ätztechniken sowie Sägen und Polieren hergestellt. Für die Verwendung von Kunststoffen wie Teflon, welches lichtundurchlässig ist, und COC oder Polystyrol, welches transparent ist, kommen Verfahren wie Spritzguss, Heißprägen oder LIGA zum Einsatz. Die Verbindung von Bauteilen erfolgt z.B. mittels Kleben oder Ultraschallschweißen oder durch mechanische Druckdichtung mittels einer Halterung oder eines Rahmens.
Die obere Deckschicht schließt die darunterliegende Mikroströmungsstruktur nach außen ab. Hierdurch entstehen die Mikrokanäle. Für den Eintrag von Licht in diese Kanäle ist die Schicht lichtdurchlässig ausgebildet. Für eine optimierte Optik können auch Mikrolinsen in Glas der Firma Mikroglas oder Kunststoff (IMM Mainz) verwendet werden. Möglich ist ebenfalls der Einsatz einer Wabenstruktur aus zusammengeschmolzenen Glasfasern, die z.B. von der Firma Schott oder ITT entwickelt wurde und beispielsweise bei Nachtsichtgeräten zum Einsatz kommt. Hierzu werden lange Glasfaserbündel so erhitzt, daß sie zusammenschmelzen und eine Einheit bilden. Auf diese Weise entsteht eine Stange , von welcher dann in zur Siliziumtechnologie analogen Weise dünne Scheiben abgesägt und poliert werden. Diese können anschließend mit Glas oder Silizium gebondet oder mit Kunststoffen verklebt bzw. verschweißt werden.
Der erfindungsgemäße mikrofluidische Reaktionsträger wird in seiner bestimmungsgemäßen Verwendung folgendermaßen eingesetzt: Zunächst wird eine Gruppe von Reaktionsbereichen durch die Mikrokanäle einer zwei- bzw. dreidimensionalen MikroStruktur angesteuert. Nach der dort erfolgten Reaktion werden die in den einzelnen Reaktionsbereichen entstehenden Reaktionsprodukte durch Mikrokanäle abgeführt, ohne daß dabei die Reaktionsprodukte einen weiteren Reaktionsbereich durchströmen. Dabei kann eine Ansteuerung der Reaktionsbereiche in der beschriebenen dreidimensionalen Kreuzstruktur zur rein fluidischen Synthese von Oligo- oder Polymeren aus Mono-, Oligo- oder Polymeren, oder auch zur Beschleunigung der lichtgesteuerten Synthese oder einer kombinierten nasschemischen und lichtgesteuerten Synthese von Oligomeren oder Polymeren durch das beschriebene intelligente Multiplexen der Einsatzstoffe genutzt werden.
Währenddessen erfolgt eine optische Kontrolle aller Reaktionsbereiche und Mikrokanäle durch transparente Deckschichten als Plattform für eine In-Situ-Synthese, eine permanente Prozesskontrolle und Regelung der Abläufe in der Mikro Struktur. Damit ist die Basis für eine umfassende Qualitätssicherung geschaffen. Lichtsignale von Nachweisreaktionen, welche in den Reaktionsbereichen durch chemische (z.B. Lumineszenz), biochemische (z.B. Biolumineszenz) oder lichtinduzierte (z.B. Fluoreszenz) Reaktionen entstehen, können in einem den fluidischen Mikroprozessor umgebenden integrierten Synthese- und Analyse Gerät, wie es in der Patentanmeldung 1 9924327.1 beschrieben ist, erfaßt werden. Weiterhin möglich sind Absorptionsmessungen im Reaktionsträger durch die Erfassung von Lichtsignalen, welche die Mikrokanäle und Reaktionsbereiche im Durchlichtverfahren durchqueren oder im Rücklichtverfahren reflektiert werden. Dies kann zum Beispiel für eine erweiterte qualitative Qualitätssicherung genutzt werden.
Die Vorteile dieses erfindungsgemäßen mikrofluidischen Reaktionsträgers sind vielfältig: Zum einen werden die Reaktionsprodukte von jedem Reaktionsbereich abgeführt, ohne daß ein weiterer Reaktionsbereich mit den Reaktionsprodukten in Berührung kommt. Dies ermöglicht die Durchführung von Reaktionen für die Synthese und Analyse in den Reaktionsbereichen, welche Reaktionsprodukte (Endprodukte oder Zwischenprodukte) erzeugen, die für andere Reaktionsbereiche schädlich wären.
Im Vergleich zu planaren Flächen haben die dreidimensionalen Mikrokanäle eine größere als Festphase nutzbare Oberfläche.
Die Verwendung von MikroStrukturen reduziert die für die Reaktionen benötigte Fluidmenge und erhöht gleichzeitig die Reaktionsgeschwindigkeit. Dies gilt sowohl für kovalente Bindungen wie auch zum Beispiel für die Hybridisierungszeiten bei Anwendungen in der DNA, RNA, PNA, LNA- Analytik oder bei Proteinanwendungen.
Durch transparente Deckschichten werden Photoreaktionen zum Beispiel für die lichtgesteuerte Synthese von DNA, RNA, PNA, LNA oder Proteinen, etc. ermöglicht.
Außerdem wird durch die transparenten Deckschichten eine permanente Prozesskontrolle für die Regelung der Reaktionen sowie der Fluidik im Reaktionsträger ermöglicht. Dadurch werden die Fehler sowohl bei der Produktion als auch bei der Detektion deutlich reduziert, womit sich die Zahl der auswertbaren Messungen pro Material- und Zeiteinsatz erhöht. Durch eine geeignete Auslegung der Geometrie der einzelnen Reaktionsbereiche sowie der Mikrokanäle zwischen den Reaktionsbereichen lassen sich die Strahlengänge unter Berücksichtigung der auftretenden Brechungsindizes im Reaktionsträger gezielt beeinflussen.
