WO2001013459A1 - Hochfrequenz-phasenschieberbaugruppe - Google Patents

Hochfrequenz-phasenschieberbaugruppe Download PDF

Info

Publication number
WO2001013459A1
WO2001013459A1 PCT/EP2000/007236 EP0007236W WO0113459A1 WO 2001013459 A1 WO2001013459 A1 WO 2001013459A1 EP 0007236 W EP0007236 W EP 0007236W WO 0113459 A1 WO0113459 A1 WO 0113459A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shifter
assembly according
shifter assembly
sections
tap
Prior art date
Application number
PCT/EP2000/007236
Other languages
English (en)
French (fr)
Inventor
Maximilian GÖTTL
Roland Gabriel
Mathias Markof
Original Assignee
Kathrein-Werke Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7918594&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001013459(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2001517457A priority Critical patent/JP4198355B2/ja
Priority to CA2382258A priority patent/CA2382258C/en
Priority to DE50003848T priority patent/DE50003848D1/de
Priority to EP00958304A priority patent/EP1208614B1/de
Priority to NZ516849A priority patent/NZ516849A/xx
Application filed by Kathrein-Werke Kg filed Critical Kathrein-Werke Kg
Priority to AT00958304T priority patent/ATE250808T1/de
Priority to US10/049,809 priority patent/US6850130B1/en
Priority to AU69874/00A priority patent/AU764242B2/en
Priority to BRPI0013376-0A priority patent/BR0013376B1/pt
Publication of WO2001013459A1 publication Critical patent/WO2001013459A1/de
Priority to HK02108932.2A priority patent/HK1047353B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface

Definitions

  • the invention relates to a high-frequency phase shifter assembly according to the preamble of claim 1.
  • Phase shifters are used, for example, to balance the transit time of microwave signals in passive or active networks.
  • the running time of a line is used to adjust the phase position of a signal; changing the phase position therefore means changing the electrically effective length of the lines.
  • the signals to the individual radiators for example dipoles, must have different transit times. So is the difference in the running times between two neighboring emitters for a certain lowering angle when one is vertically one above the other arranged array approximately the same. This runtime difference must now also be increased for larger lowering angles. If the phase positions of the individual radiators can be changed by means of phase shifter assemblies, then this is an antenna with an adjustable electrical lowering of the radiation diagram.
  • a phase shifter which comprises the electrically displaceable plates in order to generate a phase difference between different, but at least two, outputs.
  • the disadvantage here is that the displacement of the dielectric plates also changes the impedance of the lines concerned and consequently the power distribution of the signals depends on the setting of the phase shifter.
  • an antenna array 1 with, for example, five dipole antennas la to le, which are ultimately fed via a feed input 5, is drawn in schematically in order to clarify the prior art.
  • a distribution network 7 Downstream of the feed input 5 is a distribution network 7 which, in the exemplary embodiment shown, has two RF phase shifter assemblies 9, i.e. in the exemplary embodiment shown, supplies two phase shifter assemblies 9 ′, 9 ′′, in the exemplary embodiment shown each of the two phase shifter assemblies 9 supplying two dipoles.
  • a feed line 13 leads from the distribution network 7 to a central dipole radiator 1c, which is operated without a phase shift.
  • phase shifter assembly 9 a division of + 2 ⁇ and -2 ⁇ and the second phase shifter assembly 9 "must be ensured by the phase shifter assembly 9 'and a phase shift of + ⁇ and - ⁇ for the respectively assigned dipole radiators.
  • a correspondingly different setting in the phase shifter assemblies 9 can then be ensured by a mechanical actuator 17 can be guaranteed, which is only shown abstractly in the schematic representation according to a phase shifter assembly known according to the prior art and which automatically realizes the different phase shifts for the various downstream dipoles when actuated, so that different settings of the phase shifter assemblies can be made by appropriate Actuation of a suitable mechanical actuator 17 realizes the electrical lowering of a vertical diagram of an antenna 1, that is to say that the above-mentioned phase shifts also set different ones.
  • the present invention creates a phase shifter assembly which is constructed in a much more space-saving manner and has a higher integration density than previously known solutions.
  • additional connecting lines, solder joints and transformation means for realizing the power division can be saved.
  • a transmission gear necessary to produce or adjust the different phase positions of the radiators can be avoided.
  • the solution according to the invention is characterized in that at least two part-circular strip line segments are provided, which have a tap element cooperate, which is connected to a feed point and forms a movable tap or coupling point in the overlap area with the respective part-circular stripline segment.
  • a plurality of separate connecting lines or a common connecting line leading up to the extremely lying circular segment can be provided, all connecting lines being connected to form a jointly manageable tap element, regardless of the geometry and arrangement of the connecting line.
  • the phase angle can then be set jointly for all antenna radiators supplied via it.
  • the connecting lines can run in different radial dimensions from the common pivot point.
  • a tap element is preferably provided which, in the manner of a radially extending pointer, leads over a plurality of part-circular strip line segments and thereby forms a plurality of tap points which are arranged one behind the other in individual strip line segments.
  • a type of bridge construction with connecting lines running in the same direction, one above the other in a horizontal side view and adjustable about a common pivot axis is also possible, which are rigidly connected to form a common, manageable tap element.
  • the feed takes place at the common pivot point, preferably capacitively. But the tap point between the tap element and the respective circular stripline segment is also capacitive.
  • a division of the transmitted powers can also be realized, for example, in such a way that the power decreases from the inner to the outer circular strip line segment, increases or, if necessary, the power even remains more or less the same for all strip line segments.
  • the high-frequency phase shifter assembly is constructed on a metallic base plate, which is preferably formed by the reflector of the antenna. It has also proven to be advantageous if the phase shifter assembly is shielded by a metallic cover.
  • the distances between the circle segments can be formed differently.
  • the diameter of the stripline segments preferably increases from the inside to the outside by a constant factor.
  • the distances can preferably transmit between the circle segments 0.1 to approximately 1.0 of the transmitted HF wavelength.
  • phase shifter assembly can also be made possible by the fact that the circular segments and connecting lines are designed as triplate lines together with a cover.
  • the invention is explained in more detail below with reference to drawings. Show in detail
  • Figure 1 a schematic representation of a high-frequency phase shifter assembly for
  • Figure 2 is a schematic plan view of a phase shifter assembly according to the invention
  • FIG. 3 shows a schematic section along the tap element in FIG. 2 to explain the capacitive coupling of the phase shifter segment and the center tap;
  • FIG. 4 a modified embodiment of a phase shifter assembly according to the invention with three circle segments;
  • FIG. 5 a further exemplary embodiment of a phase shifter group according to the invention with two circular strip line segments, the connecting line running offset from one another from the center tap to the respective decoupling point in a plan view of the phase shifter module and comprising interconnected connecting lines at the pivot point;
  • FIG. 6 a further modified exemplary embodiment of a phase shifter module according to the invention with two opposite circular segments and connecting lines interconnected at the common center tap or pivot point;
  • FIG. 7 an exemplary embodiment modified from FIG. 6 using two non-part-circular strip line sections (which are running straight);
  • 8a shows a radiation diagram of an antenna array and 8b: rays with adjustable electrical lowering, once for a lowering at 4 'and on the other hand at 10'.
  • a first exemplary embodiment of a high-frequency phase shifter assembly which comprises stripline sections 21 which are offset from one another, i.e.
  • a tapping element 25 runs from the pivot axis 23, which, in relation to the pivot axis 23, 2 is designed to run radially essentially in plan view according to FIG. 2 and in the respective overlap area with an associated stripline segment 21 each forms a coupled tap section 27, also referred to below as tap point 27, that is, in the exemplary embodiment shown, two tap points 27a offset in the longitudinal direction of the tap element 25 , 27b are provided.
  • the feed line 13 leads to a center tap 29, in the area of which the pivot axis 23 for the tap element 25 is seated.
  • the tap element 25 is divided into a first connecting line 31a, which extends from the coupling section 33 in the overlap region of the center tap 29 to the tap point 27a on the inner stripline segment 21a.
  • the area protruding beyond this tap point 27a forms the next connecting section or connecting line 31b, which leads in the overlap area with the outer stripline segment 21b to the tap point 27b formed there.
  • the entire RF phase shifter assembly is constructed with the four dipoles la to ld common in the exemplary embodiment according to FIG. 2 on a metallic base plate 35, which at the same time represents the reflector 35 for the dipoles la to ld.
  • the base section of the center tap 29 is provided offset from the reflector plate 35 by means of a dielectric cone section 37a of larger axial height.
  • a thinner dielectric cone layer 37b overlies the coupling layer 33, which, like the center tap 29, is penetrated by the pivot axis 23.
  • the part-circular strip line segments 21 are also at the same distance as the center tap 29 from the reflector plate 37 and are coupled to the tap element 25 via the dielectric 37 formed there.
  • the tap element 25 is a uniformly rigid lever that can be adjusted about the pivot axis 23.
  • connection 31a and 31b between the corresponding tapping points 29 and 27a and 27b can now simultaneously achieve a power division between the dipole radiators la and ld on the one hand and the further pair of dipole radiators lb and lc, since the ends 39a and 39b respectively partially circular stripline segments 21a, 21b are connected via antenna lines 41, the dipole antennas la to ld.
  • a modified exemplary embodiment with a total of six dipole radiators la to lf is shown with reference to FIG. 4, a phase division from + 3 ⁇ to -3 ⁇ being able to be realized here.
  • a power distribution can be achieved, for example, from the outside in, which enables the power to be graded from 0.5: 0.7: 1, as shown in the table below.
  • a middle dipole radiator or middle dipole radiator group as shown in FIG. 1, can also be provided, which has a phase shift angle of 0 'and is directly connected to the feed line input.
  • FIG. 5 shows a modification compared to FIG. 2, in which no radial tapping element 25 is used, but in which, in plan view, the connecting line 31a is offset by an angular offset with respect to the connecting line 31b, hence in FIG Top view shows a V-shaped design of the tap element 25.
  • connecting line 31b leading from the center tap 29 to the outer tapping point 27b intersects or bridges the inner stripline segment 21a
  • the connecting line 31a is narrower here in order to keep the coupling to the inner stripline segment 21a as low as possible.
  • Both connecting lines 31a and 31b are electrically connected in the region of the coupling section 33 lying above the center tap 29 and are joined together to form a rigid tap element which can be rotated uniformly.
  • the exemplary embodiment according to FIG. 6 differs from that according to FIG. 2 in that the two semicircular stripline segments 21a and 21b are arranged offset from one another by 180 '.
  • the tapping element 25 is designed to protrude radially from the central pivot axis 23 in both directions beyond the pivot axis 23.
  • connection ends 39a Due to the arrangement of the two stripline sections 21a and 21b rotated by 180 ', attention must be paid to the correspondingly correct connection at the connection ends 39a in relation to the connection ends 39b at the stripline section 21b, for example in order to achieve the desired phase shift from + 2 ⁇ to -2 ⁇ in each case over a phase distance of l ⁇ (an antenna with a phase shift of "0" according to the game according to Figure 1 can and is always provided in addition.
  • the thickness of the stripline sections can be designed differently or have a resistance of different sizes for the stripline sections.
  • the resistance is 50 ohms for the stripline sections.
  • the exemplary embodiment according to FIG. 6 also shows that the center of the two part-circular strip line sections 21a and 21b does not coincide, and not only with respect to the part-circular strip line sections, but also does not coincide with the pivot axis 23 running parallel thereto it is also possible that the stripline sections may not necessarily be part-circular, but generally arc-shaped (for example elliptical), in extreme cases even in the form of two stripline sections running straight to one another, for example if these have different thicknesses over their length or are formed with resistance that changes over the length.
  • FIG. 7 shows two straight strip line sections 21a and 21b which are offset from one another and in the exemplary embodiment shown are offset from one another by 180 ' to the pivot axis 23.
  • the effect on the vertical radiation diagram for a correspondingly constructed antenna is shown with reference to FIGS. 8a and 8b.

