WO2001033287A1 - Electroabsorption optical modulator and method for fabricating the same - Google Patents

Electroabsorption optical modulator and method for fabricating the same Download PDF

Info

Publication number
WO2001033287A1
WO2001033287A1 PCT/JP2000/003069 JP0003069W WO0133287A1 WO 2001033287 A1 WO2001033287 A1 WO 2001033287A1 JP 0003069 W JP0003069 W JP 0003069W WO 0133287 A1 WO0133287 A1 WO 0133287A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical modulator
semiconductor
quantum well
barrier layer
electro
Prior art date
Application number
PCT/JP2000/003069
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Kato
Yoshiaki Nakano
Original Assignee
Center For Advanced Science And Technology Incubation, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Center For Advanced Science And Technology Incubation, Ltd. filed Critical Center For Advanced Science And Technology Incubation, Ltd.
Priority to AU44328/00A priority Critical patent/AU4432800A/en
Publication of WO2001033287A1 publication Critical patent/WO2001033287A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
    • G02F1/017Structures with periodic or quasi periodic potential variation, e.g. superlattices, quantum wells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/06Polarisation independent
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/25Frequency chirping of an optical modulator; Arrangements or methods for the pre-set or tuning thereof
    • G02F2203/255Negative chirp

Definitions

  • the present invention relates to a waveguide type electro-absorption optical modulator (hereinafter simply referred to as “electro-absorption optical modulator”) provided with a multiple quantum well, and in particular, it is possible to make a negative trap.
  • electro-absorption optical modulator waveguide type electro-absorption optical modulator
  • the present invention relates to a simple electroabsorption type optical modulator. Background art
  • Electroabsorption type optical modulator has the advantage of low-voltage driving, high extinction ratio, the modulation bandwidth of more than 5 0 GH Z possible. Therefore, one of the applications of this optical modulator is to apply this modulator to a system that modulates the light transmitted through an optical fiber with a millimeter-wave band radio signal and sends it out through an optical fiber.
  • it has been proposed.
  • it has been proposed to use it as a repeater for shaping and retiming of a pulse transmitted in an optical fiber.
  • Negative chirp can be applied to light passing through the optical modulator
  • the reason that the former property is preferable is that light transmitted through ordinary optical fiber cannot maintain polarization, so if the extinction characteristic fluctuates excessively due to polarization, it is used as a modulator for the transmitted light. It is difficult.
  • the latter characteristic is desired because the negative chirp in the optical modulator reduces the transmission distance of light as information (pulse) in a normal optical fiber. It can be extended.
  • Examples of the former technology that is oriented toward polarization independence include, for example, Japanese Patent Application Laid-Open No. 11-144,799 (Reference 1), “LE ⁇ S'9710th annual meeting, Proceedings, P146--14. 7 (Literature 2), "ECOC '99 Proceedings II-I 72-73” (Literature 3), IEICE Technical Report PS 98-36 P49-54 (Literature 4), PS 9 9-11 P63-68 (Reference 5) and PS99-1 P1-6 (Reference 6).
  • Examples of technologies aimed at low chirp include, for example, Japanese Patent Application Laid-Open No.
  • a barrier layer for applying a pre-bias to the well is provided.
  • An electroabsorption optical modulator according to claim 2 is the electroabsorption optical modulator according to claim 1, wherein a portion corresponding to the rectangular quantum well in the first semiconductor is subjected to an extensional strain. Thereby, the polarization-independent characteristics can be further improved.
  • the method for manufacturing an electro-absorption optical modulator according to claim 3 is to manufacture the electro-absorption optical modulator by changing a position of a barrier layer to select a chirp parameter from a range over a negative value. Configuration. This makes it possible to obtain an electro-absorption optical modulator that matches the system design conditions.
  • An electro-absorption optical modulator according to claim 4, wherein in the electro-absorption optical modulator according to claim 1 or 2, the amount of compressive strain applied to the semiconductor constituting the barrier layer or the second semiconductor is selected.
  • the chirp parameter is selected. Thereby, the same effect as in claim 3 can be obtained.
  • a method of selecting a chirp parameter according to claim 5, comprising a rectangular quantum well formed by stacking a first semiconductor and a second semiconductor having a higher energy order.
  • a barrier layer for applying a pre-bias to the rectangular quantum well is provided at a position inside the width of the rectangular quantum well and near one end of the rectangular quantum well;
  • a chirp parameter is selected by applying a compressive strain to the semiconductor or the second semiconductor.
  • the electroabsorption optical modulator according to claim 6 is the electroabsorption optical modulator according to claim 1 or 2, wherein By selecting the energy level of the second semiconductor, the cap parameter is selected. Thereby, the same effect as in claim 3 can be obtained.
  • a method of selecting a chirp parameter according to claim 7, comprising: a rectangular quantum well formed by stacking a first semiconductor and a second semiconductor having a higher energy order.
  • FIG. 1 (a) schematically shows the energy band structure of the optical modulator according to the first embodiment of the present invention
  • FIGS. (B) to (d) show the equivalents.
  • FIG. 2 is an explanatory view corresponding to the enlarged view of FIG. (A) and illustrating the wave function of the carrier.
  • FIG. 3 to FIG. 5 are explanatory diagrams for explaining the advantages of the optical modulator according to the present embodiment.
  • FIG. 6 is a diagram schematically illustrating an energy band structure of an optical modulator according to a second embodiment of the present invention.
  • FIG. 6 (a) is a comparative example
  • FIG. 6 (b) is that of the second embodiment. Is shown.
  • FIG. 7 is an explanatory diagram for explaining a carrier wave function when a voltage is applied.
  • FIG. 8 is an explanatory diagram showing an absorption spectrum of the optical modulator.
  • FIG. 9 is an explanatory diagram showing the modulation characteristics of the optical modulator.
  • FIG. 10 is an explanatory diagram showing a result of calculation of a trap parameter using the amount of compressive strain applied to the semiconductor constituting the barrier layer as a parameter.
  • FIG. 11 is an explanatory diagram showing a relationship between an insertion loss in an optical modulator and a capture parameter.
  • FIG. 12 shows the modulation characteristics of the optical modulator.
  • This optical modulator is composed of a first semiconductor (a so-called well layer) composed of InGaAs.
  • a second semiconductor having a higher energy order and a composition of InAlAs (a semiconductor that constitutes a layer serving as a barrier on both sides of the well, and is referred to as a second semiconductor in this specification). It mainly has a laminated structure of.
  • the composition of the first and second semiconductors may be, but not limited to, InGaAs / InP, InGaAlAs / InAlAs, and InGaAsP / InGaAsP.
  • the first and second semiconductors form rectangular quantum wells 11 and 12 (existing for electrons and holes, respectively) in the energy band structure shown in FIGS. 1 (a) and 2.
  • Thin energy barrier layers 21 and 22 are provided inside the widths of the rectangular quantum wells 1 1 and 1 2 (that is, the portion corresponding to the well layer) and near one end (the right end in FIG. 1) of each of the rectangular quantum wells 1 1 and 1 2, Thin energy barrier layers 21 and 22 are provided.
  • the barrier layers 21 and 22 have a shape when grasped as an energy level or a potential.
  • a semiconductor serving as a barrier for example, having the same composition as the second semiconductor
  • Semiconductor is formed by laminating them sufficiently thinly.
  • Pre-bias is applied to the rectangular quantum wells 11 and 12 by these barrier layers 21 and 22.
  • pre-biased means, as shown in Figs.
  • the width (the thickness of each layer) of the barrier layers 21 and 22 is 0.9 nm
  • the width of the rectangular quantum wells 11 and 12 is The width from the inner end to the barrier layers 21 and 22 is 9.4 nm for the wide one (ie the width of the wide well layer in Figure 1a) and 1.5 nm for the narrow one.
  • the first semiconductor (well layer) constituting the rectangular quantum well 11 is composed of a semiconductor substrate used. A 0.36% elongation strain is applied to the plate (this configuration is the same as the conventional technology and is not shown.
  • the substrate is an InP substrate). Further, in the present embodiment, a portion corresponding to the rectangular quantum well 11 in the second semiconductor is subjected to 0.45% compressive strain with respect to the semiconductor substrate.
  • the operation of the optical modulator according to the present embodiment will be described.
  • the shift of the absorption edge wavelength with respect to the applied electric field regardless of the polarization direction is TE or TM. Can be almost equal. This reduces the dependence of the extinction characteristic on the polarization direction. That is, polarization-independent light modulation becomes possible.
  • a portion corresponding to the rectangular quantum well 11 in the first semiconductor is given 0.36% of extensional strain.
  • the absorption edge wavelength can be made uniform regardless of the magnitude of the electric field. This makes it possible to achieve polarization independence over a wide wavelength range.
