WO2001028918A1 - Controlled release of doxorubicin - Google Patents

Controlled release of doxorubicin Download PDF

Info

Publication number
WO2001028918A1
WO2001028918A1 PCT/US2000/021995 US0021995W WO0128918A1 WO 2001028918 A1 WO2001028918 A1 WO 2001028918A1 US 0021995 W US0021995 W US 0021995W WO 0128918 A1 WO0128918 A1 WO 0128918A1
Authority
WO
WIPO (PCT)
Prior art keywords
dextran
doxorubicin
hours
substitution
composition
Prior art date
Application number
PCT/US2000/021995
Other languages
French (fr)
Inventor
Sin-Hee Kim
Chih-Chang Chu
Original Assignee
Cornell Research Foundation, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cornell Research Foundation, Inc. filed Critical Cornell Research Foundation, Inc.
Publication of WO2001028918A1 publication Critical patent/WO2001028918A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin

Definitions

  • This invention is directed at a composition for the controlled release of doxorubicin.
  • Doxorubicin is a commonly used antineoplastic drug. Commonly responsive tumors include acute leukemia, Hodgkin's disease, other lymphomas, breast and lung cancer. Doxorubicin has been reported to give a high response rate in the treatment of advanced breast cancer and to give favorable results for the treatment of gastric carcinoma (a tumor for which only four drugs are known to be active). However, doxorubicin has a narrow therapeutic index and causes cardiac toxicity at a cumulative dose of 450 to 550 mg/m 2 . The usual dosage is 40-75 mg/m 2 rapidly intravenous or 30 mg/m 2 for three days by continuous IN. Alternative methods of administration have been sought which accommodate the narrow therapeutic index and cumulative dose toxicity.
  • doxorubicin a controlled release form of doxorubicin has been sought, and glutaraldehyde treated erythrocytes and glutaraldehyde treated albumin have been suggested as carriers for this purpose.
  • glutaraldehyde can react with the doxorubicin causing the doxorubicin to become less active and is potentially toxic, and heat is used in glutaraldehyde treatment of albumin which can inactivate doxorubicin.
  • a carrier for controlled release of doxorubicin has been sought where no chemical cross-linker is necessary and where heat is not involved in the preparation of the carrier.
  • the invention herein provides a composition for the controlled release of doxorubicin where the carrier is a dextran-methacrylate biodegradable hydrogel and where no chemical cross-linker or heat are necessary for the preparation of the carrier.
  • the composition for the controlled release of doxorubicin comprises doxorubicin physically entrapped in a dextran- methacrylate biodegradable hydrogel.
  • the composition is formed, for example, by photocrosslinking dextran methacrylate monoester in solution in a medium containing doxorubicin and drying, the dextran methacrylate monoester having an average degree of substitution of each ⁇ -D-glucopyranosyl of dextran by methacrylic acid ranging from 0.05 to 0.75 and a weight average molecular weight ranging from 40,000 to 80,000 on a dextran basis, e.g., 50,000 to 75,000 on a dextran basis, said medium being buffered to a pH ranging from 2 to 8, the weight ratio of doxorubicin to dextran methacrylate monoester ranging from 1:200 to 1:2000, e.g., from 1:500 to 1:1500.
  • the dextran methacrylate monoester which is photocrosslinked has an average degree of substitution ranging from 0.05 to 0.15.
  • the dextran methacrylate monoester which is photocrosslinked has an average degree of substitution ranging from 0.15 to 0.40.
  • the dextran methacrylate monoester which is photocrosslinked has an average degree of substitution ranging from 0.40 to 0.75.
  • the term "physically entrapped" is used herein to mean physically impregnated, i.e., the drug is within the hydrogel network but there has been no chemical reaction between the drug and the hydrogel network.
  • hydrogel is used herein to mean a polymeric material which exhibits the ability to swell in water and to retain a significant portion of water within its structure without dissolution.
  • biodegradable hydrogel means hydrogel formed by cross- linking a polymer which is degraded by water and/or by enzymes found in the body.
  • the term ''photocrosslinking is used herein to mean causing vinyl bonds in the methacryloyl moieties to break and form cross-links by the application of radiant energy.
  • degree of substitution is used herein to mean the number of hydroxyl groups in a glucose unit of ⁇ -D-glucopyranosyl moiety of dextran that form ester group with methacryhc acid. Since each said glucose unit contains three hydroxyl groups, the maximum degree of substitution is 3.0.
  • the average degree of substitution connotes the average degree of substitution based on all the glucose units in the molecules of dextran methacrylate monoester.
  • the term "on a dextran basis" is used herein to mean that the weight average molecular weight referred to is that of the dextran starting material for preparing the dextran methacrylate monoester which provides the dextran moiety of the dextran methacrylate monoester.
  • the weight average molecular weights referred to herein are those determined on dextran by hght scattering or gel permeation chromatography.
  • the dextran used to prepare the dextran methacrylate monoester was obtained from Sigma Chemicals, and had a weight average molecular weight of 70,000 determined by gel permeation chromatography; therefore, the dextran methacrylate monoester used in the working example herein had a weight average molecular weight of 70,000 on a dextran basis, determined by gel permeation chromatography.
  • Fig. 1 is a graph depicting cumulative amount of doxorubicin released from dextran- methacrylate hydrogels having different degrees of substitution in different pH media at 1 hour, 2 hours, 3 hours, 4 hours, 5 hours and 24 hours, and shows results of Example I.
  • Fig. 2 depicts graphs of cumulative amount of doxorubicin released from dextran- methacrylate hydrogels having different degrees of substitution in different pH media over a 240 hour period, and shows results of Example I.
  • Fig. 3 depicts graphs of cumulative release of doxorubicin (M/M 0 ) as a function of square root of time (t 1/2 ) from dextran-methacrylate hydrogels with degrees of substitution of 0.09, 0.24, and 0.60 in pH 3.0 and 7.4 media, where M, is the total amount of drug released in time t and M 0 is the total mass of the drug in the sample.
