WO2001024221A1 - Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor - Google Patents

Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor Download PDF

Info

Publication number
WO2001024221A1
WO2001024221A1 PCT/US2000/026614 US0026614W WO0124221A1 WO 2001024221 A1 WO2001024221 A1 WO 2001024221A1 US 0026614 W US0026614 W US 0026614W WO 0124221 A1 WO0124221 A1 WO 0124221A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
recited
signal
electrode
parameter
Prior art date
Application number
PCT/US2000/026614
Other languages
French (fr)
Inventor
Neil Benjamin
Scott Baldwin
Seyed J. Jafarian-Tehrrani
Original Assignee
Lam Research Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/557,684 external-priority patent/US6509542B1/en
Application filed by Lam Research Corporation filed Critical Lam Research Corporation
Priority to JP2001527315A priority Critical patent/JP4828755B2/en
Publication of WO2001024221A1 publication Critical patent/WO2001024221A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems

Definitions

  • the present invention relates to plasma processing systems and, more particularly, to methods and apparatus for controlling radio frequency delivery in a plasma reactor through momto ⁇ ng and feedback of an elect ⁇ cal parameter, in particular a peak voltage
  • BACKGROUND ART Ionized gas, or plasma is commonly used du ⁇ ng the processing and fabncation of semiconductor devices
  • plasma can be used to etch or remove matenal from semiconductor integrated circuit wafers, and to sputter or deposit matenal onto semiconducting, conducting or insulating surfaces
  • creating a plasma for use in manufactunng or fabncation processes typically begins by introducing vanous process gases into a plasma chamber 10 of a plasma reactor, generally designated 12 These gases enter the chamber 10 through an inlet 13 and exit through an outlet 15 A workpiece 14, such as an integrated circuit wafer is disposed in the chamber 10 held upon a chuck 16
  • the reactor 12 also includes plasma density production mechanism 18 (e g a TCP coil)
  • a plasma inducing signal, supplied by a plasma inducing power supply 20 is applied to the plasma density production mechanism 18
  • the plasma inducing signal is preferably a radio frequency (RF) signal A dielectric window 22.
  • RF radio frequency
  • the plasma 24 formed within the chamber 10 includes electrons and positively charged particles
  • the electrons being lighter than the positively charged particles tend to migrate more readily, causing a sheath to form at the surfaces of the chamber 10
  • a self biasing effect causes a net negative charge at the inner surfaces of the chamber This net negative charge, or D C sheath potential acts to attract the heavier positively charged particles toward the wall surfaces
  • bias RF power source 28 supplies a biasing RF signal to the chuck electrode 16
  • the both the plasma density signal and bias signal are in fact a single signal produced by a single power source
  • This second excitation signal, preferably in the form of a RF signal, at the second electrode increases the DC bias at the location of the workpiece, depending on the disposition of the RF electnc field withm the chamber 10, and this increases the energy with which the charged particles stnke the workpiece Vanations m the RF signal supplied to the second electrode 16 produce corresponding vanations in the D C bias at the workpiece affecting the process
  • the bias RF power source 28 descnbed above supplies a R F signal to the chuck electrode 26
  • This signal passes through a match network 30 disposed between the bias RF power source 28 and the chuck electrode 26
  • the match network 30 matches the impedance of the RF signal with the load
  • one method which has been used to attach the workpiece 14 to the chuck 16 has been to provide the chuck with clamps 32 which contact the surface of the workpiece along its edges to hold the workpiece to the chuck Using such a chuck 16 (and to the extent that the workpiece is somewhat conductive) it is possible to measure the
  • an electrostatic chuck includes an electrode 38 which is covered with an insulator 40.
  • the electrode and workpiece 14 become capacitively coupled resulting in opposite electrical charges on each, attracting the workpiece 14 and electrode 38 toward one another. This acts to hold the workpiece against the chuck 36.
  • the electrostatic chuck 36 can be understood with reference to FIG. 1C in addition to FIG. IB.
  • the electrode 38 of the electrostatic chuck 36 includes first and second electrically conducive portions 42 and 44, which are electrically isolated from one another.
  • a DC voltage from a D.C. voltage source 46 passes through a filter
  • FIG. ID a simpler version of electrostatic chuck is illustrated.
  • This simpler form of electrostatic chuck termed a mono polar chuck 37 is shown in plan view in ID.
  • the present invention provides a plasma reactor having a chamber and a chuck supporting a workpiece withm the chamber
  • the chuck includes a chuck electrode which receives a bias radio frequency (RF) signal from a bias RF power source
  • the RF signal at the electrode affects the plasma, and more particularly affects the DC bias
  • a sensor measures a parameter of the plasma, such as for example the peak voltage of the RF signal delivered to the electrode which is compared with the desired set point and from which an error signal is denved
  • the error signal is then amplified and used to control the RF power source
  • a match network located between the bias RF power source and the chuck, matches the impedance of the plasma load to that of the output (typically 50 Ohms) of the RF power source
  • the maintenance of a consistent RF signal at the electrode is of importance in maintaining a consistent DC bias at the workpiece and a correspondingly consistent process
  • the RF delivery system is subject to losses such that process results may not be predictable and constant
  • the match network
  • the fundamental purpose of the TCP coil and the signal supplied thereto is to generate plasma density
  • the electrons which tend to migrate more easily than the positive ions, develop a net negative charge on the at the inner surfaces of the chamber as well as at the workpiece supported upon the chuck
  • This net charge generates a DC bias which determines the energy with which the positively charged particles stnke the surface of the workpiece and thereby is a pnmary factor m determining the process results
  • a pickup connected to the electrode receives the RF signal delivered to the electrode. This signal is then passed through a lead wire to the RF sensor which is located as close to the chuck electrode as is possible without risking arcing between the sensor and the chuck electrode. Placing the sensor close to the electrode minimizes the length of lead wire necessary to transmit the RF signal to the sensor, thereby minimizing inductive and resistive affects of the lead wire upon the signal.
  • the RF signal is divided and separated into AC and DC components.
  • the DC component can be used to monitor electrostatic chuck function. However that is not a necessary component of the present invention.
  • the AC signal component then passes through a surge protection circuit before being fed to a balanced detector circuit.
  • the balanced circuit ensures that the AC signal is symmetrically loaded about the zero volt axis, ensuring that the signal does not generate a spurious DC component which would induce error into the system.
  • the AC signal is then passed through an amplifier circuit which includes a feedback circuit and incorporating rectification and peak hold circuitry to yield a DC equivalent of the RF peak voltage. Matched diodes in both arms of the amplifier circuit, together with the diode in the balance circuit, ensure that any non-linearity is largely compensated or in the DC equivalent signal at the output of the amplifier.
  • This DC equivalent signal is then passed through a differential buffer and an amplifier with gain and offset adjustment before being delivered as an output signal.
  • This same signal is then compared with the desired setpoint to derive an error signal which is passed through a high gain amp and through a power limit circuit which protects the electrode from being damaged by a surge.
  • the signal passes to the generator to provide a RF generator as a command to control the power produced.
  • the present invention can be used with a capacitively coupled plasma reactor.
  • a capacitively coupled plasma reactor replaces the TCP coil described above.
  • the present invention can be used with a mechanical chuck rather than an electrostatic chuck obviating the need to place a sensor within the plasma environment.
  • the present invention By detecting the RF peak voltage delivered at the electrode, the present invention accurately and efficiently controls the RF signal delivered to the chuck elecrode, allowing a consistent DC bias to be maintained. In this way, the plasma reactor can consistently produce high quality uniform workpieces.
  • Figure 1 A is a schematic diagram of a plasma reactor system of the prior art
  • Figure IB is a schematic diagram of another plasma reactor of the prior art
  • Figure 1C is an expanded view, taken from line 1C-1C of FIG. IB, of anelectrostatic chuck of the prior art
  • Figure ID is a plan view of a mono polar electrostatic chuck of the prior art
  • Figure 2 A is a schematic view of a plasma reactor system of the present invention
  • Figure 2B is a view, shown enlarged, taken from area 2B of FIG. 2A;
  • Figure 3 A is a block diagram of circuitry within sensor 226 of FIG. 2B;
  • Figure 3B is a schematic of AC divider and clamp protection circuitry
  • Figure 3C is a schematic of a balancing circuit
  • Figure 3D is a schematic of an amplifier circuit
  • Figure 3E is a schematic of a set point summing circuit
  • Figure 4 is a view taken from area 4 of FIG. 2B of the present invention in calibration mode
  • Figure 5 is a process diagram of a method of calibrating the plasma reactor of the present invention.
  • Figure 6 is a process diagram of a method of controlling RF signal generation according to the present invention
  • the present invention is embodied in a plasma reactor system, generally referred to as 200.
  • the plasma reactor 200 includes a plasma chamber 202 and a
  • TCP Transformer Coupled Plasma
  • the plasma chamber 202 further includes a gas inlet 203 and a gas outlet 205.
  • the TCP coil 204 is coupled with a plasma generation power source 206 which provides a plasma generating Radio Frequency (RF) signal.
  • RF Radio Frequency
  • a match network 207 is included between the plasma generation power source 206 and the TCP coil 204.
