WO2001022528A1 - Antenas multinivel - Google Patents

Antenas multinivel Download PDF

Info

Publication number
WO2001022528A1
WO2001022528A1 PCT/ES1999/000296 ES9900296W WO0122528A1 WO 2001022528 A1 WO2001022528 A1 WO 2001022528A1 ES 9900296 W ES9900296 W ES 9900296W WO 0122528 A1 WO0122528 A1 WO 0122528A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
multilevel
antennas
elements
level
Prior art date
Application number
PCT/ES1999/000296
Other languages
English (en)
French (fr)
Inventor
Carles Puente Baliarda
Jordi Romeu Robert
Carmen Borja Borau
Jaume Anguera Pros
Jordi Soler Castany
Original Assignee
Fractus, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8307312&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2001022528(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to DE69924535T priority Critical patent/DE69924535T2/de
Priority to MXPA02003084A priority patent/MXPA02003084A/es
Priority to AT99974041T priority patent/ATE292329T1/de
Priority to BRPI9917493-6A priority patent/BR9917493B1/pt
Priority to DE29925006U priority patent/DE29925006U1/de
Priority to ES99974041T priority patent/ES2241378T3/es
Priority to EP99974041A priority patent/EP1223637B1/en
Priority to PCT/ES1999/000296 priority patent/WO2001022528A1/es
Priority to EP05000379A priority patent/EP1526604A1/en
Priority to CNB998169609A priority patent/CN100355148C/zh
Priority to EP08164491A priority patent/EP2083475A1/en
Priority to CN2007101851114A priority patent/CN101188325B/zh
Priority to JP2001525799A priority patent/JP4012733B2/ja
Priority to AU59840/99A priority patent/AU5984099A/en
Application filed by Fractus, S.A. filed Critical Fractus, S.A.
Publication of WO2001022528A1 publication Critical patent/WO2001022528A1/es
Priority to US10/102,568 priority patent/US20020140615A1/en
Priority to US10/963,080 priority patent/US7015868B2/en
Priority to US11/102,390 priority patent/US7123208B2/en
Priority to US11/179,257 priority patent/US7397431B2/en
Priority to US11/550,276 priority patent/US7505007B2/en
Priority to US11/550,256 priority patent/US7394432B2/en
Priority to US11/780,932 priority patent/US7528782B2/en
Priority to US12/400,888 priority patent/US8009111B2/en
Priority to US13/036,819 priority patent/US8154462B2/en
Priority to US13/044,189 priority patent/US8154463B2/en
Priority to US13/411,212 priority patent/US8330659B2/en
Priority to US13/669,916 priority patent/US20130057450A1/en
Priority to US13/732,743 priority patent/US8976069B2/en
Priority to US13/732,750 priority patent/US9000985B2/en
Priority to US13/732,761 priority patent/US9054421B2/en
Priority to US13/732,755 priority patent/US8941541B2/en
Priority to US13/929,441 priority patent/US9240632B2/en
Priority to US14/825,829 priority patent/US9362617B2/en
Priority to US15/137,782 priority patent/US9761934B2/en
Priority to US15/670,866 priority patent/US10056682B2/en
Priority to US16/035,981 priority patent/US20180323500A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/06Details
    • H01Q9/065Microstrip dipole antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Definitions

  • the present invention relates to antennas formed by a set of similar geometric elements (polygons, polyhedra) electromagnetically coupled and grouped in such a way that each of the basic elements that compose it is distinguished in the antenna structure.
  • the antenna can operate simultaneously on several frequencies and / or its size can be significantly reduced.
  • the present invention has its application mainly within the field of telecommunications and more specifically in radiocommunication systems.
  • the antennas began to develop at the end of the last century after James C. Maxwell in 1864 postulated the fundamental laws of electromagnetism. He must be attributed to Heinrich Hertz in 1886 the invention of the first antenna with which he demonstrated the transmission in the air of electromagnetic waves. In the mid-forties the fundamental restrictions of the antennas were demonstrated in terms of their reduction in size relative to the wavelength and in the early sixties the first antennas appeared frequency independent. Propellers, spirals, logoperiodic groups, cones and structures defined exclusively by angles for the realization of broadband antennas were proposed at that time.
  • antennas of the fractal or multifractal type were introduced (Patent No. 9501019), which due to their geometry had a multifrequency behavior and, in certain cases, a small size.
  • multitriangular antennas (Patent No. 9800954) were introduced that operated simultaneously in the GSM 900 and GSM 1800 bands.
  • the antennas described in this patent have their origin in the fractal and multitriangular type antennas, although they solve several practical problems that limit the behavior of said antennas and reduce their applicability in real environments.
  • fractal objects are a mathematical abstraction that includes an infinite number of elements; Although it is possible to generate antennas whose shape is based on such fractal objects incorporating a finite number of iterations, the performance of said antennas is limited to the particular geometry of the antenna. For example, the position of the bands and their relative spacing is linked to fractal geometry, and it is not always feasible, feasible or economical to design the antenna while maintaining its fractal appearance and at the same time positioning the bands in their proper place in the radio spectrum. Without going any further, the truncation effect is a clear example of the limitation of using a real fractal type antenna that attempts to approximate the theoretical behavior of the ideal fractal antenna. This effect breaks the behavior of the ideal fractal structure in the lower band, displacing it with respect to its theoretical position relative to the other bands and making, in short, that the antenna must have an excessive size that hinders its practical application.
  • Multitriangular structures were an example of non-fractal structures whose geometry was designed so that the antennas could be used in GSM and DCS cell phone base stations.
  • the antennas described in said patent were formed by three triangles linked exclusively by their vertices, of the appropriate size to operate in the bands 890 MHz - 960 MHz and 1710 MHz - 1880 MHz. It was a particular solution, designed for a specific environment, and that did not include the versatility and flexibility needed to address other antenna designs for other environments.
  • Multilevel antennas come to solve the operational limitations of fractal and multitriangular antennas. Its geometry is much more flexible, rich and varied, allowing the operation of the antenna from just two to multiple bands, as well as a greater versatility in terms of diagrams, band positions and impedance levels for some examples.
  • multilevel antennas are characterized by being composed of a series of elements that are distinguished in the overall structure. Precisely due to the fact that it clearly shows several levels of detail (that of the overall structure and that of the individual elements that compose it), the antennas offer a multiband behavior and / or a small size. Its name also has its origin in such characteristic property.
  • the present invention consists of an antenna whose radiating element is characterized by its geometric shape, which is basically constituted by several polygons or polyhedra of the same type. That is to say, constituted, for example, by triangles or squares, pentagons, hexagons, and even circles or ellipses as the limit case of polygons with a large number of sides, as well as tetrahedra, hexahedra, prisms, dodecahedrons, etc.), coupled between yes electrically (either through at least one point of contact, such as through a small separation that provides a capacitive coupling) and grouped into higher level structures so that the polygonal elements continue to be distinguished in the antenna body or polyhedral that compose it.
  • the structures thus generated can be grouped into higher level structures analogously to the basic elements, and so on until they reach as many levels as the antenna designer desires.
  • the denomination of multilevel antenna comes precisely from the fact that at least two levels of detail are distinguished in the antenna body; that of the global structure and that of most of the elements (polygons or polyhedra) that constitute it. This is achieved by ensuring that the contact or intersection zone (if any) between most of the elements that make up the antenna is only a fraction of the perimeter or surrounding area of such polygons or polyhedra.
  • the antenna has the same adaptation level or standing wave ratio in different bands
  • the antenna has practically the same radiation patterns at different frequencies.
  • This property is due precisely to the multilevel structure of the antenna, that is, to the fact that most of the basic elements (polygons or polyhedra of the same category) that compose it continue to be distinguished in the antenna structure.
  • the number of frequency bands is proportional to the number of scales or sizes of the polygonal elements or similar assemblies in which they are grouped, contained in the geometry of the main radiating element.
  • the multilevel structure antennas usually have a smaller size than usual compared to other simpler structure antennas (for example constituted by a single polygon or polyhedron). This is due to the fact that the path that the electric current travels over the multilevel structure is more tortuous and longer than in the case of a simple geometry, due precisely to the gaps existing between the different polygonal or polyhedral elements. Such voids force a certain path for the current (which precisely must avoid these gaps), traveling a longer length and therefore resonating at a lower frequency.
  • its geometry rich in edges and discontinuities facilitates the radiation process, relatively increasing the radiation resistance of the antenna and reducing the quality factor Q, that is, increasing its bandwidth.
  • multilevel geometry consisting of polygons or polyhedra of the same class electromagnetically coupled and grouped together to form a larger size structure.
  • multilevel geometry most of the elements are clearly visible since their contact, intersection or interconnection zone (if any) with the rest of the elements is always less than 50% of its perimeter.
  • multilevel antennas can present a multiband behavior (the same or similar behavior in several frequency bands) and / or operate at a reduced frequency, which allows it to reduce its size.
  • Multiband behavior is achieved by grouping several single-band individual antennas or by incorporating reactive elements into the antenna (concentrated elements such as inductors or capabilities or its integrated versions such as posts or indentations) that force the appearance of new resonance frequencies.
  • Multilevel antennas on the contrary base their behavior on their particular geometry, offering greater flexibility to the antenna designer in terms of the number of bands (proportional to the number of levels of detail), their position, relative spacing and width and therefore , offering better and more varied benefits to the final product.
  • the multilevel structure can be used in any of the known configurations for antennas.
  • Manufacturing techniques are also not characteristic of multilevel antennas, being able to use the most appropriate for each structure or application. By way of example: printing on metallized dielectric substrate by photolithography (printed circuit technique); die cut on metal plate, repulsed on dielectric, etc.
  • Figure 1 shows a particular example of a multilevel element consisting only of triangular type polygons.
  • Figure 2 shows examples of mounting multilevel antennas in different configurations: monopole (2.1), dipole (2.2), patch (2.3), coplanar antenna (2.4), horn (2.5-2.6) and battery (array) (2.7).
  • Figure 3 shows examples of multilevel structures based on triangles.
  • Figure 4 shows examples of multilevel structures based on parallelepipeds.
  • Figure 5 shows examples of multilevel structures based on pentagons.
  • Figure 6 shows examples of multilevel structures based on hexagons.
  • Figure 7 shows examples of multilevel structures based on polyhedra.
  • Figure 8 shows an example of a specific mode of operation of a multilevel antenna in patch configuration for GSM (900 MHz) and DCS (1800 MHz) cellular telephone base stations.
  • Figure 9 shows the input parameters (return losses over 50 ohms) of the multilevel antenna described in the previous figure.
  • Figure 10 shows the radiation patterns of the multilevel antenna of Figure 8: the horizontal and vertical plane.
  • Figure 11 shows an example of a specific mode of operation of a multilevel antenna in configuration Monopole for wireless communication systems indoors or in local radio network access environments.
  • Figure 12 shows the input parameters (return losses over 50 ohms) of the multilevel antenna described in the previous figure.
  • Figure 13 shows the radiation diagrams for the multilevel antenna of Figure 11.
  • the present invention consists of an antenna that contains at least one construction element in the form of a multilevel structure.
  • a multilevel structure is characterized by being formed from the meeting of several polygons or polyhedra of the same type (by way of example, triangles, parallelepipeds, pentagons, hexagons, etc., even circles or ellipses as polygon boundary cases with a large number of sides, as well as tetrahedra, hexahedrons, decahedrons, dodecahedrons, icosahedrons, etc.) electromagnetically coupled together.
  • the electromagnetic coupling is achieved either by proximity, or by direct contact between elements.
  • a multilevel structure or figure is distinguished from another conventional figure precisely by the interconnection (if any) between the elements that constitute it (polygons or polyhedra). In a multilevel structure, at least 75% - lu ⁇
  • the multilevel structure it is easy to recognize geometrically and distinguish most of the basic elements that make up the structure individually, presenting at least two levels of detail: that of the global structure and that of the polygonal or polyhedral elements that compose it .
  • the denomination of multilevel comes precisely from this characteristic and the fact that polygons or polyhedra can be included in a wide variety of sizes;
  • several multi-level structures can be grouped and electromagnetically coupled to each other forming higher level structures. In a multilevel structure all constituent elements are polygons with the same number of sides, or polyhedra with the same number of faces. Logically, this characteristic is broken when several multilevel structures of different nature are grouped and electromagnetically coupled together forming higher level meta-structures.
  • a multilevel element consisting exclusively of triangles of different shapes and sizes is shown in Figure 1. Note how in this particular case, in each structure, each and every one of the elements (triangles, in black) that constitute it are distinguished since the triangles only overlap in a small region of their perimeter, in this particular case by the vertices. Examples of mounting multi-level antennas in different configurations are shown in Figure 2: monopole (21), dipole (22), patch (23), coplanar antenna (24), profile horn (25) and front (26) and battery (array) (27). With what should be noted that, whatever its configuration, the multilevel antenna is distinguished from other antennas by the geometry of its characteristic radiant element.
  • Figure 3 shows more examples of multilevel structures (3.1-3.15) of triangular origin, all of them constituted by triangles. Note the case (3.14) as an evolution of the case (3.13); Despite the contact between the 4 triangles, 75% of the elements (three triangles except the central one) have more than 50% of their perimeter released.
  • Figure 4 describes multilevel structures (4.1-4.14) whose constituent elements are parallelepipeds (squares, rectangles, rhombuses ). Note that the constituent elements of the structure are always distinguished individually (at least most of them). In the case (4.12), in particular, the elements have 100% of their perimeter released, there is no physical connection between them (the coupling is produced by proximity thanks to the mutual capacity between elements).
  • Figures 5, 6 and 7 illustrate, by way of example and in no case with a limited desire, other multilevel structures based on pentagons, hexagons and polyhedra, respectively.
  • multilevel antennas can be used in any of the known configurations for antennas; by way of example and without this being a limitation: dipoles, monopolies, patch or microstrip antennas, coplanar antennas, reflector antennas, rolled antennas and even in battery arrays of antennas.
  • the multilevel structure constitutes part of the characteristic radiant element of such configurations, such as: the arm, the mass plane or both components in a monopole; one arm or both in a dipole; the patch or printed element in the case of a microstrip, patch or coplanar antenna; the reflector in case of a reflector antenna; or the conical section or even the antenna walls in the case of a horn type configuration. It is even possible to choose a loop type antenna configuration in which the geometry of the loop or loops is the outer perimeter of a multilevel structure. In short, the difference between a multilevel antenna and a conventional antenna, basically lies in the geometry of the radiating element or some of its components and not in its particular configuration.
  • the implementation of multilevel antennas is not limited to any of them in particular, being able to use any of those existing and future development techniques and materials that are considered more convenient for each environment or application, put that its inventive essence lies in the geometry used for the multilevel structure and never in its concrete configuration.
  • the multilevel structure can be constructed, for example, by sheets, pieces of conductive or superconducting material, by printing on dielectric substrates (rigid or flexible) covered with a metallic layer as if they were printed circuits, by the interweaving of several dielectric materials that make up the multilevel structure, etc., always depending on the specific needs of each case and application.
  • the implementation of the antenna depends on the chosen configuration (monopole antenna, dipole, patch, horn, reflector ).
  • the multisimilar structure is implemented on a metal support (a simple procedure is to apply a photolithography process to a virgin printed circuit dielectric plate) and the structure is mounted to a standard microwave connector, which in the case of the monopole or patch, in turn is connected to a ground plane (typically a metal plate or housing) as in any other conventional antenna case.
  • two identical multilevel structures constitute the two arms of the antenna; in an opening antenna, the multilevel geometry can constitute the wall or part of the metal wall of the horn or the cross section of the horn, and finally, in the case of a reflector, the multisimilar element or a set thereof It may constitute or cover the reflective element.
  • multilevel antennas are mainly due to their particular geometry and are: the possibility of operating simultaneously in several frequency bands in a similar way (similar radiation and impedance diagrams) and the possibility of reducing their size with respect to other conventional antennas.
  • An example of the advantage of using a multiband antenna in a real environment is the AM1 multilevel antenna, which is described later, for GSM and DCS environments. These antennas are designed to meet the radio specifications in both cell phone systems. Using a single GSM and DCS multilevel antenna for both bands (900 MHz and 1800 MHz) cell phone operators can reduce the cost and environmental impact of their base station networks while increasing the number of users (customers) that It supports the network.
  • Such antennas are based on fractal geometry, geometry based on abstract mathematical concepts of difficult practical implementation.
  • geometric objects whose Haussdorf dimension is a non-integer number are usually defined as fractal. This means that fractal objects only exist as abstraction or concept, but that such geometries are not plasmatable (strictly speaking) in a tangible object or graphic.
  • antennas based on joy Geometry has been developed and described extensively in scientific literature, although its geometry is not, in scientific terms, strictly fractal.
  • the Sierpinski antenna has a multiband behavior with N bands spaced frequently by a factor of 2 and although under that spacing, it could be considered for use in the GSM 900 MHz and GSM 1800 MHz (or DCS) communication networks , its inadequate radiation pattern and its size, at these frequencies, prevent it from being used in a real environment.
  • multilevel structures In no case should multilevel structures be confused with antenna groupings (or arrays). Although it is true that a group is constituted by a set of equal antennas, in a group or array it is usually pretended that the elements are electromagnetically decoupled, just the opposite of what It is chased on multi-level antennas. In a group of antennas, each and every one of the elements is usually fed individually, either through specific transmitters or receivers for each element, or through a signal distribution network, while in a multilevel antenna the structure is excited in a few of its elements and the rest are coupled electromagnetically or by direct contact (in a region not exceeding 50% of the perimeter or surface of the adjacent elements).
  • a multilevel antenna In a group of antennas, it is sought to increase the directivity of an individual antenna or to form the diagram for a specific application; In a multilevel antenna, a multiband behavior or a reduction in antenna size is sought, which implies an application that is absolutely different from that of clusters. From now on, in order not to confuse the groupings of polygons in multilevel structures with the classic groupings of antennas, the name of array will be reserved for the latter.
  • AM1 and AM2 Multilevel Antennas
  • This model consists of a multi-level patch antenna, represented in Figure 8, which operates simultaneously in the GSM 900 (890 MHz - 960 MHz) and GSM 1800 (1710 MHz - 1880 MHz) bands and offers a sector radiation pattern in The horizontal plane.
  • the antenna is primarily intended (although not limited to it) for use in GSM 900 and 1800 cell phone base stations.
  • the multilevel structure (8.10), or patch of the antenna is formed by a copper sheet printed on a standard fiberglass printed circuit board.
  • the multilevel geometry is made up of 5 triangles (8.1-8.5) joined by the vertex area as indicated in Figure 8, with an external perimeter in the form of an equilateral triangle of 13.9 cm in height (8.6).
  • the lower triangle has a height (8.7) of 8.2 cm and together with the two additional adjacent triangles form a triangular perimeter structure 10.7 cm high (8.8).
  • the multilevel patch (8.10) is mounted parallel to a 22 x 18.5 cm rectangular aluminum ground plane (8.9).
  • the separation between the patch and the ground plane is 3.3 cm, which is maintained with a pair of dielectric spacers that act as support
  • the connection to the antenna is made at two points of the multilevel structure, one for each operating band (GSM 900 and GSM 1800).
  • the excitation is produced by a vertical metal pole perpendicular to the mass plane and the multilevel structure, capacitively terminated by a metal plate that is electrically coupled by proximity (capacitive effect) to the patch. It is a usual system in antennas in patch configuration, through which it is sought to compensate for the inductive effect of the post with the capacitive effect of its termination.
  • the circuit that interconnects the element and the access port to the antenna or connector (8.13) is connected to the base of the excitation post.
  • Said interconnection circuit (8.11) can be performed in technology microstrip, coaxial or strip-line, to give some examples, and incorporates conventional adaptation networks that transform the impedance measured at the base of the post at 50 ohms (with a typical tolerance in the Stationary Wave Ratio (ROE) typical in these applications less than 1.5) that are required on the antenna input / output connector.
  • Said connector is usually of type N or SMA in base station environments for micro-cells.
  • the interconnection network (8.11) can integrate a diplexer, allowing the antenna to be present in a configuration of two connectors (one for each band) or a single connector for both bands.
  • a parallel stub of equal to average electrical length can be connected to the base of the excitation post in the DCS band wavelength, in the central frequency of DCS, and terminated in open circuit.
  • a parallel stub terminated in an open circuit of slightly longer than a quarter of a wavelength can be connected to the center frequency of the GSM band.
  • Said stub introduces a capacity at the base of the connection that can be adjusted to compensate for the residual inductive effect that the post has.
  • said stub has a very low impedance in the band of
  • FIGS 9 and 10 show the typical radio behavior of this specific embodiment of a multi-level dual antenna.
  • Figure 9 shows the return losses (L r ) in GSM (9.1) and DCS (9.2), typically below - 14 dB (which is equivalent to ROE ⁇ 1.5), so the antenna is well adapted in both operating bands (890 MHz-960 MHz and 1710 MHz-1880 MHz).
  • This model consists of a multi-level antenna in monopole configuration, represented in Figure 11, for wireless communication systems indoors or in local radio network access environments.
  • the antenna operates similarly simultaneously in the bands 1880 MHz-1930 MHz and 3400 MHz-3600 MHz, for example in installations with the DECT system.
  • the multilevel structure is formed by three or five triangles (see Figure 11 and Figure 3.6) to which an inductive loop (11.1) is added.
  • the antenna has a diagram of omnidirectional radiation in the horizontal plane and is mainly designed (although not limited to it) for ceiling or floor mounting.
  • the multilevel structure is printed on a dielectric substrate (11.2) Rogers * RO4003 5.5 cm wide, 4.9 cm high and 0.8 mm thick, and with a dielectric permittivity equal to 3.38.
  • the multilevel element is composed of three triangles (11.3-11.5) joined by the vertex zone; the lower triangle (11.3) has a height of 1.82 cm, while the multilevel structure has a total height of 2.72 cm.
  • an inductive loop (11.1) is added to the multilevel element at the top, with a trapezoidal shape in this specific application, so that the total size of the radiating element is 4.5 cm.
  • the multilevel structure is mounted perpendicularly on a metallic ground plane (11.6) of aluminum (for example) of square or circular section with about 18 cm of side or diameter respectively.
  • the lower vertex of the element is placed in the center of the mass plane and constitutes the excitation point of the antenna.
  • Said interconnection network can be implemented in microstrip, strip-line or coaxial technology (to name a few examples) although in this specific embodiment the microstrip configuration was chosen.
  • the network can be used as an impedance transformer, adapting the impedance at the vertex of the multilevel element with the 50 Ohms (L r ⁇ - 14 dB, ROE ⁇ 1.5) required in the connector input / output
  • Figures 12 and 13 summarize the radio-electrical behavior of the antenna in the lower (1900) and upper (3500) bands.
  • Figure 12 shows the standing wave ratio (ROE) in both bands: Figure 12.1 for the band between 1880 and 1930 MHz, and Figure 12.2 for the band between 3400 and 3600 MHz.
  • ROE standing wave ratio
  • Typical radiation patterns are shown in Figure 13. Diagrams (13.1), (13.2) and (13.3) at 1905 MHz measured in the vertical plane, in the horizontal and in the antenna plane, respectively. And the diagrams (13.4), (13.5) and (13.6) at 3500 MHz measured in the vertical, horizontal, and antenna planes, respectively.
  • An omnidirectional behavior can be observed in the horizontal plane, and a typical bilobular diagram in the vertical plane, the typical directivity of the antenna being greater than 4 dBi in the 1900 band and 6 dBi in the band of
  • Both the AM1 and AM2 antenna will typically be covered with a dielectric radome practically transparent to electromagnetic radiation, whose function will be to protect the radiating element and the connection network from external aggressions, in addition to providing them with an aesthetic external appearance. It is not considered necessary to make the content of this description more extensive so that a person skilled in the art can understand its scope and the advantages derived therefrom, as well as carry out the practical realization thereof.

Abstract

Antenas en las que el elemento radiante respectivo contiene al menos una estructura multinivel formada por conjuncto de elementos geométricos (polígonos o poliedros) similares acoplados electromagnéticamente y agrupados de tal manera que en la estructura de la antena se distinguen cada uno de los elementos básicos que la componen. El diseño está realizado de modo que aporta dos importantes ventajas: la antena puede operar simultáneamente en varias frecuencias y/o su tamaño puede reducirse significativamente. De esta manera se puede conseguir un comportamiento radioeléctrico multibanda, es decir, un comportamiento similar a diferentes bandas de frecuencia.

Description

ANTENAS MU TINIVEL
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a antenas formadas por un conjunto de elementos geométricos (polígonos, poliedros) similares acoplados electromagnéticamente y agrupados de tal manera que en la estructura de la antena se distinguen cada uno de los elementos básicos que la componen.
De manera más concreta, se refiere a un diseño geomé- trico particular de dichas antenas mediante el que se aportan dos ventajas fundamentales: la antena puede operar simultáneamente en varias frecuencias y/o su tamaño puede reducirse significativamente.
La presente invención tiene su aplicación principalmente dentro del campo de las telecomunicaciones y más concretamente en los sistemas de radiocomunicación.
ANTECEDENTES Y SUMARIO DE LA INVENCIÓN
Las antenas empezaron a desarrollarse a finales del siglo pasado a partir de que James C. Maxwell en 1864 postulara las leyes fundamentales del electromagnetismo. Debe atribuirse a Heinrich Hertz en 1886 el invento de la primera antena con la que demostraba la transmisión en el aire de las ondas electromagnéticas. A mediados de los años cuarenta se demostraron las restricciones fundamentales de las antenas en cuanto a su reducción de tamaño relativo a la longitud de onda y a principios de los años sesenta aparecieron las primeras antenas independientes de la frecuencia. Se propusieron por aquel entonces hélices, espirales, agrupaciones logoperiódicas, conos y estructuras definidas exclusivamente por ángulos para la realización de antenas de banda ancha.
En 1995 se introdujeron las antenas de tipo fractal o multifractal (Patente n° 9501019) , las cuales por su geometría presentaban un comportamiento multifrecuencia y, en determinados casos, un tamaño reducido. Posteriormente se introdujeron las antenas multitriangulares (Patente n° 9800954) que operaban simultáneamente en las bandas de GSM 900 y GSM 1800.
Las antenas descritas en la presente patente tienen su origen en las antenas de tipo fractal y multitriangular, aunque solventan varios problemas de tipo práctico que limitan el comportamiento de dichas antenas y reducen su aplicabilidad en entornos reales.
Desde el punto de vista científico, las antenas estrictamente fractales son irrealizables puesto que los objetos fractales son una abstracción matemática que incluye un número infinito de elementos; si bien es posible generar antenas cuya forma esté basada en tales objetos fractales incorporando un número finito de iteraciones, las prestaciones de dichas antenas están limitadas a la geometría particular de la antena. Por ejemplo, la posición de las bandas y su espaciado relativo está ligado a la geometría fractal, y no siempre es factible, viable o económico diseñar la antena manteniendo su apariencia fractal y posicionando al mismo tiempo las bandas en su lugar adecuado del espectro radioeléctrico. Sin ir más lejos, el efecto de truncamiento supone un claro ejemplo de la limitación que supone utilizar una antena de tipo fractal real que intente aproximar el comportamiento teórico de la antena fractal ideal . Dicho efecto rompe el comportamiento de la estructura fractal ideal en la banda inferior, desplazándola respecto a su posición teórica relativa a las demás bandas y haciendo, en definitiva, que la antena deba presentar un tamaño desmesurado que dificulta su aplicación práctica.
Además de dichos problemas de tipo práctico, no siempre es posible modificar la estructura fractal para presentar el nivel de impedancia o el diagrama de radiación que se adecúen a las necesidades de cada aplicación. Por todos estos motivos, a menudo es necesario apartarse de la geometría fractal y recurrir a otro tipo de geometrías que ofrecen una mayor flexibilidad y versatilidad en cuanto a posición de las bandas frecuenciales de la antena, niveles de adaptación e impedancias, polarización y diagramas de radiación
Las estructuras multitriangulares (Patente n° 9800954) eran un ejemplo de estructuras no fractales cuya geometría estaba diseñada para que las antenas pudieran ser utilizadas en estaciones base de telefonía celular GSM y DCS . Las antenas descritas en dicha patente estaban formadas por tres triángulos unidos exclusivamente por sus vértices, del tamaño adecuado para operar en las bandas 890 MHz - 960 MHz y 1710 MHz - 1880 MHz . Se trataba de una solución particular, pensada para un entorno concreto, y que no recogía la versatilidad y flexibilidad necesarias para abordar otros diseños de antena para otros entornos.
Las antenas multinivel vienen a solventar las limitaciones operativas de las antenas fractales y multitriangulares. Su geometría es mucho más flexible, rica y variada, permitiendo la operación de la antena desde tan solo dos hasta múltiples bandas, así como una mayor versatilidad en cuanto a diagramas, posiciones de las bandas y niveles de impedancia por poner algunos ejemplos. Sin ser fractales, las antenas multinivel se caracterizan por estar compuestas por una serie de elementos que se distinguen en el global de la estructura. Precisamente por el hecho de mostrar claramente varios niveles de detalle (el de la estructura global y el de los elementos individuales que la componen) , las antenas ofrecen un comportamiento multibanda y/o un tamaño reducido. Su nombre también tiene su origen en tal propiedad característica.
La presente invención consiste en una antena cuyo elemento radiante se caracteriza por su forma geométrica, que está constituida básicamente por varios polígonos o poliedros del mismo tipo. Es decir constituida, por ejemplo, por triángulos o bien cuadrados, pentágonos, hexágonos, e incluso círculos o elipses como caso límite de polígonos con un gran número de lados, así como tetraedros, hexaedros, prismas, dodecaedros, etc.), acoplados entre sí eléctricamente (ya sea a través de al menos un punto de contacto, como a través de una pequeña separación que proporcione un acoplamiento capacitivo) y agrupados en estructuras de nivel superior de manera que en el cuerpo de la antena se siguen distinguiendo los elementos poligonales o poliédricos que la componen. A su vez, las estructuras así generadas pueden agruparse en estructuras de nivel superior de forma análoga a como lo hacen los elementos básicos, y así sucesivamente hasta llegar a tantos niveles como el diseñador de la antena desee .
La denominación de antena multinivel proviene precisamente del hecho que en el cuerpo de la antena se distinguen al menos dos niveles de detalle; el de la estructura global y el de la mayoría de los elementos (polígonos o poliedros) que la constituyen. Ello se consigue garantizando que la zona de contacto o intersección (en caso de existir) entre la mayoría de los elementos que componen la antena sea únicamente una fracción del perímetro o área circundante de tales polígonos o poliedros.
Una de las particularidades de las antenas multinivel es que su comportamiento radioeléctrico puede ser similar en múltiples bandas frecuenciales. Los parámetros de entrada de la antena (impedancia y diagrama de radiación) se mantienen parecidos en múltiples bandas frecuenciales
(es decir, la antena presenta la misma cota de adaptación o relación de onda estacionaria en las distintas bandas) y a menudo, la antena presenta prácticamente los mismos diagramas de radiación a distintas frecuencias . Esta propiedad se debe precisamente a la estructura multinivel de la antena, es decir, al hecho de que en la estructura de la antena se sigan distinguiendo la mayoría de los elementos básicos (polígonos o poliedros de la misma categoría) que la componen. El número de bandas frecuenciales es proporcional al número de escalas o tamaños de los elementos poligonales o de los conjuntos similares en que se agrupan, contenidos en la geometría del elemento radiante principal.
Además de su comportamiento multibanda, las antenas de estructura multinivel suelen presentar un tamaño más reducido del habitual comparado con otras antenas de estructura más simple (por ejemplo constituidas por un único polígono o poliedro) . Ello se debe a que el camino que recorre la corriente eléctrica sobre la estructura multinivel es más tortuoso y largo que en el caso de una geometría simple, debido precisamente a los vacíos existentes entre los distintos elementos poligonales o poliédricos. Tales vacíos fuerzan un determinado camino para la corriente (que precisamente debe evitar esos huecos) , recorriendo una mayor longitud y por lo tanto resonando a una frecuencia inferior. Además, su geometría rica en aristas y discontinuidades facilita el proceso de radiación, incrementando relativamente la resistencia de radiación de la antena y reduciendo el factor de calidad Q, es decir aumentando su ancho de banda.
Así pues, las características fundamentales de las antenas multinivel son:
- Su geometría multinivel, constituida por polígonos o poliedros de la misma clase acoplados electromagnéticamente y agrupados para formar una estructura de tamaño superior. En la geometría multinivel, la mayoría de los elementos son claramente visibles puesto que su zona de contacto, intersección o interconexión (en caso de existir) con el resto de elementos es siempre inferior al 50% de su perímetro.
El comportamiento radioeléctrico derivado de su geometría: las antenas multinivel pueden presentar un comportamiento multibanda (el mismo comportamiento o similar en varias bandas f ecuenciales) y/o operar a una frecuencia reducida, lo cual le permite reducir su tamaño.
Se describen ya en la literatura especializada algunos diseños de antena que permiten cubrir algunas pocas bandas, sin embargo en tales diseños el comportamiento multibanda se consigue a base de agrupar varias antenas individuales monobanda o de incorporar elementos reactivos en la antena (elementos concentrados como inductores o capacidades o sus versiones integradas tales como postes o hendiduras) que fuerzan la aparición de nuevas frecuencias de resonancia. Las antenas multinivel por el contrario basan su comportamiento en su particular geometría, ofreciendo una mayor flexibilidad al diseñador de la antena en cuanto al número de bandas (proporcional al número de niveles de detalle) , su posición, espaciado relativo y anchura y por lo tanto, ofreciendo mejores y más variadas prestaciones al producto final .
La estructura multinivel puede utilizarse en cualquiera de las configuraciones conocidas para antenas. A modo de ejemplo y sin que ello suponga una limitación: dipolos, monopolos, antenas parche o microstrip, antenas coplanares, antenas de reflector, antenas enrolladas e incluso en baterías (arrays) de antenas. Las técnicas de fabricación tampoco son características de las antenas multinivel, pudiéndose utilizar la más adecuada para cada estructura o aplicación. A modo de ejemplo: impresión sobre substrato dieléctrico metalizado mediante fotolitografiado (técnica de circuito impreso) ; troquelado sobre plancha metálica, repulsado sobre dieléctrico, etc.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Otras características y ventajas de la invención se pondrán de manifiesto a partir de la descripción detallada que sigue de una realización preferida de la invención, tomada a título de ejemplo ilustrativo y no limitativo con referencia a los dibujos que se acompañan, en los que:
La Figura 1 muestra un ejemplo particular de elemento multinivel constituido únicamente por polígonos de tipo triangular. La Figura 2 muestra ejemplos de montaje de antenas multinivel en distintas configuraciones: monopolo (2.1), dipolo (2.2), parche (2.3), antena coplanar (2.4), bocina (2.5-2.6) y batería (array) (2.7).
La Figura 3 muestra ejemplos de estructuras multinivel basadas en triángulos.
La Figura 4 muestra ejemplos de estructuras multinivel basadas en paralepípedos .
La Figura 5 muestra ejemplos de estructuras multinivel basadas en pentágonos.
La Figura 6 muestra ejemplos de estructuras multinivel basadas en hexágonos.
La Figura 7 muestra ejemplos de estructuras multinivel basadas en poliedros.
La Figura 8 muestra un ejemplo de un modo concreto de funcionamiento de una antena multinivel en configuración parche para estaciones base de telefonía celular GSM (900 MHz) y DCS (1800 MHz) .
La Figura 9 muestra los parámetros de entrada (pérdidas de retorno sobre 50 ohmios) de la antena multinivel descrita en la figura anterior.
La Figura 10 muestra los diagramas de radiación de la antena multinivel de la Figura 8 : el plano horizontal y el vertical .
La Figura 11 muestra un ejemplo de un modo concreto de funcionamiento de un antena multinivel en configuración monopolo para sistemas de comunicación sin hilo en interiores o en entornos de acceso local a redes vía radio.
La Figura 12 muestra los parámetros de entrada (pérdidas de retorno sobre 50 ohmios) de la antena multinivel descrita en la figura anterior.
La Figura 13 muestra los diagramas de radiación para la antena multinivel de la Figura 11.
DESCRIPCIÓN DE LA REALIZACIÓN PREFERIDA DE LA INVENCIÓN
Para llevar a cabo la descripción detallada que sigue de la realización preferida de la presente invención, se hará referencia permanente a las Figuras de los dibujos, a través de las cuales se han utilizado las mismas referencias numéricas para las partes iguales o similares.
La presente invención consiste en una antena que contiene al menos un elemento constructivo en forma de estructura multinivel. Una estructura multinivel se caracteriza por estar formada a partir de la reunión de varios polígonos o poliedros del mismo tipo (a modo de ejemplo, triángulos, paralepípedos, pentágonos, hexágonos, etc., incluso círculos o elipses como casos límite de polígono con un gran número de lados, así como tetraedros, hexaedros, decaedros, dodecaedros, icosaedros, etc.) acoplados entre sí electromagnéticamente. El acoplo electromagnético se consigue bien por proximidad, bien por contacto directo entre elementos. Una estructura o figura multinivel se distingue de otra figura convencional precisamente por la interconexión (en caso de existir) entre los elementos que la constituyen (los polígonos o poliedros) . En una estructura multinivel, al menos el 75% - lu ¬
de los elementos que la componen tienen más del 50% de su perímetro (en el caso de polígonos) o superficie (en el caso de poliedros) liberado de contacto con cualquiera de los otros elementos que componen la estructura. Así pues, en la estructura multinivel es fácil reconocer geométricamente y distinguir individualmente a la mayoría de los elementos básicos que conforman la estructura, presentando al menos dos niveles de detalle: el de la estructura global y el de los elementos poligonales o poliédricos que la componen. La denominación de multinivel proviene precisamente de esta característica y del hecho que los polígonos o poliedros pueden incluirse en una gran variedad de tamaños; además, varias estructuras multinivel pueden agruparse y acoplarse electromagnéticamente entre sí formando estructuras de nivel superior. En una estructura multinivel todos los elementos constitutivos son polígonos con el mismo número de lados, o poliedros con el mismo número de caras. Lógicamente, esta característica se rompe cuando varias estructuras multinivel de distinta naturaleza se agrupan y acoplan electromagnéticamente entre si formando meta-estructuras de nivel superior.
De manera que, en las Figuras de la 1 a la 7 se muestran algunos casos particulares de estructuras multinivel .
En la Figura 1 se muestra un elemento multinivel constituido exclusivamente por triángulos de distinta forma y tamaño. Obsérvese como en este caso particular en dicha estructura se distinguen todos y cada uno de los elementos (triángulos, en negro) que la constituyen puesto que los triángulos únicamente se solapan en una pequeña región de su perímetro, en este caso concreto por los vértices. En la Figura 2 se muestran ejemplos de montaje de antenas multinivel en distintas configuraciones: monopolo (21), dipolo (22), parche (23), antena coplanar (24), bocina de perfil (25) y de frente (26) y batería (array) (27) . Con lo que cabe destacar que, cualquiera que sea su configuración, la antena multinivel se distingue de otras antenas por la geometría de su elemento radiante característico .
En la Figura 3 se muestran más ejemplos de estructuras multinivel (3.1-3.15) de origen triangular, todas ellas constituidas por triángulos. Obsérvese el caso (3.14) como evolución del caso (3.13); a pesar del contacto entre los 4 triángulos el 75% de los elementos (tres triángulos a excepción del central) tiene más del 50% de su perímetro liberado.
En la Figura 4 se describen estructuras multinivel (4.1-4.14) cuyo elemento constitutivo son paralepípedos (cuadrados, rectángulos, rombos...). Obsérvese que siempre se distinguen los elementos constitutivos de la estructura individualmente (al menos la mayoría de ellos) . En el caso (4.12), en concreto, los elementos tienen el 100% de su perímetro liberado, no existiendo ninguna conexión física entre ellos (el acoplamiento se produce por proximidad gracias a la capacidad mutua entre elementos) .
En las Figuras 5, 6 y 7 se ilustran, a modo de ejemplo y en ningún caso con afán limitativo, otras estructuras de tipo multinivel basados en pentágonos, hexágonos y poliedros, respectivamente.
Es necesario enfatizar que la diferencia entre las antenas multinivel y otras antenas existentes radica en su particular geometría, no en su configuración como antena o en los materiales que se utilizan para su construcción. Así pues la estructura multinivel puede utilizarse en cualquiera de las configuraciones conocidas para antenas; a modo de ejemplo y sin que ello suponga una limitación: dipolos, monopolos, antenas parche o microstrip, antenas coplanares, antenas de reflector, antenas enrolladas e incluso en baterías (arrays) de antenas. En general, la estructura multinivel constituye parte del elemento radiante característico de tales configuraciones, como por ejemplo: el brazo, el plano de masa o ambos componentes en un monopolo; un brazo o ambos en un dipolo; el parche o elemento impreso en el caso de una antena microstrip, parche o coplanar; el reflector en caso de una antena de reflector; o la sección cónica o incluso las paredes de la antena en el caso de una configuración tipo bocina. Incluso es posible escoger una configuración de antena tipo espira en la que la geometría del bucle o bucles sea el perímetro externo de una estructura multinivel. En definitiva, la diferencia entre una antena multinivel y una antena convencional, radica básicamente en la geometría del elemento radiante o de alguno de sus componentes y no en su configuración particular.
En cuanto a los materiales y tecnología de construcción, la implementación de antenas multinivel no está limitado a ninguna de ellos en particular, pudiéndose utilizar cualquiera de aquellas técnicas y materiales existentes o de futuro desarrollo que se estimen más convenientes para cada entorno o aplicación, puesto que su esencia inventiva radica en la geometría utilizada para la estructura multinivel y nunca en su configuración concreta. Así pues, la estructura multinivel puede construirse, por ejemplo, mediante láminas, piezas de material conductor o superconductor, mediante impresión en substratos dieléctricos (rígidos o flexibles) recubiertos de una capa metálica como si se tratara de circuitos impresos, mediante la imbricación de varios materiales dieléctricos que conformen la estructura multinivel, etc., siempre dependiendo de las necesidades específicas de cada caso y aplicación. Una vez construida la estructura multinivel, la implementación de la antena depende de la configuración elegida (antena monopolo, dipolo, parche, bocina, reflector...) . En los casos monopolo, espira, dipolo y parche, por ejemplo, se implementa la estructura multisimilar en un soporte metálico (un procedimiento sencillo consiste en aplicar un proceso de fotolito- grafiado a una placa dieléctrica virgen de circuito impreso) y se monta la estructura a un conector estándar de microondas, que en el caso del monopolo o parche, a su vez está conectado a un plano de masa (típicamente una placa o carcasa metálica) como en cualquier otro caso de antena convencional. En el caso del dipolo, dos estructuras multinivel idénticas constituyen los dos brazos de la antena; en una antena de apertura, la geometría multinivel puede constituir la pared o parte de la pared metálica de la bocina o bien la sección transversal de la misma, y finalmente, en el caso de un reflector, el elemento multisimilar o un conjunto de los mismos puede constituir o recubrir el elemento reflectante .
Las propiedades más relevantes de las antenas multinivel se deben principalmente a su particular geometría y son: la posibilidad de operar simultáneamente en varias bandas frecuenciales de forma similar (diagramas de radiación e impedancia similares) y la posibilidad de reducir su tamaño respecto a otras antenas convencionales
(basadas exclusivamente en un único polígono o poliedro) . Tales propiedades son de especial relevancia en el entorno de los sistemas de comunicación. El hecho de operar simultáneamente en varias bandas frecuenciales permite que una única antena multinivel integre varios sistemas de comunicación en vez de dedicar una antena para cada sistema o servicio como suele hacerse convencionalmente . La reducción de tamaño es especialmente interesante cuando se trata de disimular la antena ya sea por su impacto visual en el paisaje urbano o rural, ya sea por su efecto anti -estético o anti-aerodinámico cuando la antena se incorpora a un vehículo o equipo de telecomunicación portátil .
Un ejemplo de la ventaja que supone utilizar una antena multibanda en un entorno real lo constituye la antena multinivel AM1, que se describe más adelante, para entornos GSM y DCS . Dichas antenas están diseñadas para cumplir las especificaciones radioeléctricas en ambos sistemas de telefonía celular. Utilizando una única antena multinivel GSM y DCS para ambas bandas (900 MHz y 1800 MHz) los operadores de telefonía celular pueden reducir el coste y el impacto ambiental de sus redes de estaciones base al mismo tiempo que aumentar el número de usuarios (clientes) que soporta la red.
Es especialmente relevante diferenciar las antenas multinivel de las antenas fractales. Tales antenas se basan en la geometría fractal, geometría basada en conceptos matemáticos abstractos de difícil implementación práctica. En la literatura científica especializada se suele definir como fractal aquellos objetos geométricos cuya dimensión de Haussdorf es un número no entero. Ello significa que los objetos fractales sólo existen como abstracción o concepto, pero que tales geometrías no son plasmables (en sentido estricto) en un objeto o gráfico tangible. Bien es verdad que antenas basadas en dicha geometría han sido desarrolladas y descritas ampliamente en la literatura científica, aunque su geometría no es, en términos científicos, estrictamente fractal. Si bien es verdad que algunas de tales antenas ofrecen un comportamiento multibanda (su diagrama de radiación e impedancia se mantiene prácticamente constante en varias bandas frecuenciales) , no ofrecen por sí solas todas las prestaciones que se requiere de una antena para su aplicabilidad en un entorno práctico. Así pues la antena de Sierpinski por ejemplo, tiene un comportamiento multibanda con N bandas espaciadas frecuencialmente por un factor 2 y aunque en virtud de ese espaciado podría pensarse en su utilización en las redes de comunicaciones GSM 900 MHz y GSM 1800 MHz (o DCS) , su inadecuado diagrama de radiación y su tamaño, a esas frecuencias, le impiden en la práctica ser utilizadas en un entorno real . En definitiva, para conseguir que una antena además de ofrecer un comportamiento multibanda cumpla con todas y cada una de las especificaciones que se le exigen en cada aplicación particular, casi siempre es necesario apartarse de la geometría fractal y recurrir, por ejemplo, a antenas de geometría multinivel. A modo de ejemplo, ninguna de las estructuras detalladas en las figuras 1, 3, 4, 5 y 6 son fractales. Todas tienen una dimensión de Hausdorff igual a 2, que coincide con su dimensión topológica. Análogamente, ninguna de las estructuras multinivel de la figura 7 son fractales, siendo su dimensión de Hausdorff igual a 3, coincidiendo con su dimensión topológica.
No debería confundirse en ningún caso las estructuras multinivel con las agrupaciones de antenas (o arrays) . Si bien es verdad que una agrupación esta constituida por un conjunto de antenas iguales, en una agrupación o array se suele pretender que los elementos estén desacoplados electromagnéticamente, justamente lo contrario de lo que se persigue en las antenas multinivel. En una agrupación de antenas todos y cada uno de los elementos suelen alimentarse individualmente, bien mediante transmisores o receptores de señal específicos para cada elemento, bien mediante una red de distribución de señal, mientras que en una antena multinivel se excita la estructura en algunos pocos de sus elementos y los restantes se acoplan electromagnéticamente o por contacto directo (en una región no superior al 50% del perímetro o superficie de los elementos colindantes) . En una agrupación de antenas se busca aumentar la directividad de una antena individual o conformar el diagrama para una aplicación concreta; en una antena multinivel se persigue obtener un comportamiento multibanda o bien una reducción del tamaño de la antena, lo cual supone una aplicación absolutamente distinta a la de las agrupaciones. En adelante, para no confundir las agrupaciones de polígonos en estructuras multinivel con las agrupaciones clásicas de antenas se reservará para estas últimas la denominación de array.
A continuación se describen como ejemplo, no limitativo e ilustrativo, dos modos particulares de funcionamiento de Antenas Multinivel (AM1 y AM2) para un entorno y aplicación concretos.
MODO AM1
Este modelo consiste en una antena tipo parche multinivel, representada en la Figura 8, que opera simultáneamente en las bandas de GSM 900 (890 MHz - 960 MHz) y GSM 1800 (1710 MHz - 1880 MHz) y ofrece un diagrama de radiación sectorial en el plano horizontal. La antena está pensada principalmente (aunque no limitada a ello) para el uso en estaciones base de telefonía celular GSM 900 y 1800. La estructura multinivel (8.10), o parche de la antena, está formada por una lámina de cobre de impresa sobre una placa de circuito impreso de fibra de vidrio estándar. La geometría multinivel la constituyen 5 triángulos (8.1-8.5) unidos por la zona del vértice tal y como se indica en la Figura 8, con un perímetro externo en forma de triángulo equilátero de 13.9 cm de altura (8.6). El triángulo inferior tiene una altura (8.7) de 8.2 cm y conjuntamente con los dos triángulos adicionales adyacentes configuran una estructura de perímetro triangular de 10.7 cm de altura (8.8) .
El parche multinivel (8.10) se monta paralelamente a un plano de tierra (8.9) de aluminio rectangular de 22 x 18.5 cm. La separación entre el parche y el plano de tierra es de 3.3 cm, separación que se mantiene con un par de espaciadores dieléctricos que actúan a modo de soporte
(8.12) .
La conexión a la antena se realiza en dos puntos de la estructura multinivel, uno para cada banda de funcionamiento (GSM 900 y GSM 1800) . La excitación se produce mediante un poste metálico vertical perpendicular al plano de masa y a la estructura multinivel, terminado capacitivamente mediante una chapa metálica que se acopla eléctricamente por proximidad (efecto capacitivo) al parche. Se trata de un sistema habitual en antenas en configuración parche, mediante el cual se persigue compensar el efecto inductivo del poste con el efecto capacitivo de su terminación.
En la base del poste de excitación se conecta el circuito que interconecta el elemento y el puerto de acceso a la antena o conector (8.13) . Dicho circuito de interconexión (8.11) puede realizarse en tecnología microstrip, coaxial o strip-line, por poner algunos ejemplos, e incorpora redes de adaptación convencionales que transforman la impedancia medida en la base del poste a los 50 ohmios (con una tolerancia típica en la Relación de Onda Estacionaria (ROE) típica en estas aplicaciones menor de 1.5) que se requieren en el conector de entrada / salida de la antena. Dicho conector suele ser de tipo N o SMA en entornos de estaciones base para micro-celda.
Además de adaptar impedancia y proporcionar la interconexión con el elemento radiante, la red de interconexión (8.11) puede integrar un diplexor, permitiendo que la antena se presente en una configuración de dos conectores (uno para cada banda) o bien un único conector para ambas bandas.
En el caso de una configuración de doble conector, para aumentar el aislamiento entre los terminales GSM 900 y el GSM 1800 (DCS) , se puede conectar en la base del poste de excitación en la banda DCS un stub paralelo de longitud eléctrica igual a media longitud de onda, en la frecuencia central de DCS, y terminado en circuito abierto. Análogamente, en la base del hilo de GSM 900 se podrá conectar un stub paralelo terminado en circuito abierto de longitud eléctrica ligeramente superior a un cuarto de longitud de onda a la frecuencia central de la banda GSM. Dicho stub introduce una capacidad en la base de la conexión que puede ser ajustada para compensar el efecto inductivo residual que presenta el poste. Además, dicho stub presenta una muy baja impedancia en la banda de
DCS, lo que contribuye a aumentar el aislamiento entre conectores en dicha banda. En las Figuras 9 y 10 se muestra el comportamiento radioeléctrico típico de esta realización concreta de antena multinivel dual .
En la Figura 9 se muestran las pérdidas de retorno (Lr) en GSM (9.1) y DCS (9.2), típicamente por debajo de - 14 dB (que es a efectos equivalente a ROE <1.5), por lo que la antena está bien adaptada en ambas bandas de funcionamiento (890 MHz-960 MHz y 1710 MHz-1880 MHz) .
Los diagramas de radiación del plano vertical (10.1 y 10.3) y del plano horizontal (10.2 y 10.4) en ambas bandas se muestran en la Figura 10. Se observa claramente que ambas antenas radian mediante un lóbulo principal en la dirección perpendicular (10.1 y 10.3) a la antena, y que en el plano horizontal (10.2 y 10.4) ambos diagramas son del tipo sectorial, con un ancho de haz típico a 3 dB de 65°. La directividad (d) típica en ambas bandas es d>7 Db.
Modo AM2
Este modelo consiste en un antena multinivel en configuración monopolo, representada en la Figura 11, para sistemas de comunicación sin hilo en interiores o en entornos de acceso local a redes vía radio.
La antena opera de forma similar simultáneamente en las bandas 1880 MHz-1930 MHz y 3400 MHz-3600 MHz, por ejemplo en instalaciones con el sistema DECT. La estructura multinivel esta formada por tres o cinco triángulos (ver Figura 11 y Figura 3.6) a los que se añade un bucle inductivo (11.1) . La antena presenta un diagrama de radiación omnidireccional en el plano horizontal y esta principalmente pensada (aunque no limitada a ello) para montaje en techo o suelo. La estructura multinivel está impresa sobre un substrato dieléctrico (11.2) Rogers* RO4003 de 5.5 cm de anchura, 4.9 cm de altura y 0.8 mm de grosor, y de permitividad dieléctrica igual a 3.38. El elemento multinivel se compone de tres triángulos (11.3-11.5) unidos por la zona del vértice; el triángulo (11.3) inferior tiene una altura de 1.82 cm, mientras que la estructura multinivel tiene una altura total de 2.72 cm. Para reducir el tamaño global de la antena, al elemento multinivel se le añade un bucle inductivo (11.1) en la parte superior, con forma trapezoidal en esta aplicación concreta, con lo que el tamaño total del elemento radiante es de 4.5 cm.
La estructura multinivel se monta perpendicularmente sobre un plano de tierra (11.6) metálico (de aluminio por ejemplo) de sección cuadrada o circular con unos 18 cm de lado o diámetro respectivamente. El vértice inferior del elemento se coloca en el centro del plano de masa y constituye el punto de excitación de la antena. En ese punto se conecta la red de interconexión que enlaza el elemento radiante con el conector de entrada/salida. Dicha red de interconexión puede implementarse en tecnología microstrip, strip-line o coaxial (por citar algunos ejemplos) aunque en esta realización concreta se eligió la configuración microstrip. Además de la interconexión entre elemento radiante y conector, la red puede utilizarse como transformador de impedancias, adaptando la impedancia en el vértice del elemento multinivel con los 50 Ohmios (Lr<- 14 dB, ROE <1.5) que se requieren en el conector de entrada / salida.
Las Figuras 12 y 13 resumen el comportamiento radio- eléctrico de la antena en las bandas inferior (1900) y superior (3500) . En la Figura 12 se muestra la relación de onda estacionaria (ROE) en ambas bandas: la figura 12.1 para la banda entre 1880 y 1930 MHz, y la figura 12.2 para la banda entre 3400 y 3600 MHz. En dichas gráficas se observa que la antena está bien adaptada, puesto que las pérdidas de retorno son inferiores a 14 dB, o lo que es lo mismo, ROE <1.5 en toda la banda de interés.
En la Figura 13 se muestran los diagramas de radiación típicos. Los diagramas (13.1), (13.2) y (13.3) a 1905 MHz medidos en el plano vertical, en el horizontal y en el plano de la antena, respectivamente. Y los diagramas (13.4), (13.5) y (13.6) a 3500 MHz medidos en el plano vertical, horizontal, y el de la antena, respectivamente.
Puede observarse un comportamiento omnidireccional en el plano horizontal, y un típico diagrama bilobular en el plano vertical, siendo la directividad típica de la antena superior a 4 dBi en la banda 1900 y 6 dBi en la banda de
3500.
Cabe destacar del funcionamiento de la antena, que el comportamiento es muy similar en ambas bandas (tanto en ROE como en diagrama) , lo que la convierten en una antena multibanda.
Tanto la antena AM1 como la AM2 , típicamente irán recubiertas de un radomo dieléctrico prácticamente transparente a la radiación electromagnética, cuya función será proteger el elemento radiante y la red de conexión de agresiones externas, además de proporcionarles un estético aspecto externo. No se considera necesario hacer más extenso el contenido de la presente descripción para que un experto en la materia pueda comprender su alcance y las ventajas que del mismo se derivan, así como llevar a cabo la realización práctica de la misma.
No obstante, puesto que lo descrito anteriormente corresponde solamente con una forma de ejecución preferida, se comprenderá que dentro de su esencialidad podrán introducirse múltiples variaciones de detalle, asimismo protegidas, que podrán afectar al conjunto o a sus partes, sin apartarse por ello del marco de la invención, y que en particular pueden estar referidas a la forma, el tamaño y/o los materiales utilizados en la fabricación del conjunto o de sus partes.

Claims

REIVINDICACIONES
1.- Antena caracterizada por contener al menos una estructura multinivel que consiste en un conjunto de elementos poligonales o poliédricos de la misma clase (del mismo número de lados o caras) aunque no necesariamente del mismo tamaño, acoplados entre sí electromagnéticamente de manera que la zona de contacto entre los elementos no cubra la mayor parte del perímetro o área en al menos la mayoría de los polígonos o poliedros, de modo que la zona de contacto entre elementos sea inferior al 50% del perímetro o área en al menos el 75 % de los polígonos o poliedros, permitiendo de esta forma que en la estructura multinivel se sigan distinguiendo geométricamente la mayoría de los polígonos o poliedros que la constituyen.
2.- Antena multinivel, según la reivindicación 1, caracterizada porque la estructura multinivel está constituida exclusivamente por triángulos.
3.- Antena multinivel, según la reivindicación 1, caracterizada porque la estructura multinivel está constituida exclusivamente por polígonos de una sola clase como son: polígonos de cuatro lados, pentágonos, hexágonos, heptágonos, octágonos, decágonos, dodecágonos, círculos o elipses, entre otros.
4.- Antena multinivel, según la reivindicación 1, caracterizada porque dicha estructura multinivel está constituida exclusivamente por poliedros, o por cilindros o por conos .
5.- Antena multinivel, según las reivindicaciones anteriores, caracterizada porque la estructura multinivel se monta perpendicularmente al plano de tierra en configuración tipo monopolo.
6.- Antena multinivel, según reivindicaciones 1 a 4, caracterizada porque la estructura multinivel se monta paralelamente al plano de tierra en configuración de antena tipo parche o antena microstrip.
7.- Antena multinivel, según la reivindicaciones 5 y 6, caracterizada porque en antenas con configuración tipo parche el elemento multinivel constituye alguno de los elementos radiantes de una estructura parche o microstrip planar con parches parásitos en varios niveles.
8.- Antena multinivel, según las reivindicaciones 1 a 4, caracterizada porque la estructura multinivel constituye: los dos brazos de una antena en configuración dipolo, parte de la antena en configuración coplanar, al menos una de las caras en una bocina piramidal.
9.- Antena multinivel, según las reivindicaciones 1 a 4, caracterizada porque la estructura multinivel o su perímetro conforman la sección transversal de una antena tipo bocina cónica o piramidal .
10.- Antena multinivel, según las reivindicaciones 1 a 4, caracterizada porque el perímetro de la estructura multinivel determina la forma de al menos un bucle en una antena tipo espira.
11.- Antena multinivel, según las reivindicaciones 1 a 4, caracterizada porque puede formar parte de una agrupación (o array) de antenas.
12.- Antena multinivel, según las reivindicaciones 1 a 4, caracterizada porque la estructura multinivel se construye en material conductor, superconductor, dieléctrico o una combinación de ellos.
13.- Antena multinivel, según la reivindicación 12, caracterizada porque la estructura multinivel conforma la geometría de los huecos practicados en una estructura metálica, superconductora o dieléctrica.
14.- Antena multinivel, según las reivindicaciones 1 a 4, caracterizada porque la antena presenta un comportamiento multibanda, es decir, presenta un nivel de impedancia y un diagrama de radiación similar en varias bandas frecuenciales, de manera que la antena mantiene básicamente la misma operatividad y funcionalidad radioeléctrica en dichas bandas.
15.- Antena multinivel, según las reivindicaciones 1 a 4, caracterizada porque la antena presenta un tamaño reducido comparado con una antena circular, cuadrada o triangular cuyo perímetro se pueda circunscribir a la estructura multinivel y que opere en la misma frecuencia (misma frecuencia de resonancia) .
16.- Antena multinivel, según la reivindicación 14, caracterizada porque el comportamiento multibanda le permite operar simultáneamente en varias frecuencias y ser compartida así por varios servicios o sistemas de comunicación.
17.- Antena multinivel, según la reivindicación 14, caracterizada porque se aplica en estaciones base de telefonía móvil, en terminales de comunicación (transmisores o receptores) , en vehículos, satélites de comunicaciones o en sistemas radar.
18.- Antena multinivel, según las reivindicaciones 1 a 4, caracterizada porque la estructura multinivel en aquellos casos que radia poco eficientemente puede utilizarse como resonador multibanda o miniatura.
19.- Antena multinivel, según las reivindicaciones 1 a 4, caracterizada porque la antena incorpora además del elemento multinivel un circuito de interconexión que enlaza la estructura con el conector de entrada/salida, y que puede utilizarse para incorporar redes de adaptación de impedancias, filtros o diplexores.
20.- Antena multinivel, según las reivindicaciones 1 a 4, caracterizada porque la estructura multinivel se carga con elementos capacitivos o inductivos para modificar su tamaño, frecuencias de resonancia, diagrama de radiación o impedancia.
21.- Antena multinivel, según las reivindicaciones 1 a 4, caracterizada porque varias estructuras multinivel del mismo tipo (mismo polígono o poliedro característico, mismo número, disposición y acoplamiento entre elementos) referidas como estructuras de primer nivel , se agrupan en estructuras de nivel superior de forma parecida a como lo hacen los elementos poligonales o poliédricos que constituyen la estructura multinivel de primer nivel.
PCT/ES1999/000296 1999-09-20 1999-09-20 Antenas multinivel WO2001022528A1 (es)

Priority Applications (35)

Application Number Priority Date Filing Date Title
MXPA02003084A MXPA02003084A (es) 1999-09-20 1999-09-20 Antenas multinivel.
CNB998169609A CN100355148C (zh) 1999-09-20 1999-09-20 多级天线
EP05000379A EP1526604A1 (en) 1999-09-20 1999-09-20 Multilevel antenna
BRPI9917493-6A BR9917493B1 (pt) 1999-09-20 1999-09-20 antena de nìveis múltiplos.
DE29925006U DE29925006U1 (de) 1999-09-20 1999-09-20 Mehrebenenantenne
ES99974041T ES2241378T3 (es) 1999-09-20 1999-09-20 Antenas multinivel.
EP99974041A EP1223637B1 (en) 1999-09-20 1999-09-20 Multilevel antennae
PCT/ES1999/000296 WO2001022528A1 (es) 1999-09-20 1999-09-20 Antenas multinivel
AT99974041T ATE292329T1 (de) 1999-09-20 1999-09-20 Mehrebenenantenne
DE69924535T DE69924535T2 (de) 1999-09-20 1999-09-20 Mehrebenenantenne
CN2007101851114A CN101188325B (zh) 1999-09-20 1999-09-20 多级天线
EP08164491A EP2083475A1 (en) 1999-09-20 1999-09-20 Multilevel antennae
JP2001525799A JP4012733B2 (ja) 1999-09-20 1999-09-20 マルチレベルアンテナ
AU59840/99A AU5984099A (en) 1999-09-20 1999-09-20 Multilevel antennae
US10/102,568 US20020140615A1 (en) 1999-09-20 2002-03-18 Multilevel antennae
US10/963,080 US7015868B2 (en) 1999-09-20 2004-10-12 Multilevel Antennae
US11/102,390 US7123208B2 (en) 1999-09-20 2005-04-08 Multilevel antennae
US11/179,257 US7397431B2 (en) 1999-09-20 2005-07-12 Multilevel antennae
US11/550,276 US7505007B2 (en) 1999-09-20 2006-10-17 Multi-level antennae
US11/550,256 US7394432B2 (en) 1999-09-20 2006-10-17 Multilevel antenna
US11/780,932 US7528782B2 (en) 1999-09-20 2007-07-20 Multilevel antennae
US12/400,888 US8009111B2 (en) 1999-09-20 2009-03-10 Multilevel antennae
US13/036,819 US8154462B2 (en) 1999-09-20 2011-02-28 Multilevel antennae
US13/044,189 US8154463B2 (en) 1999-09-20 2011-03-09 Multilevel antennae
US13/411,212 US8330659B2 (en) 1999-09-20 2012-03-02 Multilevel antennae
US13/669,916 US20130057450A1 (en) 1999-09-20 2012-11-06 Multilevel antennae
US13/732,755 US8941541B2 (en) 1999-09-20 2013-01-02 Multilevel antennae
US13/732,761 US9054421B2 (en) 1999-09-20 2013-01-02 Multilevel antennae
US13/732,743 US8976069B2 (en) 1999-09-20 2013-01-02 Multilevel antennae
US13/732,750 US9000985B2 (en) 1999-09-20 2013-01-02 Multilevel antennae
US13/929,441 US9240632B2 (en) 1999-09-20 2013-06-27 Multilevel antennae
US14/825,829 US9362617B2 (en) 1999-09-20 2015-08-13 Multilevel antennae
US15/137,782 US9761934B2 (en) 1999-09-20 2016-04-25 Multilevel antennae
US15/670,866 US10056682B2 (en) 1999-09-20 2017-08-07 Multilevel antennae
US16/035,981 US20180323500A1 (en) 1999-09-20 2018-07-16 Multilevel antennae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES1999/000296 WO2001022528A1 (es) 1999-09-20 1999-09-20 Antenas multinivel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/102,568 Continuation US20020140615A1 (en) 1999-09-20 2002-03-18 Multilevel antennae

Publications (1)

Publication Number Publication Date
WO2001022528A1 true WO2001022528A1 (es) 2001-03-29

Family

ID=8307312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES1999/000296 WO2001022528A1 (es) 1999-09-20 1999-09-20 Antenas multinivel

Country Status (11)

Country Link
US (21) US20020140615A1 (es)
EP (3) EP2083475A1 (es)
JP (1) JP4012733B2 (es)
CN (2) CN100355148C (es)
AT (1) ATE292329T1 (es)
AU (1) AU5984099A (es)
BR (1) BR9917493B1 (es)
DE (2) DE29925006U1 (es)
ES (1) ES2241378T3 (es)
MX (1) MXPA02003084A (es)
WO (1) WO2001022528A1 (es)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001031747A1 (es) 1999-10-26 2001-05-03 Fractus, S.A. Agrupaciones multibanda de antenas entrelazadas
WO2002084790A1 (en) * 2001-04-16 2002-10-24 Fractus, S.A. Dual-band dual-polarized antenna array
DE10142965A1 (de) * 2001-09-01 2003-03-20 Opel Adam Ag Antenne mit einer fraktalen Struktur
US6552690B2 (en) 2001-08-14 2003-04-22 Guardian Industries Corp. Vehicle windshield with fractal antenna(s)
WO2003034545A1 (en) * 2001-10-16 2003-04-24 Fractus, S.A. Multifrequency microstrip patch antenna with parasitic coupled elements
WO2003034538A1 (en) * 2001-10-16 2003-04-24 Fractus, S.A. Loaded antenna
ES2190749A1 (es) * 2001-11-30 2003-08-01 Fractus Sa Dispersores "chaff" multinivel y/o "space-filling", contra radar
EP1361624A1 (de) * 2002-05-10 2003-11-12 Hirschmann Electronics GmbH & Co. KG Vieleckige Antenne
KR20030092597A (ko) * 2002-05-30 2003-12-06 주식회사 아미위성방송 위성 라디오 방송 수신용 안테나
WO2004010535A1 (en) * 2002-07-15 2004-01-29 Fractus, S.A. Undersampled microstrip array using multilevel and space-filling shaped elements
WO2004010532A1 (en) * 2002-07-15 2004-01-29 Fractus, S.A. Antenna with one or more holes
WO2005027611A1 (ja) * 2003-09-08 2005-03-24 Juridical Foundation Osaka Industrial Promotion Organization フラクタル構造体、フラクタル構造集合体およびそれらの製造方法ならびに用途
EP1522122A1 (en) * 2002-07-15 2005-04-13 Fractus S.A. Notched-fed antenna
EP1732162A1 (en) 2001-10-16 2006-12-13 Fractus, S.A. Loaded antenna
US7222798B2 (en) 2001-12-10 2007-05-29 Fractus, S.A. Contactless identification device
US7315289B2 (en) 2002-09-10 2008-01-01 Fractus, S.A. Coupled multiband antennas
US7362283B2 (en) 2001-09-13 2008-04-22 Fractus, S.A. Multilevel and space-filling ground-planes for miniature and multiband antennas
EP1942551A1 (en) 2001-10-16 2008-07-09 Fractus, S.A. Multiband antenna
US7456792B2 (en) 2004-02-26 2008-11-25 Fractus, S.A. Handset with electromagnetic bra
US7463199B2 (en) 2002-11-07 2008-12-09 Fractus, S.A. Integrated circuit package including miniature antenna
US7486242B2 (en) 2002-06-25 2009-02-03 Fractus, S.A. Multiband antenna for handheld terminal
EP2230723A1 (en) 2002-09-10 2010-09-22 Fractus, S.A. Coupled multiband antennas
US7872605B2 (en) 2005-03-15 2011-01-18 Fractus, S.A. Slotted ground-plane used as a slot antenna or used for a PIFA antenna
US7924226B2 (en) 2004-09-27 2011-04-12 Fractus, S.A. Tunable antenna
US7928915B2 (en) 2004-09-21 2011-04-19 Fractus, S.A. Multilevel ground-plane for a mobile device
US7932863B2 (en) 2004-12-30 2011-04-26 Fractus, S.A. Shaped ground plane for radio apparatus
RU2448395C1 (ru) * 2010-12-22 2012-04-20 Государственное образовательное учреждение высшего профессионального образования "Военная академия связи имени С.М. Буденного" Министерства обороны Российской Федерации Конический несимметричный вибратор
RU2465696C1 (ru) * 2011-09-13 2012-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мурманский государственный технический университет" (ФГБОУ ВПО "МГТУ") Вибратор горизонтальный укороченный повышенной диапазонности
US8330259B2 (en) 2004-07-23 2012-12-11 Fractus, S.A. Antenna in package with reduced electromagnetic interaction with on chip elements
US8738103B2 (en) 2006-07-18 2014-05-27 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US8941541B2 (en) 1999-09-20 2015-01-27 Fractus, S.A. Multilevel antennae
US9331382B2 (en) 2000-01-19 2016-05-03 Fractus, S.A. Space-filling miniature antennas
US9755314B2 (en) 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
EP3285333A1 (en) 2016-08-16 2018-02-21 Institut Mines Telecom / Telecom Bretagne Configurable multiband antenna arrangement and design method thereof
US10008762B2 (en) 2016-01-22 2018-06-26 Fractus Antennas, S.L. Wireless device including optimized antenna system on metal frame
EP3340379A1 (en) 2016-12-22 2018-06-27 Institut Mines Telecom / Telecom Bretagne Configurable multiband antenna arrangement with wideband capacity and design method thereof
EP3503293A1 (en) 2017-12-19 2019-06-26 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Configurable multiband wire antenna arrangement and design method thereof
EP3503294A1 (en) 2017-12-22 2019-06-26 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Configurable multiband antenna arrangement with a multielement structure and design method thereof
EP3591761A1 (en) 2018-07-06 2020-01-08 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Multiband antenna arrangement built to a specification from a library of basic elements
CN111883908A (zh) * 2020-08-04 2020-11-03 西安电子科技大学 一种超短波机翼共形垂直极化全向天线
US10879587B2 (en) 2016-02-16 2020-12-29 Fractus Antennas, S.L. Wireless device including a metal frame antenna system based on multiple arms

Families Citing this family (173)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001054221A1 (en) * 2000-01-19 2001-07-26 Fractus, S.A. Fractal and space-filling transmission lines, resonators, filters and passive network elements
US6778148B1 (en) 2002-12-04 2004-08-17 The United States Of America As Represented By The Secretary Of The Navy Sensor array for enhanced directivity
US7423592B2 (en) 2004-01-30 2008-09-09 Fractus, S.A. Multi-band monopole antennas for mobile communications devices
EP2273611B1 (en) 2002-12-22 2012-02-08 Fractus, S.A. Multi-band monopole antenna for a mobile communications device
EP1586134A1 (en) 2003-01-24 2005-10-19 Fractus, S.A. Broadside high-directivity microstrip patch antennas
ATE405968T1 (de) 2003-02-19 2008-09-15 Fractus Sa Miniaturantenne mit volumetrischer struktur
JP2006514382A (ja) * 2003-08-18 2006-04-27 フィコ ミロールス,エセ ア 自動車の外部環境を監視するためのシステム及び方法
EP1714353A1 (en) * 2004-01-30 2006-10-25 Fractus, S.A. Multi-band monopole antennas for mobile network communications devices
JP4239848B2 (ja) 2004-02-16 2009-03-18 富士ゼロックス株式会社 マイクロ波用アンテナおよびその製造方法
GB0407901D0 (en) * 2004-04-06 2004-05-12 Koninkl Philips Electronics Nv Improvements in or relating to planar antennas
WO2005114784A1 (en) * 2004-05-21 2005-12-01 Telefonaktiebolaget Lm Ericsson (Publ) Broadband array antennas using complementary antenna
EP1784894A1 (en) 2004-08-31 2007-05-16 Fractus, S.A. Slim multi-band antenna array for cellular base stations
US7782269B2 (en) 2004-11-12 2010-08-24 Fractus, S.A. Antenna structure for a wireless device with a ground plane shaped as a loop
TWI247452B (en) * 2005-01-21 2006-01-11 Wistron Neweb Corp Multi-band antenna and design method of multi-band antenna
US7095374B2 (en) * 2005-01-25 2006-08-22 Lenova (Singapore) Pte. Ltd. Low-profile embedded ultra-wideband antenna architectures for wireless devices
US20060176221A1 (en) * 2005-02-04 2006-08-10 Chen Zhi N Low-profile embedded ultra-wideband antenna architectures for wireless devices
EP1860728A4 (en) * 2005-03-15 2008-12-24 Fujitsu Ltd ANTENNA AND RFID DAY
JP4330575B2 (ja) * 2005-03-17 2009-09-16 富士通株式会社 タグアンテナ
KR101060424B1 (ko) * 2005-04-01 2011-08-29 니폰샤신인사츠가부시키가이샤 차량용 투명 안테나 및 안테나 부착 차량용 유리
WO2006120250A2 (en) * 2005-05-13 2006-11-16 Fractus, S.A. Antenna diversity system and slot antenna component
EP1890765A1 (en) 2005-06-07 2008-02-27 Fractus S.A. Wireless implantable medical device
TW200701551A (en) * 2005-06-27 2007-01-01 Matsushita Electric Ind Co Ltd Antenna device
US8115686B2 (en) 2005-07-21 2012-02-14 Fractus, S.A. Handheld device with two antennas, and method of enhancing the isolation between the antennas
EP1935057B1 (en) 2005-10-14 2012-02-01 Fractus S.A. Slim triple band antenna array for cellular base stations
US8369950B2 (en) * 2005-10-28 2013-02-05 Cardiac Pacemakers, Inc. Implantable medical device with fractal antenna
US7248223B2 (en) * 2005-12-05 2007-07-24 Elta Systems Ltd Fractal monopole antenna
US10173579B2 (en) 2006-01-10 2019-01-08 Guardian Glass, LLC Multi-mode moisture sensor and/or defogger, and related methods
US8634988B2 (en) 2006-01-10 2014-01-21 Guardian Industries Corp. Time, space, and/or wavelength multiplexed capacitive light sensor, and related methods
US9371032B2 (en) 2006-01-10 2016-06-21 Guardian Industries Corp. Moisture sensor and/or defogger with Bayesian improvements, and related methods
US7830267B2 (en) 2006-01-10 2010-11-09 Guardian Industries Corp. Rain sensor embedded on printed circuit board
US7551095B2 (en) 2006-01-10 2009-06-23 Guardian Industries Corp. Rain sensor with selectively reconfigurable fractal based sensors/capacitors
US7504957B2 (en) 2006-01-10 2009-03-17 Guardian Industries Corp. Light sensor embedded on printed circuit board
US7626557B2 (en) 2006-03-31 2009-12-01 Bradley L. Eckwielen Digital UHF/VHF antenna
US7911406B2 (en) * 2006-03-31 2011-03-22 Bradley Lee Eckwielen Modular digital UHF/VHF antenna
KR100777665B1 (ko) 2006-04-21 2007-11-19 삼성탈레스 주식회사 다중 대역의 소형 프랙탈 안테나
US7403159B2 (en) * 2006-05-08 2008-07-22 Dmitry Gooshchin Microstrip antenna having a hexagonal patch and a method of radiating electromagnetic energy over a wide predetermined frequency range
JP4959220B2 (ja) * 2006-05-10 2012-06-20 富士通コンポーネント株式会社 平面アンテナ装置
WO2007141187A2 (en) 2006-06-08 2007-12-13 Fractus, S.A. Distributed antenna system robust to human body loading effects
WO2007147629A1 (en) * 2006-06-23 2007-12-27 Fractus, S.A. Chip module, sim card, wireless device and wireless communication method
JP2008011127A (ja) * 2006-06-28 2008-01-17 Casio Hitachi Mobile Communications Co Ltd アンテナ及び携帯型無線機
US7619571B2 (en) * 2006-06-28 2009-11-17 Nokia Corporation Antenna component and assembly
TW200803041A (en) * 2006-06-29 2008-01-01 Tatung Co Ltd Planar antenna for the radio frequency identification tag
US7443350B2 (en) * 2006-07-07 2008-10-28 International Business Machines Corporation Embedded multi-mode antenna architectures for wireless devices
GB2439975B (en) * 2006-07-07 2010-02-24 Iti Scotland Ltd Antenna arrangement
US7773041B2 (en) 2006-07-12 2010-08-10 Apple Inc. Antenna system
US8179231B1 (en) 2006-09-28 2012-05-15 Louisiana Tech Research Foundation Transmission delay based RFID tag
US8736452B1 (en) 2006-09-28 2014-05-27 Louisiana Tech University Research Foundation; A Division Of Louisiana Tech University Foundation, Inc. Transmission delay based RFID tag
CN1972014B (zh) * 2006-10-26 2011-01-12 上海交通大学 小型超宽带天线
KR100859714B1 (ko) * 2006-10-31 2008-09-23 한국전자통신연구원 인공자기도체를 이용한 도체 부착형 무선 인식용 태그안테나 및 그 태그 안테나를 이용한 무선인식 시스템
US8350761B2 (en) * 2007-01-04 2013-01-08 Apple Inc. Antennas for handheld electronic devices
US7595759B2 (en) * 2007-01-04 2009-09-29 Apple Inc. Handheld electronic devices with isolated antennas
US8018389B2 (en) 2007-01-05 2011-09-13 Apple Inc. Methods and apparatus for improving the performance of an electronic device having one or more antennas
JP5315514B2 (ja) * 2007-02-15 2013-10-16 国立大学法人京都大学 日よけおよびその製造方法
EP2140517A1 (en) 2007-03-30 2010-01-06 Fractus, S.A. Wireless device including a multiband antenna system
FR2915025B1 (fr) 2007-04-13 2014-02-14 Centre Nat Etd Spatiales Antenne a elements rayonnants inclines
US8405552B2 (en) * 2007-04-16 2013-03-26 Samsung Thales Co., Ltd. Multi-resonant broadband antenna
WO2008148569A2 (en) * 2007-06-06 2008-12-11 Fractus, S.A. Dual-polarized radiating element, dual-band dual-polarized antenna assembly and dual-polarized antenna array
US7460072B1 (en) 2007-07-05 2008-12-02 Origin Gps Ltd. Miniature patch antenna with increased gain
US7864123B2 (en) * 2007-08-28 2011-01-04 Apple Inc. Hybrid slot antennas for handheld electronic devices
US8130164B2 (en) * 2007-09-20 2012-03-06 Powerwave Technologies, Inc. Broadband coplanar antenna element
WO2009048614A1 (en) * 2007-10-12 2009-04-16 Powerwave Technologies, Inc. Omni directional broadband coplanar antenna element
US7551142B1 (en) * 2007-12-13 2009-06-23 Apple Inc. Hybrid antennas with directly fed antenna slots for handheld electronic devices
US8373610B2 (en) * 2007-12-18 2013-02-12 Apple Inc. Microslot antennas for electronic devices
US8599088B2 (en) * 2007-12-18 2013-12-03 Apple Inc. Dual-band antenna with angled slot for portable electronic devices
US20090153412A1 (en) * 2007-12-18 2009-06-18 Bing Chiang Antenna slot windows for electronic device
US8441404B2 (en) * 2007-12-18 2013-05-14 Apple Inc. Feed networks for slot antennas in electronic devices
US7705795B2 (en) * 2007-12-18 2010-04-27 Apple Inc. Antennas with periodic shunt inductors
US7986280B2 (en) * 2008-02-06 2011-07-26 Powerwave Technologies, Inc. Multi-element broadband omni-directional antenna array
KR100921494B1 (ko) 2008-03-28 2009-10-13 삼성탈레스 주식회사 다중 공진 광대역 소형 안테나
US8106836B2 (en) 2008-04-11 2012-01-31 Apple Inc. Hybrid antennas for electronic devices
US7791555B2 (en) * 2008-05-27 2010-09-07 Mp Antenna High gain multiple polarization antenna assembly
US8237615B2 (en) 2008-08-04 2012-08-07 Fractus, S.A. Antennaless wireless device capable of operation in multiple frequency regions
WO2010015365A2 (en) * 2008-08-04 2010-02-11 Fractus, S.A. Antennaless wireless device
CN101677148B (zh) * 2008-09-16 2013-02-13 鸿富锦精密工业(深圳)有限公司 多频天线
US8174452B2 (en) * 2008-09-25 2012-05-08 Apple Inc. Cavity antenna for wireless electronic devices
US8665164B2 (en) * 2008-11-19 2014-03-04 Apple Inc. Multiband handheld electronic device slot antenna
FR2939569B1 (fr) * 2008-12-10 2011-08-26 Alcatel Lucent Element rayonnant a double polarisation pour antenne large bande.
US8570229B2 (en) * 2009-01-15 2013-10-29 Broadcom Corporation Multiple antenna high isolation apparatus and application thereof
CN101783440B (zh) * 2009-01-16 2013-03-20 鸿富锦精密工业(深圳)有限公司 多频天线
US8779983B1 (en) 2009-04-15 2014-07-15 Lockheed Martin Corporation Triangular apertures with embedded trifilar arrays
US9172139B2 (en) * 2009-12-03 2015-10-27 Apple Inc. Bezel gap antennas
US8270914B2 (en) * 2009-12-03 2012-09-18 Apple Inc. Bezel gap antennas
WO2011095330A1 (en) 2010-02-02 2011-08-11 Fractus, S.A. Antennaless wireless device comprising one or more bodies
TWI407343B (zh) * 2010-03-22 2013-09-01 Waltop Int Corp 兼具電容感應與電磁感應功能之天線迴路架構
US9160056B2 (en) 2010-04-01 2015-10-13 Apple Inc. Multiband antennas formed from bezel bands with gaps
US8779991B2 (en) 2010-04-22 2014-07-15 Blackberry Limited Antenna assembly with electrically extended ground plane arrangement and associated method
US10041745B2 (en) * 2010-05-04 2018-08-07 Fractal Heatsink Technologies LLC Fractal heat transfer device
US9203489B2 (en) 2010-05-05 2015-12-01 Google Technology Holdings LLC Method and precoder information feedback in multi-antenna wireless communication systems
US8350770B1 (en) 2010-07-06 2013-01-08 The United States Of America As Represented By The Secretary Of The Navy Configurable ground plane surfaces for selective directivity and antenna radiation pattern
CN103155276B (zh) 2010-08-03 2015-11-25 弗拉克托斯天线股份有限公司 能够进行多带mimo操作的无线装置
KR101163654B1 (ko) 2010-08-13 2012-07-09 경기대학교 산학협력단 슬롯 안테나
US8947303B2 (en) 2010-12-20 2015-02-03 Apple Inc. Peripheral electronic device housing members with gaps and dielectric coatings
TWI475749B (zh) * 2010-12-30 2015-03-01 Tai Saw Technology Co Ltd 改良式天線
EP2482237B1 (de) * 2011-01-26 2013-09-04 Mondi Consumer Packaging Technologies GmbH Körper in Form einer Verpackung oder eines Formteils mit einer RFID-Antenne
KR101109433B1 (ko) 2011-02-25 2012-01-31 삼성탈레스 주식회사 거울 대칭형 시어핀스키 프랙탈 구조의 이중 대역 안테나
KR101076233B1 (ko) 2011-02-25 2011-10-26 삼성탈레스 주식회사 변형된 시어핀스키 프랙탈 구조의 이중 대역 안테나
US9166279B2 (en) 2011-03-07 2015-10-20 Apple Inc. Tunable antenna system with receiver diversity
US9246221B2 (en) 2011-03-07 2016-01-26 Apple Inc. Tunable loop antennas
US20120249395A1 (en) * 2011-03-30 2012-10-04 Convergence Systems Limited Ultra Thin Antenna
US9337530B1 (en) 2011-05-24 2016-05-10 Protek Innovations Llc Cover for converting electromagnetic radiation in electronic devices
USD668638S1 (en) * 2011-06-30 2012-10-09 Yokosuka Telecom Research Park, Inc. Antenna for wireless communication
USD668639S1 (en) * 2011-06-30 2012-10-09 Yokosuka Telecom Research Park, Inc. Antenna for wireless communication
USD668640S1 (en) * 2011-09-13 2012-10-09 Yokosuka Telecom Research Park, Inc. Antenna for wireless communication
KR101284228B1 (ko) 2011-11-28 2013-07-09 삼성탈레스 주식회사 위상 반전된 거울 대칭형 시어핀스키 프랙탈 구조의 이중 대역 안테나
GB201122324D0 (en) 2011-12-23 2012-02-01 Univ Edinburgh Antenna element & antenna device comprising such elements
US9350069B2 (en) 2012-01-04 2016-05-24 Apple Inc. Antenna with switchable inductor low-band tuning
US10608348B2 (en) 2012-03-31 2020-03-31 SeeScan, Inc. Dual antenna systems with variable polarization
CN102683840B (zh) * 2012-06-08 2014-10-01 哈尔滨工业大学 具有三角堆叠结构的印刷偶极天线
WO2014008173A1 (en) 2012-07-06 2014-01-09 Guardian Industries Corp. Moisture sensor and/or defogger with bayesian improvements, and related methods
WO2014008183A1 (en) 2012-07-06 2014-01-09 Guardian Industries Corp. Method of removing condensation from a refrigerator/freezer door
US9379443B2 (en) 2012-07-16 2016-06-28 Fractus Antennas, S.L. Concentrated wireless device providing operability in multiple frequency regions
US8564497B1 (en) 2012-08-31 2013-10-22 Redline Communications Inc. System and method for payload enclosure
US9306266B2 (en) * 2012-09-21 2016-04-05 Aalto University Foundation Multi-band antenna for wireless communication
EP2733499A1 (en) 2012-11-16 2014-05-21 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. MRI coil arrangement and method of manufacturing thereof
US9813262B2 (en) 2012-12-03 2017-11-07 Google Technology Holdings LLC Method and apparatus for selectively transmitting data using spatial diversity
US9591508B2 (en) 2012-12-20 2017-03-07 Google Technology Holdings LLC Methods and apparatus for transmitting data between different peer-to-peer communication groups
US9979531B2 (en) 2013-01-03 2018-05-22 Google Technology Holdings LLC Method and apparatus for tuning a communication device for multi band operation
US9438278B2 (en) * 2013-02-22 2016-09-06 Quintel Technology Limited Multi-array antenna
US10229697B2 (en) 2013-03-12 2019-03-12 Google Technology Holdings LLC Apparatus and method for beamforming to obtain voice and noise signals
US10490908B2 (en) 2013-03-15 2019-11-26 SeeScan, Inc. Dual antenna systems with variable polarization
DE102013005001A1 (de) * 2013-03-24 2014-09-25 Heinz Lindenmeier Breitband-Monopolantenne für zwei durch eine Frequenzlücke getrennte Frequenzbänder im Dezimeterwellenbereich für Fahrzeuge
EP2790269B1 (de) * 2013-04-12 2015-03-18 Sick Ag Antenne
US9326320B2 (en) * 2013-07-11 2016-04-26 Google Technology Holdings LLC Systems and methods for antenna switches in an electronic device
DE102013012776A1 (de) * 2013-08-01 2015-02-05 Sebastian Schramm Empfangsantenne
GB2516980B (en) * 2013-08-09 2016-12-28 Univ Malta Antenna Array
US9386542B2 (en) 2013-09-19 2016-07-05 Google Technology Holdings, LLC Method and apparatus for estimating transmit power of a wireless device
EP3066715B1 (en) 2013-12-17 2019-11-27 Moog Inc. High-speed data link with planar near-field probe
US9549290B2 (en) 2013-12-19 2017-01-17 Google Technology Holdings LLC Method and apparatus for determining direction information for a wireless device
USD755163S1 (en) * 2014-03-13 2016-05-03 Murata Manufacturing Co., Ltd. Antenna
US9595766B2 (en) 2015-06-19 2017-03-14 Nxgen Partners Ip, Llc Patch antenna array for transmission of hermite-gaussian and laguerre gaussian beams
US9491007B2 (en) 2014-04-28 2016-11-08 Google Technology Holdings LLC Apparatus and method for antenna matching
US10148005B2 (en) 2014-05-05 2018-12-04 Fractal Antenna Systems, Inc. Volumetric electromagnetic components
US9825368B2 (en) 2014-05-05 2017-11-21 Fractal Antenna Systems, Inc. Method and apparatus for folded antenna components
USD766884S1 (en) * 2014-05-19 2016-09-20 Airgain Incorporated Antenna
US8977858B1 (en) * 2014-05-27 2015-03-10 Support Intelligence, Inc. Using space-filling curves to fingerprint data
US9478847B2 (en) 2014-06-02 2016-10-25 Google Technology Holdings LLC Antenna system and method of assembly for a wearable electronic device
CN104063534B (zh) * 2014-07-11 2017-07-11 上海交通大学 分形多频多模偶极子天线的设计方法
CN106575816B (zh) 2014-07-24 2019-08-16 弗拉克托斯天线股份有限公司 电子设备的超薄发射系统
JP6271384B2 (ja) * 2014-09-19 2018-01-31 株式会社東芝 検査装置
US10199730B2 (en) 2014-10-16 2019-02-05 Fractus Antennas, S.L. Coupled antenna system for multiband operation
AU2015349818A1 (en) * 2014-11-20 2017-06-29 Fractal Antenna Systems, Inc. Fractal metamaterial cage antennas
AU2015349814B2 (en) * 2014-11-20 2019-06-06 Fractal Antenna Systems, Inc. Volumetric electromagnetic components
US20160380356A1 (en) * 2015-06-26 2016-12-29 Intel Corporation Super ultra wideband antenna
US9431715B1 (en) 2015-08-04 2016-08-30 Northrop Grumman Systems Corporation Compact wide band, flared horn antenna with launchers for generating circular polarized sum and difference patterns
US10658738B2 (en) * 2015-08-10 2020-05-19 James Geoffrey Maloney Fragmented aperture antennas
CN105896030B (zh) * 2016-05-04 2019-04-12 北京邮电大学 一种多频段分形结构移动终端天线
AU2017335635B2 (en) 2016-09-29 2023-01-05 Smith & Nephew, Inc. Construction and protection of components in negative pressure wound therapy systems
CN106505304A (zh) * 2016-10-13 2017-03-15 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种带阻抗匹配的分形环天线
US10477329B2 (en) 2016-10-27 2019-11-12 Starkey Laboratories, Inc. Antenna structure for hearing devices
CN106374637A (zh) * 2016-11-14 2017-02-01 李新奇 一种量子场汲能及增能装置
AU201713007S (en) * 2016-11-21 2017-08-01 Freudenberg Carl Kg Mopping pad
AU2018230992B2 (en) * 2017-03-07 2023-07-27 Smith & Nephew, Inc. Reduced pressure therapy systems and methods including an antenna
KR101921182B1 (ko) * 2017-07-25 2018-11-22 엘지전자 주식회사 어레이 안테나 및 이동 단말기
US10546143B1 (en) 2017-08-10 2020-01-28 Support Intelligence, Inc. System and method for clustering files and assigning a maliciousness property based on clustering
JP1606769S (es) * 2017-09-29 2018-06-18
KR101947923B1 (ko) * 2017-12-21 2019-02-13 경희대학교 산학협력단 패치 안테나를 이용한 무선 전력 전송 시스템
USD880461S1 (en) * 2018-01-19 2020-04-07 Mitsubishi Electric Corporation Substrate for antenna device
WO2020033004A2 (en) 2018-02-15 2020-02-13 Space Exploration Technologies Corp. Beamformer lattice for phased array antennas
WO2019161121A1 (en) * 2018-02-15 2019-08-22 Space Exploration Technologies Corp. Hierarchical network signal routing apparatus and method
US11699852B2 (en) 2018-02-15 2023-07-11 Space Exploration Technologies Corp. Phased array antenna systems
US10615496B1 (en) 2018-03-08 2020-04-07 Government Of The United States, As Represented By The Secretary Of The Air Force Nested split crescent dipole antenna
WO2020029060A1 (zh) * 2018-08-07 2020-02-13 华为技术有限公司 一种天线
US10665369B1 (en) * 2018-11-16 2020-05-26 Ge Global Sourcing Llc Resistors for dynamic braking
US10431893B1 (en) 2018-12-31 2019-10-01 King Saud University Omnidirectional multiband antenna
USD889445S1 (en) 2019-01-28 2020-07-07 King Saud University Omnidirectional multiband antenna
WO2020158810A1 (ja) * 2019-01-31 2020-08-06 日立金属株式会社 平面アンテナ、平面アレイアンテナ、多軸アレイアンテナ、無線通信モジュールおよび無線通信装置
CN110233325B (zh) * 2019-05-27 2021-07-16 国网新疆电力有限公司电力科学研究院 蝶形偶极子缝隙天线基板制造方法及蝶形偶极子缝隙天线
SG10201909947YA (en) 2019-10-24 2021-05-28 Pci Private Ltd Antenna system
US11342678B1 (en) * 2020-11-17 2022-05-24 Malathi K Dual polarized MIMO UWB system: a method and device thereof
WO2023154082A2 (en) * 2021-07-23 2023-08-17 Commscope Technologies Llc Compact mimo base station antennas that generate antenna beams having narrow azimuth beamwidths
CN114156637B (zh) * 2021-11-15 2023-09-29 之江实验室 一种基于石墨的宽频带全向可穿戴天线及其制备方法
US11652281B1 (en) * 2022-04-13 2023-05-16 Advanced Fusion Systems Llc Compact covert fractal antennae
CN116666949A (zh) * 2023-06-07 2023-08-29 广东工业大学 一种谐振体耦合增强的光电导天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907011A (en) * 1987-12-14 1990-03-06 Gte Government Systems Corporation Foreshortened dipole antenna with triangular radiating elements and tapered coaxial feedline
WO1997006578A1 (en) * 1995-08-09 1997-02-20 Fractal Antenna Systems, Inc. Fractal antennas, resonators and loading elements
ES2112163A1 (es) * 1995-05-19 1998-03-16 Univ Catalunya Politecnica Antenas fractales o multifractales.

Family Cites Families (583)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US621455A (en) 1899-03-21 granger
US1631A (en) * 1840-06-12 Peter nayloe
US646850A (en) 1899-05-10 1900-04-03 American Stopper Company Tool for forming bottle-necks, &c.
US646820A (en) 1899-11-14 1900-04-03 William Foulis Apparatus for charging retorts.
US1621455A (en) 1926-04-02 1927-03-15 Barney S Bonaventure Cover for ballet slippers
US2646850A (en) 1948-06-25 1953-07-28 Charles H Brown Power steering and centering means for trailer wheels
US2759183A (en) * 1953-01-21 1956-08-14 Rca Corp Antenna arrays
US3079602A (en) 1958-03-14 1963-02-26 Collins Radio Co Logarithmically periodic rod antenna
US4471358A (en) * 1963-04-01 1984-09-11 Raytheon Company Re-entry chaff dart
US6297711B1 (en) 1992-08-07 2001-10-02 R. A. Miller Industries, Inc. Radio frequency multiplexer for coupling antennas to AM/FM/WB, CB/WB, and cellular telephone apparatus
US5734352A (en) * 1992-08-07 1998-03-31 R. A. Miller Industries, Inc. Multiband antenna system
US3521284A (en) * 1968-01-12 1970-07-21 John Paul Shelton Jr Antenna with pattern directivity control
US3622890A (en) * 1968-01-31 1971-11-23 Matsushita Electric Ind Co Ltd Folded integrated antenna and amplifier
US3680135A (en) * 1968-02-05 1972-07-25 Joseph M Boyer Tunable radio antenna
US3599214A (en) * 1969-03-10 1971-08-10 New Tronics Corp Automobile windshield antenna
US3605102A (en) 1970-03-10 1971-09-14 Talmadge F Frye Directable multiband antenna
US3683376A (en) * 1970-10-12 1972-08-08 Joseph J O Pronovost Radar antenna mount
US3689929A (en) 1970-11-23 1972-09-05 Howard B Moody Antenna structure
US3818490A (en) * 1972-08-04 1974-06-18 Westinghouse Electric Corp Dual frequency array
US3858221A (en) * 1973-04-12 1974-12-31 Harris Intertype Corp Limited scan antenna array
ES443806A1 (es) * 1974-12-25 1977-08-16 Matsushita Electric Ind Co Ltd Perfeccionamientos introducidos en un aparato de antena paraun receptor de television o similar.
FI379774A (es) 1974-12-31 1976-07-01 Martti Eelis Tiuri
US3967276A (en) * 1975-01-09 1976-06-29 Beam Guidance Inc. Antenna structures having reactance at free end
US3969730A (en) * 1975-02-12 1976-07-13 The United States Of America As Represented By The Secretary Of Transportation Cross slot omnidirectional antenna
JPS539451Y2 (es) 1975-03-31 1978-03-13
US4038662A (en) 1975-10-07 1977-07-26 Ball Brothers Research Corporation Dielectric sheet mounted dipole antenna with reactive loading
JPS539451A (en) 1976-07-14 1978-01-27 Hochiki Co Common twoowave antenna
US4072951A (en) 1976-11-10 1978-02-07 The United States Of America As Represented By The Secretary Of The Navy Notch fed twin electric micro-strip dipole antennas
US4131893A (en) 1977-04-01 1978-12-26 Ball Corporation Microstrip radiator with folded resonant cavity
US4141016A (en) * 1977-04-25 1979-02-20 Antenna, Incorporated AM-FM-CB Disguised antenna system
US4141014A (en) 1977-08-19 1979-02-20 The United States Of America As Represented By The Secretary Of The Air Force Multiband high frequency communication antenna with adjustable slot aperture
US4290071A (en) 1977-12-23 1981-09-15 Electrospace Systems, Inc. Multi-band directional antenna
US4318109A (en) 1978-05-05 1982-03-02 Paul Weathers Planar antenna with tightly wound folded sections
JPS55123203U (es) 1979-02-24 1980-09-01
JPS55123203A (en) 1979-03-16 1980-09-22 Yoshiyuki Kino Antenna
US4243990A (en) 1979-04-30 1981-01-06 International Telephone And Telegraph Corporation Integrated multiband array antenna
US4218682A (en) 1979-06-22 1980-08-19 Nasa Multiple band circularly polarized microstrip antenna
JPS56126302A (en) * 1980-03-10 1981-10-03 Toshio Makimoto Circular polarized wave microstrip line antenna
US4424500A (en) * 1980-12-29 1984-01-03 Sperry Corporation Beam forming network for a multibeam antenna
US4356492A (en) 1981-01-26 1982-10-26 The United States Of America As Represented By The Secretary Of The Navy Multi-band single-feed microstrip antenna system
HU182355B (en) * 1981-07-10 1983-12-28 Budapesti Radiotechnikai Gyar Aerial array for handy radio transceiver
GB2112579A (en) 1981-09-10 1983-07-20 Nat Res Dev Multiband dipoles and ground plane antennas
IT1138605B (it) 1981-09-15 1986-09-17 Siv Soc Italiana Vetro Antenna multibanda,particolarmente adatta ad una vetratura di autoveicolo
HU182376B (en) 1981-09-23 1983-12-28 Budapesti Radiotechnikai Gyar Ground-plane aerial
US4536725A (en) 1981-11-27 1985-08-20 Licentia Patent-Verwaltungs-G.M.B.H. Stripline filter
US4434166A (en) 1982-01-28 1984-02-28 Eisai Co., Ltd. Animal coccidiosis preventive
DE3222584A1 (de) 1982-06-16 1983-12-22 Diehl GmbH & Co, 8500 Nürnberg Dipol-anordnung in einer huelse
US4517572A (en) 1982-07-28 1985-05-14 Amstar Corporation System for reducing blocking in an antenna switching matrix
US4509056A (en) 1982-11-24 1985-04-02 George Ploussios Multi-frequency antenna employing tuned sleeve chokes
US4608572A (en) 1982-12-10 1986-08-26 The Boeing Company Broad-band antenna structure having frequency-independent, low-loss ground plane
US4471493A (en) * 1982-12-16 1984-09-11 Gte Automatic Electric Inc. Wireless telephone extension unit with self-contained dipole antenna
US4504834A (en) * 1982-12-22 1985-03-12 Motorola, Inc. Coaxial dipole antenna with extended effective aperture
DE3302876A1 (de) * 1983-01-28 1984-08-02 Robert Bosch Gmbh, 7000 Stuttgart Dipolantenne fuer tragbare funkgeraete
IT8321342V0 (it) 1983-04-01 1983-04-01 Icma Spa Antenna per autoradio.
US4531130A (en) 1983-06-15 1985-07-23 Sanders Associates, Inc. Crossed tee-fed slot antenna
US4584709A (en) * 1983-07-06 1986-04-22 Motorola, Inc. Homotropic antenna system for portable radio
US4839660A (en) * 1983-09-23 1989-06-13 Orion Industries, Inc. Cellular mobile communication antenna
FR2552937B1 (fr) 1983-10-04 1987-10-16 Dassault Electronique Dispositif rayonnant a structure microruban avec element parasite
US4553146A (en) 1983-10-19 1985-11-12 Sanders Associates, Inc. Reduced side lobe antenna system
DE3337941A1 (de) 1983-10-19 1985-05-09 Bayer Ag, 5090 Leverkusen Passive radarreflektoren
US4571595A (en) * 1983-12-05 1986-02-18 Motorola, Inc. Dual band transceiver antenna
US4656642A (en) 1984-04-18 1987-04-07 Sanders Associates, Inc. Spread-spectrum detection system for a multi-element antenna
US4623894A (en) * 1984-06-22 1986-11-18 Hughes Aircraft Company Interleaved waveguide and dipole dual band array antenna
GB2161026A (en) 1984-06-29 1986-01-02 Racal Antennas Limited Antenna arrangements
JPH0685530B2 (ja) 1984-11-26 1994-10-26 株式会社日立製作所 ネツトワ−ク障害箇所局所化方式
US4794396A (en) 1985-04-05 1988-12-27 Sanders Associates, Inc. Antenna coupler verification device and method
US4730195A (en) * 1985-07-01 1988-03-08 Motorola, Inc. Shortened wideband decoupled sleeve dipole antenna
US4709239A (en) 1985-09-09 1987-11-24 Sanders Associates, Inc. Dipatch antenna
US5619205A (en) * 1985-09-25 1997-04-08 The United States Of America As Represented By The Secretary Of The Army Microarc chaff
US4673948A (en) * 1985-12-02 1987-06-16 Gte Government Systems Corporation Foreshortened dipole antenna with triangular radiators
US4723305A (en) 1986-01-03 1988-02-02 Motorola, Inc. Dual band notch antenna for portable radiotelephones
US4730193A (en) * 1986-03-06 1988-03-08 The Singer Company Microstrip antenna bulk load
US4792809A (en) 1986-04-28 1988-12-20 Sanders Associates, Inc. Microstrip tee-fed slot antenna
GB2193846B (en) * 1986-07-04 1990-04-18 Central Glass Co Ltd Vehicle window glass antenna using transparent conductive film
GB8617076D0 (en) * 1986-07-14 1986-08-20 British Broadcasting Corp Video scanning systems
JPH057109Y2 (es) 1986-08-13 1993-02-23
US4799156A (en) 1986-10-01 1989-01-17 Strategic Processing Corporation Interactive market management system
US4827271A (en) 1986-11-24 1989-05-02 Mcdonnell Douglas Corporation Dual frequency microstrip patch antenna with improved feed and increased bandwidth
JPS63173934U (es) 1987-04-30 1988-11-11
WO1988009065A1 (en) 1987-05-08 1988-11-17 Darrell Coleman Broad frequency range aerial
US4829660A (en) * 1987-05-18 1989-05-16 Westinghouse Electric Corp. System for removing a plug from a heat exchanger tube
KR890001219A (ko) 1987-06-27 1989-03-18 노브오 사수가 자동차용 수신장치
ATE121785T1 (de) 1987-10-07 1995-05-15 Univ Washington Verfahren zur erhaltung eines erwünschten rekombinanten gens in einer genetischen zellpopulation.
CN87211386U (zh) 1987-11-16 1988-08-24 上海市东海军工技术工程公司 全频道电视平面接收天线
US4894663A (en) * 1987-11-16 1990-01-16 Motorola, Inc. Ultra thin radio housing with integral antenna
US5014346A (en) 1988-01-04 1991-05-07 Motorola, Inc. Rotatable contactless antenna coupler and antenna
GB2215136A (en) 1988-02-10 1989-09-13 Ronald Cecil Hutchins Broadsword anti-radar foil
US4857939A (en) * 1988-06-03 1989-08-15 Alliance Research Corporation Mobile communications antenna
US5227804A (en) * 1988-07-05 1993-07-13 Nec Corporation Antenna structure used in portable radio device
US4847629A (en) * 1988-08-03 1989-07-11 Alliance Research Corporation Retractable cellular antenna
JP2737942B2 (ja) * 1988-08-22 1998-04-08 ソニー株式会社 受信機
KR920002439B1 (ko) 1988-08-31 1992-03-24 삼성전자 주식회사 휴대용 무선전화기의 슬로트 안테나 장치
EP0358090B1 (en) 1988-09-01 1994-08-17 Asahi Glass Company Ltd. Window glass for an automobile
US4912481A (en) * 1989-01-03 1990-03-27 Westinghouse Electric Corp. Compact multi-frequency antenna array
US4936287A (en) 1989-04-14 1990-06-26 Nailor-Hart Industries Inc. Fusible link assembly
US6342861B1 (en) * 1989-04-26 2002-01-29 Daniel A. Packard Loop antenna assembly
KR920007920B1 (ko) 1989-05-30 1992-09-19 재단법인 한국전자통신연구소 비디오폰 시스템
US5075691A (en) 1989-07-24 1991-12-24 Motorola, Inc. Multi-resonant laminar antenna
US5061944A (en) 1989-09-01 1991-10-29 Lockheed Sanders, Inc. Broad-band high-directivity antenna
US5197140A (en) 1989-11-17 1993-03-23 Texas Instruments Incorporated Sliced addressing multi-processor and method of operation
US6070003A (en) 1989-11-17 2000-05-30 Texas Instruments Incorporated System and method of memory access in apparatus having plural processors and plural memories
US5212777A (en) 1989-11-17 1993-05-18 Texas Instruments Incorporated Multi-processor reconfigurable in single instruction multiple data (SIMD) and multiple instruction multiple data (MIMD) modes and method of operation
US5033385A (en) 1989-11-20 1991-07-23 Hercules Incorporated Method and hardware for controlled aerodynamic dispersion of organic filamentary materials
US5074214A (en) 1989-11-20 1991-12-24 Hercules Incorporated Method for controlled aero dynamic dispersion of organic filamentary materials
CA2026148C (en) 1989-12-04 2001-01-16 Eric B. Rodal Antenna with curved dipole elements
US5248988A (en) * 1989-12-12 1993-09-28 Nippon Antenna Co., Ltd. Antenna used for a plurality of frequencies in common
CA2030963C (en) 1989-12-14 1995-08-15 Robert Michael Sorbello Orthogonally polarized dual-band printed circuit antenna employing radiating elements capacitively coupled to feedlines
US5363114A (en) 1990-01-29 1994-11-08 Shoemaker Kevin O Planar serpentine antennas
US5164980A (en) 1990-02-21 1992-11-17 Alkanox Corporation Video telephone system
US5495261A (en) 1990-04-02 1996-02-27 Information Station Specialists Antenna ground system
JPH0637531Y2 (ja) 1990-04-07 1994-09-28 翼 中村 携帯用電気スタンド
FR2669776B1 (fr) 1990-11-23 1993-01-22 Thomson Csf Antenne hyperfrequence a fente a structure de faible epaisseur.
US5218370A (en) * 1990-12-10 1993-06-08 Blaese Herbert R Knuckle swivel antenna for portable telephone
AU1346592A (en) * 1991-01-24 1992-08-27 Rdi Electronics, Inc. Broadband antenna
FR2673041A1 (fr) * 1991-02-19 1992-08-21 Gemplus Card Int Procede de fabrication de micromodules de circuit integre et micromodule correspondant.
GB9103737D0 (en) * 1991-02-22 1991-04-10 Pilkington Plc Antenna for vehicle window
US5559524A (en) 1991-03-18 1996-09-24 Hitachi, Ltd. Antenna system including a plurality of meander conductors for a portable radio apparatus
DE4109630A1 (de) 1991-03-23 1992-09-24 Bosch Gmbh Robert Stabfoermiger mehrbereichsstrahler
JPH04321190A (ja) 1991-04-22 1992-11-11 Mitsubishi Electric Corp 非接触型携帯記憶装置のアンテナ回路
JPH0567912A (ja) 1991-04-24 1993-03-19 Matsushita Electric Works Ltd 平面アンテナ
US5453752A (en) 1991-05-03 1995-09-26 Georgia Tech Research Corporation Compact broadband microstrip antenna
US5200756A (en) * 1991-05-03 1993-04-06 Novatel Communications Ltd. Three dimensional microstrip patch antenna
US5355114A (en) * 1991-05-10 1994-10-11 Echelon Corporation Reconstruction of signals using redundant channels
US5212742A (en) 1991-05-24 1993-05-18 Apple Computer, Inc. Method and apparatus for encoding/decoding image data
US5227808A (en) * 1991-05-31 1993-07-13 The United States Of America As Represented By The Secretary Of The Air Force Wide-band L-band corporate fed antenna for space based radars
JP2653277B2 (ja) 1991-06-27 1997-09-17 三菱電機株式会社 携帯無線通信装置
US5210542A (en) 1991-07-03 1993-05-11 Ball Corporation Microstrip patch antenna structure
GB2257838B (en) * 1991-07-13 1995-06-14 Technophone Ltd Retractable antenna
DE69227222T2 (de) 1991-07-30 1999-05-20 Murata Manufacturing Co Zirkularpolarisierte Streifenleiterantenne und Methode zur Einstellung ihrer Frequenz
US5138328A (en) * 1991-08-22 1992-08-11 Motorola, Inc. Integral diversity antenna for a laptop computer
JP2751683B2 (ja) 1991-09-11 1998-05-18 三菱電機株式会社 多層アレーアンテナ装置
WO1994009595A1 (en) 1991-09-20 1994-04-28 Shaw Venson M Method and apparatus including system architecture for multimedia communications
JP3168219B2 (ja) 1991-10-31 2001-05-21 原田工業株式会社 無線電話機用の極超短波アンテナ
US5168472A (en) 1991-11-13 1992-12-01 The United States Of America As Represented By The Secretary Of The Navy Dual-frequency receiving array using randomized element positions
JPH05335826A (ja) 1991-11-18 1993-12-17 Motorola Inc 通信装置用の内蔵アンテナ
JPH05147806A (ja) 1991-11-28 1993-06-15 Mita Ind Co Ltd 画像形成装置
US5347291A (en) * 1991-12-05 1994-09-13 Moore Richard L Capacitive-type, electrically short, broadband antenna and coupling systems
AT396532B (de) 1991-12-11 1993-10-25 Siemens Ag Oesterreich Antennenanordnung, insbesondere für kommunikationsendgeräte
US5307075A (en) 1991-12-12 1994-04-26 Allen Telecom Group, Inc. Directional microstrip antenna with stacked planar elements
US5172084A (en) 1991-12-18 1992-12-15 Space Systems/Loral, Inc. Miniature planar filters based on dual mode resonators of circular symmetry
CN2110977U (zh) * 1992-01-07 1992-07-22 赵玉斌 电视及雷达平面天线
US6111545A (en) * 1992-01-23 2000-08-29 Nokia Mobile Phones, Ltd. Antenna
US5926208A (en) 1992-02-19 1999-07-20 Noonen; Michael Video compression and decompression arrangement having reconfigurable camera and low-bandwidth transmission capability
US5355144A (en) * 1992-03-16 1994-10-11 The Ohio State University Transparent window antenna
JP2558571B2 (ja) 1992-03-23 1996-11-27 株式会社ヨコオ ロッドアンテナ
US5373300A (en) 1992-05-21 1994-12-13 International Business Machines Corporation Mobile data terminal with external antenna
WO1995011530A1 (en) 1992-04-08 1995-04-27 Wipac Group Limited Vehicle antenna
JPH05308223A (ja) 1992-04-28 1993-11-19 Tech Res & Dev Inst Of Japan Def Agency 2周波共用アンテナ
US5214434A (en) * 1992-05-15 1993-05-25 Hsu Wan C Mobile phone antenna with improved impedance-matching circuit
US5621913A (en) * 1992-05-15 1997-04-15 Micron Technology, Inc. System with chip to chip communication
FR2691818B1 (fr) * 1992-06-02 1997-01-03 Alsthom Cge Alcatel Procede de fabrication d'un objet fractal par stereolithographie et objet fractal obtenu par un tel procede.
JPH05347507A (ja) 1992-06-12 1993-12-27 Junkosha Co Ltd アンテナ
JPH0637531A (ja) 1992-07-17 1994-02-10 Sansei Denki Kk 広帯域ヘリカルアンテナ、および同製造方法
JPH0697713A (ja) * 1992-07-28 1994-04-08 Mitsubishi Electric Corp アンテナ
US5394163A (en) 1992-08-26 1995-02-28 Hughes Missile Systems Company Annular slot patch excited array
JPH0685530A (ja) 1992-08-31 1994-03-25 Sony Corp マイクロストリップアンテナ及び携帯無線機
US5918183A (en) 1992-09-01 1999-06-29 Trimble Navigation Limited Concealed mobile communications system
US5300936A (en) 1992-09-30 1994-04-05 Loral Aerospace Corp. Multiple band antenna
JP3457351B2 (ja) 1992-09-30 2003-10-14 株式会社東芝 携帯無線装置
US5361061A (en) * 1992-10-19 1994-11-01 Motorola, Inc. Computer card data receiver having a foldable antenna
US5451968A (en) * 1992-11-19 1995-09-19 Solar Conversion Corp. Capacitively coupled high frequency, broad-band antenna
JPH06204908A (ja) 1993-01-07 1994-07-22 Nippon Motorola Ltd 無線機用アンテナ
JPH06252629A (ja) 1993-02-23 1994-09-09 Sony Corp 平面アンテナ
US5402134A (en) * 1993-03-01 1995-03-28 R. A. Miller Industries, Inc. Flat plate antenna module
US5493702A (en) * 1993-04-05 1996-02-20 Crowley; Robert J. Antenna transmission coupling arrangement
JPH06314924A (ja) 1993-04-19 1994-11-08 Wireless Access Inc 部分短絡マイクロストリップアンテナ
JPH06314923A (ja) 1993-04-19 1994-11-08 Wireless Access Inc 小型二重リングマイクロストリップアンテナ
DE4313397A1 (de) 1993-04-23 1994-11-10 Hirschmann Richard Gmbh Co Planarantenne
AU668309B2 (en) 1993-05-03 1996-04-26 Motorola, Inc. Antenna for an electronic apparatus
GB9309368D0 (en) * 1993-05-06 1993-06-16 Ncr Int Inc Antenna apparatus
IT1263460B (it) 1993-07-13 1996-08-05 Gd Spa Metodo per l'alimentazione di articoli da fumo, in particolare sigarette, ad una macchina impacchettatrice continua.
AU4710593A (en) 1993-08-06 1995-02-28 Simo Lehto High frequency antenna system
EP0643437B1 (en) 1993-09-10 1999-10-06 Ford Motor Company Limited Slot antenna with reduced ground plane
US5422651A (en) * 1993-10-13 1995-06-06 Chang; Chin-Kang Pivotal structure for cordless telephone antenna
US5471224A (en) * 1993-11-12 1995-11-28 Space Systems/Loral Inc. Frequency selective surface with repeating pattern of concentric closed conductor paths, and antenna having the surface
US5438357A (en) 1993-11-23 1995-08-01 Mcnelley; Steve H. Image manipulating teleconferencing system
JP3305843B2 (ja) * 1993-12-20 2002-07-24 株式会社東芝 半導体装置
GB2289163B (en) 1994-05-03 1998-12-23 Quantum Communications Group I Antenna device and mobile telephone
US5594455A (en) 1994-06-13 1997-01-14 Nippon Telegraph & Telephone Corporation Bidirectional printed antenna
US5561436A (en) * 1994-07-21 1996-10-01 Motorola, Inc. Method and apparatus for multi-position antenna
WO1996003783A1 (en) 1994-07-27 1996-02-08 Wireless Access Incorporated Double ring microstrip antennas
AU2948195A (en) 1994-07-29 1996-03-04 Wireless Access, Inc. Partially shorted double ring microstrip antenna having a microstrip feed
TW295733B (es) 1994-09-15 1997-01-11 Motorola Inc
WO1996010276A1 (en) 1994-09-28 1996-04-04 Wireless Access Incorporated Ring microstrip antenna array
EP0704928A3 (en) 1994-09-30 1998-08-05 HID Corporation RF transponder system with parallel resonant interrogation and series resonant response
US5537367A (en) * 1994-10-20 1996-07-16 Lockwood; Geoffrey R. Sparse array structures
JP3302849B2 (ja) * 1994-11-28 2002-07-15 本田技研工業株式会社 車載用レーダーモジュール
CA2164669C (en) * 1994-12-28 2000-01-18 Martin Victor Schneider Multi-branch miniature patch antenna having polarization and share diversity
CN2224466Y (zh) 1995-01-06 1996-04-10 阜新市华安科技服务公司 移动通信微带天线
US5557293A (en) 1995-01-26 1996-09-17 Motorola, Inc. Multi-loop antenna
US5805113A (en) 1995-01-31 1998-09-08 Ogino; Toshikazu Multiband antenna receiver system with, LNA, AMP, combiner, voltage regulator, splitter, noise filter and common single feeder
US5790080A (en) * 1995-02-17 1998-08-04 Lockheed Sanders, Inc. Meander line loaded antenna
WO1996027219A1 (en) 1995-02-27 1996-09-06 The Chinese University Of Hong Kong Meandering inverted-f antenna
US6239752B1 (en) * 1995-02-28 2001-05-29 Stmicroelectronics, Inc. Semiconductor chip package that is also an antenna
WO1996029755A1 (en) 1995-03-17 1996-09-26 Elden, Inc. In-vehicle antenna
DE19511300A1 (de) 1995-03-28 1996-10-02 Telefunken Microelectron Antennenstruktur
US5657028A (en) 1995-03-31 1997-08-12 Nokia Moblie Phones Ltd. Small double C-patch antenna contained in a standard PC card
DE19514990B4 (de) * 1995-04-24 2005-06-30 Abb Turbo Systems Ag Filterschalldämpfer
US5841403A (en) * 1995-04-25 1998-11-24 Norand Corporation Antenna means for hand-held radio devices
FR2733625B1 (fr) 1995-04-25 1997-05-30 Alcatel Cable Cable avec information de marquage
US6087345A (en) * 1995-05-31 2000-07-11 Meiji Seika Kaisha, Ltd. Material inhibiting lipid peroxide-increase
EP0829112B1 (en) 1995-06-02 1999-10-06 Ericsson Inc. Multiple band printed monopole antenna
US5627550A (en) * 1995-06-15 1997-05-06 Nokia Mobile Phones Ltd. Wideband double C-patch antenna including gap-coupled parasitic elements
EP0749176B1 (en) 1995-06-15 2002-09-18 Nokia Corporation Planar and non-planar double C-patch antennas having different aperture shapes
US5563882A (en) 1995-07-27 1996-10-08 At&T Process for converting a point-to-point multimedia call to a bridged multimedia call
US6104349A (en) * 1995-08-09 2000-08-15 Cohen; Nathan Tuning fractal antennas and fractal resonators
US6127977A (en) 1996-11-08 2000-10-03 Cohen; Nathan Microstrip patch antenna with fractal structure
US6452553B1 (en) * 1995-08-09 2002-09-17 Fractal Antenna Systems, Inc. Fractal antennas and fractal resonators
US6476766B1 (en) 1997-11-07 2002-11-05 Nathan Cohen Fractal antenna ground counterpoise, ground planes, and loading elements and microstrip patch antennas with fractal structure
US5767814A (en) 1995-08-16 1998-06-16 Litton Systems Inc. Mast mounted omnidirectional phase/phase direction-finding antenna system
US5646635A (en) 1995-08-17 1997-07-08 Centurion International, Inc. PCMCIA antenna for wireless communications
US5742258A (en) * 1995-08-22 1998-04-21 Hazeltine Corporation Low intermodulation electromagnetic feed cellular antennas
JP3289572B2 (ja) * 1995-09-19 2002-06-10 株式会社村田製作所 チップアンテナ
US5828348A (en) 1995-09-22 1998-10-27 Qualcomm Incorporated Dual-band octafilar helix antenna
US5872546A (en) * 1995-09-27 1999-02-16 Ntt Mobile Communications Network Inc. Broadband antenna using a semicircular radiator
US5986610A (en) * 1995-10-11 1999-11-16 Miron; Douglas B. Volume-loaded short dipole antenna
USH1631H (en) * 1995-10-27 1997-02-04 United States Of America Method of fabricating radar chaff
US6075500A (en) 1995-11-15 2000-06-13 Allgon Ab Compact antenna means for portable radio communication devices and switch-less antenna connecting means therefor
JP3166589B2 (ja) * 1995-12-06 2001-05-14 株式会社村田製作所 チップアンテナ
US5898404A (en) * 1995-12-22 1999-04-27 Industrial Technology Research Institute Non-coplanar resonant element printed circuit board antenna
JP3319268B2 (ja) * 1996-02-13 2002-08-26 株式会社村田製作所 表面実装型アンテナおよびこれを用いた通信機
US5684672A (en) * 1996-02-20 1997-11-04 International Business Machines Corporation Laptop computer with an integrated multi-mode antenna
JPH09246827A (ja) 1996-03-01 1997-09-19 Toyota Motor Corp 車両用アンテナ装置
US6078294A (en) * 1996-03-01 2000-06-20 Toyota Jidosha Kabushiki Kaisha Antenna device for vehicles
US5821907A (en) * 1996-03-05 1998-10-13 Research In Motion Limited Antenna for a radio telecommunications device
EP0795926B1 (de) * 1996-03-13 2002-12-11 Ascom Systec AG Flache dreidimensionale Antenne
US5680144A (en) 1996-03-13 1997-10-21 Nokia Mobile Phones Limited Wideband, stacked double C-patch antenna having gap-coupled parasitic elements
JP2806350B2 (ja) 1996-03-14 1998-09-30 日本電気株式会社 パッチ型アレイアンテナ装置
JPH09252214A (ja) 1996-03-15 1997-09-22 Kokusai Electric Co Ltd 逆fアンテナ
US5838282A (en) 1996-03-22 1998-11-17 Ball Aerospace And Technologies Corp. Multi-frequency antenna
US5703600A (en) * 1996-05-08 1997-12-30 Motorola, Inc. Microstrip antenna with a parasitically coupled ground plane
SE507077C2 (sv) 1996-05-17 1998-03-23 Allgon Ab Antennanordning för en portabel radiokommunikationsanordning
JP3296189B2 (ja) * 1996-06-03 2002-06-24 三菱電機株式会社 アンテナ装置
WO1997047054A1 (en) 1996-06-05 1997-12-11 Intercell Wireless Corporation Dual resonance antenna for portable telephone
US5990838A (en) * 1996-06-12 1999-11-23 3Com Corporation Dual orthogonal monopole antenna system
SE509638C2 (sv) * 1996-06-15 1999-02-15 Allgon Ab Meanderantennanordning
US5913174A (en) 1996-06-19 1999-06-15 Proxim, Inc. Connectorized antenna for wireless LAN PCMCIA card radios
EP1641070A1 (en) 1996-06-20 2006-03-29 Kabushiki Kaisha Yokowo (also trading as Yokowo Co., Ltd.) Antenna
US6539608B2 (en) * 1996-06-25 2003-04-01 Nortel Networks Limited Antenna dielectric
US6122533A (en) 1996-06-28 2000-09-19 Spectral Solutions, Inc. Superconductive planar radio frequency filter having resonators with folded legs
US5764190A (en) 1996-07-15 1998-06-09 The Hong Kong University Of Science & Technology Capacitively loaded PIFA
US6011518A (en) * 1996-07-26 2000-01-04 Harness System Technologies Research, Ltd. Vehicle antenna
AU3741497A (en) 1996-07-29 1998-02-20 Motorola, Inc. Magnetic field antenna and method for field cancellation
US5926141A (en) * 1996-08-16 1999-07-20 Fuba Automotive Gmbh Windowpane antenna with transparent conductive layer
JPH1079623A (ja) 1996-09-02 1998-03-24 Olympus Optical Co Ltd アンテナ素子を内蔵する半導体モジュール
JPH1093332A (ja) 1996-09-13 1998-04-10 Nippon Antenna Co Ltd 複共振逆f型アンテナ
US5966098A (en) * 1996-09-18 1999-10-12 Research In Motion Limited Antenna system for an RF data communications device
JPH1098322A (ja) * 1996-09-20 1998-04-14 Murata Mfg Co Ltd チップアンテナ及びアンテナ装置
GB2317994B (en) 1996-10-02 2001-02-28 Northern Telecom Ltd A multiresonant antenna
US5963871A (en) 1996-10-04 1999-10-05 Telefonaktiebolaget Lm Ericsson Retractable multi-band antennas
US6114674A (en) 1996-10-04 2000-09-05 Mcdonnell Douglas Corporation Multilayer circuit board with electrically resistive heating element
US6112102A (en) 1996-10-04 2000-08-29 Telefonaktiebolaget Lm Ericsson Multi-band non-uniform helical antennas
DE19740254A1 (de) * 1996-10-16 1998-04-23 Lindenmeier Heinz Funkantennen-Anordnung und Patchantenne auf der Fensterscheibe eines Kraftfahrzeuges
KR100193851B1 (ko) 1996-11-05 1999-06-15 윤종용 휴대용 무선기기의 소형 안테나
JPH10163748A (ja) 1996-11-26 1998-06-19 Kyocera Corp 平面アンテナおよびこれを用いた携帯無線機
US5860845A (en) * 1997-01-07 1999-01-19 Goyhrach; Yuval Luminescent balloon
US5969689A (en) * 1997-01-13 1999-10-19 Metawave Communications Corporation Multi-sector pivotal antenna system and method
KR100208946B1 (ko) 1997-01-13 1999-07-15 윤종용 듀얼밴드 안테나
SE507076C2 (sv) * 1997-01-24 1998-03-23 Allgon Ab Antennelement
JPH10209744A (ja) 1997-01-28 1998-08-07 Matsushita Electric Works Ltd 逆f型アンテナ
JPH10215114A (ja) * 1997-01-30 1998-08-11 Harada Ind Co Ltd 車両用窓ガラスアンテナ装置
US6072434A (en) 1997-02-04 2000-06-06 Lucent Technologies Inc. Aperture-coupled planar inverted-F antenna
US5798688A (en) * 1997-02-07 1998-08-25 Donnelly Corporation Interior vehicle mirror assembly having communication module
KR970054890A (ko) 1997-02-18 1997-07-31 자이단 호진 고쿠사이 초덴도 산교 기쥬츠 겐큐 센타 차량용 강제 포집형 무선 안테나 장치
US5808586A (en) 1997-02-19 1998-09-15 Motorola, Inc. Side-by-side coil-fed antenna for a portable radio
SE508356C2 (sv) 1997-02-24 1998-09-28 Ericsson Telefon Ab L M Antennanordningar
FR2760134B1 (fr) * 1997-02-24 1999-03-26 Alsthom Cge Alcatel Antenne miniature resonnante de type microruban de forme annulaire
AU6541398A (en) 1997-03-05 1998-09-22 Itron Inc. Multi-band ceramic trap antenna
CA2200675C (en) 1997-03-21 2003-12-23 Chen Wu A printed antenna structure for wireless data communications
DE19806834A1 (de) * 1997-03-22 1998-09-24 Lindenmeier Heinz Antennenanlage für den Hör- und Fernsehrundfunkempfang in Kraftfahrzeugen
FI110395B (fi) 1997-03-25 2003-01-15 Nokia Corp Oikosuljetuilla mikroliuskoilla toteutettu laajakaista-antenni
JPH114113A (ja) 1997-04-18 1999-01-06 Murata Mfg Co Ltd 表面実装型アンテナおよびそれを用いた通信機
JPH10303637A (ja) 1997-04-25 1998-11-13 Harada Ind Co Ltd 自動車用tvアンテナ装置
SE509448C2 (sv) * 1997-05-07 1999-01-25 Ericsson Telefon Ab L M Dubbelpolariserad antenn samt enkelpolariserat antennelement
KR19990001739A (ko) 1997-06-17 1999-01-15 윤종용 이동통신용 듀얼밴드 안테나
US6075494A (en) 1997-06-30 2000-06-13 Raytheon Company Compact, ultra-wideband, antenna feed architecture comprising a multistage, multilevel network of constant reflection-coefficient components
JPH1127042A (ja) 1997-07-01 1999-01-29 Denki Kogyo Co Ltd 多周波共用ダイポールアンテナ装置
US6031495A (en) * 1997-07-02 2000-02-29 Centurion Intl., Inc. Antenna system for reducing specific absorption rates
US5926139A (en) * 1997-07-02 1999-07-20 Lucent Technologies Inc. Planar dual frequency band antenna
FI113212B (fi) 1997-07-08 2004-03-15 Nokia Corp Usean taajuusalueen kaksoisresonanssiantennirakenne
SE509232C2 (sv) 1997-07-09 1998-12-21 Allgon Ab Handportabel telefon med strålningsabsorberande anordning
AU8365998A (en) 1997-07-09 1999-02-08 Allgon Ab Trap microstrip pifa
SE511501C2 (sv) 1997-07-09 1999-10-11 Allgon Ab Kompakt antennanordning
IL121285A (en) * 1997-07-11 2000-02-29 Visonic Ltd Intrusion detection systems employing active detectors
JP3022817B2 (ja) * 1997-08-27 2000-03-21 日本電気株式会社 多重周波数アレイアンテナ
US6211899B1 (en) * 1997-09-01 2001-04-03 Fuji Photo Film Co., Ltd. Image exposure apparatus
JP3663533B2 (ja) 1997-09-05 2005-06-22 Necトーキン株式会社 マルチバンドアンテナ装置及びそれを用いた携帯無線機
US5909050A (en) 1997-09-15 1999-06-01 Microchip Technology Incorporated Combination inductive coil and integrated circuit semiconductor chip in a single lead frame package and method therefor
US6014114A (en) * 1997-09-19 2000-01-11 Trimble Navigation Limited Antenna with stepped ground plane
JP3973766B2 (ja) 1997-09-19 2007-09-12 株式会社東芝 アンテナ装置
US5986615A (en) 1997-09-19 1999-11-16 Trimble Navigation Limited Antenna with ground plane having cutouts
SE511907C2 (sv) 1997-10-01 1999-12-13 Ericsson Telefon Ab L M Integrerad kommunikationsanordning
US6011699A (en) 1997-10-15 2000-01-04 Motorola, Inc. Electronic device including apparatus and method for routing flexible circuit conductors
US6352434B1 (en) 1997-10-15 2002-03-05 Motorola, Inc. High density flexible circuit element and communication device using same
US6243592B1 (en) * 1997-10-23 2001-06-05 Kyocera Corporation Portable radio
US6310578B1 (en) 1997-10-28 2001-10-30 Telefonaktiebolaget Lm Ericsson (Publ) Multiple band telescope type antenna for mobile phone
US6329962B2 (en) 1998-08-04 2001-12-11 Telefonaktiebolaget Lm Ericsson (Publ) Multiple band, multiple branch antenna for mobile phone
IL135848A0 (en) 1997-10-28 2001-05-20 Ericsson Telefon Ab L M Multiple band, multiple branch antenna for mobile phone
JP3625018B2 (ja) 1997-10-29 2005-03-02 松下電器産業株式会社 アンテナ装置とそれを用いた携帯無線機
GB2330951B (en) 1997-11-04 2002-09-18 Nokia Mobile Phones Ltd Antenna
JP3635195B2 (ja) 1997-11-04 2005-04-06 アルプス電気株式会社 携帯電話機
SE511131C2 (sv) 1997-11-06 1999-08-09 Ericsson Telefon Ab L M Portabel elektronisk kommunikationsanordning med flerbandigt antennsystem
WO1999027608A1 (en) 1997-11-22 1999-06-03 Nathan Cohen Cylindrical conformable antenna on a planar substrate
FI974316A (fi) 1997-11-25 1999-05-26 Lk Products Oy Antennirakenne
JP3449484B2 (ja) 1997-12-01 2003-09-22 株式会社東芝 多周波アンテナ
JP3296276B2 (ja) * 1997-12-11 2002-06-24 株式会社村田製作所 チップアンテナ
FR2772517B1 (fr) 1997-12-11 2000-01-07 Alsthom Cge Alcatel Antenne multifrequence realisee selon la technique des microrubans et dispositif incluant cette antenne
SE511064C2 (sv) 1997-12-12 1999-07-26 Allgon Ab Tvåbandsantenn
US6304222B1 (en) 1997-12-22 2001-10-16 Nortel Networks Limited Radio communications handset antenna arrangements
GB2332780A (en) * 1997-12-22 1999-06-30 Nokia Mobile Phones Ltd Flat plate antenna
US5929813A (en) 1998-01-09 1999-07-27 Nokia Mobile Phones Limited Antenna for mobile communications device
JP2001515661A (ja) 1998-01-09 2001-09-18 マイクロチップ テクノロジー インコーポレイテッド 付随のicチップおよびコイルを含む集積回路(ic)パッケージならびにその製造方法
US6429818B1 (en) 1998-01-16 2002-08-06 Tyco Electronics Logistics Ag Single or dual band parasitic antenna assembly
US5945954A (en) * 1998-01-16 1999-08-31 Rangestar International Corporation Antenna assembly for telecommunication devices
WO2001033665A1 (en) 1999-11-04 2001-05-10 Rangestar Wireless, Inc. Single or dual band parasitic antenna assembly
FI113213B (fi) 1998-01-21 2004-03-15 Filtronic Lk Oy Tasoantenni
JPH11220319A (ja) 1998-01-30 1999-08-10 Sharp Corp アンテナ装置
US6157348A (en) 1998-02-04 2000-12-05 Antenex, Inc. Low profile antenna
US6040803A (en) * 1998-02-19 2000-03-21 Ericsson Inc. Dual band diversity antenna having parasitic radiating element
US6097339A (en) 1998-02-23 2000-08-01 Qualcomm Incorporated Substrate antenna
US5982337A (en) 1998-02-20 1999-11-09 Marconi Aerospace Systems Inc. Cellular antennas for stratosphere coverage of multi-band annular earth pattern
FI980392A (fi) 1998-02-20 1999-08-21 Nokia Mobile Phones Ltd Antenni
US6259407B1 (en) 1999-02-19 2001-07-10 Allen Tran Uniplanar dual strip antenna
JP3252786B2 (ja) 1998-02-24 2002-02-04 株式会社村田製作所 アンテナ装置およびそれを用いた無線装置
US6005524A (en) 1998-02-26 1999-12-21 Ericsson Inc. Flexible diversity antenna
JPH11251830A (ja) 1998-03-05 1999-09-17 Mitsubishi Electric Corp アンテナ装置
GB2335081B (en) 1998-03-05 2002-04-03 Nec Technologies Antenna for mobile telephones
US5929825A (en) 1998-03-09 1999-07-27 Motorola, Inc. Folded spiral antenna for a portable radio transceiver and method of forming same
US6288680B1 (en) 1998-03-18 2001-09-11 Murata Manufacturing Co., Ltd. Antenna apparatus and mobile communication apparatus using the same
US6039583A (en) * 1998-03-18 2000-03-21 The Whitaker Corporation Configurable ground plane
FR2778043A1 (fr) 1998-04-23 1999-10-29 Thomson Multimedia Sa Appareil de poursuite a satellites a defilement
SE513055C2 (sv) 1998-04-24 2000-06-26 Intenna Technology Ab Flerbandsantennanordning
EP0954054A1 (en) 1998-04-30 1999-11-03 Kabushiki Kaisha Yokowo Folded antenna
US6131042A (en) * 1998-05-04 2000-10-10 Lee; Chang Combination cellular telephone radio receiver and recorder mechanism for vehicles
FR2778500B1 (fr) 1998-05-05 2000-08-04 Socapex Amphenol Antenne a plaque
ES2142280B1 (es) * 1998-05-06 2000-11-16 Univ Catalunya Politecnica Unas antenas multitriangulares duales para telefonia celular gsm y dcs
US5995052A (en) 1998-05-15 1999-11-30 Ericsson Inc. Flip open antenna for a communication device
US6108569A (en) 1998-05-15 2000-08-22 E. I. Du Pont De Nemours And Company High temperature superconductor mini-filters and mini-multiplexers with self-resonant spiral resonators
SE514530C2 (sv) 1998-05-18 2001-03-12 Allgon Ab Antennanordning omfattande kapacitivt kopplade radiotorelement och en handburen radiokommunikationsanordning för en sådan antennanordning
US5861845A (en) * 1998-05-19 1999-01-19 Hughes Electronics Corporation Wideband phased array antennas and methods
US6031499A (en) * 1998-05-22 2000-02-29 Intel Corporation Multi-purpose vehicle antenna
DE19823749C2 (de) 1998-05-27 2002-07-11 Kathrein Werke Kg Dualpolarisierte Mehrbereichsantenne
GB2337859B (en) 1998-05-29 2002-12-11 Nokia Mobile Phones Ltd Antenna
US5986609A (en) * 1998-06-03 1999-11-16 Ericsson Inc. Multiple frequency band antenna
US6107920A (en) 1998-06-09 2000-08-22 Motorola, Inc. Radio frequency identification tag having an article integrated antenna
US6141540A (en) 1998-06-15 2000-10-31 Motorola, Inc. Dual mode communication device
US6384790B2 (en) * 1998-06-15 2002-05-07 Ppg Industries Ohio, Inc. Antenna on-glass
GB9813129D0 (en) 1998-06-17 1998-08-19 Harada Ind Europ Limited Multiband vehicle screen antenna
ES2153288B1 (es) 1998-06-22 2001-09-01 Consulting Comunicacio I Disse Telefono movil con dispositivo de proteccion contra las radiaciones generadas durante su empleo.
SE512524C2 (sv) * 1998-06-24 2000-03-27 Allgon Ab En antennanordning, en metod för framställning av en antennenordning och en radiokommunikationsanordning inkluderande en antennanordning
US6031505A (en) * 1998-06-26 2000-02-29 Research In Motion Limited Dual embedded antenna for an RF data communications device
US6211889B1 (en) 1998-06-30 2001-04-03 Sun Microsystems, Inc. Method and apparatus for visualizing locality within an address space
JP2000022431A (ja) 1998-07-01 2000-01-21 Matsushita Electric Ind Co Ltd アンテナ装置
US6166694A (en) 1998-07-09 2000-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Printed twin spiral dual band antenna
SE512363C2 (sv) 1998-07-09 2000-03-06 Moteco Ab Dubbelbandig antenn
US6353443B1 (en) * 1998-07-09 2002-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Miniature printed spiral antenna for mobile terminals
JP2000040915A (ja) 1998-07-23 2000-02-08 Alps Electric Co Ltd 平面アンテナ
US6215474B1 (en) 1998-07-27 2001-04-10 Motorola, Inc. Communication device with mode change softkeys
US6154176A (en) * 1998-08-07 2000-11-28 Sarnoff Corporation Antennas formed using multilayer ceramic substrates
WO2000008712A1 (de) 1998-08-07 2000-02-17 Siemens Aktiengesellschaft Multiband-antenne
US6154180A (en) 1998-09-03 2000-11-28 Padrick; David E. Multiband antennas
EP0986130B1 (de) 1998-09-08 2004-08-04 Siemens Aktiengesellschaft Antenne für funkbetriebene Kommunikationsendgeräte
US6362790B1 (en) * 1998-09-18 2002-03-26 Tantivy Communications, Inc. Antenna array structure stacked over printed wiring board with beamforming components
GB9820622D0 (en) * 1998-09-23 1998-11-18 Britax Geco Sa Vehicle exterior mirror with antenna
US6211834B1 (en) * 1998-09-30 2001-04-03 Harris Corporation Multiband ring focus antenna employing shaped-geometry main reflector and diverse-geometry shaped subreflector-feeds
JP2000114856A (ja) 1998-09-30 2000-04-21 Nec Saitama Ltd 逆fアンテナおよびそれを用いた無線装置
KR100345534B1 (ko) * 1998-10-07 2002-10-25 삼성전자 주식회사 플립업타입휴대폰에서플립커버에설치된안테나장치
FR2784506A1 (fr) 1998-10-12 2000-04-14 Socapex Amphenol Antenne a plaque
US6285342B1 (en) 1998-10-30 2001-09-04 Intermec Ip Corp. Radio frequency tag with miniaturized resonant antenna
FI105061B (fi) * 1998-10-30 2000-05-31 Lk Products Oy Kahden resonanssitaajuuden tasoantenni
US6075485A (en) * 1998-11-03 2000-06-13 Atlantic Aerospace Electronics Corp. Reduced weight artificial dielectric antennas and method for providing the same
US6097345A (en) 1998-11-03 2000-08-01 The Ohio State University Dual band antenna for vehicles
US6147655A (en) 1998-11-05 2000-11-14 Single Chip Systems Corporation Flat loop antenna in a single plane for use in radio frequency identification tags
US6049314A (en) 1998-11-17 2000-04-11 Xertex Technologies, Inc. Wide band antenna having unitary radiator/ground plane
JP2000165124A (ja) 1998-11-18 2000-06-16 Telefon Ab Lm Ericsson 携帯無線機、フリップ及びヒンジ
SE513525C2 (sv) 1998-11-20 2000-09-25 Smarteq Ab En antennanordning
US6181281B1 (en) * 1998-11-25 2001-01-30 Nec Corporation Single- and dual-mode patch antennas
JP3061782B2 (ja) * 1998-12-07 2000-07-10 三菱電機株式会社 Etc車載器
US6054953A (en) * 1998-12-10 2000-04-25 Allgon Ab Dual band antenna
JP3255403B2 (ja) 1998-12-24 2002-02-12 インターナショナル・ビジネス・マシーンズ・コーポレーション パッチアンテナおよびそれを用いた電子機器
US6343208B1 (en) 1998-12-16 2002-01-29 Telefonaktiebolaget Lm Ericsson (Publ) Printed multi-band patch antenna
GB2344969B (en) * 1998-12-19 2003-02-26 Nec Technologies Mobile phone with incorporated antenna
GB2382723B (en) 1998-12-22 2003-10-15 Nokia Corp Dual band antenna for a handset
EP1018777B1 (en) 1998-12-22 2007-01-24 Nokia Corporation Dual band antenna for a hand portable telephone and a corresponding hand portable telephone
EP1020947A3 (en) 1998-12-22 2000-10-04 Nokia Mobile Phones Ltd. Method for manufacturing an antenna body for a phone and phone or handset having an internal antenna
GB2345196B (en) 1998-12-23 2003-11-26 Nokia Mobile Phones Ltd An antenna and method of production
US6373447B1 (en) * 1998-12-28 2002-04-16 Kawasaki Steel Corporation On-chip antenna, and systems utilizing same
US6693603B1 (en) * 1998-12-29 2004-02-17 Nortel Networks Limited Communications antenna structure
FI105421B (fi) 1999-01-05 2000-08-15 Filtronic Lk Oy Tasomainen kahden taajuuden antenni ja tasoantennilla varustettu radiolaite
EP1026774A3 (de) 1999-01-26 2000-08-30 Siemens Aktiengesellschaft Antenne für funkbetriebene Kommunikationsendgeräte
EP1024552A3 (de) 1999-01-26 2003-05-07 Siemens Aktiengesellschaft Antenne für funkbetriebene Kommunikationsendgeräte
US6087990A (en) 1999-02-02 2000-07-11 Antenna Plus, Llc Dual function communication antenna
US6166698A (en) 1999-02-16 2000-12-26 Gentex Corporation Rearview mirror with integrated microwave receiver
US6396446B1 (en) 1999-02-16 2002-05-28 Gentex Corporation Microwave antenna for use in a vehicle
US6100855A (en) 1999-02-26 2000-08-08 Marconi Aerospace Defence Systems, Inc. Ground plane for GPS patch antenna
US6239765B1 (en) * 1999-02-27 2001-05-29 Rangestar Wireless, Inc. Asymmetric dipole antenna assembly
WO2000052784A1 (de) 1999-03-01 2000-09-08 Siemens Aktiengesellschaft Integrierbare multiband-antenne
NL1011421C2 (nl) 1999-03-02 2000-09-05 Tno Volumetrisch phased array antenne systeem.
SE515092C2 (sv) 1999-03-15 2001-06-11 Allgon Ab Antennanordning för dubbla band
DE10080718D2 (de) 1999-03-24 2002-02-28 Siemens Ag Multiband-Antenne
JP2000278009A (ja) 1999-03-24 2000-10-06 Nec Corp マイクロ波・ミリ波回路装置
US6268836B1 (en) 1999-04-28 2001-07-31 The Whitaker Corporation Antenna assembly adapted with an electrical plug
WO2000067342A1 (en) 1999-05-05 2000-11-09 Nokia Mobile Phones Limited Slide mounted antenna
US6211824B1 (en) * 1999-05-06 2001-04-03 Raytheon Company Microstrip patch antenna
CN1171353C (zh) 1999-05-06 2004-10-13 凯特莱恩工厂股份公司 多波段天线
US6977808B2 (en) 1999-05-14 2005-12-20 Apple Computer, Inc. Display housing for computing device
US6198943B1 (en) * 1999-05-17 2001-03-06 Ericsson Inc. Parasitic dual band matching of an internal looped dipole antenna
WO2000072404A1 (fr) 1999-05-21 2000-11-30 Matsushita Electric Industrial Co., Ltd. Antenne de communication mobile et appareil de communication mobile dans lequel elle est utilisee
US6201501B1 (en) 1999-05-28 2001-03-13 Nokia Mobile Phones Limited Antenna configuration for a mobile station
SE516482C2 (sv) 1999-05-31 2002-01-22 Allgon Ab Patchantenn och en kommunikationsutrustning inkluderande en sådan antenn
DE19925127C1 (de) * 1999-06-02 2000-11-02 Daimler Chrysler Ag Antennenanordnung in Kraftfahrzeugen
GB9913526D0 (en) 1999-06-10 1999-08-11 Harada Ind Europ Limited Multiband antenna
US6266023B1 (en) * 1999-06-24 2001-07-24 Delphi Technologies, Inc. Automotive radio frequency antenna system
FI991447A (fi) 1999-06-24 2000-12-25 Nokia Mobile Phones Ltd Rakenteellisesti itsenäinen tasoantennikonstruktio ja kannettava radio laite
US6175333B1 (en) * 1999-06-24 2001-01-16 Nortel Networks Corporation Dual band antenna
DE19929689A1 (de) 1999-06-29 2001-01-11 Siemens Ag Integrierbare Dualband-Antenne
US6381471B1 (en) 1999-06-30 2002-04-30 Vladimir A. Dvorkin Dual band radio telephone with dedicated receive and transmit antennas
EP1067627B1 (en) 1999-07-09 2009-06-24 IPCom GmbH & Co. KG Dual band radio apparatus
FI114259B (fi) 1999-07-14 2004-09-15 Filtronic Lk Oy Radiotaajuisen etupään rakenne
SE514842C2 (sv) 1999-07-16 2001-04-30 Smarteq Wireless Ab Dubbelbandsantennanordning och antennaggregat
ES2204035T3 (es) 1999-07-19 2004-04-16 Raytheon Company Antena de trayectos apilados multiples.
EP1116299A4 (en) 1999-07-21 2004-09-29 Rangestar Wireless Inc BROADBAND ANTENNA STRUCTURE WITH CAPACITIVE TUNING
US6204826B1 (en) 1999-07-22 2001-03-20 Ericsson Inc. Flat dual frequency band antennas for wireless communicators
US6198442B1 (en) 1999-07-22 2001-03-06 Ericsson Inc. Multiple frequency band branch antennas for wireless communicators
WO2001008257A1 (en) 1999-07-23 2001-02-01 Avantego Ab Antenna arrangement
WO2001009976A1 (de) 1999-07-29 2001-02-08 Siemens Aktiengesellschaft Funkgerät mit einem gehäuse, in das eine hohlform zur aufnahme eines antennenelements integriert ist
FR2797352B1 (fr) 1999-08-05 2007-04-20 Cit Alcatel Antenne a empilement de structures resonantes et dispositif de radiocommunication multifrequence incluant cette antenne
SE514515C2 (sv) 1999-08-11 2001-03-05 Allgon Ab Kompakt multibandantenn
US6300914B1 (en) * 1999-08-12 2001-10-09 Apti, Inc. Fractal loop antenna
DE19938643A1 (de) 1999-08-14 2001-03-22 Bosch Gmbh Robert Innenraum-Antenne für die Kommunikation mit hohen Datenraten und mit änderbarer Antennencharakteristik
US6456249B1 (en) 1999-08-16 2002-09-24 Tyco Electronics Logistics A.G. Single or dual band parasitic antenna assembly
CN1378712A (zh) * 1999-08-18 2002-11-06 艾利森公司 一种双频段蝴蝶结/曲折天线
JP2001060822A (ja) * 1999-08-20 2001-03-06 Tdk Corp マイクロストリップアンテナ
SG90061A1 (en) 1999-08-24 2002-07-23 Univ Singapore A compact antenna for multiple frequency operation
FI112982B (fi) 1999-08-25 2004-02-13 Filtronic Lk Oy Tasoantennirakenne
WO2001017064A1 (en) 1999-08-27 2001-03-08 Antennas America, Inc. Compact planar inverted f antenna
US6408190B1 (en) 1999-09-01 2002-06-18 Telefonaktiebolaget Lm Ericsson (Publ) Semi built-in multi-band printed antenna
WO2001017061A1 (de) 1999-09-01 2001-03-08 Siemens Aktiengesellschaft Multiband-antenne
SE520290C2 (sv) 1999-09-06 2003-06-24 Smarteq Wireless Ab Elektriskt litet antennorgan
EP1139490B1 (en) 1999-09-09 2007-02-07 Murata Manufacturing Co., Ltd. Surface-mount antenna and communication device with surface-mount antenna
FI114587B (fi) 1999-09-10 2004-11-15 Filtronic Lk Oy Tasoantennirakenne
AU6863500A (en) 1999-09-10 2001-04-17 Galtronics Ltd. Broadband or multi-band planar antenna
US7072698B2 (en) 1999-09-13 2006-07-04 Skyworks Solutions, Inc. Directional antenna for hand-held wireless communications device
EA003712B1 (ru) * 1999-09-14 2003-08-28 Паратек Майкровэйв, Инк. Фазированные антенные решетки с последовательным возбуждением и диэлектрическими фазовращателями
CN100355148C (zh) * 1999-09-20 2007-12-12 弗拉克托斯股份有限公司 多级天线
GB2355114B (en) 1999-09-30 2004-03-24 Harada Ind Dual-band microstrip antenna
US6323811B1 (en) * 1999-09-30 2001-11-27 Murata Manufacturing Co., Ltd. Surface-mount antenna and communication device with surface-mount antenna
SE522522C2 (sv) 1999-10-04 2004-02-10 Smarteq Wireless Ab Antennorgan
ES2156832B1 (es) 1999-10-07 2002-03-01 Univ Valencia Politecnica Antena impresa de banda dual
GB2355116B (en) 1999-10-08 2003-10-08 Nokia Mobile Phones Ltd An antenna assembly and method of construction
AU3434201A (en) 1999-10-08 2001-05-08 Antennas America, Inc. Compact microstrip antenna for gps applications
AU7999500A (en) * 1999-10-12 2001-04-23 Arc Wireless Solutions, Inc. Compact dual narrow band microstrip antenna
WO2001029927A1 (de) 1999-10-15 2001-04-26 Siemens Aktiengesellschaft Schaltbare antenne
US6549169B1 (en) * 1999-10-18 2003-04-15 Matsushita Electric Industrial Co., Ltd. Antenna for mobile wireless communications and portable-type wireless apparatus using the same
FI112984B (fi) * 1999-10-20 2004-02-13 Filtronic Lk Oy Laitteen sisäinen antenni
ES2205898T3 (es) 1999-10-26 2004-05-01 Fractus, S.A. Agrupaciones multibanda de antenas entrelazadas.
FI114586B (fi) * 1999-11-01 2004-11-15 Filtronic Lk Oy Tasoantenni
FR2800920B1 (fr) * 1999-11-08 2006-07-21 Cit Alcatel Dispositif de transmission bi-bande et antenne pour ce dispositif
FR2801139B1 (fr) 1999-11-12 2001-12-21 France Telecom Antenne imprimee bi-bande
SE517564C2 (sv) 1999-11-17 2002-06-18 Allgon Ab Antennanordning för en bärbar radiokommunikationsanordning, bärbar radiokommunikationsanordning med sådan antennanordning och metod för att driva nämnda radiokommunikationsanordning
SE516474C2 (sv) 1999-11-19 2002-01-22 Allgon Ab Antennanordning och kommunikationsanordning innefattande en sådan antennanordning
SE515504C2 (sv) 1999-11-29 2001-08-20 Smarteq Wireless Ab Kapacitivt belastad antenn och ett antennaggregat
DE19958119A1 (de) 1999-12-02 2001-06-07 Siemens Ag Mobiles Kommunikationsendgerät
SE515832C2 (sv) * 1999-12-16 2001-10-15 Allgon Ab Slitsantennanordning
SE515595C2 (sv) 1999-12-23 2001-09-03 Allgon Ab Metod och ämne för tillverkning av en antennanordning
FI113911B (fi) * 1999-12-30 2004-06-30 Nokia Corp Menetelmä signaalin kytkemiseksi ja antennirakenne
US6496154B2 (en) * 2000-01-10 2002-12-17 Charles M. Gyenes Frequency adjustable mobile antenna and method of making
DE60022096T2 (de) 2000-01-19 2006-06-01 Fractus, S.A. Raumfüllende miniaturantenne
SE516106C2 (sv) * 2000-01-31 2001-11-19 Allgon Ab En antennanordning och en metod för tillverkning av en antennanordning
US6218992B1 (en) * 2000-02-24 2001-04-17 Ericsson Inc. Compact, broadband inverted-F antennas with conductive elements and wireless communicators incorporating same
SE516293C2 (sv) 2000-03-02 2001-12-17 Allgon Ab En bredbandig, intern antennanordning för multipla band och en bärbar radiokommunikationsanordning innefattande en sådan antennanordning.
TW591978B (en) 2000-03-15 2004-06-11 Matsushita Electric Ind Co Ltd Laminated electronic components
RU2170478C1 (ru) 2000-03-29 2001-07-10 Крапивин Владимир Леонтьевич Многодиапазонная петлевая зигзагообразная антенна
US6329951B1 (en) 2000-04-05 2001-12-11 Research In Motion Limited Electrically connected multi-feed antenna system
US6329954B1 (en) 2000-04-14 2001-12-11 Receptec L.L.C. Dual-antenna system for single-frequency band
WO2001080354A1 (en) * 2000-04-14 2001-10-25 Rangestar Wireless, Inc. Compact dual frequency antenna with multiple polarization
JP3430119B2 (ja) 2000-04-17 2003-07-28 埼玉日本電気株式会社 携帯電話装置
KR100349422B1 (ko) 2000-04-17 2002-08-22 (주) 코산아이엔티 마이크로스트립 안테나
ATE378700T1 (de) 2000-04-19 2007-11-15 Advanced Automotive Antennas S Fortschrittliche mehrebenenantenne fuer kraftfahrzeuge
GB2361584A (en) 2000-04-19 2001-10-24 Motorola Israel Ltd Multi-band antenna and switch system
US6452549B1 (en) * 2000-05-02 2002-09-17 Bae Systems Information And Electronic Systems Integration Inc Stacked, multi-band look-through antenna
DE10021880A1 (de) 2000-05-05 2001-11-08 Bolta Werke Gmbh Mobiltelefon mit einer Flachantenne
FI112724B (fi) * 2000-05-12 2003-12-31 Nokia Corp Symmetrinen antennirakenne ja menetelmä sen valmistamiseksi sekä antennirakennetta soveltava laajennuskortti
FR2808929B1 (fr) * 2000-05-15 2002-07-19 Valeo Electronique Antenne pour vehicule automobile
AU5899201A (en) 2000-05-15 2001-11-26 Avantego Ab Antenna arrangement
US6480158B2 (en) 2000-05-31 2002-11-12 Bae Systems Information And Electronic Systems Integration Inc. Narrow-band, crossed-element, offset-tuned dual band, dual mode meander line loaded antenna
WO2002001668A2 (en) 2000-06-28 2002-01-03 The Penn State Research Foundation Miniaturized conformal wideband fractal antennas on high dielectric substrates and chiral layers
US6466176B1 (en) 2000-07-11 2002-10-15 In4Tel Ltd. Internal antennas for mobile communication devices
US6424315B1 (en) 2000-08-02 2002-07-23 Amkor Technology, Inc. Semiconductor chip having a radio-frequency identification transceiver
US6489925B2 (en) * 2000-08-22 2002-12-03 Skycross, Inc. Low profile, high gain frequency tunable variable impedance transmission line loaded antenna
KR100368939B1 (ko) 2000-10-05 2003-01-24 주식회사 에이스테크놀로지 높은 복사효율과 광대역 특성을 갖는 내장형 안테나와 그실장방법
DE10049845A1 (de) 2000-10-09 2002-04-11 Philips Corp Intellectual Pty Mehrband-Mikrowellenantenne
KR100856597B1 (ko) 2000-10-12 2008-09-03 후루까와덴끼고오교 가부시끼가이샤 소형안테나
WO2002058189A1 (en) * 2000-10-20 2002-07-25 Donnelly Corporation Exterior mirror with antenna
DE60028840T2 (de) 2000-10-26 2007-06-06 Advanced Automotive Antennas, S.L. Integrierte mehrdienst-kfz-antenne
JP4432254B2 (ja) 2000-11-20 2010-03-17 株式会社村田製作所 表面実装型アンテナ構造およびそれを備えた通信機
FR2819109A1 (fr) 2001-01-04 2002-07-05 Cit Alcatel Antenne multi-bandes pour appareils mobiles
US7167811B2 (en) 2001-05-24 2007-01-23 Test Advantage, Inc. Methods and apparatus for data analysis
DE10100812B4 (de) * 2001-01-10 2011-09-29 Heinz Lindenmeier Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie
US6367939B1 (en) * 2001-01-25 2002-04-09 Gentex Corporation Rearview mirror adapted for communication devices
DE60229503D1 (de) 2001-02-12 2008-12-04 Ethertronics Inc Magnetdipol- und abgeschirmte spiralflächenantennenstrukturen und -verfahren
DE10108859A1 (de) 2001-02-14 2003-05-22 Siemens Ag Antenne und Verfahren zu deren Herstellung
US20020109633A1 (en) * 2001-02-14 2002-08-15 Steven Ow Low cost microstrip antenna
GB0105440D0 (en) 2001-03-06 2001-04-25 Koninkl Philips Electronics Nv Antenna arrangement
WO2002078124A1 (en) 2001-03-22 2002-10-03 Telefonaktiebolaget L M Ericsson (Publ) Mobile communication device
US20040137950A1 (en) 2001-03-23 2004-07-15 Thomas Bolin Built-in, multi band, multi antenna system
JP4206644B2 (ja) * 2001-03-23 2009-01-14 チッソ株式会社 液晶組成物および液晶表示素子
SE518988C2 (sv) 2001-03-23 2002-12-17 Ericsson Telefon Ab L M Inbyggt multiband-, multiantennsystem och portabel kommunikationsenhet
US6466170B2 (en) 2001-03-28 2002-10-15 Motorola, Inc. Internal multi-band antennas for mobile communications
DE10119780A1 (de) 2001-04-23 2002-10-24 Siemens Ag Umschaltbare integrierte Mobilfunkantenne
WO2002089254A1 (de) 2001-04-27 2002-11-07 Lfk-Lenkflugkörpersysteme Gmbh Antennenelemente für einen flugkörper
US6407715B1 (en) 2001-05-04 2002-06-18 Acer Communications And Multimedia Inc. Dual frequency band antenna with folded structure and related method
US6429816B1 (en) 2001-05-04 2002-08-06 Harris Corporation Spatially orthogonal signal distribution and support architecture for multi-beam phased array antenna
US6815739B2 (en) 2001-05-18 2004-11-09 Corporation For National Research Initiatives Radio frequency microelectromechanical systems (MEMS) devices on low-temperature co-fired ceramic (LTCC) substrates
EP1263079B1 (en) * 2001-05-25 2004-07-14 Nokia Corporation Mobile phone antenna
FR2826185B1 (fr) 2001-06-18 2008-07-11 Centre Nat Rech Scient Antenne fil-plaque multifrequences
US6456243B1 (en) 2001-06-26 2002-09-24 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US6431712B1 (en) * 2001-07-27 2002-08-13 Gentex Corporation Automotive rearview mirror assembly including a helical antenna with a non-circular cross-section
DE10138265A1 (de) 2001-08-03 2003-07-03 Siemens Ag Antenne für funkbetriebene Kommunikationsendgeräte
US6552690B2 (en) * 2001-08-14 2003-04-22 Guardian Industries Corp. Vehicle windshield with fractal antenna(s)
RU2303843C2 (ru) 2001-09-13 2007-07-27 Фрактус, С.А. Многоуровневый и заполняющий пространство противовес для миниатюрных и многополосных антенн и антенное устройство
GB0122226D0 (en) 2001-09-13 2001-11-07 Koninl Philips Electronics Nv Wireless terminal
US6476769B1 (en) * 2001-09-19 2002-11-05 Nokia Corporation Internal multi-band antenna
CN100382385C (zh) * 2001-10-16 2008-04-16 弗拉克托斯股份有限公司 加载天线
ATE385054T1 (de) * 2001-10-16 2008-02-15 Fractus Sa Mehrfrequenz-mikrostreifen-patch-antenne mit parasitär gekoppelten elementen
KR100439723B1 (ko) 2001-11-06 2004-07-12 삼성전자주식회사 휴대용 컴퓨터
US6650294B2 (en) * 2001-11-26 2003-11-18 Telefonaktiebolaget Lm Ericsson (Publ) Compact broadband antenna
ES2190749B1 (es) 2001-11-30 2004-06-16 Fractus, S.A Dispersores "chaff" multinivel y/o "space-filling", contra radar.
US6710744B2 (en) 2001-12-28 2004-03-23 Zarlink Semiconductor (U.S.) Inc. Integrated circuit fractal antenna in a hearing aid device
DE10204079A1 (de) 2002-02-01 2003-08-21 Imst Gmbh Mehrbandantenne mit parasitären Strahlern
US6919853B2 (en) 2002-03-04 2005-07-19 M/A-Com, Inc. Multi-band antenna using an electrically short cavity reflector
FR2837339B1 (fr) 2002-03-15 2005-10-28 France Telecom Terminal portable de telecommunication
US6812893B2 (en) * 2002-04-10 2004-11-02 Northrop Grumman Corporation Horizontally polarized endfire array
US6943730B2 (en) * 2002-04-25 2005-09-13 Ethertronics Inc. Low-profile, multi-frequency, multi-band, capacitively loaded magnetic dipole antenna
US6639560B1 (en) * 2002-04-29 2003-10-28 Centurion Wireless Technologies, Inc. Single feed tri-band PIFA with parasitic element
EP1378961A3 (en) 2002-07-04 2005-07-13 Antenna Tech, Inc. Multi-band helical antenna on multilayer substrate
WO2004010531A1 (en) * 2002-07-15 2004-01-29 Fractus, S.A. Notched-fed antenna
FI119667B (fi) 2002-08-30 2009-01-30 Pulse Finland Oy Säädettävä tasoantenni
FI114836B (fi) 2002-09-19 2004-12-31 Filtronic Lk Oy Sisäinen antenni
ATE347181T1 (de) 2002-10-22 2006-12-15 Sony Ericsson Mobile Comm Ab Mehrband-antennenanordnung für funkkommunikationsgerät
JP2006505973A (ja) * 2002-11-07 2006-02-16 フラクタス・ソシエダッド・アノニマ 微小アンテナを含む集積回路パッケージ
US6727855B1 (en) * 2002-11-21 2004-04-27 The United States Of America As Represented By The Secretary Of The Army Folded multilayer electrically small microstrip antenna
EP1424747B1 (en) 2002-11-26 2006-08-09 Sony Ericsson Mobile Communications AB Antenna for portable communication device equipped with a hinge
JP2004328703A (ja) 2002-11-27 2004-11-18 Taiyo Yuden Co Ltd アンテナ
FI113586B (fi) * 2003-01-15 2004-05-14 Filtronic Lk Oy Sisäinen monikaista-antenni
EP1443595A1 (en) 2003-01-17 2004-08-04 Sony Ericsson Mobile Communications AB Antenna
FI115261B (fi) 2003-02-27 2005-03-31 Filtronic Lk Oy Monikaistainen tasoantenni
JP2004304443A (ja) 2003-03-31 2004-10-28 Clarion Co Ltd アンテナ
US6870506B2 (en) * 2003-06-04 2005-03-22 Auden Techno Corp. Multi-frequency antenna with single layer and feeding point
JP2005086335A (ja) * 2003-09-05 2005-03-31 Alps Electric Co Ltd デュアルバンドアンテナおよびその共振周波数調整方法
FI120606B (fi) * 2003-10-20 2009-12-15 Pulse Finland Oy Sisäinen monikaista-antenni
JP4239848B2 (ja) 2004-02-16 2009-03-18 富士ゼロックス株式会社 マイクロ波用アンテナおよびその製造方法
US7088294B2 (en) * 2004-06-02 2006-08-08 Research In Motion Limited Mobile wireless communications device comprising a top-mounted auxiliary input/output device and a bottom-mounted antenna
US20060001576A1 (en) * 2004-06-30 2006-01-05 Ethertronics, Inc. Compact, multi-element volume reuse antenna
US7388549B2 (en) * 2004-07-28 2008-06-17 Kuo Ching Chiang Multi-band antenna
US7345634B2 (en) * 2004-08-20 2008-03-18 Kyocera Corporation Planar inverted “F” antenna and method of tuning same
US7102577B2 (en) 2004-09-30 2006-09-05 Motorola, Inc. Multi-antenna handheld wireless communication device
US7119748B2 (en) * 2004-12-31 2006-10-10 Nokia Corporation Internal multi-band antenna with planar strip elements
JP4521724B2 (ja) 2005-01-20 2010-08-11 ソニー・エリクソン・モバイルコミュニケーションズ株式会社 アンテナ装置及びこのアンテナ装置を備えた携帯端末装置
TWI247452B (en) 2005-01-21 2006-01-11 Wistron Neweb Corp Multi-band antenna and design method of multi-band antenna
TWI260817B (en) * 2005-05-05 2006-08-21 Ind Tech Res Inst Wireless apparatus capable to control radiation patterns of antenna
WO2007039071A2 (en) * 2005-09-19 2007-04-12 Fractus, S.A. Antenna set, portable wireless device, and use of a conductive element for tuning the ground-plane of the antenna set
TWI258891B (en) * 2005-09-22 2006-07-21 Ind Tech Res Inst Mobile phone antenna
US8369950B2 (en) * 2005-10-28 2013-02-05 Cardiac Pacemakers, Inc. Implantable medical device with fractal antenna
US7498987B2 (en) * 2005-12-20 2009-03-03 Motorola, Inc. Electrically small low profile switched multiband antenna
US7265724B1 (en) 2006-03-28 2007-09-04 Motorola Inc. Communications assembly and antenna assembly with a switched tuning line
US7663556B2 (en) 2006-04-03 2010-02-16 Ethertronics, Inc. Antenna configured for low frequency application
US7403159B2 (en) * 2006-05-08 2008-07-22 Dmitry Gooshchin Microstrip antenna having a hexagonal patch and a method of radiating electromagnetic energy over a wide predetermined frequency range
AU2007280012B2 (en) 2006-07-31 2013-01-31 T.A.G. Medical Devices - Agriculture Cooperative Ltd. Arthroscopic bone transplanting procedure, and medical instruments useful therein
KR101112635B1 (ko) * 2006-11-23 2012-02-15 엘지전자 주식회사 안테나 및 이를 포함하는 이동통신 단말기
JP5007109B2 (ja) 2006-12-04 2012-08-22 本田技研工業株式会社 傾斜角検出器の自動補正装置、及びこれを用いた車両
US8355884B2 (en) 2007-01-05 2013-01-15 Nec Corporation Signal quality measurement device, spectrum measurement circuit, and program
TW200843209A (en) * 2007-04-20 2008-11-01 Advanced Connectek Inc Wideband antenna
US7619569B2 (en) * 2007-08-14 2009-11-17 Cheng Uei Precision Industry Co., Ltd. Multi-band antenna
US7911014B2 (en) 2007-09-29 2011-03-22 My The Doan On chip antenna and method of manufacturing the same
EP2198481B1 (en) * 2007-10-08 2016-06-29 Tyco Fire & Security GmbH Rfid patch antenna with coplanar reference ground and floating grounds
JP5267916B2 (ja) 2008-06-30 2013-08-21 株式会社リコー 画像形成装置および画像濃度制御方法
JP5308223B2 (ja) 2009-04-24 2013-10-09 大王製紙株式会社 塗工紙
US8072389B2 (en) * 2009-06-11 2011-12-06 Pao-Sui Chang Integrated multi-band antenna module
JP5147806B2 (ja) 2009-09-29 2013-02-20 京セラドキュメントソリューションズ株式会社 画像読取装置及び画像形成装置
TWM386609U (en) * 2010-01-15 2010-08-11 Hon Hai Prec Ind Co Ltd Multi-band antenna
CN103619344B (zh) 2011-05-16 2017-09-12 维特食品加工有限公司 膳食补充剂
JP6252629B2 (ja) 2016-06-13 2017-12-27 凸版印刷株式会社 シュリンクフィルム付台紙およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4907011A (en) * 1987-12-14 1990-03-06 Gte Government Systems Corporation Foreshortened dipole antenna with triangular radiating elements and tapered coaxial feedline
ES2112163A1 (es) * 1995-05-19 1998-03-16 Univ Catalunya Politecnica Antenas fractales o multifractales.
WO1997006578A1 (en) * 1995-08-09 1997-02-20 Fractal Antenna Systems, Inc. Fractal antennas, resonators and loading elements

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOHFELD R.G. AND COHEN N.: "Self-similarity and the geometric requirements for frequency independence in antennae", WORD SCIENTIFIC, FRACTALS, vol. 7, no. 1, March 1999 (1999-03-01), pages 79 - 84 *
JAGGARD D.L.: "Fractal electrodynamics and modeling. Directions in electromagnetic wave modeling", PROCEEDINGS OF THE INTERNATIONAL CONFERENCE. BERTONI & FELSEN, 1991, NEW YORK, USA, pages 435 - 446 *

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941541B2 (en) 1999-09-20 2015-01-27 Fractus, S.A. Multilevel antennae
US8976069B2 (en) 1999-09-20 2015-03-10 Fractus, S.A. Multilevel antennae
US9000985B2 (en) 1999-09-20 2015-04-07 Fractus, S.A. Multilevel antennae
US9054421B2 (en) 1999-09-20 2015-06-09 Fractus, S.A. Multilevel antennae
US9240632B2 (en) 1999-09-20 2016-01-19 Fractus, S.A. Multilevel antennae
US9362617B2 (en) 1999-09-20 2016-06-07 Fractus, S.A. Multilevel antennae
US9761934B2 (en) 1999-09-20 2017-09-12 Fractus, S.A. Multilevel antennae
US10056682B2 (en) 1999-09-20 2018-08-21 Fractus, S.A. Multilevel antennae
WO2001031747A1 (es) 1999-10-26 2001-05-03 Fractus, S.A. Agrupaciones multibanda de antenas entrelazadas
US8896493B2 (en) 1999-10-26 2014-11-25 Fractus, S.A. Interlaced multiband antenna arrays
US9905940B2 (en) 1999-10-26 2018-02-27 Fractus, S.A. Interlaced multiband antenna arrays
US10355346B2 (en) 2000-01-19 2019-07-16 Fractus, S.A. Space-filling miniature antennas
US9331382B2 (en) 2000-01-19 2016-05-03 Fractus, S.A. Space-filling miniature antennas
WO2002084790A1 (en) * 2001-04-16 2002-10-24 Fractus, S.A. Dual-band dual-polarized antenna array
US6552690B2 (en) 2001-08-14 2003-04-22 Guardian Industries Corp. Vehicle windshield with fractal antenna(s)
DE10142965A1 (de) * 2001-09-01 2003-03-20 Opel Adam Ag Antenne mit einer fraktalen Struktur
US7688276B2 (en) 2001-09-13 2010-03-30 Fractus, S.A. Multilevel and space-filling ground-planes for miniature and multiband antennas
US8581785B2 (en) 2001-09-13 2013-11-12 Fractus, S.A. Multilevel and space-filling ground-planes for miniature and multiband antennas
US7911394B2 (en) 2001-09-13 2011-03-22 Fractus, S.A. Multilevel and space-filling ground-planes for miniature and multiband antennas
US7362283B2 (en) 2001-09-13 2008-04-22 Fractus, S.A. Multilevel and space-filling ground-planes for miniature and multiband antennas
EP1942551A1 (en) 2001-10-16 2008-07-09 Fractus, S.A. Multiband antenna
EP1732162A1 (en) 2001-10-16 2006-12-13 Fractus, S.A. Loaded antenna
CN100382385C (zh) * 2001-10-16 2008-04-16 弗拉克托斯股份有限公司 加载天线
WO2003034545A1 (en) * 2001-10-16 2003-04-24 Fractus, S.A. Multifrequency microstrip patch antenna with parasitic coupled elements
EP2264829A1 (en) 2001-10-16 2010-12-22 Fractus, S.A. Loaded antenna
WO2003034538A1 (en) * 2001-10-16 2003-04-24 Fractus, S.A. Loaded antenna
US9755314B2 (en) 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
ES2190749A1 (es) * 2001-11-30 2003-08-01 Fractus Sa Dispersores "chaff" multinivel y/o "space-filling", contra radar
US7222798B2 (en) 2001-12-10 2007-05-29 Fractus, S.A. Contactless identification device
US7520440B2 (en) 2001-12-10 2009-04-21 Fractus, S.A. Contactless identification device
US7793849B2 (en) 2001-12-10 2010-09-14 Juan Ignacio Ortigosa Vallejo Contactless identification device
EP1361624A1 (de) * 2002-05-10 2003-11-12 Hirschmann Electronics GmbH & Co. KG Vieleckige Antenne
KR20030092597A (ko) * 2002-05-30 2003-12-06 주식회사 아미위성방송 위성 라디오 방송 수신용 안테나
US7903037B2 (en) 2002-06-25 2011-03-08 Fractus, S.A. Multiband antenna for handheld terminal
US7486242B2 (en) 2002-06-25 2009-02-03 Fractus, S.A. Multiband antenna for handheld terminal
EP2056398A1 (en) 2002-07-15 2009-05-06 Fractus, S.A. Antenna with one or more holes
US7907092B2 (en) 2002-07-15 2011-03-15 Fractus, S.A. Antenna with one or more holes
US7342553B2 (en) 2002-07-15 2008-03-11 Fractus, S. A. Notched-fed antenna
EP2237375A1 (en) 2002-07-15 2010-10-06 Fractus, S.A. Notched-fed antenna
EP1522122A1 (en) * 2002-07-15 2005-04-13 Fractus S.A. Notched-fed antenna
WO2004010532A1 (en) * 2002-07-15 2004-01-29 Fractus, S.A. Antenna with one or more holes
US7310065B2 (en) 2002-07-15 2007-12-18 Fractus, S.A. Undersampled microstrip array using multilevel and space-filling shaped elements
US7471246B2 (en) 2002-07-15 2008-12-30 Fractus, S.A. Antenna with one or more holes
WO2004010535A1 (en) * 2002-07-15 2004-01-29 Fractus, S.A. Undersampled microstrip array using multilevel and space-filling shaped elements
US10135138B2 (en) 2002-09-10 2018-11-20 Fractus, S.A. Coupled multiband antennas
US8994604B2 (en) 2002-09-10 2015-03-31 Fractus, S.A. Coupled multiband antennas
US10734723B2 (en) 2002-09-10 2020-08-04 Fractus, S. A. Couple multiband antennas
EP2230723A1 (en) 2002-09-10 2010-09-22 Fractus, S.A. Coupled multiband antennas
US10468770B2 (en) 2002-09-10 2019-11-05 Fractus, S.A. Coupled multiband antennas
US7315289B2 (en) 2002-09-10 2008-01-01 Fractus, S.A. Coupled multiband antennas
US10320079B2 (en) 2002-11-07 2019-06-11 Fractus, S.A. Integrated circuit package including miniature antenna
US7791539B2 (en) 2002-11-07 2010-09-07 Fractus, S.A. Radio-frequency system in package including antenna
US8203488B2 (en) 2002-11-07 2012-06-19 Fractus, S.A. Integrated circuit package including miniature antenna
US10056691B2 (en) 2002-11-07 2018-08-21 Fractus, S.A. Integrated circuit package including miniature antenna
US9077073B2 (en) 2002-11-07 2015-07-07 Fractus, S.A. Integrated circuit package including miniature antenna
US7463199B2 (en) 2002-11-07 2008-12-09 Fractus, S.A. Integrated circuit package including miniature antenna
US9761948B2 (en) 2002-11-07 2017-09-12 Fractus, S.A. Integrated circuit package including miniature antenna
US10644405B2 (en) 2002-11-07 2020-05-05 Fractus, S.A. Integrated circuit package including miniature antenna
WO2005027611A1 (ja) * 2003-09-08 2005-03-24 Juridical Foundation Osaka Industrial Promotion Organization フラクタル構造体、フラクタル構造集合体およびそれらの製造方法ならびに用途
US7688279B2 (en) 2003-09-08 2010-03-30 Juridical Foundation Osaka Industrial Promotion Organization Fractal structure, super structure of fractal structures, method for manufacturing the same and applications
US7456792B2 (en) 2004-02-26 2008-11-25 Fractus, S.A. Handset with electromagnetic bra
US8330259B2 (en) 2004-07-23 2012-12-11 Fractus, S.A. Antenna in package with reduced electromagnetic interaction with on chip elements
US7928915B2 (en) 2004-09-21 2011-04-19 Fractus, S.A. Multilevel ground-plane for a mobile device
US7924226B2 (en) 2004-09-27 2011-04-12 Fractus, S.A. Tunable antenna
US7932863B2 (en) 2004-12-30 2011-04-26 Fractus, S.A. Shaped ground plane for radio apparatus
US8593360B2 (en) 2005-03-15 2013-11-26 Fractus, S.A. Slotted ground-plane used as a slot antenna or used for a PIFA antenna
US7872605B2 (en) 2005-03-15 2011-01-18 Fractus, S.A. Slotted ground-plane used as a slot antenna or used for a PIFA antenna
US8111199B2 (en) 2005-03-15 2012-02-07 Fractus, S.A. Slotted ground-plane used as a slot antenna or used for a PIFA antenna
US8738103B2 (en) 2006-07-18 2014-05-27 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US9899727B2 (en) 2006-07-18 2018-02-20 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US11031677B2 (en) 2006-07-18 2021-06-08 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US9099773B2 (en) 2006-07-18 2015-08-04 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US10644380B2 (en) 2006-07-18 2020-05-05 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US11735810B2 (en) 2006-07-18 2023-08-22 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US11349200B2 (en) 2006-07-18 2022-05-31 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
RU2448395C1 (ru) * 2010-12-22 2012-04-20 Государственное образовательное учреждение высшего профессионального образования "Военная академия связи имени С.М. Буденного" Министерства обороны Российской Федерации Конический несимметричный вибратор
RU2465696C1 (ru) * 2011-09-13 2012-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Мурманский государственный технический университет" (ФГБОУ ВПО "МГТУ") Вибратор горизонтальный укороченный повышенной диапазонности
US10008762B2 (en) 2016-01-22 2018-06-26 Fractus Antennas, S.L. Wireless device including optimized antenna system on metal frame
US10879587B2 (en) 2016-02-16 2020-12-29 Fractus Antennas, S.L. Wireless device including a metal frame antenna system based on multiple arms
EP3285333A1 (en) 2016-08-16 2018-02-21 Institut Mines Telecom / Telecom Bretagne Configurable multiband antenna arrangement and design method thereof
US10879612B2 (en) 2016-08-16 2020-12-29 Institut Mines-Telecom/Telecom Bretagne Configurable multiband antenna arrangement and design method thereof
EP3340379A1 (en) 2016-12-22 2018-06-27 Institut Mines Telecom / Telecom Bretagne Configurable multiband antenna arrangement with wideband capacity and design method thereof
US10734729B2 (en) 2016-12-22 2020-08-04 Institut Mines-Telecom/Telecom Bretagne Configurable multiband antenna arrangement with wideband capacity and design method thereof
WO2019121512A1 (en) 2017-12-19 2019-06-27 Institut Mines Telecom - Imt Atlantique - Bretagne - Pays De La Loire Configurable multiband wire antenna arrangement and design method thereof
US11329380B2 (en) 2017-12-19 2022-05-10 Institut Mines Telecom—Imt Atlantique—Bretagne—Pays De La Loire Configurable multiband wire antenna arrangement and design method thereof
EP3503293A1 (en) 2017-12-19 2019-06-26 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Configurable multiband wire antenna arrangement and design method thereof
WO2019121553A1 (en) 2017-12-22 2019-06-27 Institut Mines Telecom - Imt Atlantique - Bretagne - Pays De La Loire Configurable multiband antenna arrangement with a multielement structure and design method thereof
EP3503294A1 (en) 2017-12-22 2019-06-26 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Configurable multiband antenna arrangement with a multielement structure and design method thereof
WO2020007718A1 (en) 2018-07-06 2020-01-09 Institut Mines Telecom - Imt Atlantique - Bretagne - Pays De La Loire Multiband antenna arrangement built to a specification from a library of basic elements
EP3591761A1 (en) 2018-07-06 2020-01-08 Institut Mines Telecom - IMT Atlantique - Bretagne - Pays de la Loire Multiband antenna arrangement built to a specification from a library of basic elements
US11355848B2 (en) 2018-07-06 2022-06-07 Institut Mines Telecom—Imt Atlantique—Bretagne—Pays De La Loire Multiband antenna arrangement built to a specification from a library of basic elements
CN111883908B (zh) * 2020-08-04 2021-01-19 西安电子科技大学 一种超短波机翼共形垂直极化全向天线
CN111883908A (zh) * 2020-08-04 2020-11-03 西安电子科技大学 一种超短波机翼共形垂直极化全向天线

Also Published As

Publication number Publication date
US20070194992A1 (en) 2007-08-23
US20120154244A1 (en) 2012-06-21
US9000985B2 (en) 2015-04-07
US8941541B2 (en) 2015-01-27
US20130194153A1 (en) 2013-08-01
CN1379921A (zh) 2002-11-13
US9054421B2 (en) 2015-06-09
EP1223637A1 (en) 2002-07-17
US20110163923A1 (en) 2011-07-07
US20170358853A1 (en) 2017-12-14
JP4012733B2 (ja) 2007-11-21
MXPA02003084A (es) 2003-08-20
AU5984099A (en) 2001-04-24
US20150349413A1 (en) 2015-12-03
US7397431B2 (en) 2008-07-08
US20110175777A1 (en) 2011-07-21
US9240632B2 (en) 2016-01-19
US8154463B2 (en) 2012-04-10
ES2241378T3 (es) 2005-10-16
US7015868B2 (en) 2006-03-21
US7505007B2 (en) 2009-03-17
US7394432B2 (en) 2008-07-01
US20090167625A1 (en) 2009-07-02
BR9917493B1 (pt) 2012-09-18
EP1526604A1 (en) 2005-04-27
CN101188325B (zh) 2013-06-05
US7123208B2 (en) 2006-10-17
US7528782B2 (en) 2009-05-05
US20130194154A1 (en) 2013-08-01
DE69924535T2 (de) 2006-02-16
BR9917493A (pt) 2002-07-16
DE29925006U1 (de) 2008-04-03
CN101188325A (zh) 2008-05-28
US20130285859A1 (en) 2013-10-31
US20060290573A1 (en) 2006-12-28
US20050259009A1 (en) 2005-11-24
DE69924535D1 (de) 2005-05-04
US20180323500A1 (en) 2018-11-08
US20050110688A1 (en) 2005-05-26
US20130057450A1 (en) 2013-03-07
CN100355148C (zh) 2007-12-12
US8009111B2 (en) 2011-08-30
US20080042909A1 (en) 2008-02-21
US8330659B2 (en) 2012-12-11
US9761934B2 (en) 2017-09-12
US20130187827A1 (en) 2013-07-25
EP2083475A1 (en) 2009-07-29
US20130194152A1 (en) 2013-08-01
EP1223637B1 (en) 2005-03-30
US20160240914A1 (en) 2016-08-18
ATE292329T1 (de) 2005-04-15
US8976069B2 (en) 2015-03-10
US8154462B2 (en) 2012-04-10
US20020140615A1 (en) 2002-10-03
US9362617B2 (en) 2016-06-07
US10056682B2 (en) 2018-08-21
JP2003510871A (ja) 2003-03-18
US20070279289A1 (en) 2007-12-06

Similar Documents

Publication Publication Date Title
ES2241378T3 (es) Antenas multinivel.
JP4195070B2 (ja) マルチレベルアンテナ
EP2273610A1 (en) Multilevel antennae

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10102568

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2001 525799

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/003084

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1999974041

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/480/KOL

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 998169609

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2002 2002110442

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1999974041

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1999974041

Country of ref document: EP