  • the optical modulator according to the present embodiment it is possible to select a chirp parameter (sometimes referred to as a chirp amount) and to provide a negative chirp based on the following principle.
  • a chirp parameter sometimes referred to as a chirp amount
  • the chirp parameter in this type of optical modulator can be expressed by the following equation (1).
  • (4 ⁇ / ⁇ ) ( ⁇ / ⁇ ) (1)
  • operating wavelength of the modulator
  • ⁇ ⁇ change in refractive index
  • ⁇ ⁇ change in loss
  • the operating wavelength is set to 1550 nm and slightly shorter than that (for example, 15 (0 to 154 nm), the decrease in the absorption coefficient when the applied voltage is changed from 0 V to 2 V is larger than the increase in the operating wavelength.
  • the wave function of electrons is denoted by E
  • the wave function of heavy holes is denoted by HH.
  • LH in Fig. 1 indicates the light function of the light hole.
  • the wave function of the heavy hole seeps out of the well layer on the opposite side (ie, the narrower side) of the barrier layer 22 (see the wavy line in Fig. 2).
  • the value of the overlap integral of the electron wave function and the hole wave function becomes smaller, and the exciton absorption peak sharply decreases.
  • the relationship between the absorption coefficient and the wavelength was determined in the TE and TM modes by calculation. The results are shown in Fig. 3 (a) (b ). From this result, as described above, it is understood that the condition of the above-mentioned 2 “the refractive index changes negatively” is satisfied. Since the absorption coefficient is positive, the condition ( ⁇ hi> 0) is satisfied.
  • Negative trapping is possible even when a voltage is applied to a normal rectangular quantum well, but the insertion loss in that case depends on conditions, but is generally around 10 to 12 dB. There is a problem that it gets bigger.
  • a negative trap can be realized while keeping the insertion loss relatively small at 7 dB.
  • FIGS. 4 and 5 are known characteristics.
  • Fig. 4 shows the relationship between the chirp parameters and the 3 dB bandwidth (“Mitigation of Chromatic Dispersion Effects Employing Electroabsorption Modulator-Based TransnuttersJ IEEE Photoron. Technol. Lett., Vol. 11 p. (See 883-885, 1999.)
  • Fig. 5 it is possible to shift the position (dip) where the loss increases due to the increase in frequency to the higher frequency side, facilitating application to high-frequency signals.
  • the optical modulator of the present embodiment since the basic property of being polarization independent is maintained, there is an advantage that the negative chirp can be achieved together with the polarization independent.
  • the optical modulator of the present embodiment by adjusting the positions of the barrier layers 2 1 and 2 2 at the time of manufacturing, it is possible to adjust the degree of the wave function of the heavy hole extruding into a narrow well,
  • the cap parameter can be controlled from a positive value to a negative value. In other words, there is an advantage that the cap parameter can be selected according to the system design conditions.
  • the conventional quantum well structure directed to a low-cap or negative-cap was provided with two barrier layers and had a complicated configuration.
  • the optical modulator of the present embodiment has a more complicated configuration than the conventional one.
  • since it is possible to achieve negative cap and polarization independence with a simple configuration there is an advantage that it is easy to manufacture and can exhibit excellent characteristics.
  • InGaAs with 0.4% tensile strain is used as the first semiconductor
  • InAlAs with 0.7% compressive strain is used as the second semiconductor.
  • the composition of the semiconductor for forming the barrier layer 21 is the same as that of the second semiconductor and has the same compressive strain.
  • the energy level diagram for this configuration is shown in Fig. 6 (b).
  • FIG. 6 (a) shows the energy level in a state where the semiconductor constituting the barrier layer and the second semiconductor are both lattice-matched (that is, the compressive strain is eliminated). Comparing the two, Fig. 6 (b) shows the energy level for heavy holes, in particular. It can be seen that the bell is low (that is, the well is shallow). Table 1 below shows an example of the relationship between the amount of compressive strain and the well depth for electrons, heavy holes, and light holes. It can be seen that the well becomes shallower (ie, the barrier becomes lower) as the compressive strain increases.
  • Tohole (LH) well depth The unit is eV.
  • FIG. 7 (a) corresponds to the configuration of FIG. 6 (a)
  • FIG. 7 (b) corresponds to the configuration of FIG. 6 (b).
  • Figures 7 (a) and 7 (b) show the wave functions (before application: solid line, after application: broken line) of carriers (electrons E, heavy holes HH, light holes LH) before and after voltage application.
  • the wave function of the hole especially the snake hole
  • the wave function of the hole greatly extrudes beyond the barrier layer 21 in the direction of the narrow well (to the right in the figure).
  • the overlap of electron-hole wave functions becomes smaller. This is because the depth of the well with respect to the hole was reduced.
  • FIG. 1 corresponds to the configuration of FIG. 6 (a)
  • FIG. 7 (b) corresponds to the configuration of FIG. 6 (b).
  • Figures 7 (a) and 7 (b) show the wave functions (before application: solid line, after application: broken line) of carriers (electrons E, heavy holes HH, light holes LH) before and after voltage
  • FIG. 8 (b) shows the absorption spectrum of the optical modulator of the present embodiment.
  • Figure 8 (a) is shown for comparison, and shows the absorption spectrum of the optical modulator with the configuration of Figure 6 (a). It can be seen that, compared to the case of lattice matching, in the present embodiment, for both TE and TM polarized light, the absorption increases near 1500 nm compared to the increase in absorption near the operating wavelength of 1550 nm. A large decrease in absorption is seen. Therefore, it is considered that negative capping is possible.
  • FIG. 9 shows the modulation characteristics of the optical modulator according to the present embodiment. put it here And d show the amount of wavelength detuning from the exciton absorption peak.
  • the solid line is the characteristic for TE polarized light
  • the broken line is the characteristic for TM polarized light.
  • the extinction characteristic is slightly lower than that in the case of lattice matching (not shown), it is in a range where there is no practical problem.
  • the polarization dependency does not deteriorate. Therefore, even in the present embodiment, the modulation characteristics themselves are hardly affected.
  • FIG. 10 shows the results of calculation of the chip parameter using the amount of compressive strain applied to the semiconductor constituting the barrier layer as a parameter.
  • the numbers shown with% in the figure are the amounts of compressive distortion.
  • a small (some negative) trap parameter can be realized with a small applied voltage (ie, a small insertion loss) by applying compressive strain.
  • the cap parameter can be selected from a negative range.
  • an optical modulator can be designed and manufactured.
  • Figure 11 shows the relationship between the insertion loss and the cap parameter in the optical modulator.
  • the numbers shown in% in the figure are the amounts of compressive strain applied to the semiconductor constituting the barrier layer.
  • the characteristics indicated by RQW in the figure indicate that in a rectangular quantum well without a barrier layer, 0.4% tensile strain was applied to the first semiconductor and 0.7% compressive strain was applied to the second semiconductor. This is for reference only. It can be seen that as the amount of compression is increased, the insertion loss required to realize a negative chirp decreases. For example, as indicated by the arrow in FIG.
  • FIG. 11 shows the characteristics of the pre-biased quantum well and the RQW of the present embodiment. Comparing the characteristics of rectangular quantum wells, at zero-cap, RQW still requires a large insertion loss of 12 dB for zero-cap. The reason is that in the RQW, the phenomenon of localization of the hole wave function as shown in Fig. 7 is unlikely to occur, and the overlap between the electron wave function and the hole wave function is large.
  • FIG. 12 shows the modulation characteristics.
  • FIG. 7A shows the case of the present embodiment
  • FIG. 7B shows the case of the above-described RQW.
  • this embodiment has a good polarization independence.
  • a large extinction ratio of 15 dB is obtained with an applied voltage of 2 V over a wide wavelength band of 20 nm.
  • the chirp parameter can be selected by selecting the amount of compressive strain to be applied to the semiconductor constituting the barrier layer, whereby the desired chirp parameter (a negative value is also possible. It is possible to obtain an optical modulator having:
  • compressive strain is applied to the semiconductor constituting the barrier layer.
  • the present invention is not limited to this.
  • Negative chirp associated with the localization of heavy holes due to the application becomes possible.
  • use of InAlGaAs as the semiconductor constituting the barrier layer can be considered. That is, by selecting the energy level of the semiconductor constituting the barrier layer, the selection of the chirp parameter becomes possible.
  • the present invention is not limited to this.
  • compressive strain may be applied to the second semiconductor (parts other than the barrier layer) or the energy level may be reduced.
  • the localization of the heavy holes accompanying the voltage application is promoted, and a negative chirp can be achieved.
  • the operation of only the portion other than the barrier layer has relatively little effect on the chip parameters. It is thought that it is good to carry out the operation with the layer.
  • an electro-absorption optical modulator capable of achieving both a negative gap and polarization independence.