Abstract

Eine verbesserte Hochfrequenz-Phasenschieberbaugruppe zeichnet sich durch folgende neue Merkmale aus: Es ist zumindest ein weiterer vorzugsweise konzentrisch zum ersten Streifenleitungsabschnitt (21a) angeordneter weiterer Streifenleitungsabschnitt (21b, 21c, 21d) vorgesehen; es sind weitere Verbindungsleitungen (31b; 31c, 31d) vorgesehen, worüber eine elektrische Verbindung zumindest mittelbar von der Speiseleitung (13) zum jeweiligen einen Streifenleitungsabschnitt (21a, 21b, 21c, 21d) zugeordneten Abgriffsabschnitt (27a - 27d) besteht; an den zumindest beiden Streifenleitungsabschnitten (21a, 21b, 21c, 21d) sind an versetzt zueinander liegenden Abgriffsstellen (39a, 39b) zumindest zwei verschiedene Paare von Antennenstrahlern (1a, 1b, 1c, 1d, 1e, 1f) mit unterschiedlichen Phasenwinkeln ( phi ) ansteuerbar; und die mehreren Verbindungsleitungen (31a - 31d) sind mechanisch miteinander verbunden.

Description

Hochfrequenz-Phasenschieberbaugruppe
Die Erfindung betrifft eine Hochfrequenz-Phasenschieberbaugruppe nach dem Oberbegriff des Anspruches 1.
Phasenschieber werden beispielsweise zum Abgleich der Laufzeit von Mikrowellensignalen in passiven oder aktiven Netzwerken eingesetzt. Als bekanntes Prinzip wird die Laufzeit einer Leitung zur Abstimmung der Phasenlage eines Signales ausgenutzt, veränderliche Phasenlage bedeutet demzufolge eine veränderliche elektrisch wirksame Länge der Leitungen.
Für Anwendungen in Antennen mit elektrisch einstellbarer Absenkung des Strahlungsdiagramms müssen die Signale zu den einzelnen Strahlern, beispielsweise Dipolen, unterschiedliche Laufzeiten aufweisen. So ist die Differenz der Laufzeiten zwischen zwei benachbarten Strahlern für einen bestimmten Absenkwinkel bei einem vertikal übereinander angeordneten Array in etwa gleich. Diese Laufzeitdifferenz muss nunmehr für größere Absenkwinkel auch vergrößert werden. Sind die Phasenlagen der Einzelstrahler mittels Phasenschieberbaugruppen veränderlich, so handelt es sich um eine Antenne mit einstellbarer elektrischer Absenkung des Strahlungsdiagramms.
Gemäß der WO 96/37922 ist ein Phasenschieber bekannt, welcher die elektrisch verschiebbare Platten umfasst, um eine Phasendifferenz zwischen verschiedenen, zumindest jedoch zwei Ausgängen zu erzeugen. Nachteilig hierbei ist, dass durch die Verschiebung der dielektrischen Platten auch die Impedanz der jeweils betroffenen Leitungen verändert wird und demzufolge die Leistungsaufteilung der Signale von der Einstellung des Phasenschiebers abhängt.
In der Vorveröffentlichung WO 96/37009 wird eine symmetrische Leitungsverzweigung vorgeschlagen, um nach beiden Seiten dieser Leitung die gleiche Leistung abzugeben. Dies ist möglich, falls beide Seiten mit dem Wellenwiderstand dieser Leitung abgeschlossen sind. Vergleichbare Lösungen technischer Prinzipien werden bereits seit langem bei Mobilfunkantennen eingesetzt. Nachteilig hierbei ist jedoch, dass nur zwei Strahler versorgt werden können, wobei diese auch noch die gleiche Leistung erhalten. Weiterhin von Nachteil ist die elektrisch leitende Verbindung des Eingangs mit den jeweiligen Leitungen, welche bewegliche, jedoch elektrisch hochwertige Kontakte erfordern, welche jedoch unerwünschte Nichtlinearitäten aufweisen können. Schließlich ist es grundsätzlich auch bekannt, mehrere Phasenschieber in einer Antenne zu integrieren, worüber die einzelnen Strahler der gesamten Antennenanordnung versorgt werden. Da allerdings einzelne Strahler unter- schiedliche Phasendifferenzen aufweisen müssen, müssen für die einzelnen Strahler die Einstellungen bezüglich der Phasenschieberbaugruppen unterschiedlich sein. Dies erfordert aufwendige mechanische Übersetzungsgetriebe, wie sich grundsätzlich aus Figur 1 ergibt, die einen entspre- chenden Aufbau gemäß dem Stand der Technik wiedergibt.
Dazu ist in Figur 1 in schematischer Weise zur Verdeutlichung des Standes der Technik ein Antennenarray 1 mit beispielsweise fünf Dipolantennen la bis le eingezeichnet, die letztlich über einen Speiseeingang 5 gespeist werden.
Dem Speiseeingang 5 nachgeordnet ist ein Verteilnetzwerk 7, welches im gezeigten Ausführungsbeispiel zwei HF-Phasenschieberbaugruppen 9, d.h. im gezeigten Ausführungsbei- spiel zwei Phasenschieberbaugruppen 9', 9" versorgt, wobei im gezeigten Ausführungsbeispiel jede der beiden Phasenschieberbaugruppen 9 zwei Dipole versorgt .
Vom Verteilnetzwerk 7 führt eine Speiseleitung 13 zu einem mittleren Dipolstrahler lc, welcher ohne Phasenverschiebung betrieben wird.
Die anderen Dipole werden je nach Einstellung der Phasenschieberbaugruppe 9 mit unterschiedlichen Phasen versorgt, wobei beispielsweise der Dipol la mit einer Phase +2φ der Dipolstrahler lb mit einer Phase +lφ, der mittlere Dipolstrahler lc mit der Phase φ = 0, der vierte Dipolstrahler ld mit der Phase -lφ und der letzte Dipolstrahler le mit der Phase -2φ versorgt wird.
Somit muss also über die Phasenschieberbaugruppe 9' eine Aufteilung von +2φ und -2φ und über die zweite Phasenschieberbaugruppe 9" eine Phasenverschiebung von +φ und -φ für die jeweils zugeordneten Dipolstrahler gewährleistet werden. Eine entsprechend unterschiedliche Einstellung bei den Phasenschieberbaugruppen 9 kann dann durch einen mechanischen Stellantrieb 17 gewährleistet werden, der bei der schematischen Darstellung nach einem nach dem Stand der Technik bekannten Phasenschieberbaugruppe nur abstrakt dargestellt ist und der bei Betätigung automatisch die unterschiedlichen Phasenverschiebungen für die verschiedenen nachgeordneten Dipole realisiert. So lässt sich durch unterschiedliche Einstellungen der Phasenschieberbaugruppen durch entsprechende Betätigung eines geeigneten mecha- nischen Stellantriebes 17 die elektrische Absenkung eines Vertikaldiagramms einer Antenne 1 realisieren, d.h. die vorstehend genannten Phasenverschiebungen auch unterschiedlichen einstellen.
Wie sich aus dem geschilderten Aufbau nach dem Stand der Technik ergibt, muss als nachteilig festgehalten werden, dass ein vergleichsweise aufwendiges mechanisches Übersetzungsgetriebe 17 erforderlich ist, um die für die jeweils einzelnen Strahler benötigten unterschiedlichen Phasendif- ferenzen zu erzeugen. Aufgabe der vorliegenden Erfindung ist es deshalb, ausgehend von dem zuletzt genannten, anhand von Figur 1 erläuterten Stand der Technik eine verbesserte Phasenschieberbaugruppe zu schaffen, die einfacher aufgebaut ist und insbesondere im Falle eines Antennenarrays unter Verwendung von mindestens vier Strahlern eine verbesserte Steuerung und Einstellung der Phasen der einzelnen Strahler ermöglicht. Bevorzugt soll dabei gleichzeitig eine insbesondere paarweise Leistungsaufteilung zwischen minde- stens vier Strahlern möglich sein.
Die Aufgabe wird erfindungsgemäß entsprechend den im Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen ange- geben.
Die vorliegende Erfindung schafft gegenüber vorbekannten Lösungen eine Phasenschieberbaugruppe, die sehr viel platzsparender aufgebaut ist und gegenüber vorbekannten Lösungen eine höhere Integrationsdichte aufweist. Zudem lassen sich zusätzliche Verbindungsleitungen, Lötstellen und Transformationsmittel zur Realisierung der Leistungs- teilung einsparen. Vor allem kann aber auch ein nach dem Stand der Technik notwendiges Übersetzungsgetriebe, um die unterschiedlichen Phasenlagen der Strahler zu erzeugen bzw. einzustellen, vermieden werden.
Die erfindungsgemäße Lösung zeichnet sich dadurch aus, dass zumindest zwei teilkreisförmige Streifenleitungs- segmente vorgesehen sind, die mit einem Abgriffselement zusammenwirken, welches einmal mit einem Einspeisepunkt in Verbindung steht und zum anderen im Überlappungsbereich mit dem jeweiligen teilkreisförmigen Streifenleitungssegment einen verschiebbaren Abgriffs- oder Koppelpunkt bildet. Von der gemeinsamen Einspeisstelle können zu den einzelnen Kreissegmenten mehrere separate oder eine gemeinsame bis zu dem zu äußerst liegenden Kreissegment führenden Verbindungsleitung vorgesehen sein, wobei unabhängig von der Geometrie und Anordnung der Verbindungs- leitung alle Verbindungsleitungen zu einem gemeinsam handhabbaren Abgriffselement verbunden sind. Durch Verstellen bzw. Verdrehen des Abgriffselementes um dessen Drehachse dann dadurch der Phasenwinkel für alle darüber versorgten Antennenstrahler gemeinsam eingestellt werden.
Die Verbindungsleitungen können in unterschiedlicher Radialerstreckung von dem gemeinsamen Verschwenkpunkt aus verlaufen. Alternativ bevorzugt ist jedoch ein Abgriffselement vorgesehen, welches nach Art eines radial ver- laufenden Zeigers über mehrere teilkreisförmige Streifenleitungssegmente hinweg führt und dadurch mehrere hinter- einanderliegende in einzelnen Streifenleitungssegmenten zugeordnete Abgriffspunkte bildet.
Schließlich ist auch eine Art Brückenkonstruktion mit in gleicher Richtung verlaufenden, in horizontaler Seitenansicht übereinander angeordneten und um eine gemeinsame Verschwenkachse verstellbare Verbindungsleitungen möglich, die zu einem gemeinsamen handhabbaren Abgriffselement starr verbunden sind. Die Einspeisung erfolgt am gemeinsamen Drehpunkt, bevorzugt kapazitiv. Aber auch der Abgriffspunkt zwischen dem Abgriffselement und dem jeweiligen kreisförmigen Streifenleitungssegment erfolgt kapazitiv.
Schließlich lässt sich mit der erfindungsgemäßen Lösung auch eine Aufteilung der übertragenen Leistungen realisieren beispielsweise derart, dass die Leistung vom inneren zum äußeren kreisförmigen Streifenleitungssegment abnimmt, zunimmt oder bei Bedarf sogar die Leistung zu allen Streifenleitungssegmenten mehr oder weniger gleich bleibt.
Als günstig hat sich ferner erwiesen, dass die Hochfrequenzphasenschieberbaugruppe auf einer metallischen Grund- platte aufgebaut ist, die bevorzugt durch den Reflektor der Antenne gebildet wird. Ferner hat sich als günstig erwiesen, wenn die Phasenschieberbaugruppe durch einen metallischen Deckel abgeschirmt wird.