  • composition of the invention is formed, for example, by photocrosslinking dextran methacrylate monoester in solution in a medium containing doxorubicin and drying, the dextran methacrylate monoester having an average degree of substitution of each ⁇ -D-glucopyranosyl of dextran by methacrylic acid ranging from 0.05 to 0.75 and a weight average molecular weight ranging from 40,000 to 80,000 on a dextran basis, said medium being buffered to a pH ranging frorn 2 to 8, the weight ratio of the doxorubicin to dextran methaciylate monoester ranging from 1 :200 to 1:2000, e.g., from 1:500 to 1 : 1500.
  • n has a range providing the above-described molecular weight range, for a degree of substitution of 1.
  • the dextran methacrylate monoester is readily prepared by reaction of dextran with methacrylic anhydride in the presence of a Lewis-base catalyst.
  • the starting material dextran has a weight average molecular weight ranging from 40,000 to 80,000 and is commercially available.
  • the dextran having a weight average molecular weight of 70,000 used to prepare the dextran methaciylate monoesters for the working example was obtained from Sigma Chemical Co. (St. Louis, Missouri, USA).
  • Dextran is (1 - 6) linked ⁇ -D-glucopyranosyl residues and cairies three hydroxyl groups per glucose unit.
  • the reaction of dextran with methacryhc anhydride is preferably carried out in a dipolar aprotic solvent, e.g., N,N-dimethylformamide (DMF).
  • a dipolar aprotic solvent e.g., N,N-dimethylformamide (DMF).
  • LiCl is preferably included in the DMF reaction solvent to increase the solubility of dextran in DMF, e.g., at level of 10 weight percent LiCl based on the weight of the DMF.
  • the LiCl does this by forming a salt with DMF and thereby increasing the polarity of the DMF.
  • the Lewis-base catalyst is preferably triethylamine (TEA).
  • the reaction can be carried out, for example, at a mole ratio of methacryhc anhydride to hydroxyl groups of dextran ranging from 0.5: 1 to 2.0: l, using a mole ratio of triethylamine (TEA) to methacryhc anhydride ranging from 0.01: 1 to 0.1: 1, reaction temperatures ranging from 40 to 80 °C and reaction times ranging from 5 to 30 hours or more.
  • TSA triethylamine
  • reaction temperatures ranging from 40 to 80 °C
  • reaction times ranging from 5 to 30 hours or more.
  • Various degrees of substitution are obtained by varying reaction temperature, reaction time, reactant ratios and mole ratio of catalyst to methacryhc anhydride.
  • dextran methacrylate monoester of degree of substitution of 0.09 was synthesized by reacting dextran with methacryhc anhydride in a 0.5: 1 mole ratio of methacryhc anhydride to hydroxyl groups of dextran, at 60 °C for 10 hours, in the presence of 0.01: 1 mole ratio of triethylamine to methacryhc anhydride; dextran methacrylate monoester of degree of substitution of 0.24 was synthesized by reacting dextran with methacryhc anhydride in a 1: 1 mole ratio (1 mole of methacryhc anhydride to one hydroxyl group of dextran), at 60 °C for 10 hours in the presence of 1% by weight of triethylamine based on methacryhc anhydride (0.01: 1 mole ratio of triethylamine to methacryhc anhydride); and dextran methacrylate monoester
  • the degree of substitution obtained is readily calculated from ⁇ -NMR data by integration and normalization of the double bond in the methacryhc acid segment and the hydroxyl hydrogen peaks of the dextran segment and dividing the peak area of the double bond region of the methacryhc acid segment by the peak area of the hydroxyl hydrogen of the dextran segment.
  • the medium is preferably an aqueous medium, e.g., phosphate buffer solution (pH 7.4) made by dissolving sodium chloride (120 mmol), potassium chloride (2.7 mmol) and potassium phosphate (10 mmol) in double distilled water (1 liter).
  • phosphate buffer solution pH 7.4
  • a suitable standard buffer solution pH 3) can be obtained from VWR Scientific Products (West Chester, Pennsylvania, USA) under Catalog Number 34170-103.
  • the doxorubicin is added to the medium and then dextran methacrylate monoester is dissolved in the medium.
  • the solution is preferably stirred for 2 to 4 minutes to achieve homogeneous distribution of the doxorubicin; the doxorubicin dissolves completely.
  • the weight ratio of doxorubicin to dextran methacrylate monoester ranges, for example, from 1:200 to 1:2000, in one embodiment from 1:500 to 1: 1500. In the working example herein, the weight ratio of doxorubicin to dextran methacrylate monoester used was 1: 1000.
  • photoinitiator e.g., 2,2'-dimethoxy-2-phenyl-acetophenone (dissolved in N-methyl pyrrolidone) is added in an amount of 0.5% to 5% by weight of the dextran methacrylate monoester.
  • the photocrosslinking is readily carried out by UN irradiation, e.g.. using a long wave UN lamp. Gelation occurs within 5 minutes; however, the irradiation is preferably carried out on a film of the admixture being irradiated, for example, for 1 to 6 hours.
  • Drying is preferably so that the formed composition is diy to the touch. Drying can be carried out at room temperature, for example, in air and/or in a vacuum oven, e.g., for one day in air at room temperature followed for another day in a vacuum oven at room temperature.
  • An example of hydrogel without entrapped doxombicin is schematically shown below.
  • n has a range providing the above described molecular weight range, for a degree of substitution of 1.0.
  • composition is administered in a dosage of 40 to 90 mg /m 2 by oral route of administration or on an implant.
  • the composition provides a rapid initial release of doxorubicin over a period of 3 to 6 hours followed by slow release.
  • the cumulative release over the initial period is proportional to the square root of time.
  • Increased degree of substitution in the dextran methacrylate monoester decreases cumulative doxorubicin release.
  • the composition provides higher cumulative release in acid pH (e.g., the stomach) than at physiological pH at degrees of substitution less than about 0.4.