  • TCP coil 204 in the upper wall of the chamber 202 allows efficient transmission of the plasma generating RF signal into the plasma chamber 202.
  • An electrostatic chuck 210 located at the bottom of the chamber 202, supports a workpiece 212.
  • the electrostatic chuck includes a chuck electrode 214.
  • the chuck electrode 214 includes first and second electrically conductive portions 216a and 216b which are electrically isolated from one another.
  • the chuck electrode 214 is surrounded by an electrical insulator 217.
  • a bias RF power source 218 is coupled with a match network 220 which is further coupled with the chuck electrode 214.
  • a pickup 222 extends into the chuck 210 electrically connecting with the chuck electrode 214. This pickup 222 is coupled via a lead wire 224 with a RF peak voltage sensor 226. This RF peak voltage sensor generates a monitor signal which is combined with the set point in summing circuitry 228 to generate a control signal which may optionally then be used to control the bias generating power source 218.
  • a gas capable of ionization flows into the chamber 202 through the gas inlet 203 and exits the chamber through the gas outlet 205.
  • a plasma generating RF signal is produced by the RF power source 206 and is delivered to the TCP coil 204. This plasma generating RF signal radiates from the coil 204 through the window 208 and into the chamber
  • the plasma produces a sheath 232 along the walls of the chamber 202.
  • the plasma generated withm the chamber 202 includes electrons and positively charged particles. The electrons, being much lighter than the positively charged ions, tend to migrate more readily, generating a DC sheath potential at the surfaces of the chamber 202. This sheath potential being negative tends to attract the positively charged ions and repels further electrons, thus containing them.
  • the average DC sheath potential at the location of the workpiece 212 predominantly determines the energy with which the positively charged ions stnke the workpiece, and is therefore a pnmary determinant of process parameters For instance it will affect the rate at which etching or deposition take place
  • the amount of DC bias at the workpiece, and corresponding process conditions, can be altered, e.g. the rate increased, by applying an RF signal to the chuck electrode.
  • a RF signal is generated by the RF power source 218
  • This RF signal then passes through the match network 220 which matches the impedance of the RF generator, typically 50 ⁇ , to that presented by the plasma load 230
  • This matched signal then passes to the chuck electrode 214, which being capacitively coupled with the workpiece, passes the signal to the workpiece through the insulator 217 of the chuck 210
  • the sensor circuitry 226 receives the RF signal from the lead wire 224
  • the sensor circuitry 226 contains both a DC divider for ESC clamp monitonng (unrelated to the present mvention) and a separate AC divider with clamp protection circuitry 304 whose output is a fraction of the incoming RF, which is then sent on to a balancing circuit 306.
  • the balancing circuit 306 ensures that the RF signal is symmet ⁇ cally balanced about the zero volt axis, preventing DC offset errors from being introduced mto the system.
  • the balanced AC signal is then passed to an amplifier circuit 308 which includes rectification and feedback circuitry which converts the RF signal into a DC signal corresponding to the RF peak value
  • the sensor circuitry 226 produces a DC monitor signal 310
  • This DC monitor signal 310 produced by the sensor circuitry provides an accurate indication of the RF peak value at the electrode 214.
  • this DC monitor signal 310 then is passed to a differential ground compensating buffer amplifier 314 and then through a gain and offset adjustment stage 316 which outputs a DC signal 319 suitably scaled representing the RF peak value at the electrode 214.
  • This DC output signal 319 is summed in appropriate phase with a DC set point command signal 330 in the set point summing circuitry 228, as will be described in further detail below, to generate a generator command signal 326.
  • the AC divider and clamp protection circuitry 304 receives the RF signal through the input 302. This signal is passed through relatively low capacitance high voltage capacitors 332 arranged in series with one another. The signal passes through a junction
  • a midpoint 338 connects reversed biased protection diodes (344a & b) on each side leading to the voltage supply rails which are decoupled to ground through capacitors (340a & b) The signal then passes through a current limiting resistor 347 before being passed to the balancing circuit 306.
  • the balancing circuit receives the signal from the AC divider and clamp protection circuitry 304 at an input 348.
  • the signal passes to a junction 350 having on one side a first circuit 352 including a first type matched balancing diode 354, a capacitor 356 a resistor 358, and a connection to ground 360 is arranged as shown.
  • a first circuit 352 including a first type matched balancing diode 354, a capacitor 356 a resistor 358, and a connection to ground 360 is arranged as shown.
  • the first circuit 352 is a second circuit.
  • the second circuit 362 includes a second type matched detection diode 364 resistors 366, 368 and capacitor.
  • the amplifier circuit 308 includes a precision op amp 372 having positive and negative voltage sources 374, 376 applied thereto.
  • the amplifier circuit also includes a feedback loop 377, including a third matched compensation diode 378, resistor 380 and capacitor 382 all in parallel with one another.
  • the resistor 380 provides DC feedback, and in combination with a resistor 384 to ground sets the DC gain, especially at low signal levels.
  • the capacitor 382 forms a filter time constant with resistor 380 to ensure stability.
  • Fig. 3D act to minimize the effects of forward voltage drops across the detecting diode, 364.
  • the signal exits the amplifier circuit 308 through an output 386 in the form of the DC monitor signal 310 described with reference to Fig. 3 A.
  • This monitor signal 310 passes to the differential ground offset compensating buffer amplifier 314 and the gain and offset adjustment stage 316 and then to the set point summing circuitry 228 as previously discussed.
  • the set point summing circuitry 228 receives a DC output signal 319 suitably scaled, representing the RF peak value at the electrode 214 as shown in Fig. 2B.
  • This DC output signal is summed in appropriate phase with the DC set point command signal 330, thus generating an error signal for feedback control at the output of the summing junction 388.
  • the output signal from 388 then passes through a high gain amp 390 and a power set point limit circuit 392.
  • the power limit circuit prevents damage to the system by preventing a power-surge when the bias power source 218 is swtiched to voltage control, or whenever the voltage control loop becomes unstable or goes open loop for any reason.
  • the signal then passes through a final filter/buffer amp 394, through a switch 396 and then to the power source 218 (Fig. 2A) in the form of an RF generator command signal 326 which can be controlled either by the feedback circuitry as described or by using the command signal 330 as a simple forward power set point if desired.
  • the circuitry 226 shown in FIG. 3A operates according to a process 600, which begins with a step 602 of detecting a peak RF voltage. Then, in a step 604, the DC representation of the RF peak voltage signal is processed for ground restoration, gain and offset to yield a monitor signal 319. In a step 606 the monitor signal 319 is summed in appropriate phase with a command setpoint signal 330, to generate an error signal 318 (Fig 3E). In a step 607, the error signal 318 is further amplified and then limited to a safe level for output as the generator command signal. Finally, in a step 608, after selection of direct power or voltage feedback mode, the power source 218 is driven according to the direct or modified command signal respectively. As illustrated in FIG. 6, the method 600 when conducted in a negative feed back control fashion acts to maintain a desired sensed parameter, in this instance peak RF voltage applied at the chuck.
  • FIG. 5 illustrates a process 500 for calibrating the reactor system 200.
  • the process 500 begins with a step 502 in which a workpiece is placed into the chamber in the usual manner.
  • the wafer used for calibration should be expendable, somewhat conductive, and not intended for production, for reasons which will become apparent.
  • an electrical probe 402 (FIG. 4) is engaged to the upper surface of the workpiece 212.
  • a plasma process is run, dunng which a DC bias will form at the workpiece 212
  • This DC bias can then be directly measured as detected by the probe, and correlated to the RF peak voltage measured as detected from the pickup 222
  • the DC bias and RF peak values can be compared at several power settings and a relationship there between can be determined
  • the plasma reactor system 200 is calibrated
  • the plasma reactor 200 can be set for automatic adjustment by generating an error signal 318 with sufficient amplification through amplifier 320, to maintain RF peak voltage at the electrode 214, by continuously adjusting the output of RF power source 218
  • the plasma reactor uses capacitively coupled electrodes to generate a plasma withm the chamber
  • This embodiment of the invention operates substantially similarly to the above descnbed embodiment by detecting a peak RF voltage of a bias RF signal at a chuck electrode and feeding back a signal to the bias generating RF power source to control the bias RF signal
  • another parameter such as delivered current or power could be chosen as the control parameter in the feedback scheme, although the relationship to the sheath bias would be different In particular, the real part of the current would be related to plasma density
  • a mechanical chuck holds the workpiece using clamps as descnbed in the background of the invention
  • this embodiment of the invention would operate substantially similarly to the above descnbed embodiments to maintain consistent plasma parameters by monitonng peak RF voltage at the chuck electrode and feeding back a control signal to the bias RF power source
  • the present invention provides an effective and accurate way to perform a plasma process with a consistent and predicable DC bias This consistent DC bias ensures that process parameters such as etch rate are predictable and consistent, resulting in higher quality semiconductor wafers and increased production yield