Abstract

An electroabsorption optical modulator capable of achieving both negative chirping and polarization independence and having a simple structure. Barrier layers (21, 22) are provided in a position within the width of rectangular quantum wells (11, 12) and near one ends of the rectangular quantum wells (11, 12). As a result, the rectangular quantum wells (11, 12)are equivalently pre-biased. With this structure, negative chirping of an optical signal and polarization independence of the extinction characteristic are both achieved. Since the structure of the modulator is simple, the fabrication is relatively easy.

Description

明細書 電界吸収形光変調器およびその製造方法 技術分野  Description Electro-absorption optical modulator and method for manufacturing the same
本発明は、 多重量子井戸を備えた、 導波路形の電界吸収形光変調器 (本明細 書では単に 「電界吸収形光変調器」 と称する。) に関し、 特に、 負チヤ一プ化が 可能な電界吸収形光変調器に関するものである。 背景技術  The present invention relates to a waveguide type electro-absorption optical modulator (hereinafter simply referred to as “electro-absorption optical modulator”) provided with a multiple quantum well, and in particular, it is possible to make a negative trap. The present invention relates to a simple electroabsorption type optical modulator. Background art
光ファイバ中を伝送されてきた光を変調するための光変調器として、 電界吸 収形光変調器を用いることが提案されている。 電界吸収形光変調器は、 低電圧 駆動、 高消光比、 5 0 G H Zを超える変調帯域が可能という利点を有する。 こ のためこの光変調器の応用例の一つとして、 光ファイバで伝送されてきた光を ミ リ波帯の無線信号で変調して光ファイバで送り出すというシステムにこの変 調器を適用することが提案されている。 他の応用例としては、 光ファイバ中を 伝送されてきたパルスの整形 · リタイ ミングを行う リ ピータ一として用いるこ とも提案されている。 It has been proposed to use an electric field absorption type optical modulator as an optical modulator for modulating light transmitted through an optical fiber. Electroabsorption type optical modulator has the advantage of low-voltage driving, high extinction ratio, the modulation bandwidth of more than 5 0 GH Z possible. Therefore, one of the applications of this optical modulator is to apply this modulator to a system that modulates the light transmitted through an optical fiber with a millimeter-wave band radio signal and sends it out through an optical fiber. Has been proposed. As another application example, it has been proposed to use it as a repeater for shaping and retiming of a pulse transmitted in an optical fiber.
このような用途のための光変調器に望まれる特性としては、  Characteristics desired for an optical modulator for such an application include:
1 . 消光特性における偏光無依存 (偏光方向への依存性が十分に低いこと) 1. Independent of polarization in extinction characteristics (Sufficiently dependent on polarization direction)
2 . 光変調器を通過する光に対して負チヤープ化が可能 2. Negative chirp can be applied to light passing through the optical modulator
という 2つのものがある。 前者の特性が好ましい理由は、 通常の光ファイバ中 を伝送された光においては偏光を保持できないことから、 偏光によって消光特 性が過度に変動すると、 伝送されてきた光に対する変調器としては使用しづら いことによる。 後者の特性が望まれるのは、 光変調器における負チヤープ化に よって、 通常の光ファイバ中における情報 (パルス) としての光の伝送距離を 伸ばすことが可能なことによる。 There are two things. The reason that the former property is preferable is that light transmitted through ordinary optical fiber cannot maintain polarization, so if the extinction characteristic fluctuates excessively due to polarization, it is used as a modulator for the transmitted light. It is difficult. The latter characteristic is desired because the negative chirp in the optical modulator reduces the transmission distance of light as information (pulse) in a normal optical fiber. It can be extended.
前者の偏光無依存を指向した技術としては、 例えば、 特開平 1 1一 1 4 2 7 9 9公報 (文献 1 )、 「 L E〇 S ' 9 7 10th annual meeting 予稿集 P 1 4 6 〜 1 4 7」 (文献 2)、 「E COC ' 9 9予稿集 II一 7 2〜 7 3」 (文献 3 )、 信 学技報 P S 98— 3 6 P 4 9〜 54 (文献 4 )、 同 P S 9 9— 1 1 P 6 3〜 6 8 (文献 5)、 同 P S 9 9— 1 P l〜6 (文献 6 ) に示されたものがある。 低チヤープを指向した技術としては、 例えば、 特開平 1 0— 6 2 7 3 2公報 ( 文献 7)、 第 4 5回応用物理学会関係連合講演会講演予稿集 P 1 1 3 7 (文献 8 )、 「 1 9 9 8 O S A Technical Digest Series Volume 4 320/Ituト 3」 (文 献 9)、 第 5 9回応用物理学会学術講演会講演予稿集 P 1 1 3 7 (文献 1 0)、 に記載されたものがある。  Examples of the former technology that is oriented toward polarization independence include, for example, Japanese Patent Application Laid-Open No. 11-144,799 (Reference 1), “LE〇S'9710th annual meeting, Proceedings, P146--14. 7 (Literature 2), "ECOC '99 Proceedings II-I 72-73" (Literature 3), IEICE Technical Report PS 98-36 P49-54 (Literature 4), PS 9 9-11 P63-68 (Reference 5) and PS99-1 P1-6 (Reference 6). Examples of technologies aimed at low chirp include, for example, Japanese Patent Application Laid-Open No. H10-272732 (Reference 7), Proceedings of the 4th Federated Lecture Meeting of the Japan Society of Applied Physics P1 13 7 (Reference 8) , `` 1992 OSA Technical Digest Series Volume 4 320 / Itu 3 '' (Reference 9), Proceedings of the 59th Annual Meeting of the Japan Society of Applied Physics P1 13 7 (Reference 10). Something was done.
しかしながら、 前者の、 偏光無依存を指向する技術においては、 低チヤーブ ないし負チヤ一プ化は意図されていない。 また、 後者の、 低チヤープを指向し た技術においては、 多重矩形量子井戸のそれぞれの内側に薄い障壁層を 2っ設 けており、 構造が複雑であるという問題がある。 また、 後者の技術では、 偏光 無依存という特性を得ることが難しいという問題もある。 発明の開示  However, in the former technology, which aims at polarization independence, low or negative capping is not intended. Also, the latter technology, which aims at low chirp, has a problem that the structure is complicated because two thin barrier layers are provided inside each of the multiple rectangular quantum wells. In addition, the latter technique has a problem that it is difficult to obtain polarization-independent characteristics. Disclosure of the invention
請求の範囲 1項記載の負チヤ一プ化可能な電界吸収形光変調器は、 矩形量子 井戸の幅の内側であって、 かつ、 矩形量子井戸の一端の近傍となる位置に、 矩 形量子井戸にプリバイアスを与える障壁層を設けたものである。 これにより、 負チヤープ化と偏光無依存とを共に達成でき、 しかも、 構成が簡単で製造しや すいという効果がある。  The electro-absorption optical modulator capable of being negatively trapped according to claim 1, wherein the rectangular quantum well is located inside the width of the rectangular quantum well and near one end of the rectangular quantum well. A barrier layer for applying a pre-bias to the well is provided. As a result, it is possible to achieve both negative capping and polarization independence, and furthermore, there is an effect that the configuration is simple and the manufacturing is easy.
請求の範囲 2項記載の電界吸収形光変調器は、 1項記載のものにおいて、 第 1の半導体における、 矩形量子井戸に相当する部分に伸張歪みが与えられてい る。 これにより、 偏光無依存の特性をさらに向上させることができる。 請求の範囲 3項記載の、 電界吸収形光変調器の製造方法は、 障壁層の位置を 変更することによって、 チヤープパラメータを負の値にわたる範囲から選択し て電界吸収形光変調器を製造する構成となっている。 これにより、 システムの 設計条件に合わせた電界吸収形光変調器を得ることが可能となる。 An electroabsorption optical modulator according to claim 2 is the electroabsorption optical modulator according to claim 1, wherein a portion corresponding to the rectangular quantum well in the first semiconductor is subjected to an extensional strain. Thereby, the polarization-independent characteristics can be further improved. The method for manufacturing an electro-absorption optical modulator according to claim 3 is to manufacture the electro-absorption optical modulator by changing a position of a barrier layer to select a chirp parameter from a range over a negative value. Configuration. This makes it possible to obtain an electro-absorption optical modulator that matches the system design conditions.
請求の範囲 4項記載の電界吸収形光変調器は、 請求の範囲 1項または 2項に 記載のものにおいて、 前記障壁層を構成する半導体または前記第 2の半導体に 加える圧縮歪み量を選択することによりチヤープパラメータが選択されている 。 これにより、 請求の範囲 3項と同様の効果を得られる。  An electro-absorption optical modulator according to claim 4, wherein in the electro-absorption optical modulator according to claim 1 or 2, the amount of compressive strain applied to the semiconductor constituting the barrier layer or the second semiconductor is selected. Thus, the chirp parameter is selected. Thereby, the same effect as in claim 3 can be obtained.