  • the cumulative release rate of doxorubicin at physiological pH was proportional to the square root of time for an initial 5 hour period with a cumulative release of about 92% with very little release thereafter, and at pH of 3 the cumulative release rate of doxorubicin was proportional to the square root of time for an initial 5 hour period with cumulative release of about 87%, increasing to 99% at 240 hours.
  • the cumulative release rate of doxombicin at physiological pH was proportional to the square root of time for the first 5 hours, with cumulative release of about 34%, increasing to 47% and reaching equilibrium at 24 hours and at pH 3 the cumulative release rate was proportional to the square root of time for an initial 5 hour period with cumulative release of about 48%, increasing to about 57% at 24 hours and 67% at 240 hours.
  • the cumulative release rate of doxorubicin was proportional to the square root of time for an initial 5 hour period with cumulative release of about 11% at 5 hours, about 27-29% at 24 hours and about 40% at 240 hours with continuing release beyond 240 hours.
  • lower degrees of substitution provided the least delay and the highest cumulative release so the subset with degree of substitution ranging from 0.05 to 0.15 provides a regimen closest to what is available now.
  • compositions within the scope of the invention and of testing thereon is included in a manuscript cited as Kirn S., et al., "/ « Vitro Release Behavior of Dextran- methacrylate hydrogels Using Doxorubicin and Other Model Compounds" which forms part of U.S. Provisional Apphcation No. 60/160,211, filed 19 October 1999, the whole of which is incorporated herein by reference.
  • Dextran methacrylate monoester with a degree of substitution of 0.09 was synthesized by reacting dextran with methacryhc anhydride in a mole ratio of methacryhc anhydride to hydroxyl groups of dextran of 0.5, at 60° C for 10 hours, in the presence of 0.01: 1 mole ratio of triethylamine to the methacryhc anhydride.
  • Dextran methacrylate monoester with a degree of substitution of 0.24 was synthesized by reacting dextran with methacryhc anhydride in a 1: 1 mole ratio of methacryhc anhydride to hydroxyl groups of dextran at 60 °C for 10 hours in the presence of 1% by weight of triethylamine based on methacryhc anhydride.
  • Dextran methacrylate monoester with a degree of substitution of 0.60 was synthesized by reacting dextran with methacryhc anhydride in a mole ratio of methacryhc anhydride to hydroxyl groups of dextran of 1: 1, at 60°C for 10 hours in the presence of 0.05: 1 mole ratio of trie ylamine to the methacryhc anhydride.
  • the dextran had a weight average molecular weight of 70,000 and was obtained from Sigma Chemical Company (St. Louis, Missouri, USA).
  • the reaction was carried out in N,N-dimethyl formamide containing 10% by weight LiCl.
  • dextran-methacrylate hydrogel with doxorubicin physically entrapped therein was obtained as follows.
  • Dextran methaciylate monoester (1 gram) was dissolved in 2.5 ml pH 7.4 buffer solution (40 w/v%) containing mg of doxorubicin.
  • the buffer solution was phosphate buffer solution made by dissolving sodium chloride (120 mmol), potassium chloride (2.7 mmol), and potassium phosphate (10 mmol) in double distilled water (1 hter). The solution was stirred for a few minutes.
  • Photoinitiator 2,2-dimethoxy-2-phenyl acetophenone dissolved in N-methyl pyrrohdone
  • dextran methacrylate monoester was then added in amount of 1% by weight of dextran methacrylate monoester and the resulting admixture was stirred rapidly for a few seconds.
  • Resulting solutions were poured onto glass plates, and the films on the plates were irradiated with a 365 mn long wave lamp (8 watts, UNL-18, UNP, Upland, California, USA) for 2 hours.
  • the resulting drug-loaded hydrogel compositions (3 mm thick slab geometry) were dried in air at room temperature for one day and in a vacuum oven at room temperature for another day. The formed compositions had an orange color.
  • Samples (1 g) consisting of dextran-methacrylate hydrogel (1 gm) with 1 mg doxorubicin entrapped therein were placed in test tubes containing 20 ml of fresh buffer medium (pH 7.4 buffer medium or pH 3 buffer medium).
  • the pH 7.4 buffer medium was the phosphate buffer medium described above and represented physiological pH.
  • the pH 3 buffer medium was obtained from NWR Scientific (West Chester, Pennsylvania, USA) under Catalog Number 34170-103.
  • the test tubes were kept at 37° C in an incubator, and they were gently shaken before an ahquot ( 1 ml) was removed at each predetermined time. Samples were taken at 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 24 hours, 48 hours, 72 hours, 144 hours and 240 hours.
  • the visible absorption intensity was measured and the release amount was calculated using an established cahbration curve for doxorubicin. For each degree of substitution and pH, there were four measurements from four test tubes for proper statistical average.
  • Fig. 1 is a graph depicting cumulative amount of doxorubicin released from 0.09 degree of substitution hydrogel, from 0.24 degree of substitution hydrogel, and from 0.60 degree of substitution hydrogel into pH 3 buffer medium and into pH 7.4 buffer medium at 1 hour, 2 hours, 3 hours, 4 hours, 5 hours and 24 hours.
  • Fig. 2 is a graph depicting cumulative amount of doxorubicin released from 0.09 degree of substitution hydrogel, from 0.24 degree of substitution hydrogel and from 0.60 degree of substitution hydrogel into pH 3 buffer medium and into pH 7.4 buffer medium at 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 24 hours, 48 hours, 72 hours, 144 hours and 240 hours.
  • the graphs of Figs 1 and 2 show in all cases cumulative release rate of doxorubicin linearly proportioned to the square root of time over an initial 5 hour period.
  • Fig. 3 depicts graphs of cumulative release of doxorubicin as a function of the time over the initial 5 hours.
  • the 0.60 degree of substitution hydrogels continued to release doxorubicin beyond 240 hours.
  • M/M 0 4(Dt/ ⁇ ⁇ where M, is the amount of drug released in time t, M 0 is the total mass of drug in the sample, D is the diffusion coefficient, ⁇ is 3.14, and h is the thickness of the prepared slab.
  • D was 0.293 in pH 3.0 medium and 0.224 in pH 7.4 medium.
  • D was 0.0710 in pH 3.0 medium and 0.0377 in pH 7.4 medium.
  • D was 0.0041 in pH 3.0 medium and 0.0024 in pH 7.4 medium.