Die Abstände zwischen den Kreissegmenten können unterschiedlich gebildet werden. Bevorzugt erhöht sich der Durchmesser der Streifenleitungssegmente von innen nach außen mit einem konstanten Faktor. Die Abstände können dabei bevorzugt zwischen den Kreissegmenten 0,1 bis etwa 1,0 der übertragenen HF-Wellenlänge übertragen.
Eine einfache Realisierung der Phasenschieberbaugruppe lässt sich auch dadurch ermöglichen, dass die Kreissegmente und Verbindungsleitungen gemeinsam mit einem Deckel als Triplateleitungen ausgeführt sind. Die Erfindung wird nachfolgend anhand von Zeichnungen näher erläutert . Dabei zeigen im einzelnen
Figur 1 : eine schematische Darstellung einer Hochfrequenz-Phasenschieberbaugruppe zur
Speisung von fünf Dipolen nach dem Stand der Technik;
Figur 2 : eine schematische Draufsicht auf eine er- findungsgemäße Phasenschieberbaugruppe zur
Ansteuerung von vier Strahlern;
Figur 3 : einen schematischen Schnitt längs des Abgriffselementes in Figur 2 zur Erläuterung der kapazitiven Ankoppelung des Phasenschiebersegmentes und des Mittelabgriffs;
Figur 4 : ein abgewandeltes Ausführungsbeispiel einer erfindungsgemäßen Phasenschieberbau- gruppe mit drei Kreissegmenten;
Figur 5 : ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Phasenschiebergruppe mit zwei kreisförmigen Streifenleitungssegmen- ten, wobei die Verbindungsleitung vom Mittenabgriff zum jeweiligen Abkoppelpunkt in Draufsicht auf die Phasenschieberbaugruppe versetzt zueinander läuft und am Drehpunkt zusammengeschaltete Verbindungsleitungen umfasst; Figur 6 : ein weiteres abgewandeltes Ausführungsbei- spiel einer erfindungsgemäßen Phasenschieberbaugruppe mit zwei gegenüberliegenden Kreissegmenten und am gemeinsamen Mitten- abgriff oder Drehpunkt zusammengeschalteten Verbindungsleitungen;
Figur 7 : ein zu Figur 6 abgewandeltes Ausführungs- beispiel unter Verwendung zweier nicht teilkreisförmiger Streifenleitungsabschnitte (die gerade verlaufen) ; und
Figuren 8a ein Strahlungsdiagramm eines Antennenar- und 8b : rays mit einstellbarer elektrischer Absen- kung, einmal für eine Absenkung bei 4' und zum anderen bei 10' .
Unter Bezugnahme auf Figur 2 ist ein erstes Ausführungsbeispiel einer erfindungsgemäßen Hochfrequenz-Phasenschie- berbaugruppe gezeigt, welche versetzt zueinander liegende Streifenleitungsabschnitte 21 umfasst, d.h. im gezeigten Ausführungsbeispiel teilkreisförmige Streifenleitungssegmente 21, nämlich ein inneres Streifenleitungssegment 21a und ein äußeres Streifenleitungssegment 21b, die in Draufsicht konzentrisch um einen gemeinsamen Mittelpunkt angeordnet sind, durch welchen senkrecht zur Zeichenebene eine vertikale Verschwenkachse 23 hindurch verläuft.
Von der Verschwenkachse 23 aus verläuft ein Abgriffsele- ment 25, welches bezogen auf die Verschwenkachse 23 im wesentlichen in Draufsicht gemäß Figur 2 radial verlaufend gestaltet ist und im jeweiligen Überlappungsbereich mit einem zugehörigen Streifenleitungssegment 21 jeweils einen angekoppelten, nachfolgend auch als Abgriffspunkt 27 be- zeichneten, Abgriffsabschnitt 27 bildet, im gezeigten Ausführungsbeispiel also zwei in Längsrichtung des Abgriffselementes 25 versetzt liegende Abgriffspunkte 27a, 27b vorgesehen sind.
Vom Speiseeingang 5 führt die Speiseleitung 13 zu einem Mittelabgriff 29, in dessen Bereich die Verschwenkachse 23 für das Abgriffselement 25 sitzt.
Das Abgriffselement 25 gliedert sich dabei in eine erste Verbindungsleitung 31a, die vom Koppelabschnitt 33 im Überlappungsbereich des Mittelabgriffs 29 bis zum Abgriffspunkt 27a am inneren Streifenleitungssegment 21a reicht. Der über diesen Abgriffspunkt 27a in Verlängerung überstehende Bereich bildet die nächsten Verbindungsab- schnitt oder Verbindungsleitung 31b, die im Überlappungs- bereich mit dem äußeren Streifenleitungssegment 21b zu dem dort ausgebildeten Abgriffspunkt 27b führt.
Die gesamte HF-Phasenschieberbaugruppe ist mit den im Ausführungsbeispiel gemäß Figur 2 vier Dipolen la bis ld gemeinsamen auf einer metallischen Grundplatte 35 aufgebaut, die gleichzeitig den Reflektor 35 für die Dipole la bis ld darstellt.
In der horizontalen Querschnittsdarstellung gemäß Figur 3 ist ersichtlich, dass sowohl am Mittelabgriff 29 wie an den Abgriffpunkten 27 die Kopplung kapazitiv gestaltet ist, hierbei übernehmen verlustarme Dielektrika 37 die kapazitive Ankopplung und gleichzeitig die mechanische Fixierung sowohl des Mittelabgriffs 29 wie der radial dazu versetzt liegenden Abgriffspunkte 27.
Über einen in der axialen Höhe größer dimensionierten Dielektrik-Konusabschnitt 37a ist gegenüber dem Reflektor- blech 35 versetzt liegend der Basisabschnitt des Mittelabgriffs 29 vorgesehen. Durch eine dünnere Dielektrik- Konusschicht 37b liegt darüber die Koppelschicht 33, die ebenso wie der Mittelabgriff 29 von der Verschwenkachse 23 durchsetzt wird.
Aus der Querschnittsdarstellung gemäß Figur 3 ist auch ersichtlich, dass die teilkreisförmigen Streifenleitungssegmente 21 ebenfalls in dem gleichen Abstand wie der Mittelabgriff 29 gegenüber dem Reflektorblech 37 sitzen und über das dort ausgebildete Dielektrikum 37 mit dem Abgriffselement 25 gekoppelt sind. Das Abgriffselement 25 ist dabei ein einheitlich starrer Hebel, der um die Verschwenkachse 23 verstellt werden kann.
Durch Drehen des Abgriffselementes 25 um die Verschwenkachse 23 können nunmehr für alle Dipolstrahler la bis ld gemeinsam die Phase mit den entsprechenden Phasenversatz von +2φ bis -2φ eingestellt werden.
Durch geeignete Wahl der Wellenwiderstände bzw. geeignete Ausformungen der Verbindungen 31a und 31b zwischen den entsprechenden Abgriffspunkten 29 und 27a bzw. 27b kann nunmehr gleichzeitig eine Leistungsteilung zwischen den Dipolstrahlern la und ld zum einen und dem weiteren Paar der Dipolstrahler lb und lc erzielt werden, da jeweils am Ende 39a bzw. 39b der teilkreisförmigen Streifenleitungssegmente 21a, 21b über Antennenleitungen 41 die Dipolantennen la bis ld angeschlossen sind.
Anhand von Figur 4 ist ein abgewandeltes Ausführungsbeispiel mit insgesamt sechs Dipolstrahlern la bis lf gezeigt, wobei hier eine Phasenaufteilung von +3φ bis -3φ realisiert werden kann. Zudem kann bei Bedarf eine Leistungsaufteilung beispielsweise von außen nach innen er- zielt werden, die eine Abstufung der Leistung von 0,5 : 0,7 : 1 ermöglicht, wie dies anhand der nachfolgenden Tabelle gezeigt ist.
Bei diesem, wie beim vorhergehenden Ausführungsbeispiel, kann aber zudem auch ein wie anhand von Figur 1 gezeigter mittlerer Dipolstrahler oder mittlere Dipolstrahler-Gruppe vorgesehen sein, die einen Phasenverschiebungswinkel von 0' aufweist und direkt mit dem Speiseleitungseingang in Verbindung steht .
Anhand von Figur 5 ist eine Abwandlung gegenüber Figur 2 gezeigt, bei der kein radiales Abgriffselement 25 verwendet wird, sondern bei dem in Draufsicht die Verbindungs- leitung 31a um einen Winkelversatz gegenüber der Verbin- dungsleitung 31b versetztliegend verläuft, von daher in Draufsicht eine V-förmige Gestaltung des Abgriffselementes 25 ergibt.
Da hier die vom Mittelabgriff 29 zum äußeren angekoppelten Abgriffspunkt 27b führende Verbindungsleitung 31b das innenliegende Streifenleitungssegment 21a schneidet bzw. überbrückt, ist hier die Verbindungsleitung 31a schmäler gestaltet, um die Kopplung zum inneren Streifenleitungs- segment 21a möglichst gering zu halten. Beide Verbindungs- leitungen 31a und 31b sind im Bereich des über dem Mittelabgriff 29 liegenden Kuppelabschnitt 33 elektrisch verbunden und zu einem starren einheitlich verdrehbaren Abgriffselement zusammengefügt.
Das Ausführungsbeispiel gemäß Figur 6 unterscheidet sich von dem gemäß Figur 2 dadurch, dass die beiden halbkreisförmigen Streifenleitungssegmente 21a und 21b um 180' versetzt zueinander liegend angeordnet sind. Das Abgriffselement 25 ist dabei ausgehend von der mittleren Ver- schwenkachse 23 in beiden Richtungen über die Verschwenkachse 23 radial überstehend gestaltet.
Durch die um 180' verdrehte Anordnung der beiden Streifenleitungsabschnitte 21a und 21b ist auf den entsprechend richtigen Anschluss an den Anschlussenden 39a im Verhältnis zu den Anschlussenden 39b am Streifenleitungsabschnitt 21b zu achten, um beispielsweise die gewünschte Phasenverschiebung von +2φ bis -2φ jeweils über einen Phasenabstand von lφ zu gewährleisten (wobei eine Antenne mit der Pha- senverschiebung von "0" entsprechend dem Ausführungsbei- spiel nach Figur 1 noch stets ergänzend vorgesehen sein kann und ist.
Wie anhand von Figur 6 auch nur vom Prinzip her gezeigt ist, kann die Dicke der Streifenleitungsabschnitte unterschiedlich ausgebildet sein bzw. einen unterschiedlich großen Widerstand für die Streifenleitungsabschnitte aufweisen. In der Regel beträgt der Widerstand 50 Ohm für die Streifenleitungsabschnitte .
Das Ausfuhrungsbeispiel gemäß Figur 6 zeigt auch, dass der Mittelpunkt der beiden teilkreisförmigen Streifenleitungsabschnitte 21a und 21b nicht zusammenfällt, und zwar nicht nur bezüglich der teilkreisförmigen Streifenleitungsab- schnitte, sondern zudem auch nicht zusammenfällt mit der parallel dazu verlaufenden Verschwenkachse 23. Abweichend zu Figur 6 ist es auch möglich, dass die Streifenleitungsabschnitte nicht zwingend teilkreisförmig, sondern allgemein bogenförmig (beispielsweise elliptisch) sein kön- nen, im Extremfall sogar in Form von zwei gerade zueinander verlaufenden Streifenleitungsabschnitten gebildet sein können, beispielsweise dann, wenn diese über ihre Länge hinweg mit unterschiedlicher Dicke oder mit sich über die Länge hinweg veränderndem Widerstand ausgebildet sind.
Anhand von Figur 7 sind zwei versetzt zueinander liegende, im gezeigten Ausführungsbeispiel um 180' zur Verschwenkachse 23 versetzt zueinander liegende gerade Streifenlei- tungsabschnitte 21a und 21b gezeigt. Anhand von Figur 8a und 8b ist die Wirkung auf das vertikale Strahlungsdiagramm für eine entsprechend aufgebaute Antenne gezeigt. Bei einer geringeren Phasendifferenz der dort schematisch wiedergegebenen fünf Dipole wird ein kleinerer und bei einer über die erläuterte Hochfrequenz- Phasenschiebergruppe eingestellte größere Phasendifferenz ein größerer vertikaler Absenkwinkel erzielt.