Die erfindungsgemäßen fluidischen Mikroprozessoren können als einfache Komponenten für den einmaligen Gebrauch ausgeführt werden. Prinzipiell sind hier kostengünstige Kunststoff- Strukturen zu bevorzugen, aber auch Glas- und Silizium oder auch Materialkombinationen sind als Ausführungen möglich. Die schnelle und kostengünstige Produktion wird eine Vielfalt von individuellen Anwendungen ermöglichen, bei denen z.B. unter Berücksichtigung von Sequenz- und Gendatenbanken im Internet gezielt Sonden-Arrays synthetisiert und analysiert werden können.
Dabei finden die Reaktionen immer an den Wänden der Mikroreaktionskanäle statt. Folglich sind die Reaktionsbereiche immer dreidimensional ausgeprägt und haben eine erheblich größere Oberfläche als die planare Grundfläche. Durch diese dreidimensionale Geometrie ist also die nutzbare Reaktionsoberfläche stark vergrößert. Diese Größe der Oberfläche ist für die Verwendung als feste Phase von großer Bedeutung. Sie kann zum Beispiel für die Anlagerung von Oligonukleotiden bei der Synthese im Reaktionsträger ebenso von Bedeutung sein wie für die Anlagerung von vorbeiströmenden Proben-Fragmente bei einer Analyse im Reaktionsträger.
Die dreidimensionale Kreuz- Struktur ermöglicht Anwendungen zum Beispiel in der Oligonukleotid- Analytik oder in der Kombinatorischen Chemie etc. Durch die Verwendung der beiden sich überkreuzenden Strukturen läßt sich schnell eine Vielzahl an unterschiedlichen Kombinationen von Oligomeren oder Polymeren in den individuellen Reaktionsbereichen des Reaktionsträgers erzeugen. Dadurch ist eine sehr effiziente naßchemische Synthese eines Oligomer- oder Polymersondenarrays in einem Reaktionsträger möglich. Dies kann computergesteuert erfolgen, wodurch die Erzeugung von beliebigen Nukleotidkombinationen in jedem Reaktionsbereich ermöglicht wird. Die Analyse kann ebenfalls direkt im Reaktionsträger erfolgen, wobei eine permanente Prozeßkontrolle möglich ist.
Durch ein entsprechendes Multiplexen der Fluide kann die Zahl der Herstellungszyklen von "Sondenarrays" reduziert werden. Für die ortsspezifische Erzeugung einer Vielzahl unterschiedlicher Oligo- oder Polymersonden von beispielsweise 20 Basen Länge auf einer planaren Oberfläche mittels örtlicher Photoaktivierung benötigt man in jeder Ebene vier Synthesezyklen, was durch die vier verschiedenen Basen bedingt ist. Insgesamt werden also 4 x 20 = 80 Zyklen benötigt. Dabei besteht keine systematische Möglichkeit die Anzahl an Synthesezyklen zu reduzieren. Bei der Synthese im mikrofluidischen Reaktionsträger bietet sich hingegen die Möglichkeit, die Einsatzstoffe, also die Mono- oder Oligomere, gleichzeitig auf mikrofluidische Subbereiche zu verteilen. Dadurch lassen sich die Synthesezyklen bei Verwendung von Tetrameren beispielsweise auf minimal 5 Zyklen reduzieren. Die genaue Anzahl der für einen spezifischen Sondenarray benötigten Zyklen ist für jedes Sondenmuster individuell und kann nur als statistischer Mittelwert angegeben werden, wenn die Anzahl an Reaktionsbereichen im Reaktionsträger, die Anzahl an parallelen fluidischen Subräumen und die Länge der zu synthetisierenden Oligomere vorgegeben ist.
Folgende Verfahren werden mit dem erfindungsgemäßen Reaktionsträger anwendbar: Neben der Synthese von Oligomeren und Polymeren bis zu ganzen Genen und Genomen bietet sich die Möglichkeit des "de novo - Sequenzierens von nicht bekannten Polymeren wie DNA, RNA, PNA, LNA, Proteinen und anderen durch einen Sequenzvergleich mit aufbereitetem Probenmaterial. Darüber hinaus möglich ist das Re - Sequenzieren von Polymeren, also der Vergleich von bekannten mit unbekannten Sequenzen, wobei die bekannten Sequenzen gezielt ausgewählt werden. Ebenfalls möglich ist die Herstellung von Substanzbibliotheken für Screening- und Analyseverfahren, insbesondere zur Nukleinsäure-Analyse über Hybridisierung.
In dem erfindungsgemäßen mikrofluidischen Reaktionsträger lassen sich alle Vorgänge von der Synthese bis zur Analyse einfacher oder komplexer Moleküle integrieren und diese sehr effizient durchführen. Dies ermöglicht zum Beispiel die flexible und kostensparende Analyse einer großen Zahl von Polymeren durch Bereitstellen einer Vielzahl von individuellen und spezifischen Polymersonden in miniaturisiertem Format mit anschließendem Vergleich der Sonden mit Analyten des Probenmaterials. Dadurch kann in Screening- und Analyseverfahren eine große Menge an Meßdaten erzeugt werden und somit die Informationsfülle biologischer Systeme effizient in kürzester Zeit ganzheitlich bewältigt werden.