Abstract

A controlled release doxorubicin containing composition comprises doxorubicin physically entrapped in a dextran-methacrylate biodegradable hydrogel. The composition provides a rapid initial release of doxorubicin over a period of 5 to 7 hours followed by slow release. Increased degree of substitution in the dextran methacrylate decreases cumulative doxorubicin release. The composition provides higher cumulative release in acid pH (e.g., the stomach) than at physiological pH at lower degrees of substitution. The composition allows administration alternatives to the bolus intravenous and continuous intravenous methods of administration now used for doxorubicin. The composition can be prepared without the use of heat (which can result in heat destruction of doxorubicin) and is prepared without chemical cross-linker such as glutaraldehyde and the toxicity associated therewith. The figure is a graph depicting cumulative amount of doxorubicin released from dextran-methacrylate hydrogels having different degrees of substitution in different pH media at 1 hour, 2 hours, 3 hours, 4 hours, 5 hours and 24 hours, and show results of Example 1.

Description

Chu - CRF D-2476
CONTROLLED RELEASE OF DOXORUBICIN
Cross-Reference to Related Application
This application claims the benefit of U.S. Provisional Application No. 60/160,211, filed 19 October 1999, the whole of which is incorporated herein by reference.
Technical Field
This invention is directed at a composition for the controlled release of doxorubicin.
Background of the Invention
Doxorubicin is a commonly used antineoplastic drug. Commonly responsive tumors include acute leukemia, Hodgkin's disease, other lymphomas, breast and lung cancer. Doxorubicin has been reported to give a high response rate in the treatment of advanced breast cancer and to give favorable results for the treatment of gastric carcinoma (a tumor for which only four drugs are known to be active). However, doxorubicin has a narrow therapeutic index and causes cardiac toxicity at a cumulative dose of 450 to 550 mg/m2. The usual dosage is 40-75 mg/m2 rapidly intravenous or 30 mg/m2 for three days by continuous IN. Alternative methods of administration have been sought which accommodate the narrow therapeutic index and cumulative dose toxicity. In particular, a controlled release form of doxorubicin has been sought, and glutaraldehyde treated erythrocytes and glutaraldehyde treated albumin have been suggested as carriers for this purpose. However, the glutaraldehyde can react with the doxorubicin causing the doxorubicin to become less active and is potentially toxic, and heat is used in glutaraldehyde treatment of albumin which can inactivate doxorubicin. Accordingly, a carrier for controlled release of doxorubicin has been sought where no chemical cross-linker is necessary and where heat is not involved in the preparation of the carrier. Summary of the Invention
The invention herein provides a composition for the controlled release of doxorubicin where the carrier is a dextran-methacrylate biodegradable hydrogel and where no chemical cross-linker or heat are necessary for the preparation of the carrier. The composition for the controlled release of doxorubicin comprises doxorubicin physically entrapped in a dextran- methacrylate biodegradable hydrogel. The composition is formed, for example, by photocrosslinking dextran methacrylate monoester in solution in a medium containing doxorubicin and drying, the dextran methacrylate monoester having an average degree of substitution of each α-D-glucopyranosyl of dextran by methacrylic acid ranging from 0.05 to 0.75 and a weight average molecular weight ranging from 40,000 to 80,000 on a dextran basis, e.g., 50,000 to 75,000 on a dextran basis, said medium being buffered to a pH ranging from 2 to 8, the weight ratio of doxorubicin to dextran methacrylate monoester ranging from 1:200 to 1:2000, e.g., from 1:500 to 1:1500.
In one subset of the invention, the dextran methacrylate monoester which is photocrosslinked has an average degree of substitution ranging from 0.05 to 0.15.
In another subset of the invention, the dextran methacrylate monoester which is photocrosslinked has an average degree of substitution ranging from 0.15 to 0.40.
In still another subset of the invention, the dextran methacrylate monoester which is photocrosslinked has an average degree of substitution ranging from 0.40 to 0.75.
The term "physically entrapped" is used herein to mean physically impregnated, i.e., the drug is within the hydrogel network but there has been no chemical reaction between the drug and the hydrogel network.
The term "hydrogel" is used herein to mean a polymeric material which exhibits the ability to swell in water and to retain a significant portion of water within its structure without dissolution.
The term "biodegradable hydrogel" is used herein mean hydrogel formed by cross- linking a polymer which is degraded by water and/or by enzymes found in the body.
The term ''photocrosslinking" is used herein to mean causing vinyl bonds in the methacryloyl moieties to break and form cross-links by the application of radiant energy.
The term "degree of substitution" is used herein to mean the number of hydroxyl groups in a glucose unit of α-D-glucopyranosyl moiety of dextran that form ester group with methacryhc acid. Since each said glucose unit contains three hydroxyl groups, the maximum degree of substitution is 3.0. The average degree of substitution connotes the average degree of substitution based on all the glucose units in the molecules of dextran methacrylate monoester.
The term "on a dextran basis" is used herein to mean that the weight average molecular weight referred to is that of the dextran starting material for preparing the dextran methacrylate monoester which provides the dextran moiety of the dextran methacrylate monoester. The weight average molecular weights referred to herein are those determined on dextran by hght scattering or gel permeation chromatography. In the working example herein, the dextran used to prepare the dextran methacrylate monoester was obtained from Sigma Chemicals, and had a weight average molecular weight of 70,000 determined by gel permeation chromatography; therefore, the dextran methacrylate monoester used in the working example herein had a weight average molecular weight of 70,000 on a dextran basis, determined by gel permeation chromatography.
Brief Description of the Drawings
Fig. 1 is a graph depicting cumulative amount of doxorubicin released from dextran- methacrylate hydrogels having different degrees of substitution in different pH media at 1 hour, 2 hours, 3 hours, 4 hours, 5 hours and 24 hours, and shows results of Example I.
Fig. 2 depicts graphs of cumulative amount of doxorubicin released from dextran- methacrylate hydrogels having different degrees of substitution in different pH media over a 240 hour period, and shows results of Example I.
Fig. 3 depicts graphs of cumulative release of doxorubicin (M/M0) as a function of square root of time (t1/2) from dextran-methacrylate hydrogels with degrees of substitution of 0.09, 0.24, and 0.60 in pH 3.0 and 7.4 media, where M, is the total amount of drug released in time t and M0 is the total mass of the drug in the sample. Detailed Description
As indicated above, composition of the invention is formed, for example, by photocrosslinking dextran methacrylate monoester in solution in a medium containing doxorubicin and drying, the dextran methacrylate monoester having an average degree of substitution of each α-D-glucopyranosyl of dextran by methacrylic acid ranging from 0.05 to 0.75 and a weight average molecular weight ranging from 40,000 to 80,000 on a dextran basis, said medium being buffered to a pH ranging frorn 2 to 8, the weight ratio of the doxorubicin to dextran methaciylate monoester ranging from 1 :200 to 1:2000, e.g., from 1:500 to 1 : 1500.