Abstract

A plasma reactor system with controlled DC bias for manufacturing semiconductor wafers and the like. The reactor system includes a plasma chamber (202), a plasma generating coil (201) and a chuck (210) including a chuck electrode (214). The chuck supports a workpiece (212) within the chamber. The plasma reactor system further includes a pair of generators, one of which (206) supplies a radio frequency signal to the plasma generating coil. The second generator (218) delivers an RF signal to the chuck electrode and acts to control DC bias at the workpiece. Peak voltage sensor circuitry and set point signal circuitry controls the power output of the generator, and a matching network coupled between the generator and the first electrode matches the impedance of the RF signal with the load applied by the plasma. DC bias determines the energy with which plasma particles impact the surface of a workpiece and thereby determines the rate at which the process is performed. This DC bias forms at the surface of the workpiece upon generation of a plasma in the plasma chamber and is affected by the RF signal applied to the chuck electrode. Since power losses within the match network are variable and unpredictable, the peak voltage at the electrode can not be consistently maintained by simply applying a predetermined generator output. By monitoring the peak voltage at the electrode and generating a corresponding control signal to control the generator, a consistent DC bias and corresponding process rate can be maintained.

Description

VOLTAGE CONTROL SENSOR AND CONTROL INTERFACE FOR RADIO FREQUENCY POWER REGULATION IN A PLASMA REACTOR
BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION
The present invention relates to plasma processing systems and, more particularly, to methods and apparatus for controlling radio frequency delivery in a plasma reactor through momtoπng and feedback of an electπcal parameter, in particular a peak voltage
BACKGROUND ART Ionized gas, or plasma, is commonly used duπng the processing and fabncation of semiconductor devices For example, plasma can be used to etch or remove matenal from semiconductor integrated circuit wafers, and to sputter or deposit matenal onto semiconducting, conducting or insulating surfaces
With reference to FIG 1 A, creating a plasma for use in manufactunng or fabncation processes typically begins by introducing vanous process gases into a plasma chamber 10 of a plasma reactor, generally designated 12 These gases enter the chamber 10 through an inlet 13 and exit through an outlet 15 A workpiece 14, such as an integrated circuit wafer is disposed in the chamber 10 held upon a chuck 16 The reactor 12 also includes plasma density production mechanism 18 (e g a TCP coil) A plasma inducing signal, supplied by a plasma inducing power supply 20 is applied to the plasma density production mechanism 18 The plasma inducing signal is preferably a radio frequency (RF) signal A dielectric window 22. constructed of a matenal such as ceramic, incorporated into the upper surface of the chamber 10 allows efficient transmission of the first RF signal from the TCP coil 18 to the mtenor of the grounded chamber 10 This first RF signal excites the gas molecules within the chamber, generating a plasma 24
The plasma 24 formed within the chamber 10 includes electrons and positively charged particles The electrons, being lighter than the positively charged particles tend to migrate more readily, causing a sheath to form at the surfaces of the chamber 10 A self biasing effect causes a net negative charge at the inner surfaces of the chamber This net negative charge, or D C sheath potential acts to attract the heavier positively charged particles toward the wall surfaces
The strength of this D C bias in the location of the workpiece 14 largely determines the energy with which the positively charged particles will stnke the workpiece 14 and correspondingly affects the desired process (e g etch rate, or deposition rate) The present invention will be more readily understood by beanng in mind the distinction between DC bias and DC sheath potential DC bias is defined as the difference in electncal potential between a surface withm the chamber 10 and ground DC sheath, on the other hand is defined as the difference between the plasma potential and the potential of a surface within the chamber as measured across the plasma sheath
The workpiece is held upon a chuck 16 is located at the bottom of the chamber 10 and constitutes a chuck electrode 26 A bias RF power source 28 supplies a biasing RF signal to the chuck electrode 16 Alternatively, in some systems the both the plasma density signal and bias signal are in fact a single signal produced by a single power source This second excitation signal, preferably in the form of a RF signal, at the second electrode increases the DC bias at the location of the workpiece, depending on the disposition of the RF electnc field withm the chamber 10, and this increases the energy with which the charged particles stnke the workpiece Vanations m the RF signal supplied to the second electrode 16 produce corresponding vanations in the D C bias at the workpiece affecting the process With continued reference to FIG 1 A, the bias RF power source 28 descnbed above supplies a R F signal to the chuck electrode 26 This signal passes through a match network 30 disposed between the bias RF power source 28 and the chuck electrode 26 The match network 30 matches the impedance of the RF signal with the load exhibited by the plasma A similar match network 31 is provided between the power inducing power source 20 and the TCP coil 18 As discussed above, the control and delivery of the RF signal at the chuck electrode 26 is of fundamental importance in plasma processing Significant vanance in actual power delivered may unexpectedly change the rate of the process Unfortunately, the match network 30 generates significant losses in the RF signal Furthermore, these losses are vanable and, to a degree, unpredictable Therefore, simply supplying a predetermined RF signal power from the RF power source 28 does not ensure that a predictable and consistent RF signal will be delivered at the electrode 26
With continued reference to FIG 1 A. one method which has been used to attach the workpiece 14 to the chuck 16 has been to provide the chuck with clamps 32 which contact the surface of the workpiece along its edges to hold the workpiece to the chuck Using such a chuck 16 (and to the extent that the workpiece is somewhat conductive) it is possible to measure the
D C bias directly by installing a pickup 33 at the electrode 26 and transmitting a voltage signal to a voltage sensor 34 The power source could then be feedback controlled to maintain a constant measured D C bias However, using such clamps 32 to attach the workpiece 14 to the chuck 16 presents multiple problems For one, valuable surface area may be wasted on the workpiece due to its engagement with the clamps 32. In addition, any such contact of clamps 32 to the workpiece 14 is undesirable due the risk of damage to the workpiece 14, and the generation of particles.
With reference to FIG IB, another method which has been used to hold the workpiece onto the electrode has been to provide an electrode in the form of an electrostatic chuck 36. In its most general sense an electrostatic chuck includes an electrode 38 which is covered with an insulator 40. The electrically conductive workpiece 14,which is generally semiconductive, sits on the electrically insulating material. When a DC voltage is applied to the electrode 38, the electrode and workpiece 14 become capacitively coupled resulting in opposite electrical charges on each, attracting the workpiece 14 and electrode 38 toward one another. This acts to hold the workpiece against the chuck 36.