請求の範囲 5項記載のチヤープパラメータの選択方法は、 第 1の半導体と、 これよりエネルギー順位の高い第 2の半導体とを積層して構成された矩形量子 井戸を有する、 電界吸収形光変調器において、 前記矩形量子井戸の幅の内側で あって、 かつ、 前記矩形量子井戸の一端の近傍となる位置に、 前記矩形量子井 戸にプリバイアスを与える障壁層を設け、 前記障壁層を構成する半導体または 前記第 2の半導体に圧縮歪みを加えることによってチヤープパラメータを選択 する構成となっている。 これにより、 請求の範囲 3項と同様の効果を得られる 請求の範囲 6項記載の電界吸収形光変調器は、 請求の範囲第 1項または 2に 記載のものにおいて、 前記障壁層または前記第 2の半導体のエネルギーレベル を選択することによりチヤ一プパラメータが選択されている構成となっている 。 これにより、 請求の範囲 3項と同様の効果を得られる。  A method of selecting a chirp parameter according to claim 5, comprising a rectangular quantum well formed by stacking a first semiconductor and a second semiconductor having a higher energy order. A barrier layer for applying a pre-bias to the rectangular quantum well is provided at a position inside the width of the rectangular quantum well and near one end of the rectangular quantum well; A chirp parameter is selected by applying a compressive strain to the semiconductor or the second semiconductor. Thereby, the same effect as in claim 3 can be obtained.The electroabsorption optical modulator according to claim 6 is the electroabsorption optical modulator according to claim 1 or 2, wherein By selecting the energy level of the second semiconductor, the cap parameter is selected. Thereby, the same effect as in claim 3 can be obtained.
請求の範囲 7項記載のチヤープパラメータの選択方法は、 第 1の半導体と、 これよりエネルギー順位の高い第 2の半導体とを積層して構成された矩形量子 井戸を有する、 電界吸収形光変調器において、 前記矩形量子井戸の幅の内側で あって、 かつ、 前記矩形量子井戸の一端の近傍となる位置に、 前記矩形量子井 戸にプリバイアスを与える障壁層を設け、 前記障壁層のエネルギーレベルを選 択することでチヤ一プパラメータを選択する構成となっている。 これにより、 請求の範囲 3項と同様の効果を得られる。 A method of selecting a chirp parameter according to claim 7, comprising: a rectangular quantum well formed by stacking a first semiconductor and a second semiconductor having a higher energy order. A barrier layer for applying a pre-bias to the rectangular quantum well at a position inside the width of the rectangular quantum well and near one end of the rectangular quantum well; The configuration is such that the cap parameter is selected by selecting the level. This allows The same effect as in claim 3 can be obtained.
請求の範囲 8項記載の電界吸収形光変調器の製造方法は、 請求の範囲 1項ま たは 2項に記載の製造方法であって、 前記障壁層のエネルギーレベルまたは前 記障壁層を構成する半導体の圧縮歪み量を選択することによって、 チヤ一プパ ラメ一タを負の値にわたる範囲から選択して前記電界吸収形光変調器を製造す る構成となっている。 これにより、 請求の範囲 3項と同様の効果を得られる。 図面の簡単な説明  9. The method for manufacturing an electro-absorption optical modulator according to claim 8, wherein the manufacturing method according to claim 1 or 2, wherein the energy level of the barrier layer or the barrier layer is formed. By selecting the amount of compressive strain of the semiconductor to be manufactured, a configuration is adopted in which the chaper parameter is selected from a range over a negative value to manufacture the electroabsorption optical modulator. Thereby, the same effect as in claim 3 can be obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図中の図 ( a ) は、 本発明の第 1実施形態に係る光変調器のエネルギー バンド構造を模式的に記載した図で、 図 (b ) 〜 ( d ) は、 これと等価的なェ ネルギ一バン ド図である。 第 2図は、 図 (a ) の拡大図に相当し、 キャ リアの 波動関数を説明するための説明図である。 第 3図〜第 5図は、 本実施形態に係 る光変調器の利点を説明するための説明図である。 第 6図は、 本発明の第 2実 施形態に係る光変調器のエネルギーバンド構造を模式的に記載した図で、 図 ( a ) は比較例、 図 (b ) は第 2実施形態のものを示している。 第 7図は、 電圧 印加時におけるキヤリァの波動関数を説明するための説明図である。 第 8図は 、 光変調器の吸収スぺク トルを示す説明図である。 第 9図は、 光変調器の変調 特性を示す説明図である。 第 1 0図は、 障壁層を構成する半導体に加える圧縮 歪みの量をパラメータにしてチヤ一プパラメータを計算した結果を示す説明図 である。 第 1 1図は、 光変調器での挿入損失とチヤ一プパラメータとの関係を 示す説明図である。 第 1 2図は、 光変調器の変調特性である。 発明を実施するための最良の形態  FIG. 1 (a) schematically shows the energy band structure of the optical modulator according to the first embodiment of the present invention, and FIGS. (B) to (d) show the equivalents. This is the energy band diagram. FIG. 2 is an explanatory view corresponding to the enlarged view of FIG. (A) and illustrating the wave function of the carrier. FIG. 3 to FIG. 5 are explanatory diagrams for explaining the advantages of the optical modulator according to the present embodiment. FIG. 6 is a diagram schematically illustrating an energy band structure of an optical modulator according to a second embodiment of the present invention. FIG. 6 (a) is a comparative example, and FIG. 6 (b) is that of the second embodiment. Is shown. FIG. 7 is an explanatory diagram for explaining a carrier wave function when a voltage is applied. FIG. 8 is an explanatory diagram showing an absorption spectrum of the optical modulator. FIG. 9 is an explanatory diagram showing the modulation characteristics of the optical modulator. FIG. 10 is an explanatory diagram showing a result of calculation of a trap parameter using the amount of compressive strain applied to the semiconductor constituting the barrier layer as a parameter. FIG. 11 is an explanatory diagram showing a relationship between an insertion loss in an optical modulator and a capture parameter. FIG. 12 shows the modulation characteristics of the optical modulator. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の第 1実施形態に係る電界吸収形光変調器について、 添付の図面を参 照しながら以下に説明する。  An electro-absorption optical modulator according to a first embodiment of the present invention will be described below with reference to the accompanying drawings.
この光変調器は、 InGaAsの組成である第 1の半導体 (いわゆる井戸層を構成 する半導体) と、 これよりエネルギー順位の高い、 InAlAsの組成である第 2の 半導体 (井戸の両側における障壁となる層を構成する半導体であり、 本明細書 では第 2の半導体と称する。) との積層構造を主体と して備えている。 なお、 第 1 ·第 2の半導体の組成と しては、 他に例えば InGaAs/InP、 InGaAlAs/InAlAs 、 InGaAsP/InGaAsP というものが考えられるがこれらに限定はされない。 第 1 および第 2の半導体によって、 図 1 ( a ) および図 2に示す、 エネルギーバン ド構造における矩形量子井戸 1 1および 1 2 (電子およびホールに対してそれ ぞれ存在する。) が構成されている。 矩形量子井戸 1 1および 1 2の幅の内側 ( つまり井戸層に対応する部分) であって、 かつ、 矩形量子井戸 1 1および 1 2 の一端 (図 1中右端) の近傍には、 それぞれ、 エネルギーレベルの高い層であ る、 薄い障壁層 2 1および 2 2が設けられている。 障壁層 2 1および 2 2は、 エネルギーレベルまたはポテンシャルとして把握した場合の形状であり、 具体 的な物質の構成としては、 当然のことながら、 障壁となる半導体 (例えば第 2 の半導体と同じ組成の半導体) を十分に薄く積層させることで形成されている 。 これらの障壁層 2 1および 2 2により、 矩形量子井戸 1 1および 1 2に対し てプリバイアスが与えられたものとなっている。 ここで、 「プリバイアスが与え られた」 とは、 図 1 ( b ) 〜 ( d ) に示されるように、 電界 F = 0のときに、 等価的には、 「単なる (障壁のない) 矩形量子井戸に対して電界が存在するに等 しい状態」 となっていることを意味する。 本明細書において 「矩形量子井戸 1 1および 1 2の一端の近傍」 とは、 このようなプリバイアスを与えることがで きる位置という意味である。 本実施形態では、 図 1 ( a ) に記載したように、 障壁層 2 1および 2 2の幅 (各層を膜と見れば厚さ) を 0 . 9 n m、 矩形量子 井戸 1 1および 1 2の内側の端部から障壁層 2 1および 2 2までの幅であって 幅広のもの (つまり図 1 a中で幅広の井戸層の幅) を 9 . 4 n m、 幅狭のもの を 1 . 5 n mとした。 This optical modulator is composed of a first semiconductor (a so-called well layer) composed of InGaAs. A second semiconductor having a higher energy order and a composition of InAlAs (a semiconductor that constitutes a layer serving as a barrier on both sides of the well, and is referred to as a second semiconductor in this specification). It mainly has a laminated structure of. The composition of the first and second semiconductors may be, but not limited to, InGaAs / InP, InGaAlAs / InAlAs, and InGaAsP / InGaAsP. The first and second semiconductors form rectangular quantum wells 11 and 12 (existing for electrons and holes, respectively) in the energy band structure shown in FIGS. 1 (a) and 2. ing. Inside the widths of the rectangular quantum wells 1 1 and 1 2 (that is, the portion corresponding to the well layer) and near one end (the right end in FIG. 1) of each of the rectangular quantum wells 1 1 and 1 2, Thin energy barrier layers 21 and 22 are provided. The barrier layers 21 and 22 have a shape when grasped as an energy level or a potential. As a specific material configuration, a semiconductor serving as a barrier (for example, having the same composition as the second semiconductor) may be used. Semiconductor) is formed by laminating them sufficiently thinly. Pre-bias is applied to the rectangular quantum wells 11 and 12 by these barrier layers 21 and 22. Here, “pre-biased” means, as shown in Figs. 1 (b) to (d), that when the electric field F = 0, equivalently, it is simply a “rectangular (no barrier) rectangle. This means that the state is equivalent to the presence of an electric field in the quantum well. In this specification, “near one end of the rectangular quantum wells 11 and 12” means a position where such pre-bias can be applied. In this embodiment, as shown in FIG. 1 (a), the width (the thickness of each layer) of the barrier layers 21 and 22 is 0.9 nm, and the width of the rectangular quantum wells 11 and 12 is The width from the inner end to the barrier layers 21 and 22 is 9.4 nm for the wide one (ie the width of the wide well layer in Figure 1a) and 1.5 nm for the narrow one. And
矩形量子井戸 1 1を構成する第 1の半導体 (井戸層) には、 用いる半導体基 板 (この構成は従来技術と同様のため図示せず。 この実施形態では InP基板と なっている。) に対して 0. 36 %の伸張歪みが与えられている。 さらに、 本実 施形態では、 第 2の半導体における、 矩形量子井戸 1 1に相当する部分に、 前 記半導体基板に対して 0. 45%の圧縮歪みが加えられている。 The first semiconductor (well layer) constituting the rectangular quantum well 11 is composed of a semiconductor substrate used. A 0.36% elongation strain is applied to the plate (this configuration is the same as the conventional technology and is not shown. In this embodiment, the substrate is an InP substrate). Further, in the present embodiment, a portion corresponding to the rectangular quantum well 11 in the second semiconductor is subjected to 0.45% compressive strain with respect to the semiconductor substrate.
本実施形態における他の具体的な構成は、 従来技術として示した文献 1〜 1 0に記載したものと基本的に同様であり、 また、 その作製は、 分子線ェキタピ シ一法 (MB E) などを用いて、 公知技術に基づいて可能であるので、 詳細な 説明は省略する。  Other specific configurations in the present embodiment are basically the same as those described in References 1 to 10 described as the prior art, and the fabrication thereof is performed by the molecular beam epitaxy method (MBE). The detailed description is omitted because it is possible based on a known technique using the above method.
つぎに、 本実施形態に係る光変調器の動作について説明する。 この光変調器 においては、 等価的なプリバイアスが加えられているので、 文献 2〜6に既に 示されているように、 偏光方向が T Eでも TMでも、 印可する電界に対する吸 収端波長のシフ ト量をほぼ等しくできる。 これにより、 消光特性における偏光 方向への依存性が低下する。 すなわち、 偏光無依存な光変調が可能となる。 また、 本実施形態の光変調器では、 第 1の半導体における矩形量子井戸 1 1 に相当する部分に、 0. 36 %の伸張歪みが与えられているので、 例えば文献 4において示されているように、 偏光方向が T Eでも TMでも、 電界の大きさ に関わらず、 吸収端波長を揃えることができる。 これにより、 広い波長範囲で の偏光無依存を達成しうる。  Next, the operation of the optical modulator according to the present embodiment will be described. In this optical modulator, since an equivalent pre-bias is applied, as shown in Literatures 2 to 6, the shift of the absorption edge wavelength with respect to the applied electric field regardless of the polarization direction is TE or TM. Can be almost equal. This reduces the dependence of the extinction characteristic on the polarization direction. That is, polarization-independent light modulation becomes possible. Further, in the optical modulator of the present embodiment, a portion corresponding to the rectangular quantum well 11 in the first semiconductor is given 0.36% of extensional strain. In addition, whether the polarization direction is TE or TM, the absorption edge wavelength can be made uniform regardless of the magnitude of the electric field. This makes it possible to achieve polarization independence over a wide wavelength range.
さらに、 本実施形態では、 第 2の半導体における矩形量子井戸 1 1に相当す る部分に、 0. 45 %の圧縮歪みが加えられているので、 第 1 と第 2の半導体 の平均歪み量が小さくなり、 多数の量子井戸を積層できるという利点がある。 また、 本実施形態の光変調器では、 次のような原理により、 チヤープパラメ ータ (チヤ一プ量ということもある。) の選択および負チヤ一プ化が可能となる 。 まず、 この種の光変調器におけるチヤープパラメータ は、 既に知られてい るように、 下記 ( 1 ) 式で表せる。  Further, in the present embodiment, 0.45% compressive strain is applied to the portion corresponding to the rectangular quantum well 11 in the second semiconductor, so that the average strain of the first and second semiconductors is reduced. This has the advantage that it can be made smaller and many quantum wells can be stacked. Further, in the optical modulator according to the present embodiment, it is possible to select a chirp parameter (sometimes referred to as a chirp amount) and to provide a negative chirp based on the following principle. First, as is known, the chirp parameter in this type of optical modulator can be expressed by the following equation (1).
β = (4 π/λ) (Δ η/Δ α) (1) ここで、 λ : 変調器の動作波長、 Δ η : 屈折率の変化、 Δ ひ :損失の変化で ある。 β = (4π / λ) (Δη / Δα) (1) Here, λ: operating wavelength of the modulator, Δ η: change in refractive index, Δ Δ: change in loss.
厶 ηと Δ αとは Kramers - Kronigの関係で結ばれており、独立に設計すること はできない。 ( 1 ) 式から判るように、 負チヤープを得るには、 動作波長におい て、 ① Δ αが正 (Δ α〉 0 ) でかつ、 ②屈折率が負の変化をする (Δ η < 0) という 2つの条件が同時に満たされる量子井戸構造を設計すればよい。 ここで ①を条件とするのは、 損失が正でないと、 光変調器の前提である消光作用を得 られないからである。 また、 ②の条件を実現するためには、 動作波長より少し 短波長側の領域で、 吸収係数が、 動作波長における増加量に比べて大きく减少 することを必要とする。 このこと自体は既に知られていることであるが、 図 3 ( a ) を例として用いてさらに説明すると、 動作波長え = 1 5 5 0 n mとして 、 それよりわずかに短波長側 (例えば 1 5 0 0〜 1 5 4 0 n m) において、 印 可電圧を 0 Vから 2 Vま で変化させた場合の吸収係数 ( Absorption Coefficient) の減少量が、動作波長におけるその増加量より も大きいことであ る。  Η and αα are linked by Kramers-Kronig and cannot be designed independently. As can be seen from equation (1), in order to obtain a negative chirp, at the operating wavelength, (1) Δα is positive (Δα> 0) and (2) the refractive index changes negatively (Δη <0). What is necessary is just to design a quantum well structure that satisfies the two conditions simultaneously. Here, the condition (1) is used because if the loss is not positive, the extinction function, which is the premise of the optical modulator, cannot be obtained. Also, in order to realize condition (2), it is necessary that the absorption coefficient in the region slightly shorter than the operating wavelength be significantly smaller than the increase in the operating wavelength. Although this fact is already known, using FIG. 3 (a) as an example, it will be further described that the operating wavelength is set to 1550 nm and slightly shorter than that (for example, 15 (0 to 154 nm), the decrease in the absorption coefficient when the applied voltage is changed from 0 V to 2 V is larger than the increase in the operating wavelength. You.
本発明者が、 本実施形態に係る量子井戸構造について波動関数を検討したと ころ、 次の知見を得た。 これを図 2に基づいて説明する。 まず、 電界 F = 0の ときは、 波動関数は、 幅広の井戸層 (障壁層 2 1 · 2 2より図中左側の井戸層 ) 側に局在する。 図 2では、 電子の波動関数を符号 Eで示し、 ヘビーホールの 波動関数を HHで示している。 なお、 図 1における L Hはライ トホールの波動 関数を示している。 この構成の量子井戸に小さな電界を印加すると、 電子の波 動関数は図中左にシフ トする。 一方、 ヘビーホールの波動関数は、 障壁層 2 2 の反対側の (つまり狭い方の) 井戸層側にしみだす (図 2中波線参照)。 そのた め、 電子の波動関数とホールの波動関数の重なり積分の値が小さくなり、 励起 子吸収ピークが急激に減少することになる。 さらに、 計算により、 吸収係数と 波長との関係を、 T Eおよび TMモードにおいて求めた。 結果を図 3 ( a ) ( b ) に示す。 この結果から、 先に説明したように、 前記②の 「屈折率が負の変化 をする」 という条件は満たされていることが判る。 なお、 吸収係数が正である ことから前記①の条件 (Δ ひ 〉 0) も満たす。 加えて、 T Eおよび TMモード における吸収係数の変化はほぼ同形であり、 このことからは、 偏光無依存も達 成されていることが判る。 さらに、 印加電圧と挿入損失およびチヤープパラメ —タとの関係を図 3 ( c ) ( d) のように求めた。 これにより、 印加電圧を 0. 3 V以上にすればチヤープパラメータを負符号化できることが判る。 印加電圧 0. 3 Vのときの挿入損失は 7 d B程度である。 なお、 ここでの計算条件は、 本実施形態の量子井戸を用いて、 井戸数 1 0周期、 井戸の総膜厚 0. 1 6 /x m の光変調器と したことを仮定しているものである。 図 3 ( c ) ( d ) については 、幅 2. 5 μ πι、素子長 7 5 μ mのハイメサ導波路(閉じ込め係数 0. 2 7 8 for TE、 0. 2 3 4 for TM) を仮定している。 The present inventor has studied the wave function of the quantum well structure according to the present embodiment, and has obtained the following knowledge. This will be described with reference to FIG. First, when the electric field F = 0, the wave function is localized on the side of the wide well layer (the well layer on the left side of the barrier layers 21 and 22 in the figure). In Fig. 2, the wave function of electrons is denoted by E, and the wave function of heavy holes is denoted by HH. LH in Fig. 1 indicates the light function of the light hole. When a small electric field is applied to the quantum well with this configuration, the electron wave function shifts to the left in the figure. On the other hand, the wave function of the heavy hole seeps out of the well layer on the opposite side (ie, the narrower side) of the barrier layer 22 (see the wavy line in Fig. 2). As a result, the value of the overlap integral of the electron wave function and the hole wave function becomes smaller, and the exciton absorption peak sharply decreases. Furthermore, the relationship between the absorption coefficient and the wavelength was determined in the TE and TM modes by calculation. The results are shown in Fig. 3 (a) (b ). From this result, as described above, it is understood that the condition of the above-mentioned ② “the refractive index changes negatively” is satisfied. Since the absorption coefficient is positive, the condition (Δhi> 0) is satisfied. In addition, the change in the absorption coefficient in the TE and TM modes is almost the same, indicating that polarization independence has been achieved. Furthermore, the relationship between the applied voltage and the insertion loss and the chirp parameters was determined as shown in Fig. 3 (c) and (d). From this, it can be seen that if the applied voltage is 0.3 V or more, the chirp parameter can be negatively encoded. The insertion loss at an applied voltage of 0.3 V is about 7 dB. Note that the calculation conditions here are based on the assumption that the quantum well of the present embodiment is used to form an optical modulator having 10 periods of wells and a total well thickness of 0.16 / xm. is there. For Figures 3 (c) and (d), a high-mesa waveguide with a width of 2.5 μπι and an element length of 75 μm (confinement coefficient of 0.278 for TE, 0.234 for TM) is assumed. ing.
通常の矩形量子井戸に対して電圧を印可しても負チヤ一プ化は可能であるが 、 その場合の挿入損失は、 条件にもよるが、 1 0〜 1 2 d B前後と一般的に大 きくなつてしまうという問題がある。 これに対して、 本実施形態の光変調器に よれば、 挿入損失を 7 d Bと比較的に小さく保ったまま、 負チヤ一プを実現す ることができる。  Negative trapping is possible even when a voltage is applied to a normal rectangular quantum well, but the insertion loss in that case depends on conditions, but is generally around 10 to 12 dB. There is a problem that it gets bigger. On the other hand, according to the optical modulator of the present embodiment, a negative trap can be realized while keeping the insertion loss relatively small at 7 dB.
負チヤ一プによる利点の例を、 既に知られた特性である図 4および図 5によ り さらに説明する。 図 4によれば、 負チヤープによって、 光ファイバによる信 号の伝送距離を伸ばしうることが判る。 なお、 図 4は、 チヤープパラメータと 3 d B帯域幅との関係を示してレヽる (「Mitigation of Chromatic Dispersion Effects Employing Electroab sorption Modulator-Based TransnuttersJ IEEE Photoron. Technol. Lett. , Vol. 11 p. 883-885, 1999参照)。 また、 図 5に よれば、 周波数増加によって損失が増加する位置 (ディップ) を高い周波数の 側にずらすことができ、高周波信号への適用が容易になることが判る (「Simple Measurement of Fiber Dispersion and Chirp Parameter or Intensity Modulated Li ght Emi tterJ J. Li ghtwave Technol . , Vol . 1 1 , p. 1937-1940, 1999 参 照)。 なお、 図 5中 αはチヤ一プパラメ一タを示している。 Examples of the advantages of the negative cap will be further described with reference to FIGS. 4 and 5, which are known characteristics. According to Fig. 4, it can be seen that the signal transmission distance by the optical fiber can be extended by the negative cap. FIG. 4 shows the relationship between the chirp parameters and the 3 dB bandwidth (“Mitigation of Chromatic Dispersion Effects Employing Electroabsorption Modulator-Based TransnuttersJ IEEE Photoron. Technol. Lett., Vol. 11 p. (See 883-885, 1999.) Also, according to Fig. 5, it is possible to shift the position (dip) where the loss increases due to the increase in frequency to the higher frequency side, facilitating application to high-frequency signals. ("Simple Measurement of Fiber Dispersion and Chirp Parameter or Intensity Modulated Li ght Emitter J J. Li ghtwave Technol., Vol. 11, p. 1937-1940, 1999). Note that, in FIG. 5, α represents a cap parameter.
さらに、 本実施形態の光変調器によれば、 偏光無依存という基本的特性は維 持しているので、 負チヤープを、 偏光無依存とともに達成することができると いう利点がある。  Further, according to the optical modulator of the present embodiment, since the basic property of being polarization independent is maintained, there is an advantage that the negative chirp can be achieved together with the polarization independent.
また、 本実施形態の光変調器では、 障壁層 2 1 · 2 2の位置を製造時に調整 することで、 ヘビーホールの波動関数の、 狭い井戸へのしみ出し具合を調整す ることができ、 チヤ一プパラメ一タを正の値から負の値まで制御することがで きる。 すなわち、 システムの設計条件に合わせたチヤ一プパラメータを選択す ることができるという利点がある。  Further, in the optical modulator of the present embodiment, by adjusting the positions of the barrier layers 2 1 and 2 2 at the time of manufacturing, it is possible to adjust the degree of the wave function of the heavy hole extruding into a narrow well, The cap parameter can be controlled from a positive value to a negative value. In other words, there is an advantage that the cap parameter can be selected according to the system design conditions.
さらに、 従来の、 低チヤ一プまたは負チヤープを指向した量子井戸構造では 、 2つの障壁層を備えていて複雑な構成であつたが、 本実施形態の光変調器で は、 従来のものよりも簡単な構成で負チヤ一プおよび偏光無依存を達成できる ので、 製造が容易でしかも優れた特性を発揮しうるという利点がある。  Furthermore, the conventional quantum well structure directed to a low-cap or negative-cap was provided with two barrier layers and had a complicated configuration. However, the optical modulator of the present embodiment has a more complicated configuration than the conventional one. In addition, since it is possible to achieve negative cap and polarization independence with a simple configuration, there is an advantage that it is easy to manufacture and can exhibit excellent characteristics.
つぎに、 本発明の第 2実施形態を図 6〜図 1 2に基づいて説明する。 この第 2実施形態における光変調器の基本的構成は、 第 1実施形態と同様なので、 同 一要素には同じ符号を用いることで説明の重複を省く こととする。 第 2実施形 態では、 第 1の半導体として、 0 . 4 %の伸張歪みが加えられた InGaAsが用い られ、 第 2の半導体として、 0 . 7 %の圧縮歪みが加えられた InAlAsが用いら れている。 障壁層 2 1を構成するための半導体の組成としては、 第 2の半導体 と同じ組成および圧縮歪みのものが用いられている。 この構成におけるェネル ギ一レベルの図を図 6 ( b ) に示している。 矩形量子井戸 1 1 · 1 2および障 壁層 2 1 · 2 2の実際の幅 (厚さ) は図 6中に示した通りである。 対照のため 、 障壁層を構成する半導体および第 2の半導体を共に格子整合とした (つまり 圧縮歪みをなく した) 状態でのエネルギーレベルの図を図 6 ( a ) に示す。 両 者を比較すると、 図 6 ( b ) では、 特に、 ヘビーホールに対するエネルギーレ ベルが低くなつている (つまり井戸が浅くなつている) ことが判る。 ここで、 圧縮歪みの量と、 電子、 へビ一ホール、 ライ トホールに対する井戸の深さとの 関係の例を下記の表 1に示した。 圧縮歪みが増えると井戸が浅くなる (すなわ ち障壁が低くなる) ことが判る。 Next, a second embodiment of the present invention will be described with reference to FIGS. Since the basic configuration of the optical modulator according to the second embodiment is the same as that of the first embodiment, the same reference numerals are used for the same elements, and the description will not be repeated. In the second embodiment, InGaAs with 0.4% tensile strain is used as the first semiconductor, and InAlAs with 0.7% compressive strain is used as the second semiconductor. Have been. The composition of the semiconductor for forming the barrier layer 21 is the same as that of the second semiconductor and has the same compressive strain. The energy level diagram for this configuration is shown in Fig. 6 (b). The actual widths (thicknesses) of the rectangular quantum wells 1 1 and 1 2 and the barrier layers 2 1 and 2 2 are as shown in FIG. For comparison, FIG. 6 (a) shows the energy level in a state where the semiconductor constituting the barrier layer and the second semiconductor are both lattice-matched (that is, the compressive strain is eliminated). Comparing the two, Fig. 6 (b) shows the energy level for heavy holes, in particular. It can be seen that the bell is low (that is, the well is shallow). Table 1 below shows an example of the relationship between the amount of compressive strain and the well depth for electrons, heavy holes, and light holes. It can be seen that the well becomes shallower (ie, the barrier becomes lower) as the compressive strain increases.
表 "! 0.4% 申 3長歪 InGaAs/圧縮歪 In A 1 A s (0 %、 0.35 Table “! 0.4% 3 Long strain InGaAs / compressive strain In A 1 As (0%, 0.35
0.7%)量子井戸 の電子 (E)、 ヘビーホール (HH)、 ラ  0.7%) quantum well electrons (E), heavy holes (HH),
トホール (LH )の井戸 の深さ。 単位は eV。  Tohole (LH) well depth. The unit is eV.
Figure imgf000012_0001
井戸が浅くなる (障壁が低くなる) ことによる作用を図 7により説明する。 図 7 (a) は図 6 (a) の構成に、 図 7 ( b ) は図 6 (b ) の構成に対応して いる。 図 7 (a) (b) は電圧印加前および印加後のキャリア (電子 E、 ヘビー ホール HH、 ライ トホール LH) の波動関数 (印加前 : 実線、 印加後 :破線) を示している。 これから判るように、 第 2実施形態では、 ホール (特にへビ一 ホール) の波動関数が障壁層 2 1を越えて狭い井戸の方向 (図中右方向) に大 きく しみ出す。 すると、 電子一ホールの波動関数の重なりが小さくなる。 これ は、 ホールに対する井戸の深さを浅く したためである。 本実施形態の光変調器 の吸収スペク トルを図 8 ( b ) に示す。 図 8 (a) は、 対照のために示したも ので、 図 6 (a) の構成を持つ光変調器の吸収スペク トルである。 これを見る と、 格子整合の場合に比べて、 本実施形態では、 TE · TMどちらの偏光に対 しても、 動作波長 1 5 50 n m付近での吸収増加に比べて、 1 500 n m付近 で大きな吸収減少が見られる。 したがって、 負チヤ一プ化は可能であると考え られる。 本実施形態の光変調器における変調特性を図 9に示す。 ここにおいて 、 え dは、 励起子吸収ピークからの波長デチューニング量を示している。 実線 が TE偏光、 破線が TM偏光に対する特性である。 格子整合の場合 (図示省略 ) に比べると消光特性は若干低下するが、 実際上支障のない範囲である。 また 、 偏光依存性に対しては劣化を生じない。 したがって、 本実施形態によっても 変調特性自体への支障はほとんどない。
Figure imgf000012_0001
The effect of the shallow well (lower barrier) will be explained with reference to FIG. FIG. 7 (a) corresponds to the configuration of FIG. 6 (a), and FIG. 7 (b) corresponds to the configuration of FIG. 6 (b). Figures 7 (a) and 7 (b) show the wave functions (before application: solid line, after application: broken line) of carriers (electrons E, heavy holes HH, light holes LH) before and after voltage application. As can be seen from the above, in the second embodiment, the wave function of the hole (especially the snake hole) greatly extrudes beyond the barrier layer 21 in the direction of the narrow well (to the right in the figure). Then, the overlap of electron-hole wave functions becomes smaller. This is because the depth of the well with respect to the hole was reduced. FIG. 8 (b) shows the absorption spectrum of the optical modulator of the present embodiment. Figure 8 (a) is shown for comparison, and shows the absorption spectrum of the optical modulator with the configuration of Figure 6 (a). It can be seen that, compared to the case of lattice matching, in the present embodiment, for both TE and TM polarized light, the absorption increases near 1500 nm compared to the increase in absorption near the operating wavelength of 1550 nm. A large decrease in absorption is seen. Therefore, it is considered that negative capping is possible. FIG. 9 shows the modulation characteristics of the optical modulator according to the present embodiment. put it here And d show the amount of wavelength detuning from the exciton absorption peak. The solid line is the characteristic for TE polarized light, and the broken line is the characteristic for TM polarized light. Although the extinction characteristic is slightly lower than that in the case of lattice matching (not shown), it is in a range where there is no practical problem. In addition, the polarization dependency does not deteriorate. Therefore, even in the present embodiment, the modulation characteristics themselves are hardly affected.
障壁層を構成する半導体に加える圧縮歪みの量をパラメータにしてチヤ一プ パラメータを計算した結果を図 1 0に示す。 図中%を付して示されている数字 は圧縮歪み量である。 図 1 0 ( a ) は波長デチューニングえ d = 50 nm、 図 1 0 ( b ) はえ d= 6 0 nm、 図 1 0 ( c ) はえ d= 7 0 n mの例を示している 。 圧縮歪みの量を増すにつれて、 T E偏光でも TM偏光でも、 チヤープパラメ ータの曲線が左にシフ トしていく ことが判る。 したがって、 圧縮歪みを加える ことによって、 小さな印加電圧 (つまり小さな挿入損失) で小さな (あるレ、は 負の) チヤ一プパラメータが実現できることが判る。 このように、 圧縮歪みの 量を選択することで、 チヤ一プパラメータを、 負にわたる範囲から選択するこ とができる。 また、 この選択に基づいて、 光変調器を設計、 製造することがで きる。 FIG. 10 shows the results of calculation of the chip parameter using the amount of compressive strain applied to the semiconductor constituting the barrier layer as a parameter. The numbers shown with% in the figure are the amounts of compressive distortion. FIG. 10 (a) shows an example of wavelength detuning d = 50 nm, FIG. 10 (b) shows an example of fly d = 60 nm, and FIG. 10 (c) shows an example of fly d = 70 nm. It can be seen that the curve of the chirp parameter shifts to the left for both TE polarized light and TM polarized light as the amount of compressive strain increases. Therefore, it can be seen that a small (some negative) trap parameter can be realized with a small applied voltage (ie, a small insertion loss) by applying compressive strain. As described above, by selecting the amount of compression distortion, the cap parameter can be selected from a negative range. Also, based on this selection, an optical modulator can be designed and manufactured.
さらに、 光変調器での挿入損失とチヤ一プパラメータとの関係を図 1 1に示 す。 図 1 1 (a) は波長デチューニングえ d= 6 0 nm、 図 1 1 (b) はえ d = 70 nmの例を示している。 また、 図中%で示す数字は、 障壁層を構成する半 導体への圧縮歪み量である。 また、 図中 RQWで示す特性は、 障壁層のない矩 形量子井戸において、 第 1の半導体に 0. 4%の伸張歪み、 第 2の半導体に 0 . 7 %の圧縮歪みを加えた場合のもので、 これは参考のためである。 圧縮量を 増やすほど、 負チヤープを実現するために必要な挿入損失は小さくなることが 判る。 例えば、 図 1 1 (b) において矢印で示したように、 ゼロチヤ一プのた めの挿入損失は 1 2 d Bから 3 d Bのように 9 d B改善されている。 また、 図 1 1において、 本実施形態にかかるプリバイアス量子井戸の特性と RQWで示 す矩形量子井戸の特性とを比較すると、 ゼロチヤープにおいて、 R Q Wでは、 ゼロチヤープのために 1 2 d Bという大きな挿入損失を依然と して要している 。 その理由は、 R Q Wでは、 図 7に示すようなホールの波動関数の局在という 現象が生じにく く、 電子の波動関数とホールの波動関数との重なりが大きいた めである。 Figure 11 shows the relationship between the insertion loss and the cap parameter in the optical modulator. Fig. 11 (a) shows an example of wavelength detuning d = 60 nm, and Fig. 11 (b) shows an example of wavelength d = 70 nm. The numbers shown in% in the figure are the amounts of compressive strain applied to the semiconductor constituting the barrier layer. The characteristics indicated by RQW in the figure indicate that in a rectangular quantum well without a barrier layer, 0.4% tensile strain was applied to the first semiconductor and 0.7% compressive strain was applied to the second semiconductor. This is for reference only. It can be seen that as the amount of compression is increased, the insertion loss required to realize a negative chirp decreases. For example, as indicated by the arrow in FIG. 11 (b), the insertion loss for zero-chip is improved by 9 dB from 12 dB to 3 dB. FIG. 11 shows the characteristics of the pre-biased quantum well and the RQW of the present embodiment. Comparing the characteristics of rectangular quantum wells, at zero-cap, RQW still requires a large insertion loss of 12 dB for zero-cap. The reason is that in the RQW, the phenomenon of localization of the hole wave function as shown in Fig. 7 is unlikely to occur, and the overlap between the electron wave function and the hole wave function is large.
また、 変調特性を図 1 2に示す。 同図 (a ) は本実施形態の場合、 同図 (b ) は前記した R Q Wの場合を示している。 本実施形態のものは、 明らかに、 良 好な偏光無依存を得ている。 さらに、 本実施形態のものは、 2 0 n mという広 い波長帯域にわたって、 2 Vの印加電圧で 1 5 d Bという大きな消光比を得て いる。  Fig. 12 shows the modulation characteristics. FIG. 7A shows the case of the present embodiment, and FIG. 7B shows the case of the above-described RQW. Obviously, this embodiment has a good polarization independence. Further, in the present embodiment, a large extinction ratio of 15 dB is obtained with an applied voltage of 2 V over a wide wavelength band of 20 nm.
本実施形態では、 障壁層を構成する半導体に加える圧縮歪み量を選択するこ とにより、 チヤープパラメータを選択することができ、 これによつて、 目的の チヤープパラメータ (負の値も可能である) を有する光変調器を得ることがで さる。  In this embodiment, the chirp parameter can be selected by selecting the amount of compressive strain to be applied to the semiconductor constituting the barrier layer, whereby the desired chirp parameter (a negative value is also possible. It is possible to obtain an optical modulator having:
なお、 前記した第 2実施形態では、 障壁層を構成する半導体に圧縮歪みを加 えていたが、 これに限らず、 障壁層を構成する半導体のエネルギーレベルを下 げることで、 前記した、 電圧印加に伴うヘビーホールの局在に伴う負チヤープ 化が可能になる。 半導体のエネルギーレベルを下げる手段の例と しては、 障壁 層を構成する半導体と して、 InAlGaAsを用いることが考えられる。 すなわち、 障壁層を構成する半導体のエネルギーレベルを選択することで、 チヤープパラ メータの選択が可能になる。  In the above-described second embodiment, compressive strain is applied to the semiconductor constituting the barrier layer. However, the present invention is not limited to this. By lowering the energy level of the semiconductor constituting the barrier layer, Negative chirp associated with the localization of heavy holes due to the application becomes possible. As an example of a means for lowering the energy level of a semiconductor, use of InAlGaAs as the semiconductor constituting the barrier layer can be considered. That is, by selecting the energy level of the semiconductor constituting the barrier layer, the selection of the chirp parameter becomes possible.
さらに、 前記した第 2実施形態では、 障壁層を構成する半導体に着目 したが 、 これに限らず、 第 2の半導体 (障壁層以外の部分) に圧縮歪みを加えたり、 そのエネルギーレベルを下げることで、 電圧印加に伴うへビ一ホールの局在を 促し、 負チヤープ化が可能である。 しかしながら、 障壁層以外の部分のみを操 作してもチヤ一プパラメータへの影響が比較的少ないため、 この操作は、 障壁 層への操作と共に行うことがよいと考えられる。 Furthermore, in the second embodiment described above, attention has been paid to the semiconductor constituting the barrier layer. However, the present invention is not limited to this. For example, compressive strain may be applied to the second semiconductor (parts other than the barrier layer) or the energy level may be reduced. As a result, the localization of the heavy holes accompanying the voltage application is promoted, and a negative chirp can be achieved. However, the operation of only the portion other than the barrier layer has relatively little effect on the chip parameters. It is thought that it is good to carry out the operation with the layer.
前記した各実施形態はいずれも例示に過ぎず、 発明の範囲はこれらに制限さ れない。 産業上の利用可能性  Each of the embodiments described above is merely an example, and the scope of the invention is not limited thereto. Industrial applicability
本発明によれば、 負チヤ一プと偏光無依存とを共に達成しうる電界吸収形光 変調器を提供できる。  According to the present invention, it is possible to provide an electro-absorption optical modulator capable of achieving both a negative gap and polarization independence.