We turn now to the dextran methacrylate monoester starting material for preparing composition herein.
These compounds are exemplified by the formula
Figure imgf000005_0001
where n has a range providing the above-described molecular weight range, for a degree of substitution of 1.
The dextran methacrylate monoester is readily prepared by reaction of dextran with methacrylic anhydride in the presence of a Lewis-base catalyst.
The starting material dextran has a weight average molecular weight ranging from 40,000 to 80,000 and is commercially available. For example, the dextran having a weight average molecular weight of 70,000 used to prepare the dextran methaciylate monoesters for the working example was obtained from Sigma Chemical Co. (St. Louis, Missouri, USA). Dextran is (1 - 6) linked α-D-glucopyranosyl residues and cairies three hydroxyl groups per glucose unit. The reaction of dextran with methacryhc anhydride is preferably carried out in a dipolar aprotic solvent, e.g., N,N-dimethylformamide (DMF). LiCl is preferably included in the DMF reaction solvent to increase the solubility of dextran in DMF, e.g., at level of 10 weight percent LiCl based on the weight of the DMF. The LiCl does this by forming a salt with DMF and thereby increasing the polarity of the DMF.
The Lewis-base catalyst is preferably triethylamine (TEA).
The reaction can be carried out, for example, at a mole ratio of methacryhc anhydride to hydroxyl groups of dextran ranging from 0.5: 1 to 2.0: l, using a mole ratio of triethylamine (TEA) to methacryhc anhydride ranging from 0.01: 1 to 0.1: 1, reaction temperatures ranging from 40 to 80 °C and reaction times ranging from 5 to 30 hours or more. Various degrees of substitution are obtained by varying reaction temperature, reaction time, reactant ratios and mole ratio of catalyst to methacryhc anhydride. In general, increasing reaction temperature, increasing reaction time, increasing mole ratio of methacryhc anhydride to hydroxyl groups of dextran, and increasing mole ratio of triethylamine to methacryhc anhydride causes an increase in degree of substitution.
For example, for the working example herein, dextran methacrylate monoester of degree of substitution of 0.09 was synthesized by reacting dextran with methacryhc anhydride in a 0.5: 1 mole ratio of methacryhc anhydride to hydroxyl groups of dextran, at 60 °C for 10 hours, in the presence of 0.01: 1 mole ratio of triethylamine to methacryhc anhydride; dextran methacrylate monoester of degree of substitution of 0.24 was synthesized by reacting dextran with methacryhc anhydride in a 1: 1 mole ratio (1 mole of methacryhc anhydride to one hydroxyl group of dextran), at 60 °C for 10 hours in the presence of 1% by weight of triethylamine based on methacryhc anhydride (0.01: 1 mole ratio of triethylamine to methacryhc anhydride); and dextran methacrylate monoester of degree of substitution of 0.60 was synthesized by reacting dextran with methacryhc anhydride in a 1 : 1 mole ratio of methacryhc anhydride to hydroxyl groups of dextran, at 60 °C for 10 hours, in the presence of 0.05: 1 mole ratio of triethylamine to methacryhc anhydride.
The degree of substitution obtained is readily calculated from Η-NMR data by integration and normalization of the double bond in the methacryhc acid segment and the hydroxyl hydrogen peaks of the dextran segment and dividing the peak area of the double bond region of the methacryhc acid segment by the peak area of the hydroxyl hydrogen of the dextran segment.
The synthesis of dextran methacryhc acid esters is described in a manuscript cited as Kim, S., et al., "Synthesis and Characterization of Dextran-methacrylate Hydrogel and its Structural Study by SEM" which forms part of U.S. Provisional Apphcation No. 60/160,211, filed 19 October 1999, the whole of which is incorporated herein by reference.
We turn now to the photocrosslinking of the dextran methacrylate monoester (prepared as described above) in solution in a medium containing doxorubicin and drying, the medium being buffered to a pH ranging from 2 to 8.
The medium is preferably an aqueous medium, e.g., phosphate buffer solution (pH 7.4) made by dissolving sodium chloride (120 mmol), potassium chloride (2.7 mmol) and potassium phosphate (10 mmol) in double distilled water (1 liter). A suitable standard buffer solution (pH 3) can be obtained from VWR Scientific Products (West Chester, Pennsylvania, USA) under Catalog Number 34170-103.
Preferably the doxorubicin is added to the medium and then dextran methacrylate monoester is dissolved in the medium. The solution is preferably stirred for 2 to 4 minutes to achieve homogeneous distribution of the doxorubicin; the doxorubicin dissolves completely.
The weight ratio of doxorubicin to dextran methacrylate monoester ranges, for example, from 1:200 to 1:2000, in one embodiment from 1:500 to 1: 1500. In the working example herein, the weight ratio of doxorubicin to dextran methacrylate monoester used was 1: 1000.
Preferably, photoinitiator, e.g., 2,2'-dimethoxy-2-phenyl-acetophenone (dissolved in N-methyl pyrrolidone) is added in an amount of 0.5% to 5% by weight of the dextran methacrylate monoester.
The photocrosslinking is readily carried out by UN irradiation, e.g.. using a long wave UN lamp. Gelation occurs within 5 minutes; however, the irradiation is preferably carried out on a film of the admixture being irradiated, for example, for 1 to 6 hours.
Drying is preferably so that the formed composition is diy to the touch. Drying can be carried out at room temperature, for example, in air and/or in a vacuum oven, e.g., for one day in air at room temperature followed for another day in a vacuum oven at room temperature. An example of hydrogel without entrapped doxombicin is schematically shown below.
Crosslin ing occurs
Figure imgf000008_0001
where n has a range providing the above described molecular weight range, for a degree of substitution of 1.0.
The composition is administered in a dosage of 40 to 90 mg /m2 by oral route of administration or on an implant.
The composition provides a rapid initial release of doxorubicin over a period of 3 to 6 hours followed by slow release. The cumulative release over the initial period is proportional to the square root of time. Increased degree of substitution in the dextran methacrylate monoester decreases cumulative doxorubicin release. The composition provides higher cumulative release in acid pH (e.g., the stomach) than at physiological pH at degrees of substitution less than about 0.4. For dextran methacrylate with a degree of substitution of 0.09 with weight average molecular weight of 70,000 on a dextran basis, the cumulative release rate of doxorubicin at physiological pH was proportional to the square root of time for an initial 5 hour period with a cumulative release of about 92% with very little release thereafter, and at pH of 3 the cumulative release rate of doxorubicin was proportional to the square root of time for an initial 5 hour period with cumulative release of about 87%, increasing to 99% at 240 hours. For dextran methacrylate with a degree of substitution of 0.24 with weight average molecular weight of 70,000 on a dextran basis, the cumulative release rate of doxombicin at physiological pH was proportional to the square root of time for the first 5 hours, with cumulative release of about 34%, increasing to 47% and reaching equilibrium at 24 hours and at pH 3 the cumulative release rate was proportional to the square root of time for an initial 5 hour period with cumulative release of about 48%, increasing to about 57% at 24 hours and 67% at 240 hours. For dextran methacrylate with degree of substitution of 0.60, with weight average molecular weight of 70,000 on a dextran basis at physiological pH and at pH 3, the cumulative release rate of doxorubicin was proportional to the square root of time for an initial 5 hour period with cumulative release of about 11% at 5 hours, about 27-29% at 24 hours and about 40% at 240 hours with continuing release beyond 240 hours. Thus, lower degrees of substitution provided the least delay and the highest cumulative release so the subset with degree of substitution ranging from 0.05 to 0.15 provides a regimen closest to what is available now.