More particularly, the electrostatic chuck 36 can be understood with reference to FIG. 1C in addition to FIG. IB. In this bipolar implementation, the electrode 38 of the electrostatic chuck 36 includes first and second electrically conducive portions 42 and 44, which are electrically isolated from one another. A DC voltage from a D.C. voltage source 46, passes through a filter
47 before being applied between the first and second portions 42 and 44 of the electrode 38. This causes the desired electrostatic attraction between the electrode 38 and the workpiece 14, thereby holding the workpiece to the chuck 36.
With reference to FIG. ID, a simpler version of electrostatic chuck is illustrated. This simpler form of electrostatic chuck, termed a mono polar chuck 37 is shown in plan view in ID.
By applying a DC potential between the workpiece 14 and the chuck an electrostatic charge on each holds the workpiece to the chuck. It will be appreciated by those skilled in the art that numerous other forms of electrostatic chuck are possible as well.
However, use of such an electrostatic chuck 36 renders a direct measurement of the D.C. bias at the workpiece impractical. End users are averse to having their sensitive semiconductor products touched by any mechanical probe or electrically conductive item such as a voltage sensor. In addition, it would be difficult to maintain sensor accuracy and longevity in the plasma environment. Correlating the D.C. voltage by measuring the power of the RF signal at the electrode 16 is also difficult and does not provide an accurate measurement of the D.C. sheath potential due, in part, to the capacitive coupling between the electrode and the workpiece.
Therefore, there remains a need for system for controlling R.F. power at an electrode to maintain a consistent D.C. sheath potential. Such a system would preferably not involve contact with a workpiece, would not require placing a sensor with the plasma environment of the plasma chamber, and would account for variable and unpredictable power losses through a match network.
SUMMARY OF THE INVENTION
The present invention provides a plasma reactor having a chamber and a chuck supporting a workpiece withm the chamber The chuck includes a chuck electrode which receives a bias radio frequency (RF) signal from a bias RF power source The RF signal at the electrode affects the plasma, and more particularly affects the DC bias A sensor measures a parameter of the plasma, such as for example the peak voltage of the RF signal delivered to the electrode which is compared with the desired set point and from which an error signal is denved The error signal is then amplified and used to control the RF power source Typically, a match network, located between the bias RF power source and the chuck, matches the impedance of the plasma load to that of the output (typically 50 Ohms) of the RF power source The maintenance of a consistent RF signal at the electrode is of importance in maintaining a consistent DC bias at the workpiece and a correspondingly consistent process For instance the RF delivery system is subject to losses such that process results may not be predictable and constant For example, the match network generates substantial power losses in the RF signal, these losses being vanable and, to an extent, unpredictable By sensing the RF peak voltage near the electrode and using that sensed voltage to generate a coπesponding error signal to control the power supply, a consistent D C bias can be maintained at the workpiece m spite of the vanation in transmission, such as for example those generated by the match network More particularly, the present invention is preferably embodied in an inductive plasma reactor having a Transformer Coupled Plasma (TCP) reactor coil This coil can be located outside of the plasma chamber and is separated from the plasma by a ceramic window, provided m wall of the chamber A plasma generating RF source supplies a RF signal to the TCP coil A gas flows through the chamber, and is ionized by RF current induced from the TCP coil The RF current is coupled to the plasma pnmanly by magnetic induction through a dielectric window
The fundamental purpose of the TCP coil and the signal supplied thereto is to generate plasma density
As the plasma is formed, the electrons, which tend to migrate more easily than the positive ions, develop a net negative charge on the at the inner surfaces of the chamber as well as at the workpiece supported upon the chuck This net charge generates a DC bias which determines the energy with which the positively charged particles stnke the surface of the workpiece and thereby is a pnmary factor m determining the process results A pickup connected to the electrode receives the RF signal delivered to the electrode. This signal is then passed through a lead wire to the RF sensor which is located as close to the chuck electrode as is possible without risking arcing between the sensor and the chuck electrode. Placing the sensor close to the electrode minimizes the length of lead wire necessary to transmit the RF signal to the sensor, thereby minimizing inductive and resistive affects of the lead wire upon the signal.
Within the sensor, the RF signal is divided and separated into AC and DC components. If desired, the DC component can be used to monitor electrostatic chuck function. However that is not a necessary component of the present invention. The AC signal component then passes through a surge protection circuit before being fed to a balanced detector circuit. The balanced circuit ensures that the AC signal is symmetrically loaded about the zero volt axis, ensuring that the signal does not generate a spurious DC component which would induce error into the system. The AC signal is then passed through an amplifier circuit which includes a feedback circuit and incorporating rectification and peak hold circuitry to yield a DC equivalent of the RF peak voltage. Matched diodes in both arms of the amplifier circuit, together with the diode in the balance circuit, ensure that any non-linearity is largely compensated or in the DC equivalent signal at the output of the amplifier.
This DC equivalent signal is then passed through a differential buffer and an amplifier with gain and offset adjustment before being delivered as an output signal. This same signal is then compared with the desired setpoint to derive an error signal which is passed through a high gain amp and through a power limit circuit which protects the electrode from being damaged by a surge. The signal passes to the generator to provide a RF generator as a command to control the power produced.
Alternatively the present invention can be used with a capacitively coupled plasma reactor. In such an electrode capacitively coupled with the chuck electrode replaces the TCP coil described above. In addition, the present invention can be used with a mechanical chuck rather than an electrostatic chuck obviating the need to place a sensor within the plasma environment.
By detecting the RF peak voltage delivered at the electrode, the present invention accurately and efficiently controls the RF signal delivered to the chuck elecrode, allowing a consistent DC bias to be maintained. In this way, the plasma reactor can consistently produce high quality uniform workpieces.
While the invention has been described in terms of using RF peak voltages delivered to the electrode, it should be appreciated that other process parameters can be monitored as well and used in a feedback system to control the process. By way of example, the current supplied to the coil could be monitored and used in a feedback system.
These and other advantages of the present invention will become apparent to those skilled in the art upon a reading of the following descriptions of the invention and a study of the several figures of the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The present mvention will be readily understood by the following detailed description in conjunction with the accompanying drawings, with like reference numerals designating like elements. Figure 1 A is a schematic diagram of a plasma reactor system of the prior art;
Figure IB is a schematic diagram of another plasma reactor of the prior art;
Figure 1C is an expanded view, taken from line 1C-1C of FIG. IB, of anelectrostatic chuck of the prior art;
Figure ID is a plan view of a mono polar electrostatic chuck of the prior art; Figure 2 A is a schematic view of a plasma reactor system of the present invention;
Figure 2B is a view, shown enlarged, taken from area 2B of FIG. 2A;
Figure 3 A is a block diagram of circuitry within sensor 226 of FIG. 2B;
Figure 3B is a schematic of AC divider and clamp protection circuitry
Figure 3C is a schematic of a balancing circuit; Figure 3D is a schematic of an amplifier circuit
Figure 3E is a schematic of a set point summing circuit;
Figure 4 is a view taken from area 4 of FIG. 2B of the present invention in calibration mode;
Figure 5 is a process diagram of a method of calibrating the plasma reactor of the present invention and;
Figure 6 is a process diagram of a method of controlling RF signal generation according to the present invention
DETAILED DESCRIPTION OF THE PREFERED EMBODIMENTS
Figures 1A, IB and 1C have been discussed with reference to the background art.
With reference to FIG. 2A, the present invention is embodied in a plasma reactor system, generally referred to as 200. The plasma reactor 200 includes a plasma chamber 202 and a
Transformer Coupled Plasma (TCP) coil 204 disposed outside and above the plasma chamber 202. The plasma chamber 202 further includes a gas inlet 203 and a gas outlet 205. The TCP coil 204 is coupled with a plasma generation power source 206 which provides a plasma generating Radio Frequency (RF) signal. A match network 207 is included between the plasma generation power source 206 and the TCP coil 204. A ceramic window 208 located adjacent the
TCP coil 204 in the upper wall of the chamber 202 allows efficient transmission of the plasma generating RF signal into the plasma chamber 202. An electrostatic chuck 210, located at the bottom of the chamber 202, supports a workpiece 212.
With continued reference to FIG. 2A, the electrostatic chuck includes a chuck electrode 214. The chuck electrode 214 includes first and second electrically conductive portions 216a and 216b which are electrically isolated from one another. The chuck electrode 214 is surrounded by an electrical insulator 217. By applying a DC voltage across the conductive portions as discussed in the prior art an electrostatic coupling is created between the portions 216 and the workpiece 212. This coupling attracts the workpiece 212 holding it fast against the chuck 210.
A bias RF power source 218 is coupled with a match network 220 which is further coupled with the chuck electrode 214. A pickup 222 extends into the chuck 210 electrically connecting with the chuck electrode 214. This pickup 222 is coupled via a lead wire 224 with a RF peak voltage sensor 226. This RF peak voltage sensor generates a monitor signal which is combined with the set point in summing circuitry 228 to generate a control signal which may optionally then be used to control the bias generating power source 218.
In operation, a gas capable of ionization flows into the chamber 202 through the gas inlet 203 and exits the chamber through the gas outlet 205. A plasma generating RF signal is produced by the RF power source 206 and is delivered to the TCP coil 204. This plasma generating RF signal radiates from the coil 204 through the window 208 and into the chamber
202, where it causes the gas within the chamber 202 to ionize and form a plasma 230 within the chamber. With further reference to FIG. 2A, the plasma produces a sheath 232 along the walls of the chamber 202. The plasma generated withm the chamber 202 includes electrons and positively charged particles. The electrons, being much lighter than the positively charged ions, tend to migrate more readily, generating a DC sheath potential at the surfaces of the chamber 202. This sheath potential being negative tends to attract the positively charged ions and repels further electrons, thus containing them. The average DC sheath potential at the location of the workpiece 212 predominantly determines the energy with which the positively charged ions stnke the workpiece, and is therefore a pnmary determinant of process parameters For instance it will affect the rate at which etching or deposition take place The amount of DC bias at the workpiece, and corresponding process conditions, can be altered, e.g. the rate increased, by applying an RF signal to the chuck electrode. To this end, a RF signal is generated by the RF power source 218 This RF signal then passes through the match network 220 which matches the impedance of the RF generator, typically 50Ω, to that presented by the plasma load 230 This matched signal then passes to the chuck electrode 214, which being capacitively coupled with the workpiece, passes the signal to the workpiece through the insulator 217 of the chuck 210
With continued reference to FIG. 2A, substantial power losses may occur as the signal passes through the match network 220. Furthermore, as discussed in the Background of the Invention, these losses are vanable and difficult to predict. In order to account for these vanable and unpredictable power losses the pickup 222 collects the peak voltage of the RF signal at the chuck electrode and passes this voltage to the voltage sensor 226 through the lead wire 224 With reference to FIG. 2B the length of the lead wire should be as short as possible to minimize inductive and resistive effects on the transmission of the pickup signal, while at the same time providing sufficient distance "d" between the sensor 226 and the chuck 210 to prevent electncal arcmg between the chuck and the sensor
With reference to FIG. 3 A, the feedback circuitry 301 will be descnbed The sensor circuitry 226 receives the RF signal from the lead wire 224 The sensor circuitry 226 contains both a DC divider for ESC clamp monitonng (unrelated to the present mvention) and a separate AC divider with clamp protection circuitry 304 whose output is a fraction of the incoming RF, which is then sent on to a balancing circuit 306. The balancing circuit 306 ensures that the RF signal is symmetπcally balanced about the zero volt axis, preventing DC offset errors from being introduced mto the system. The balanced AC signal is then passed to an amplifier circuit 308 which includes rectification and feedback circuitry which converts the RF signal into a DC signal corresponding to the RF peak value The sensor circuitry 226 produces a DC monitor signal 310 This DC monitor signal 310 produced by the sensor circuitry provides an accurate indication of the RF peak value at the electrode 214. With continuing reference to FIG. 3 A, this DC monitor signal 310 then is passed to a differential ground compensating buffer amplifier 314 and then through a gain and offset adjustment stage 316 which outputs a DC signal 319 suitably scaled representing the RF peak value at the electrode 214. This DC output signal 319 is summed in appropriate phase with a DC set point command signal 330 in the set point summing circuitry 228, as will be described in further detail below, to generate a generator command signal 326.
With reference to Fig. 3B, the AC divider and clamp protection circuitry 304 receives the RF signal through the input 302. This signal is passed through relatively low capacitance high voltage capacitors 332 arranged in series with one another. The signal passes through a junction
334 connected to a relatively larger capacitor 336 to ground, thus forming a potential divider. The relatively small capacitors 332 and the relatively large capacitor 336 is selected to define a divider ratio on the order of 100/1. A midpoint 338 connects reversed biased protection diodes (344a & b) on each side leading to the voltage supply rails which are decoupled to ground through capacitors (340a & b) The signal then passes through a current limiting resistor 347 before being passed to the balancing circuit 306.
With reference to Fig. 3C, the balancing circuit will be described in greater detail. The balancing circuit receives the signal from the AC divider and clamp protection circuitry 304 at an input 348. The signal passes to a junction 350 having on one side a first circuit 352 including a first type matched balancing diode 354, a capacitor 356 a resistor 358, and a connection to ground 360 is arranged as shown. Opposite the first circuit 352 is a second circuit. The second circuit 362 includes a second type matched detection diode 364 resistors 366, 368 and capacitor.
With reference to Fig. 3D, after passing through the second circuit 362 of the balancing circuit 306, (Fig. 3C), the signal passes to the amplifier circuit 308 through an input 371. The amplifier circuit 308 includes a precision op amp 372 having positive and negative voltage sources 374, 376 applied thereto. The amplifier circuit also includes a feedback loop 377, including a third matched compensation diode 378, resistor 380 and capacitor 382 all in parallel with one another. The resistor 380 provides DC feedback, and in combination with a resistor 384 to ground sets the DC gain, especially at low signal levels. The capacitor 382 forms a filter time constant with resistor 380 to ensure stability.
With reference to Figs. 3C and 3D, two of the type matched diodes, 354, and 364, (Fig.
3C) are manufactured on the same chip in the same thermal package inorder to have exactly the same performance characteristics as one another, and with the further type matched diode 378
(Fig. 3D) act to minimize the effects of forward voltage drops across the detecting diode, 364. The signal exits the amplifier circuit 308 through an output 386 in the form of the DC monitor signal 310 described with reference to Fig. 3 A. This monitor signal 310 passes to the differential ground offset compensating buffer amplifier 314 and the gain and offset adjustment stage 316 and then to the set point summing circuitry 228 as previously discussed. With reference to Fig. 3E, the set point summing circuitry 228 receives a DC output signal 319 suitably scaled, representing the RF peak value at the electrode 214 as shown in Fig. 2B. This DC output signal is summed in appropriate phase with the DC set point command signal 330, thus generating an error signal for feedback control at the output of the summing junction 388. The output signal from 388 then passes through a high gain amp 390 and a power set point limit circuit 392. The power limit circuit prevents damage to the system by preventing a power-surge when the bias power source 218 is swtiched to voltage control, or whenever the voltage control loop becomes unstable or goes open loop for any reason. The signal then passes through a final filter/buffer amp 394, through a switch 396 and then to the power source 218 (Fig. 2A) in the form of an RF generator command signal 326 which can be controlled either by the feedback circuitry as described or by using the command signal 330 as a simple forward power set point if desired.
With reference to Figure 6, the circuitry 226 shown in FIG. 3A operates according to a process 600, which begins with a step 602 of detecting a peak RF voltage. Then, in a step 604, the DC representation of the RF peak voltage signal is processed for ground restoration, gain and offset to yield a monitor signal 319. In a step 606 the monitor signal 319 is summed in appropriate phase with a command setpoint signal 330, to generate an error signal 318 (Fig 3E). In a step 607, the error signal 318 is further amplified and then limited to a safe level for output as the generator command signal. Finally, in a step 608, after selection of direct power or voltage feedback mode, the power source 218 is driven according to the direct or modified command signal respectively. As illustrated in FIG. 6, the method 600 when conducted in a negative feed back control fashion acts to maintain a desired sensed parameter, in this instance peak RF voltage applied at the chuck.
With reference to FIG.s 4 and 5, in order to determine the relationship between bias voltage at the workpiece 212 and the peak voltage of the delivered signal, the plasma reactor system 200 must first be calibrated. FIG. 5, illustrates a process 500 for calibrating the reactor system 200. The process 500 begins with a step 502 in which a workpiece is placed into the chamber in the usual manner. The wafer used for calibration should be expendable, somewhat conductive, and not intended for production, for reasons which will become apparent. In a step 504, an electrical probe 402 (FIG. 4) is engaged to the upper surface of the workpiece 212. Attaching the probe directly to the upper surface of the workpiece allows a direct measurement of the RF induced DC self bias dunng operation of the plasma reactor 200 However, direct contact with the upper surface of the workpiece nsks damaging the semiconductor workpiece, and for this reason the workpiece used should only be intended for calibration and not for production Then, in a step 506, a plasma process is run, dunng which a DC bias will form at the workpiece 212 This DC bias can then be directly measured as detected by the probe, and correlated to the RF peak voltage measured as detected from the pickup 222 Then, in a step 508, the DC bias and RF peak values can be compared at several power settings and a relationship there between can be determined Finally in a step 510, the plasma reactor system 200 is calibrated
In use, the plasma reactor 200 can be set for automatic adjustment by generating an error signal 318 with sufficient amplification through amplifier 320, to maintain RF peak voltage at the electrode 214, by continuously adjusting the output of RF power source 218
In an alternate embodiment of the invention, not shown, the plasma reactor uses capacitively coupled electrodes to generate a plasma withm the chamber This embodiment of the invention operates substantially similarly to the above descnbed embodiment by detecting a peak RF voltage of a bias RF signal at a chuck electrode and feeding back a signal to the bias generating RF power source to control the bias RF signal Similarly, with a suitable sensor another parameter such as delivered current or power could be chosen as the control parameter in the feedback scheme, although the relationship to the sheath bias would be different In particular, the real part of the current would be related to plasma density
In yet another embodiment of the invention, also not shown, a mechanical chuck holds the workpiece using clamps as descnbed in the background of the invention Again this embodiment of the invention would operate substantially similarly to the above descnbed embodiments to maintain consistent plasma parameters by monitonng peak RF voltage at the chuck electrode and feeding back a control signal to the bias RF power source
In summary, the present invention provides an effective and accurate way to perform a plasma process with a consistent and predicable DC bias This consistent DC bias ensures that process parameters such as etch rate are predictable and consistent, resulting in higher quality semiconductor wafers and increased production yield
While the invention has been descnbed herein in terms of a preferred embodiment, other embodiments of the invention, including alternatives, modifications, permutations and equivalents of the embodiments descnbed herein, will be apparent to those skilled in the art from consideration of the specification, study of the drawings, and practice of the invention. The embodiments and preferred features described above should be considered exemplary, with the invention being defined by the appended claims, which therefore include all such alternatives, modifications, permutations and equivalents as fall within the true spirit and scope of the present invention.

Claims

What is claimed is
1 A plasma reactor system for use m the processing and manufacture of a workpiece, the plasma reactor system compnsmg a plasma chamber for containing a plasma therein and having an mtenor configured for support and plasma processing of the workpiece, a workpiece support electrode disposed at least partially within said plasma chamber, at least one vanable power source supplying an electncal signal to said electrode, and feedback circuitry including a sensor circuit for sensing at least one parameter related to said plasma and generating an error signal corresponding to deviations in said parameter through use of a summing amplifier providing negative feedback control responsive to said deviations of said parameter
2 A plasma reactor system for use in the processing and manufacture of a workpiece, the plasma reactor system compnsing a plasma chamber for containing a plasma therein and having an mtenor configured for support and plasma processing of the workpiece, a workpiece support electrode disposed at least partially within said plasma chamber, a first vanable power source supplying an electncal signal to said electrode, wherein said first power source is capable of being the pnnciple source bias in said plasma, a second vanable power source, said second power source being pnmanly for generation of said plasma, and feedback circuitry including a sensor circuit for sensing at least one parameter related to said plasma and generating an error signal conesponding to deviations m said parameter through use of a summing amplifier providing negative feedback control responsive to said deviations m said error signal
3. A plasma reactor as recited in claims 1 or 2, wherein said parameter related to said plasma is an electrical signal.
4. A plasma reactor as recited in claim 1, wherein said parameter related to said plasma is an optical signal.
5. A plasma reactor as recited in claim 3, further comprising a pickup for sensing said electrical signal.
6. A plasma reactor as recited in claim 5 wherein said pickup is connected with said electrode.
7. A plasma reactor as recited in claim 6 wherein said pickup is disposed at least partially within said electrode.
8. A plasma reactor as recited in claim 3 wherein said parameter of said plasma is a power value of said electrical signal supplied to said electrode.
9. A plasma reactor as recited in claim 3 wherein said parameter of said plasma is a voltage value of said electrical signal supplied to said electrode.
10. A plasma reactor as recited in claim 3 wherein said parameter of said plasma is a peak voltage value of said electrical signal supplied to said electrode.
11. A plasma reactor as recited in claim 3 wherein said parameter is a current value of said signal supplied to said electrode.
12. A plasma reactor as recited in claim 3 wherein said parameter is a combination of complex voltage and current values of said electrical signal supplied to said electrode.
13. A plasma reactor as recited in claim 1 wherein said parameter of said plasma is a phase value of said electrical signal supplied to said electrode.
14 A plasma reactor as recited in claim 1 or 3 wherein said electrical signal is a radio frequency signal.
15. A plasma reactor system as recited in claim 1 or 3. wherein said electrical signal is a microwave signal.
16. A plasma reactor system as recited in claim 14 wherein said radio frequency signal induces a direct current bias voltage across a plasma sheath at said electrode and wherein said peak voltage sensed by said sensor correlates to said direct current bias voltage.
17. A plasma reactor system as recited in claim 1 wherein said sensor circuitry is located outside of said chamber.
18. A plasma reactor system as recited in claim 5 wherein said sensor circuitry is as close coupled as possible with said pickup.
19. A plasma reactor system as recited in claim 5, further comprising a conduit coupled between said pickup and said sensor circuitry to transmit said signal therebetween.
20. A plasma reactor system as recited in claim 19 wherein said pickup is at least partially disposed within said electrode.
21. A plasma reactor system as recited in claim 1 further comprising a match network connected between said power source and said electrode.
22 A plasma reactor svstem as recited in claim 21 wherein said sensor circuitry is coupled between said match network and said electrode
23 A plasma reactor system as recited in claim 1 wherein said chamber is connected with and electncally insulated from said electrode
24 A plasma reactor system as recited in claim 1 or 2 wherein said feedback circuitry further includes a balancing circuit
25 A plasma reactor system as recited in claim 24 further compnsing a plurality of type matched diodes m said feedback circuitry at least two of said type matched diodes being arranged in a compensating fashion having precisely matched charactenstics in a common thermal package to minimize error in detection circuit
26 A method for controlling power supplied to a plasma reactor, the plasma reactor being useful m the process and manufacture of a workpiece through reaction with a plasma contained therein, the method compnsing generating an electncal signal, dehvenng said signal to at least one electrode withm the plasma reactor, sensing at least one parameter relating to said plasma, generating an error signal corresponding to said at least one parameter, and controlling said power source based upon said error signal
27 A method as recited in claim 26 wherein said parameter includes a voltage of said electncal signal
28 A method as recited in claim 27 wherein said parameter includes a peak voltage of said electncal signal
29. A method as recited in claim 26 wherein said parameter includes a power value of said electrical signal.
30. A method as recited in claim 26 wherein said parameter is a phase value of said electrical signal.
31. A method as recited in claim 26 wherein said parameter is a current value of said electrical signal.
32. A method as recited in claim 26 wherein said parameter is a combination of complex voltage and current of said electrical signal.
33. A method as recited in claim 26 wherein said parameter is an impedance of said electrical signal.
34. A method as recited in claim 26 wherein said parameter is an immittance of said electrical signal.
35. A method as recited in claim 26 further comprising the step of combining said error signal with a set point signal to generate a command signal capable of driving said power source.
36. A method as recited in claim 26 further comprising the step of matching a load presented by the plasma with said electrical signal.
37. A method as recited in claim 26 wherein said electrical signal is provided by a low impedance power source providing a signal which roughly matches the load presented by the plasma.
38. A method as recited in claim 26 wherein said signal is a radio frequency signal having a peak voltage and wherein said parameter is said peak voltage of said electrical signal.
39. A method as recited in claim 38 further comprising the step of generating a plasma, said plasma creating a DC bias which is correlated to said peak voltage of said radio frequency signal.
40. A method as recited in claim 28 wherein said peak voltage is detected from a pickup located at least partially within said electrode.
41. A method as recited in claim 38 wherein said step of generating an error signal includes the step of generating a DC signal which is a valid representation of said peak voltage of said radio frequency signal.
42. A method as recited in claim 26 wherein said step of controlling said power source is performed manually (i.e. external loop closure).
43. A method as recited in claim 26 wherein said step of controlling said power source is performed automatically (e.i. a closed loop system).
44. A method for controlling power supplied to a plasma reactor, the plasma reactor being useful in the process and manufacture of a workpiece through reaction with a plasma contained therein, the method comprising: generating an electrical signal; supplying said electrical signal to a coil to thereby strike a plasma within the reactor; sensing at one parameter of said signal; generating an error signal corresponding to said at least one parameter; and controlling said power source based upon said error signal.
45. A method as recited in claim 44 wherein said parameter is a current.
46. A method as recited in claim 45 wherein said parameter is a voltage.
47. A method as recited in claim 46 wherein said parameter is a combination of complex current and voltage.
PCT/US2000/026614 1999-09-30 2000-09-27 Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor WO2001024221A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001527315A JP4828755B2 (en) 1999-09-30 2000-09-27 Plasma reactor system, method for controlling power supplied to plasma reactor, and plasma processing system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US41018399A 1999-09-30 1999-09-30
US09/410,183 1999-09-30
US09/557,684 2000-04-25
US09/557,684 US6509542B1 (en) 1999-09-30 2000-04-25 Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor

Publications (1)

Publication Number Publication Date
WO2001024221A1 true WO2001024221A1 (en) 2001-04-05

Family

ID=27020902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/026614 WO2001024221A1 (en) 1999-09-30 2000-09-27 Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor

Country Status (2)

Country Link
TW (1) TW538426B (en)
WO (1) WO2001024221A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324698A (en) * 2001-04-06 2002-11-08 Eni Technologies Inc Pulsed intelligent rf modulating controller
CN103648230A (en) * 2010-03-23 2014-03-19 中微半导体设备(上海)有限公司 A switchable radio frequency power source system
CN112530773A (en) * 2020-11-27 2021-03-19 北京北方华创微电子装备有限公司 Semiconductor processing equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7480571B2 (en) * 2002-03-08 2009-01-20 Lam Research Corporation Apparatus and methods for improving the stability of RF power delivery to a plasma load
TWI747149B (en) * 2019-01-31 2021-11-21 美商鷹港科技股份有限公司 Precise plasma control system and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472561A (en) * 1993-12-07 1995-12-05 Sematech, Inc. Radio frequency monitor for semiconductor process control
US5543689A (en) * 1993-12-27 1996-08-06 Fujitsu Limited High frequency power source having corrected power output
EP0840349A2 (en) * 1996-11-04 1998-05-06 Applied Materials, Inc. RF tuning method for an RF plasma reactor using frequency servoing power, voltage, current or dI/dt control
US5754297A (en) * 1994-01-28 1998-05-19 Applied Materials, Inc. Method and apparatus for monitoring the deposition rate of films during physical vapor deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472561A (en) * 1993-12-07 1995-12-05 Sematech, Inc. Radio frequency monitor for semiconductor process control
US5543689A (en) * 1993-12-27 1996-08-06 Fujitsu Limited High frequency power source having corrected power output
US5754297A (en) * 1994-01-28 1998-05-19 Applied Materials, Inc. Method and apparatus for monitoring the deposition rate of films during physical vapor deposition
EP0840349A2 (en) * 1996-11-04 1998-05-06 Applied Materials, Inc. RF tuning method for an RF plasma reactor using frequency servoing power, voltage, current or dI/dt control

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324698A (en) * 2001-04-06 2002-11-08 Eni Technologies Inc Pulsed intelligent rf modulating controller
JP2011109674A (en) * 2001-04-06 2011-06-02 Mks Instruments Inc Pulsing intelligent rf modulation controller
CN103648230A (en) * 2010-03-23 2014-03-19 中微半导体设备(上海)有限公司 A switchable radio frequency power source system
CN112530773A (en) * 2020-11-27 2021-03-19 北京北方华创微电子装备有限公司 Semiconductor processing equipment
CN112530773B (en) * 2020-11-27 2023-11-14 北京北方华创微电子装备有限公司 Semiconductor processing equipment

Also Published As

Publication number Publication date
TW538426B (en) 2003-06-21

Similar Documents

Publication Publication Date Title
US6509542B1 (en) Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor
JP4897195B2 (en) Plasma processing method, plasma processing apparatus, and manufacturing method of plasma processing apparatus
US6174450B1 (en) Methods and apparatus for controlling ion energy and plasma density in a plasma processing system
US6876155B2 (en) Plasma processor apparatus and method, and antenna
US8901935B2 (en) Methods and apparatus for detecting the confinement state of plasma in a plasma processing system
JP3614855B2 (en) Method of releasing work piece from electrostatic chuck
JP5334914B2 (en) Plasma processing equipment
JP5629891B2 (en) Vacuum plasma processor including control responsive to DC bias voltage
US8241457B2 (en) Plasma processing system, plasma measurement system, plasma measurement method, and plasma control system
KR20130018459A (en) Plasma processing apparatus and plasma processing method
US10663491B2 (en) Voltage-current probe for measuring radio-frequency electrical power in a high-temperature environment and method of calibrating the same
WO2001024221A1 (en) Voltage control sensor and control interface for radio frequency power regulation in a plasma reactor
JP2003224112A (en) Plasma treatment device and plasma treatment method
US7105080B2 (en) Vacuum treatment system and method of manufacturing same
JP2001007089A (en) Plasma treatment method and apparatus
Gesche RF Matching of a Reactive Ion Etching (RIE) Plasma Reactor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020027003806

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 527315

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1020027003806

Country of ref document: KR

122 Ep: pct application non-entry in european phase