WO2001024591A1 - Apparatus for charged-particle beam irradiation, and method of control thereof - Google Patents

Apparatus for charged-particle beam irradiation, and method of control thereof Download PDF

Info

Publication number
WO2001024591A1
WO2001024591A1 PCT/JP1999/005250 JP9905250W WO0124591A1 WO 2001024591 A1 WO2001024591 A1 WO 2001024591A1 JP 9905250 W JP9905250 W JP 9905250W WO 0124591 A1 WO0124591 A1 WO 0124591A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
charged particle
particle beam
voltage
value
Prior art date
Application number
PCT/JP1999/005250
Other languages
English (en)
French (fr)
Inventor
Hiroshi Akiyama
Hiroshi Kubo
Kazuo Hiramoto
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2000601279A priority Critical patent/JP3580254B2/ja
Priority to PCT/JP1999/005250 priority patent/WO2001024591A1/ja
Priority to EP99944837A priority patent/EP1220585B1/en
Priority to US09/623,040 priority patent/US6903351B1/en
Priority to AU57605/99A priority patent/AU755928B2/en
Publication of WO2001024591A1 publication Critical patent/WO2001024591A1/ja
Priority to US10/287,656 priority patent/US6900446B2/en
Priority to US10/716,472 priority patent/US6881970B2/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/093Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Definitions

  • the present invention relates to a charged particle beam irradiation apparatus and its control method.
  • the present invention relates to a charged particle beam irradiation apparatus for irradiating a charged particle beam to an irradiation target and a control method thereof.
  • a charged particle beam irradiation device that irradiates a charged particle beam (hereinafter, referred to as a beam) to an irradiation target
  • a charged particle beam irradiation device that irradiates an affected part of a cancer patient with a beam to perform cancer treatment
  • Japanese Patent Application Laid-Open No. 9-1223600 discloses a charged particle peak that divides an affected area into a plurality of irradiation areas and sequentially irradiates each irradiation area with a beam.
  • a system irradiation device is described.
  • the irradiation position of the re-beam is controlled by two scanning electromagnets that generate magnetic fields in directions orthogonal to each other.
  • the configuration of the power supply device for supplying electric power to the scanning electromagnet is not described in detail in the first prior art, it is described in Japanese Patent Application Laid-Open No. 8-88972 (hereinafter referred to as the second prior art). It is conceivable to use an electromagnet power supply device such as this.
  • a filter for removing a pulsating component is provided on the output side of the power supply device in order to improve the control accuracy of the exciting current flowing through the electromagnet.
  • a plurality of irradiation areas are irradiated with the beam in order, so that the exciting current flowing through the scanning electromagnet is, for example, stepwise as shown in FIG. 5 (a). Increase or decrease. Note that the current value is 0
  • the beam irradiation position is kept constant during the fixed period, and the beam irradiation position is changed during the period when the current value changes with time.
  • the period during which the current value changes with time that is, the time required to change the beam irradiation position.
  • the reasons are as follows. For example, as described in the first prior art, when the beam irradiation is stopped when the beam irradiation position is changed, the dead time during which the beam irradiation is not performed while the beam irradiation position is changed Therefore, the longer the time, the longer the treatment time.
  • the time required to change the beam irradiation position must be minimized.
  • the irradiation dose applied during the change of the beam irradiation position must be taken into consideration as the irradiation dose at the affected area. It becomes difficult to equalize the dose. Therefore, it is necessary to minimize the time required for changing the beam irradiation position so that the irradiation dose irradiated during the change of the beam irradiation position becomes negligibly small. That is, the exciting current flowing through the scanning electromagnet must be changed in a short time.
  • the power supply described in the second prior art uses a filter for removing a pulsating component, so that the output voltage is delayed and the exciting current flowing through the scanning electromagnet changes in a short time. It cannot be done.
  • An object of the present invention is to provide a charged particle beam irradiation apparatus capable of uniformly irradiating a charged particle beam to an irradiation target and shortening the irradiation time of the charged particle beam to the irradiation target, and a control device therefor. It is in.
  • a feature of the present invention that achieves the above object is a charged particle beam irradiation apparatus that includes: a scanning electromagnet that deflects a charged particle beam; and a power supply that applies a voltage to the scanning electromagnet, and irradiates a charged particle beam to an irradiation target.
  • the power supply may include a first power supply unit having no filter and a second power supply unit having a filter.
  • the power supply has two power supply units, a first power supply unit without a filter and a second power supply unit with a filter, when the irradiation position of the charged particle beam on the irradiation target is changed,
  • a voltage to the scanning electromagnet from the first power supply section having no filter that is, having no delay element
  • the exciting current flowing through the scanning electromagnet can be changed in a short time. Therefore, the irradiation position of the charged particle beam can be changed in a short time, and the irradiation time of the charged particle beam to the irradiation target can be shortened.
  • the excitation current flowing through the scanning electromagnet can be accurately measured by applying a voltage from which a pulsation component has been removed by the second power supply unit having a filter to the scanning electromagnet. It can be controlled well. Therefore, it is possible to prevent the irradiation position of the charged particle beam from being shifted, and to uniformly irradiate the irradiation target with the charged particle beam.
  • the irradiation target can be uniformly irradiated with the charged particle beam, and the irradiation time of the charged particle beam can be reduced. Can be. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a configuration diagram of a scanning electromagnet power supply in a charged particle beam irradiation apparatus according to a preferred embodiment of the present invention
  • FIG. 2 is a charged particle beam irradiation apparatus according to a preferred embodiment of the present invention
  • FIG. 3 is a view showing a method of irradiating a diseased part with a beam by the charged particle beam irradiation apparatus of FIG. 2
  • FIG. 4 is an irradiation area A 91 in a layered area L 9 of FIG. , A92,...
  • FIG. 5 is a diagram showing the waveform of the exciting current flowing through the scanning electromagnets 23, 24 in FIG. 2
  • FIG. 6 is a diagram showing the scanning electromagnets 2 in FIG. FIG.
  • FIG. 7 is a diagram showing a waveform of a voltage applied to the scanning electromagnet 23 and a waveform of a current flowing through the scanning electromagnet 23 according to the voltage.
  • the configuration diagram of the electromagnet power supply is shown.
  • FIG. 2 shows a charged particle beam irradiation apparatus according to a preferred embodiment of the present invention.
  • the charged particle beam irradiation device shown in Fig. 2 irradiates the affected part of a cancer patient with a rotating particle irradiation device 2 using a charged particle beam (hereinafter, referred to as a beam) accelerated in a synchrotron 1. It is used to treat cancer.
  • the charged particle beam irradiation apparatus of this embodiment divides an affected part into a plurality of layered areas L1 to L9 in the beam traveling direction, and further divides the layered areas L1 to L9.
  • a beam is irradiated to each of the divided irradiation areas A11, A12, ....
  • irradiation dose patient information such as the depth position of the affected part from the body surface, the shape of the affected part, and the dose to be irradiated to the affected part (hereinafter referred to as irradiation dose) is obtained.
  • the control device 3 determines the energy of the beam emitted from the synchrotron 1, the irradiation position of the beam at the affected part, and the irradiation dose of the beam at the affected part based on the input patient information.
  • the energy of the beam is determined based on the depth position from the body surface of each layered region L 1 -L 9.
  • the beam is irradiated in order from the layered region L9 located at the deepest position from the body surface to the layered region L1 located at the shallowest position. The procedure will be described below.
  • a beam emission command is output from the control device 3 to the pre-accelerator 4.
  • the pre-accelerator 4 emits a beam when a beam emission command is input.
  • the beam emitted from the pre-accelerator 4 enters the synchrotron 1.
  • the controller 3 outputs a beam emission command to the pre-accelerator 4 and outputs a current command value to each of the power supply devices (not shown) of the bending electromagnet 12, quadrupole electromagnet 13 and hexapole electromagnet 14.
  • a voltage command value is output to the power supply device (not shown) of the high-frequency acceleration cavity 15.
  • the current command value and the voltage command value are obtained in advance according to the energy of the beam.
  • a current is supplied to the bending electromagnets 12, the quadrupole electromagnets 13 and the hexapole electromagnets 14 from the power supply to which the current command value is given, and a voltage is supplied to the high-frequency acceleration cavity 15.
  • the current supplied to each is set to change according to the acceleration of the beam.
  • the bending electromagnet 12 generates a magnetic field corresponding to the supplied current, and deflects the beam with the magnetic field so that the beam orbits along the orbit of the synchrotron 1.
  • the quadrupole electromagnet 13 controls the tune of the beam (the frequency during which the beam goes around the synchrotron 1) by a magnetic field corresponding to the supplied current.
  • the high-frequency accelerating cavity 15 applies a high-frequency electric field to the beam according to the supplied voltage to accelerate the beam. That is, the energy of the beam is increased.
  • the hexapole electromagnet 14 excites the beam by applying a magnetic field to the beam in accordance with the supplied current. This resonance is used when the beam exits from synchrotron 1.
  • the control device 3 When the beam is accelerated to the energy set by the control device 3 in the synchrotron 1, the control device 3 outputs a voltage command value to a power supply device (not shown) of the high frequency application device 11.
  • This power supply device supplies the input voltage to the high frequency applying device 11.
  • the high-frequency application device 11 generates a high-frequency electric field corresponding to the supplied voltage, and emits the beam from the synchrotron 1 by applying the high-frequency electric field to the beam. Specifically, a high-frequency electric field is applied to the beam by the high-frequency application device 11 while keeping the stability limit constant.
  • the betatron oscillation amplitude of the beam increases and exceeds the stability limit, and the beam that exceeds the stability limit resonates due to the magnetic field of the hexapole electromagnet 14, and the synchrotron Emitted from 1.
  • the beam emitted from the synchrotron 1 is guided to the rotary irradiation device 2.
  • the control device 3 outputs a current command value to a power supply device (not shown) of the bending magnet 21 and the quadrupole magnet 22 while accelerating the beam in the synchrotron 1.
  • the power supply supplies the input current to the bending electromagnet 21 and the quadrupole magnet 22.
  • the beam input to the rotary irradiation device 2 is guided to the scanning electromagnets 23 and 24 along a trajectory set in advance by the bending electromagnet 21 and the quadrupole electromagnet 22.
  • the control device 3 outputs a current command value to the power supply device of the bending electromagnet 21 and the quadrupole electromagnet 22, and outputs the position data of the irradiation areas A 11, A 12... to the scanning electromagnet control devices 25, 26. And output beam energy values.
  • the scanning magnet control devices 25, 2 6 Based on the input position data of the irradiation areas A 1 1, A 1 2... and the value of the beam energy, the scanning magnet control devices 25, 2 6 Calculate the value of the excitation current required by the scanning electromagnets 23, 24 to irradiate each irradiation area A11, A12, .... Further, based on the exciting current value, the voltage value required by the scanning electromagnets 23, 24 to irradiate each irradiation area A11, A12,... With a beam is calculated. Among the obtained voltage values, first, the voltage value corresponding to A91 (irradiation area irradiated first in the layered area L9) is supplied from the scanning electromagnet controller 2526 to the scanning electromagnet power supply 27, Output to 28 as voltage command value.
  • the scanning magnet power supplies 27 and 28 apply voltage to the scanning magnets 23 and 24 based on the given voltage command values.
  • An exciting current according to the applied voltage flows through the scanning electromagnets 23 and 24, and a magnetic field is generated according to the exciting current.
  • the scanning magnet 23 deflects the beam in the X direction and the scanning magnet 24 deflects the beam in the Y direction, respectively, due to the magnetic field.
  • the details of the scanning electromagnet controllers 25 and 26 and the scanning electromagnet power supplies 27 and 28 will be described later.
  • FIG. 4 shows an example of setting an irradiation area in the layered area L9.
  • the dose monitor 29 measures the irradiation dose of the beam irradiating the affected area.
  • the actual value of the beam irradiation measured by the dose monitor 29 is controlled.
  • Input to control device 3. The control device 3 compares the irradiation dose value (set value) obtained in advance with the input actually measured value, and stops emitting light to the sink mouthtron 1 when the actually measured value reaches the set value.
  • Output command More specifically, an emission stop command is output to the power supply device of the high frequency application device 11, whereby the supply of voltage to the high frequency application device 11 is stopped. Therefore, the generation of the high-frequency electric field by the high-frequency application device 11 is stopped, and the emission of the beam from the synchrotron 1 is also stopped.
  • the controller 3 After the irradiation of the beam to the irradiation area A91 is completed in this way, the beam is then irradiated to the irradiation area A92.
  • the controller 3 outputs an irradiation area change command to the scanning electromagnet controllers 25 and 26 when the irradiation of the irradiation area A 91 is completed.
  • the scanning electromagnet controllers 25 and 26 to which the irradiation area change command is input output the voltage value corresponding to A92 to the scanning electromagnet power supplies 27 and 28 as the voltage command value.
  • the scanning electromagnet power supplies 27 and 28 apply a voltage to the scanning electromagnets 23 and 24 based on a given voltage command value, and apply an excitation corresponding to the applied voltage to the scanning electromagnets 23 and 24. Current flows. Then, a magnetic field corresponding to the exciting current is generated in the scanning electromagnets 23 and 24.
  • a high-frequency electric field is applied again to the beam from the high-frequency application device 11 and the beam is emitted from the sink opening 1.
  • the beam emitted from the synchrotron 1 is deflected by the scanning electromagnets 23 and 24, and then is emitted to the irradiation area A92.
  • the irradiation area A 92 is shown in FIG.
  • the excitation current flowing through the scanning electromagnet 24 is different from the irradiation area A 91 in the X direction but not in the Y direction. Irradiation is not changed. That is, when changing the irradiation position of the beam from the irradiation region A91 to the irradiation region A92, only the exciting current flowing through the scanning electromagnet 23 is changed.
  • the measured values obtained by the dose monitor 129 and stored in the control device 3 were used. Compare the set value with and stop emitting the beam from synchrotron 1 when the measured value reaches the set value.
  • each irradiation area A 91, A 92,... Of the layered area L 9 is irradiated with a beam of the set irradiation dose.
  • the excitation current flowing through the scanning electromagnet 24 was not changed, but the beam irradiation position from the irradiation area A 9 m to the irradiation area A 9 n was changed.
  • the irradiation position of the beam is also moved in the Y direction, for example, when the beam is changed, the exciting current flowing through the scanning electromagnet 24 is also changed.
  • the beam is irradiated on each irradiation area of the layered area L8.
  • the procedure for irradiating the layered area L8 with the beam is the same as that for the layered area L9, although the beam energy is different, and the control device 3 controls the synchrotron 1 and the rotary irradiation device 2.
  • a beam is irradiated to the layered region L 8. Thereafter, the same procedure is repeated up to the layered area L 1 to irradiate the entire affected area with the beam. In the case of setting the irradiation area in the affected area as shown in Fig.
  • a scanning electromagnet 23 that deflects the beam in the X direction
  • a scanning electromagnet that deflects the beam in the Y direction
  • the currents are as shown in Figs. 5 (a) and (b), respectively.
  • the exciting current does not change with time
  • the magnetic field generated by the scanning electromagnet does not change, so that the beam irradiation position is controlled to be constant, and conversely, the exciting is performed with respect to time.
  • the magnetic field generated by the scanning electromagnet also changes, so the beam irradiation position moves.
  • FIG. 5 when the exciting current does not change with time, the magnetic field generated by the scanning electromagnet does not change, so that the beam irradiation position is controlled to be constant, and conversely, the exciting is performed with respect to time.
  • the scanning electromagnet 23 deflects the beam in the X direction while the exciting current of the scanning electromagnet 24 deflecting the beam in the Y direction is kept constant.
  • the exciting current of the scanning electromagnet 24 is reduced.
  • the beam is shifted in the Y direction, and the exciting current of the scanning electromagnet 23 is increased stepwise to scan the beam in the X direction in the opposite direction.
  • the beam is scanned and the entire affected area is irradiated.
  • the operations of the scanning electromagnet controller 25 and the scanning electromagnet power supply 27 will be described in detail with reference to FIG. Note that the scanning electromagnet controller 26 and the scanning electromagnet power supply 28 have the same configuration, and a description thereof will be omitted.
  • the scanning electromagnet power supply 27 has two power supply sections 27a and 27b. In both power supply sections, the power supply section 27b has a DC filter on the output side.
  • the power supply unit 27a is different from the power supply unit 27a in that the power supply unit 27a has no DC filter. As described above, since the power supply unit 27a has no DC filter, there is no time delay in the voltage output from the power supply unit 27a. Therefore, in this embodiment, the exciting current flowing through the scanning electromagnet 23 is changed in a short time by the voltage output from the power supply section 27a, and the changed excitation current is used as the power supply section 27b. Is controlled to be constant.
  • the power supply section 27a and the power supply section 27b have a function of changing the excitation current in a short time (changing the irradiation area) and controlling the excitation current to a constant value (the beam irradiation position is set to the irradiation area).
  • position data of each irradiation area is input from the control device 3 to the scanning electromagnet control device 25 as described above.
  • the scanning electromagnet controller 25 calculates voltage command values Va and Vb for each of the power supply units 27a and 27b based on the input position data for each irradiation area. .
  • a method of obtaining the voltage command value Va for the power supply unit 27a will be described. From the input position data and the value of the beam energy, the scanning electromagnet controller 25 determines the value of the excitation current required by the scanning electromagnet 23 to adjust the beam position to each irradiation area, for each irradiation area. Ask for.
  • a difference between the obtained exciting current values that is, a change amount ⁇ I of the exciting current is calculated between the irradiation regions adjacent to each other in the irradiation order of the beam.
  • the excitation current required by the scanning electromagnet 23 to align the beam irradiation position with the irradiation area A 91 is set to I 91, and the beam is irradiated to the irradiation area A 92 to be irradiated next to the irradiation area A 91.
  • ⁇ ⁇ is the amount of change in the exciting current required to change the irradiation area.
  • Equation 1 the relationship represented by (Equation 1) is established between the voltage V applied to the scanning electromagnet 23 and the variation ⁇ I of the exciting current in the scanning electromagnet 23.
  • V L ⁇ ⁇ It (Equation 1)
  • L the inductance of the scanning electromagnet 23 and t is the time required to change the exciting current by ⁇ .
  • the inductance L is a value specific to the scanning electromagnet 23, that is, a constant.
  • the voltage V can be obtained using the calculated ⁇ ⁇ .
  • This voltage V is a voltage value required to change the exciting current of the scanning electromagnet 23 by ⁇ I during the time t, that is, a voltage value required to change the irradiation area. It is.
  • the scanning electromagnet controller 25 calculates the voltage value V for each irradiation area based on (Equation 1), and applies the obtained voltage value V to the power supply unit 27a with the voltage command value V a This is stored in the memory of the scanning electromagnet controller 25.
  • the time t is the time required to change the excitation current of the scanning electromagnet 23 by ⁇ I, that is, the time required to change the irradiation area, and the time as short as possible to shorten the treatment time is taken.
  • ⁇ I the time required to change the excitation current of the scanning electromagnet 23 by ⁇ I
  • the time as short as possible to shorten the treatment time is taken.
  • the value of the voltage command value Va becomes large, and the power supply unit 27a for generating the voltage and the scanning electromagnet 23 to which the voltage is applied are used. Since the burden on the patient increases, the operator sets an appropriate value in consideration of the balance between the burden on those devices and the treatment time.
  • the power supply section 27 b is for controlling the excitation current to be constant, that is, for applying a voltage to the scanning electromagnet 23 to maintain the beam irradiation position in the irradiation area. Therefore, as the voltage command value Vb applied to the power supply unit 27 b, a voltage value for flowing the excitation current necessary for adjusting the beam irradiation position to each irradiation area to the scanning electromagnet 23 can be obtained. good.
  • This voltage value can be obtained by (Equation 2), where I is the required exciting current, and the resistance value of the scanning electromagnet 23 is a scale.
  • V R ⁇ I ... (Equation 2)
  • the excitation current required to adjust the beam irradiation position to each irradiation area The value I has already been determined for each irradiation area in the scanning electromagnet control device 25 based on the position data and the beam energy value input from the control device 3. Since the resistance value R is a constant, the voltage value V can be obtained for each irradiation area using (Equation 2).
  • Each of the obtained voltage values V is a voltage value required to adjust the beam irradiation position to each irradiation area, that is, a voltage command value Vb to be supplied to the power supply unit 27 b, and the scanning electromagnet controller 2 5 is stored for each irradiation area.
  • the scanning electromagnet controller 25 uses the voltage for moving the beam irradiation position to the irradiation area A 91 among the voltage command values Va and Vb stored in the memory.
  • the command value Va and the voltage command value Vb for maintaining the beam irradiation position in the irradiation area A91 are output to the power supply units 27a and 27b, respectively.
  • the voltage command value Va given from the scanning electromagnet controller 25 is input to the AC-DC converter 272a.
  • an AC-DC converter 272 a is supplied with an AC voltage from a commercial power supply via a transformer 271.
  • the AC-DC converter 272a converts the supplied AC voltage into a DC voltage having a voltage command value Va.
  • the DC voltage obtained by the AC-DC converter 272a is applied to the input terminal of the inverter 273a via a smoothing capacitor.
  • an ON signal is output from the running electromagnet controller 25 to the gate driver 274a of the power supply section 27a.
  • the gate dryer 274a controls the switching element of the inverter 273a while the ON signal is given from the traveling electromagnetic stone control device 25, and Output the DC voltage from the inverter 2 73 a.
  • the DC power output from the inverter 273a is The value of the pressure is a voltage value applied to the input terminal of the inverter 2773a, that is, a voltage command value Va output from the traveling electromagnet controller 25.
  • the output voltage of the inverter 273a is applied to the scanning electromagnet 23 as the output voltage of the power supply unit 27a, and the excitation current flows through the scanning electromagnet 23 to which the voltage is applied.
  • the scanning electromagnet control device 25 outputs the voltage command value Vb to the power supply unit 27a and simultaneously outputs the voltage command value Vb to the power supply unit 27b.
  • the voltage command value Vb given by the scanning magnet controller 25 is input to the controller 275.
  • the control unit 275 controls the PWM control unit 276 based on the input voltage command value Vb, and also controls the AC-DC converter 272b to convert the transformer 275 from the commercial power supply.
  • the AC voltage input to the AC-DC converter 2 7 2 b via 1 is converted to a DC voltage.
  • the DC voltage obtained by the AC-DC converter 272b is applied to the input terminal of the inverter 273b via a smoothing capacitor.
  • the PWM control unit 276 repeatedly outputs an ON signal and an OFF signal to the gate driver 274 b, and the gate driver 274 b responds to the input ON signal and OFF signal. Control the ON / OFF of the switching element of the inverter 2 7.3 b.
  • the inverter 273b outputs a DC voltage by ON / OFF control of the switching element.
  • the inverter 273b is PWM-controlled so that the value of the output voltage becomes the voltage command value Vb.
  • the DC voltage output from the inverter 273 b is applied to the scanning electromagnet 23 after the pulsation component is removed by the DC filter 277, but the DC filter 277 has a delay element. Therefore, it takes some time for the voltage value at the output terminal of the filter 277 to reach Vb. T / JP99 / 05250
  • the scanning electromagnet controller 25 counts the elapsed time since the ON signal was output to the gate driver 274a of the power supply section 27a, and the time counted was given to the operator in advance.
  • the output of the ON signal to the gate driver 274 a is stopped.
  • the gate driver 274a controls the switching element of the inverter 273a to put the inverter 273a in the short state. Therefore, the application of the voltage to the scanning electromagnet 23 from the inverter 27 a of the power supply unit 27 a is stopped.
  • the voltage value Va is a voltage value required to change the exciting current of the scanning electromagnet 23 by ⁇ I during the time t.
  • the exciting current of the scanning electromagnet 23 changes by I. That is, the excitation current changes to the excitation current required to move the beam irradiation position to the irradiation area A91.
  • the excitation current flowing through the scanning electromagnet 23 depends on the voltage of the voltage value Vb applied from the power supply section 27 b to change the beam irradiation position to the irradiation area A 9. Excitation current required to hold at 1.
  • the excitation current necessary for maintaining the beam irradiation position in the irradiation area A 91 flows through the scanning electromagnet 23, so that the beam is irradiated to the irradiation area A 91 of the affected part. You. Then, in the irradiation area A 91, when a beam of the set irradiation dose is irradiated, the control device 3 outputs an irradiation region change command to the scanning electromagnet control device 25.
  • the scanning electromagnet controller 25 to which the irradiation area change command is input receives the voltage for moving the beam irradiation position to the irradiation area A 92 from the voltage command values Va and V b stored in the memory. The command value Va and the beam irradiation position are held in the irradiation area A92.
  • the voltage command value Vb for 16 is output to the power supply units 27a and 27b, respectively. Subsequent operations of the scanning electromagnet controller 25 and the scanning electromagnet power supply 27 are the same as those in the irradiation area A 91.
  • the scanning electromagnet controller 25 and the scanning electromagnet power supply 27 has been described above.
  • the scanning electromagnet controller 26 and the scanning electromagnet power supply 28 also operate in the same manner, thereby irradiating a beam.
  • the beam is applied to the entire affected area while changing the area.
  • FIG. 6 shows a relationship between an applied voltage applied to the scanning electromagnet 23 from the scanning electromagnet power supply 27 and an excitation current flowing through the scanning electromagnet 23 due to the applied voltage.
  • a large positive voltage is applied during the time. This is the voltage output from the power supply unit 27a, that is, the voltage of the voltage value Va.
  • the excitation current flowing through the scanning magnet 23 by applying this voltage increases during the time t by a change amount corresponding to the voltage value of the applied voltage.
  • the exciting current is forcibly changed to a required value during time t by the large voltage applied from the power supply unit 27a, and the power supply unit 27 Stop applying the voltage from a, and control the re-excitation current to a required value by applying the voltage from the power supply 27 b.
  • the beam irradiation position during time t depends on the voltage applied from the power supply unit 27a. Is moved to the irradiation area to be irradiated, and thereafter, the beam irradiation position is held in the irradiation area to be irradiated by the voltage applied from the power supply unit 27b.
  • the voltage output from the power supply unit 27a is referred to as a forced voltage
  • the voltage output from the power supply unit 27b is referred to as a constant voltage.
  • a positive forcing voltage is applied to increase the exciting current flowing through the scanning electromagnet 23, and a negative forcing is applied to decrease the exciting current.
  • a voltage may be applied.
  • the exciting current is controlled stepwise as shown in FIG. 6 ().
  • the excitation current is kept constant by applying a voltage from which the pulsation component has been removed by the power supply unit 27 b having a DC filter to the scanning electromagnet 23. Can be retained. Therefore, it is possible to prevent the beam irradiation position from deviating from the irradiation area, and it is possible to uniformly irradiate the affected part with the beam. As described above, according to the present embodiment, it is possible to uniformly irradiate the affected part with the beam and shorten the treatment time.
  • the beam irradiation is stopped when the irradiation area to be irradiated with the beam is changed.
  • the time required to change the irradiation area is sufficiently longer than the time required to irradiate the irradiation area with the beam. If it can be shortened, it is not necessary to stop beam irradiation when changing the irradiation area. This is the irradiation area If the time required for changing the irradiation area is sufficiently short, the irradiation dose of the beam irradiated when changing the irradiation area can be ignored.
  • the beam is scanned by the two scanning electromagnets 23 and 24.
  • the bed on which the patient is fixed is moved. May be.
  • a head movable in the Y direction can be used without using the scanning electromagnet 24 for scanning the beam in the Y direction.
  • the present invention is effective for the traveling electromagnet 23 that scans the beam in the X direction.
  • the beam is scanned in the X direction with the position of the beam fixed in the Y direction, and when the scanning in the X direction is completed, the beam is scanned in the Y direction.
  • a scanning method of scanning in the X direction again is used.
  • the present invention is not limited to this scanning method, and irradiates a beam to each of the irradiation areas by dividing the affected part into a plurality of irradiation areas. Therefore, the present invention is effective regardless of the method of scanning like drawing a circle or the method of simultaneously scanning in the X and Y directions like the method of zigzag scanning. It is.
  • a voltage detector for detecting a voltage applied to the scanning electromagnets 23 and 24 and a current detector for detecting an exciting current flowing through the scanning electromagnets 23 and 24 are added. If a display device that displays the waveforms of the voltage and current detected by the voltage detector and the current detector is used, the voltage applied to the scanning electromagnets 23 and 24 and the excitation current flowing through the scanning electromagnets 23 and 24 can be obtained. It is possible to confirm whether the flow has a desired waveform.
  • a charged particle beam irradiation apparatus for irradiating a beam to an affected part of a cancer patient.
  • the irradiation target is not limited to the affected part of a cancer patient, and the beam may be applied to semiconductors, plant seeds, and the like. It can also be applied to a charged particle beam irradiation device that scans and irradiates a particle.
  • a charged particle beam irradiation apparatus according to another embodiment of the present invention will be described with reference to FIG.
  • the charged particle beam irradiation apparatus of the present embodiment is different from the first embodiment mainly in the configuration of the scanning electromagnet power supply. Hereinafter, differences from the first embodiment will be described.
  • FIG. 7 shows a configuration of the traveling electromagnet power supply 27 in the present embodiment. Note that the scanning electromagnet power supply 28 has the same configuration, and a description thereof will be omitted.
  • the overall configuration of the charged particle beam irradiation apparatus of the present embodiment is as shown in FIG. 2, as in the first embodiment.
  • the power supply unit 27a has a voltage detector 278a, and the voltage detector 278a is the output voltage of the inverter 273a, that is, the power supply unit 27a. Detect output voltage.
  • the detected voltage value detected by the voltage detector 278a is input to the comparator 279.
  • the voltage command value Va from the scanning electromagnet control device 25 is also input to the comparator 279, and the comparator 279 determines whether the voltage command value is The voltage deviation is calculated by subtracting the voltage detection value from the voltage. Further, the comparator 279 controls the chiono 270 so that the output voltage of the inverter 273a becomes the voltage command value Va based on the obtained voltage deviation. This control improves the control accuracy of the voltage output from the inverter 273a.
  • the power supply section 27a has a current detector 2711a for detecting an exciting current flowing through the scanning electromagnet 23, and the current detector 2711a is configured to detect the detected current.
  • the value is output to the scanning electromagnet controller 25.
  • the scanning electromagnet controller 25 compares the excitation current value required to adjust the beam irradiation position to the irradiation area determined in advance with the input current detection value, and determines that the two current values match. Stops the ON signal output to the gate driver 27 4 a of the power supply section 27 a at the same time.
  • the power supply unit 27 Stop the forced voltage output from a.
  • the time counting in the scanning electromagnet controller 25 required in the first embodiment becomes unnecessary.
  • the power supply section 27b has a current detector 2711 for detecting a fluctuation component of the output current and a voltage detector 278b for detecting a fluctuation component of the output voltage.
  • the detected signal is fed back by the adder 2712, and the constant current control circuit (ACR) 2713 for current and the constant for voltage.
  • ACR constant current control circuit
  • AVR voltage control circuit
  • the voltage value output from the power supply unit 27a is controlled by the AC-DC converter 272a, but the inverter 273a is The output voltage value of the power supply unit 27a may be controlled by PWM control. In such a case, the same configuration as the control unit 275 and the PWM control unit 276 of the power supply 27b may be added to the power supply 27a.
  • an accelerator other than a synchrotron for example, a cyclotron linac may be used as an accelerator for accelerating the charged particle beam.
  • the method of emitting the beam from the synchrotron is not limited to the method used in the first and second embodiments.
  • the rotating irradiation device 2 is used as the irradiation device. Is used, but a fixed irradiation device may be used.
  • the present invention can be applied to a charged particle beam irradiation apparatus that irradiates a charged particle beam to an irradiation target such as an affected part of a cancer patient.
  • the irradiation dose to the irradiation target can be made uniform, and the irradiation time required to irradiate the irradiation target with the charged particle beam can be shortened.

Description

明 細 書
荷電粒子ビーム照射装置及びその制御方法 技術分野
本発明は、 荷電粒子ビームを照射対象に照射する荷電粒子ビーム照射 装置及びその制御方法に関する。 背景技術
荷電粒子ビーム (以下、 ビームという ) を照射対象に照射する荷電粒 子ビーム照射装置と しては、 癌患者の患部にビームを照射して癌治療を 行う荷電粒子ビーム照射装置が知られてお り 、 特開平 9一 223600 号公報 (以下、 第 1 従来技術という ) にはその一例と して、 患部を複数の照射 領域に分け、 各照射領域に対して順番にビームを照射する荷電粒子ピー ム照射装置が記載されている。 この第 1 従来技術に記載された荷電粒子 ビーム照射装置では、 互いに直交する方向に磁場を発生する 2 つの走査 電磁石によ リ ビームの照射位置を制御している。
なお、 上記第 1 従来技術では走査電磁石に電力を供給する電源装置の 構成について詳細には述べられていないが、 特開平 8— 88972号公報 (以 下、 第 2従来技術という ) に記載されている よ う な、 電磁石の電源装置 を用いる ことが考え られる。 この電源装置では、 電磁石に流れる励磁電 流の制御精度を向上させるために、 電源装置の出力側に脈動成分を除去 するフ ィルタ を設けている。
上述のよ う に第 1 従来技術では、 複数の照射領域に対して順番にビー ムを照射するので、 走査電磁石に流れる励磁電流は、 例えば第 5 図( a ) に示すよ う に階段状に増加又は減少する。 なお、 時間に対して電流値が 0
一定となっている期間ではビームの照射位置が一定に保たれ、 時間に対 して電流値が変化している期間ではビームの照射位置が変更される。 第 5 図 ( a ) において、 時間に対し電流値が変化している期間、 すな わちビーム照射位置の変更に要する時間は、 できるだけ短い方が望ま し いとされている。 その理由は、 次の通り である。 例えば、 第 1 従来技術 に記載されているよう に、 ビームの照射位置を変更する際にビームの照 射を停止する場合、 ビーム照射位置の変更を行う 間はビームの照射が行 われないデッ ドタイムとな り 、 その時間が長く なればそれだけ治療時間 が長く なつて しま う 。 治療時間が長く なると、 患者への負担が増大する ため、 ビーム照射位置の変更に要する時間はできるだけ短く しなければ ならない。 一方、 ビームの照射位置を変更する際にも ビームの照射を行 う場合、 患部における照射線量と してビーム照射位置の変更中に照射さ れる照射線量も考慮しなければならず、 患部における照射線量の均一化 が難し く なる。 そのため、 ビーム照射位置の変更中に照射される照射線 量が無視できる く らい小さ く なる よ う に、 ビーム照射位置の変更に要す る時間をできるだけ短く する必要がある。 つま り 、 走査電磁石に流れる 励磁電流を短時間で変化させなければな らない。
しかしながら、 上述の第 2従来技術に記載されている電源装置では、 脈動成分を除去するためのフ ィルタ を用いているため、 出力電圧に遅れ が生じ、 走査電磁石に流れる励磁電流を短時間で変化させる こ とはでき ない。
逆に、 フ ィルタ を用いない電源装置を適用すれば、 励磁電流を短時間 で変化させる ことも可能かも しれないが、 脈動成分の影響によ リ走査電 磁石に流れる励磁電流の制御精度が低下 して しま う 。 励磁電流の制御精 度が低下すると、 ビームの照射位置が目標とする位置からずれて しまい 患部に対してビームを均一に照射することができな く なる。 発明の開示
本発明の目的は、 照射対象に対して荷電粒子ビームを均一に照射し、 かつ照射対象に対する荷電粒子ビームの照射時間を短縮する ことが可能 な荷電粒子ビーム照射装置及びその制御装置を提供する こと にある。 上記目的を達成する本発明の特徴は、 荷電粒子ビームを偏向する走査 電磁石と、 前記走査電磁石に電圧を印加する電源と を備え、 荷電粒子ビ ームを照射対象に照射する荷電粒子ビーム照射装置において、 前記電源 は、 フ ィルタ を有しない第 1 電源部及びフ ィ ルタ を有する第 2電源部を 備える こと にある。
本発明によれば、 電源がフ ィ ルタ を有しない第 1 電源部とフ ィルタ を 有する第 2電源部の 2 つの電源部を有するため、 照射対象における荷電 粒子ビームの照射位置を変更すると きには、 フ ィ ルタ を有しない、 すな わち遅れ要素を有しない第 1 電源部から走査電磁石に電圧を印加する こ とで、 走査電磁石に流れる励磁電流を短時間に変化させる こ とができる よって、 荷電粒子ビームの照射位置の変更を短時間で行う こ とができ、 照射対象に対する荷電粒子ビームの照射時間を短縮する ことが可能とな る。 一方、 荷電粒子ビームの照射位置を保持すると きには、 フ ィルタ を 有する第 2電源部によ って脈動成分を除去した電圧を走査電磁石に印加 する ことで、 走査電磁石に流れる励磁電流を精度良く 制御する こ とがで きる。 よって、 荷電粒子ビームの照射位置のずれを防ぐこ とができ、 照 射対象に対して荷電粒子ビームを均一に照射する こ とが可能となる。 こ のよ う に、 本発明によれば、 照射対象に対して荷電粒子ビームを均一に 照射し、 かつ照射対象に対する荷電粒子ビームの照射時間を短縮する こ とができる。 図面の簡単な説明
第 1 図は、 本発明の好適な一実施例である荷電粒子ビーム照射装置の うちの走査電磁石電源の構成図、 第 2図は、 本発明の好適な一実施例で ある荷電粒子ビーム照射装置の構成図、 第 3図は、 第 2図の荷電粒子ビ ーム照射装置による患部へのビーム照射方法を示す図、 第 4図は、 第 3 図の層状領域 L 9 における照射領域 A 9 1, A 9 2 , …の位置を示す図 第 5図は、 第 2図の走査電磁石 2 3, 2 4に流れる励磁電流の波形を示 す図、 第 6図は、 第 2図の走査電磁石 2 3 に印加される電圧の波形とそ の電圧によつて走査電磁石 2 3 に流れる電流の波形を示す図、 第 7図は 本発明の他の実施例である荷電粒子ビーム照射装置のうちの走査電磁石 電源の構成図を示す。 発明を実施するための最良の形態
以下、 図面を用いて本発明の実施例を詳細に説明する。
(実施例 1 )
第 2図は、 本発明の好適な一実施例である荷電粒子ビーム照射装置を 示す。 なお、 第 2図の荷電粒子ビーム照射装置は、 シンクロ トロン 1 に おいて加速された荷電粒子ビーム(以下、 ビームという)を、 回転照射装 置 2 によって癌患者の患部に照射することによ リ、 癌治療を行うもので ある。 また、 本実施例の荷電粒子ビーム照射装置は、 第 3図に示すよう に、 患部をビームの進行方向に複数の層状領域 L 1〜 L 9に分け、 更に その層状領域 L 1〜L 9 を複数に分割してなる照射領域 A 1 1, A 1 2 …のそれぞれに対してビームを照射する。 第 2 図の荷電粒子ビーム照射装置による癌治療においては、 まず、 患 部の体表からの深さ位置、 患部の形状、 患部に照射すべき線量 (以下、 照射線量という ) 等の患者情報が、 制御装置 3 に入力される。 制御装置 3 は、 入力された患者情報に基づいてシンク ロ トロ ン 1 から出射するビ ームのエネルギー、 患部における ビームの照射位置及び患部におけるビ ームの照射線量を決定する。 なお、 ビームのエネルギーは、 各層状領域 L 1 - L 9 の体表からの深さ位置に基づいて決め られる。
本実施例では、 体表から最も深い位置にある層状領域 L 9 から最も浅 い位置にある層状領域 L 1 へと順にビームを照射する。 以下、 その手順 を説明する。
まず、 制御装置 3 から前段加速器 4 に対してビーム出射指令が出力さ れる。 前段加速器 4 は、 ビーム出射指令が入力されると ビームを出射す る。 前段加速器 4から出射されたビームは、 シンク ロ トロ ン 1 に入射さ れる。 制御装置 3 は、 前段加速器 4 にビーム出射指令を出力すると共に. 偏向電磁石 1 2 , 四極電磁石 1 3 及び六極電磁石 1 4の各々の電源装置 (図示せず) に対して電流指令値を出力 し、 高周波加速空胴 1 5 の電源 装置 (図示せず) に対して電圧指令値を出力する。 この電流指令値及び 電圧指令値は、 ビームのエネルギーに応じて予め求めておく 。 電流指令 値が与え られた電源装置から偏向電磁石 1 2 , 四極電磁石 1 3及ぴ六極 電磁石 1 4のそれぞれに電流が供給され、 高周波加速空胴 1 5 には電圧 が供給される。 なお、 それぞれに供給される電流は、 ビームの加速に応 じて変化するよ う に設定されている。
こ こで、 シンク ロ ト ロ ン 1 における各構成の役割を説明する。 まず、 偏向電磁石 1 2 は、 供給された電流に応 じた磁場を発生し、 ビームがシ ンク ロ トロン 1 の周回軌道に沿って周回する よ う に磁場でビームを偏向 する。 四極電磁石 1 3 は、 供給された電流に応じた磁場によ り ビームの チューン ( ビームがシンク ロ トロ ン 1 を 1 周する間の振動数) を制御す る。 高周波加速空胴 1 5 は、 供給された電圧に応じてビームに高周波の 電場を印加 し、 ビームを加速する。 すなわち、 ビームのエネルギーを上 昇させる。 六極電磁石 1 4は、 供給された電流に応じてビームに磁場を 印加する こ とによ り 、 ビームに共鳴を励起する。 この共鳴は、 ビームを シンク ロ トロ ン 1 から出射すると きに用いる。
シンク ロ トロ ン 1 においてビームが制御装置 3 によって設定されたェ ネルギ一まで加速されると、 制御装置 3 は高周波印加装置 1 1 の電源装 置 (図示せず) に電圧指令値を出力する。 この電源装置は、 入力された 値の電圧を高周波印加装置 1 1 に供給する。 高周波印加装置 1 1 は、 供 給された電圧に応じた高周波電場を発生し、 その高周波電場をビームに 印加する こと よ り 、 ビームをシンク ロ トロン 1 から出射する。 具体的に は、 安定限界を一定に保っ た状態で高周波印加装置 1 1 によ り ビームに 高周波電場を印加する。 高周波電場の印加によ り ビームのベータ トロ ン 振動振幅が増加 して安定限界を超え、 安定限界を超えたビームは、 六極 電磁石 1 4の磁場によ り共鳴を起こ し、 シンク ロ トロ ン 1 から出射され る。 シンク ロ ト ロ ン 1 から出射されたビームは、 回転照射装置 2 に導か れる。
制御装置 3 は、 シンク ロ トロ ン 1 においてビームを加速中に、 偏向電 磁石 2 1 及び四極電磁石 2 2 の電源装置 (図示せず) に電流指令値を出 力する。 電源装置は入力された値の電流を偏向電磁石 2 1 及び四極電磁 石 2 2 に供給する。 回転照射装置 2 に入力されたビームは、 偏向電磁石 2 1 及び四極電磁石 2 2 によ り予め設定された軌道に沿って走査電磁石 2 3, 2 4 に導かれる。 制御装置 3 は、 偏向電磁石 2 1 及び四極電磁石 2 2 の電源装置に電流 指令値を出力するのと共に、 走査電磁石制御装置 2 5, 2 6 に照射領域 A 1 1 , A 1 2 …の位置データ と ビームのエネルギーの値を出力する。 走査電磁石制御装置 2 5, 2 6 は、 入力された照射領域 A 1 1 , A 1 2 …の位置データ と ビームのエネルギーの値に基づいて、 各照射領域 A 1 1 A 1 2 …にビームと を照射するために走査電磁石 2 3, 2 4で必要とさ れる励磁電流の値を各照射領域 A 1 1 , A 1 2 …毎に算出する。 そ して 更に、 その励磁電流値に基づいて各照射領域 A 1 1 , A 1 2 …にビーム を照射するために走査電磁石 2 3, 2 4で必要と される電圧の値を算出 する。 求め られた電圧値のう ち、 まずは A 9 1 (層状領域 L 9 で 1 番目 に照射される照射領域) に対応する電圧値が、 走査電磁石制御装置 2 5 2 6 から走査電磁石電源 2 7, 2 8 へ電圧指令値と して出力される。 走 査電磁石電源 2 7 , 2 8 は、 与え られた電圧指令値に基づいて走査電磁 石 2 3, 2 4 に電圧を印加する。 走査電磁石 2 3, 2 4 には、 印加され た電圧に応じた励磁電流が流れ、 ま た、 その励磁電流に応じた磁場が発 生する。 そ して、 その磁場によ り 、 走査電磁石 2 3 は X方向に、 走査電 磁石 2 4は Y方向にそれぞれビームを偏向する。 なお、 走査電磁石制御 装置 2 5, 2 6及び走査電磁石電源 2 7, 2 8 の詳細については後述す る。
走査電磁石 2 3, 2 4 によ り偏向されたビームは、 線量モニタ一 2 9 を通過した後、 患部の照射領域 A 9 1 に照射される。 第 4 図は、 層状領 域 L 9 における照射領域の設定例を示す。 本実施例では、 照射領域 A 91 A 9 2 , …, A 9 m , A 9 n , …を順番に照射する。
線量モニタ一 2 9 は、 患部に照射される ビームの照射線量を計測する 線量モ二ター 2 9 において計測されたビームの照射線量の実測値は、 制 御装置 3 に入力される。 制御装置 3 は、 予め求めておいた照射線量の値 (設定値) と 、 入力された実測値と を比較し、 実測値が設定値に達した 時点でシンク 口 トロ ン 1 に対して出射停止指令を出力する。 よ リ具体的 には、 高周波印加装置 1 1 の電源装置に対して出射停止指令を出力 し、 それによ り 、 高周波印加装置 1 1 に対する電圧の供給が停止される。 従 つて、 高周波印加装置 1 1 による高周波電場の発生が停止し、 シンク ロ トロ ン 1 からのビームの出射も停止する。 なお、 実測値が設定値に達す る前にシンク ロ トロ ン 1 を周回するビームがな く なった場合には、 新た に前段加速器 4からシンク ロ ト ロ ン 1 にビームを入射し、 シンク ロ トロ ン 1 において設定されたエネルギーまで加速した後、 再度ビームを出射 すれば良い。
このよ う に して照射領域 A 9 1 に対する ビームの照射が終了 したら、 次に照射領域 A 9 2 にビームを照射する。 制御装置 3 は、 照射領域 A 91 に対するビームの照射が終了 した ら、 走査電磁石制御装置 2 5, 2 6 に 対して照射領域変更指令を出力する。 照射領域変更指令が入力された走 査電磁石制御装置 2 5, 2 6 は、 A 9 2 に対応する電圧値を走査電磁石 電源 2 7, 2 8 へ電圧指令値と して出力する。 走査電磁石電源 2 7, 2 8 は、 与え られた電圧指令値に基づいて走査電磁石 2 3, 2 4 に電圧 を印加し、 走査電磁石 2 3, 2 4 には、 印加された電圧に応じた励磁電 流が流れる。 そ して、 その励磁電流に応 じた磁場が走査電磁石 2 3, 2 4で発生する。 走査電磁石 2 3, 2 4 に印加される電圧が変更された ら、 高周波印加装置 1 1 から ビームに再び高周波電場を印加し、 シンク 口 トロ ン 1 から ビームを出射する。 シンク ロ ト ロ ン 1 から出射されたビ ームは走査電磁石 2 3 , 2 4 によ り偏向された後、 照射領域 A 9 2 に照 射される。 なお、 本実施例において、 照射領域 A 9 2 は、 第 4 図に示す よ う に照射領域 A 9 1 から X方向にずれているが、 Y方向にはずれてい ないので、 走査電磁石 2 4 に流れる励磁電流は、 照射領域 A 9 1 を照射 する場合と照射領域 A 9 2 を照射する場合とで変化させない。 つま り 、 ビームの照射位置を照射領域 A 9 1 から照射領域 A 9 2 に変更する際に は、 走査電磁石 2 3 に流れる励磁電流のみを変える。 なお、 照射領域 A 9 1 にビームを照射する場合と同様に、 照射領域 A 9 2 にビームを照 射する際にも、 線量モニタ一 2 9 によ る実測値と制御装置 3 に記憶され た設定値と を比較し、 実測値が設定値に達した時点でシンク ロ トロ ン 1 からのビームの出射を停止する。
このよ う な手順を繰り返すこ と によ リ 、 層状領域 L 9 の各照射領域 A 9 1 , A 9 2 , …に対して設定された照射線量のビームが照射される なお、 照射領域 A 9 1 から照射領域 A 9 2 にビームの照射位置を変更す る際には走査電磁石 2 4 に流れる励磁電流を変化させなかっ たが、 照射 領域 A 9 mから照射領域 A 9 n にビームの照射位置を変更する場合のよ う に、 ビームの照射位置を Y方向にも移動する場合には走査電磁石 2 4 に流れる励磁電流も変化させる。
層状領域 L 9 における全ての照射領域にビームを照射し終えたら、 次 に層状領域 L 8 の各照射領域にビームを照射する。 層状領域 L 8 にビー ムを照射する手順は、 ビームのエネルギーは異なるものの層状領域 L 9 の場合と同様であ り 、 制御装置 3 によ り シンク ロ トロ ン 1 及び回転照射 装置 2 を制御して層状領域 L 8 にビームを照射する。 以降、 層状領域 L 1 まで同じ手順を繰り 返すこ と によ り 患部全体にビームを照射する。 患部において、 第 4 図に示すよ う に照射領域を設定して各照射領域毎 にビームを照射する場合、 X方向にビームを偏向する走査電磁石 2 3及 び Y方向にビームを偏向する走査電磁石 2 において必要とされる励磁 電流は、 それぞれ第 5 図 ( a ) , ( b ) に示す通り である。 第 5 図にお いて、 時間に対して励磁電流が変化していないと きには走査電磁石で発 生する磁場も変化しないため、 ビーム照射位置が一定に制御され、 逆に 時間に対して励磁電流が変化していると きには走査電磁石で発生する磁 場も変化するため、 ビーム照射位置が移動する。 第 5 図に示すよ う に、 本実施例では、 まず、 Y方向にビームを偏向する走査電磁石 2 4 の励磁 電流を一定に保っ た状態で、 X方向にビームを偏向する走査電磁石 2 3 の励磁電流を階段状に減少させる ことによ リ 、 ビームを X方向にのみ走 査して各照射領域毎にビームを照射する。 そ して、 X方向において端か ら端まで (第 4図の例では、 照射領域 A 9 1 から照射領域 A 9 mまで) 照射し終っ た時点で、 走査電磁石 2 4の励磁電流を減少させる こ とによ リ ビームを Y方向にずらすと共に、 今度は走査電磁石 2 3 の励磁電流を 階段状に増加させる こと によって X方向においてビームを逆向きに走査 してい く 。 これを繰り返すこ と によ ってビームを走査し患部全体を照射 する。
次に、 第 1 図を用いて、 走査電磁石制御装置 2 5及び走査電磁石電源 2 7 の動作を詳細に説明する。 なお、 走査電磁石制御装置 2 6及び走査 電磁石電源 2 8 も同様の構成であるので、 説明を省略する。
第 1 図に示すよ う に、 走査電磁石電源 2 7 は、 2 つの電源部 2 7 a, 2 7 b を備えてお り 、 両電源部は、 電源部 2 7 b が出力側に直流フ ィ ル タ 2 7 7 を有するのに対し、 電源部 2 7 a は直流フ ィルタ を有しない点 で異なる。 このよ う に、 電源部 2 7 aは直流フ ィ ルタ を有しないため、 電源部 2 7 aから出力される電圧に時間遅れは生じない。 よ って、 本実 施例では、 電源部 2 7 aから出力する電圧によ り 走査電磁石 2 3 に流れ る励磁電流を短時間で変化させ、 変化した後の励磁電流を電源部 2 7 b によ り 一定に制御する。 つま り 、 電源部 2 7 a と電源部 2 7 b とで、 励 磁電流を短時間で変化させる (照射領域を変更する) 機能と、 励磁電流 を一定に制御する ( ビーム照射位置を照射領域に保持する) 機能と を分 担する。
第 1 図において、 走査電磁石制御装置 2 5 には、 前述のよ う に制御装 置 3 から各照射領域の位置データが入力される。 走査電磁石制御装置 2 5 は、 入力された位置データ に基づいて、 電源部 2 7 a, 2 7 b のそ れぞれに指示する電圧指令値 V a , V b を各照射領域毎に算出する。 まず、 電源部 2 7 a に対する電圧指令値 V aの求め方について説明す る。 走査電磁石制御部 2 5 は、 入力された位置データ と ビームエネルギ 一の値から、 各照射領域にビーム位置を合わせるために走査電磁石 2 3 で必要と される励磁電流の値を、 各照射領域毎に求める。 次に、 ビーム が照射される順番が隣り合う照射領域同士で、 求め られた励磁電流値の 差、 すなわち励磁電流の変化量 Δ I を演算する。 例えば、 照射領域 A 91 にビーム照射位置を合わせるために走査電磁石 2 3 で必要と される励磁 電流を I 9 1 と し、 照射領域 A 9 1 の次に照射される照射領域 A 9 2 に ビーム照射位置を合わせるために走査電磁石 2 3 で必要とされる励磁電 流を 1 9 2 とすると、 Δ Ι = Ι 9 2 — 1 9 1 である。 つま り 、 この Δ Ι は、 照射領域を変更するのに必要と される励磁電流の変化量である。 こ こで、 走査電磁石 2 3 に印加される電圧 Vと走査電磁石 2 3 におけ る励磁電流の変化量 Δ I には、 (数 1 ) の関係が成り立つ。
V = L · Δ I t … (数 1 ) なお、 Lは走査電磁石 2 3 のイ ンダク タ ンス、 t は励磁電流を Δ Ι だ け変化させるのに要する時間である。 (数 1 ) において、 イ ンダクタ ン ス Lは走査電磁石 2 3 において固有の値、 すなわち定数であるので、 時 間 t を予め走査電磁石制御装置 2 5 に与えてやることによ り、 算出した Δ Ι を用いて電圧 Vを求めることができる。 この電圧 Vは、 走査電磁石 2 3の励磁電流を時間 t の間に△ I だけ変化させるために必要とされる 電圧値であり、 つま り、 照射領域を変更するために必要とされる電圧値 である。 よって、 走査電磁石制御装置 2 5は、 (数 1 ) に基づいて各照 射領域毎に電圧値 Vを求め、 求められた各電圧値 Vを電源部 2 7 aに与 える電圧指令値 V aと して走査電磁石制御装置 2 5内のメモリ に記憶す る。
なお、 時間 t は走査電磁石 2 3の励磁電流を Δ I 変化させるのに要す る時間、 つま り、 照射領域を変更するのに要する時間であり、 治療時間 を短く するためにできるだけ短い時間を設定する。 但し、 あま り にも短 い時間を設定すると、 電圧指令値 V aの値が大き く なリ、 その電圧を発 生するための電源部 2 7 aやその電圧が印加される走査電磁石 2 3の負 担が増大するので、 それらの装置の負担と治療時間との兼ね合いを考慮 して、 オペレータが適切な値を設定する。
次に、 電源部 2 7 bに与える電圧指令値 V bの求め方について説明す る。 前述のよう に、 電源部 2 7 bは、 励磁電流を一定に制御する、 つま リ ビーム照射位置を照射領域に保持するための電圧を走査電磁石 2 3 に 印加するためのものである。 よって、 電源部 2 7 b に与える電圧指令値 V b と しては、 各照射領域にビーム照射位置を合わせるのに必要とされ る励磁電流を走査電磁石 2 3 に流すための電圧値を求めれば良い。 この 電圧値は、 必要とされる励磁電流を I 、 走査電磁石 2 3の抵抗値を尺と すると、 (数 2 ) で求められる。
V = R · I … (数 2 ) 各照射領域にビーム照射位置を合わせるのに必要とされる励磁電流の 値 I は、 走査電磁石制御装置 2 5 において、 制御装置 3 から入力された 位置データ及びビームエネルギーの値に基づいて各照射領域毎に既に求 め られてお り 、 ま た、 走査電磁石 2 3 の抵抗値 Rは定数であるため、 電 圧値 Vは (数 2 ) を用いて各照射領域毎に求める ことができる。 求めら れた各電圧値 Vは、 各照射領域にビーム照射位置を合わせるのに必要と される電圧値、 すなわち電源部 2 7 b に与える電圧指令値 V b と して、 走査電磁石制御装置 2 5 内のメモリ に各照射領域毎に記憶される。
患部へのビームの照射にあた り 、 走査電磁石制御装置 2 5 は、 メモリ に記憶した電圧指令値 V a, V b のう ち、 ビーム照射位置を照射領域 A 9 1 に移動させるための電圧指令値 V a と、 ビーム照射位置を照射領 域 A 9 1 に保持するための電圧指令値 V b を、 それぞれ電源部 2 7 a , 2 7 b に出力する。
電源部 2 7 a において、 走査電磁石制御装置 2 5 から与え られた電圧 指令値 V a は、 交流一直流変換器 2 7 2 a に入力される。 ま た、 交流一 直流変換器 2 7 2 a には、 商用電源から変圧器 2 7 1 を介して交流電圧 が供給される。 交流一直流変換器 2 7 2 aは、 供給された交流電圧を、 電圧指令値 V aの直流電圧に変換する。 交流一直流変換器 2 7 2 a によ リ得られた直流電圧は、 平滑コ ンデンサを介してイ ンバータ 2 7 3 aの 入力端に印加される。
電源部 2 7 aのゲー ト ドライ ノ 2 7 4 a には、 交流一直流変換器 272a に対して電圧指令値 V aが出力されるのと同時に、 走查電磁石制御装置 2 5 から O N信号が与え られる。 ゲー ト ドライ ノ 2 7 4 aは、 走查電磁 石制御装置 2 5 から O N信号が与え られている間、 イ ンバ一タ 2 7 3 a のスィ ツチング素子を制御する こ と によ リ 、 イ ンバータ 2 7 3 aから直 流電圧を出力させる。 なお、 イ ンバ一タ 2 7 3 aから出力される直流電 圧の値は、 イ ンバ一タ 2 7 3 aの入力端に印加された電圧値、 すなわち 走查電磁石制御装置 2 5から出力された電圧指令値 V aである。
イ ンバータ 2 7 3 aの出力電圧は、 電源部 2 7 aの出力電圧と して走 査電磁石 2 3 に印加され、 電圧が印加された走査電磁石 2 3 には、 励磁 電流が流れる。
ま た、 走査電磁石制御装置 2 5は、 電源部 2 7 aに電圧指令値 V aを 出力するのと同時に、 電源部 2 7 b に対して電圧指令値 V b を出力する 電源部 2 7 b において、 走査電磁石制御装置 2 5 よ リ与え られた電圧指 令値 V bは、 制御部 2 7 5 に入力される。 制御部 2 7 5は、 入力された 電圧指令値 V b に基づいて PWM制御部 2 7 6 を制御すると共に、 交流 一直流変換器 2 7 2 b を制御して、 商用電源から変圧器 2 7 1 を介して 交流一直流変換器 2 7 2 b に入力された交流電圧を直流電圧に変換させ る。 交流一直流変換器 2 7 2 b によ り得られた直流電圧は、 イ ンバータ 2 7 3 bの入力端に平滑コ ンデンサを介して印加される。
PWM制御部 2 7 6は、 ゲー ト ドライ ノ 2 7 4 b に対して O N信号と O F F信号と を繰り返し出力 し、 ゲー ト ドライ ノ 2 7 4 b は、 入力され た O N信号及び O F F信号に応じてイ ンバ一タ 2 7 3 bのスイ ッチング 素子を O N ' O F F制御する。 イ ンバ一タ 2 7 3 bは、 スイ ッチング素 子の O N . O F F制御によ り 、 直流電圧を出力する。 なお、 この出力電 圧の値が電圧指令値 V b となる よ う に、 イ ンバ一タ 2 7 3 bは PWM制 御される。
イ ンバータ 2 7 3 bから出力された直流電圧は、 直流フ ィ ルタ 2 7 7 によって脈動成分が除去された後、 走査電磁石 2 3 に印加されるが、 直 流フ ィルタ 2 7 7は遅れ要素を持っため、 フ ィ ルタ 2 7 7の出力端の電 圧値が V bにはなるには しばら く 時間がかかる。 T/JP99/05250
1 5 走査電磁石制御装置 2 5 は、 電源部 2 7 aのゲー ト ドラ 2 7 4 a に O N信号を出力 してからの経過時間をカウ ン 卜 し、 カ ウ ン 卜 した時間 が予めオペレータ によ リ 設定された時間 t となっ た時点で、 ゲー ト ドラ 2 7 4 aへの O N信号の出力を停止する。 ゲー ト ドラ 2 7 4 a は、 O N信号の入力が停止すると、 イ ンバータ 2 7 3 aのスイ ッチング 素子を制御してイ ンバ一タ 2 7 3 a をショー ト状態にする。 よって、 電 源部 2 7 aのイ ンバータ 2 7 3 aからの走査電磁石 2 3 に対する電圧の 印加が停止される。 なお、 前述のよ う に、 電圧値 V a は、 走査電磁石 2 3 の励磁電流を時間 t の間に△ I 変化させるのに必要と される電圧の 値であ り 、 V aの電圧を時間 t の間印加する ことによ って、 走査電磁石 2 3 の励磁電流は厶 I だけ変化する。 つま り 、 ビーム照射位置を照射領 域 A 9 1 に移動させるために必要な励磁電流に変化する。
このよ う に して、 電源部 2 7 aから走査電磁石 2 3 への電圧の印加を 停止した時点では、 電源部 2 7 b の直流フ ィ ルタ 2 7 7 から出力される 電圧の値は、 V b となってお り 、 よ って走査電磁石 2 3 に流れる励磁電 流は、 電源部 2 7 b から印加される電圧値 V b の電圧によ り 、 ビーム照 射位置を照射領域 A 9 1 に保持するために必要な励磁電流となる。
以上のよ う に して、 走査電磁石 2 3 にビーム照射位置を照射領域 A 91 に保持するために必要な励磁電流が流れる こ と によ リ 、 ビームは患部の 照射領域 A 9 1 に照射される。 そ して、 照射領域 A 9 1 において、 設定 された照射線量のビームが照射された ら、 制御装置 3 から走査電磁石制 御装置 2 5 に対して、 照射領域変更指令が出力される。 照射領域変更指 令が入力された走査電磁石制御装置 2 5 は、 メモ リ に記憶した電圧指令 値 V a, V b のう ち、 ビーム照射位置を照射領域 A 9 2 に移動させるた めの電圧指令値 V a と、 ビーム照射位置を照射領域 A 9 2 に保持するた P T/JP99/05250
1 6 めの電圧指令値 V b を、 それぞれ電源部 2 7 a , 2 7 b に出力する。 そ の後の走査電磁石制御装置 2 5及び走査電磁石電源 2 7の動作は、 照射 領域 A 9 1 の場合と同様である。
以上、 走査電磁石制御装置 2 5及び走査電磁石電源 2 7の動作につい て説明したが、 走査電磁石制御装置 2 6及び走査電磁石電源 2 8 に関し ても同様に動作し、 それによ り ビームを照射する照射領域を変更しなが ら、 患部全体にビームが照射される。
第 6図は、 走査電磁石電源 2 7から走査電磁石 2 3 に対して印加され る印加電圧と、 その印加電圧によ り走査電磁石 2 3 に流れる励磁電流と の関係を示す。 なお、 走査電磁石電源 2 8 と走査電磁石 2 4においても 同様の関係である。 第 6図 ( a ) に示すよう に、 まず始めに、 時間 の 間に正の大電圧が印加されている。 これが電源部 2 7 aから出力される 電圧、 すなわち電圧値 V aの電圧である。 こ の電圧の印加によ り走査電 磁石 2 3 に流れる励磁電流は、 第 6図( b )に示すよう に、 時間 t の間に 印加電圧の電圧値に応じた変化量で増加する。 そして、 電源部 2 7 aに よる電圧の印加を開始してから時間 t が経過した時点で、 電源部 2 7 a による電圧の印加は停止され、 走査電磁石 2 3 に印加される印加電圧は 電源部 2 7 bから出力される電圧値 V bの電圧となる。 それによ り、 走 査電磁石 2 3 に流れる励磁電流は、 第 6図 ( b ) に示すよう に、 一定に 制御される。
こ のよ う に、 電源部 2 7 aから印加される大電圧によ り時間 t の間に 励磁電流を必要とされる値まで強制的に変化させ、 時間 t経過した時点 で電源部 2 7 aからの電圧の印加を停止して、 電源 2 7 b による電圧の 印加によ リ励磁電流を必要とされる値に対して一定に制御する。 すなわ ち、 電源部 2 7 aから印加する電圧によ り時間 t の間にビーム照射位置 を照射すべき照射領域に移動し、 その後、 電源部 2 7 b から印加する電 圧によ り ビーム照射位置を照射すべき照射領域に保持する。 以下、 電源 部 2 7 aから出力される電圧を強制電圧、 電源部 2 7 b から出力される 電圧を一定電圧と呼ぶ。 なお、 第 6 図に示すよ う に、 走査電磁石 2 3 に 流れる励磁電流を増加させたいと きには正の強制電圧を印加し、 励磁電 流を減少させたいと きには、 負の強制電圧を印加すれば良い。 以上のよ う に、 強制電圧と一定電圧と を組み合わせて使う ことによって、 第 6 図 ( ) に示すよ う に、 励磁電流が階段状に制御される。
以上説明 したよ う に、 本実施例では、 走查電磁石電源 2 7 が、 出力側 にフ ィルタ を有しない電源部 2 7 a と出力側に直流フ ィ ルタ 2 7 7 を有 する電源部 2 7 b の 2 つの電源部を有するため、 ビーム照射位置を変更 すると きには、 遅れ要素を有しない電源部 2 7 a によって走查電磁石 2 3 に強制電圧を印加する ことで、 励磁電流を短時間に変化させる こと ができる。 よって、 ビームを照射する照射領域の変更を短時間で行う こ とができ、 治療時間を短縮する こ とが可能となる。 一方、 ビーム照射位 置を保持すると きには、 直流フ ィ ルタ を有する電源部 2 7 b によって脈 動成分が除去された電圧を走査電磁石 2 3 に印加する こ とで、 励磁電流 を一定に保持する こ とができる。 よ って、 照射領域からのビーム照射位 置のずれを防ぐことができ、 患部に対してビームを均一に照射する こと が可能となる。 このよ う に、 本実施例によれば、 患部に対してビームを 均一に照射し、 かつ治療時間を短縮する こ とができる。
なお、 本実施例では、 ビームを照射する照射領域を変更する際にビー ムの照射を停止しているが、 照射領域の変更に要する時間が照射領域に ビームを照射する時間に比べて十分に短く できる場合には、 照射領域を 変更すると きにビームの照射を停止 しな く ても良い。 これは、 照射領域 の変更に要する時間が十分に短ければ、 照射領域を変更する際に照射さ れる ビームの照射線量が無視できるためである。
上記本実施例では、 照射領域を変更するのに要する時間 t を一定値と して与えているため、 各照射領域の間隔が一定の場合、 すなわち励磁電 流の変化量 Δ I が一定の場合は、 強制電圧の値 V aの絶対値も一定とな る。 よ って、 その場合は、 強制電圧の値 V a を照射領域変更のたびに計 算する必要はな く 、 正負の符号のみ設定すれば良い。 なお、 照射領域を 変更するのに要する時間 t は必ずしも一定である必要はなく 、 状況に応 じて異なる値を設定しても構わない。 ま た、 本実施例では、 設定された 時間 t によ リ 強制電圧の値 V a を求める構成と したが、 強制電圧を予め 一定値と して設定しても良い。 その場合、 時間 t は強制電圧の値 V a と 各照射領域の間隔によって決ま る。
ま た、 本実施例では、 2 つの走査電磁石 2 3 , 2 4 によ ってビームを 走査する構成と したが、 走査電磁石でビームを走査する代り に患者が固 定されるベッ ドを移動させても良い。 例えば、 Y方向にビームを走査す る走査電磁石 2 4 を用いずに、 Y方向に移動可能なぺッ ドを用いる こ と ができる。 その場合でも、 ビームを X方向に走査する走查電磁石 2 3 に 対して本発明は有効である。
更に、 本実施例では、 第 4図に示すよ う に、 ビームの Y方向位置を固 定した状態でビームを X方向に走査して、 X方向の走査が終わっ た ら Y 方向に走査し、 その後、 再び X方向に走査するという走査方法を用いて いるが、 本発明はこの走査方法に限られるものではな く 、 患部を複数の 照射領域に分けてその照射領域毎にビームを照射するものであれば、 円 を描く よ う に走査する方法であっても、 或いはジグザグに走査する方法 の様に X方向, Y方向を同時に走査する方法であっても、 本発明は有効 である。
なお、 本実施例において、 走査電磁石 2 3, 2 4に印加される電圧を 検出する電圧検出器と、 走査電磁石 2 3, 2 4に流れる励磁電流を検出 する電流検出器とを付加し、 その電圧検出器及び電流検出器によって検 出された電圧と電流の波形を表示する表示装置を用いれば、 走査電磁石 2 3, 2 4に印加される電圧及び走査電磁石 2 3, 2 4に流れる励磁電 流が、 所望の波形となっているか確認することが可能となる。
また、 本実施例では癌患者の患部に対してビームを照射する荷電粒子 ビーム照射装置について説明したが、 照射対象は癌患者の患部に限られ るものではなく 、 半導体, 植物の種子等にビームを走査して照射する荷 電粒子ビーム照射装置にも適用することができる。
(実施例 2 )
本発明の他の実施例である荷電粒子ビーム照射装置について、 第 7図 を用いて説明する。 本実施例の荷電粒子ビーム照射装置は、 前述の実施 例 1 と主に走査電磁石電源の構成が異なる。 以下、 実施例 1 と異なる点 について説明する。
第 7図は、 本実施例における走查電磁石電源 2 7の構成を示す。 なお 走査電磁石電源 2 8も同様の構成であるので説明は省略する。 また、 本 実施例の荷電粒子ビーム照射装置の全体構成図は、 実施例 1 と同様に、 第 2図の通りである。
第 7図において、 電源部 2 7 aは電圧検出器 2 7 8 aを有し、 電圧検 出器 2 7 8 aは、 イ ンバ一タ 2 7 3 aの出力電圧、 すなわち電源部 27 a の出力電圧を検出する。 電圧検出器 2 7 8 aによ り検出された電圧検出 値は、 比較器 2 7 9 に入力される。 比較器 2 7 9 には走査電磁石制御装 置 2 5から電圧指令値 V aも入力され、 比較器 2 7 9は、 電圧指令値か ら電圧検出値を減算し、 電圧偏差を演算する。 更に比較器 2 7 9 は、 求 め られた電圧偏差に基づいて、 イ ンバータ 2 7 3 aの出力電圧が電圧指 令値 V a になるよ うチヨ ッ ノ 2 7 1 0 を制御する。 この制御によ り 、 ィ ンバータ 2 7 3 aから出力される電圧の制御精度が向上する。
第 7 図において、 電源部 2 7 aは、 走査電磁石 2 3 に流れる励磁電流 を検出する電流検出器 2 7 1 1 a を有し、 電流検出器 2 7 1 1 aは、 検 出 した電流検出値を走査電磁石制御装置 2 5 に出力する。 走査電磁石制 御装置 2 5 は、 予め求めておいた照射領域にビーム照射位置を合わせる ために必要と される励磁電流値と入力された電流検出値と を比較し、 両 電流値が一致したと きに電源部 2 7 aのゲー ト ドライ ノ 2 7 4 a に出力 していた O N信号を停止する。 つま り 、 本実施例では、 走査電磁石 2 3 に流れる励磁電流の値が、 照射しょ う とする照射領域にビーム照射位置 を合わせるために必要とされる励磁電流値になっ た時点で、 電源部 27 a から出力される強制電圧を停止する。 これによ リ 本実施例では、 実施例 1 では必要と された走査電磁石制御装置 2 5 における時間のカウ ン トが 不要になる。
第 7 図において、 電源部 2 7 b は、 出力電流の変動成分を検出する電 流検出器 2 7 1 1 と、 出力電圧の変動成分を検出する電圧検出器 278b を有し、 各検出器によ り検出 した信号を加算器 2 7 1 2 によ り フ ィ ー ド バック し、 電流に対しては定電流制御回路 ( A C R ) 2 7 1 3 にて、 ま た、 電圧に対しては定電圧制御回路 ( A V R ) 2 7 1 4 にて制御する こ と によ リ 、 出力される電流 · 電圧の制御精度をさ らに高める こ とが可能 である。
以上説明した点以外は前述の実施例 1 と同様であ り 、 得られる作用効 果も同 じである。 なお、 上述の実施例 1及び実施例 2では、 電源部 2 7 aから出力され る電圧の値は交流一直流変換器 2 7 2 aにて制御しているが、 インバー タ 2 7 3 aを P W M制御することによ り電源部 2 7 aの出力電圧の値を 制御しても良い。 その場合は、 電源 2 7 bの制御部 2 7 5及び P W M制 御部 2 7 6 と同様の構成を、 電源 2 7 aに追加すれば良い。
また、 実施例 1及び実施例 2において、 荷電粒子ビームを加速するた めの加速器と して、 シンクロ トロン以外の加速器、 例えばサイクロ トロ ンゃライナックを用いても良い。 加えて、 シンクロ トロンからのビーム の出射方法は、 上記実施例 1 , 2で用いた方法に限られるものではない, 更に、 実施例 1及び実施例 2では、 照射装置と して回転照射装置 2 を 用いているが、 固定照射装置を用いても構わない。
なお、 電源部 2 7 b に与える電圧指令値 V b を電流指令値とすること もできる。 産業上の利用可能性
本発明は、 癌患者の患部等の照射対象に荷電粒子ビームを照射する荷 電粒子ビーム照射装置に適用するこ とができる。 この適用によ り、 照射 対象に対する照射線量を均一化でき、 また、 照射対象に荷電粒子ビーム を照射するのに要する照射時間を短く できる。

Claims

請 求 の 範 囲
1 . 荷電粒子ビームを偏向する走査電磁石と、 前記走査電磁石に電圧を 印加する電源とを備え、 荷電粒子ビームを照射対象に照射する荷電粒子 ビーム照射装置において、
前記電源は、 フィルタを有しない第 1電源部及びフィルタを有する第
2電源部を備えるこ とを特徴とする荷電粒子ビーム照射装置。
2 . 荷電粒子ビームを前記照射対象における第 1 照射領域に照射した後 前記照射対象における第 2照射領域に荷電粒子ビームを照射する場合に 荷電粒子ビームが照射される位置を前記第 1照射領域から前記第 2照射 領域に移動させるのに前記走査電磁石において必要とされる励磁電流の 変化量と、 荷電粒子ビームの照射される位置を前記第 1 照射領域から前 記第 2照射領域に移動させるのに要する移動時間とに基づいて、 前記第
1電源部に与える電圧指令値を演算すると共に、 荷電粒子ビームが照射 される位置を前記第 2照射領域に保持するのに前記走査電磁石において 必要とされる励磁電流の値と、 前記走査電磁石の抵抗値とに基づいて、 前記第 2電源部に与える電圧指令値を演算し、 演算によ リ求めた電圧指 令値を前記第 1電源部及び前記第 2電源部に出力する制御装置を有し、 前記第 1電源部及び前記第 2電源部は、 前記制御装置から出力された 電圧指令値に応じた電圧を出力することを特徴とする請求項 1 記載の荷 電粒子ビーム照射装置。
3 . 前記制御装置は、 前記第 1 電源部に電圧指令値を出力してから前記 移動時間が経過した時点で、 前記第 1電源部への電圧指令値の出力を停 止し、 前記第 1電源部は、 前記制御装置による電圧指令値の出力が停止 されたときに電圧の出力を停止することを特徴とする請求項 2記載の荷 電粒子ビーム照射装置。
4 . 荷電粒子ビームを偏向する走査電磁石と、 前記走査電磁石に電圧を 印加する電源と を備え、 荷電粒子ビームを照射対象に照射する荷電粒子 ビーム照射装置において、
前記電源は、 直流電圧を出力する第 1 イ ンバ一タ と、 前記第 1 イ ンバ —タ に直列に接続され、 かつ直流電圧を出力する第 2 イ ンバータ と、 前 記第 2 イ ンバータの出力端に並列に接続された直流フ ィ ルタ と を有し、 前記走査電磁石は、 前記第 1 イ ンバータ及び前記第 2 イ ンバ一タ と直列 に接続される こと を特徴とする荷電粒子ビーム照射装置。
5 . 前記電源は、 前記第 1 イ ンバ一タの出力電圧の値を制御する第 1 制 御手段と、 前記第 2 イ ンバ一タの出力電圧の値を制御する第 2制御手段 と、 前記第 1 制御手段に対して前記第 1 ィ ンバータの出力電圧の値を指 示し、 かつ前記第 2制御手段に対して前記第 2 イ ンバータの出力電圧の 値を指示する制御装置と を有し、
荷電粒子ビームを前記照射対象における第 1 照射領域に照射した後、 前記照射対象における第 2照射領域に荷電粒子ビームを照射する場合に 前記制御装置は、 荷電粒子ビームが照射される位置を前記第 1 照射領域 から前記第 2照射領域に移動させるのに前記走査電磁石において必要と される励磁電流の変化量と、 荷電粒子ビームの照射される位置を前記第 1 照射領域から前記第 2 照射領域に移動させるのに要する移動時間とに 基づいて、 前記第 1 制御手段に指示する電圧値を演算すると共に、 荷電 粒子ビームが照射される位置を前記第 2 照射領域に保持するのに前記走 査電磁石において必要と される励磁電流の値と、 前記走査電磁石の抵抗 値とに基づいて、 前記第 2 制御手段に指示する電圧値を演算し、 演算に よ リ求めた電圧値を前記第 1 制御手段及び前記第 2 制御手段に出力 し、 前記第 1 制御手段及び前記第 2制御手段は、 前記制御装置から指示され た電圧値に応じて前記第 1 イ ンバータ及び前記第 2 イ ンバ一タの出力電 圧の値を制御する こと を特徴とする請求項 4記載の荷電粒子ビーム照射 装置。
6 . 前記制御装置は、 前記第 1 制御手段に電圧値を出力 してから前記移 動時間が経過した時点で、 前記第 1 制御手段への電圧値の出力を停止し 前記第 1 制御手段は、 前記制御装置による電圧値の出力が停止されたと きに前記第 1 ィ ンバ一タ をショー ト状態とする こと を特徴とする請求項
5記載の荷電粒子ビーム照射装置。
7 . 前記走査電磁石に流れる励磁電流を検出する電流検出器を有し、 前記制御装置は、 前記電流検出器によ リ検出された励磁電流の値と、 荷電粒子ビームが照射される位置を前記第 2照射領域に保持するのに前 記走查電磁石において必要とされる励磁電流の値と を比較して、 前記電 流検出器によ リ検出された励磁電流の値が、 荷電粒子ビームが照射され る位置を前記第 2 照射領域に保持するのに前記走査電磁石において必要 と される励磁電流の値に達したと きに、 前記第 1 制御手段への電圧値の 出力を停止し、 前記第 1 制御手段は、 前記制御装置による電圧値の出力 が停止されたと きに前記第 1 イ ンバータ をショー ト状態とする こと を特 徴とする請求項 5 記載の荷電粒子ビーム照射装置。
8 . 前記第 2制御手段は、 前記第 2 イ ンバータ を P W M制御する こ と を 特徴とする請求項 5 乃至 7 のいずれかに記載の荷電粒子ビーム照射装置
9 . 荷電粒子ビームを偏向 して照射対象における荷電粒子ビームの照射 位置を制御する走査電磁石を有する荷電粒子ビーム照射装置の制御方法 において、
荷電粒子ビームを前記照射対象における第 1 照射領域に照射した後、 荷電粒子ビームの照射を停止した状態で荷電粒子ビームの照射位置を前 記照射対象における第 2照射領域に変更し、 その後、 荷電粒子ビームを 前記第 2 照射領域に照射する場合に、 荷電粒子ビームの照射位置を第 2 照射領域に変更すると きには、 前記走査電磁石に対して、 荷電粒子ビー ムの照射位置を前記第 2照射領域に保持するのに必要とされる電圧よ り も絶対値の大きな電圧を印加する こと を特徴とする荷電粒子ビーム照射 装置の制御方法。
1 0 . 荷電粒子ビームの照射位置を前記第 2 照射領域に保持するのに必 要とされる前記電圧は、 荷電粒子ビームの照射位置を前記第 2 照射領域 に保持するのに前記走査電磁石において必要と される励磁電流の値と、 前記走査電磁石の抵抗値との積である こ と を特徴とする請求項 9 記載の 荷電粒子ビーム照射装置の制御方法。
PCT/JP1999/005250 1999-09-27 1999-09-27 Apparatus for charged-particle beam irradiation, and method of control thereof WO2001024591A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000601279A JP3580254B2 (ja) 1999-09-27 1999-09-27 荷電粒子ビーム照射装置及びその制御方法
PCT/JP1999/005250 WO2001024591A1 (en) 1999-09-27 1999-09-27 Apparatus for charged-particle beam irradiation, and method of control thereof
EP99944837A EP1220585B1 (en) 1999-09-27 1999-09-27 Apparatus for charged-particle beam irradiation, and method of control thereof
US09/623,040 US6903351B1 (en) 1999-09-27 1999-09-27 Charged particle beam irradiation equipment having scanning electromagnet power supplies
AU57605/99A AU755928B2 (en) 1999-09-27 1999-09-27 Apparatus for charged-particle beam irradiation, and method of control thereof
US10/287,656 US6900446B2 (en) 1999-09-27 2002-11-05 Charged particle beam irradiation equipment and control method thereof
US10/716,472 US6881970B2 (en) 1999-09-27 2003-11-20 Charged particle beam irradiation equipment and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/005250 WO2001024591A1 (en) 1999-09-27 1999-09-27 Apparatus for charged-particle beam irradiation, and method of control thereof

Publications (1)

Publication Number Publication Date
WO2001024591A1 true WO2001024591A1 (en) 2001-04-05

Family

ID=14236801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/005250 WO2001024591A1 (en) 1999-09-27 1999-09-27 Apparatus for charged-particle beam irradiation, and method of control thereof

Country Status (5)

Country Link
US (3) US6903351B1 (ja)
EP (1) EP1220585B1 (ja)
JP (1) JP3580254B2 (ja)
AU (1) AU755928B2 (ja)
WO (1) WO2001024591A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002301774B2 (en) * 1999-09-27 2004-10-07 Hitachi, Ltd. Charged particle beam irradiation equipment and control method thereof
JP2009540786A (ja) * 2006-06-16 2009-11-19 エコル ポリテクニク フェデラル ドゥ ローザンヌ (エペエフエル) 組込みエネルギー蓄積装置を備える負荷電源装置
JP2014068469A (ja) * 2012-09-26 2014-04-17 Nichicon Corp 電磁石用電源制御装置および制御方法
WO2019198653A1 (ja) * 2018-04-09 2019-10-17 東芝エネルギーシステムズ株式会社 加速器の制御方法、加速器の制御装置、及び粒子線治療システム
RU2808701C1 (ru) * 2023-08-09 2023-12-01 Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук ( ИЯИ РАН) Ускоряющий резонатор

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU755928B2 (en) * 1999-09-27 2003-01-02 Hitachi Limited Apparatus for charged-particle beam irradiation, and method of control thereof
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US7940894B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US8378321B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
CN102119585B (zh) 2008-05-22 2016-02-03 弗拉迪米尔·叶戈罗维奇·巴拉金 带电粒子癌症疗法患者定位的方法和装置
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US8373145B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US8519365B2 (en) * 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US8373143B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8896239B2 (en) 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US8045679B2 (en) * 2008-05-22 2011-10-25 Vladimir Balakin Charged particle cancer therapy X-ray method and apparatus
US7943913B2 (en) 2008-05-22 2011-05-17 Vladimir Balakin Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
EP2283711B1 (en) 2008-05-22 2018-07-11 Vladimir Yegorovich Balakin Charged particle beam acceleration apparatus as part of a charged particle cancer therapy system
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8436327B2 (en) 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
AU2009249863B2 (en) 2008-05-22 2013-12-12 Vladimir Yegorovich Balakin Multi-field charged particle cancer therapy method and apparatus
US8598543B2 (en) 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US8288742B2 (en) 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8144832B2 (en) 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
EP2283713B1 (en) 2008-05-22 2018-03-28 Vladimir Yegorovich Balakin Multi-axis charged particle cancer therapy apparatus
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
WO2009142550A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8198607B2 (en) * 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8569717B2 (en) 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US8093564B2 (en) * 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US8373146B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8129699B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8129694B2 (en) 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US8624528B2 (en) 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US8487278B2 (en) 2008-05-22 2013-07-16 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US7953205B2 (en) * 2008-05-22 2011-05-31 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
US8188688B2 (en) 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8309941B2 (en) * 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
WO2009142544A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle cancer therapy beam path control method and apparatus
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US7939809B2 (en) 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8229072B2 (en) 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8627822B2 (en) 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
DE102008047197B4 (de) * 2008-09-15 2013-01-17 Bernhard Franczak Verfahren zur Strahlentherapie mit Ionenstrahlen und Teilchenbeschleuniger zur Durchführung des Verfahrens
AU2009341615B2 (en) 2009-03-04 2013-03-28 Zakrytoe Aktsionernoe Obshchestvo Protom Multi-field charged particle cancer therapy method and apparatus
EP2438961B1 (en) * 2009-06-03 2015-03-04 Mitsubishi Electric Corporation Particle beam irradiation device
EP2489406B1 (en) * 2009-06-03 2015-03-11 Mitsubishi Electric Corporation Particle beam irradiation apparatus
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
JP5693876B2 (ja) * 2010-05-14 2015-04-01 株式会社東芝 粒子線照射装置及び粒子線照射プログラム
US8798432B2 (en) * 2010-10-21 2014-08-05 Microsoft Corporation Fabrication of a laminated optical wedge
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
CN103974745B (zh) * 2012-02-06 2016-08-24 住友重机械工业株式会社 粒子束照射装置
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
EP2853292B1 (en) * 2013-09-30 2019-07-31 Ion Beam Applications S.A. Charged hadron beam delivery
JP6244229B2 (ja) * 2014-03-07 2017-12-06 株式会社日立製作所 荷電粒子ビーム照射システム、シンクロトロンおよびそのビーム出射方法
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
CN107158583B (zh) * 2017-06-15 2018-07-31 合肥中科离子医学技术装备有限公司 笔形束适形调强治疗头系统及实现方法
US20190224091A1 (en) * 2018-01-19 2019-07-25 Yoram Fishman Nail polish formulation
JP7440191B2 (ja) 2021-01-20 2024-02-28 株式会社日立製作所 荷電粒子ビーム偏向装置および粒子線治療システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112000A (ja) * 1992-09-25 1994-04-22 Mitsubishi Electric Corp シンクロトロン電源装置
JPH0888972A (ja) * 1994-09-13 1996-04-02 Hitachi Ltd 電源装置

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893075A (en) * 1972-12-29 1975-07-01 Richard Orban Method and apparatus for digital scan conversion
US3937997A (en) * 1974-09-13 1976-02-10 Dene Barrett Cathode-ray tube signal generator having resistance configurated electron receptor
GB1462518A (en) * 1974-11-05 1977-01-26 Flocee R Restriction of fields of radiation
FR2484178A1 (fr) * 1980-06-10 1981-12-11 Thomson Brandt Dispositif d'alimentation a decoupage pour televiseur synchrone de la frequence ligne, et televiseur comprenant un tel systeme
US4386409A (en) * 1980-09-23 1983-05-31 Petroff Alan M Sewage flow monitoring system
NL8104947A (nl) * 1981-11-02 1983-06-01 Philips Nv Televisie lijnafbuigschakeling.
US4421988A (en) * 1982-02-18 1983-12-20 Varian Associates, Inc. Beam scanning method and apparatus for ion implantation
US4812716A (en) * 1985-04-03 1989-03-14 Matsushita Electric Industrial Co., Ltd. Electron beam scanning display apparatus with cathode vibration suppression
JPH0821336B2 (ja) * 1986-12-19 1996-03-04 松下電器産業株式会社 平板形陰極線管
US4992746A (en) * 1988-04-26 1991-02-12 Acctek Associates Apparatus for acceleration and application of negative ions and electrons
US5073913A (en) * 1988-04-26 1991-12-17 Acctek Associates, Inc. Apparatus for acceleration and application of negative ions and electrons
EP0398335B1 (en) * 1989-05-17 1996-05-01 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Converged ion beam apparatus
US4961056A (en) * 1989-09-13 1990-10-02 Yu David U L Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring
US5557105A (en) * 1991-06-10 1996-09-17 Fujitsu Limited Pattern inspection apparatus and electron beam apparatus
US5363008A (en) * 1991-10-08 1994-11-08 Hitachi, Ltd. Circular accelerator and method and apparatus for extracting charged-particle beam in circular accelerator
US5351177A (en) * 1992-09-17 1994-09-27 Rca Thomson Licensing Corporation Switch mode power supply with standby mode operation
TW253971B (en) * 1994-02-21 1995-08-11 Futaba Denshi Kogyo Kk Method for driving electron gun and cathode ray tube
US5841145A (en) * 1995-03-03 1998-11-24 Fujitsu Limited Method of and system for exposing pattern on object by charged particle beam
JP2833602B2 (ja) 1995-12-11 1998-12-09 株式会社日立製作所 荷電粒子出射方法および荷電粒子出射装置
EP0779081A3 (en) 1995-12-11 1999-02-03 Hitachi, Ltd. Charged particle beam apparatus and method of operating the same
EP1378265B1 (en) * 1996-08-30 2007-01-17 Hitachi, Ltd. Charged particle beam apparatus
US6066849A (en) * 1997-01-16 2000-05-23 Kla Tencor Scanning electron beam microscope
JP3178381B2 (ja) 1997-02-07 2001-06-18 株式会社日立製作所 荷電粒子照射装置
JP3755228B2 (ja) * 1997-04-14 2006-03-15 株式会社ニコン 荷電粒子線露光装置
JP3125724B2 (ja) * 1997-08-22 2001-01-22 日本電気株式会社 荷電粒子線描画用のパターンデータ作成方法
JP3518854B2 (ja) * 1999-02-24 2004-04-12 キヤノン株式会社 電子源および画像形成装置の製造方法、ならびにそれらの製造装置
JP2000347000A (ja) * 1999-06-04 2000-12-15 Ebara Corp 電子線照射装置
AU755928B2 (en) * 1999-09-27 2003-01-02 Hitachi Limited Apparatus for charged-particle beam irradiation, and method of control thereof
JP3705091B2 (ja) * 2000-07-27 2005-10-12 株式会社日立製作所 医療用加速器システム及びその運転方法
JP2002210028A (ja) * 2001-01-23 2002-07-30 Mitsubishi Electric Corp 放射線照射システム及び放射線照射方法
JP3779878B2 (ja) * 2001-01-30 2006-05-31 株式会社日立製作所 マルチリーフコリメータ
US6436773B1 (en) * 2001-05-01 2002-08-20 Advanced Micro Devices, Inc. Fabrication of test field effect transistor structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112000A (ja) * 1992-09-25 1994-04-22 Mitsubishi Electric Corp シンクロトロン電源装置
JPH0888972A (ja) * 1994-09-13 1996-04-02 Hitachi Ltd 電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1220585A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002301774B2 (en) * 1999-09-27 2004-10-07 Hitachi, Ltd. Charged particle beam irradiation equipment and control method thereof
JP2009540786A (ja) * 2006-06-16 2009-11-19 エコル ポリテクニク フェデラル ドゥ ローザンヌ (エペエフエル) 組込みエネルギー蓄積装置を備える負荷電源装置
JP2014068469A (ja) * 2012-09-26 2014-04-17 Nichicon Corp 電磁石用電源制御装置および制御方法
WO2019198653A1 (ja) * 2018-04-09 2019-10-17 東芝エネルギーシステムズ株式会社 加速器の制御方法、加速器の制御装置、及び粒子線治療システム
RU2742719C1 (ru) * 2018-04-09 2021-02-10 Тосиба Энерджи Системз Энд Солюшнз Корпорейшн Способ управления ускорителем, устройство управления ускорителем и система облучения пучком частиц
RU2808701C1 (ru) * 2023-08-09 2023-12-01 Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук ( ИЯИ РАН) Ускоряющий резонатор

Also Published As

Publication number Publication date
US6881970B2 (en) 2005-04-19
EP1220585A4 (en) 2007-10-17
AU755928B2 (en) 2003-01-02
US20040069959A1 (en) 2004-04-15
JP3580254B2 (ja) 2004-10-20
AU5760599A (en) 2001-04-30
US6903351B1 (en) 2005-06-07
EP1220585A1 (en) 2002-07-03
US6900446B2 (en) 2005-05-31
US20030057382A1 (en) 2003-03-27
EP1220585B1 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
WO2001024591A1 (en) Apparatus for charged-particle beam irradiation, and method of control thereof
JP4633002B2 (ja) 荷電粒子ビーム加速器のビーム出射制御方法及び荷電粒子ビーム加速器を用いた粒子ビーム照射システム
JP5816518B2 (ja) 粒子線照射システム及びビーム補正方法
JP6200368B2 (ja) 荷電粒子照射システムおよび荷電粒子ビーム照射システムの制御方法
JPH11253563A (ja) 荷電粒子ビーム照射方法及び装置
JP2001085200A (ja) 加速器システム
JP5193132B2 (ja) 荷電粒子ビーム照射システム
JP5993778B2 (ja) 粒子線照射システムとその運転方法
JP2015179585A (ja) 荷電粒子線治療装置
JP3864581B2 (ja) 荷電粒子ビーム出射方法
JP2014028061A (ja) 粒子線照射システムとその運転方法
JP3592396B2 (ja) 粒子加速器のタイミング制御装置
JP5350307B2 (ja) 粒子線治療システム
JP6537067B2 (ja) 粒子線照射装置およびその制御方法
KR100933010B1 (ko) 펄스 반복률 변조를 이용한 빔 조사량 조절 장치 및 조절 방법
JP2005129548A (ja) 荷電粒子ビーム出射方法
JP2021065413A (ja) 粒子線治療装置およびエネルギー調整方法
Prieels et al. The IBA state-of-the-art proton therapy system, performances and recent results
JP3837957B2 (ja) 荷電粒子ビーム照射方法及び装置
JP7217208B2 (ja) 走査電磁石および粒子線治療システム
AU2002301774B2 (en) Charged particle beam irradiation equipment and control method thereof
WO2014207852A1 (ja) 荷電粒子ビーム照射システムおよびそのビーム出射方法
JP6162633B2 (ja) 荷電粒子ビーム照射システムおよびそのビーム出射方法
JP2017143017A (ja) 粒子加速器システムおよびそれを備えた粒子線治療システム
JP2011076819A (ja) 環状加速器及びそれを用いた粒子線治療システム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 601279

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 57605/99

Country of ref document: AU

Ref document number: 09623040

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999944837

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999944837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10287656

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 57605/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 10716472

Country of ref document: US