A description of compositions within the scope of the invention and of testing thereon is included in a manuscript cited as Kirn S., et al., "/« Vitro Release Behavior of Dextran- methacrylate hydrogels Using Doxorubicin and Other Model Compounds" which forms part of U.S. Provisional Apphcation No. 60/160,211, filed 19 October 1999, the whole of which is incorporated herein by reference.
The invention is illustrated in the following working example.
Example I
Dextran methacrylate monoester with a degree of substitution of 0.09 was synthesized by reacting dextran with methacryhc anhydride in a mole ratio of methacryhc anhydride to hydroxyl groups of dextran of 0.5, at 60° C for 10 hours, in the presence of 0.01: 1 mole ratio of triethylamine to the methacryhc anhydride. Dextran methacrylate monoester with a degree of substitution of 0.24 was synthesized by reacting dextran with methacryhc anhydride in a 1: 1 mole ratio of methacryhc anhydride to hydroxyl groups of dextran at 60 °C for 10 hours in the presence of 1% by weight of triethylamine based on methacryhc anhydride. Dextran methacrylate monoester with a degree of substitution of 0.60 was synthesized by reacting dextran with methacryhc anhydride in a mole ratio of methacryhc anhydride to hydroxyl groups of dextran of 1: 1, at 60°C for 10 hours in the presence of 0.05: 1 mole ratio of trie ylamine to the methacryhc anhydride. In each case, the dextran had a weight average molecular weight of 70,000 and was obtained from Sigma Chemical Company (St. Louis, Missouri, USA). In each case, the reaction was carried out in N,N-dimethyl formamide containing 10% by weight LiCl.
In each case, dextran-methacrylate hydrogel with doxorubicin physically entrapped therein was obtained as follows. Dextran methaciylate monoester (1 gram) was dissolved in 2.5 ml pH 7.4 buffer solution (40 w/v%) containing mg of doxorubicin. The buffer solution was phosphate buffer solution made by dissolving sodium chloride (120 mmol), potassium chloride (2.7 mmol), and potassium phosphate (10 mmol) in double distilled water (1 hter). The solution was stirred for a few minutes. Photoinitiator, 2,2-dimethoxy-2-phenyl acetophenone dissolved in N-methyl pyrrohdone), was then added in amount of 1% by weight of dextran methacrylate monoester and the resulting admixture was stirred rapidly for a few seconds. Resulting solutions were poured onto glass plates, and the films on the plates were irradiated with a 365 mn long wave lamp (8 watts, UNL-18, UNP, Upland, California, USA) for 2 hours. The resulting drug-loaded hydrogel compositions (3 mm thick slab geometry) were dried in air at room temperature for one day and in a vacuum oven at room temperature for another day. The formed compositions had an orange color.
Samples (1 g) consisting of dextran-methacrylate hydrogel (1 gm) with 1 mg doxorubicin entrapped therein were placed in test tubes containing 20 ml of fresh buffer medium (pH 7.4 buffer medium or pH 3 buffer medium). The pH 7.4 buffer medium was the phosphate buffer medium described above and represented physiological pH. The pH 3 buffer medium was obtained from NWR Scientific (West Chester, Pennsylvania, USA) under Catalog Number 34170-103. The test tubes were kept at 37° C in an incubator, and they were gently shaken before an ahquot ( 1 ml) was removed at each predetermined time. Samples were taken at 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 24 hours, 48 hours, 72 hours, 144 hours and 240 hours. The visible absorption intensity was measured and the release amount was calculated using an established cahbration curve for doxorubicin. For each degree of substitution and pH, there were four measurements from four test tubes for proper statistical average.
Results are shown in Figs. 1 through 3.
Fig. 1 is a graph depicting cumulative amount of doxorubicin released from 0.09 degree of substitution hydrogel, from 0.24 degree of substitution hydrogel, and from 0.60 degree of substitution hydrogel into pH 3 buffer medium and into pH 7.4 buffer medium at 1 hour, 2 hours, 3 hours, 4 hours, 5 hours and 24 hours.
Fig. 2 is a graph depicting cumulative amount of doxorubicin released from 0.09 degree of substitution hydrogel, from 0.24 degree of substitution hydrogel and from 0.60 degree of substitution hydrogel into pH 3 buffer medium and into pH 7.4 buffer medium at 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 24 hours, 48 hours, 72 hours, 144 hours and 240 hours.
The graphs of Figs 1 and 2 show in all cases cumulative release rate of doxorubicin linearly proportioned to the square root of time over an initial 5 hour period.
Fig. 3 depicts graphs of cumulative release of doxorubicin as a function of the time over the initial 5 hours. As shown in Fig. 3, the 0.24 degree of substitution hydrogel showed the closest fit to a linear relationship for both pH 3 and pH 7.4 (in both cases R2 > 0.98) followed by degree of substitution 0.09 hydrogel (R2 = 0.89 for pH 3 and R2 = 0.65 for pH 7.4) and degree of substitution 0.60 hydrogel (R2 = 0.85 for pH 3 and R2 = 0.69 for pH 7.4).
As shown in Figs. 1 and 2, cumulative amount of doxorubicin released from 0.09 degree of substitution hydrogel in physiological pH medium was about 92% at 4 hours and there was very httle release thereafter.
As shown in Figs. 1 and 2, cumulative amount of doxorubicin released from 0.09 degree of substitution hydrogel in pH 3 medium was about 87% at 5 hours, increasing to about 89% at 24 hours and 99% at 240 hours.
As shown in Figs. 1 and 2, cumulative amount of doxorubicin released from 0.24 degree of substitution hydrogel in physiological pH medium was about 34% at 5 hours, increasing to about 47% and reaching equilibrium at 24 hours.
As shown in Figs. 1 and 2, cumulative amount of doxorubicin released from 0.24 degree of substitution hydrogel in pH 3 medium was about 47% at 5 hours, increasing to about 57% at 24 hours and 67% at 240 hours.
As shown in Figs. 1 and 2, cumulative amount of doxorubicin released from 0.60 degree of substitution hydrogel in physiological pH medium was about 11% at 5 hours, increasing to about 27% at 24 hours and about 40% at 240 hours. As shown in Figs. 1 and 2, cumulative amount of doxorubicin released from 0.60 degree of substitution hydrogel in pH 3 medium was about 11% at 5 hours, increasing to about 29% at 24 hours and about 40% at 240 hours.
The 0.60 degree of substitution hydrogels continued to release doxorubicin beyond 240 hours.
Diffusion coefficients for the compositions in pH 3.0 and pH 7.4 medium were calculated using Fick's law, that is,
M/M0 = 4(Dt/π ψ where M, is the amount of drug released in time t, M0 is the total mass of drug in the sample, D is the diffusion coefficient, π is 3.14, and h is the thickness of the prepared slab. For degree of substitution 0.09 hydrogel, D was 0.293 in pH 3.0 medium and 0.224 in pH 7.4 medium. For degree of substitution 0.24 hydrogel, D was 0.0710 in pH 3.0 medium and 0.0377 in pH 7.4 medium. For degree of substitution 0.60 hydrogel, D was 0.0041 in pH 3.0 medium and 0.0024 in pH 7.4 medium.
Variations
Many variations of the above will be obvious to those skilled in the art. Thus, the invention is defined by the claims.

Claims

WHAT IS CLAIMED IS:
1. A composition for the controlled release of doxorubicin which comprises doxorubicin physically entrapped in a dextran-methacrylate biodegradable hydrogel.
2. The composition for the controlled release of doxorubicin as claimed in Claim 1 which is formed by photocrosslinking dextran methacrylate monoester in solution in a medium containing doxorubicin and drying, the dextran methacrylate monoester having an average degree of substitution of each α-D-glucopyranosyl of dextran by methacryhc acid ranging from 0.05 to 0.75 and a weight average molecular weight ranging from 40,000 to 80,000 on a dextran basis, said medium being buffered to a pH ranging from 2 to 8, the weight ratio of doxombicin to dextran methaciylate monoester ranging from 1 :200 to 1:2000.
3. The composition for the controlled release of doxombicin as claimed in Claim
2, wherein the weight ratio of doxombicin to dextran methacrylate monoester ranges from 1:500 to 1: 1500.
4. The composition for the controlled release of doxombicin as claimed in Claim
3, wherein the dextran methacrylate monoester which is photocrosshnked has an average degree of substitution ranging from 0.05 to 0.15.
5. The composition for the controlled release of doxombicin as claimed in Claim 4, wherein the dextran methacrylate monoester which is photocrosslinked has a weight average molecular weight of 70,000 on a dextran basis.
6. The composition for the controlled release of doxombicin as claimed in Claim 3, wherein the dextran methacrylate monoester which is photocrosslinked has an average degree of substitution ranging from 0.15 to 0.40.
7. The composition for the controlled release of doxombicin as claimed in Claim 6, wherein the dextran methacrylate monoester which is photocrosshnked has a weight average molecular weight of 70,000 on a dextran basis.
8. The composition for the controlled release of doxombicin as claimed in Claim 3, wherein the dextran methacrylate monoester which is photocrosslinked has an average degree of substitution ranging from 0.40 to 0.75.
9. The composition for the controlled release of doxorubicin as claimed in Claim 8, wherein the dextran methacrylate monoester which is photocrosshnked has a weight average molecular weight of 70,000 on a dextran basis.
10. The composition for the controlled release of doxombicin as claimed in Claim 3, wherein the dextran methacrylate monoester which is photocrosslinked has a weight average molecular weight of 70,000 on a dextran basis.
PCT/US2000/021995 1999-10-19 2000-10-03 Controlled release of doxorubicin WO2001028918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16021199P 1999-10-19 1999-10-19
US60/160,211 1999-10-19