Claims

Patentansprüche :
1. Hochfrequenz-Phasenschieberbaugruppe mit den folgenden Merkmalen - mit einem Streifenleitungsabschnitt (21) , mit einem Abgriffselement (25) , welches um eine Verschwenkachse (23) über den Streifenleitungsabschnitt (21) hinweg verschwenkbar ist, das Abgriffselement (25) ist zum einen zumindest mit- telbar mit einer Speiseleitung (13) verbunden, und das Abgriffselement (25) ist über einen Abgriffsabschnitt (27) mit dem Streifenleitungsabschnitt (21) verbunden, der Streifenleitungsabschnitt (21) ist an versetzt lie- genden Abgriffsstellen (39a, 39b) mit zumindest zwei Antennenstrahlern (la - ld) verbunden, die hierüber mit unterschiedlichem Phasenwinkel (φ) ansteuerbar sind, gekennzeichnet durch die folgenden weiteren Merkmale es ist zumindest ein weiteres konzentrisch zum ersten Streifenleitungsabschnitt (21a) angeordnetes weiteres Streifenleitungsabschnitt (21b, 21c, 21d) vorgesehen, es sind weitere Verbindungsleitungen (31b, 31c, 31d) vorgesehen, worüber eine elektrische Verbindung zumindest mittelbar von der Speiseleitung (13) zum jeweiligen einen Streifenleitungsabschnitt (21a, 21b, 21c, 21d) zugeordneten Abgriffsabschnitt (27a - 27d) besteht, an den zumindest beiden Streifenleitungsabschnitten (21a, 21b, 21c, 21d) sind an versetzt zueinander liegenden Abgriffsstellen (39a, 39b) zumindest zwei ver- schiedene Paare von Antennenstrahlern (la, lb, lc, ld, le, lf) mit unterschiedlichen Phasenwinkeln (φ) ansteuerbar, und die mehreren Verbindungsleitungen (31a - 31d) sind mechanisch miteinander verbunden.
2. Phasenschieberbaugruppe nach Anspruch 1, dadurch gekennzeichnet, dass die Verbindungsleitungen (31a - 31d) gleichzeitig Transformatoren darstellen, worüber eine definierte Leistungsaufteilung zu den Anschlüssen oder Abgriffsabschnitten (27a - 27d) der mehreren Streifenleitungsabschnitte (21a - 21d) erfolgt.
3. Phasenschieberbaugruppe nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass das Abgriffselement (25) nach Art eines von der Verschwenkachse (23) ausgehenden radialen Zeigerelementes gebildet ist, wobei die jeweilige Verbindungsleitung (31a - 31d) zu einem nächsten, weiter außen liegenden Streifenleitungsabschnitt (21b - 21d) durch radiale Verlängerung der jeweiligen vorausgehenden inneren Verbindungsleitung (31a - 31c) zu dem jeweiligen weiter innenliegenden Abgriffsabschnitt (27a - 27c) gebildet ist.
4. Phasenschieberbaugruppe nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass die elektrischen Verbindungsleitungen
(31a - 31d) in axialer Ansicht parallel zur Verschwenkachse (23) in Verdrehrichtung des Abgriffselementes (25) um jeweils einen Winkel versetzt zueinander liegen.
5. Phasenschieberbaugruppe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mehreren Verbindungen (31a - 31d) parallel zur Verschwenkachse (23) in überlappender aber isolierter Anordnung so zueinander angeordnet sind, dass die einzelnen Verbindungsleitungen (31a - 31d) jeweils am Mittelabgriff (29) bzw. dem mittleren Koppelabschnitt (33) beginnen und zu dem jeweiligen einem bestimmten Streifenleitungsabschnitt (21a - 21d) zugeordneten Abgriffsabschnitt (27a - 27d) verlaufen.
6. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis
5, dadurch gekennzeichnet, dass die Aufteilung der über die Speiseleitung (13) eingespeisten Leistung von dem zuinnerst liegenden Streifenleitungsabschnitt (21a) bis zum äußersten Streifenleitungsabschnitt (21d) abnimmt.
7. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Aufteilung der über die Speiseleitung (13) eingespeisten Leistung von dem zuinnerst liegenden Streifenleitungsabschnitt (21a) bis zum äußersten Streifenleitungsabschnitt (21d) zunimmt.
8. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zumindest jeweils zwei, vorzugsweise Gruppen von zumindest zwei oder alle Streifenleitungsabschnitte (21a - 21d) mit gleicher oder nahezu gleicher Leistung gespeist werden.
9. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Radius oder Durchmesser der Streifenleitungsabschnitte (21a - 21d) sich um einen konstanten Faktor erhöhen.
10. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Abstände zwischen den
Streifenleitungsabschnitten (21a - 21d) 0,1 bis 1,0 der übertragenen HF-Wellenlänge beträgt.
11. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Abgriffsabschnitte
(27a - 27d) als kapazitiv angekoppelte Abgriffsabschnitte (27) ausgebildet sind, die jeweils aus flächigen Streifenleitern bestehen, zwischen denen ein Dielektrikum (37) angeordnet ist.
12. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass zwischen den mit der Speiseleitung (13) in elektrischer Verbindung stehenden Mittelabgriff (29) und dem mit dem Abgriffselement (25) in elektrischer Verbindung stehenden Koppelabschnitt (33) eine kapazitive Ankopplung vorgesehen ist, die ein zwischen zwei Streifenleitungsabschnitten vorgesehenes Dielektrikum (37b) umfasst.
13. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis
12, dadurch gekennzeichnet, dass diese auf einem leitenden, insbesondere metallischen Grundplatte (25) aufgebaut ist, die vorzugsweise durch den Reflektor der Antenne (1) gebildet ist.
14. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis
13, dadurch gekennzeichnet, dass diese durch einen metallischen Deckel abgeschirmt sind.
15. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis
14, dadurch gekennzeichnet, dass die Verbindungsleitung (31a - 31d) sowie die Streifenleitungsabschnitte (21a - 21d) gemeinsam mit dem Deckel für die Phasenschieberbau- gruppe als Triplate-Leitung ausgeführt sind.
16. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis
15, dadurch gekennzeichnet, dass die Streifenleitungs- abschnitte (21a - 21d) einen jeweils definierten Wellen- widerstand aufweisen.
17. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis
16, dadurch gekennzeichnet, dass der Mittelabgriff (29) gegenüber dem Reflektor (35) durch ein Dielektrikum (37a) getrennt und darüber gehalten ist.
18. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die zumindest beiden Streifenleitungsabschnitte (21a, 21b) bogenförmig, insbesondere teilkreisförmig gestaltet sind.
19. Phasenschieberbaugruppe nach 18, dadurch gekennzeichnet, dass die Mittelpunkte der zumindest beiden teilkreis- förmigen Streifenleitungsabschnitte (21a bis 21c) um einen gemeinsamen Mittelpunkt teilkreisförmig verlaufend angeordnet sind.
20. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Mittelpunkte der
Streifenleitungsabschnitte (21a bis 21c) auf der Verschwenkachse (23) des Abgriffselementes (25) liegt.
21. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Mittelpunkte der
Streifenleitungsabschnitte (21a bis 21c) und die Verschwenkachse (23) versetzt zueinander liegen.
22. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Streifenleitungsabschnitte (21a bis 21c) gerade verlaufend ausgebildet sind.
23. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass die Streifenleitungsabschnitte (21a bis 21c) in Draufsicht parallel zur Verschwenkachse (23) in versetzt zueinander liegenden Winkel - Sektoren und/oder um einen Winkel um die Verschwenkachse (23) herum versetzt zueinander liegen.
24. Phasenschieberbaugruppe nach Anspruch 23, dadurch gekennzeichnet, dass der Verdrehwinkel, um welchen herum die Streifenleitungsabschnitte (21a bis 21c) um die Ver- schwenkachse (23) herum versetzt zueinander liegen größer als 90' ist.
25. Phasenschieberbaugruppe nach Anspruch 23 oder 24, dadurch gekennzeichnet, dass zumindest zwei Streifenlei- tungsabschnitte (21a, 21b) vorgesehen sind, die um die Verschwenkachse (23) herum um 180' verdreht zueinander liegen, insbesondere in unterschiedlichem Abstand zur Verschwenkachse (23) .
26. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 25, dadurch gekennzeichnet, dass das Abgriffselement (25) zumindest an zwei versetzt zueinander liegenden Stellen jeweils zumindest bis zu einem Abgriffsabschnitt (27a bis 27d) verläuft.
27. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis
26, dadurch gekennzeichnet, dass das Abgriffselement als gerade verlaufendes doppelzeigerförmiges Abgriffselement
(25) gestaltet ist, welches zu seinen gegenüberliegenden Enden oder Abgriffsabschnitten (27a, 27b) nach innen versetzt liegend die Verschwenkachse (23) aufweist.
28. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 27, dadurch gekennzeichnet, dass die Streifenleitungs- abschnitte (21a bis 21c) unterschiedliche Dicke aufweisen.
29. Phasenschieberbaugruppe nach einem der Ansprüche 1 bis 28, dadurch gekennzeichnet, dass die Streifenleitungs- abschnitte (21a bis 21c) unterschiedliche Widerstandswerte oder gleiche Widerstandswerte, insbesondere um 50 Ohm aufweisen.
PCT/EP2000/007236 1999-08-17 2000-07-27 Hochfrequenz-phasenschieberbaugruppe WO2001013459A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
BRPI0013376-0A BR0013376B1 (pt) 1999-08-17 2000-07-27 Grupo construtivo de compensador de fases de alta freqüência
CA2382258A CA2382258C (en) 1999-08-17 2000-07-27 High-frequency phase shifter unit
DE50003848T DE50003848D1 (de) 1999-08-17 2000-07-27 Hochfrequenz-phasenschieberbaugruppe
EP00958304A EP1208614B1 (de) 1999-08-17 2000-07-27 Hochfrequenz-phasenschieberbaugruppe
NZ516849A NZ516849A (en) 1999-08-17 2000-07-27 Radio frequency phase shifter using multiple concentric striplines connected by tapping element
JP2001517457A JP4198355B2 (ja) 1999-08-17 2000-07-27 高周波移相器ユニット
AT00958304T ATE250808T1 (de) 1999-08-17 2000-07-27 Hochfrequenz-phasenschieberbaugruppe
US10/049,809 US6850130B1 (en) 1999-08-17 2000-07-27 High-frequency phase shifter unit having pivotable tapping element
AU69874/00A AU764242B2 (en) 1999-08-17 2000-07-27 High-frequency phase shifter unit
HK02108932.2A HK1047353B (zh) 1999-08-17 2002-12-09 高頻移相器組件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19938862A DE19938862C1 (de) 1999-08-17 1999-08-17 Hochfrequenz-Phasenschieberbaugruppe
DE19938862.8 1999-08-17

Publications (1)

Publication Number Publication Date
WO2001013459A1 true WO2001013459A1 (de) 2001-02-22

Family

ID=7918594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/007236 WO2001013459A1 (de) 1999-08-17 2000-07-27 Hochfrequenz-phasenschieberbaugruppe

Country Status (14)

Country Link
US (1) US6850130B1 (de)
EP (1) EP1208614B1 (de)
JP (1) JP4198355B2 (de)
KR (1) KR100480226B1 (de)
CN (1) CN1214484C (de)
AT (1) ATE250808T1 (de)
AU (1) AU764242B2 (de)
BR (1) BR0013376B1 (de)
CA (1) CA2382258C (de)
DE (2) DE19938862C1 (de)
ES (1) ES2204679T4 (de)
HK (1) HK1047353B (de)
NZ (1) NZ516849A (de)
WO (1) WO2001013459A1 (de)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004004059A1 (en) * 2002-06-29 2004-01-08 Alan Dick & Company Limited A phase shifting device
DE10256960B3 (de) * 2002-12-05 2004-07-29 Kathrein-Werke Kg Zweidimensionales Antennen-Array
US6788165B2 (en) 2002-11-08 2004-09-07 Ems Technologies, Inc. Variable power divider
DE10316788B3 (de) * 2003-04-11 2004-10-21 Kathrein-Werke Kg Verbindungseinrichtung zum Anschluss zumindest zweier versetzt zueinander angeordneter Strahlereinrichtungen einer Antennenanordnung
WO2005006489A1 (en) 2003-07-14 2005-01-20 Ace Technology Phase shifter having power dividing function
WO2005015690A1 (de) * 2003-08-06 2005-02-17 Kathrein-Werke Kg Antennenanordnung sowie verfahren insbesondere zu deren betrieb
DE10336073A1 (de) * 2003-08-06 2005-03-10 Kathrein Werke Kg Antennenanordnung
DE10336072A1 (de) * 2003-08-06 2005-03-10 Kathrein Werke Kg Antennenanordnung
US6940469B2 (en) 2003-08-06 2005-09-06 Kathrein-Werke Kg Antenna arrangement
US7023398B2 (en) 2003-04-11 2006-04-04 Kathrein-Werke Kg Reflector for a mobile radio antenna
US7038621B2 (en) 2003-08-06 2006-05-02 Kathrein-Werke Kg Antenna arrangement with adjustable radiation pattern and method of operation
US7050005B2 (en) 2002-12-05 2006-05-23 Kathrein-Werke Kg Two-dimensional antenna array
US7221239B2 (en) 2002-11-08 2007-05-22 Andrew Corporation Variable power divider
US7233217B2 (en) 2001-08-23 2007-06-19 Andrew Corporation Microstrip phase shifter
EP1886380A1 (de) * 2005-06-03 2008-02-13 Powerwave Comtek Oy Anordnung zum lenken der strahlungskeule einer antenne
WO2010124787A1 (de) * 2009-04-30 2010-11-04 Kathrein-Werke Kg Verfahren zum betrieb einer phasengesteuerten gruppenantenne sowie einer phasenschieber-baugruppe und eine zugehörige phasengesteuerte gruppenantenne
EP2629362A1 (de) * 2012-02-20 2013-08-21 Andrew LLC Gemeinsame Antennengruppen mit mehrfach unabhängiger Neigung
US9614281B2 (en) 2011-07-27 2017-04-04 Huawei Technologies Co., Ltd. Phase array antenna having a movable phase shifting element and a dielectric element for changing the relative dielectric constant
US10050354B2 (en) 2014-06-05 2018-08-14 Commscope Technologies Llc Shared aperture array antenna that supports independent azimuth patterns