Anwendungsfelder sind außerdem Verfahren und Geräte zur kontinuierlichen, diskreten Fragmentanalyse, welche durch die vorliegende Erfindung beschleunigt und damit effizient einsetzbar gemacht werden, sowie prinzipiell alle Anwendungen der Oligo/Polymeranalyse wie bei Liquid Chromatogra phie/High Pressure Liqu id Chromatog raphie , Gaschromatographie, Dünnschichtchromatographie, Gelelektrophorese, Kapillarelektrophorese, Massenspektrometrie etc. sowie alle Anwendungen von "Sonden Arrays". Weiterhin unterstützt wird damit die Substanzentwicklung und das Austesten von entsprechenden Substanzen u.a. in der Pharmaforschung. Weitere wichtige Anwendungsgebiete sind die Molekulare Diagnostik, DNA- und/oder RNA-Analyse, Screening nach molekularen Interaktionen beispielsweise in der Immunologie, Molekularbiologie, Histologie und Kombinatorischen Chemie.
Bei der Gestaltung gibt es ebenso wie bei der Fertigung der Reaktionsträger eine Vielzahl von Ausführungsvarianten, die in den folgenden Skizzen dargestellt sind: Fig. l a zeigt eine zweidimensionale Struktur des mikrofluidischen
Reaktionsträgers in der Draufsicht. Fig. 1 b und 1 c zeigen die dazugehörigen Schnittdarstellungen: Die Mikrokanalstruktur 1 befindet sich in der mittleren Strömungsebene 30 des Reaktionsträgers. Diese mittlere Strömungsebene wird von der unteren Deckschicht 1 0 und der oberen Deckschicht 20 abgeschlossen. Die Strömungsstruktur besteht aus Zuführungskanälen 2 und Abführungskanälen 3, sowie den dazwischenliegenden Reaktionskanälen 4 mit jeweils mindestens einem Reaktionsbereich.
Fig.2 zeigt eine dreidimensionale Struktur des mikrofluidischen
Reaktionsträgers in der Draufsicht. Fig. 2b, 2c und 2d zeigen die dazugehörigen Schnittdarstellungen: Die Mikrokanalstruktur 100 besteht aus der unteren Fluidzuführungsstruktur 32 mit d e n M i k r o k a n ä l e n 1 0 2 u n d d e r o b e r e n Abführungskanalstruktur 31 mit den Mikrokanälen 1 03. Dazwischen befinden sich in der mittleren Schicht 40 die annähernd senkrecht zur Zuführung und Abführung angeordneten Verbindungs- bzw. Reaktionskanäle in den
Reaktionsbereichen 104. Die Deckschichten 20 und 30 sind wahlweise transparent oder lichtundurchlässig.
Fig. 3a, 3b und 3c zeigen nochmals die Darstellungen der Fig. 2a, 2b und 2c. Dabei verdeutlichen die Schnittdarstellungen den
Strömungsverlauf durch die Zuführungskanäle 102, die
Reaktionskanäle 101 in den Reaktionsbereichen 104 und die
Fluidabführung 103.
Fig.4a zeigt eine dreidimensionale Kreuzstruktur des mikrofluidischen
Reaktionsträgers in der Draufsicht. Fig. 4b, 4c, 4d und 4e zeigen die dazugehörigen Schnittdarstellungen: Die Mikrokanalstruktur 200 befindet sich in der unteren Fluidzuführungs- und Fluidabführungsstruktur 32 mit den Mikrokanälen 202 und der oberen Fluidzuführungs- und Fluidabführungsstruktur 31 mit den Mikrokanälen 203, jeweils um 90° zueinander gedreht. Dazwischen befinden sich in der mittleren Schicht 40 die senkrecht zur Zuführung und Abführung angeordneten Verbindungs- bzw. Reaktionskanäle in den Reaktionsbereichen 204. Die Deckschichten 20 und 30 sind wahlweise transparent oder lichtundurchlässig.
Fig.5a, 5b und 5c zeigen nochmals die Darstellungen der Fig. 4a, 4b und
4c. Dabei verdeutlichen die Schnittdarstellungen der
MikroStruktur 200 den Strömungsverlauf durch die
Zuführungs- und Abführungskanäle 202 und 203, sowie die Reaktionskanäle 201 in den Reaktionsbereichen 204.
Fig. 6 zeigt die Darstellung einer einzelnen zweidimensionalen
Strömungsstruktur analog Fig.1 mit veränderten Querschnitten der Zuführungskanäle 2 und der Abführungskanäle 3 zur gezielten Strömungsbeeinflussung. Die Reaktionskanäle 4 mit jeweils mindestens einem Reaktionsbereich sind hier im Querschnitt unverändert, können aber auch modifiziert werden.
Fig.7a zeigt analog zu Fig.6 eine einzelne zweidimensionale
Strömungsstruktur mit in der Höhe der Kanäle veränderten Querschnitten der Zuführungskanäle 2 und der Abführungskanäle 3 zur gezielten Strömungsbeeinflussung. Die Reaktionskanäle 4 mit jeweils mindestens einem Reaktionsbereich sind hier im Querschnitt ebenfalls verändert und nicht einheitlich in der Größe. Die Struktur wird durch die schräg angeordneten Deckschichten 1 0 und 20 geschlossen. Fig. 8 zeigt d i e Darstellu n g ei n er d reid i me n sio n al en
Strömungsstruktur analog Fig. 2 und 3 mit veränderten Querschnitten der Zuführungskanäle 1 02 und der Abführungskanäle 103 zur gezielten Strömungsbeeinflussung. Die Reaktionskanäle in den Reaktionsbereichen 1 04 sind dabei in ihrer Größe unverändert.
Fig. 9 zeigt eine zu Fig. 8 analoge Darstellung, wobei die
Reaktionsbereiche 104 entsprechender der Größe der Zuführungskanäle 102 und Abführungskanäle 103 unterschiedliche Größe aufweisen.
Fig.1 0a, 10b und 10c zeigen eine zu Fig. 3a, 3b und 3c analoge
Darstellung, wobei sich die Zuführungskanäle 102 und die Abführungskanäle 103 in ihrer Höhe verändern und damit die
Strömung beeinflussen. Die Reaktionsbereiche 104 und die Reaktionskanäle 101 sind, bedingt durch die Dicke der mittleren Strukturschicht 40, einheitlich lang.
Fig.1 1 a, 1 1 b, 1 1 c, 1 1 d und 1 1 e zeigen eine dreidimensionalen Kreuzstruktur der Strömung in einer zu Fig. 4a, 4b, 4c, 4d und 4e und 5a, 5b und 5c analogen Darstellung mit veränderten Querschnitten der Zuführungskanäle 202 und Abführungskanäle 203 zur gezielten Strömungsbeeinflussung. Die Reaktionskanäle in den Reaktionsbereichen 204 sind dabei von unveränderter Größe.
Fig.1 2a zeigt die Darstellung der Fig. 5c der Kreuzstruktur mit zwei
Detailvarianten 1 2b und 1 2c. Das Detail 1 2b stellt die Struktur aus den Deckschichten 10 und 20 sowie einer mittleren
Schicht 40 mit den Reaktionsbereichen in den
Reaktionskanälen 201 sowie den Zuführungskanälen 202 und den Abführungskanälen 203 dar. Im Detail 12c sind die Reaktionskanäle 201 aus der Variante 12b jeweils durch eine dreischichtige MikroStruktur ersetzt. Diese umfaßt zwei Schichten 301 und 303 zur Glättung und Stabilisierung der Zu- und Abströmung 202 und 203 sowie einer eigentlichen
Reaktionsschicht 302 aus weiteren Mikrokanälen oder beispielsweise einem Glasflies.
Fig.13 zeigt eine Anschlußvariante der Mikro-Kreuzstruktur 200 nach Fig. 4a, 4b, 4c, 4d, 4e und 5a, 5b und 5c mit zwei
Mikroanströmungskanalvarianten 401 und 402. Beide Varianten verbinden einen Kanal für die Fluidversorgung 400 jeweils mit allen parallelen Kanälen 202 und 203 der beiden Ebenen. So können sämtliche Reaktionsbereiche 204 gleichzeitig auf verschiedenen Zu- und Abführungsvarianten mit Fluid bespült werden.
Fig.14 zeigt eine zu Fig.13 analoge Darstellung mit zwei in die
Fluidversorgung integrierten Ventilen 500. Diese versorgen die Mikrokanalstruktur 200 über die Kanäle in der einen Ebene
202 und der anderen Ebene 203. Dadurch können die Reaktionskanäle in den Reaktionsbereichen 204 mit Fluid bespült werden. Es können ein, mehrere oder alle Reaktionsbereiche 204 gleichzeitig mit Fluid bespült werden. Durch die Ventilstellung und die Strömungsrichtung durch die
Reaktionskanäle können schnell beliebige Fluidversorgungszyklen realisiert werden. Hierzu sind nur die Ventile 500 zu verstellen und mit Unter- oder Überdruck zu beaufschlagen. Auch die einheitlichen Zuführungen 400, hier mit der Kanalvariante 402, können in die Fluidzyklen integriert werden. Fig.1 5a zeigt eine Ausführungsvariante des Ventils 500 aus Fig.14 mit weiteren Schnittdarstellungen 1 5b und 15c. Das Ventil ist horizontal in Mikrotechnik ausgeführt. Es besteht im wesentlichen aus einer Scheibe 509 und einer Platte 600. Die Platte ist mit der MikroStruktur 200 über Kanäle 601 bis 604 verbunden, so daß wahlweise die Fluide der Zuführungskanäle bzw. der Mikrotanks hinter den Kanälen 501 bis 504 in die Kanäle 202 der MikroStruktur gepumpt werden können. Die Zuordnung kann durch Drehen der Ventilscheibe 509 seriell verändert werden. Dieses Ventil 500 kann gemäß Fig.14 auch an beide Kanalstrukturen 202 und 203 der Kreuzstruktur 200 angeschlossen werden. Damit können die Reaktionskanäle individuell mit Fluid benetzt werden. Über eine zentrale Zuführung 510 im Ventil 500 werden analog zu den starren Zusammenführungen 401 und 402 aus Fig. 1 3 die einzelnen
Mikrokanäle 601 bis 604 wahlweise verbunden, beispielsweise für einheitliche Bespülungen beim Reinigen oder anderen einheitlichen Schritten z.B. bei der ortsaufgelösten Synthese im Reaktionsträger.
Fig.16a zeigt eine weitere Ausführungsvariante des Multiplexventils
500 mit der Schnittdarstellung 1 6b. Hier sind die einzelnen Versorgungskanäle 501 bis 51 6 kreisförmig um den Reaktionsträger 200 angeordnet. Das Prinzip entspricht Fig.1 5a, 1 5b, 1 5c. Es können damit jedoch mehr oder größere
Anschlüsse realisiert werden. Die Scheibe 509 befindet sich wieder auf einer zweischichtigen Grundplatte 600 und 610.
Fig.1 7 zeigt einen fluidischen Reaktionsträger im Querschnitt, der durch eine Spannvorrichtung aufgenommen ist, die mit zwei gegenüberliegenden Spannbacken 701 und 702 mit einer integrierten Strömungsführung 703 versehen ist, wobei diese Strömungsf ührung in einer Strömungsebene 202 ohne Biegung etc. in den Kanälen auskommt. Die gleiche Anordnung ist auch für die Kanäle 203 möglich. Weiterhin dargestellt ist eine schmale Dichtfläche 705.
Fig.18 zeigt eine weitere Anschlußvariante mit Strömungsführung
703 mit Biegungen 704 in mindestens zwei Ebenen. Dargestellt ist weiterhin eine breite Dichtfläche 705 im Auflager 710.
Fig.1 9 zeigt eine weitere Anschlußvariante mit Strömungsführung
703 mit Biegungen 704 in mindestens zwei Ebenen. Mikrobeine 721 analog zu einem Prozessor aus der Halbleitertechnik verbinden den Auf nahmesockel 720 mit dem Reaktionsträger 200 bzw. den Kanälen 202. Die Kanäle 203 können analog angeschlossen werden. Eine Dichtung erfolgt durch die Mikrobeine 721 durch verkleben oder einstecken.
Fig.20 zeigt am Beispiel der Mikrobeine 721 aus Fig.1 9 eine Hinterspülung 803 zur Vermeidung von Ablagerungen in einer
Biegung der Strömung und der damit verbundenen Verschleppungsgefahr. Diese Mikrobeine 721 sind in dem Reaktionsträger in der unteren Deckschicht 10 verankert. Durch die zweite Reihe an Reinigungsbeinen 801 kann gezielt Flüssigkeit über die Kanäle 802 in die Ecken 803 gespült werden und dadurch eine Ablagerung vermieden bzw. beseitigt werden.

Claims

Ansprüche
1 . Mikrofluidischer Reaktionsträger mit einer Mehrzahl von 5 Reaktionsbereichen, dadurch gekennzeichnet, daß dieser
Reaktionsträger eine Strömungskanalstruktur für das Durchleiten von Fluiden enthält, wobei Zuführungskanäle und dazu parallele Abführungskanäle durch zu diesen unter einem Winkel angeordnete Verbindungskanäle miteinander verbunden sind und besagte o Verbindungskanäle oder auch Teile der Zu- und Abführungskanäle als
Reaktionsbereiche dienen.
2. Mikrofluidischer Reaktionsträger nach Anspruch 1 , dadurch gekennzeichnet, daß die Strömungskanalstruktur aus drei 5 Strömungsebenen besteht, wobei die Zuführungskanäle zueinander parallel in einer ersten Strömungsebene liegen und die Abführungskanäle zueinander parallel in einer dritten Strömungsebene liegen und zu diesen beiden Strömungsebenen senkrecht oder annähernd senkrecht die Verbindungskanäle mit den 0 Reaktionsbereichen liegen.
3. Mikrofluidischer Reaktionsträger nach Anspruch 2, dadurch gekennzeichnet, daß in einer zu der ersten und der dritten Strömungsebene senkrechten Projektion die Zuführungskanäle der 5 ersten Strömungsebene die Abführungskanäle der zweiten
Strömungsebene unter einem Winkel kreuzen.
4. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß jeder Strömungskanal individuell über 0 ein Ventilsystem mit Fluid beströmt und entleert werden kann.
5. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Abführung des Fluids jedes Reaktionsbereichs ohne Kontakt dieses Fluids zu den anderen Reaktionsbereichen erfolgt.
6. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Strömungskanalstruktur einseitig mit einer transparenten Deckschicht versehen ist.
7. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Strömungskanalstruktur beidseitig mit einer transparenten Deckschicht versehen ist.
8. Mikrofluidischer Reaktionsträger nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die transparenten Deckschichten aus Glas oder
Kunststoff bestehen und in diese Deckschichten eine Struktur von Mikrolinsen derart integriert ist, daß das einfallende Licht auf die Reaktionsbereiche fokussiert wird und das ausfallende Licht einer Nachweisreaktion entsprechend gebündelt wird.
9. Mikrofluidischer Reaktionsträger nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die transparenten Deckschichten aus einer Vielzahl von parallelen verschmolzenen Glasfasern bestehen, welche derart zu einer transparenten Wabenstruktur ausgebildet sind, daß das ein- und ausfallende Licht parallelisiert und ein seitliches reflexionsbedingtes Ausbreiten des Lichtes in der Deckschicht verhindert wird.
1 0. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Wände zwischen den
Zuführungskanälen und den Abführungskanälen lichtundurchlässig ausgeführt sind.
1 1. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß die Verbindungskanäle aus einer Vielzahl von zusammengeschmolzenen Glasfaserbündeln bestehen, wobei die Glasfaserseelen herausgeätzt sind und somit Mikrokanäle bestehen.
12. Mikrofluidischer Reaktionsträger nach Anspruch 1 1 , dadurch gekennzeichnet, daß die Glasfaserbündel mit herausgeätzten Seelen nur im Bereich der Reaktionsbereich angeordnet werden.
13. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß die Verbindungsebenen aus einer Siliziumschicht bestehen, in welche eine Vielzahl von kleinen Kanälen geätzt wurde.
14. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 2 bis 9, dadurch gekennzeichnet, daß mehrere Strömungsebenen so übereinander angeordnet werden, daß sich die Reaktionsbereiche in der zu den Strömungsebenen senkrechten Projektion nicht überlagern und individuell durch Licht photoaktiviert werden können und Licht ebenfalls ortsspezifisch für jeden der Reaktionsbereiche detektiert werden kann.
15. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß eine programmierbare
Lichtquellenmatrix für die Synthese und Analyse in den Reaktionsträger integriert wird.
1 6. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß eine Detektionseinheit in Form einer
CCD-Matrix in den Reaktionsträger integriert wird.
1 7. Mikrofluidischer Reaktionsträger nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Vielzahl von jeweils unterschiedlichen Rezeptoren an spezifische Bereiche an den Träger gebunden ist.
1 8. Mikrofluidischer Reaktionsträger nach Anspruch 17, dadurch gekennzeichnet, dass die Rezeptoren ausgewählt sind aus Nukleinsäuren, wie DNA, RNA, Nukleinsäureanaloga, wie Peptid- nukleinsäuren (PNA), Peptiden und Sacchariden.
1 9. Mikrofluidischer Reaktionsträger nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass die Rezeptoren aus einzelnen Synthesebausteinen an dem Träger synthetisiert worden sind.
20. Mikrofluidischer Reaktionsträger nach einem der Ansprüche 1 7 - 1 9, dadurch gekennzeichnet, dass zwischen Rezeptor und Träger ein Baustein eingefügt ist, der eine Abspaltung des Rezeptors erlaubt.
21 . Mikrofluidischer Reaktionsträger nach Anspruch 20, dadurch gekennzeichnet, dass nach Abspaltung des Rezeptors eine funktio- nelle Gruppe auf dem Träger zurückbleibt, welcher zur Synthese eines neuen Rezeptors geeignet ist.
22. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 6 bis 21 , wobei durch die transparente Deckschicht
Lumineszenz- und Fluoreszenzmessungen im Rücklichtverfahren durchgeführt werden.
23. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 7 bis 22, wobei jeder Reaktionsbereich über eine programmierbare Lichtquellenmatrix Licht definierter Wellenlänge ausgesetzt wird und über besagtes Licht und besagte Fluidversorgung biochemisch funktionalisiert wird und gleichzeitig über die zweite transparente Deckschicht alle Vorgänge im Reaktionsträger optisch überwacht werden.
24. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 7 bis 22, wobei durch die beiden transparenten Deckschichten Lumineszenz- und Fluoreszenzmessungen sowie Absorptionsmessungen im Durchlichtverfahren durchgeführt werden.
25. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 1 bis 22 zur naßchemischen Synthese von Oligomer- oder Polymersonden wie DNA, RNA, PNA, LNA und anderen.
26. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 1 bis 22 zur integrierten Synthese und Analyse von
Polymeren.
27. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 1 bis 22 zur optischen Analyse der Hybridisierung von Polymersonden mit komplementären Fragmenten.
28. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 1 bis 22 zur effizienten hochparallelen kombinierten naßchemischen und lichtgesteuerten Synthese von Oligomer- oder Polymersonden wie DNA, RNA, PNA, LNA, Proteinen und anderen sowie zur anschließenden optischen Analyse der Hybridisierung mit komplementären Fragmenten.
29. Verwendung eines mikrofluidischer Reaktionsträgers nach einem der Ansprüche 1 bis 22 zur lichtgesteuerten Synthese von Oligomer- oder
Polymersonden wie DNA, RNA, PNA, LNA und anderen sowie zur anschließenden optischen Analyse der Hybridisierung mit komplementären Fragmenten.
30. Verwendung eines mikrofluidischen Reaktionsträgers nach einem der Ansprüche 1 bis 22 zur individuellen Benetzung und biochemischen Funktionalisierung jedes Reaktionsbereiches im Reaktionsträger.
PCT/EP2000/007445 1999-08-01 2000-08-01 Mikrofluidischer reaktionsträger mit drei strömungsebenen und transparenter deckschicht WO2001008799A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT00953136T ATE309041T1 (de) 1999-08-01 2000-08-01 Mikrofluidischer reaktionsträger mit drei strömungsebenen
DE50011574T DE50011574D1 (de) 1999-08-01 2000-08-01 Mikrofluidischer reaktionsträger mit drei strömungsebenen
CA002379787A CA2379787A1 (en) 1999-08-01 2000-08-01 Microfluid reaction carrier having three flow levels and a transparent protective layer
US10/030,182 US7361314B1 (en) 1999-08-01 2000-08-01 Microfluid reaction carrier having three flow levels and a transparent protective layer
AU65692/00A AU6569200A (en) 1999-08-01 2000-08-01 Microfluid reaction carrier having three flow levels and a transparent protective layer
EP00953136A EP1198294B1 (de) 1999-08-01 2000-08-01 Mikrofluidischer reaktionsträger mit drei strömungsebenen
US12/003,826 US20080132430A1 (en) 1999-08-01 2008-01-02 Microfluidic reaction support having three flow levels and a transparent cover layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19935433.2 1999-08-01
DE19935433A DE19935433A1 (de) 1999-08-01 1999-08-01 Mikrofluidischer Reaktionsträger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/003,826 Continuation US20080132430A1 (en) 1999-08-01 2008-01-02 Microfluidic reaction support having three flow levels and a transparent cover layer

Publications (2)

Publication Number Publication Date
WO2001008799A1 WO2001008799A1 (de) 2001-02-08
WO2001008799A9 true WO2001008799A9 (de) 2002-09-06

Family

ID=7916347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/007445 WO2001008799A1 (de) 1999-08-01 2000-08-01 Mikrofluidischer reaktionsträger mit drei strömungsebenen und transparenter deckschicht

Country Status (7)

Country Link
US (2) US7361314B1 (de)
EP (2) EP1652578A3 (de)
AT (1) ATE309041T1 (de)
AU (1) AU6569200A (de)
CA (1) CA2379787A1 (de)
DE (2) DE19935433A1 (de)
WO (1) WO2001008799A1 (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19935433A1 (de) * 1999-08-01 2001-03-01 Febit Ferrarius Biotech Gmbh Mikrofluidischer Reaktionsträger
DE19963594C2 (de) * 1999-12-23 2002-06-27 Mannesmann Ag Vorrichtung in Mikrostrukturtechnik zum Hindurchleiten von Medien sowie Verwendung als Brennstoffzellensystem
DE10041853C1 (de) * 2000-08-25 2002-02-28 Gmd Gmbh Konfigurierbares Mikroreaktornetzwerk
DE10062246C1 (de) * 2000-12-14 2002-05-29 Advalytix Ag Verfahren und Vorrichtung zur Manipulation kleiner Flüssigkeitsmengen
DE10102726A1 (de) * 2001-01-22 2002-08-22 Vodafone Pilotentwicklung Gmbh Reaktor
DE10115474A1 (de) * 2001-03-29 2002-10-10 Infineon Technologies Ag Mikrofluidkanalstruktur und Verfahren zur Herstellung einer derartigen Mikrofluidkanalstruktur
ATE403013T1 (de) * 2001-05-18 2008-08-15 Wisconsin Alumni Res Found Verfahren zur synthese von dna-sequenzen die photolabile linker verwenden
US20020187072A1 (en) * 2001-06-07 2002-12-12 Nanostream, Inc. Multi-layer microfluidic splitter
DE10142691B4 (de) * 2001-08-31 2006-04-20 Infineon Technologies Ag Verfahren zum Nachweis biochemischer Reaktionen sowie eine Vorrichtung hierfür
DE10143189A1 (de) * 2001-09-04 2003-03-20 Clariant Gmbh Verfahren und Vorrichtung zur prozeßbegleitenden Reinigung von Mikro-und Minireaktoren
DE10145831A1 (de) * 2001-09-10 2003-04-03 Siemens Ag Verfahren zur Individualisierung von Materialien mit Hilfe von Nukleotid-Sequenzen
DE10218280C1 (de) * 2002-04-19 2003-11-20 Fraunhofer Ges Forschung Integriertes Misch- und Schaltsystem für die Mikroreaktionstechnik
US7718099B2 (en) 2002-04-25 2010-05-18 Tosoh Corporation Fine channel device, fine particle producing method and solvent extraction method
FR2839660B1 (fr) * 2002-05-17 2005-01-21 Commissariat Energie Atomique Microreacteur,son procede de preparation,et procede pour realiser une reaction biochimique ou biologique
EP1542010A4 (de) * 2002-07-12 2007-11-21 Mitsubishi Chem Corp Analytischer chip, analytische chipeinheit, analysevorrichtung, verfahren zur analyse unter verwendung der vorrichtung und verfahren zur herstellung des analytischen chips
US7214348B2 (en) 2002-07-26 2007-05-08 Applera Corporation Microfluidic size-exclusion devices, systems, and methods
EP1534430A4 (de) * 2002-07-26 2005-11-23 Applera Corp Mikrofluidgr ssenausschluss-vorrichtungen, -systeme und verfahren
DE10341500A1 (de) * 2003-09-05 2005-03-31 Ehrfeld Mikrotechnik Ag Mikrophotoreaktor zur Durchführung photochemischer Reaktionen
US7422910B2 (en) * 2003-10-27 2008-09-09 Velocys Manifold designs, and flow control in multichannel microchannel devices
US7169617B2 (en) * 2004-08-19 2007-01-30 Fujitsu Limited Device and method for quantitatively determining an analyte, a method for determining an effective size of a molecule, a method for attaching molecules to a substrate, and a device for detecting molecules
CA2585772C (en) 2004-11-03 2013-12-24 Velocys, Inc. Partial boiling in mini and micro-channels
CN101218019B (zh) 2005-04-08 2011-11-09 维罗西股份有限公司 通过多个平行的连接通道流向/来自歧管的流体控制
WO2007033385A2 (en) * 2005-09-13 2007-03-22 Fluidigm Corporation Microfluidic assay devices and methods
DE102006024355B4 (de) * 2006-05-19 2008-04-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrofluidische Anordnung zur Detektion von in Proben enthaltenen chemischen, biochemischen Molekülen und/oder Partikeln
DE102007018833A1 (de) 2007-04-20 2008-10-23 Febit Holding Gmbh Verbesserte molekularbiologische Prozessanlage
DE102006062089A1 (de) 2006-12-29 2008-07-03 Febit Holding Gmbh Verbesserte molekularbiologische Prozessanlage
EP1980854B1 (de) * 2007-04-12 2009-10-07 Micronas Holding GmbH Verfahren und Vorrichtung zur Messung der Konzentration eines in einer zu untersuchenden Probe enthaltenen Liganden
EP2556887A1 (de) * 2011-08-08 2013-02-13 SAW instruments GmbH Verbesserte mikrofluidische Vorrichtungen zur selektiven Exposition von einer oder mehr Probeflüssigkeiten mit einem oder mehreren Probenbereichen
CN105498867B (zh) * 2014-09-22 2017-07-04 北京科技大学 梯度二氧化硅表面微流体系统的构筑方法
CN104991055A (zh) * 2015-06-19 2015-10-21 大连理工大学 一种血栓即时检测poct产品中的血液样本延时流动仿生操控单元
DE102016222035A1 (de) 2016-11-10 2018-05-17 Robert Bosch Gmbh Mikrofluidische Vorrichtung und Verfahren zur Analyse von Proben
DE102022209420A1 (de) * 2022-09-09 2024-03-14 Robert Bosch Gesellschaft mit beschränkter Haftung Array für eine mikrofluidische Vorrichtung, mikrofluidische Vorrichtung und Verfahren zu ihrem Betrieb.

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979637A (en) * 1971-11-08 1976-09-07 American Optical Corporation Microchannel plates and method of making same
US5846708A (en) * 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
ATE174813T1 (de) * 1992-05-01 1999-01-15 Univ Pennsylvania Polynukleotide amplifikationsanalyse mit einer mikrofabrizierten vorrichtung
US5534328A (en) * 1993-12-02 1996-07-09 E. I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
US5595712A (en) * 1994-07-25 1997-01-21 E. I. Du Pont De Nemours And Company Chemical mixing and reaction apparatus
US6001229A (en) * 1994-08-01 1999-12-14 Lockheed Martin Energy Systems, Inc. Apparatus and method for performing microfluidic manipulations for chemical analysis
US5585069A (en) * 1994-11-10 1996-12-17 David Sarnoff Research Center, Inc. Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
US5872010A (en) 1995-07-21 1999-02-16 Northeastern University Microscale fluid handling system
US5863502A (en) * 1996-01-24 1999-01-26 Sarnoff Corporation Parallel reaction cassette and associated devices
US5867266A (en) * 1996-04-17 1999-02-02 Cornell Research Foundation, Inc. Multiple optical channels for chemical analysis
NZ333346A (en) * 1996-06-28 2000-03-27 Caliper Techn Corp High-throughput screening assay systems in microscale fluidic devices
US5699157A (en) * 1996-07-16 1997-12-16 Caliper Technologies Corp. Fourier detection of species migrating in a microchannel
US6143248A (en) * 1996-08-12 2000-11-07 Gamera Bioscience Corp. Capillary microvalve
US5872623A (en) * 1996-09-26 1999-02-16 Sarnoff Corporation Massively parallel detection
WO1999014368A2 (en) 1997-09-15 1999-03-25 Whitehead Institute For Biomedical Research Methods and apparatus for processing a sample of biomolecular analyte using a microfabricated device
DE19745373A1 (de) * 1997-10-14 1999-04-15 Bayer Ag Optisches Meßsystem zur Erfassung von Lumineszenz- oder Fluoreszenzsignalen
US6896855B1 (en) * 1998-02-11 2005-05-24 Institut Fuer Physikalische Hochtechnologie E.V. Miniaturized temperature-zone flow reactor
US6210910B1 (en) * 1998-03-02 2001-04-03 Trustees Of Tufts College Optical fiber biosensor array comprising cell populations confined to microcavities
JP4350897B2 (ja) 1998-03-11 2009-10-21 ボーリンガー インゲルハイム ミクロパルツ ゲーエムベーハー 試料担体
US6485690B1 (en) * 1999-05-27 2002-11-26 Orchid Biosciences, Inc. Multiple fluid sample processor and system
DE19935433A1 (de) * 1999-08-01 2001-03-01 Febit Ferrarius Biotech Gmbh Mikrofluidischer Reaktionsträger

Also Published As

Publication number Publication date
US7361314B1 (en) 2008-04-22
EP1198294B1 (de) 2005-11-09
ATE309041T1 (de) 2005-11-15
EP1652578A2 (de) 2006-05-03
EP1198294A1 (de) 2002-04-24
DE19935433A1 (de) 2001-03-01
AU6569200A (en) 2001-02-19
CA2379787A1 (en) 2001-02-08
EP1652578A3 (de) 2006-07-26
DE50011574D1 (de) 2005-12-15
WO2001008799A1 (de) 2001-02-08
US20080132430A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
EP1198294B1 (de) Mikrofluidischer reaktionsträger mit drei strömungsebenen
EP1117478B1 (de) Träger für analytbestimmungsverfahren und verfahren zur herstellung des trägers
DE60003845T2 (de) Hybridisierungstest für biomaterial in einem biokanal
EP0706646B1 (de) Probenträger und seine verwendung
DE60018733T2 (de) Vorrichtung und verfahren zur probenanalyse
DE60031506T2 (de) Fasermatrix zum zusammenbringen von chemischen stoffen, sowie verfahren zur herstellung und anwendung davon
EP1807208B1 (de) Anordnung zur integrierten und automatisierten dna- oder protein-analyse in einer einmal verwendbaren cartridge, herstellungsverfahren für eine solche cartridge und betriebsverfahren der dna- oder protein-analyse unter verwendung einer solchen cartridge
DE10309583B4 (de) Mikroanalytisches Element
DE10051396A1 (de) Verfahren und Vorrichtung zur integrierten Synthese und Analytbestimmung an einem Träger
DE10011022A1 (de) Vorrichtung und Verfahren zur Durchführung von Synthesen, Analysen oder Transportvorgängen
DE60214155T2 (de) Verfahren zur beschleunigung und verstärkung der bindung von zielkomponenten an rezeptoren und vorrichtung dafür
DE19910392B4 (de) Mikrosäulenreaktor
WO1999057310A2 (de) Analyse- und diagnostikinstrument
EP1303353B1 (de) Verfahren und vorrichtung zum analysieren von chemischen oder biologischen proben
EP1330307B1 (de) Verfahren und vorrichtung zur integrierten synthese und analytbestimmung an einem träger
WO2002010448A2 (de) Photochemische trägerscheibe und verfahren zur durchführung chemischer und biologischer assays
WO2004082831A1 (de) Substrat zur kontrollierten benetzung vorbestimmter benetzungsstellen mit kleinen flüssigkeitsvolumina, substratabdeckung und flusskammer
DE10153663B4 (de) Mikroanalytische Vorrichtung zum Erfassen von Nahe-Infrarot-Strahlung emittierenden Molekülen
EP3927842A1 (de) Vorrichtung zur untersuchung einer biologischen probe
DE10156433A1 (de) Verfahren und Vorrichtungen zur elektronischen Bestimmung von Analyten
DE10152017A1 (de) Arrays mit Hairpin-Strukturen
EP2217364A2 (de) Flexibles extraktionsverfahren für die herstellung sequenzspezifischer molekülbibliotheken
WO2006000275A1 (de) Verfahren zur herstellung von biochips aus porösen substraten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000953136

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2379787

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 65692/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10030182

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000953136

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

COP Corrected version of pamphlet

Free format text: PAGES 1-21, DESCRIPTION, REPLACED BY NEW PAGES 1-24; PAGES 22-26, CLAIMS, REPLACED BY NEW PAGES 25-30; PAGES 1/19-19/19, DRAWINGS, REPLACED BY NEW PAGES 1/19-19/19; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2000953136

Country of ref document: EP