Publications (1)

Publication Number Publication Date
WO2001028918A1 true WO2001028918A1 (en) 2001-04-26

Family

ID=22575967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/021995 WO2001028918A1 (en) 1999-10-19 2000-10-03 Controlled release of doxorubicin

Country Status (2)

Country Link
US (1) US6369037B1 (en)
WO (1) WO2001028918A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110897997A (en) * 2019-12-31 2020-03-24 广州贝奥吉因生物科技股份有限公司 Dextran grafted methacrylic acid hydrogel microneedle and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418945A2 (en) * 2001-03-13 2004-05-19 Angiotech Pharmaceuticals, Inc. Micellar drug delivery vehicles and uses thereof
EP1392254B1 (en) 2001-04-20 2007-06-06 The University of British Columbia Micellar drug delivery systems for hydrophobic drugs
WO2010083039A1 (en) * 2009-01-14 2010-07-22 Cornell University Preparing biodgradable hydrogel for biomedical application
US9012415B2 (en) 2010-03-26 2015-04-21 Stemmatters, Biotecnologia E Medicina Regenerativa S.A. Photo-crosslinked gellan gum-based hydrogels: preparation methods and uses thereof
WO2014116043A1 (en) * 2013-01-23 2014-07-31 재단법인 유타 인하 디디에스 및 신의료기술개발 공동연구소 Biodegradable microbeads comprising dextran methacrylate and biocompatible anionic polymer, and preparation method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514379A (en) * 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5674521A (en) * 1994-07-18 1997-10-07 University Of Cincinnati Enhanced loading of solutes into polymer gels and methods of use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925677A (en) 1988-08-31 1990-05-15 Theratech, Inc. Biodegradable hydrogel matrices for the controlled release of pharmacologically active agents
AU3124793A (en) 1991-10-29 1993-06-07 Clover Consolidated, Limited Crosslinkable polysaccharides, polycations and lipids useful for encapsulation and drug release
US5334640A (en) 1992-04-08 1994-08-02 Clover Consolidated, Ltd. Ionically covalently crosslinked and crosslinkable biocompatible encapsulation compositions and methods
ES2068762B1 (en) 1993-07-21 1995-12-01 Lipotec Sa A NEW PHARMACEUTICAL PREPARATION TO IMPROVE THE BIOAVAILABILITY OF DRUGS OF DIFFICULT ABSORPTION AND PROCEDURE FOR THEIR OBTAINING.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514379A (en) * 1992-08-07 1996-05-07 The General Hospital Corporation Hydrogel compositions and methods of use
US5674521A (en) * 1994-07-18 1997-10-07 University Of Cincinnati Enhanced loading of solutes into polymer gels and methods of use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110897997A (en) * 2019-12-31 2020-03-24 广州贝奥吉因生物科技股份有限公司 Dextran grafted methacrylic acid hydrogel microneedle and preparation method thereof

Also Published As

Publication number Publication date
US6369037B1 (en) 2002-04-09

Similar Documents

Publication Publication Date Title
Martínez-Gómez et al. In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels
US5482719A (en) Drug delivery systems
HOU et al. Sustained release of indomethacin from chitosan granules
Çetin et al. 5-Fluorouracil delivery from metal-ion mediated molecularly imprinted cryogel discs
US6716445B2 (en) Hydrogel entrapping therapeutic agent and stent with coating comprising this
US6388047B1 (en) Hydrogel-forming system with hydrophobic and hydrophilic components
EP1059915B1 (en) Cross-linked high amylose starch having functional groups as a matrix for the slow release of pharmaceutical agents
JPH08502053A (en) Alginate-Bioactive Agent Blend
Shah et al. pH-responsive CAP-co-poly (methacrylic acid)-based hydrogel as an efficient platform for controlled gastrointestinal delivery: fabrication, characterization, in vitro and in vivo toxicity evaluation
Ramaraj et al. Interpenetrating hydrogel networks based on gelatin and polyacrylamide: Synthesis, swelling, and drug release analysis
JP2000507561A (en) Pharmaceutical sustained-release tablets containing cross-linked amylose-based carrier and hydroxypropylmethylcellulose
TW202000715A (en) Radiopaque polymers
Kim et al. In vitro release behavior of dextran-methacrylate hydrogels using doxorubicin and other model compounds
US6369037B1 (en) Controlled release of doxorubicin
CN104974353B (en) PH response three block linear polymers and micellar system based on poly- β amidos ester
Giammona et al. Synthesis and characterization of water-swellable α, β-polyasparthydrazide derivatives
Sintov et al. Enzymatic cleavage of disaccharide side groups in insoluble synthetic polymers: a new method for specific delivery of drugs to the colon
AU671651B2 (en) A drug delivery device and a method of making such device
Pitarresi et al. Hydrogels containing 5-Fluorouracil obtained by γ-irradiation. Synthesis, characterization and in vitro release studies
JPH0762049B2 (en) High molecular weight mitomycin C derivative and method for producing the same
CN108383959A (en) The amphipathic four arm stars polymer and preparation method of a kind of pH/ temperature Dual Sensitive and application
SARASWAT SYNTHESIS AND CHARACTERIZATION OF NOVEL XANTHAN GUM-BASED pH-SENSITIVE HYDROGEL FOR METFORMIN HYDROCHLORIDE RELEASE
RU2468804C2 (en) Gel-forming mixed dextran ester phosphates and carbamates, method for preparing them
JPH01224311A (en) Production of floating granule retaining in stomach
CN115746338A (en) Preparation method and application of chitosan/3,4-dihydroxybenzaldehyde injectable hydrogel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP