WO2001023899A1 - Device for measuring current comprising differential sensors which are sensitive to magnetic fields and which are comprised of at least two hall sensors - Google Patents

Device for measuring current comprising differential sensors which are sensitive to magnetic fields and which are comprised of at least two hall sensors Download PDF

Info

Publication number
WO2001023899A1
WO2001023899A1 PCT/EP2000/007607 EP0007607W WO0123899A1 WO 2001023899 A1 WO2001023899 A1 WO 2001023899A1 EP 0007607 W EP0007607 W EP 0007607W WO 0123899 A1 WO0123899 A1 WO 0123899A1
Authority
WO
WIPO (PCT)
Prior art keywords
hall sensors
current
hall
conductor
sensors
Prior art date
Application number
PCT/EP2000/007607
Other languages
German (de)
French (fr)
Inventor
Reinhard Seyer
Roland Fischer
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to JP2001527232A priority Critical patent/JP2003510612A/en
Priority to EP00951479A priority patent/EP1218759A1/en
Publication of WO2001023899A1 publication Critical patent/WO2001023899A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices

Definitions

  • the invention relates to a device for current measurement according to the features of the independent claim.
  • a device for measuring current using Hall sensors is described in the subsequently published DE 198 21 492 AI.
  • This applicant's patent application describes a Hall sensor arrangement for the contactless measurement of a current flowing in a conductor which is punched out of a printed circuit board with at least one Hall sensor and with a conductor which has a plurality of conductor sections with partially different orientations, the conductor sections of the Hall sensor at least Surround 3 sides in a U-shape so that the magnetic fields of the individual conductor sections overlap at the location of the Hall sensor.
  • a difference sensor is already known from the generic script, which is used together with a specially designed stamping plate.
  • the printed circuit board used in the generic script for the differential sensor has the disadvantage that not all conductor sections are traversed by the same current.
  • the arrangement of the differential sensor transversely to the main current direction has the disadvantage that the two Hall sensors, which form the differential sensor, measure different magnetic fields if further current-carrying conductors are arranged parallel to the printed circuit board.
  • the arrangement described above with a differential sensor is therefore unsuitable for use in lead frames with several parallel current-carrying branches.
  • a generic device for inductive current measurement with at least one differential sensor (1) each of which consists of at least two Hall sensors (3) integrated on a substrate (4) and at least one specially shaped printed circuit board (2), in each of the recesses (6) of which the two Hall sensors (3) on both sides of a conductor bridge (5) are known from US 5,041,780.
  • the device according to the invention differs from the generic device by the combination of a differential sensor and printed circuit boards specially designed for the differential sensor, which are provided with additional current-carrying slots, and by the arrangement of the differential sensor in the main current direction.
  • the differential sensor in the main current direction, preferably by aligning the two Hall sensors on the imaginary center line of the conductor plate, it is achieved that the magnetic field of a parallel neighboring conductor has no difference at the location of the two Hall sensors, and consequently because the Hall sensors are connected as differential sensors, is not measured.
  • a device for inductive current measurement is known from US Pat. No. 4,894,610, in which, in one exemplary embodiment, an S-shaped current path is formed which flows around the current sensors, the current sensors being located on an imaginary line in the longitudinal direction parallel to the main current direction. Induction coils are used as current sensors.
  • the conductor track is folded onto each other in two layers.
  • the invention differs from US Pat. No. 4,894,610 by the use of Hall sensors, by the arrangement of the Hall sensors on a single-layer, specially shaped conductor and by the additional current guiding slots which support the formation of an S-shaped current path.
  • the object of the invention is therefore to improve a device for inductive current measurement by means of Hall sensors.
  • a device for current measurement consists of a differential sensor and a specially shaped printed circuit board.
  • the difference sensor consists of at least two Hall sensors integrated on a substrate, preferably on a chip, which are arranged at a distance of, for example, 1 to 3 mm from one another.
  • the Hall sensors are switched such that the difference between the two individual Hall voltages is formed and measured.
  • the special arrangement of the Hall sensors on the conductor plates is selected such that the Hall sensors are penetrated by magnetic fields oriented in opposite directions.
  • the difference sensor is arranged on the conductor plate in the longitudinal direction parallel to the main current direction, ie the two Hall sensors are preferably arranged on an imaginary line, preferably the center line, in the longitudinal direction of the conductor plate.
  • the inventive combination of a differential sensor with a specially designed printed circuit board creates a device that measures the difference between two approximately equal Hall voltages with opposite signs.
  • voltage components that have no difference at the location of the difference sensor such as the earth's magnetic field or offset components of the Hall sensors, not measured.
  • the usable measurement signal is amplified by a factor of 2.
  • a particularly advantageous embodiment of the invention is the formation of lead frames with a plurality of parallel current-carrying branches.
  • a differential sensor in the orientation according to the invention is attached to each branch of the lead frame.
  • Such lead frames are particularly suitable as battery leads or current distributors in motor vehicles.
  • the differential sensors enable the potential-free measurement of the current strength and can thus be used for current monitoring in the individual lines leading away from the motor vehicle battery.
  • the conductor plates are designed with current-carrying slots. The current-carrying slots cause a targeted current flow in the printed circuit board, which ensures that a large part of the current flowing through the conductor flows closer to the sensor and contributes to increasing the measurement signal.
  • FIG. 1 shows a printed circuit board with recesses in which Hall sensors are arranged.
  • Fig. 2 is a plan view of the conductor plate shown in Fig. 1
  • Fig. 3 shows an embodiment of the invention with current guiding slots in the printed circuit board
  • FIG. 4 shows an advantageous embodiment of the invention as a lead frame with a plurality of parallel branches, particularly suitable for battery discharge
  • Fig.l shows sections of a schematic three-dimensional exploded view to explain the invention.
  • a difference sensor 1 is joined with an electrical conductor 2, which is preferably punched out of a stamped sheet.
  • the difference sensor is formed in a manner known per se from two Hall plates 3, which are arranged and connected on a substrate 4 or a chip 4.
  • the differential sensor is preferably manufactured monolithically and is commercially available in various configurations.
  • An evaluation unit is usually also integrated on the substrate, so that the measurement signal ⁇ UH can be read out directly by the sensor, for example in digital form.
  • the two Hall plates are attached, for example, at a distance of 1-10 mm from one another. The distance between the Hall plates depends on the dimensioning of the current bridge 5, the dimensioning of which in turn is based on the intended current that the conductor 2 is to carry.
  • the conductor has slot-shaped, elongated, rectangular-shaped recesses 01/23899
  • the dimensions of the recesses are, for example, in the same order of magnitude as the dimensions of the current bridge 5.
  • the recesses 6 conduct the total current I in the conductor 2 on an S-shaped current path around the two Hall elements 3 of the differential sensor 1. This means that each of the Hall elements 3 becomes three Sides of the total current I, which is conducted in the conductor 2, so that the magnetic field portions of the individual conductor sections of the S-shaped current path overlap the Hall plates 3 at the location of the Hall plates.
  • the differential sensor 1 is arranged on the conductor 2 in the main current direction, symbolized by the current arrows 7.
  • the differential sensor 1 is arranged on the conductor 2 in such a way that the two Hall plates 3 are located on an imaginary common line, preferably the center line, in the longitudinal direction parallel to the main current direction 7. Furthermore, for the sake of completeness, a power supply of the two Hall plates with a current I const is shown schematically for the sake of completeness.
  • FIG. 2 shows a top view of the device shown in FIG. 1.
  • the conductor 2 is shown in supervision with the differential sensor attached from below.
  • the Hall plates 3 are arranged in the recesses 6 provided for this purpose and fastened to the conductor 2 with the aid of the substrate 4, so that the device according to the invention results.
  • Fig. 3 shows an embodiment of the invention with current guiding slots in the printed circuit board.
  • the embodiment shown in FIG. 3 differs from the section shown in FIG. 2 or FIG. 1 in that it has additional current-carrying slots 8, which, in a particularly advantageous manner, cause the formation of an S-shaped current path around the Hall plates 3.
  • the current guide slots are advantageously of a similar design and dimensioning to the recesses 6 and also protrude into the conductor 2 from one longitudinal side in an elongated and rectangular manner.
  • the current-carrying slots 8 are placed in such a way that, in cooperation with the recesses 6, a total of three current bridges 5 of the same strength and thickness are created.
  • the Lead frame 9 shows an advantageous embodiment of the invention as a lead frame with a plurality of parallel branches, particularly suitable as a battery drain in motor vehicles.
  • the Lead frame 9 is punched out of a printed circuit board and has a plurality of parallel current-carrying branches 10.1, 10.2, 10.3, 10.4, .., 10.n.
  • the number of branches depends on the number of consumer connections required.
  • the consumers and the main power connection can be connected via the connection lugs 11.
  • the individual branches 10.1,10.2,10.3, 10.4, .., 10.n each consist of one of the devices shown in FIG. 1, FIG. 2 or FIG. 3.
  • the individual branches can be designed for different consumers with different power requirements.
  • branch 10.1 is dimensioned larger than branch l.o.n, which in turn is larger than branches 10.2, 10.3 and 10.4.
  • Each individual branch contains a differential sensor with two Hall plates 3 each.
  • the lead frame is particularly suitable as a fuse element for supplementing or as a complete replacement of the known fuse arrangements in the main fuse box.

Abstract

An inventive device for measuring current consists of a differential sensor and of a specially shaped conductor plate. The differential sensor is comprised of at least two Hall sensors which are integrated on a substrate, preferably on a chip, and which are interspaced with a distance of, for example, 1 to 3 mm. The Hall sensors are connected in such a manner that the difference between both individual Hall voltages is formed and measured. The special arrangement of the Hall sensors on the conductor plates is selected such that the Hall sensors are permeated by magnetic fields oriented in opposite directions. The differential sensor is arranged on the conductor plate in a longitudinal direction running parallel to the main current direction, i.e. both Hall sensors are preferably arranged on an imaginary center line running in a longitudinal direction of the conductor plate.

Description

Vorrichtung zur Strommessung mit magnetfeldempfindlichen Differenzsensoren aus mindestens zwei Hallsensoren Device for current measurement with magnetic field sensitive differential sensors from at least two Hall sensors
Die Erfindung betrifft eine Vorrichtung zur Strommessung entsprechend den Merkmalen des unabhängigen Anspruchs.The invention relates to a device for current measurement according to the features of the independent claim.
Eine Vorrichtung zur Strommessung mittels Hallsensoren ist in der nachveröffentlichten DE 198 21 492 AI beschrieben. Diese Patentanmeldung der Anmelderin beschreibt eine Hallsensoranordnung zur berührungslosen Messung eines in einem Leiter, der aus einem Leiterblech ausgestanzt ist, durchfließenden Stromes mit mindestens einem Hallsensor und mit einem Leiter, der mehrere Leiterabschnitte mit zum Teil unterschiedlicher Orientierung aufweist, wobei die Leiterabschnitte den Hallsensor an mindestens 3 Seiten U-fÖrmig umgeben, so daß sich die Magnetfelder der einzelnen Leiterabschnitte am Ort des Hallsensors verstärkend überlagern. Zwar ist auch schon aus der gattungsbildenden Schrift ein Diffe- renzsensor bekannt, der zusammen mit einem speziell ausgebildeten Stanzblech eingesetzt wird. Das in der gattungsbildenden Schrift für den Differenzsensor verwendete Leiterblech hat jedoch den Nachteil, daß nicht alle Leiterabschnitte von dem gleichen Strom durchflössen werden. Weiterhin hat die Anordnung des Differenzsensors quer zur Hauptstromrichtung den Nachteil, daß die beiden Hallsensoren, die den Differenzsensor bilden unter- schiedliche Magnetfelder messen, wenn parallel neben dem Leiterblech weitere stromführende Leiter angeordnet sind. Die vorbeschriebene Anordnung mit Differenzsensor ist damit ungeeignet zur Verwendung in Stanzgittern mit mehreren parallelen stromführenden Zweigen.A device for measuring current using Hall sensors is described in the subsequently published DE 198 21 492 AI. This applicant's patent application describes a Hall sensor arrangement for the contactless measurement of a current flowing in a conductor which is punched out of a printed circuit board with at least one Hall sensor and with a conductor which has a plurality of conductor sections with partially different orientations, the conductor sections of the Hall sensor at least Surround 3 sides in a U-shape so that the magnetic fields of the individual conductor sections overlap at the location of the Hall sensor. A difference sensor is already known from the generic script, which is used together with a specially designed stamping plate. However, the printed circuit board used in the generic script for the differential sensor has the disadvantage that not all conductor sections are traversed by the same current. Furthermore, the arrangement of the differential sensor transversely to the main current direction has the disadvantage that the two Hall sensors, which form the differential sensor, measure different magnetic fields if further current-carrying conductors are arranged parallel to the printed circuit board. The arrangement described above with a differential sensor is therefore unsuitable for use in lead frames with several parallel current-carrying branches.
Eine gattungsbildende Vorrichtung zur induktiven Strommessung mit mindestens einem Differenzsensor (1), der jeweils aus mindestens zwei auf einem Substrat (4) integrierten Hallsensoren (3) besteht und mindestes einem speziell geformten Leiterblech (2), in dessen Ausnehmungen (6) jeweils die beiden Hallsensoren (3) beiderseitig einer Leiterbrücke (5) angeordnet sind, ist aus der US 5,041,780 bekannt. Von der gattungsbildenden Vorrichtung unterscheidet sich die erfindungsgemäße Vorrichtung durch die Kombination aus Differenzsensor und speziell für den Differenzsensor ausgebildeten Leiterplatten, die mit zusätzlichen Stromführungsschlitzen versehen sind, sowie durch die Anordnung des Differenzsensors in Hauptstromrichtung. Insbesondere durch die Ausrichtung des Differenzsensors in Hauptstromrichtung, vorzugsweise durch Ausrichtung der beiden Hallsensoren auf der gedachten Mittellinie des Leiterblechs, wird erreicht, daß das Magnetfeld eines parallelen Nachbarleiters am Ort der beiden Hallsensoren keine Differenz hat und folglich, da die Hallsensoren als Differenzsensoren geschaltet sind, nicht gemessen wird.A generic device for inductive current measurement with at least one differential sensor (1), each of which consists of at least two Hall sensors (3) integrated on a substrate (4) and at least one specially shaped printed circuit board (2), in each of the recesses (6) of which the two Hall sensors (3) on both sides of a conductor bridge (5) are known from US 5,041,780. The device according to the invention differs from the generic device by the combination of a differential sensor and printed circuit boards specially designed for the differential sensor, which are provided with additional current-carrying slots, and by the arrangement of the differential sensor in the main current direction. In particular, by aligning the differential sensor in the main current direction, preferably by aligning the two Hall sensors on the imaginary center line of the conductor plate, it is achieved that the magnetic field of a parallel neighboring conductor has no difference at the location of the two Hall sensors, and consequently because the Hall sensors are connected as differential sensors, is not measured.
Weiter ist aus der US 4,894,610 eine Vorrichtung zur induktiven Strommessung bekannt, bei der in einem Ausfuhrungsbeispiel ein S-förmiger Strompfad ausgebildet ist, der die Stromsensoren umfließt, wobei sich die Stromsensoren auf einer gedachten Linie in Längs- richtung parallel zur Hauptstromrichtung befinden. Als Stromsensoren kommen Induktionsspulen zum Einsatz. Die Leiterbahn ist doppelt-lagig aufeinander gefaltet.Furthermore, a device for inductive current measurement is known from US Pat. No. 4,894,610, in which, in one exemplary embodiment, an S-shaped current path is formed which flows around the current sensors, the current sensors being located on an imaginary line in the longitudinal direction parallel to the main current direction. Induction coils are used as current sensors. The conductor track is folded onto each other in two layers.
Von der US 4,894,610 unterscheidet sich die Erfindung durch die Verwendung von Hallsensoren, durch die Anordnung der Hallsensoren an einem einlagigen speziell geformten Leiter und durch die zusätzlichen Stromfuhrungsschlitze, die die Ausprägung eines S- formigen Strompfades unterstützen.The invention differs from US Pat. No. 4,894,610 by the use of Hall sensors, by the arrangement of the Hall sensors on a single-layer, specially shaped conductor and by the additional current guiding slots which support the formation of an S-shaped current path.
Erfindungsgemäße Aufgabe ist es daher, eine Vorrichtung zur induktiven Strommessung mittels Hallsensoren zu verbessern.The object of the invention is therefore to improve a device for inductive current measurement by means of Hall sensors.
Eine erfindungsgemäße Vorrichtung zur Strommessung besteht aus einem Differenzsensor und einem speziell geformten Leiterblech. Der Differenzsensor besteht aus mindestens zwei auf einem Substrat, vorzugsweise auf einem Chip, integrierten Hallsensoren, die in einem Abstand von beispielhafterweise 1 bis 3 mm voneinander angeordnet sind. Die Hallsensoren sind derart geschaltet, daß die Differenz der beiden einzelnen Hallspannungen gebildet und gemessen wird. Die spezielle Anordnung der Hallsensoren auf den Leiterblechen wird derart gewählt, daß die Hallsensoren von gegensinnig orientierten Magnetfeldern durchsetzt werden. Der Differenzsensor wird auf dem Leiterblech in Längsrichtung parallel zur Hauptstromrichtung angeordnet, d.h. die beiden Hallsensoren werden vorzugsweise auf einer gedachten Linie, vorzugsweise der Mittellinie, in Längsrichtung des Leiterblechs angeordnet.A device for current measurement according to the invention consists of a differential sensor and a specially shaped printed circuit board. The difference sensor consists of at least two Hall sensors integrated on a substrate, preferably on a chip, which are arranged at a distance of, for example, 1 to 3 mm from one another. The Hall sensors are switched such that the difference between the two individual Hall voltages is formed and measured. The special arrangement of the Hall sensors on the conductor plates is selected such that the Hall sensors are penetrated by magnetic fields oriented in opposite directions. The difference sensor is arranged on the conductor plate in the longitudinal direction parallel to the main current direction, ie the two Hall sensors are preferably arranged on an imaginary line, preferably the center line, in the longitudinal direction of the conductor plate.
Mit der Erfindung werden hauptsächlich die folgenden Vorteile erzielt:The main advantages of the invention are as follows:
Da die Hallsensoren Magnetfelder richtungsabhängig messen, d.h. bei entgegengesetzter Richtung des Magnetfeldes sich die Polarität der Hallspannung ändert, wird durch die erfindungsgemäße Kombination eines Differenzsensors mit einem speziell ausgestalteten Leiterblech eine Vorrichtung geschaffen, die die Differenz zweier etwa gleichgroßer Hallspannungen mit entgegengesetztem Vorzeichen mißt. Dadurch werden Spannungsanteile, die am Ort des Differenzsensors keine Differenz aufweisen, wie z.B. das Erdmagnetfeld oder Offsetanteile der Hallsensoren, nicht gemessen. Außerdem wird eine Verstärkung des nutzbaren Meßsignals um den Faktor 2 erreicht.Since the Hall sensors measure magnetic fields depending on the direction, i.e. in the opposite direction of the magnetic field, the polarity of the Hall voltage changes, the inventive combination of a differential sensor with a specially designed printed circuit board creates a device that measures the difference between two approximately equal Hall voltages with opposite signs. As a result, voltage components that have no difference at the location of the difference sensor, such as the earth's magnetic field or offset components of the Hall sensors, not measured. In addition, the usable measurement signal is amplified by a factor of 2.
Streufelder von benachbarten stromführenden Leiter, die in etwa parallel zum Leiterblech des Differenzsensors angeordnet sind, haben auf der Mittellinie in Längrichtung des Lei- terblechs keine Differenzanteile in ihrem Magnetfeld, werden also bei Anordnung des Differenzsensors längs der Hauptstromrichtung nicht erfaßt.Stray fields from adjacent current-carrying conductors, which are arranged approximately parallel to the conductor plate of the differential sensor, have no difference components in their magnetic field on the center line in the longitudinal direction of the conductor plate, and are therefore not detected when the differential sensor is arranged along the main current direction.
Deshalb ist eine besonders vorteilhafte Ausführungsform der Erfindung die Bildung von Stanzgittern mit mehreren parallelen stromführenden Zweigen. Auf jedem Zweig des Stanzgitters ist ein Differenzsensor in der erfindungsgemäßen Orientierung angebracht. Derartige Stanzgitter eignen sich besonders als Batterieableitungen bzw. Stromverteiler in Kraftfahrzeugen. Die Differenzsensoren ermöglichen die potentialfreie Messung der Stromstärke und können somit zur Stromüberwachung in den einzelnen von der Kraftfahrzeugbatterie abführenden Leitungen benutzt werden. Gemäß der Erfindung sind die Leiterbleche mit Stromführungsschlitzen ausgestaltet. Die Stromführungsschlitze bewirken eine gezielte Stromführung im Leiterblech, wodurch erreicht wird, daß ein großer Teil des durch den Leiter durchfließenden Stroms näher am Sensor vorbeifließt und zur Erhöhung des Meßsignals mit beiträgt.Therefore, a particularly advantageous embodiment of the invention is the formation of lead frames with a plurality of parallel current-carrying branches. A differential sensor in the orientation according to the invention is attached to each branch of the lead frame. Such lead frames are particularly suitable as battery leads or current distributors in motor vehicles. The differential sensors enable the potential-free measurement of the current strength and can thus be used for current monitoring in the individual lines leading away from the motor vehicle battery. According to the invention, the conductor plates are designed with current-carrying slots. The current-carrying slots cause a targeted current flow in the printed circuit board, which ensures that a large part of the current flowing through the conductor flows closer to the sensor and contributes to increasing the measurement signal.
Die Erfindung wird im folgenden anhand von Zeichnungen dargestellt und näher erläutert. Es zeigen:The invention is illustrated below with reference to drawings and explained in more detail. Show it:
Fig.1 ein Leiterblech mit Ausnehmungen, in denen Hallsensoren angeordnet sind.1 shows a printed circuit board with recesses in which Hall sensors are arranged.
Fig. 2 eine Aufsicht des in Fig. 1 gezeigten LeiterblechsFig. 2 is a plan view of the conductor plate shown in Fig. 1
Fig. 3 eine Ausführungsform der Erfindung mit Stromführungsschlitzen im LeiterblechFig. 3 shows an embodiment of the invention with current guiding slots in the printed circuit board
Fig.4 eine vorteilhafte Ausführungsform der Erfindung als Stanzgitter mit mehreren parallelen Zweigen, besonders geeignet als Batterieableitung4 shows an advantageous embodiment of the invention as a lead frame with a plurality of parallel branches, particularly suitable for battery discharge
Fig.l zeigt ausschnittsweise eine schematische dreidimensionale Explosionsdarstellung zur Erläuterung der Erfindung. Ein Differenzsensor 1 wird mit einem elektrischen Leiter 2, der vorzugsweise aus einem Stanzblech ausgestanzt ist, zusammengefügt. Der Differenzsensor ist in an sich bekannter Weise aus zwei Hallplatten 3 gebildet, die auf einem Substrat 4 oder einem Chip 4 angeordnet und verschaltet sind. Der Differenzsensor wird vorzugswei- se monolithisch hergestellt und ist kommerziell in verschiedenen Konfigurationen erhältlich. Meist ist auf dem Substrat auch noch eine Auswerteeinheit mit integriert, so daß das Meßsignal ΔUH direkt vom Sensor z.B. in digitaler Form ausgelesen werden kann. Die beiden Hallplatten sind beispielsweise in einem Abstand von 1-10 mm voneinander angebracht. Der Abstand der Hallplatten richtet sich nach der Dimensionierung der Strombrük- ke 5, deren Dimensionierung sich wiederum nach dem vorgesehenen Strom richtet, den der Leiter 2 führen soll. Der Leiter weist schlitzförmige, längliche, rechteckformige Ausneh- 01/23899Fig.l shows sections of a schematic three-dimensional exploded view to explain the invention. A difference sensor 1 is joined with an electrical conductor 2, which is preferably punched out of a stamped sheet. The difference sensor is formed in a manner known per se from two Hall plates 3, which are arranged and connected on a substrate 4 or a chip 4. The differential sensor is preferably manufactured monolithically and is commercially available in various configurations. An evaluation unit is usually also integrated on the substrate, so that the measurement signal ΔUH can be read out directly by the sensor, for example in digital form. The two Hall plates are attached, for example, at a distance of 1-10 mm from one another. The distance between the Hall plates depends on the dimensioning of the current bridge 5, the dimensioning of which in turn is based on the intended current that the conductor 2 is to carry. The conductor has slot-shaped, elongated, rectangular-shaped recesses 01/23899
5 mungen 6 auf, in die der Differenzsensor mit seinen Hallplatten 3 eingepasst wird. Die Dimensionen der Ausnehmungen sind beispielhafterweise in der gleichen Größenordnung wie die Dimensionen der Strombrücke 5. Die Ausnehmungen 6 leiten den Gesamtstrom I im Leiter 2 auf einem S-förmigen Strompfad um die beiden Hallelemente 3 des Differenzsensors 1. Damit wird jedes der Hallelemente 3 an drei Seiten von dem Gesamtstrom I, der im Leiter 2 geführt wird, umflossen, so daß sich die Magnetfeldanteile der einzelnen Leiterabschnitte des S-förmigen Strompfads um die Hallplatten 3 am Ort der Hallplatten verstärkend überlagern. Der Differenzsensor 1 ist in Hauptstromrichtung, symbolisiert durch die Strompfeile 7, am Leiter 2 angeordnet. In anderen Worten ist der Differenzsensor 1 am Leiter 2 derart angeordnet, daß sich die beiden Hallplatten 3 auf einer gedachten gemeinsamen Linie, vorzugsweise der Mittellinie, in Längsrichtung parallel zur Hauptstromrich- tung 7 befinden. Weiterhin ist in Fig. 1 der Vollständigkeit halber schematisch eine Stromversorgung der beiden Hallplatten mit einem Strom Iconst gezeigt.5 mungen 6, in which the differential sensor with its Hall plates 3 is fitted. The dimensions of the recesses are, for example, in the same order of magnitude as the dimensions of the current bridge 5. The recesses 6 conduct the total current I in the conductor 2 on an S-shaped current path around the two Hall elements 3 of the differential sensor 1. This means that each of the Hall elements 3 becomes three Sides of the total current I, which is conducted in the conductor 2, so that the magnetic field portions of the individual conductor sections of the S-shaped current path overlap the Hall plates 3 at the location of the Hall plates. The differential sensor 1 is arranged on the conductor 2 in the main current direction, symbolized by the current arrows 7. In other words, the differential sensor 1 is arranged on the conductor 2 in such a way that the two Hall plates 3 are located on an imaginary common line, preferably the center line, in the longitudinal direction parallel to the main current direction 7. Furthermore, for the sake of completeness, a power supply of the two Hall plates with a current I const is shown schematically for the sake of completeness.
Fig. 2 zeigt eine Aufsicht der in Fig. 1 gezeigten Vorrichtung,. Gezeigt ist der Leiter 2 in Aufsicht mit dem von unten angebrachten Differenzsensor. Die Hallplatten 3 sind in den hierfür vorgesehenen Ausnehmungen 6 angeordnet und mit Hilfe des Substrats 4 am Leiter 2 befestigt, so daß sich die erfindungsgemäße Vorrichtung ergibt.FIG. 2 shows a top view of the device shown in FIG. 1. The conductor 2 is shown in supervision with the differential sensor attached from below. The Hall plates 3 are arranged in the recesses 6 provided for this purpose and fastened to the conductor 2 with the aid of the substrate 4, so that the device according to the invention results.
Fig. 3 zeigt eine Ausfuhrungsform der Erfindung mit Stromführungsschlitzen im Leiterblech. Die in Fig. 3 gezeigte Ausführungsform unterscheidet sich von dem in Fig. 2 oder Fig. 1 gezeigten Ausschnitt durch zusätzliche Stromführungsschlitze 8, die in besonders vorteilhafter Weise die Ausprägung eines S-förmigen Strompfades um die Hallplatten 3 bewirken. Die Stromftihrungsschlitze sind vorteilhafterweise von ähnlicher Gestaltung und Dimensionierung wie die Ausnehmungen 6 und wie diese ebenfalls länglich und rechteck- formig von jeweils einer Längsseite aus in den Leiter 2 hineinragend. Die Stromführungsschlitze 8 sind derart plaziert, daß im Zusammenwirken mit den Ausnehmungen 6 insgesamt drei Strombrücken 5 in gleicher Stärke und Mächtigkeit entstehen.Fig. 3 shows an embodiment of the invention with current guiding slots in the printed circuit board. The embodiment shown in FIG. 3 differs from the section shown in FIG. 2 or FIG. 1 in that it has additional current-carrying slots 8, which, in a particularly advantageous manner, cause the formation of an S-shaped current path around the Hall plates 3. The current guide slots are advantageously of a similar design and dimensioning to the recesses 6 and also protrude into the conductor 2 from one longitudinal side in an elongated and rectangular manner. The current-carrying slots 8 are placed in such a way that, in cooperation with the recesses 6, a total of three current bridges 5 of the same strength and thickness are created.
Fig.4 zeigt eine vorteilhafte Ausführungsform der Erfindung als Stanzgitter mit mehreren parallelen Zweigen, besonders geeignet als Batterieableitung in Kraftfahrzeugen. Das Stanzgitter 9 wird aus einem Leiterblech herausgestanzt und weist mehrere parallele stromführende Zweige 10.1, 10.2,10.3, 10.4,..,10.n auf. Die Anzahl der Zweige richtet sich nach der Anzahl der benötigten Verbraucheranschlüsse. Die Verbraucher und der Hauptstroman- schluß können über die Anschlußösen 11 angeschlossen werden. Die einzelnen Zweige 10.1,10.2,10.3, 10.4,..,10.n bestehen jeweils aus einer der in Fig. 1, Fig. 2 oder Fig.3 gezeigten Vorrichtungen. Die einzelnen Zweige können, für unterschiedliche Verbraucher mit unterschiedlichem Strombedarf ausgelegt sein. Deshalb ist in Fig. 4 exemplarisch der Zweig 10.1 größer dimensioniert als der Zweig lO.n, der wiederum größer dimensioniert ist als die Zweige 10.2,10.3 und 10.4. Jeder einzelne Zweig enthält einen Differenzsensor mit jeweils zwei Hallplatten 3. Beim Einsatz des Stanzgitters als Batterieableitung im Kraftfahrzeug eignet sich das Stanzgitter vorzüglich als Sicherungselement zur Ergänzung oder als vollständiger Ersatz der bekannten Schmelzsicherungsanordnungen im Hauptsicherungskasten. 4 shows an advantageous embodiment of the invention as a lead frame with a plurality of parallel branches, particularly suitable as a battery drain in motor vehicles. The Lead frame 9 is punched out of a printed circuit board and has a plurality of parallel current-carrying branches 10.1, 10.2, 10.3, 10.4, .., 10.n. The number of branches depends on the number of consumer connections required. The consumers and the main power connection can be connected via the connection lugs 11. The individual branches 10.1,10.2,10.3, 10.4, .., 10.n each consist of one of the devices shown in FIG. 1, FIG. 2 or FIG. 3. The individual branches can be designed for different consumers with different power requirements. 4, branch 10.1 is dimensioned larger than branch l.o.n, which in turn is larger than branches 10.2, 10.3 and 10.4. Each individual branch contains a differential sensor with two Hall plates 3 each. When the lead frame is used as a battery lead in the motor vehicle, the lead frame is particularly suitable as a fuse element for supplementing or as a complete replacement of the known fuse arrangements in the main fuse box.

Claims

„„„„ 01/23899Patentansprüche „„ „„ 01/23899 patent claims
1. Vorrichtung zur induktiven Strommessung mit mindestens einem Differenzsensor ( 1 ), der jeweils aus mindestens zwei auf einem Substrat (4) integrierten Hallsensoren (3) besteht und mindestens einem speziell geformten Leiterblech (2), in dessen Ausnehmungen (6) jeweils die beiden Hallsensoren (3) beiderseitig einer Leiterbrücke (5) angeordnet sind, dadurch gekennzeichnet, daß in jedem Leiterblech die zwei Ausnehmungen (6) zur Aufnahme der Hallsensoren1. Device for inductive current measurement with at least one differential sensor (1), each of which consists of at least two Hall sensors (3) integrated on a substrate (4) and at least one specially shaped printed circuit board (2), in the recesses (6) of which the two Hall sensors (3) are arranged on both sides of a conductor bridge (5), characterized in that the two recesses (6) for receiving the Hall sensors in each conductor plate
(3) zusammen mit zwei zusätzlichen Stromführungsschlitzen (8), die wie die Ausnehmungen (6) länglich und rechteckförmig von jeweils einer Längseite des Leiterblechs (2) aus in das Leiterblech (2) hineinragen, einen S-förmigen Strompfad bilden, der jeden der Hallsensoren (3) an drei Seiten umgibt und daß jeder Differenzsensor (1) an jedem Leiterblech (2) derart angeordnet ist, daß sich die beiden Hallsensoren (3) auf einer gedachten Linie in Längsrichtung parallel zur Hauptstromrichtung (7) befinden.(3) together with two additional current-carrying slots (8), which, like the recesses (6), protrude oblong and rectangularly from each longitudinal side of the conductor plate (2) into the conductor plate (2) to form an S-shaped current path, which each of the Hall sensors (3) surrounds on three sides and that each differential sensor (1) on each printed circuit board (2) is arranged such that the two Hall sensors (3) are on an imaginary line in the longitudinal direction parallel to the main current direction (7).
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß die beiden Hallsensoren (3) auf dem Leiterblech (2) auf einer gedachten Mittellinie in Längrichtung parallel zur2. Device according to claim 1, characterized in that the two Hall sensors (3) on the printed circuit board (2) on an imaginary center line in the longitudinal direction parallel to
Hauptstromrichtung (7) angeordnet sind.Main flow direction (7) are arranged.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß mehrere Leiterbleche (2) parallel nebeneinander angeordnet sind und die stromführenden Zweige (10.1, 10.2, 10.3, 10.4, ...,10.n) einer Batterieableitung in einem Kraftfahrzeug bilden.3. Apparatus according to claim 1 or 2, characterized in that a plurality of conductor plates (2) are arranged in parallel next to one another and the current-carrying branches (10.1, 10.2, 10.3, 10.4, ..., 10.n) form a battery drain in a motor vehicle.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß die einzelnen Zweige (10.1, 10.2, 10.3, 10.4, ...,10.n) für unterschiedliche Verbraucher mit unterschiedlichem Strombedarf ausgelegt sind. 4. The device according to claim 3, characterized in that the individual branches (10.1, 10.2, 10.3, 10.4, ..., 10.n) are designed for different consumers with different power requirements.
PCT/EP2000/007607 1999-09-30 2000-08-05 Device for measuring current comprising differential sensors which are sensitive to magnetic fields and which are comprised of at least two hall sensors WO2001023899A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001527232A JP2003510612A (en) 1999-09-30 2000-08-05 Apparatus for measuring current with a magnetic field sensitive difference sensor consisting of at least two Hall sensors
EP00951479A EP1218759A1 (en) 1999-09-30 2000-08-05 Device for measuring current comprising differential sensors which are sensitive to magnetic fields and which are comprised of at least two hall sensors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999146935 DE19946935B4 (en) 1999-09-30 1999-09-30 Device for inductive current measurement with at least one differential sensor
DE19946935.0 1999-09-30

Publications (1)

Publication Number Publication Date
WO2001023899A1 true WO2001023899A1 (en) 2001-04-05

Family

ID=7923891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/007607 WO2001023899A1 (en) 1999-09-30 2000-08-05 Device for measuring current comprising differential sensors which are sensitive to magnetic fields and which are comprised of at least two hall sensors

Country Status (4)

Country Link
EP (1) EP1218759A1 (en)
JP (1) JP2003510612A (en)
DE (1) DE19946935B4 (en)
WO (1) WO2001023899A1 (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267173A2 (en) * 2001-06-15 2002-12-18 Sanken Electric Co., Ltd. Hall-effect current detector
EP1271159A2 (en) * 2001-06-15 2003-01-02 Sanken Electric Co., Ltd. Hall-effect current detector
EP1772737A2 (en) * 2005-10-08 2007-04-11 Sentron Ag Assembly group for the current measurement
EP2116855A2 (en) 2008-04-17 2009-11-11 Adaptive Regelsysteme Gesellschaft mbH Flow measuring device and method for galvanically separate measurement of flows
WO2011068653A1 (en) * 2009-12-03 2011-06-09 Allegro Microsystems, Inc. Methods and apparatus for enhanced frequency response of magnetic sensors
WO2011067016A1 (en) * 2009-12-04 2011-06-09 Robert Bosch Gmbh Component for limiting currents in electric circuits
US8093670B2 (en) 2008-07-24 2012-01-10 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having on chip capacitor with eddy current reductions
US8283742B2 (en) 2010-08-31 2012-10-09 Infineon Technologies, A.G. Thin-wafer current sensors
US8442787B2 (en) 2010-04-30 2013-05-14 Infineon Technologies Ag Apparatus, sensor circuit, and method for operating an apparatus or a sensor circuit
FR2984513A1 (en) * 2011-12-20 2013-06-21 Neelogy CURRENT SENSOR BY MEASUREMENT OF INTERNAL MAGNETIC FIELD TO DRIVER.
US8680843B2 (en) 2010-06-10 2014-03-25 Infineon Technologies Ag Magnetic field current sensors
US8717016B2 (en) 2010-02-24 2014-05-06 Infineon Technologies Ag Current sensors and methods
US8760149B2 (en) 2010-04-08 2014-06-24 Infineon Technologies Ag Magnetic field current sensors
CN104134747A (en) * 2013-05-03 2014-11-05 远翔科技股份有限公司 Semiconductor structure for sensing electromagnetic induction and manufacturing method thereof
DE202013010178U1 (en) * 2013-11-11 2015-02-13 Seuffer gmbH & Co. KG Current detection device
US8963536B2 (en) 2011-04-14 2015-02-24 Infineon Technologies Ag Current sensors, systems and methods for sensing current in a conductor
US8975889B2 (en) 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
US9103853B2 (en) 2010-11-18 2015-08-11 Infineon Technologies Ag Current sensor
US9222992B2 (en) 2008-12-18 2015-12-29 Infineon Technologies Ag Magnetic field current sensors
US9228860B2 (en) 2006-07-14 2016-01-05 Allegro Microsystems, Llc Sensor and method of providing a sensor
US9299915B2 (en) 2012-01-16 2016-03-29 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
US9476915B2 (en) 2010-12-09 2016-10-25 Infineon Technologies Ag Magnetic field current sensors
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9523720B2 (en) 2013-03-15 2016-12-20 Infineon Technologies Ag Multiple current sensor device, a multiple current shunt device and a method for providing a sensor signal
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
DE102011086270B4 (en) 2010-11-18 2018-12-27 Infineon Technologies Ag CURRENT SENSOR
CN109387681A (en) * 2018-12-28 2019-02-26 无锡思泰迪半导体有限公司 Binary channels current sensor structure based on magnetic field detection
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10247759B2 (en) 2013-09-05 2019-04-02 Asahi Kasei Microdevices Corporation Current sensor
US20200381881A1 (en) * 2019-05-29 2020-12-03 Infineon Technologies Ag Busbar and power module with busbar
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
CN117227682A (en) * 2023-11-15 2023-12-15 北京全路通信信号研究设计院集团有限公司 Magnetic field safety detection method, system, equipment and storage medium
US11961920B2 (en) 2023-04-26 2024-04-16 Allegro Microsystems, Llc Integrated circuit package with magnet having a channel

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10107812B4 (en) * 2001-02-20 2014-10-16 Robert Bosch Gmbh Device for measuring the electric current
DE10107811A1 (en) * 2001-02-20 2002-09-19 Bosch Gmbh Robert Device, ammeter and motor vehicle
DE10158836B4 (en) * 2001-11-30 2007-06-06 Infineon Technologies Ag Method and device for calibrating a sensor system
JP2006038518A (en) 2004-07-23 2006-02-09 Denso Corp Current measuring instrument
JP2007183221A (en) * 2006-01-10 2007-07-19 Denso Corp Electric current sensor
DE202006013311U1 (en) * 2006-08-30 2008-01-03 Merten Gmbh & Co. Kg Connection unit of a bus system
JP5193622B2 (en) * 2008-02-12 2013-05-08 株式会社東海理化電機製作所 Battery terminal with integrated current sensor
DE102009047235A1 (en) * 2009-11-27 2011-06-01 Robert Bosch Gmbh Circuit device and power circuit with the circuit device
JP5659389B2 (en) * 2010-10-15 2015-01-28 アルプス・グリーンデバイス株式会社 Current sensor
JP2013044705A (en) * 2011-08-26 2013-03-04 Asahi Kasei Electronics Co Ltd Current detection device
DE102011116545A1 (en) 2011-10-21 2013-04-25 Micronas Gmbh Integrated magnetic field measuring device
JP2013148512A (en) * 2012-01-20 2013-08-01 Aisin Seiki Co Ltd Current sensor
JP5814976B2 (en) * 2013-05-15 2015-11-17 三菱電機株式会社 Current measuring device
JPWO2014192625A1 (en) * 2013-05-30 2017-02-23 株式会社村田製作所 Current sensor
TWI504904B (en) * 2013-07-30 2015-10-21 Asahi Kasei Microdevices Corp Current sensor
US9746500B2 (en) * 2013-12-11 2017-08-29 Eaton Corporation Electrical current sensing apparatus
DE102014008173B4 (en) 2014-06-10 2022-08-11 Tdk-Micronas Gmbh magnetic field measuring device
DE102014011245B3 (en) * 2014-08-01 2015-06-11 Micronas Gmbh Magnetic field measuring device
DE102015007190B4 (en) 2015-06-09 2017-03-02 Micronas Gmbh Magnetic field measuring device
DE102015013022A1 (en) 2015-10-09 2017-04-13 Micronas Gmbh Magnetic field measuring device
JP6696571B2 (en) 2016-06-09 2020-05-20 株式会社村田製作所 Current sensor and current sensor module
JP6914671B2 (en) * 2017-02-24 2021-08-04 旭化成エレクトロニクス株式会社 Current sensor
CN114424070A (en) * 2019-09-20 2022-04-29 苏州力特奥维斯保险丝有限公司 Differential signal current sensor
DE102021208725A1 (en) 2021-08-10 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung Current detection arrangement and electrical machine
DE102021208720A1 (en) 2021-08-10 2023-02-16 Robert Bosch Gesellschaft mit beschränkter Haftung current sensing arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492919A (en) * 1982-04-12 1985-01-08 General Electric Company Current sensors
US4894610A (en) * 1985-09-14 1990-01-16 LOZ Landis & Gyr Zug AG Current-transformer arrangement for an electrostatic meter
US5027059A (en) * 1989-08-24 1991-06-25 Schlumberger Industries, Inc. Differential current shunt
DE29610403U1 (en) * 1995-06-16 1996-08-01 Ceag Sicherheitstechnik Gmbh Shunt resistance
DE19821492A1 (en) * 1998-05-14 1999-11-25 Daimler Chrysler Ag Contactless measuring of current in conductor track of e.g. battery short-circuit safety system in motor vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0292636A1 (en) * 1987-05-26 1988-11-30 Landis & Gyr Betriebs AG Current converter for measuring the current flowing in an electric conductor
US5041780A (en) * 1988-09-13 1991-08-20 California Institute Of Technology Integrable current sensors
JPH02167478A (en) * 1988-09-22 1990-06-27 Toshiba Corp Current sensor
GB9500974D0 (en) * 1995-01-18 1995-03-08 Horstmann Timers & Controls Electricity measurement apparatus
DE29812531U1 (en) * 1998-03-17 1998-09-03 Ssg Halbleiter Vertriebs Gmbh Measuring device for determining a current flowing through an electrical conductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492919A (en) * 1982-04-12 1985-01-08 General Electric Company Current sensors
US4894610A (en) * 1985-09-14 1990-01-16 LOZ Landis & Gyr Zug AG Current-transformer arrangement for an electrostatic meter
US5027059A (en) * 1989-08-24 1991-06-25 Schlumberger Industries, Inc. Differential current shunt
DE29610403U1 (en) * 1995-06-16 1996-08-01 Ceag Sicherheitstechnik Gmbh Shunt resistance
DE19821492A1 (en) * 1998-05-14 1999-11-25 Daimler Chrysler Ag Contactless measuring of current in conductor track of e.g. battery short-circuit safety system in motor vehicle

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1267173A2 (en) * 2001-06-15 2002-12-18 Sanken Electric Co., Ltd. Hall-effect current detector
EP1271159A2 (en) * 2001-06-15 2003-01-02 Sanken Electric Co., Ltd. Hall-effect current detector
EP1267173A3 (en) * 2001-06-15 2005-03-23 Sanken Electric Co., Ltd. Hall-effect current detector
EP1271159A3 (en) * 2001-06-15 2005-04-20 Sanken Electric Co., Ltd. Hall-effect current detector
EP1772737A2 (en) * 2005-10-08 2007-04-11 Sentron Ag Assembly group for the current measurement
EP1772737A3 (en) * 2005-10-08 2008-02-20 Melexis Technologies SA Assembly group for the current measurement
US7375507B2 (en) 2005-10-08 2008-05-20 Melexis Technologies Sa Assembly group for current measurement
US9228860B2 (en) 2006-07-14 2016-01-05 Allegro Microsystems, Llc Sensor and method of providing a sensor
EP2116855A2 (en) 2008-04-17 2009-11-11 Adaptive Regelsysteme Gesellschaft mbH Flow measuring device and method for galvanically separate measurement of flows
US8093670B2 (en) 2008-07-24 2012-01-10 Allegro Microsystems, Inc. Methods and apparatus for integrated circuit having on chip capacitor with eddy current reductions
US9733279B2 (en) 2008-12-18 2017-08-15 Infineon Technologies Ag Magnetic field current sensors
US9222992B2 (en) 2008-12-18 2015-12-29 Infineon Technologies Ag Magnetic field current sensors
WO2011068653A1 (en) * 2009-12-03 2011-06-09 Allegro Microsystems, Inc. Methods and apparatus for enhanced frequency response of magnetic sensors
CN102648558A (en) * 2009-12-04 2012-08-22 罗伯特·博世有限公司 Component for limiting currents in electric circuits
WO2011067016A1 (en) * 2009-12-04 2011-06-09 Robert Bosch Gmbh Component for limiting currents in electric circuits
US9865802B2 (en) 2010-02-24 2018-01-09 Infineon Technologies Ag Current sensors and methods
US8717016B2 (en) 2010-02-24 2014-05-06 Infineon Technologies Ag Current sensors and methods
US9983238B2 (en) 2010-04-08 2018-05-29 Infineon Technologies Ag Magnetic field current sensors having enhanced current density regions
US8760149B2 (en) 2010-04-08 2014-06-24 Infineon Technologies Ag Magnetic field current sensors
US8442787B2 (en) 2010-04-30 2013-05-14 Infineon Technologies Ag Apparatus, sensor circuit, and method for operating an apparatus or a sensor circuit
US8680843B2 (en) 2010-06-10 2014-03-25 Infineon Technologies Ag Magnetic field current sensors
US9029966B2 (en) 2010-08-31 2015-05-12 Infineon Technologies Ag Thin-wafer current sensors
US8679895B2 (en) 2010-08-31 2014-03-25 Infineon Technologies Ag Method of making thin-wafer current sensors
US8283742B2 (en) 2010-08-31 2012-10-09 Infineon Technologies, A.G. Thin-wafer current sensors
DE102011086270B4 (en) 2010-11-18 2018-12-27 Infineon Technologies Ag CURRENT SENSOR
US9103853B2 (en) 2010-11-18 2015-08-11 Infineon Technologies Ag Current sensor
US9476915B2 (en) 2010-12-09 2016-10-25 Infineon Technologies Ag Magnetic field current sensors
US8975889B2 (en) 2011-01-24 2015-03-10 Infineon Technologies Ag Current difference sensors, systems and methods
US9678172B2 (en) 2011-01-24 2017-06-13 Infineon Technologies Ag Current difference sensors, systems and methods
US10488445B2 (en) 2011-01-24 2019-11-26 Infineon Technologies Ag Current difference sensors, systems and methods
US8963536B2 (en) 2011-04-14 2015-02-24 Infineon Technologies Ag Current sensors, systems and methods for sensing current in a conductor
US9395423B2 (en) 2011-04-14 2016-07-19 Infineon Technologies Ag Current sensors, systems and methods for sensing current in a conductor
FR2984513A1 (en) * 2011-12-20 2013-06-21 Neelogy CURRENT SENSOR BY MEASUREMENT OF INTERNAL MAGNETIC FIELD TO DRIVER.
WO2013093249A1 (en) * 2011-12-20 2013-06-27 Neelogy Current sensor measuring the inner magnetic field of the conductor
US9299915B2 (en) 2012-01-16 2016-03-29 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US9620705B2 (en) 2012-01-16 2017-04-11 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having non-conductive die paddle
US10333055B2 (en) 2012-01-16 2019-06-25 Allegro Microsystems, Llc Methods for magnetic sensor having non-conductive die paddle
US11444209B2 (en) 2012-03-20 2022-09-13 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil enclosed with a semiconductor die by a mold material
US9666788B2 (en) 2012-03-20 2017-05-30 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US11828819B2 (en) 2012-03-20 2023-11-28 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US10916665B2 (en) 2012-03-20 2021-02-09 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an integrated coil
US9812588B2 (en) 2012-03-20 2017-11-07 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US11677032B2 (en) 2012-03-20 2023-06-13 Allegro Microsystems, Llc Sensor integrated circuit with integrated coil and element in central region of mold material
US10230006B2 (en) 2012-03-20 2019-03-12 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with an electromagnetic suppressor
US10234513B2 (en) 2012-03-20 2019-03-19 Allegro Microsystems, Llc Magnetic field sensor integrated circuit with integral ferromagnetic material
US9494660B2 (en) 2012-03-20 2016-11-15 Allegro Microsystems, Llc Integrated circuit package having a split lead frame
US9523720B2 (en) 2013-03-15 2016-12-20 Infineon Technologies Ag Multiple current sensor device, a multiple current shunt device and a method for providing a sensor signal
US9411025B2 (en) 2013-04-26 2016-08-09 Allegro Microsystems, Llc Integrated circuit package having a split lead frame and a magnet
CN104134747A (en) * 2013-05-03 2014-11-05 远翔科技股份有限公司 Semiconductor structure for sensing electromagnetic induction and manufacturing method thereof
US10247759B2 (en) 2013-09-05 2019-04-02 Asahi Kasei Microdevices Corporation Current sensor
DE202013010178U1 (en) * 2013-11-11 2015-02-13 Seuffer gmbH & Co. KG Current detection device
CN109387681A (en) * 2018-12-28 2019-02-26 无锡思泰迪半导体有限公司 Binary channels current sensor structure based on magnetic field detection
US20200381881A1 (en) * 2019-05-29 2020-12-03 Infineon Technologies Ag Busbar and power module with busbar
US11796571B2 (en) * 2019-05-29 2023-10-24 Infineon Technologies Ag Busbar and power module with busbar
US10991644B2 (en) 2019-08-22 2021-04-27 Allegro Microsystems, Llc Integrated circuit package having a low profile
US11961920B2 (en) 2023-04-26 2024-04-16 Allegro Microsystems, Llc Integrated circuit package with magnet having a channel
CN117227682A (en) * 2023-11-15 2023-12-15 北京全路通信信号研究设计院集团有限公司 Magnetic field safety detection method, system, equipment and storage medium
CN117227682B (en) * 2023-11-15 2024-03-22 北京全路通信信号研究设计院集团有限公司 Magnetic field safety detection method, system, equipment and storage medium

Also Published As

Publication number Publication date
EP1218759A1 (en) 2002-07-03
DE19946935B4 (en) 2004-02-05
DE19946935A1 (en) 2001-05-03
JP2003510612A (en) 2003-03-18

Similar Documents

Publication Publication Date Title
DE19946935B4 (en) Device for inductive current measurement with at least one differential sensor
DE102008039568B4 (en) Current detection device
DE602005003777T2 (en) Surface mount integrated current sensor
DE69530726T2 (en) MEASURING DEVICE FOR MAGNETIC FIELDS
DE60219561T2 (en) Hall effect current detector
EP1772737A2 (en) Assembly group for the current measurement
DE102005039587A1 (en) Battery sensor unit
DE10045563B4 (en) The power semiconductor module assembly
DE102011107703A1 (en) Integrated current sensor
DE102007001847A1 (en) Current sensor and method for mounting the same
DE10240914B4 (en) Circuit arrangement with a load transistor and a current measuring arrangement and method for determining the load current of a load transistor and use of a semiconductor device
DE102020122262A1 (en) Current sensor
DE2514621A1 (en) DEVICE FOR MEASURING THE ELECTRICAL CONDUCTIVITY OF A LIQUID
DE3008308C2 (en) Current divider for measuring transducers for potential-free measurement of currents
EP3499199A1 (en) Wim sensor and method for manufacturing the wim sensor
DE69912175T2 (en) Mechanism for detecting the position of a movable member
DE102010036040A1 (en) Device for measuring electric current in current guard of power-electronic arrangement for industrial truck, has current guard, circuit board and magnetic field sensor that are arranged based on surface mount device construction
DE3447325A1 (en) POSITION SENSOR
EP2737327B1 (en) Circuit for conducting an electrical current
DE10007967C2 (en) Multi-layer arrangement of electrical conductors with integrated current detection
DE602004005750T2 (en) Current sensor with reduced sensitivity to magnetic fields
DE3905799A1 (en) HIGH VOLTAGE ELECTRODE
EP1882953A1 (en) Current measuring device
DE20320473U1 (en) Electrical resistor assembly used to measure current from battery or generator for road vehicle electrical network has separate flat contact tags
DE19729312A1 (en) Magnetic length measuring system for absolute position measurement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000951479

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 527232

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000951479

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10089608

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2000951479

Country of ref document: EP