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10150150B4 (de) 2001-10-11 2006-10-05 Kathrein-Werke Kg Dualpolarisiertes Antennenarray
GB0305619D0 (en) * 2003-03-12 2003-04-16 Qinetiq Ltd Phase shifter device
DE10316786A1 (de) * 2003-04-11 2004-11-18 Kathrein-Werke Kg Reflektor, insbesondere für eine Mobilfunk-Antenne
US20050030248A1 (en) * 2003-08-06 2005-02-10 Kathrein-Werke Kg, Antenna arrangement
US7298233B2 (en) * 2004-10-13 2007-11-20 Andrew Corporation Panel antenna with variable phase shifter
US7557675B2 (en) * 2005-03-22 2009-07-07 Radiacion Y Microondas, S.A. Broad band mechanical phase shifter
WO2006051146A1 (es) * 2005-03-22 2006-05-18 Radiacion Y Microondas, S.A. Desfasador mecanico de banda ancha
EP1886381B1 (de) * 2005-05-31 2014-10-22 Powerwave Technologies Sweden AB Strahljustierungseinrichtung
US7301422B2 (en) * 2005-06-02 2007-11-27 Andrew Corporation Variable differential phase shifter having a divider wiper arm
KR100816809B1 (ko) * 2005-07-19 2008-03-26 주식회사 케이엠더블유 가변 이상기
KR20070120281A (ko) * 2006-06-19 2007-12-24 주식회사 케이엠더블유 가변 이상기
KR100816810B1 (ko) * 2006-06-26 2008-03-26 주식회사 케이엠더블유 가변 위상 천이기
FR2905803B1 (fr) * 2006-09-11 2010-05-07 Cit Alcatel Dispositif de dephasage dielectrique rotatif pour elements rayonnants
FR2912557B1 (fr) 2007-02-08 2009-04-03 Alcatel Lucent Sas Systeme de dephasage pour elements rayonnants d'une antenne
US7724196B2 (en) * 2007-09-14 2010-05-25 Motorola, Inc. Folded dipole multi-band antenna
KR100893531B1 (ko) * 2007-10-05 2009-04-17 (주)에이스안테나 페이즈 쉬프터
DE102007047741B4 (de) 2007-10-05 2010-05-12 Kathrein-Werke Kg Mobilfunk-Gruppenantenne
DE102007060083A1 (de) 2007-12-13 2009-06-18 Kathrein-Werke Kg Mehrspalten-Multiband-Antennen-Array
US7907096B2 (en) 2008-01-25 2011-03-15 Andrew Llc Phase shifter and antenna including phase shifter
AU2008351107B2 (en) * 2008-02-21 2013-06-13 Nihon Dengyo Kosaku Co., Ltd. Distributed phase shifter
CN101971413B (zh) * 2008-02-25 2014-06-18 日本电业工作株式会社 多分支分配移相器
FR2930078B1 (fr) * 2008-04-15 2011-08-26 Alcatel Lucent Dispositif de dephasage rotatif
KR101017672B1 (ko) 2008-06-26 2011-02-25 주식회사 에이스테크놀로지 페이즈 쉬프터
JP4826624B2 (ja) * 2008-12-02 2011-11-30 住友電気工業株式会社 移相器及びアンテナ装置
CN101694897A (zh) 2009-10-30 2010-04-14 网拓(上海)通信技术有限公司 移相器
MX339102B (es) 2011-05-17 2016-05-11 Portired S L Soporte publicitario para eventos deportivos y similares, y procedimiento de fabricacion de un soporte publicitario.
CN102306872B (zh) * 2011-07-09 2015-03-25 广州桑瑞通信设备有限公司 电调天线对称多路功分移相器
WO2012106900A1 (zh) * 2011-07-18 2012-08-16 华为技术有限公司 移相器
WO2012106903A1 (zh) * 2011-07-19 2012-08-16 华为技术有限公司 一种移相器
CN102714341B (zh) * 2012-01-10 2013-12-04 华为技术有限公司 移相器和天线
CN102938482B (zh) * 2012-10-19 2015-02-04 华为技术有限公司 可调移相器及具有该可调移相器的天线
CN103107387B (zh) * 2013-02-08 2015-03-25 华为技术有限公司 具有滤波元件的移相器以及滤波元件和天线
DE102013012305A1 (de) 2013-07-24 2015-01-29 Kathrein-Werke Kg Breitband-Antennenarray
US9444151B2 (en) * 2014-01-10 2016-09-13 Commscope Technologies Llc Enhanced phase shifter circuit to reduce RF cables
US10411505B2 (en) * 2014-12-29 2019-09-10 Ricoh Co., Ltd. Reconfigurable reconstructive antenna array
DE102015003357A1 (de) 2015-03-16 2016-09-22 Kathrein-Werke Kg Hochfrequenz-Phasenschieberbaugruppe
DE102015004658A1 (de) 2015-04-13 2016-10-13 Kathrein-Werke Kg Differenz-Phasenschieberbaugruppe
EP3096393B1 (de) * 2015-05-22 2018-01-24 Kathrein Werke KG Differenz-phasenschieberbaugruppe
DE102015006622B3 (de) * 2015-05-22 2016-10-27 Kathrein-Werke Kg Differenz-Phasenschieberbaugruppe
EP3331090B1 (de) * 2015-08-31 2019-12-18 Huawei Technologies Co., Ltd. Phasenschieber, antenne und basisstation
MX2018007994A (es) 2015-12-29 2019-01-10 Huawei Tech Co Ltd Desplazador de fase, antena y dispositivo de radiocomunicacion.
CN105449320B (zh) * 2015-12-31 2018-04-10 广东晖速通信技术股份有限公司 一种高频五口移相器
US20200266879A1 (en) 2017-09-22 2020-08-20 Kathrein Se Repeater for Relaying Telecommunications Signals
US10879978B2 (en) 2018-02-23 2020-12-29 Amphenol Antenna Solutions, Inc. Differential phase shifter for hybrid beamforming
EP3747083B1 (de) * 2018-03-13 2023-09-13 John Mezzalingua Associates, Llc D/B/A Jma Wireless Antennenphasenschieber mit integriertem dc-block
US11011815B2 (en) * 2018-04-25 2021-05-18 Texas Instruments Incorporated Circularly-polarized dielectric waveguide launch for millimeter-wave data communication
CN109193161B (zh) * 2018-08-27 2021-05-07 京信通信技术(广州)有限公司 移相器及天线
US11296410B2 (en) 2018-11-15 2022-04-05 Skyworks Solutions, Inc. Phase shifters for communication systems
WO2020147955A1 (en) 2019-01-17 2020-07-23 Huawei Technologies Co., Ltd. A phase shift assembly and an antenna
CN110958060A (zh) * 2019-12-31 2020-04-03 深圳市大富科技股份有限公司 相位补偿结构和驻波检测电路
CN111342175B (zh) * 2020-03-13 2022-02-25 佛山市粤海信通讯有限公司 一种带状线移相器和天线
WO2022099502A1 (en) * 2020-11-11 2022-05-19 Nokia Shanghai Bell Co., Ltd. Phase shifter and antenna device
WO2022199801A1 (en) 2021-03-23 2022-09-29 Telefonaktiebolaget Lm Ericsson (Publ) Antenna comprising at least two phase shifters
WO2024056167A1 (en) 2022-09-14 2024-03-21 Telefonaktiebolaget Lm Ericsson (Publ) Gearbox for a base station antenna, antenna and base station

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2458477A1 (de) * 1974-12-10 1976-07-08 Deutsche Forsch Luft Raumfahrt Mechanischer mehrkanal-phasenschieber
JPH05121915A (ja) * 1991-10-25 1993-05-18 Sumitomo Electric Ind Ltd 分配移相器
JPH09246846A (ja) * 1996-03-08 1997-09-19 Denki Kogyo Co Ltd 非接触形結合回路

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1806755A (en) 1931-05-26 Antenna
US1764441A (en) 1924-08-04 1930-06-17 Hahnemann Walter Arrangement for directional transmission and reception by means of electric waves
US2245660A (en) 1938-10-12 1941-06-17 Bell Telephone Labor Inc Radio system
US2272431A (en) 1939-06-17 1942-02-10 Rca Corp Directional antenna orientation control
US2247666A (en) 1939-08-02 1941-07-01 Bell Telephone Labor Inc Directional antenna system
US2248335A (en) 1939-11-28 1941-07-08 Burkhart William Shearman Radio beam antenna and control means therefor
US2300576A (en) 1940-01-06 1942-11-03 Internat Telephone & Radio Mfg Loop-automatic and manual drive
US2648000A (en) 1943-10-02 1953-08-04 Us Navy Control of wave length in wave guides
US2462881A (en) 1943-10-25 1949-03-01 John W Marchetti Antenna
US2605413A (en) 1943-11-10 1952-07-29 Luis W Alvarez Antenna system with variable directional characteristic
US2496920A (en) 1944-07-29 1950-02-07 Rca Corp Phase shifter
US2583747A (en) 1946-01-26 1952-01-29 Gordon Specialties Company Rotary antenna
US2566897A (en) 1948-11-22 1951-09-04 Herbert G Koenig Electrical rotating apparatus for directional antennae
US2565334A (en) 1949-06-09 1951-08-21 Weingarden Herbert Antenna setting device
US2535850A (en) 1949-06-24 1950-12-26 Hammond Instr Co Radio antenna apparatus
US2642567A (en) 1949-09-22 1953-06-16 Bendix Aviat Corp Control system
US2597424A (en) 1949-11-15 1952-05-20 Thomas P Welsh Antenna orientation control
US2736854A (en) 1949-11-25 1956-02-28 Crown Controls Company Inc Motor operated device and remote control therefor
US2599048A (en) 1950-05-10 1952-06-03 Oscar H Dicke Antenna rotating and/or tuning apparatus
US2594115A (en) 1950-05-22 1952-04-22 Aberney Corp Rotatably adjustable antenna
US2830292A (en) 1950-12-29 1958-04-08 Marvin P Young Device to position a communications antenna
US2745994A (en) 1951-05-12 1956-05-15 Crown Controls Company Inc Antenna position control means and indicator
US2711527A (en) 1951-06-07 1955-06-21 Donald B Alexander Directional control mechanism for antennas
US2668920A (en) 1951-08-22 1954-02-09 Edward L Barrett Antenna rotator
NL173647B (nl) 1951-11-08 Naphtachimie Sa Werkwijze voor de bereiding van katalysatoren voor de polymerisatie van alkenen, werkwijze voor de bereiding van polymeren of copolymeren en gevormde voortbrengselen, vervaardigd onder toepassing van de aldus bereide polymeren of copolymeren.
US3008140A (en) 1953-06-10 1961-11-07 Joseph K Rose Means for independent orientation of antennas on a mast
US2787169A (en) 1954-01-28 1957-04-02 Robert E Farr Antenna rotating means
US2789190A (en) 1954-05-17 1957-04-16 Statham Lab Inc Motion sensing device
US2861235A (en) 1954-06-22 1958-11-18 Cornell Dubilier Electric Servosystem control unit for antenna rotators
CH320969A (de) 1954-07-31 1957-04-15 Patelhold Patentverwertung Mikrowellenleitung mit veränderbarer elektrischer Länge
US2825240A (en) 1954-10-14 1958-03-04 Radiart Corp Hydraulic antenna rotator
US2794162A (en) 1954-11-17 1957-05-28 Robert J Lifsey Television antenna rotating servo system
US2815501A (en) 1955-02-18 1957-12-03 Jfd Mfg Co Inc Antenna rotator system and control unit therefor
US2851620A (en) 1955-08-04 1958-09-09 Ohio Commw Eng Co Step-by-step motor for positioning television antennae
US2922941A (en) 1955-12-21 1960-01-26 Howard W Sams & Co Inc Automatic motor control unit
US2900154A (en) 1956-03-06 1959-08-18 Walter C Schweim Manual rotator for antenna
US2872631A (en) 1956-07-02 1959-02-03 Thompson Prod Inc Rotation control system
US2939335A (en) 1957-06-24 1960-06-07 Braund Charles Lee Antenna rotating apparatus
US3005985A (en) 1957-09-19 1961-10-24 Seymour B Cohn Pre-programmed scanning antenna
US3205419A (en) 1960-04-25 1965-09-07 Theodore R Cartwright Antenna rotation device
US3043998A (en) 1960-10-03 1962-07-10 Lawrence M Lunn Selective remote position control servosystem
US3248736A (en) 1962-10-16 1966-04-26 Channel Master Corp Electrically directable multi-band antenna
US3276018A (en) 1963-05-08 1966-09-27 Jesse L Butler Phase control arrangements for a multiport system
US3316469A (en) 1963-09-03 1967-04-25 Crown Controls Corp Plural motor remote control system
US3277481A (en) 1964-02-26 1966-10-04 Hazeltine Research Inc Antenna beam stabilizer
US3491363A (en) 1966-02-14 1970-01-20 Lockheed Aircraft Corp Slotted waveguide antenna with movable waveguide ridge for scanning
US3438035A (en) 1966-08-08 1969-04-08 Itt Pencil beam frequency/phase scanning system
US3508274A (en) 1966-12-14 1970-04-21 Raymond B Kesler Motor driven portable dipole antenna
US3527993A (en) 1968-02-12 1970-09-08 Jerrold Electronics Corp Solid state motor driven antenna rotator control circuit
US3728733A (en) 1972-02-24 1973-04-17 J Robinson Beam antenna selectively oriented to vertical or horizontal position
US3826964A (en) 1973-06-28 1974-07-30 Nasa Digital servo controller
US3864689A (en) 1973-08-02 1975-02-04 David W Young Hybrid scan antenna
US3886559A (en) 1973-12-20 1975-05-27 Milton Spirt Remotely operated tv receiver antennae
US3886560A (en) 1974-05-31 1975-05-27 Tandy Corp Antenna swivel mount
US4101902A (en) 1976-11-10 1978-07-18 Thomson-Csf Electronic scanning antenna
US4077000A (en) 1977-01-13 1978-02-28 Grubbs Jerry A Directional antenna azimuth control system
US4163235A (en) 1977-08-29 1979-07-31 Grumman Aerospace Corporation Satellite system
US4263539A (en) 1977-10-04 1981-04-21 Zenith Radio Corporation Automatic antenna positioning apparatus
US4335388A (en) 1979-02-21 1982-06-15 Ford Aerospace & Communications Corp. Null control of multiple beam antenna
US4314250A (en) 1979-08-03 1982-02-02 Communications Satellite Corporation Intermodulation product suppression by antenna processing
US4301397A (en) 1980-04-24 1981-11-17 Cornell-Dubilier Electric Corporation DC Antenna rotator system
US4316195A (en) 1980-09-19 1982-02-16 The United States Of America As Represented By The Secretary Of The Army Rotating dual frequency range antenna system
US4460897A (en) 1981-04-02 1984-07-17 Bell Telephone Laboratories, Incorporated Scanning phased array antenna system
US4413263A (en) 1981-06-11 1983-11-01 Bell Telephone Laboratories, Incorporated Phased array antenna employing linear scan for wide angle orbital arc coverage
US4467328A (en) 1981-10-26 1984-08-21 Westinghouse Electric Corp. Radar jammer with an antenna array of pseudo-randomly spaced radiating elements
US4496890A (en) 1982-03-11 1985-01-29 Gerard A. Wurdack & Associates, Inc. Antenna rotator controller
US4542326A (en) 1982-10-08 1985-09-17 Heath Company Automatic antenna positioning system
US4543583A (en) 1983-06-06 1985-09-24 Gerard A. Wurdack & Associates, Inc. Dipole antenna formed of coaxial cable
US4617572A (en) 1984-08-14 1986-10-14 Albert Hugo Television dish antenna mounting structure
DE3678861D1 (de) 1985-03-25 1991-05-29 Toshiba Kawasaki Kk Empfangsanordnung fuer satellitensendungen.
US4862179A (en) 1985-03-26 1989-08-29 Trio Kabushiki Kaisha Satellite receiver
US5077560A (en) 1986-02-19 1991-12-31 Sts Enterprises, Inc. Automatic drive for a TVRO antenna
US4694773A (en) 1986-03-07 1987-09-22 Jgb Industries, Inc. Remote control tilting system for raising and lowering radar and radio arch for boats
GB8613322D0 (en) 1986-06-02 1986-07-09 British Broadcasting Corp Array antenna & element
FR2706680B1 (fr) 1986-07-04 1995-09-01 Onera (Off Nat Aerospatiale) Déphaseur hyperfréquence à microruban et diélectrique suspendu, et application à des réseaux d'antennes à balayage de lobe.
US4882587A (en) 1987-04-29 1989-11-21 Hughes Aircraft Company Electronically roll stabilized and reconfigurable active array system
US4941200A (en) 1987-08-03 1990-07-10 Orion Industries, Inc. Booster
US5021798A (en) 1988-02-16 1991-06-04 Trw Inc. Antenna with positionable reflector
JPH07112126B2 (ja) 1989-06-07 1995-11-29 三菱電機株式会社 アンテナ制御用データ転送装置
US5272477A (en) 1989-06-20 1993-12-21 Omron Corporation Remote control card and remote control system
FR2651609B1 (fr) 1989-09-01 1992-01-03 Thomson Csf Commande de pointage pour systeme d'antenne a balayage electronique et formation de faisceau par le calcul.
SE465486B (sv) 1989-09-29 1991-09-16 Televerket Metod foer simulering av godtycklig antenn i mobilradiosystem
JP2580832B2 (ja) 1990-04-19 1997-02-12 日本電気株式会社 移動体搭載アンテナ制御装置
US5099247A (en) 1990-12-14 1992-03-24 General Electric Company Electronic steering of pattern of an antenna system
FR2672436B1 (fr) 1991-01-31 1993-09-10 Europ Agence Spatiale Dispositif de controle electronique du diagramme de rayonnement d'une antenne a un ou plusieurs faisceaux de direction et/ou de largeur variable.
FI91344C (fi) 1991-03-05 1994-06-10 Nokia Telecommunications Oy Solukkoradioverkko, tukiasema sekä menetelmä liikennekapasiteetin säätämiseksi alueellisesti solukkoradioverkossa
US5175556A (en) 1991-06-07 1992-12-29 General Electric Company Spacecraft antenna pattern control system
US5303240A (en) 1991-07-08 1994-04-12 Motorola, Inc. Telecommunications system using directional antennas
JP2560001Y2 (ja) 1991-09-04 1998-01-21 三菱電機株式会社 送受信モジュール
US5281975A (en) 1991-10-03 1994-01-25 J.G.S. Engineering Inc. Base support for movable antenna
JP2866775B2 (ja) 1991-12-26 1999-03-08 三星電子株式会社 アンテナ移動装置及びその方法
EP0647980B1 (de) 1993-08-12 2002-10-16 Nortel Networks Limited Antenneneinrichtung für Basisstation
US5539413A (en) 1994-09-06 1996-07-23 Northrop Grumman Integrated circuit for remote beam control in a phased array antenna system
DE69532135T2 (de) 1994-11-04 2004-08-26 Andrew Corp., Orland Park System zur steuerung einer antenne
SE9501830L (sv) * 1995-05-16 1996-08-12 Allgon Ab Antennorgan med två strålande element och med en justerbar fasskillnad mellan de strålande elementen
SE504563C2 (sv) * 1995-05-24 1997-03-03 Allgon Ab Anordning för inställning av riktningen hos en antennlob
US5572219A (en) 1995-07-07 1996-11-05 General Electric Company Method and apparatus for remotely calibrating a phased array system used for satellite communication
US5917455A (en) * 1996-11-13 1999-06-29 Allen Telecom Inc. Electrically variable beam tilt antenna
US6239744B1 (en) 1999-06-30 2001-05-29 Radio Frequency Systems, Inc. Remote tilt antenna system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2458477A1 (de) * 1974-12-10 1976-07-08 Deutsche Forsch Luft Raumfahrt Mechanischer mehrkanal-phasenschieber
JPH05121915A (ja) * 1991-10-25 1993-05-18 Sumitomo Electric Ind Ltd 分配移相器
JPH09246846A (ja) * 1996-03-08 1997-09-19 Denki Kogyo Co Ltd 非接触形結合回路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 17, no. 484 (E - 1426) 2 September 1993 (1993-09-02) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 1 30 January 1998 (1998-01-30) *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7233217B2 (en) 2001-08-23 2007-06-19 Andrew Corporation Microstrip phase shifter
GB2390231B (en) * 2002-06-29 2005-12-28 Alan Dick & Company Ltd A phase shifting device
WO2004004059A1 (en) * 2002-06-29 2004-01-08 Alan Dick & Company Limited A phase shifting device
US7253782B2 (en) 2002-06-29 2007-08-07 Alan Dick & Company Limited Phase shifting device
US6788165B2 (en) 2002-11-08 2004-09-07 Ems Technologies, Inc. Variable power divider
EP1568097A4 (de) * 2002-11-08 2006-08-23 Ems Technologies Inc Variabler leistungsteiler
US7221239B2 (en) 2002-11-08 2007-05-22 Andrew Corporation Variable power divider
EP1568097A1 (de) * 2002-11-08 2005-08-31 EMS Technologies, Inc. Variabler leistungsteiler
US6943732B2 (en) 2002-12-05 2005-09-13 Kathrein-Werke Kg Two-dimensional antenna array
DE10256960B3 (de) * 2002-12-05 2004-07-29 Kathrein-Werke Kg Zweidimensionales Antennen-Array
US7050005B2 (en) 2002-12-05 2006-05-23 Kathrein-Werke Kg Two-dimensional antenna array
DE10316788B3 (de) * 2003-04-11 2004-10-21 Kathrein-Werke Kg Verbindungseinrichtung zum Anschluss zumindest zweier versetzt zueinander angeordneter Strahlereinrichtungen einer Antennenanordnung
US6949993B2 (en) 2003-04-11 2005-09-27 Kathrein-Werke Kg Connecting device for connecting at least two antenna element devices, which are arranged offset with respect to one another, of an antenna arrangement
US7023398B2 (en) 2003-04-11 2006-04-04 Kathrein-Werke Kg Reflector for a mobile radio antenna
US7589603B2 (en) 2003-07-14 2009-09-15 Ace Technology Phase shifter having power dividing function for providing a fixed phase shift and at least two phase shifts based on path length
EP2290739A1 (de) * 2003-07-14 2011-03-02 Ace Technology Phasenschieber mit Leistungsteilungsfunktion
WO2005006489A1 (en) 2003-07-14 2005-01-20 Ace Technology Phase shifter having power dividing function
EP1645011A1 (de) * 2003-07-14 2006-04-12 Ace Technology Phasenschieber mit leistungsteilungsfunktion
EP1645011A4 (de) * 2003-07-14 2007-04-25 Ace Tech Phasenschieber mit leistungsteilungsfunktion
DE10336072B4 (de) * 2003-08-06 2005-08-11 Kathrein-Werke Kg Antennenanordnung
DE10336071B3 (de) * 2003-08-06 2005-03-03 Kathrein-Werke Kg Antennenanordnung sowie Verfahren insbesondere zu deren Betrieb
US6940469B2 (en) 2003-08-06 2005-09-06 Kathrein-Werke Kg Antenna arrangement
DE10336072A1 (de) * 2003-08-06 2005-03-10 Kathrein Werke Kg Antennenanordnung
DE10336073A1 (de) * 2003-08-06 2005-03-10 Kathrein Werke Kg Antennenanordnung
WO2005015690A1 (de) * 2003-08-06 2005-02-17 Kathrein-Werke Kg Antennenanordnung sowie verfahren insbesondere zu deren betrieb
US7038621B2 (en) 2003-08-06 2006-05-02 Kathrein-Werke Kg Antenna arrangement with adjustable radiation pattern and method of operation
US7864111B2 (en) 2005-06-03 2011-01-04 Powerwave Comtek Oy Arrangement for steering radiation lobe of antenna
EP1886380A4 (de) * 2005-06-03 2009-05-13 Powerwave Comtek Oy Anordnung zum lenken der strahlungskeule einer antenne
EP1886380A1 (de) * 2005-06-03 2008-02-13 Powerwave Comtek Oy Anordnung zum lenken der strahlungskeule einer antenne
WO2010124787A1 (de) * 2009-04-30 2010-11-04 Kathrein-Werke Kg Verfahren zum betrieb einer phasengesteuerten gruppenantenne sowie einer phasenschieber-baugruppe und eine zugehörige phasengesteuerte gruppenantenne
US9160062B2 (en) 2009-04-30 2015-10-13 Kathrein-Werke Kg Method for operating a phase-controlled group antenna and phase shifter assembly and an associated phase-controlled group antenna
US9614281B2 (en) 2011-07-27 2017-04-04 Huawei Technologies Co., Ltd. Phase array antenna having a movable phase shifting element and a dielectric element for changing the relative dielectric constant
EP2629362A1 (de) * 2012-02-20 2013-08-21 Andrew LLC Gemeinsame Antennengruppen mit mehrfach unabhängiger Neigung
US9325065B2 (en) 2012-02-20 2016-04-26 Commscope Technologies Llc Shared antenna arrays with multiple independent tilt
US9865919B2 (en) 2012-02-20 2018-01-09 Commscope Technologies Llc Shared antenna arrays with multiple independent tilt
US10050354B2 (en) 2014-06-05 2018-08-14 Commscope Technologies Llc Shared aperture array antenna that supports independent azimuth patterns
US10693244B2 (en) 2014-06-05 2020-06-23 Commscope Technologies Llc Independent azimuth patterns for shared aperture array antenna

Also Published As

Publication number Publication date
ES2204679T4 (es) 2007-06-01
AU764242B2 (en) 2003-08-14
ES2204679T3 (es) 2004-05-01
ATE250808T1 (de) 2003-10-15
NZ516849A (en) 2003-01-31
BR0013376B1 (pt) 2015-03-03
CA2382258C (en) 2010-05-04
CN1359548A (zh) 2002-07-17
CN1214484C (zh) 2005-08-10
BR0013376A (pt) 2002-05-07
AU6987400A (en) 2001-03-13
EP1208614B1 (de) 2003-09-24
EP1208614A1 (de) 2002-05-29
US6850130B1 (en) 2005-02-01
DE19938862C1 (de) 2001-03-15
KR100480226B1 (ko) 2005-04-06
KR20020035574A (ko) 2002-05-11
DE50003848D1 (de) 2003-10-30
HK1047353A1 (en) 2003-02-14
HK1047353B (zh) 2006-01-13
CA2382258A1 (en) 2001-02-22
JP4198355B2 (ja) 2008-12-17
JP2003507914A (ja) 2003-02-25

Similar Documents

Publication Publication Date Title
WO2001013459A1 (de) Hochfrequenz-phasenschieberbaugruppe
DE2631026C2 (de)
DE102007047741B4 (de) Mobilfunk-Gruppenantenne
DE10150150B4 (de) Dualpolarisiertes Antennenarray
EP2705602B1 (de) Quasi-breitbandiger doherty-verstärker und diesbezügliche kondensatorschaltung
EP1095426B1 (de) Mehr-bereichs-antenne
EP2406851B1 (de) Verfahren zum betrieb einer phasengesteuerten gruppenantenne sowie einer phasenschieber-baugruppe und eine zugehörige phasengesteuerte gruppenantenne
EP3082193B1 (de) Differenz-phasenschieberbaugruppe
EP1867003A1 (de) HOCHFREQUENZKOPPLER ODER LEISTUNGSTEILER, INSBESONDERE SCHMALBANDIGER UND/ODER 3dB-KOPPLER ODER LEISTUNGSTEILER
EP3096393B1 (de) Differenz-phasenschieberbaugruppe
EP3070782A1 (de) Hochfrequenz-phasenschieberbaugruppe
WO2003063290A2 (de) Phasenschieberanordnung sowie antennenfeld mit einer solchen phasenschieberanordnung
DE2458477C3 (de) Mechanischer Mehrkanal-Phasenschieber
EP3449528B1 (de) Leiterplattenanordnung zur signalversorgung von strahlern
WO2006103128A1 (de) Antennenarray mit hoher packungsdichte
EP1095421B1 (de) Speise- oder auskoppelvorrichtung für koaxialleitung, insbesondere für mehrfach- koaxialleitung
EP1198026A2 (de) Antennenanordnung für Mobiltelefone
DE4032891C2 (de) Breitband-Antennenanordnung
DE102015006622B3 (de) Differenz-Phasenschieberbaugruppe
EP1495513A1 (de) Elektrisches anpassungsnetzwerk mit einer transformationsleitung
EP0200819A2 (de) Array-Antenne
WO2005038976A1 (de) Elektrisches anpassungsnetzwerk mit einer transformationsleitung
DE102016117424A1 (de) Antenneneinrichtung und Verfahren zum Abstrahlen von elektromagnetischen Wellen mit der Antenneneinrichtung
WO2022038003A1 (de) Antenne
DE2450009A1 (de) Pin-dioden-phasenschieber der hohlleitertechnik

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00802132.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 516849

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1020027001916

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2382258

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10049809

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 69874/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2000958304

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027001916

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000958304

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 516849

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 516849

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2000958304

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 69874/00

Country of ref document: AU

WWR Wipo information: refused in national office

Ref document number: 1020027001916

Country of ref document: KR