Claims

請求の範囲 The scope of the claims
1 . 第 1の半導体と、 これよりエネルギー順位の高い第 2の半導体とを積層 して構成された矩形量子井戸を有する、 電界吸収形光変調器において、 前記矩 形量子井戸の幅の内側であって、 かつ、 前記矩形量子井戸の一端の近傍となる 位置には、 前記矩形量子井戸にプリバイアスを与える障壁層が設けられている ことを特徴とする、 負チヤープ化可能な電界吸収形光変調器。 1. An electro-absorption optical modulator having a rectangular quantum well formed by laminating a first semiconductor and a second semiconductor having a higher energy order, wherein the inside of the width of the rectangular quantum well is And a barrier layer for applying a pre-bias to the rectangular quantum well is provided at a position near one end of the rectangular quantum well. Modulator.
2 . 前記第 1の半導体における、 前記矩形量子井戸に相当する部分には、 伸 張歪みが与えられていることを特徴とする請求の範囲 1項記載の電界吸収形光 変調器。  2. The electroabsorption optical modulator according to claim 1, wherein a tensile strain is applied to a portion of the first semiconductor corresponding to the rectangular quantum well.
3 . 請求の範囲 1項または 2項に記載の電界吸収形光変調器の製造方法であ つて、 前記障壁層の位置を選択することによって、 チヤープパラメ一タを負の 値にわたる範囲から選択して前記電界吸収形光変調器を製造することを特徴と する電界吸収形光変調器の製造方法。  3. The method for manufacturing an electro-absorption optical modulator according to claim 1 or 2, wherein a position of the barrier layer is selected to select a chirp parameter from a range over a negative value. A method of manufacturing an electro-absorption optical modulator, comprising manufacturing the electro-absorption optical modulator.
4 . 前記障壁層を構成する半導体または前記第 2の半導体に加える圧縮歪み 量を選択することによりチヤ一プパラメータが選択されていることを特徴とす る請求の範囲 1項または 2項に記載の電界吸収形光変調器。  4. The cap parameter is selected by selecting the amount of compressive strain applied to the semiconductor constituting the barrier layer or the second semiconductor, and the cap parameter is selected. Electro-absorption optical modulator.
5 . 第 1の半導体と、 これよりエネルギー順位の高い第 2の半導体とを積層 して構成された矩形量子井戸を有する、 電界吸収形光変調器において、 前記矩 形量子井戸の幅の内側であって、 かつ、 前記矩形量子井戸の一端の近傍となる 位置に、 前記矩形量子井戸にプリバイアスを与える障壁層を設け、 前記障壁層 を構成する半導体または前記第 2の半導体に圧縮歪みを加えることによってチ ャ一プパラメータを選択することを特徴とするチヤ一プパラメータの選択方法  5. An electro-absorption optical modulator having a rectangular quantum well formed by laminating a first semiconductor and a second semiconductor having a higher energy order, wherein an inner side of the width of the rectangular quantum well is provided. And a barrier layer for applying a pre-bias to the rectangular quantum well is provided at a position near one end of the rectangular quantum well, and compressive strain is applied to a semiconductor or the second semiconductor constituting the barrier layer. Selecting a cap parameter by selecting the
6 . 前記障壁層または前記第 2の半導体のエネルギーレベルを選択すること 'によりチヤ一プパラメータが選択されていることを特徴とする請求の範囲第 1 項または 2に記載の電界吸収形光変調器。 6. The cap parameter is selected by selecting an energy level of the barrier layer or the second semiconductor. Item 3. The electro-absorption optical modulator according to item 2 or 2.
7 . 第 1の半導体と、 これよりエネルギー順位の高い第 2の半導体とを積層 して構成された矩形量子井戸を有する、 電界吸収形光変調器において、 前記矩 形量子井戸の幅の内側であって、 かつ、 前記矩形量子井戸の一端の近傍となる 位置に、 前記矩形量子井戸にプリバイアスを与える障壁層を設け、 前記障壁層 のエネルギーレベルを選択することでチヤープパラメータを選択することを特 徴とするチヤ一プパラメータの選択方法。  7. An electro-absorption optical modulator having a rectangular quantum well formed by stacking a first semiconductor and a second semiconductor having a higher energy order, wherein the width of the rectangular quantum well is within the width of the rectangular quantum well. And providing a barrier layer for applying a pre-bias to the rectangular quantum well at a position near one end of the rectangular quantum well, and selecting an energy level of the barrier layer to select a chirp parameter. The selection method of the cap parameter which features.
8 . 請求の範囲 1項または 2項に記載の電界吸収形光変調器の製造方法であ つて、 前記障壁層のエネルギーレベルまたは前記障壁層を構成する半導体の圧 縮歪み量を選択することによって、 チヤ一プパラメータを負の値にわたる範囲 から選択して前記電界吸収形光変調器を製造することを特徴とする電界吸収形 光変調器の製造方法。  8. The method for manufacturing an electro-absorption optical modulator according to claim 1 or 2, wherein the energy level of the barrier layer or the amount of compressive strain of a semiconductor forming the barrier layer is selected. A method for manufacturing an electro-absorption optical modulator, wherein the electro-absorption optical modulator is manufactured by selecting a cap parameter from a range over a negative value.
PCT/JP2000/003069 1999-10-28 2000-05-12 Electroabsorption optical modulator and method for fabricating the same WO2001033287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU44328/00A AU4432800A (en) 1999-10-28 2000-05-12 Electroabsorption optical modulator and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30618699 1999-10-28
JP11/306186 1999-10-28

Publications (1)

Publication Number Publication Date
WO2001033287A1 true WO2001033287A1 (en) 2001-05-10

Family

ID=17954065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/003069 WO2001033287A1 (en) 1999-10-28 2000-05-12 Electroabsorption optical modulator and method for fabricating the same

Country Status (2)

Country Link
AU (1) AU4432800A (en)
WO (1) WO2001033287A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7058246B2 (en) 2001-10-09 2006-06-06 Infinera Corporation Transmitter photonic integrated circuit (TxPIC) chip with enhanced power and yield without on-chip amplification

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904859A (en) * 1989-01-17 1990-02-27 American Telephone And Telegraph Company Self electrooptic effect device employing asymmetric quantum wells
US5569934A (en) * 1990-10-27 1996-10-29 Canon Kabushiki Kaisha Optical device with an asymmetric dual quantum well structure
JPH1062732A (en) * 1996-08-23 1998-03-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor quantum well optical modulator
EP0866505A2 (en) * 1997-03-19 1998-09-23 Fujitsu Limited Quantum well semiconductor device and method of fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904859A (en) * 1989-01-17 1990-02-27 American Telephone And Telegraph Company Self electrooptic effect device employing asymmetric quantum wells
US5569934A (en) * 1990-10-27 1996-10-29 Canon Kabushiki Kaisha Optical device with an asymmetric dual quantum well structure
JPH1062732A (en) * 1996-08-23 1998-03-06 Nippon Telegr & Teleph Corp <Ntt> Semiconductor quantum well optical modulator
EP0866505A2 (en) * 1997-03-19 1998-09-23 Fujitsu Limited Quantum well semiconductor device and method of fabricating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAKI KATO ET AL.: "Hencho potential ryoushi ido ni yoru henkou muizon MQW-EA henchouki no dousa hachou hani kakudai", TECHNICAL RESEARCH REPORT OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. 98, no. 362, 23 October 1998 (1998-10-23), pages 49 - 54, XP002942026 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7058246B2 (en) 2001-10-09 2006-06-06 Infinera Corporation Transmitter photonic integrated circuit (TxPIC) chip with enhanced power and yield without on-chip amplification
US7437029B2 (en) 2001-10-09 2008-10-14 Infinera Corporation Method of manufacturing and apparatus for a transmitter photonic integrated circuit (TXPIC) chip

Also Published As

Publication number Publication date
AU4432800A (en) 2001-05-14

Similar Documents

Publication Publication Date Title
US4923264A (en) Resonance coupled optical coupler with semiconductor waveguide layer comprising a multi-quantum-well structure
JP2809124B2 (en) Optical semiconductor integrated device and method of manufacturing the same
JP4814525B2 (en) Optical semiconductor device
JP5170236B2 (en) Waveguide type semiconductor optical modulator and manufacturing method thereof
JP2606079B2 (en) Optical semiconductor device
US8179585B2 (en) Coupled quantum well structure
US7095542B2 (en) Electroabsorption modulator having a barrier inside a quantum well
EP0614253B1 (en) Multi-quantum well (MQW) structure laser diode/modulator integrated light source
JP2001281609A (en) Optical modulator, semiconductor laser with optical modulator, and optical communications equipment
WO2001033287A1 (en) Electroabsorption optical modulator and method for fabricating the same
US20070189344A1 (en) Modulator-integrated light source and its manufacturing method
JPH08248363A (en) Waveguide type multiple quantum well optical control element
WO2005124870A1 (en) Semiconductor quantum well devices
JP3345299B2 (en) Quantum well electro-optic modulator
JP7444290B2 (en) semiconductor optical device
JP2988934B1 (en) Nonlinear optical device
JPH0961764A (en) Semiconductor optical phase modulator and its use method
JPH07321414A (en) Field absorption-type multiple quantum well optical control element
JP3529072B2 (en) Optical phase modulator and optical modulator
JPH0682852A (en) Semiconductor device
JPH1062732A (en) Semiconductor quantum well optical modulator
JPH07234389A (en) Semiconductor optical element
JPH11142799A (en) Optical modulator
JPH11212036A (en) Multiple quantum well light modulator
Arakawa et al. InGaAs/InAlAs Five-Layer Asymmetric Coupled Quantum Well and Its Application to Compact and Low-Voltage Optical Switch

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 535114

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase