WO2001035451A1 - Illuminator, aligner, and method for fabricating device - Google Patents

Illuminator, aligner, and method for fabricating device Download PDF

Info

Publication number
WO2001035451A1
WO2001035451A1 PCT/JP2000/007830 JP0007830W WO0135451A1 WO 2001035451 A1 WO2001035451 A1 WO 2001035451A1 JP 0007830 W JP0007830 W JP 0007830W WO 0135451 A1 WO0135451 A1 WO 0135451A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lighting device
light source
optical
split
Prior art date
Application number
PCT/JP2000/007830
Other languages
French (fr)
Japanese (ja)
Inventor
Naomasa Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU13018/01A priority Critical patent/AU1301801A/en
Publication of WO2001035451A1 publication Critical patent/WO2001035451A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70583Speckle reduction, e.g. coherence control or amplitude/wavefront splitting

Definitions

  • Illumination apparatus illumination apparatus, exposure apparatus, and device manufacturing method
  • the present invention relates to an illumination device, an exposure device, and a device manufacturing method, and more particularly, to an illumination device that illuminates a surface to be irradiated with laser light, a semiconductor device (integrated circuit), a liquid crystal display, and the like including the illumination device.
  • the present invention relates to an S-optical device used in a lithographic process when manufacturing an electronic device, and a device manufacturing method using the exposure device.
  • a mask or reticle in which a pattern to be formed has been formed in proportion to a factor of about 4 to 5 is formed.
  • the reticle pattern is reduced and transferred onto a substrate such as a wafer or a glass plate (hereinafter collectively referred to as a “wafer”) via a projection optical system.
  • a projection exposure apparatus such as an apparatus (a so-called stepper) or a step-and-scan type scanning exposure apparatus (a so-called scanning stepper) with an improved version of this stepper is mainly used.
  • the exposure wavelength has been shifted to shorter wavelengths in order to cope with miniaturization of patterns of integrated circuits and the like.
  • the wavelength is mainly 2848 nm of KrF excimer laser, but the shorter wavelength of 19.3 nm of ArF excimer laser is entering the stage of practical use.
  • Even short waves There are also proposals for projection exposure systems that use a light source in the so-called vacuum ultraviolet range, such as a long-wavelength F.157 nm laser and an A-laser with a wavelength of 126 nm. .
  • a first object of the present invention is to provide an illuminating device capable of improving illuminance uniformity on a surface to be illuminated.
  • a third object is to provide a device manufacturing method capable of improving the productivity of highly integrated microdevices. Disclosure of the invention
  • an illumination device for illuminating a surface to be illuminated, comprising: a light source; a light beam from the light source being divided into a plurality of light beams; And a light splitting unit having a plurality of reflecting surfaces for making optical path lengths reaching the surfaces different.
  • the light when light is output from the light source, the light enters the light splitting unit, and is reflected by a plurality of reflecting surfaces in the unit to form a plurality of split luminous fluxes to form an illuminated surface.
  • the optical path length from the light source to the irradiated surface is made different, and an optical path length difference (optical path difference) is given. Therefore, the occurrence of speckles (interference fringes) that may deteriorate the illuminance uniformity on the irradiated surface is suppressed, so that the illuminated surface can be illuminated with uniform illuminance.
  • speckles interference fringes
  • the advantage of suppressing the above-described speckle generation is great.
  • the plurality of reflecting surfaces are arranged in multiple stages in the predetermined one direction so that the light beam can be divided into a plurality of portions in a predetermined direction in a cross section perpendicular to the optical axis of the light beam from the light source. And may be arranged so as to be shifted by a predetermined distance in the optical axis direction.
  • the light beam from the light source can be divided into a plurality of light beams, and a difference in the optical path length can be generated between each of the divided light beams. Can be suppressed.
  • the predetermined one direction may be a direction in which the light output from the light source has high interference.
  • the light beam is divided into a plurality of light beams in a predetermined direction having high coherence, and a difference in the optical path length occurs between the divided light beams. Generation can be suppressed efficiently.
  • the plurality of reflection surfaces may be reflection surfaces of different reflection mirrors.
  • the cross-sectional shape of the side surface is set so that when the mirror is translated rearward by a predetermined distance along the reflecting surface, the reflecting surface of the other reflecting mirror and its own reflecting surface form a single reflecting surface without any gap. It can be said that it has been done.
  • the plurality of reflection surfaces may be formed at different locations of the same member.
  • each of the plurality of reflecting surfaces may have a reflectance of about 95% or more. In such a case, a large amount of illumination light can be supplied to the illuminated surface with little loss of light intensity.
  • the light splitting units are arranged as the plurality of reflection surfaces in multiple stages in a predetermined first direction in a cross section perpendicular to an optical axis of the light flux from the light source.
  • a first reflecting surface group that is divided by a predetermined distance in the optical axis direction and divides the light beam into a plurality of light beams and folds the optical axis of each of the divided light beams in the second direction; and the second direction.
  • each of the divided light beams are arranged in multiple stages with respect to a predetermined third direction in a cross section perpendicular to the plane, and are arranged to be shifted by a predetermined distance in the second direction, divide each of the divided light beams into a plurality of light beams and separate the light beams And a second reflection surface group that is bent in four directions.
  • the light splitting unit may generate a difference in the optical path length between the split light beams reflected by the plurality of reflecting surfaces, which is equal to or longer than a temporal coherence length of the light. Is desirable. In such a case, there is no coherence between the divided light beams, so that it is possible to almost certainly avoid the occurrence of interference fringes on the irradiated surface, and to further improve the illuminance uniformity on the irradiated surface.
  • Monkey In Monkey
  • each of the divided luminous fluxes arranged on the optical path of the light between the light splitting unit and the surface to be illuminated and split by the light splitting unit is irradiated.
  • An illumination uniforming optical system including an optical integrator may be further provided. In such a case, it is possible to further improve the illuminance uniformity on the surface to be illuminated by the synergistic action of the division of the luminous flux by the light dividing unit and the illuminance uniforming optical system including the optical integrator.
  • the optical integrator may be any one of a fly-eye lens, an aperture lens, and a diffractive optical element.
  • the optical integrator when an optical integrator is provided on an optical path between the light splitting unit and the irradiated surface, the optical integrator has a plurality of elements; Each of the split light beams split by the unit may be applied to a different element set having at least one of the elements as an element.
  • each divided light beam is irradiated to a different element set having at least one element as an element, so that a plurality of light beams should overlap each other on the element. Deterioration of uniformity of illuminance due to irradiance can be prevented or suppressed, and as a result, uniformity of illuminance on the irradiated surface can be reliably ensured.
  • each of the element groups irradiated with the different divided light beams is partitioned by a light shielding member.
  • the optical integrator can be any one of a fly-eye lens and a diffractive optical element (diffractive optical element).
  • the light splitting unit when an optical integrator is provided on an optical path between the light splitting unit and the surface to be irradiated, the light splitting unit includes: The incident angles of the split light beams with respect to the optical integrator are different so that the split light beams enter the entire surface. Can be made.
  • the light source may be a laser light source.
  • an illuminating device for illuminating a surface to be illuminated, comprising: a light source; A reflecting unit having a plurality of reflecting surfaces arranged in multiple stages with respect to the predetermined direction so as to be dividable in the optical axis direction and displaced by a predetermined distance in the optical axis direction. It is.
  • the light beam when a light beam is output from the light source, the light beam enters the reflection unit, is reflected by a plurality of reflection surfaces in the unit, becomes a plurality of divided light beams, and reaches the irradiated surface. Irradiated respectively.
  • the optical path length from the light source to the irradiated surface is made different according to the arrangement of each reflecting surface, and the optical path length difference (optical path difference) Is given. Therefore, the generation of speckles (interference fringes) which may deteriorate the illuminance uniformity on the illuminated surface is suppressed, so that the illuminated surface can be illuminated with uniform illuminance.
  • speckles interference fringes
  • a shaping optical system is provided between the light source and the reflection unit to shape a cross-sectional shape of a light beam from the light source, and the reflection unit is shaped by the shaping optical system.
  • the later light beam can be divided into a plurality of light beams.
  • the plurality of reflecting surfaces divide the light beam from the light source into a plurality of light beams and vary the optical path length from the light source to the irradiated surface between the divided light beams. It can be.
  • an exposure apparatus for transferring a pattern formed on a pattern surface of a mask to a substrate, comprising: a light source; and a plurality of light beams from the light source. And a light splitting unit having a plurality of reflective surfaces for splitting and making the optical path length from the light source to the pattern surface between the split light beams different from each other.
  • the light when light is output from a light source, the light enters a light splitting unit, and is reflected by a plurality of reflecting surfaces in the unit to form a plurality of split light fluxes to form a mask pattern.
  • the surface is respectively illuminated.
  • the optical path length from the light source to the pattern surface is made different, and an optical path length difference (optical path difference) is given. Therefore, the occurrence of speckles (interference fringes), which may deteriorate the uniformity of illuminance on the pattern surface, is suppressed, so that the pattern surface of the mask can be illuminated with uniform illuminance. Therefore, the uniformity of the illuminance on the substrate to which the pattern formed on the pattern surface of the mask is transferred can be ensured, and the uniformity of the pattern line width formed on the substrate can be improved.
  • the pattern can be transferred with high precision.
  • the illuminance equalizing optics including an optical integrator disposed on the optical path of the light between the light splitting unit and the pattern surface, and irradiated with each split light beam split by the light splitting unit.
  • the system can be further provided.
  • the optical integrator has a plurality of elements, and each of the split light beams split by the light splitting unit is applied to a different element set having at least one of the elements as an element. It can be.
  • the first exposure apparatus of the present invention may further include a projection optical system for projecting the light emitted from the mask onto the substrate.
  • a projection optical system for projecting the light emitted from the mask onto the substrate.
  • the generation of interference fringes on the pattern surface of the mask can be reduced and the pattern can be illuminated with high illuminance uniformity by the light division unit. Therefore, for example, by using a light source that outputs light with high spatial coherence as the light source,
  • the projection optical system achieves improved illuminance uniformity of light projected on the substrate surface and, as a result, highly accurate exposure with improved pattern line width uniformity. It is possible to do.
  • the light source may be a laser light source.
  • an exposure apparatus for transferring a pattern formed on a pattern surface of a mask to a substrate, comprising: a light source; and a light source of a light beam from the light source in a cross section perpendicular to the light passage.
  • a reflection unit having a plurality of reflection surfaces arranged in multiple stages in the predetermined one direction so as to be able to divide the light beam into a plurality of parts in a predetermined one direction, and displaced by a predetermined distance in the optical axis direction;
  • a second exposure apparatus comprising:
  • this light beam when a light beam is output from the light source, this light beam enters the reflection unit, and is reflected by a plurality of reflection surfaces in the unit to form a plurality of divided light beams to form a pattern surface of a mask. Respectively.
  • the optical path length from the light source to the pattern surface is made different according to the arrangement of each reflecting surface, and the optical path length difference (optical path difference) is reduced. Granted. Therefore, the occurrence of speckles (interference fringes) that may deteriorate the illuminance uniformity on the turn surface is suppressed, so that the pattern surface of the mask can be illuminated with uniform illuminance.
  • the uniformity of the illuminance on the substrate on which the pattern formed on the pattern surface of the mask is transferred can be ensured, whereby the uniformity of the pattern line width formed on the substrate can be improved, and the fineness of the pattern on the substrate can be improved.
  • the pattern can be transferred with high precision.
  • the plurality of reflecting surfaces can divide the light beam from the light source into a plurality of light beams and make the optical path length from the light source to the irradiated surface between the divided light beams different from each other. .
  • the first and second exposure apparatuses of the present invention are used.
  • the line width control accuracy is improved by improving the illuminance uniformity of the illuminating light on the substrate surface, so that a pattern of a plurality of layers can be formed on the substrate with high accuracy. Therefore, a highly integrated microdevice can be manufactured with a high yield, and the productivity can be improved. Therefore, from another viewpoint, the present invention is a device manufacturing method using the exposure apparatus of the present invention.
  • FIG. 1 is a diagram schematically showing an overall configuration of an exposure apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a specific configuration of the light dividing unit and the first fly-eye lens of FIG.
  • FIG. 3 is a diagram showing a modification of the light splitting unit of FIG.
  • FIG. 4 is a side view showing a light splitting unit according to a second embodiment of the present invention together with a first fly eye lens.
  • FIG. 5 is a flowchart for explaining an embodiment of the device manufacturing method according to the present invention.
  • FIG. 6 is a flowchart showing the processing in step 204 of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 schematically shows a configuration of an exposure apparatus 10 according to a first embodiment including an illumination apparatus according to the present invention as an illumination system for illuminating a reticle R as a mask.
  • the exposure apparatus # 0 is a step-and-scan type scanning projection exposure apparatus that uses pulsed ultraviolet light in the ultraviolet or vacuum ultraviolet region as illumination light for exposure, In other words, it is a so-called scanning stepper.
  • the exposure apparatus 10 includes an illumination system including a laser light source (hereinafter, appropriately referred to as a “light source”) 11 and an illumination optical system 40, and a reticle as a mask illuminated by pulsed ultraviolet light EL from the illumination system.
  • a reticle stage RST that holds R
  • a projection optical system that projects the pulsed ultraviolet light EL emitted from the reticle R onto a wafer W as a substrate
  • -It is equipped with a wafer stage WS and a control system for them.
  • the light source 11 examples include an ArF excimer laser light source (oscillation wavelength: 193 nm) having a band-narrowing module (not shown) including a spectral optical element such as a grating, a prism, and an etalon element.
  • a narrow-band laser light source e.g., an oscillation wavelength of 157 nm
  • the light source 11 not only a narrow band KrF excimer laser light source but also a laser light source including a so-called injection seed type laser using a narrow band laser beam as a seed may be used.
  • the light source 1 ⁇ includes an illumination optical system 40, a reticle stage RST, a projection optical system P, a wafer stage WST, and an exposure apparatus main body including a main body column (not shown) holding these components. It is placed separately from the stored chamber (not shown). That is, the light source 11 is installed in a low-clean service room separate from the clean room in which the chamber is installed, or in a utility space provided under the floor of the clean room, and the beam matching unit is installed in the chamber. It is connected via a drawing optical system (light transmitting optical system) (not shown) that includes at least a part of an optical axis adjusting optical system called a lens.
  • a drawing optical system light transmitting optical system
  • the illumination optical system 40 makes the inside airtight to the outside air
  • Illumination system housing (not shown) filled with clean dry nitrogen gas (N 2 ) or helium gas (H e) with a (oxygen) content of several percent or less, preferably less than 1% (several PP m or less)
  • N 2 clean dry nitrogen gas
  • H e helium gas
  • mirrors 13, 14, and a beam shaping which are sequentially arranged along the optical path of the laser beam LB output from the light source 1 in the illumination system housing.
  • Optical system 3 light splitting unit (reflection unit) 18, 1st fly-eye lens 20 as optical integrator (homogenizer), relay lens 21, mirror 22, relay lens 23, optical integrator ( 2nd fly-eye lens 24 as a homogenizer), illumination system aperture stop plate 25, relay lenses 26, 27, fixed reticle blind 28 A, movable reticle blind 28, condenser lenses 29, 30 A mirror 31 and a main condenser lens 32 are provided.
  • the beam shaping optical system 33 is composed of a combination of optical elements.
  • the beam shaping optical system 33 changes the cross-sectional shape of the laser beam LB pulsed from the light source 11 into a light splitting unit 18 provided behind the optical path of the laser beam LB. It is shaped so as to efficiently enter the first fly-eye lens 20, and is composed of, for example, a cylinder lens and a beam expander.
  • the light splitting unit 18 splits the laser beam LB after the cross-sectional shape shaping from the beam shaping optical system 33 into a plurality of light fluxes, and imparts an optical path length difference between the split light fluxes.
  • the first fly-eye lens 20 at the subsequent stage is irradiated. The combination of the light splitting unit 18 and the first fly-eye lens 2 ° will be described later in further detail.
  • a relay optical system including relay lenses 21 and 23 is disposed with a mirror 22 interposed therebetween, and the optical path of the rear relay lens 23.
  • a second fly's eye lens 24 is arranged behind.
  • the first fly-eye lens 20 and the second fly-eye lens 24 constitute a double fly-eye lens system, and the double fly-eye lens system and the lenses 21 and 23 provide illuminance.
  • a homogenizing optical system is configured.
  • two lens bundles 24 A and 24 B each having a flat surface on one side, on which lens elements are arranged in close contact with each other in a mosaic shape
  • a so-called mosaic fly-eye lens which is arranged close to each other along the optical axis IX of the illumination optical system (corresponding to the optical axis AX of the projection optical system PL described later) so as to face each other, Used.
  • Such a mosaic fly-eye lens is disclosed, for example, in Japanese Patent Application Laid-Open Nos. Hei 9-265554, Hei 8-3161623, and US Patent Nos. 5,739,89 corresponding thereto. It is disclosed in detail in No. 9, etc.
  • the lens bundles 24 A and 24 B function as one fly-eye lens only when the two are combined.
  • the disclosure in the above-mentioned public notice and the corresponding US patent shall be incorporated herein by reference.
  • the laser beam emitted from the second fly-eye lens 24 will be appropriately referred to as “exposure light EL” below.
  • a vibration mirror for smoothing interference fringes and weak speckles generated on the irradiated surface can be used as the mirror 22.
  • the vibration (deflection angle) of the vibrating mirror can be controlled by the main controller 50 via a drive system (not shown).
  • a configuration in which such a vibrating mirror and a double fly-eye lens system are combined is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 1-259533 and US Pat. No. 5,307,20 corresponding thereto. No. 7, and as far as the national laws of the designated country designated in this international application or the selected elected country allow, the disclosure in the above-mentioned gazettes and U.S. patents is partially incorporated herein by reference. And
  • the illumination system aperture stop plate 25 made of a disc-shaped member is disposed near the exit surface of the second fly-eye lens 24.
  • the illumination system aperture stop plate 25 is provided at substantially equal angular intervals, for example, an aperture stop composed of a normal circular aperture, an aperture stop composed of a small circular aperture, for reducing a threshold value which is a coherence factor, and a ring illumination.
  • Annular aperture stop, and a modified aperture stop with multiple apertures eccentrically arranged for the modified light source method (only two of these are shown in FIG. 1). Etc.) are arranged.
  • the illumination system aperture stop plate 25 is rotated by a drive device 34 such as a motor controlled by a main controller 50, whereby one of the aperture stops is placed on the optical path of the exposure light EL.
  • the shape of the light source surface in the Keller illumination described later is limited to a ring, a small circle, a large circle, or a fourth shape.
  • a fixed reticle blind 28 A and a movable reticle blind 28 B are arranged on the optical path of the exposure light EL behind the illumination system aperture stop plate 25 via relay lenses 26 and 27.
  • the fixed reticle blind 28 A is arranged on a plane slightly defocused from a conjugate plane with respect to the pattern plane of the reticle R, and has a rectangular opening defining an illumination area I A R on the reticle R.
  • a movable reticle blind 28B having an opening whose position and width in the direction corresponding to the scanning direction is variable is arranged near the fixed reticle blind 28A, and is movable at the start and end of scanning exposure.
  • Condenser lenses 29, 30 are sequentially arranged on the optical path of the exposure light E behind the movable reticle blind, and on the optical path further behind the condenser lens 30, ultraviolet light passing through the condenser lens 30 is provided.
  • a mirror 31 for reflecting the pulsed light toward the reticle R is arranged, and a main condenser lens 32 is arranged on the optical path of the exposure light EL behind the mirror 31.
  • the entrance surface of the first fly-eye lens 20, the entrance surface of the second fly-eye lens 24, the arrangement surface of the blade of the movable reticle blind 28 B, and the pattern surface of the reticle R are optically
  • the exit pupil plane is optically set to be conjugate to each other, forming a Koehler illumination system.
  • the laser beam B pulsed from the laser light source 11 is sequentially reflected by the mirrors 13 and 14 and then enters the beam shaping optical system 33 where the rear light splitting unit 1
  • the cross-sectional shape is shaped so as to efficiently enter the eighth fly eye lens 20 and the first fly eye lens 20.
  • the laser beam LB is split into a plurality of light beams by the light splitting unit 18 and is incident on the first fly-eye lens 2 ° as a light beam group in which coherence is suppressed as described later.
  • a surface light source that is, a secondary light source including a large number of light source images (point light sources) is formed at the exit end of the first fly-eye lens 20.
  • the pulsed ultraviolet light diverging from each of these many point light sources enters the second fly-eye lens 24 via the relay lens 21, the mirror 22 and the relay lens 23 in this order.
  • a tertiary light source is formed at the exit end of the second fly-eye lens 24, which is composed of a large number of point light sources in which a large number of minute light source images are uniformly distributed in a predetermined shape area.
  • the exposure light EL emitted from the tertiary light source passes through one of the aperture stops on the illumination system aperture stop plate 25, and then passes through the relay lens 26,
  • the rectangular opening of the fixed reticle blind 28 A is illuminated with a uniform intensity distribution (illuminance distribution).
  • the 11-light EL passed through the opening of the fixed reticle blind 28 A in this way passes through the movable reticle blind 28 B, and then passes through the condenser lenses 29, 30, and the optical path is vertically moved downward by the mirror 31.
  • a predetermined illumination area on the reticle R held on the reticle stage RST (slit or rectangular illumination area extending linearly in the X-axis direction)
  • the rectangular slit-shaped illumination light applied to the reticle R is set to extend in the X-axis direction (non-scanning direction) in the center of the circular projection field of view of the projection optical system P in FIG.
  • the width of the illumination light in the Y-axis direction (scan direction) is set almost constant.
  • a reticle R is mounted on the reticle stage RST, and is held by suction via an unshown electrostatic chuck (or vacuum chuck) or the like.
  • Reticle The stage RST can be finely driven in a horizontal plane (XY plane), and can be scanned in a predetermined stroke range in a scanning direction ( ⁇ -axis direction) by a reticle stage driving unit 56R.
  • the position of reticle stage RS # during this scanning is measured by an external laser interferometer 54R via a moving mirror 52R fixed on reticle stage RS #, and this laser interferometer 54R Is supplied to the main controller 50.
  • the material used for the reticle R needs to be properly used depending on the light source used. That is, when an A r F excimer laser or a K r F excimer laser is used as a light source, synthetic quartz can be used, but when a laser is used, fluorite or fluorine-top quartz or the like can be used. It is necessary to form with.
  • the projection optical system PL for example, a bilateral telecentric reduction system is used.
  • the projection magnification 3 of the projection optical system PL is, for example, 14, 1/5 or 1/6. For this reason, as described above, when the illumination area IAR on the reticle R is illuminated by the exposure light EL, the diffracted light corresponding to the pattern formed on the reticle R is projected toward the projection optical system PL.
  • the image reduced by a factor of 0 is condensed and imaged by the projection optical system PL to form a slit-shaped exposure area IA on the wafer W having a surface coated with a resist (photosensitive agent). Is projected and transferred.
  • VUV light vacuum ultraviolet light
  • a catadioptric system having a reflective optical element and a refractive optical element is used as the projection optical system PL.
  • Examples of this reflective refraction type projection optical system include, for example, Japanese Patent Application Laid-Open No. Hei 8-171504 and US Patent Nos. 5,668,672 corresponding thereto and Japanese Patent Application Laid-Open No. — A catadioptric system having a beam splitter and a concave mirror as a reflective optical element, as disclosed in US Pat. No. 2,019,955 and corresponding US Pat. Nos.
  • a plurality of refractive optics disclosed in U.S. Pat. Nos. 5,031,976, 5,488,229, and 5,717,518.
  • the element and two mirrors (a primary mirror, which is a concave mirror, and a sub-mirror, which is a backside mirror with a reflective surface formed on the opposite side of the refraction element or parallel plane plate from the entrance surface) are arranged on the same axis.
  • a catadioptric system that re-images the intermediate image of the reticle pattern formed by the plurality of refractive optical elements on the wafer by the primary mirror and the secondary mirror may be used.
  • a primary mirror and a secondary mirror are arranged following a plurality of refractive optical elements, and the illumination light passes through a part of the primary mirror and is reflected in the order of the secondary mirror and the primary mirror. It will pass through a portion and onto the wafer.
  • the catadioptric projection optical system has, for example, a circular image field, is telecentric on both the object side and the image side, and has a projection magnification of 14 or 1/5. May be used.
  • the irradiation area of the illumination light has its optical axis substantially centered within the field of view of the projection optical system, and is almost perpendicular to the scanning direction of the reticle or wafer. It may be of a type defined in a rectangular slit shape extending along the orthogonal direction.
  • the scanning exposure apparatus having such a catadioptric projection optical system for example, even if a laser beam having a wavelength of 157 nm is used as illumination light for exposure, a fine pattern of about 100 nm LZS pattern can be formed on a wafer. It is possible to transfer on the top with high precision.
  • the exposure light EL is an A r F excimer laser light or a K r F excimer laser light.
  • F both synthetic quartz and fluorite can be used as the lens elements constituting the projection optical system PL. All fluorite is used for the lens material used for PL.
  • a refraction system including only a refraction optical element may be used.
  • a reflection system including only a reflection optical element may be used, or an F "laser beam or a diffraction system may be used.
  • the wafer stage WST is two-dimensionally driven by a wafer stage drive unit 56W in the Y-axis direction, which is the scanning direction, and the X-axis direction, which is orthogonal thereto.
  • a wafer W is held by electrostatic suction (or vacuum suction) via a wafer holder (not shown).
  • the Z tilt stage 58 has functions of adjusting the position of the wafer W in the Z direction (focus position) and adjusting the inclination angle of the wafer W with respect to the XY plane.
  • the position of the wafer stage WST is measured by an external laser interferometer 54 W through a movable mirror 52 W fixed on the Z tilt stage 58, and the position of the laser interferometer 54 W is measured. The value is supplied to the main controller 50.
  • the control system is mainly constituted by a main control device 50 as a control device in FIG.
  • the main controller 50 includes a so-called microcomputer (or workstation) including a CPU (central processing unit), ROM (read, only memory), RAM (random access memory), and the like. For example, synchronous scanning of the reticle R and the wafer W, stebbing of the wafer W, exposure timing, and the like are collectively controlled so that the operation is appropriately performed.
  • the main controller 50 at the time of the above scanning exposure, for example, control based on a detection value of a light amount measuring device such as a photoelectric conversion element (not shown) provided in the illumination optical system 40 is performed.
  • a light amount measuring device such as a photoelectric conversion element (not shown) provided in the illumination optical system 40
  • the main controller 50 drives the illumination system aperture stop plate 25
  • the double fly-eye lens system as described above it is possible to make the illuminance of the illuminating light flux on the irradiated surface of the reticle R and the wafer W uniform.
  • the laser light output from the light source 11 has a high spatial coherence
  • the light beams transmitted through the different lens elements of the fly-eye lenses 20 and 24 interfere with each other, and the illuminated surface May form interference fringes (speckles), which may degrade illuminance uniformity.
  • the narrow band laser light LB having high spatial coherence is used, the spatial coherence of the light beam incident on the first fly-eye lens 20 is reduced, and the illuminance uniformity caused by the speckle is reduced.
  • FIG. 2 is a perspective view showing a configuration example of the light splitting unit 18 and the first fly-eye lens 20 according to the present embodiment.
  • the light splitting unit 18 is composed of a pair of plate members 49 a and 49 b opposed to each other and arranged in parallel with the YZ plane, and these plate members 49 a ,
  • a mounting frame 49 composed of four shafts 61a to 61d extending in the X-axis direction is connected to the mounting frame 49 via a mounting member (not shown).
  • the plane mirrors 48a, 48b, and 48 are used as reflecting mirrors having a plurality of (three in Fig. 2) high-reflectance reflecting surfaces held at an inclination angle of 45 degrees parallel to Have.
  • Each of the plane mirrors 48a to 48c has a reflecting surface with a reflectivity of about 95% formed by a metal thin film such as aluminum or a dielectric multilayer film with the X-axis direction as a longitudinal direction.
  • each of these plane mirrors 48a to 48c is formed by a laser beam LB output from the light source 11 after shaping by the beam shaping optical system 33 (hereinafter referred to as “laser beam” for convenience).
  • the laser beam 57 is arranged in multiple stages in the Z-axis direction so that the laser beam 57 can be divided into multiple parts in a given direction (Z-axis direction) in a section perpendicular to the optical axis (XZ section). And is shifted by a predetermined distance in the optical axis direction ( ⁇ -axis direction).
  • the direction corresponding to the Z-axis direction in FIG. 2 is the direction having high coherence, and the cross-sectional shape of this direction is determined by the beam shaping optical system 33. It has been expanded.
  • the reflecting surfaces of the plane mirrors 48a to 48c are configured to reflect the laser beam 57 with almost no gap. That is, the shape of the plane mirrors 48a to 48c in the YZ section is tapered so that at least the lower end thereof is inclined in parallel to the X ⁇ plane.
  • the laser beam 57 has no gaps in the X-axis direction as well as in the Z-axis direction (with unnecessary shielding portions being almost zero), and the plane mirrors 48 a to 4 a 8c, respectively. That is, among the plane mirrors 48a to 48c, the plane mirrors 48a and 48b satisfying the condition that another plane mirror adjacent to the rear side in the optical axis direction of the laser beam exists.
  • the plane mirrors 48 a to 48 c are Z-axis. Because the laser beam 57 is shifted in the Y-axis direction, when the laser beam 57 enters the light splitting unit 18 from the -Y direction, it enters the flat mirror 48a located at the most Y side (+ Z side). The first split beam 59a reflected in the + Z direction by the plane mirror 48a and the plane mirror 48b positioned at the center among the light beams not incident on the plane mirror 48a.
  • the light is split into three light beams, that is, a third light beam 59c reflected by the plane mirror 48c in the + Z direction.
  • the divided light beams 59a, 59b, 59c individually enter the different lens groups 20a, 20b, 20c constituting the first fly-eye lens 20.
  • the lens groups 20a and 20b.20c are each composed of a plurality of lens elements arranged without a gap in the X-axis direction, as shown in FIG. Are arranged in parallel with each other. That is, the first fly-eye lens 20 is constituted by lens groups 20a, 20b, and 20c arranged corresponding to the reflection surfaces of the plane mirrors 48a to 48c, respectively.
  • each of the divided light beams 59 a to 59 c has an optical path difference (optical path length difference) corresponding to the S position of each plane mirror _ 48 a to 48 c (more precisely, these reflecting surfaces).
  • optical path difference optical path length difference
  • the distance between the plane mirror 48a and the plane mirror 48b (the sum of 3 in the axial direction and Z in the Z direction) is between the split beam 59a and the split beam 59b.
  • the difference between the split beam 59b and the split beam 59c is caused by the distance between the plane mirror 48b and the plane mirror 48c (Ac in the ⁇ -axis direction and Ac in the Z-axis direction). (The sum of A d).
  • the plane mirrors 48a to 48c are arranged such that the optical path difference is longer than the temporal coherence length of the laser beam 57.
  • the arrangement of the plane mirrors 48a, 48b, and 48c will be described using a specific example.
  • the spatial coherence (coherence) between the divided light beams can be eliminated. That is, the plane mirrors should be arranged so that (A a + A b ⁇ 93 (mm)) and (A c + A d ⁇ 93 (mm)).
  • the positional relationship and the angular relationship of the flat mirrors 48a to 48c are required. It is desirable to provide a fine adjustment mechanism for the mounting position so that the mounting position can be set correctly. Similarly, when the mounting frame 49 is installed in the illumination optical system 40, the mounting position adjustment mechanism is also required. It is desirable to provide.
  • the shielding members 20 s are respectively arranged between the above-described lens groups 20 a to 20 c constituting the first fly-eye lens 20, and the adjacent lens groups
  • the overlap between the divided luminous fluxes 59a and 59b and between the 59b and 59c is prevented.
  • the uniformity of the illuminance on the lens groups 20a to 20c constituting the first fly-eye lens 20 is improved, and in this regard, the illuminance on the irradiated surface (reticle R and wafer W) is also improved. Illuminance uniformity is assured Is maintained.
  • the polarized light is placed in the optical path of the laser light beam 57 or near the entrance surface or the exit surface of the first fly-eye lens 20. It is also possible to provide polarization direction rotating elements having different rotation angles so that the polarization states of the divided light beams 59a to 59c are different from each other.
  • a birefringent material having a tapered thickness (crystal, calcite, etc.) or a birefringent material having a different thickness for each of the divided light beams 59 a to 59 c may be used. .
  • a reticle loader and a wafer loader perform reticle loading and wafer loading under the control of the main controller 50, and a reticle microscope, a reference mark plate on the wafer stage WST, and an off-axis alignment detection system. (Both not shown), etc., are used to carry out preparatory work such as reticle alignment and baseline measurement (measurement of the distance between the detection center of the alignment detection system and the optical axis of the projection optical system PL) in a predetermined procedure. Done.
  • the main controller 50 executes an alignment measurement such as EGA (enhanced global alignment) for the wafer W using an alignment detection system (not shown). If the movement of the wafer W is necessary in such an operation, the main controller 50 moves the wafer stage WST (wafer W) in a predetermined direction.
  • EGA enhanced global alignment
  • the step-and-scan exposure operation is performed as follows.
  • the wafer stage WST is moved so that the XY position of the wafer W becomes the scanning start position for the exposure of the first shot area (first shot) on the wafer W.
  • the reticle stage R ST is moved so that the XY position of the reticle R becomes the scanning start position.
  • the wafer stage WST is stepped by one shot area, and scanning exposure is performed for the next shot area. In this way, the stepping and the scanning exposure are sequentially repeated, and the required number of shot patterns are transferred onto the wafer W.
  • the reticle R is illuminated by the exposure light EL with good illuminance uniformity as described above, and as a result, the illuminance uniformity on the image plane (wafer W surface) is improved, and the wafer W The line width uniformity of the pattern transferred to each of the above shot areas is also improved.
  • the illumination system (11, 40) when the laser beam LB is output from the light source 11, this laser beam passes through the mirrors 13, 14
  • the beam shaping optical system 3 3 is reached, where its cross-sectional shape is shaped. And enters the beam splitting unit 18 as a laser beam 57, and is reflected by a plurality of plane mirrors 48 a to 48 b constituting the unit 18 to be split beam 59 a, 59 b, 59 c, the light is incident on the first fly-eye lens 20, respectively, and is exposed through the optical element group to the pattern surface of the reticle R, which is the illuminated surface conjugate with the incident surface of the first fly-eye lens 20. Irradiated as EL.
  • the optical path length from the light source 11 to the irradiated surface is made different, and an optical path length difference (optical path difference) is given. It has been done. Therefore, the generation of speckles (interference fringes) which may deteriorate the illuminance uniformity on the irradiated surface is suppressed, so that the irradiated surface can be illuminated with uniform illuminance.
  • the plane mirrors 48 a to 48 b those having a reflection surface with a reflectivity of about 95% or more are adopted.
  • the laser beam is only reflected once, there is a merit that the light amount loss is small and abundant illumination light amount can be provided on the irradiated surface. Therefore, adoption of an illumination system including the light splitting unit 18 in an exposure apparatus makes it possible to increase the exposure power and further improve the throughput (processing capacity). Further, when a narrow-band laser beam having high spatial coherence is used as in the present embodiment, the advantage of suppressing the generation of speckle is particularly great.
  • the laser light beam 57 is divided into a plurality of beams in the first direction where the coherence is high, and there is an optical path length difference between each of the split light beams.
  • the generation of speckles can be suppressed efficiently.
  • the illumination system (11, 40) reduces the generation of interference fringes on the reticle pattern surface (the surface to be irradiated) and achieves high illuminance uniformity of the reticle.
  • illuminating R it is possible to improve the uniformity of the illuminance of the laser beam projected on the wafer W surface by the projection optical system PL, and to achieve high-precision exposure with improved uniformity of the pattern line width.
  • Light source 1 1 As a result, it is possible to use a narrow-band laser light source having a high spatial coherence, thereby substantially eliminating the adverse effect of chromatic aberration of the projection optical system PL.
  • the present invention is not limited to this.
  • the light division unit 118 that performs the two-way reflection of the laser beam 57 may be used instead of the light division unit 18.
  • the operation of the light splitting unit 118 of FIG. 3 will be described.
  • the laser beam 57 traveling in the + Y direction is inclined at an angle of 45 degrees with respect to the X and Y axes, and the flat mirrors 48a to 4 As in 8c, X-axis direction (first direction) and Y-axis direction
  • the three plane mirrors 48 a! To 48 composing the first reflecting surface group which are displaced by a predetermined distance (in the optical axis direction) are directed in the + X direction (second direction), respectively.
  • the light is reflected and divided into three parts (divided into three equal parts) in the X-axis direction.
  • the first direction in which the light beam is split is the same as the second direction in which each split light beam is bent, but this is not necessarily required. That is, the plane mirrors 48a to 48c need not necessarily be inclined at an angle of 45 degrees with respect to X and Y ⁇ . It is only necessary that the light beam 57 be divided into three parts on a plane parallel to the YZ plane when viewed in a plane perpendicular to the optical axis.
  • each of the three divided light beams 59, 59, 59 ; traveling in the + X direction is inclined at an angle of 45 degrees with respect to the X and Z axes, and the above-described plane mirror 48 a ⁇
  • each of the divided light beams 5959, 59 : i be divided into three parts on a plane parallel to the XY plane as viewed in a plane perpendicular to the optical axis.
  • the light splitting unit 1 18 that can perform two-fold bending reflection as described above, it is possible to shape the cross section of the laser beam in the beam shaping optical system 33 (enlarge the beam) in any direction. Therefore, the degree of freedom of arrangement of each optical element including the beam shaping optical system is improved.
  • the number of mirrors and the number of lens elements that compose the fly-eye lens it is also possible to make a one-to-one split light beam incident on one lens element that composes the first fly-eye lens. As a result, the illuminance uniformity can be further improved.
  • the exposure apparatus according to the second embodiment is different from the first embodiment only in the configuration of the light dividing unit and the first fly-eye lens.
  • the configuration of the other parts is the same as that of the above-described first embodiment. Will be described centering on the different points described above.
  • FIG. 4 is a side view showing the configuration of the light splitting unit 18 ′ and the first fly-eye lens 20 ′ according to the second embodiment.
  • the light splitting unit 18 ′ is arranged on the optical path of the laser beam 57 from the beam shaping optical system 33 described above. As shown in FIG. 4, the light splitting unit 18 ′ includes a mounting frame 49 and plate members 49 a and 49 b facing each other, which constitute the mounting frame 49 (see FIG. 4). In the figure, the plate-like member on the far side of the paper is hidden), so that the inclination angles are (45 ° - ⁇ ), 45 °, and (45 ° + ⁇ ) The plane mirrors 48d, 48e and 48f are provided.
  • These plane mirrors 48d, 48e, and 48f divide the laser beam 57 into a plurality in the first direction (Z-axis direction) in a cross section (XZ section) perpendicular to the optical axis of the laser beam 57. As far as possible, they are arranged in multiple stages in the Z-axis direction, and are arranged so as to be shifted by a predetermined distance in the optical axis direction (Y direction). Therefore, when the laser beam 57 traveling in the + Y direction enters these plane mirrors 48d to 48f, this laser beam 57 is located at the most Y side (+ Z side).
  • the split light beam 59e is split into a split light beam 59e and a split light beam 59f which enters the plane mirror 48f without being incident on the plane mirrors 48d and 48e and is reflected by the plane mirror.
  • the split light fluxes 59 d to 59 f are reflected by the plane mirrors 48 d to 48 f, respectively, all of which are described above.
  • the first fly eye provided in place of the first fly eye lens 20 Light is emitted toward the entire surface of the lie-eye lens 20 '. That is, the predetermined angle ⁇ is determined so that the split light fluxes 59 d to 59 f are emitted toward the entire surface of the first fly-eye lens 20 ′.
  • the first fly-eye lens 20 ′ is not a special one like the first fly-eye lens 20 of the first embodiment, but a known fly-eye lens in which a large number of lenses are converged is used. .
  • an optical path difference and an angle difference of an incident angle are generated between the divided luminous fluxes 59 d to 59 f according to the positional relationship between the plane mirrors 48 d to 48 f, and the first fly eye Since the spatial coherence of the light beam incident on the lens 20 ′ is reduced, the interference fringes on the illuminated surface are smoothed. Therefore, it is possible to improve the illuminance uniformity on the irradiated surface, and as a result, it is possible to improve the uniformity of the pattern line width transferred onto the wafer.
  • the exit surface of the plurality of lens elements forming the fly-eye lens 20 ′ is formed. It is desirable that the surface shape be a convex surface (convex lens). This makes it possible to efficiently guide all of the divided light beams 59 d to 59 f having different incident angles to the reticle R.
  • the reflection mirrors constituting the light splitting unit are all flat mirrors.
  • the shape of the reflection mirror may be a convex surface, a concave surface, It may have a shape such as a cylinder surface.
  • a plurality of reflecting surfaces may be formed in different places of the same member.
  • another optical element such as a lens and a mirror can be arranged between the light splitting unit and the first fly-eye lens.
  • the number of reflecting mirrors constituting the light splitting unit is not limited to three as in the above embodiments, and the coherence can be further reduced by using more mirrors. Needless to say, there is.
  • the illuminance uniforming optical system is configured by a double fly-eye lens.
  • the present invention is not limited thereto, and a single fly-eye lens may be configured.
  • a rod lens internal reflection type integrator
  • a DOE diffractive optical element
  • an illuminance uniforming optical system may be configured in combination with an optical integrator (such as a fly-eye lens or a rod lens).
  • an optical integrator such as a fly-eye lens or a rod lens.
  • the next light may be a DOE (diffractive optical element)
  • a specific lens element of the lens for example, a lens element located on the optical axis is intensively irradiated.In such a case, the illuminance distribution on the reticle pattern surface becomes non-uniform. From the viewpoint of preventing the above, it is desirable to use a dummy element for the 0th-order light cut as a specific lens element or to shield light emitted from the specific lens element.
  • the spatial coherence of the laser light is increased by using a narrow band laser light source as the light source 11.
  • the present invention is not limited to a laser light source as well as an illumination system and an exposure apparatus that use other light sources other than a laser light source, as long as the light source outputs light with high spatial coherence. Can be suitably applied.
  • the reduction optical system is used as the projection optical system PL.
  • the present invention is not limited to this, and any one of an equal magnification system and an enlargement optical system may be used.
  • the illumination optical system and projection optical system composed of multiple lenses are incorporated into the exposure apparatus main body for optical adjustment, and a reticle stage and wafer stage consisting of many mechanical parts are attached to the exposure apparatus main body to connect wiring and piping.
  • the exposure apparatus of each of the above embodiments can be manufactured by performing overall adjustment (electrical adjustment, operation check, etc.). It is desirable that the IS optical device be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
  • the present invention is not limited to this, and the mask pattern is transferred to the substrate while the mask and the substrate are kept stationary.
  • Step-and-repeat type projection in which the mask pattern is transferred to the substrate in a step-and-repeat manner, and the proximity of the mask to the substrate without using a projection optical system to transfer the mask pattern to the substrate.
  • the present invention can be suitably applied. Even in the latter case, the mask can be illuminated with uniform illuminance by the illuminating device according to the present invention, so that the illuminance uniformity on the substrate onto which the pattern formed on the mask is transferred is ensured. As a result, the uniformity of the pattern line width formed on the substrate is improved, and the fine pattern can be transferred onto the substrate with high accuracy.
  • the present invention provides an exposure light EL as an ArF excimer laser light (wavelength: 193 nm), a KrF excimer laser light (wavelength: 248 nm), or an Fr excimer laser light (wavelength: 248 nm).
  • an exposure light EL as an ArF excimer laser light (wavelength: 193 nm), a KrF excimer laser light (wavelength: 248 nm), or an Fr excimer laser light (wavelength: 248 nm).
  • a single-wavelength laser beam in the infrared or visible range oscillated from a DFB semiconductor laser or a fiber laser is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium). It is also possible to use a harmonic whose wavelength has been converted to ultraviolet light using a nonlinear optical crystal.
  • the 8th harmonic whose generation wavelength is in the range of 189 to "! 99 nm, or The 10th harmonic whose output wavelength is in the range of 151 to 159 nm is output, especially when the oscillation wavelength is in the range of 1.544 to 1.553 im.
  • An 8th harmonic within the range of 93 to 194 nm, that is, ultraviolet light having substantially the same wavelength as the ArF excimer laser light is obtained, and the oscillation wavelength is within the range of 1.57 to 1.58.
  • the 10th harmonic having a generated wavelength in the range of 157 to 158 nm, that is, ultraviolet light having substantially the same wavelength as the F laser light is obtained.
  • the oscillation wavelength is in the range of 1.03 to 1.12 m
  • a 7th harmonic whose output wavelength is in the range of 147 to 160 nm is output, and especially the oscillation wavelength is 1.09. 9 to 1.1 0 when in the range of 6 / m
  • 7 harmonic in the range generation wavelength of 1 57 ⁇ 1 58 tim i.e. the c substantially the same wavelength as comprising ultraviolet light is obtained when the laser beam
  • the single-wavelength oscillation laser for example, a ytterbium 'doped' fiber laser can be used.
  • FIG. 5 shows a flowchart of an example of manufacturing devices (semiconductor chips such as ICs and LSIs, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.).
  • a device function / performance design for example, circuit design of a semiconductor device
  • a pattern is designed to realize the function.
  • step 202 mask manufacturing step
  • step 203 wafer manufacturing step
  • a wafer is manufactured using a material such as silicon.
  • step 204 wafer processing step
  • step 204 wafer processing step
  • step 205 device assembling step
  • step 205 includes, as necessary, processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation).
  • step 206 inspection step
  • inspections such as an operation confirmation test and a durability test of the device created in step 205 are performed. After these steps, the device is completed and shipped.
  • FIG. 6 shows a detailed flow example of step 204 in the semiconductor device.
  • step 2 11 oxidation step
  • step 2 12 CVD step
  • step 2 12 an insulating film is formed on the wafer surface.
  • steps 2-3 electrode formation step
  • step 2 14 ion implantation step
  • ions are implanted into the wafer.
  • steps 211 to 214 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to a necessary process in each stage.
  • the post-processing step is executed as follows.
  • step 2 15 register forming step
  • a photosensitive agent is applied to the wafer.
  • step 2 16 exposure step
  • the exposure apparatus and the exposure apparatus described above are used.
  • the circuit pattern of the mask (reticle) is transferred to the wafer by an optical method.
  • Step 218 etching step
  • the exposed members other than the portion where the resist remains are removed by etching.
  • step 219 resist removing step
  • the exposure apparatus of each of the above embodiments is used in the exposure step (Step 2 16), so that the fine pattern is formed on the substrate by the exposure light with uniform illuminance.
  • the transfer can be performed with high accuracy, and as a result, the productivity of a highly integrated microdevice can be improved.
  • the illumination device of the present invention is suitable for illuminating an irradiated surface with uniform illuminance.
  • the exposure apparatus of the present invention is suitable for forming a plurality of fine patterns on a substrate such as a wafer with high precision in a lithography process for manufacturing microdevices such as integrated circuits.
  • the device manufacturing method according to the present invention is suitable for manufacturing a device having a fine pattern.

Abstract

An illuminator comprises a unit (18) for splitting an incident energy beam (57) from a laser light source reflected from reflectors (48a, 48b, 48c) into a plurality of light beams, making mutually different the optical path lengths of the split light beams from the laser light source to the illuminated face and imparting differences of optical path length (difference of optical path) longer than the temporal coherence length. Consequently, generation of speckles (interference fringes) deteriorating the uniformity of illuminance on the illuminated face can be suppressed. Since reflectors having reflectance of 95% or above can be employed as the ones constituting the light beam splitting unit (18), the loss of the quantity of light is reduced and an abundant quantity of illumination light can be supplied to the illuminated face. Such suppression of speckles is especially advantageous when laser light having high spatial coherence is employed.

Description

明 細 書  Specification
照明装置、 露光装置、 及びデバイス製造方法 技術分野  Illumination apparatus, exposure apparatus, and device manufacturing method
本発明は、 照明装置、 露光装置及びデバイス製造方法に係り、 更に詳しくは、 被照射面をレーザ光により照明する照明装置、 該照明装置を具備し、 半導体素 子 (集積回路)、 液晶ディスプレイ等の電子デバイスの製造に際し、 リソグラフ イエ程で用いられる S光装置、 及びこの露光装置を用いるデバイス製造方法に 関する。 背景技術  The present invention relates to an illumination device, an exposure device, and a device manufacturing method, and more particularly, to an illumination device that illuminates a surface to be irradiated with laser light, a semiconductor device (integrated circuit), a liquid crystal display, and the like including the illumination device. The present invention relates to an S-optical device used in a lithographic process when manufacturing an electronic device, and a device manufacturing method using the exposure device. Background art
従来より、 半導体素子 (集積回路)、 液晶ディスプレイ等の電子デバイスの微 細パターンの形成に際しては、 種々の露光装置が用いられている。 近年におい ては、 半導体素子等の高集積化に伴い、 形成すべきパターンを 4〜 5倍程度に 比例拡大したパターンが形成されたフ才卜マスク又はレチクル(以下、 「レチク ル」 と総称する) を用い、 そのレチクルのパターンをウェハ又はガラスプレー 卜等の基板 (以下、 「ウェハ」 と総称する) 上に投影光学系を介して縮小転写す るステップ ·アンド · リピー卜方式の縮小投影露光装置 (いわゆるステツバ) やこのステツバに改良を加えたステップ 'アンド 'スキャン方式の走査型露光 装置 (いわゆるスキャニング 'ステツパ) 等の投影露光装置が主として用いら れている。  2. Description of the Related Art Various exposure apparatuses have been used for forming fine patterns of electronic devices such as semiconductor elements (integrated circuits) and liquid crystal displays. In recent years, with the increasing integration of semiconductor devices, etc., a mask or reticle (hereinafter, collectively referred to as a “reticle”) in which a pattern to be formed has been formed in proportion to a factor of about 4 to 5 is formed. ), And the reticle pattern is reduced and transferred onto a substrate such as a wafer or a glass plate (hereinafter collectively referred to as a “wafer”) via a projection optical system. A projection exposure apparatus such as an apparatus (a so-called stepper) or a step-and-scan type scanning exposure apparatus (a so-called scanning stepper) with an improved version of this stepper is mainly used.
この種の投影露光装置では、 集積回路等のパターンの微細化に対応するため に、 その露光波長をより短波長側にシフトしてきた。 現在、 その波長は、 K r Fエキシマレーザの 2 4 8 n mが主流となっているが、 より短波長の A r Fェ キシマレーザの 1 9 3 n mも実用化段階に入りつつある。 そして、 さらに短波 長の波長 1 5 7 n mの F .」レーザや、 波長 1 2 6 n mの A レーザ等の、 いわ ゆる真空紫外域と呼ばれる波長帯の光源を使用する投影露光装置の提案も行な われている。 In this type of projection exposure apparatus, the exposure wavelength has been shifted to shorter wavelengths in order to cope with miniaturization of patterns of integrated circuits and the like. At present, the wavelength is mainly 2848 nm of KrF excimer laser, but the shorter wavelength of 19.3 nm of ArF excimer laser is entering the stage of practical use. And even short waves There are also proposals for projection exposure systems that use a light source in the so-called vacuum ultraviolet range, such as a long-wavelength F.157 nm laser and an A-laser with a wavelength of 126 nm. .
また、 最終製品である電子デバイスを高速で動作させるためには、 ウェハ上 に転写されるパターンの線幅を、 各ショッ 卜領域内 (各デバイスチップ内) で、 均一にする必要がある。 そのためには、 各ショッ ト領域内の露光量を均一化す る必要があり、 被照射面 (レチクル) 上を均一な照度で照明する照明光学系が 必要となる。  In addition, in order to operate electronic devices as final products at high speed, it is necessary to make the line width of a pattern transferred onto a wafer uniform in each shot area (in each device chip). For that purpose, it is necessary to equalize the exposure amount in each shot area, and an illumination optical system for illuminating the illuminated surface (reticle) with uniform illuminance is required.
ところで、 紫外域レーザ光源を使用する最近の露光装置では、 紫外線に対し て良好な透過率を有する硝材が 1 から 2種類に限定されるため、 投影光学系の 色収差を十分に補正することが困難となっている。 そこで、 レーザ光源から発 振 (出力) されるレーザ光の波長幅 (スペクトル半値幅) を、 例えば自然発振 波長幅の 1 Z 1 0 0〜 1ノ3 0 0程度に狭くする狭帯域化により、 色収差の悪 影響を実質的に解消することが広く行なわれている。  By the way, in recent exposure apparatuses that use an ultraviolet laser light source, it is difficult to sufficiently correct the chromatic aberration of the projection optical system because only one or two types of glass materials have good transmittance for ultraviolet light. It has become. Therefore, by narrowing the wavelength width (spectral half width) of the laser light emitted (output) from the laser light source to, for example, the natural oscillation wavelength width of about 1Z100 to 1300, it is possible to reduce the bandwidth. It is widely practiced to substantially eliminate the adverse effects of chromatic aberration.
しかしながら、 上記のレーザ光源に対する狭帯域化は、 そのスペクトル半値 幅を狭めるだけでなく、 レーザ光源の発振のモード数も限定することとなるた め、 結果的にレーザ光の空間的コヒーレンス (可干渉性) の上昇を招いてしま う。 そして、 その向上した空間的可干渉性のために、 レチクル面及びウェハ面 で、 干渉縞 (スペックル) による照度ムラが生じ、 照明光の照度均一性を悪化 させ、 ひいては、転写パターンの線幅均一性を悪化させてしまうことがあった。 本発明は、 かかる事情の下になされたもので、 その第 1の目的は、 被照射面 における照度均一性を向上することができる照明装置を提供することにある。 また、 本発明の第 2の目的は、 基板上に転写されるパターン線幅の均一性を 向上した高精度な露光を実現することが可能な露光装置を提供することにある また、 本発明の第 3の目的は、 高集積度のマイクロデバイスの生産性を向上 することができるデバイス製造方法を提供することにある。 発明の開示 However, narrowing the bandwidth of the laser light source described above not only narrows the spectral half width, but also limits the number of oscillation modes of the laser light source. As a result, the spatial coherence (coherence) of the laser light Gender). And, due to the improved spatial coherence, uneven illuminance due to interference fringes (speckles) occurs on the reticle surface and the wafer surface, deteriorating the illuminance uniformity of the illumination light, and consequently the line width of the transfer pattern. In some cases, the uniformity was deteriorated. The present invention has been made under such circumstances, and a first object of the present invention is to provide an illuminating device capable of improving illuminance uniformity on a surface to be illuminated. It is a second object of the present invention to provide an exposure apparatus capable of realizing high-precision exposure with improved uniformity of a pattern line width transferred onto a substrate. A third object is to provide a device manufacturing method capable of improving the productivity of highly integrated microdevices. Disclosure of the invention
本発明は、 第 1 の観点からすると、 被照射面を照明する照明装置であって、 光源と ; 前記光源からの光束を複数に分割するとともに、 各分割光束相互間の 前記光源から前記被照射面に至る光路長を異ならせる複数の反射面を有する光 分割ュニッ卜と ; を備える第 1の照明装置である。  According to a first aspect of the present invention, there is provided an illumination device for illuminating a surface to be illuminated, comprising: a light source; a light beam from the light source being divided into a plurality of light beams; And a light splitting unit having a plurality of reflecting surfaces for making optical path lengths reaching the surfaces different.
これによれば、 光源から光が出力されると、 この光は、 光分割ユニットに入 射し、 該ュニッ卜内の複数の反射面によりそれぞれ反射されて複数の分割光束 となって被照射面にそれぞれ照射される。 この場合、 複数の分割光束のそれぞ れは各反射面で反射される際に光源から被照射面に至る光路長が異ならされ、 光路長差 (光路差) が付与されている。 従って、 被照射面における照度均一性 を悪化させる原因となるスペックル (干渉縞) の発生が抑制されるので、 被照 射面を均一な照度で照明することが可能となる。 特に、 空間的コヒーレンスの 高い光を使用する場合には、 上記のスペックル発生を抑制することのメリッ卜 は大きい。  According to this, when light is output from the light source, the light enters the light splitting unit, and is reflected by a plurality of reflecting surfaces in the unit to form a plurality of split luminous fluxes to form an illuminated surface. Respectively. In this case, when each of the plurality of divided light beams is reflected by each reflecting surface, the optical path length from the light source to the irradiated surface is made different, and an optical path length difference (optical path difference) is given. Therefore, the occurrence of speckles (interference fringes) that may deteriorate the illuminance uniformity on the irradiated surface is suppressed, so that the illuminated surface can be illuminated with uniform illuminance. In particular, when light having high spatial coherence is used, the advantage of suppressing the above-described speckle generation is great.
この場合において、 前記複数の反射面は、 前記光源からの前記光束の光軸に 垂直な断面内の所定の一方向について前記光束を複数に分割可能なように前記 所定の一方向に関して多段に配置されかつ前記光軸方向に所定距離ずつずらし て配置されていても良い。 かかる場合には、 簡単な構成により、 光源からの光 束を複数に分割し、かつ各分割光束相互間に光路長差を生じさせることができ、 これにより被照射面上の干渉縞の発生を抑制することができる。  In this case, the plurality of reflecting surfaces are arranged in multiple stages in the predetermined one direction so that the light beam can be divided into a plurality of portions in a predetermined direction in a cross section perpendicular to the optical axis of the light beam from the light source. And may be arranged so as to be shifted by a predetermined distance in the optical axis direction. In such a case, with a simple configuration, the light beam from the light source can be divided into a plurality of light beams, and a difference in the optical path length can be generated between each of the divided light beams. Can be suppressed.
この場合において、 前記所定の一方向は、 前記光源から出力される光の可干 渉性が高い方向であっても良い。 かかる場合には、 光束が、 その可干渉性が高 い所定の一方向について複数に分割され、 各分割光束相互間に光路長差が生じ ていることから、 被照射面上でのスペックルの発生を効率的に抑制することが できる。 本発明の第 1の照明装置では、 前記複数の反射面は、 それぞれ異なる反射ミ ラーの反射面であることとすることができる。 In this case, the predetermined one direction may be a direction in which the light output from the light source has high interference. In such a case, the light beam is divided into a plurality of light beams in a predetermined direction having high coherence, and a difference in the optical path length occurs between the divided light beams. Generation can be suppressed efficiently. In the first lighting device of the present invention, the plurality of reflection surfaces may be reflection surfaces of different reflection mirrors.
この場合において、 前記複数の反射ミラーのうち、 前記光束の光軸方向の後 側に隣接する他の反射ミラーが存在するという条件を満たす反射ミラーは、 そ の姿勢を維持した状態で前記光軸に沿つて後側に所定距離平行移動したときに、 前記他の反射ミラーの反射面と自身の反射面とによって隙間のない単一の反射 面を構成するように、 その側面の断面形状が設定されていることとすることが できる。  In this case, of the plurality of reflecting mirrors, a reflecting mirror satisfying a condition that another reflecting mirror adjacent to the rear side of the light beam in the optical axis direction exists, the reflecting mirror maintains the optical axis while maintaining its posture. The cross-sectional shape of the side surface is set so that when the mirror is translated rearward by a predetermined distance along the reflecting surface, the reflecting surface of the other reflecting mirror and its own reflecting surface form a single reflecting surface without any gap. It can be said that it has been done.
本発明の第 1の照明装置では、 前記複数の反射面は、 同一部材の異なる箇所 にそれぞれ形成されていても良い。  In the first lighting device of the present invention, the plurality of reflection surfaces may be formed at different locations of the same member.
本発明の第 1の照明装置では、 前記複数の反射面のそれぞれは、 反射率が 9 5 %程度以上であることとすることができる。 かかる場合には、 光量ロスが少 なく、 被照射面に豊富な照明光量を供給することができる。  In the first lighting device of the present invention, each of the plurality of reflecting surfaces may have a reflectance of about 95% or more. In such a case, a large amount of illumination light can be supplied to the illuminated surface with little loss of light intensity.
本発明の第 1の照明装置では、 前記光分割ユニットは、 前記複数の反射面と して、 前記光源からの前記光束の光軸に垂直な断面内の所定の第 1方向に関し て多段に配置されかつ前記光軸方向に所定距離ずつずらして配置され、 前記光 束を複数に分割するとともに各分割光束の光軸をそれぞれ第 2方向に折り曲げ る第 1の反射面群と、 前記第 2方向に垂直な断面内の所定の第 3方向に関して 多段に配置されかつ前記第 2方向に所定距離ずつずらして配置され、 前記各分 割光束を複数に分割するとともに各分割光束の光铀をそれぞれ第 4方向に折り 曲げる第 2の反射面群とを有することとすることができる。  In the first lighting device of the present invention, the light splitting units are arranged as the plurality of reflection surfaces in multiple stages in a predetermined first direction in a cross section perpendicular to an optical axis of the light flux from the light source. A first reflecting surface group that is divided by a predetermined distance in the optical axis direction and divides the light beam into a plurality of light beams and folds the optical axis of each of the divided light beams in the second direction; and the second direction. Are arranged in multiple stages with respect to a predetermined third direction in a cross section perpendicular to the plane, and are arranged to be shifted by a predetermined distance in the second direction, divide each of the divided light beams into a plurality of light beams and separate the light beams And a second reflection surface group that is bent in four directions.
本発明の第 1の照明装置では、 前記光分割ユニットは、 前記複数の反射面で それぞれ反射される前記分割光束相互間に前記光の時間的コヒーレンス長以上 の前記光路長の差を生じさせることが望ましい。 かかる場合には、 分割光束相 互間に可干渉性が無くなるので被照射面上に干渉縞が発生するのをほぼ確実に 回避することができ、 被照射面における照度均一性を一層向上させることがで さる。 In the first illuminating device of the present invention, the light splitting unit may generate a difference in the optical path length between the split light beams reflected by the plurality of reflecting surfaces, which is equal to or longer than a temporal coherence length of the light. Is desirable. In such a case, there is no coherence between the divided light beams, so that it is possible to almost certainly avoid the occurrence of interference fringes on the irradiated surface, and to further improve the illuminance uniformity on the irradiated surface. In Monkey
本発明の第 1の照明装置では、 前記光分割ュニッ卜と前記被照射面との間の 前記光の光路上に配置され、 前記光分割ュニッ卜で分割された各分割光束が照 射されるオプティカルインテグレー夕を含む照度均一化光学系を更に備えるこ ととすることができる。 かかる場合には、 光分割ユニットによる光束の分割と オプティカルインテグレータを含む照度均一化光学系との相乗的な作用により、 被照射面上での照度均一性をより一層向上させることが可能である。  In the first illuminating device of the present invention, each of the divided luminous fluxes arranged on the optical path of the light between the light splitting unit and the surface to be illuminated and split by the light splitting unit is irradiated. An illumination uniforming optical system including an optical integrator may be further provided. In such a case, it is possible to further improve the illuminance uniformity on the surface to be illuminated by the synergistic action of the division of the luminous flux by the light dividing unit and the illuminance uniforming optical system including the optical integrator.
この場合において、前記オプティカルィンテグレータは、 フライアイレンズ、 口ッドレンズ、 及び回折光学素子のいずれかであることとすることができる。 本発明の第 1の照明装置では、 光分割ュニッ卜と被照射面との間の光路上に オプティカルィンテグレータを備える場合に、 前記オプティカルインテグレー 夕は、 複数のエレメントを有し、 前記光分割ユニットにより分割される各分割 光束が、 少なくとも 1つの前記エレメントを要素とする相互に異なるエレメン 卜集合に、 それぞれ照射されることとしても良い。 かかる場合には、 各分割光 束が、 少なくとも〗つのエレメン卜を要素とする相互に異なるエレメン卜集合 に、 それぞれ照射されるので、 エレメント上で複数の光束が相互に才一バーラ ップすることによる照度均一性悪化を防止なし、しは抑制することができ、 結果 的に被照射面上での照度均一性を確実に確保することが可能となる。  In this case, the optical integrator may be any one of a fly-eye lens, an aperture lens, and a diffractive optical element. In the first lighting device of the present invention, when an optical integrator is provided on an optical path between the light splitting unit and the irradiated surface, the optical integrator has a plurality of elements; Each of the split light beams split by the unit may be applied to a different element set having at least one of the elements as an element. In such a case, each divided light beam is irradiated to a different element set having at least one element as an element, so that a plurality of light beams should overlap each other on the element. Deterioration of uniformity of illuminance due to irradiance can be prevented or suppressed, and as a result, uniformity of illuminance on the irradiated surface can be reliably ensured.
この場合において、 前記異なる分割光束がそれぞれ照射されるエレメント集 合相互間は、 遮光部材により区画されていることとすることができる。  In this case, it is possible that each of the element groups irradiated with the different divided light beams is partitioned by a light shielding member.
この場合において、 前記オプティカルインテグレー夕は、 フライアイレンズ 及び回折光学素子(回折光学素子)のいずれかであることとすることができる。 本発明の第 1の照明装置では、 光分割ュニッ卜と被照射面との間の光路上に オプティカルインテグレータを備える場合に、 前記光分割ユニッ トは、 前記各 分割光束が、 前記オプティカルインテグレー夕の全面にそれぞれ入射するよう に前記分割光束相互の前記オプティカルインテグレー夕に対する入射角を異な らせることとすることができる。 In this case, the optical integrator can be any one of a fly-eye lens and a diffractive optical element (diffractive optical element). In the first lighting device of the present invention, when an optical integrator is provided on an optical path between the light splitting unit and the surface to be irradiated, the light splitting unit includes: The incident angles of the split light beams with respect to the optical integrator are different so that the split light beams enter the entire surface. Can be made.
本発明の第 1 の照明装置では、 前記光源は、 レーザ光源であることとするこ とができる。  In the first lighting device of the present invention, the light source may be a laser light source.
本発明は、 第 2の観点からすると、 被照射面を照明する照明装置であって、 光源と ;前記光源からの光束の光軸に垂直な断面内の所定の一方向について前 記光束を複数に分割可能なように前記所定の一方向に関して多段に配置され、 かつ前記光軸方向に所定距離ずらして配 Sされる複数の反射面を有する反射ュ ニットと ; を備える第 2の照明装 gである。  According to a second aspect of the present invention, there is provided an illuminating device for illuminating a surface to be illuminated, comprising: a light source; A reflecting unit having a plurality of reflecting surfaces arranged in multiple stages with respect to the predetermined direction so as to be dividable in the optical axis direction and displaced by a predetermined distance in the optical axis direction. It is.
これによれば、 光源から光束が出力されると、 この光束は、 反射ユニットに 入射し、 該ュニッ 卜内の複数の反射面によりそれぞれ反射されて複数の分割光 束となって被照射面にそれぞれ照射される。 この場合、 複数の分割光束のそれ ぞれは各反射面で反射される際に該各反射面の配置に応じて光源から被照射面 に至る光路長が異ならされ、 光路長差 (光路差) が付与される。 従って、 被照 射面における照度均一性を悪化させる原因となるスペックル (干渉縞) の発生 が抑制されるので、 被照射面を均一な照度で照明することが可能となる。特に、 空間的コヒーレンスの高い光を使用する場合には、 上記のスペックル発生を抑 制することのメリッ 卜は大きい。  According to this, when a light beam is output from the light source, the light beam enters the reflection unit, is reflected by a plurality of reflection surfaces in the unit, becomes a plurality of divided light beams, and reaches the irradiated surface. Irradiated respectively. In this case, when each of the plurality of divided luminous fluxes is reflected by each reflecting surface, the optical path length from the light source to the irradiated surface is made different according to the arrangement of each reflecting surface, and the optical path length difference (optical path difference) Is given. Therefore, the generation of speckles (interference fringes) which may deteriorate the illuminance uniformity on the illuminated surface is suppressed, so that the illuminated surface can be illuminated with uniform illuminance. In particular, when light having high spatial coherence is used, the advantage of suppressing the above-described speckle generation is great.
この場合において、 前記光源と、 前記反射ユニットとの間に配置され、 前記 光源からの光束の断面形状を整形する整形光学系を有し、前記反射ュニッ 卜は、 前記整形光学系で整形された後の前記光束を複数に分割することとすることが できる。  In this case, a shaping optical system is provided between the light source and the reflection unit to shape a cross-sectional shape of a light beam from the light source, and the reflection unit is shaped by the shaping optical system. The later light beam can be divided into a plurality of light beams.
本発明の第 2照明装置では、 前記複数の反射面は、 前記光源からの光束を複 数に分割すると共に、 各分割光束相互間の前記光源から前記被照射面に至る光 路長を異ならせることとすることができる。  In the second illumination device of the present invention, the plurality of reflecting surfaces divide the light beam from the light source into a plurality of light beams and vary the optical path length from the light source to the irradiated surface between the divided light beams. It can be.
本発明は、 第 3の観点からすると、 マスクのパターン面に形成されたパター ンを基板に転写する露光装置であって、 光源と ;前記光源からの光束を複数に 分割するとともに、 各分割光束相互間の前記光源から前記パターン面に至る光 路長を異ならせる複数の反射面を有する光分割ュニッ卜と ; を備える第 1の露 7t¾Rli Cある。 According to a third aspect of the present invention, there is provided an exposure apparatus for transferring a pattern formed on a pattern surface of a mask to a substrate, comprising: a light source; and a plurality of light beams from the light source. And a light splitting unit having a plurality of reflective surfaces for splitting and making the optical path length from the light source to the pattern surface between the split light beams different from each other.
これによれば、 光源から光が出力されると、 この光は、 光分割ユニットに入 射し、 該ュニッ卜内の複数の反射面によりそれぞれ反射されて複数の分割光束 となってマスクのパターン面にそれぞれ照射される。 この場合、 複数の分割光 束のそれぞれは各反射面で反射される際に光源からパターン面に至る光路長が 異ならされ、 光路長差 (光路差) が付与されている。 従って、 パターン面にお ける照度均一性を悪化させる原因となるスペックル (干渉縞) の発生が抑制さ れるので、 マスクのパターン面を均一な照度で照明することができる。従って、 マスクのパターン面に形成されたパターンが転写される基板上の照度均一性を 確保することができ、 これにより基板上に形成されるパターン線幅の均一性が 向上し、 基板上に微細パターンを高精度に転写することが可能となる。  According to this, when light is output from a light source, the light enters a light splitting unit, and is reflected by a plurality of reflecting surfaces in the unit to form a plurality of split light fluxes to form a mask pattern. The surface is respectively illuminated. In this case, when each of the plurality of split light beams is reflected by each reflecting surface, the optical path length from the light source to the pattern surface is made different, and an optical path length difference (optical path difference) is given. Therefore, the occurrence of speckles (interference fringes), which may deteriorate the uniformity of illuminance on the pattern surface, is suppressed, so that the pattern surface of the mask can be illuminated with uniform illuminance. Therefore, the uniformity of the illuminance on the substrate to which the pattern formed on the pattern surface of the mask is transferred can be ensured, and the uniformity of the pattern line width formed on the substrate can be improved. The pattern can be transferred with high precision.
この場合において、 前記光分割ュニッ卜と前記パターン面との間の前記光の 光路上に配置され、 前記光分割ュニッ卜で分割された各分割光束が照射される オプティカルインテグレータを含む照度均一化光学系を更に備えることとする ことができる。  In this case, the illuminance equalizing optics including an optical integrator disposed on the optical path of the light between the light splitting unit and the pattern surface, and irradiated with each split light beam split by the light splitting unit. The system can be further provided.
この場合において、 前記オプティカルインテグレータは、 複数のエレメント を有し、 前記光分割ュニッ卜により分割される各分割光束が、 少なくとも 1つ の前記エレメントを要素とする相互に異なるエレメント集合に、 それぞれ照射 されることとすることができる。  In this case, the optical integrator has a plurality of elements, and each of the split light beams split by the light splitting unit is applied to a different element set having at least one of the elements as an element. It can be.
本発明の第 1の露光装置では、 前記マスクから出射される前記光を前記基板 に投射する投影光学系を更に備えることとすることができる。かかる場合には、 前述の如く、 光分割ュニッ卜によりマスクのパターン面上における干渉縞の発 生を低減しかつ高い照度均一性でパターンを照明できる。 このため、 例えば光 源として空間的コヒーレンスの高い光を出力する光源を使用することにより、 投影光学系の色収差の悪影響を実質的に解消できるとともに、 該投影光学系に よって基板面に投射される光の照度均一性の向上、 ひいてはパターン線幅均一 性の向上した高精度な露光を実現することが可能となる。 The first exposure apparatus of the present invention may further include a projection optical system for projecting the light emitted from the mask onto the substrate. In such a case, as described above, the generation of interference fringes on the pattern surface of the mask can be reduced and the pattern can be illuminated with high illuminance uniformity by the light division unit. Therefore, for example, by using a light source that outputs light with high spatial coherence as the light source, In addition to substantially eliminating the adverse effects of chromatic aberration of the projection optical system, the projection optical system achieves improved illuminance uniformity of light projected on the substrate surface and, as a result, highly accurate exposure with improved pattern line width uniformity. It is possible to do.
本発明の第 1の露光装置では、 前記光源は、 レ一ザ光源であることとするこ とができる。  In the first exposure apparatus of the present invention, the light source may be a laser light source.
本発明は、 第 4の観点からすると、 マスクのパターン面に形成されたパター ンを基板に転写する露光装置であって、 光源と ;前記光源からの光束の光ま由に 垂直な断面内の所定の一方向について前記光束を複数に分割可能なように前記 所定の一方向に関して多段に配置され、 かつ前記光軸方向に所定距離ずらして 配置される複数の反射面を有する反射ュニッ卜と ; を備える第 2の露光装置で ある。  According to a fourth aspect of the present invention, there is provided an exposure apparatus for transferring a pattern formed on a pattern surface of a mask to a substrate, comprising: a light source; and a light source of a light beam from the light source in a cross section perpendicular to the light passage. A reflection unit having a plurality of reflection surfaces arranged in multiple stages in the predetermined one direction so as to be able to divide the light beam into a plurality of parts in a predetermined one direction, and displaced by a predetermined distance in the optical axis direction; A second exposure apparatus comprising:
これによれば、 光源から光束が出力されると、 この光束は、 反射ユニットに 入射し、 該ュニッ卜内の複数の反射面によりそれぞれ反射されて複数の分割光 束となってマスクのパターン面にそれぞれ照射される。 この場合、 複数の分割 光束のそれぞれは各反射面で反射される際に該各反射面の配 ^に応じて光源か らパターン面に至る光路長が異ならされ、 光路長差 (光路差) が付与される。 従って 、 'ターン面における照度均一性を悪化させる原因となるスペックル(干 渉縞) の発生が抑制されるので、 マスクのパターン面を均一な照度で照明する ことができる。 従って、 マスクのパターン面に形成されたパターンが転写され る基板上の照度均一性を確保することができ、 これにより基板上に形成される パターン線幅の均一性が向上し、 基板上に微細パターンを高精度に転写するこ とが可能となる。  According to this, when a light beam is output from the light source, this light beam enters the reflection unit, and is reflected by a plurality of reflection surfaces in the unit to form a plurality of divided light beams to form a pattern surface of a mask. Respectively. In this case, when each of the plurality of divided light beams is reflected by each reflecting surface, the optical path length from the light source to the pattern surface is made different according to the arrangement of each reflecting surface, and the optical path length difference (optical path difference) is reduced. Granted. Therefore, the occurrence of speckles (interference fringes) that may deteriorate the illuminance uniformity on the turn surface is suppressed, so that the pattern surface of the mask can be illuminated with uniform illuminance. Therefore, uniformity of the illuminance on the substrate on which the pattern formed on the pattern surface of the mask is transferred can be ensured, whereby the uniformity of the pattern line width formed on the substrate can be improved, and the fineness of the pattern on the substrate can be improved. The pattern can be transferred with high precision.
この場合において、 前記複数の反射面は、 前記光源からの光束を複数に分割 すると共に、 各分割光束相互間の前記光源から前記被照射面に至る光路長を異 ならせることとすることができる。  In this case, the plurality of reflecting surfaces can divide the light beam from the light source into a plurality of light beams and make the optical path length from the light source to the irradiated surface between the divided light beams different from each other. .
また、 リソグラフイエ程において、 本発明の第 1 、 第 2の露光装置を用いて 露光を行うことによリ、 基板面上における照明光の照度均一性の向上により線 幅制御精度が向上し、 これにより基板上に複数層のパターンを重ね合せ精度良 く形成することができる。 従って、 より高集積度のマイクロデバイスを歩留ま り良く製造することができ、 その生産性を向上させることができる。 従って、 本発明は別の観点からすると、 本発明の露光装置を用いるデバイス製造方法で あると ^" る。 図面の簡単な説明 In the lithographic process, the first and second exposure apparatuses of the present invention are used. By performing the exposure, the line width control accuracy is improved by improving the illuminance uniformity of the illuminating light on the substrate surface, so that a pattern of a plurality of layers can be formed on the substrate with high accuracy. Therefore, a highly integrated microdevice can be manufactured with a high yield, and the productivity can be improved. Therefore, from another viewpoint, the present invention is a device manufacturing method using the exposure apparatus of the present invention.
図 1 は、 本発明の第 1の実施形態に係る露光装置の全体構成を概略的に示す 図である。  FIG. 1 is a diagram schematically showing an overall configuration of an exposure apparatus according to a first embodiment of the present invention.
図 2は、 図 1の光分割ュニッ卜及び第 1 フライアイレンズの具体的な構成を 示す図である。  FIG. 2 is a diagram showing a specific configuration of the light dividing unit and the first fly-eye lens of FIG.
図 3は、 図 2の光分割ュニッ 卜の変形例を示す図である。  FIG. 3 is a diagram showing a modification of the light splitting unit of FIG.
図 4は、 本発明の第 2の実施形態に係る光分割ユニットを第 1 フライアイレ ンズとともに示す側面図である。  FIG. 4 is a side view showing a light splitting unit according to a second embodiment of the present invention together with a first fly eye lens.
図 5は、 本発明に係るデバイス製造方法の実施形態を説明するためのフロー チヤ一卜である。  FIG. 5 is a flowchart for explaining an embodiment of the device manufacturing method according to the present invention.
図 6は、 図 5のステップ 2 0 4における処理を示すフローチヤ一卜である。 発明を実施するための最良の形態  FIG. 6 is a flowchart showing the processing in step 204 of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
《第 1の実施形態》  << 1st Embodiment >>
以下、 本発明の第 1の実施形態を図 1及び図 2に基づいて説明する。  Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
図 1 には、 本発明に係る照明装置をマスクとしてのレチクル Rを照明する照 明系として具備する第 1の実施形態に係る露光装置 1 0の構成が概略的に示さ れている。 この露光装置〗 0は、 紫外域あるいは真空紫外域のパルス紫外光を 露光用照明光とするステップ ·アンド ·スキャン方式の走査型投影露光装置、 すなわちいわゆるスキャニング ·ステツパである。 FIG. 1 schematically shows a configuration of an exposure apparatus 10 according to a first embodiment including an illumination apparatus according to the present invention as an illumination system for illuminating a reticle R as a mask. The exposure apparatus # 0 is a step-and-scan type scanning projection exposure apparatus that uses pulsed ultraviolet light in the ultraviolet or vacuum ultraviolet region as illumination light for exposure, In other words, it is a so-called scanning stepper.
この露光装置 1 0は、 レーザ光源 (以下、 適宜 「光源」 と呼ぶ) 1 1及び照 明光学系 4 0から成る照明系、 この照明系からのパルス紫外光 E Lにより照明 されるマスクとしてのレチクル Rを保持するレチクルステージ R S T、 レチク ル Rから出射されたパルス紫外光 E Lを基板としてのウェハ Wに投射する投影 光学系 Ρし、 ウェハ Wを保持する Ζチルトステージ 5 8が搭載された基板ステ —ジとしてのウェハステージ W S丁、 及びこれらの制御系等を備えている。 前記光源 1 1 としては、 グレーティング、 プリズム、 エタロン素子等の分光 光学素子を含む不図示の狭帯域化モジュールを有する A r Fエキシマレーザ光 源 (発振波長 1 9 3 n m )、 F .」レーザ光源 (発振波長 1 5 7 n m ) 等の狭帯域 化レーザ光源が用いられている。 なお、 光源 1 1 として、 狭帯域化 K r Fェキ シマレ一ザ光源は勿論、 狭帯域化レーザ光を種とするいわゆるインジェクショ ンシード型レーザからなるレーザ光源を用いても良い。  The exposure apparatus 10 includes an illumination system including a laser light source (hereinafter, appropriately referred to as a “light source”) 11 and an illumination optical system 40, and a reticle as a mask illuminated by pulsed ultraviolet light EL from the illumination system. A reticle stage RST that holds R, a projection optical system that projects the pulsed ultraviolet light EL emitted from the reticle R onto a wafer W as a substrate, and a substrate stage on which a tilt stage 58 is mounted. -It is equipped with a wafer stage WS and a control system for them. Examples of the light source 11 include an ArF excimer laser light source (oscillation wavelength: 193 nm) having a band-narrowing module (not shown) including a spectral optical element such as a grating, a prism, and an etalon element. A narrow-band laser light source (e.g., an oscillation wavelength of 157 nm) is used. In addition, as the light source 11, not only a narrow band KrF excimer laser light source but also a laser light source including a so-called injection seed type laser using a narrow band laser beam as a seed may be used.
光源 1 〗 は、 本実施形態では、 照明光学系 4 0、 レチクルステージ R S T、 投影光学系 Pし、 及びウェハステージ W S T、 及びこれら各部を保持する不図 示の本体コラム等から成る露光装置本体が収納された不図示のチヤンバとは別 置きとされている。 すなわち、 光源 1 1 は、 チャンバが設置されたクリーンル 一ムとは別のクリーン度の低いサービスルーム、 あるいはクリーンルーム床下 に設けられたユーティリティスペース等に設置されており、 前記チャンバにビ ー厶マッチングュニッ卜と呼ばれる光軸調整用光学系を少なくとも一部に含む 不図示の引き回し光学系 (送光光学系) を介して接続されている。  In the present embodiment, the light source 1 が includes an illumination optical system 40, a reticle stage RST, a projection optical system P, a wafer stage WST, and an exposure apparatus main body including a main body column (not shown) holding these components. It is placed separately from the stored chamber (not shown). That is, the light source 11 is installed in a low-clean service room separate from the clean room in which the chamber is installed, or in a utility space provided under the floor of the clean room, and the beam matching unit is installed in the chamber. It is connected via a drawing optical system (light transmitting optical system) (not shown) that includes at least a part of an optical axis adjusting optical system called a lens.
前記照明光学系 4 0は、 内部を外気に対して気密状態にし、 その内部に空気 The illumination optical system 40 makes the inside airtight to the outside air,
(酸素) の含有濃度を数%以下、 望ましくは 1 %未満 (数 P P m以下) にした クリーンな乾燥窒素ガス (N 2) やヘリウムガス (H e ) が充填された不図示の 照明系ハウジングと、 該照明系ハウジング内に光源〗 1から出力されたレーザ ビーム L Bの光路に沿って、 順次配置された、 ミラー 1 3, 1 4、 ビ一厶整形 光学系 3 3、 光分割ユニット (反射ユニット) 1 8、 オプティカルインテグレ 一夕 (ホモジナイザ) としての第 1 フライアイレンズ 2 0、 リレーレンズ 2 1 、 ミラー 2 2、 リレーレンズ 2 3、 オプティカルインテグレー夕 (ホモジナイザ) としての第 2フライアイレンズ 2 4、 照明系開口絞り板 2 5、 リレーレンズ 2 6, 2 7、 固定レチクルブラインド 2 8 A、 可動レチクルブラインド 2 8巳、 コンデンサレンズ 2 9 , 3 0、 ミラー 3 1 、 メインコンデンサレンズ 3 2等を 備えている。 Illumination system housing (not shown) filled with clean dry nitrogen gas (N 2 ) or helium gas (H e) with a (oxygen) content of several percent or less, preferably less than 1% (several PP m or less) And mirrors 13, 14, and a beam shaping, which are sequentially arranged along the optical path of the laser beam LB output from the light source 1 in the illumination system housing. Optical system 3 3, light splitting unit (reflection unit) 18, 1st fly-eye lens 20 as optical integrator (homogenizer), relay lens 21, mirror 22, relay lens 23, optical integrator ( 2nd fly-eye lens 24 as a homogenizer), illumination system aperture stop plate 25, relay lenses 26, 27, fixed reticle blind 28 A, movable reticle blind 28, condenser lenses 29, 30 A mirror 31 and a main condenser lens 32 are provided.
ここで、上記照明光学系 4 0の構成各部についてその作用とともに説明する。 前記ビーム整形光学系 3 3は、 光学素子の組み合わせから成り、 光源 1 1 から パルス発光されたレーザビーム L Bの断面形状を、 そのレーザビーム L Bの光 路後方に設けられた光分割ユニット 1 8及び第 1 フライアイレンズ 2 0に効率 良く入射するように整形するもので、 例えばシリンダレンズやビームエキスパ ンダにより構成される。  Here, each component of the illumination optical system 40 will be described together with its operation. The beam shaping optical system 33 is composed of a combination of optical elements. The beam shaping optical system 33 changes the cross-sectional shape of the laser beam LB pulsed from the light source 11 into a light splitting unit 18 provided behind the optical path of the laser beam LB. It is shaped so as to efficiently enter the first fly-eye lens 20, and is composed of, for example, a cylinder lens and a beam expander.
前記光分割ユニット 1 8は、 ビーム整形光学系 3 3からの断面形状整形後の レーザビーム L Bを、 複数の光束に分割するとともに分割光束相互間に光路長 差を付与した後、 各分割光束を後段の第 1 フライアイレンズ 2 0に照射するも のである。 なお、 光分割ユニット 1 8と第 1 フライアイレンズ 2◦との組み合 わせについては、 後に更に詳述する。  The light splitting unit 18 splits the laser beam LB after the cross-sectional shape shaping from the beam shaping optical system 33 into a plurality of light fluxes, and imparts an optical path length difference between the split light fluxes. The first fly-eye lens 20 at the subsequent stage is irradiated. The combination of the light splitting unit 18 and the first fly-eye lens 2 ° will be described later in further detail.
第 1 フライアイレンズ 2 0後方のレーザ光の光路上には、 ミラー 2 2を介在 させてリレーレンズ 2 1、 2 3から成るリレー光学系が配置され、 後側のリレ 一レンズ 2 3の光路後方には、 第 2フライアイレンズ 2 4が配置されている。 本実施形態では、 第 1 フライアイレンズ 2 0、 第 2フライアイレンズ 2 4によ つてダブルフライアイレンズ系が構成され、 また、 該ダブルフライアイレンズ 系とレンズ 2 1 , 2 3とによって照度均一化光学系が構成されている。  On the optical path of the laser light behind the first fly-eye lens 20, a relay optical system including relay lenses 21 and 23 is disposed with a mirror 22 interposed therebetween, and the optical path of the rear relay lens 23. A second fly's eye lens 24 is arranged behind. In this embodiment, the first fly-eye lens 20 and the second fly-eye lens 24 constitute a double fly-eye lens system, and the double fly-eye lens system and the lenses 21 and 23 provide illuminance. A homogenizing optical system is configured.
前記第 2フライアイレンズ 2 4としては、 それぞれモザイク状にレンズエレ メン卜が密着して配置された片面が平面状の 2個のレンズ束 2 4 A及び 2 4 B を、 照明光学系の光軸 I X (後述する投影光学系 P Lの光軸 A Xに一致) に沿 つてそれぞれの平面部が対向するように近接して配置して成るいわゆるモザィ ク型フライアイレンズが用いられている。 かかるモザイク型フライアイレンズ については、 例えば特開平 9一 2 6 5 5 4号公報、 特開平 8— 3 1 6 1 2 3号 公報並びにこれに対応する米国特許第 5, 7 3 9 , 8 9 9号などに詳細に開示 されるている。 この場合、 レンズ束 2 4 A及び 2 4 Bは 2つが組み合わされて 初めて 1個のフライアイレンズとして機能するものである。 なお、 本国際出願 で指定した指定国又は選択した選択国の国内法令が許す限りにおいて、 上記公 報及び対応する米国特許における開示を援用して本明細書の記載の一部とする。 なお、 第 2フライアイレンズ 2 4から射出されるレーザビームを以下におい ては、 適宜 「露光光 E L」 とも呼ぶものとする。 As the second fly-eye lens 24, two lens bundles 24 A and 24 B each having a flat surface on one side, on which lens elements are arranged in close contact with each other in a mosaic shape A so-called mosaic fly-eye lens, which is arranged close to each other along the optical axis IX of the illumination optical system (corresponding to the optical axis AX of the projection optical system PL described later) so as to face each other, Used. Such a mosaic fly-eye lens is disclosed, for example, in Japanese Patent Application Laid-Open Nos. Hei 9-265554, Hei 8-3161623, and US Patent Nos. 5,739,89 corresponding thereto. It is disclosed in detail in No. 9, etc. In this case, the lens bundles 24 A and 24 B function as one fly-eye lens only when the two are combined. In addition, as far as the national laws of the designated country designated in this international application or the selected elected country allow, the disclosure in the above-mentioned public notice and the corresponding US patent shall be incorporated herein by reference. Note that the laser beam emitted from the second fly-eye lens 24 will be appropriately referred to as “exposure light EL” below.
なお、 ミラー 2 2として、 被照射面 (レチクル Rのパターン面及びウェハ W 面) に生じる干渉縞や微弱なスペックルを平滑化するための振動ミラ一を採用 することもできる。 この場合、 振動ミラーの振動 (偏向角) は不図示の駆動系 を介して主制御装置 5 0により制御することができる。 なお、 このような振動 ミラーとダブルフライアイレンズ系とを組み合わせた構成は、 例えば、 特開平 1 一 2 5 9 5 3 3号公報及びこれに対応する米国特許第 5 , 3 0 7, 2 0 7号 に詳細に開示されており、 本国際出願で指定した指定国又は選択した選択国の 国内法令が許す限りにおいて、 上記公報及び米国特許における開示を援用して 本明細書の記載の一部とする。  Note that a vibration mirror for smoothing interference fringes and weak speckles generated on the irradiated surface (the pattern surface of the reticle R and the wafer W surface) can be used as the mirror 22. In this case, the vibration (deflection angle) of the vibrating mirror can be controlled by the main controller 50 via a drive system (not shown). Incidentally, a configuration in which such a vibrating mirror and a double fly-eye lens system are combined is disclosed in, for example, Japanese Patent Application Laid-Open No. Hei 1-259533 and US Pat. No. 5,307,20 corresponding thereto. No. 7, and as far as the national laws of the designated country designated in this international application or the selected elected country allow, the disclosure in the above-mentioned gazettes and U.S. patents is partially incorporated herein by reference. And
前記第 2フライアイレンズ 2 4の射出面の近傍には、 円板状部材から成る前 記照明系開口絞り板 2 5が配置されている。 この照明系開口絞り板 2 5には、 ほぼ等角度間隔で、 例えば通常の円形開口より成る開口絞り、 小さな円形開口 より成りコヒーレンスファクタであるひ値を小さくするための開口絞り、 輪帯 照明用の輪帯状の開口絞り、 及び変形光源法用に複数の開口を偏心させて配置 して成る変形開口絞り (図 1ではこのうちの 2種類の開口絞りのみが図示され ている) 等が配置されている。 この照明系開口絞り板 2 5は、 主制御装置 5 0 により制御されるモータ等の駆動装置 3 4により回転されるようになっており、 これによりいずれかの開口絞りが露光光 E Lの光路上に選択的に設定され、 後 述するケ一ラー照明における光源面形状が輪帯、 小円形、 大円形、 或いは 4つ 目等に制限される。 The illumination system aperture stop plate 25 made of a disc-shaped member is disposed near the exit surface of the second fly-eye lens 24. The illumination system aperture stop plate 25 is provided at substantially equal angular intervals, for example, an aperture stop composed of a normal circular aperture, an aperture stop composed of a small circular aperture, for reducing a threshold value which is a coherence factor, and a ring illumination. Annular aperture stop, and a modified aperture stop with multiple apertures eccentrically arranged for the modified light source method (only two of these are shown in FIG. 1). Etc.) are arranged. The illumination system aperture stop plate 25 is rotated by a drive device 34 such as a motor controlled by a main controller 50, whereby one of the aperture stops is placed on the optical path of the exposure light EL. The shape of the light source surface in the Keller illumination described later is limited to a ring, a small circle, a large circle, or a fourth shape.
照明系開口絞り板 2 5後方の露光光 E Lの光路上には、 リレーレンズ 2 6, 2 7を介して固定レチクルブラインド 2 8 A及び可動レチクルブラインド 2 8 Bが配置されている。 固定レチクルブラインド 2 8 Aは、 レチクル Rのパター ン面に対する共役面から僅かにデフォーカスした面に配置され、 レチクル R上 の照明領域 I A Rを規定する矩形開口が形成されている。 また、 この固定レチ クルブラインド 2 8 Aの近傍に走査方向に対応する方向の位置及び幅が可変の 開口部を有する可動レチクルブラインド 2 8 Bが配置され、 走査露光の開始時 及び終了時にその可動レチクルブラインド 2 8 Bを介して照明領域 I A Rを更 に制限することによって、 不要な部分の露光が防止されるようになっている。 前記可動レチクルブラインド後方の露光光 Eしの光路上には、 コンデンサレ ンズ 2 9 , 3 0が順次配置され、 コンデンサレンズ 3 0の更に後方の光路上に は、 コンデンサレンズ 3 0を通過した紫外パルス光をレチクル Rに向けて反射 するミラー 3 1が配置され、 このミラ一 3 1後方の露光光 E Lの光路上にメイ ンコンデンサレンズ 3 2が配置されている。  A fixed reticle blind 28 A and a movable reticle blind 28 B are arranged on the optical path of the exposure light EL behind the illumination system aperture stop plate 25 via relay lenses 26 and 27. The fixed reticle blind 28 A is arranged on a plane slightly defocused from a conjugate plane with respect to the pattern plane of the reticle R, and has a rectangular opening defining an illumination area I A R on the reticle R. A movable reticle blind 28B having an opening whose position and width in the direction corresponding to the scanning direction is variable is arranged near the fixed reticle blind 28A, and is movable at the start and end of scanning exposure. By further limiting the illuminated area IAR via the reticle blind 28 B, the exposure of unnecessary parts is prevented. Condenser lenses 29, 30 are sequentially arranged on the optical path of the exposure light E behind the movable reticle blind, and on the optical path further behind the condenser lens 30, ultraviolet light passing through the condenser lens 30 is provided. A mirror 31 for reflecting the pulsed light toward the reticle R is arranged, and a main condenser lens 32 is arranged on the optical path of the exposure light EL behind the mirror 31.
以上の構成において、 第 1 フライアイレンズ 2 0の入射面、 第 2フライアイ レンズ 2 4の入射面、 可動レチクルブラインド 2 8 Bのブレードの配置面、 レ チクル Rのパターン面は、 光学的に互いに共役に設定され、 第 1 フライアイレ ンズ 2 0の射出面側に形成される光源面、 第 2フライアイレンズ 2 4の射出面 側に形成される光源面、 投影光学系 P Lのフーリエ変換面 (射出瞳面) は光学 的に互いに共役に設定され、 ケーラー照明系となっている。  In the above configuration, the entrance surface of the first fly-eye lens 20, the entrance surface of the second fly-eye lens 24, the arrangement surface of the blade of the movable reticle blind 28 B, and the pattern surface of the reticle R are optically The light source surface formed on the exit surface side of the first fly-eye lens 20, the light source surface formed on the exit surface side of the second fly-eye lens 24, and the Fourier transform surface of the projection optical system PL The exit pupil plane) is optically set to be conjugate to each other, forming a Koehler illumination system.
次に、 上述のようにして構成された照明光学系 4 0の作用を簡単に説明する と、 レーザ光源 1 1からパルス発光されたレーザビームし Bはミラー 1 3、 1 4で順次反射された後、 ビーム整形光学系 3 3に入射して、 ここで、 後方の光 分割ュニッ卜 1 8及び第 1 フライアイレンズ 2 0に効率良く入射するようにそ の断面形状が整形される。 次に、 そのレーザビーム L Bは、 光分割ユニット 1 8で複数の光束に分割され、 後述するようにして可干渉性が抑制された光束群 となって第〗 フライアイレンズ 2◦に入射する。 これにより、 第 1 フライアイ レンズ 2 0の射出端に面光源、 すなわち多数の光源像 (点光源) から成る 2次 光源が形成される。これらの多数の点光源の各々から発散するパルス紫外光は、 リレーレンズ 2 1 、 ミラ一 2 2、 リレーレンズ 2 3を順次介して、 第 2フライ アイレンズ 2 4に入射する。 これにより、 第 2フライアイレンズ 2 4の射出端 に多数の微少な光源像を所定形状の領域内に一様分布させた多数の点光源から 成る 3次光源が形成される。 この 3次光源から射出された露光光 E Lは、 照明 系開口絞り板 2 5上のいずれかの開口絞りを通過した後、 リレーレンズ 2 6 ,Next, the operation of the illumination optical system 40 configured as described above will be briefly described. The laser beam B pulsed from the laser light source 11 is sequentially reflected by the mirrors 13 and 14 and then enters the beam shaping optical system 33 where the rear light splitting unit 1 The cross-sectional shape is shaped so as to efficiently enter the eighth fly eye lens 20 and the first fly eye lens 20. Next, the laser beam LB is split into a plurality of light beams by the light splitting unit 18 and is incident on the first fly-eye lens 2 ° as a light beam group in which coherence is suppressed as described later. As a result, a surface light source, that is, a secondary light source including a large number of light source images (point light sources) is formed at the exit end of the first fly-eye lens 20. The pulsed ultraviolet light diverging from each of these many point light sources enters the second fly-eye lens 24 via the relay lens 21, the mirror 22 and the relay lens 23 in this order. As a result, a tertiary light source is formed at the exit end of the second fly-eye lens 24, which is composed of a large number of point light sources in which a large number of minute light source images are uniformly distributed in a predetermined shape area. The exposure light EL emitted from the tertiary light source passes through one of the aperture stops on the illumination system aperture stop plate 25, and then passes through the relay lens 26,
2 7を経て固定レチクルブラインド 2 8 Aの矩形開口部を一様な強度分布 (照 度分布) で照明する。 After passing through 27, the rectangular opening of the fixed reticle blind 28 A is illuminated with a uniform intensity distribution (illuminance distribution).
こうして固定レチクルブラインド 2 8 Aの開口部を通った 11光光 E Lは、 可 動レチクルブラインド 2 8 Bを通過した後、 コンデンサレンズ 2 9 , 3 0を介 してミラー 3 1 によって光路が垂直下方に折り曲げられた後、 メインコンデン サレンズ 3 2を経て、 レチクルステージ R S T上に保持されたレチクル R上の 所定の照明領域( X軸方向に直線的に伸びたスリッ卜状又は矩形状の照明領域) The 11-light EL passed through the opening of the fixed reticle blind 28 A in this way passes through the movable reticle blind 28 B, and then passes through the condenser lenses 29, 30, and the optical path is vertically moved downward by the mirror 31. After being folded into the main capacitor lens 32, a predetermined illumination area on the reticle R held on the reticle stage RST (slit or rectangular illumination area extending linearly in the X-axis direction)
I A Rを均一な照度分布で照明する。 ここで、 レチクル Rに照射される矩形ス リッ卜状の照明光は、 図 1 中の投影光学系 Pしの円形投影視野の中央に X軸方 向 (非走査方向) に細長く延びるように設定され、 その照明光の Y軸方向 (走 査方向) の幅はほぼ一定に設定されている。 Illuminate I A R with uniform illumination distribution. Here, the rectangular slit-shaped illumination light applied to the reticle R is set to extend in the X-axis direction (non-scanning direction) in the center of the circular projection field of view of the projection optical system P in FIG. The width of the illumination light in the Y-axis direction (scan direction) is set almost constant.
前記レチクルステージ R S T上にはレチクル Rが装填され、 不図示の静電チ ャック (又はバキュームチャック) 等を介して吸着保持されている。 レチクル ステージ R S Tは、 水平面 (X Y平面) 内で微小駆動可能であるとともに、 レ チクルステージ駆動部 5 6 Rによって走査方向 (Υ軸方向) に所定ストローク 範囲で走査されるようになっている。 この走査中のレチクルステージ R S Τの 位置は、 レチクルステージ R S Τ上に固定された移動鏡 5 2 Rを介して外部の レーザ干渉計 5 4 Rによつて計測され、 このレーザ干渉計 5 4 Rの計測値が主 制御装置 5 0に供給されるようになっている。 A reticle R is mounted on the reticle stage RST, and is held by suction via an unshown electrostatic chuck (or vacuum chuck) or the like. Reticle The stage RST can be finely driven in a horizontal plane (XY plane), and can be scanned in a predetermined stroke range in a scanning direction (Υ-axis direction) by a reticle stage driving unit 56R. The position of reticle stage RS # during this scanning is measured by an external laser interferometer 54R via a moving mirror 52R fixed on reticle stage RS #, and this laser interferometer 54R Is supplied to the main controller 50.
なお、 レチクル Rに用いる材質は、 使用する光源によって使い分ける必要が ある。 すなわち、 A r Fエキシマレーザ、 K r Fエキシマレ一ザを光源とする 場合は、 合成石英を用いることができるが、 F :レーザを用いる場合には、 ホ夕 ル石又はフッ素卜ープ石英等で形成する必要がある。  The material used for the reticle R needs to be properly used depending on the light source used. That is, when an A r F excimer laser or a K r F excimer laser is used as a light source, synthetic quartz can be used, but when a laser is used, fluorite or fluorine-top quartz or the like can be used. It is necessary to form with.
前記投影光学系 P Lは、 例えば両側テレセン卜リックな縮小系が用いられて いる。 この投影光学系 P Lの投影倍率 3は例えば 1 4、 1 / 5あるいは 1 / 6等である。 このため、 前記の如くして、 露光光 E Lによりレチクル R上の照 明領域 I A Rが照明されると、 そのレチクル R上に形成されたパターンに応じ た回折光が投影光学系 P Lに向けて投射され、 投影光学系 P Lにより集光、 結 像されることで、 前記 0倍に縮小された像が、 表面にレジスト (感光剤) が塗 布されたウェハ W上のスリッ 卜状の露光領域 I Aに投影され転写される。 本実施形態では、 波長 2 0 0 n m程度以下の真空紫外光 (V U V光) が用い られているので、 前記投影光学系 P Lとして、 反射光学素子と屈折光学素子と を有する反射屈折系 (力タツディオプ卜リック系) が採用されている。 この反 射屈折型の投影光学系としては、 例えば特開平 8— 1 7 1 0 5 4号公報及びこ れに対応する米国特許第 5, 6 6 8, 6 7 2号、 並びに特開平 1 0 — 2 0 1 9 5号公報及びこれに対応する米国特許第 5, 8 3 5, 2 7 5号などに開示され る、 反射光学素子としてビー厶スプリツ夕と凹面鏡とを有する反射屈折系、 又 は特開平 8— 3 3 4 6 9 5号公報及びこれに対応する米国特許第 5, 6 8 9, 3 7 7号、 並びに特開平 1 0— 3 0 3 9号公報及びこれに対応する米国特許出 願第 8 7 3, 6 0 5号 (出願日 : 1 9 9 7年 6月 1 2日) などに開示される、 反射光学素子としてビームスプリッタを用いずに凹面鏡などを有する反射屈折 系を用いることができる。 本国際出願で指定した指定国又は選択した選択国の 国内法令が許す限りにおいて、 上記各公報及びこれらに対応する米国特許、 及 び米国特許出願における開示を援用して本明細書の記載の一部とする。 For the projection optical system PL, for example, a bilateral telecentric reduction system is used. The projection magnification 3 of the projection optical system PL is, for example, 14, 1/5 or 1/6. For this reason, as described above, when the illumination area IAR on the reticle R is illuminated by the exposure light EL, the diffracted light corresponding to the pattern formed on the reticle R is projected toward the projection optical system PL. The image reduced by a factor of 0 is condensed and imaged by the projection optical system PL to form a slit-shaped exposure area IA on the wafer W having a surface coated with a resist (photosensitive agent). Is projected and transferred. In the present embodiment, vacuum ultraviolet light (VUV light) having a wavelength of about 200 nm or less is used. Therefore, as the projection optical system PL, a catadioptric system having a reflective optical element and a refractive optical element is used. Toric). Examples of this reflective refraction type projection optical system include, for example, Japanese Patent Application Laid-Open No. Hei 8-171504 and US Patent Nos. 5,668,672 corresponding thereto and Japanese Patent Application Laid-Open No. — A catadioptric system having a beam splitter and a concave mirror as a reflective optical element, as disclosed in US Pat. No. 2,019,955 and corresponding US Pat. Nos. 5,835,275; Are Japanese Patent Application Laid-Open Nos. Hei 8-334649 and U.S. Pat. Nos. 5,689,377 corresponding thereto, and Japanese Patent Laid-Open No. 10-33939 and corresponding US Patent issued No. 873,605 (filing date: June 12, 1997), etc., use a catadioptric system with a concave mirror etc. instead of a beam splitter as a reflective optical element be able to. To the extent permitted by the national laws of the designated or designated elected country in this international application, the disclosures in the above publications and their corresponding U.S. patents and U.S. patent applications shall be incorporated by reference. Department.
この他、 米国特許第 5 , 0 3 1 , 9 7 6号、 第 5 , 4 8 8, 2 2 9号、 及び 第 5 , 7 1 7 , 5 1 8号に開示される、複数の屈折光学素子と 2枚のミラ一(凹 面鏡である主鏡と、 屈折素子又は平行平面板の入射面と反対側に反射面が形成 される裏面鏡である副鏡) とを同一軸上に配置し、 その複数の屈折光学素子に よって形成されるレチクルパターンの中間像を、 主鏡と副鏡とによってウェハ 上に再結像させる反射屈折系を用いても良い。 この反射屈折系では、 複数の屈 折光学素子に続けて主鏡と副鏡とが配置され、 照明光が主鏡の一部を通って副 鏡、 主鏡の順に反射され、 更に副鏡の一部を通ってウェハ上に達することにな る。 本国際出願で指定した指定国又は選択した選択国の国内法令が許す限りに おいて、 上記米国特許における開示を援用して本明細書の記載の一部とする。 更に、 反射屈折型の投影光学系としては、 例えば円形イメージフィールドを 有し、 かつ物体面側、 及び像面側が共にテレセン卜リックであるとともに、 そ の投影倍率が 1 4倍又は 1 / 5倍となる縮小系を用いても良い。 また、 この 反射屈折型の投影光学系を備えた走査型露光装置の場合、 照明光の照射領域が 投影光学系の視野内でその光軸をほぼ中心とし、 かつレチクル又はウェハの走 査方向とほほ直交する方向に沿って延びる矩形スリッ卜状に規定されるタイプ であっても良い。 かかる反射屈折型の投影光学系を備えた走査型露光装置によ れば、例えば波長 1 5 7 n mの レーザ光を露光用照明光として用いても 1 0 0 n m L Z Sパターン程度の微細パターンをウェハ上に高精度に転写すること が可能である。  In addition, a plurality of refractive optics disclosed in U.S. Pat. Nos. 5,031,976, 5,488,229, and 5,717,518. The element and two mirrors (a primary mirror, which is a concave mirror, and a sub-mirror, which is a backside mirror with a reflective surface formed on the opposite side of the refraction element or parallel plane plate from the entrance surface) are arranged on the same axis. However, a catadioptric system that re-images the intermediate image of the reticle pattern formed by the plurality of refractive optical elements on the wafer by the primary mirror and the secondary mirror may be used. In this catadioptric system, a primary mirror and a secondary mirror are arranged following a plurality of refractive optical elements, and the illumination light passes through a part of the primary mirror and is reflected in the order of the secondary mirror and the primary mirror. It will pass through a portion and onto the wafer. To the extent permitted by the national laws of the designated State or selected elected States in this International Application, the disclosures in the above US patents will be incorporated by reference into this specification. Further, the catadioptric projection optical system has, for example, a circular image field, is telecentric on both the object side and the image side, and has a projection magnification of 14 or 1/5. May be used. In the case of a scanning exposure apparatus having a catadioptric projection optical system, the irradiation area of the illumination light has its optical axis substantially centered within the field of view of the projection optical system, and is almost perpendicular to the scanning direction of the reticle or wafer. It may be of a type defined in a rectangular slit shape extending along the orthogonal direction. According to the scanning exposure apparatus having such a catadioptric projection optical system, for example, even if a laser beam having a wavelength of 157 nm is used as illumination light for exposure, a fine pattern of about 100 nm LZS pattern can be formed on a wafer. It is possible to transfer on the top with high precision.
なお、 露光光 E Lとして A r Fエキシマレ一ザ光、 K r Fエキシマレーザ光 を用いる場合には、 投影光学系 P Lを構成する各レンズエレメントとしては合 成石英とホタル石との両方を用いることができるが、 F ..,レーザ光を用いる場合 には、 この投影光学系 P Lに使用されるレンズの材質は、 全てホ夕ル石が用い られる。 なお、 露光光 E Lとして A r Fエキシマレーザ光、 K r Fエキシマレ 一ザ光を用いる場合には、 屈折光学素子のみから成る屈折系を用いても良く、 また、 II光光 E Lとして F .」レーザ光や A r レーザ光などを用いる場合には、 反射光学素子のみから成る反射系を用いても良いし、 F」レーザ光であっても屈 折系を用いても良い。 The exposure light EL is an A r F excimer laser light or a K r F excimer laser light. In the case of using F., both synthetic quartz and fluorite can be used as the lens elements constituting the projection optical system PL. All fluorite is used for the lens material used for PL. In the case where an ArF excimer laser beam and a KrF excimer laser beam are used as the exposure light EL, a refraction system including only a refraction optical element may be used. When a laser beam or an Ar laser beam is used, a reflection system including only a reflection optical element may be used, or an F "laser beam or a diffraction system may be used.
前記ウェハステージ W S Tは、 ウェハステージ駆動部 5 6 Wにより走査方向 である Y軸方向及びこれに直交する X軸方向に 2次元駆動されるようになって いる。 このウェハステージ W S T上に搭載された Zチル卜ステージ 5 8上には 不図示のウェハホルダを介してウェハ Wが静電吸着 (あるいは真空吸着) 等に より保持されている。 Zチル卜ステージ 5 8は、 ウェハ Wの Z方向の位置 (フ 才ーカス位置) を調整すると共に、 X Y平面に対するウェハ Wの傾斜角を調整 する機能を有する。 また、 ウェハステージ W S Tの位置は、 Zチル卜ステージ 5 8上に固定された移動鏡 5 2 Wを介して外部のレーザ干渉計 5 4 Wにより計 測され、 このレーザ干渉計 5 4 Wの計測値が主制御装置 5 0に供給されるよう になっている。  The wafer stage WST is two-dimensionally driven by a wafer stage drive unit 56W in the Y-axis direction, which is the scanning direction, and the X-axis direction, which is orthogonal thereto. On the Z tilt stage 58 mounted on the wafer stage W ST, a wafer W is held by electrostatic suction (or vacuum suction) via a wafer holder (not shown). The Z tilt stage 58 has functions of adjusting the position of the wafer W in the Z direction (focus position) and adjusting the inclination angle of the wafer W with respect to the XY plane. The position of the wafer stage WST is measured by an external laser interferometer 54 W through a movable mirror 52 W fixed on the Z tilt stage 58, and the position of the laser interferometer 54 W is measured. The value is supplied to the main controller 50.
制御系は、 図 1 中、 制御装置としての主制御装置 5 0によって主に構成され る。主制御装置 5 0は、 C P U (中央演算処理装置)、 R O M (リード,オンリ ' メモリ)、 R A M (ランダム ·アクセス ·メモリ) 等からなるいわゆるマイクロ コンピュータ (又はワークステーション) を含んで構成され、 露光動作が的確 に行われるように、 例えば、 レチクル Rとウェハ Wの同期走査、 ウェハ Wのス テツビング、 露光タイミング等を統括して制御する。  The control system is mainly constituted by a main control device 50 as a control device in FIG. The main controller 50 includes a so-called microcomputer (or workstation) including a CPU (central processing unit), ROM (read, only memory), RAM (random access memory), and the like. For example, synchronous scanning of the reticle R and the wafer W, stebbing of the wafer W, exposure timing, and the like are collectively controlled so that the operation is appropriately performed.
更に、 主制御装置 5 0では、 上記の走査露光時には、 例えば照明光学系 4 0 内に設けられた不図示の光電変換素子等の光量測定装置の検出値に基づいた制 御情報を光源 1 1 に供給することによって、 光源 1 1の発光タイミング、 及び 発光パワー等を制御することにより、 レチクル Rに照射される露光光 E Lの光 量調整を行う。 また、 主制御装置 5 0では、 照明系開口絞り板 2 5を駆動装置Further, in the main controller 50, at the time of the above scanning exposure, for example, control based on a detection value of a light amount measuring device such as a photoelectric conversion element (not shown) provided in the illumination optical system 40 is performed. By supplying control information to the light source 11, the light emission timing of the light source 11, the light emission power, and the like are controlled to adjust the light amount of the exposure light EL applied to the reticle R. In addition, the main controller 50 drives the illumination system aperture stop plate 25
3 4を介して制御し、 更にステージ系の動作情報に同期して可動レチクルブラ インド 2 8 Bの開閉動作を制御する。 It controls the opening and closing operation of the movable reticle blind 28 B in synchronization with the operation information of the stage system.
ところで、 上述したようなダブルフライアイレンズ系を採用すると、 レチク ル R及びウェハ Wの被照射面上での照明光束の照度を、 均一化することが可能 である。 しかしながら、 光源 1 1 から出力されるレーザ光が高い空間的コヒ一 レンスを有する場合には、 フライアイレンズ 2 0, 2 4の異なるレンズエレメ ン卜を透過する光束同士が互いに干渉し、 被照射面状で干渉縞 (スペックル) を形成し、 照度均一性を劣化させるおそれがある。 本実施形態の場合、 空間的 コヒーレンスの高い狭帯域化レーザ光 L Bが用いられているので、 第 1 フライ アイレンズ 2 0に入射する光束の空間的コヒーレンスを低下させ、 スペックル に起因する照度均一性の悪化を防止するために、 前述した光分割ユニット 1 8 が設けられるとともに、 上記の照度均一性の悪化をより効果的に防止しようと する観点から第 1 フライアイレンズ 2 0としても特殊なものが用いられている。 以下、 図 2に基づいて、 これらの点について詳述する。 図 2には、 本実施形 態に係る光分割ュニッ卜 1 8と第 1 フライアイレンズ 2 0との構成例が斜視図 にて示されている。  By the way, if the double fly-eye lens system as described above is adopted, it is possible to make the illuminance of the illuminating light flux on the irradiated surface of the reticle R and the wafer W uniform. However, when the laser light output from the light source 11 has a high spatial coherence, the light beams transmitted through the different lens elements of the fly-eye lenses 20 and 24 interfere with each other, and the illuminated surface May form interference fringes (speckles), which may degrade illuminance uniformity. In the case of the present embodiment, since the narrow band laser light LB having high spatial coherence is used, the spatial coherence of the light beam incident on the first fly-eye lens 20 is reduced, and the illuminance uniformity caused by the speckle is reduced. The light splitting unit 18 described above is provided in order to prevent the deterioration of the illumination, and a special fly-eye lens 20 is also used as the first fly-eye lens 20 from the viewpoint of more effectively preventing the deterioration of the illuminance uniformity. Things are used. Hereinafter, these points will be described in detail with reference to FIG. FIG. 2 is a perspective view showing a configuration example of the light splitting unit 18 and the first fly-eye lens 20 according to the present embodiment.
光分割ュニッ卜 1 8は、 図 2に示されるように、 相互に対向して Y Z平面に 平行に配置された一対の板状部材 4 9 a、 4 9 bとこれらの板状部材 4 9 a、 As shown in FIG. 2, the light splitting unit 18 is composed of a pair of plate members 49 a and 49 b opposed to each other and arranged in parallel with the YZ plane, and these plate members 49 a ,
4 9 bを相互に連結する X軸方向に延びる 4本のシャフト 6 1 a〜 6 1 dとか ら構成された取付け枠 4 9と、 この取付け枠 4 9に不図示の取付け部材を介し て相互に平行に傾き角 4 5度で保持された複数枚 (図 2では、 3枚) の高反射 率の反射面を有する反射ミラーとしての平面ミラー 4 8 a、 4 8 b、 4 8 じ と を備えている。 平面ミラ一 4 8 a〜4 8 cは、 X軸方向を長手方向とし、 アルミニウム等の 金属薄膜又は誘電体多層膜により形成された反射率 9 5 %程度の反射面を有し ている。 これらの平面ミラ一 4 8 a ~ 4 8 cそれぞれの反射面は、 光源 1 1 か ら出力されたレーザビーム L Bがビーム整形光学系 3 3で整形された整形後の 光束 (以下、 便宜上 「レーザ光束 5 7」 と表現する) の光軸に垂直な断面 (X Z断面) 内の所定の一方向 (Z軸方向) についてレーザ光束 5 7を複数に分割 可能なように Z軸方向に関して多段に配置されかつ前記光軸方向 (丫軸方向) に所定距離ずつずらして配置されている。 4 9b are connected to each other. A mounting frame 49 composed of four shafts 61a to 61d extending in the X-axis direction is connected to the mounting frame 49 via a mounting member (not shown). The plane mirrors 48a, 48b, and 48 are used as reflecting mirrors having a plurality of (three in Fig. 2) high-reflectance reflecting surfaces held at an inclination angle of 45 degrees parallel to Have. Each of the plane mirrors 48a to 48c has a reflecting surface with a reflectivity of about 95% formed by a metal thin film such as aluminum or a dielectric multilayer film with the X-axis direction as a longitudinal direction. The reflecting surface of each of these plane mirrors 48a to 48c is formed by a laser beam LB output from the light source 11 after shaping by the beam shaping optical system 33 (hereinafter referred to as “laser beam” for convenience). The laser beam 57 is arranged in multiple stages in the Z-axis direction so that the laser beam 57 can be divided into multiple parts in a given direction (Z-axis direction) in a section perpendicular to the optical axis (XZ section). And is shifted by a predetermined distance in the optical axis direction (丫 -axis direction).
この場合、 光源 1 1 から出力されたレーザビ一厶 L Bは、 図 2の Z軸方向に 対応する方向が可干渉性の高い方向であり、 この方向についてビーム整形光学 系 3 3によりその断面形状が拡大されている。  In this case, in the laser beam LB output from the light source 11, the direction corresponding to the Z-axis direction in FIG. 2 is the direction having high coherence, and the cross-sectional shape of this direction is determined by the beam shaping optical system 33. It has been expanded.
また、 平面ミラ一 4 8 a ~ 4 8 cそれぞれの反射面は、 レーザ光束 5 7を、 ほぼ隙間なく反射できるように構成されている。 すなわち、 平面ミラー 4 8 a ~ 4 8 cの Y Z断面の形状は、 少なくともその下端部が、 X丫平面に平行な傾 斜面となるようにテ一パ加工が施されており、 これによつて、 + Y方向に見た 場合に、 レーザ光束 5 7が X軸方向は勿論、 Z軸方向についても隙間無く (か つ不要な遮蔽部分がほぼ零の状態で)、平面ミラー 4 8 a〜4 8 cにそれぞれ照 射されるようになつている。 すなわち、 平面ミラー 4 8 a ~ 4 8 cのうち、 レ 一ザ光束の光軸方向の後側に隣接する他の平面ミラーが存在するという条件を 満たす平面ミラー 4 8 a , 4 8 bは、 その姿勢を維持した状態で光軸に沿って 後側に所定距離平行移動したときに、 前記他の平面ミラー 4 8 b, 4 8 cの反 射面と自身の反射面とによつて隙間のない単一の反射面を橫成するような側面 の断面形状となるように、 上記のテ一パ加工が行われている。 平面ミラー 4 8 cにもテ一パ加工が施されているが、 これは必ずしもこのようにする必要はな い。  The reflecting surfaces of the plane mirrors 48a to 48c are configured to reflect the laser beam 57 with almost no gap. That is, the shape of the plane mirrors 48a to 48c in the YZ section is tapered so that at least the lower end thereof is inclined in parallel to the X 丫 plane. When viewed in the + Y direction, the laser beam 57 has no gaps in the X-axis direction as well as in the Z-axis direction (with unnecessary shielding portions being almost zero), and the plane mirrors 48 a to 4 a 8c, respectively. That is, among the plane mirrors 48a to 48c, the plane mirrors 48a and 48b satisfying the condition that another plane mirror adjacent to the rear side in the optical axis direction of the laser beam exists. When the mirror is translated rearward by a predetermined distance along the optical axis while maintaining that posture, a gap is formed by the reflection surface of the other flat mirrors 48 b and 48 c and its reflection surface. The above-mentioned taper processing is performed so that the cross-sectional shape of the side surface forms a single reflecting surface. The flat mirror 48c is also taped, but this need not be the case.
光分割ュニッ卜 1 8では上記のようにして平面ミラー 4 8 a〜4 8 cが Z軸、 Y軸方向についてずらして配置されていることから、 レーザ光束 57が— Y方 向から光分割ユニット 1 8に入射すると、 最も一 Y側 (+ Z側) に位置する平 面ミラー 48 aに入射し、 該平面ミラ一 4 8 aで + Z方向に向けて反射される 第 1の分割光束 5 9 aと、 平面ミラ一 48 aに入射しない光束のうちで中央に 位置する平面ミラー 48 bに入射し、 該平面ミラ一 48 bで + Z方向に向けて 反射される第 2の分割光束 5 9 bと、 平面ミラー 48 a及び 48 bに入射せず に平面ミラー 4 8 cに入射し、 該平面ミラー 48 cで + Z方向に向けて反射さ れる第 3の分割光束 5 9 cとの 3つの光束に分割される。 In the light splitting unit 18, the plane mirrors 48 a to 48 c are Z-axis, Because the laser beam 57 is shifted in the Y-axis direction, when the laser beam 57 enters the light splitting unit 18 from the -Y direction, it enters the flat mirror 48a located at the most Y side (+ Z side). The first split beam 59a reflected in the + Z direction by the plane mirror 48a and the plane mirror 48b positioned at the center among the light beams not incident on the plane mirror 48a. Incident on the plane mirror 48b and reflected in the + Z direction by the plane mirror 48b, and the second divided light flux 59b and incident on the plane mirror 48c without being incident on the plane mirrors 48a and 48b, The light is split into three light beams, that is, a third light beam 59c reflected by the plane mirror 48c in the + Z direction.
そして、 分割光束 5 9 a、 5 9 b、 5 9 cは、 第 1 フライアイレンズ 2 0を 構成する異なるレンズ群 20 a、 20 b, 20 cに各別に入射する。 ここで、 レンズ群 20 a、 20 b. 2 0 cは、 図 2に示されるように、 X軸方向に隙間 無く配列された複数のレンズエレメントからそれぞれ構成され、 丫軸方向につ いて所定間隔を隔てて相互に平行に配列されている。 すなわち、 第 1 フライア ィレンズ 20は、 平面ミラー 48 a~48 cの反射面のそれぞれに対応して配 置されたレンズ群 2 0 a, 2 0 b, 20 cによって構成される。  Then, the divided light beams 59a, 59b, 59c individually enter the different lens groups 20a, 20b, 20c constituting the first fly-eye lens 20. Here, the lens groups 20a and 20b.20c are each composed of a plurality of lens elements arranged without a gap in the X-axis direction, as shown in FIG. Are arranged in parallel with each other. That is, the first fly-eye lens 20 is constituted by lens groups 20a, 20b, and 20c arranged corresponding to the reflection surfaces of the plane mirrors 48a to 48c, respectively.
ここで、 各分割光束 5 9 a~ 5 9 cには、 各平面ミラ _ 48 a〜 48 c (よ り正確にはこれらの反射面) の配 S位置に応じた光路差 (光路長差) が生じて いる。 すなわち、 分割光束 5 9 aと分割光束 5 9 bとの間には、 平面ミラ一 4 8 aと平面ミラ一 48 bとの間隔 (丫軸方向に 3、 Zま由方向に の和) だ け光路差が生じ、 分割光束 5 9 bと分割光束 5 9 cとの間には、 平面ミラ一 4 8 bと平面ミラー 4 8 cとの間隔 (丫軸方向に A c、 Z軸方向に A dの和) だ け光路差が生じている。 本実施形態では、 これらの光路差がレーザ光束 5 7の 時間的コヒーレンス長以上の長さとなるように平面ミラ一 48 a〜48 cが配 置されている。 このため、 分割光束 5 9 a~5 9 c相互間には、 空間的コヒー レンス (可干渉性) が無くなり、 被照射面 (レチクルパターン面及びウェハ W 面) 上に生じる干渉縞や微弱なスペックルが平滑化されている。 ここで、 上記の平面ミラー 48 a、 48 b、 48 cの配置について、 具体例 を用いて説明する。 今、 光源 1 1 として、 例えば狭帯域化 A r Fエキシマレー ザ (波長 1 9 3 n m) を用いた露光装置の場合、 投影光学系 P Lの色収差の影 響を十分に抑えるためには、 レーザのスペクトル半値幅を 0. 4 pm程度にす る必要があり、このときのレーザ光束(照明光束)の時間的コヒーレンス長((レ —ザ波長) 」/スペクトル半値幅) は、 Π 9 3 ( n m)} 」/0. 4 (pm) = 9 3 (mm) であるので、 分割光束 5 9 aと分割光束 5 9 bとの間、 及び分割 光束 5 9 bと分割光束 5 9 cとの間に 9 3 (mm) 以上の光路差を与えれば、 各分割光束間の空間的コヒ一レンス (可干渉性) を解消することができる。 す なわち、 各平面ミラーを (A a +A b≥9 3 (mm)), (A c +A d≥ 9 3 (m m)) となるように配置すれば良い。 Here, each of the divided light beams 59 a to 59 c has an optical path difference (optical path length difference) corresponding to the S position of each plane mirror _ 48 a to 48 c (more precisely, these reflecting surfaces). Has occurred. That is, the distance between the plane mirror 48a and the plane mirror 48b (the sum of 3 in the axial direction and Z in the Z direction) is between the split beam 59a and the split beam 59b. The difference between the split beam 59b and the split beam 59c is caused by the distance between the plane mirror 48b and the plane mirror 48c (Ac in the 丫 -axis direction and Ac in the Z-axis direction). (The sum of A d). In the present embodiment, the plane mirrors 48a to 48c are arranged such that the optical path difference is longer than the temporal coherence length of the laser beam 57. As a result, there is no spatial coherence (coherence) between the divided light beams 59a to 59c, and interference fringes and weak specifications on the irradiated surface (reticle pattern surface and wafer W surface) are lost. Has been smoothed. Here, the arrangement of the plane mirrors 48a, 48b, and 48c will be described using a specific example. Now, in the case of an exposure apparatus using, for example, a narrow-band ArF excimer laser (wavelength: 193 nm) as the light source 11, in order to sufficiently suppress the influence of the chromatic aberration of the projection optical system PL, it is necessary to use a laser. The spectral half-width must be about 0.4 pm, and the temporal coherence length ((laser wavelength) / spectral half-width) of the laser beam (illumination beam) at this time is Π 9 3 (nm )}] /0.4 (pm) = 9 3 (mm), so between the split light flux 59 a and the split light flux 59 b, and between the split light flux 59 b and the split light flux 59 c By providing an optical path difference of more than 93 (mm), the spatial coherence (coherence) between the divided light beams can be eliminated. That is, the plane mirrors should be arranged so that (A a + A b ≥93 (mm)) and (A c + A d ≥93 (mm)).
また、 レーザ光源 1 1 として、 例えばスぺクトル半値幅 0. 5 ロ!71の ,レ一 ザ (波長 1 5 7 n m) を用いた露光装置の場合には、 同様の計算により、 各分 割光束 5 9 a〜 5 9 cの間に { 1 5 7 ( n m)} V 0. 5 ( p m) =4 9 (m m) の光路差を与えるように各平面ミラ一を配置すれば良い。  Further, in the case of an exposure apparatus using a laser (wavelength: 157 nm) having a half-width of a spectrum of 0.5 b! The plane mirrors may be arranged so as to provide an optical path difference of {155 (nm)} V0.5 (pm) = 49 (mm) between the light beams 59a to 59c.
なお、 取付け枠 4 9を構成する板状部材 4 9 a、 4 9 bに平面ミラ一 48 a 〜4 8 cを取り付ける際には、 平面ミラ一 48 a〜48 cの位置関係、 角度関 係が正しく設定可能となるように、 取り付け位置の微調整機構を設けておくこ とが望ましく、 同様に、 取付け枠 4 9を照明光学系 4 0内に設置する際にも、 取り付け位置調整機構を設けておくことが望ましい。  When attaching the flat mirrors 48a to 48c to the plate members 49a and 49b constituting the mounting frame 49, the positional relationship and the angular relationship of the flat mirrors 48a to 48c are required. It is desirable to provide a fine adjustment mechanism for the mounting position so that the mounting position can be set correctly. Similarly, when the mounting frame 49 is installed in the illumination optical system 40, the mounting position adjustment mechanism is also required. It is desirable to provide.
さらに、 本実施形態では、 図 2に示されるように、 第 1 フライアイレンズ 2 0を構成する前述したレンズ群 20 a〜 20 cの間に遮蔽材 20 sをそれぞれ 配置して、 隣接レンズ群における分割光束 5 9 a, 5 9 b間、 5 9 b, 5 9 c 間のオーバーラップを防止している。 これにより、 第 1 フライアイレンズ 20 を構成するレンズ群 20 a~20 c上での照度均一性の向上が図られており、 この点においても被照射面 (レチクル R及びウェハ W) 上での照度均一性が確 保されている。 Further, in the present embodiment, as shown in FIG. 2, the shielding members 20 s are respectively arranged between the above-described lens groups 20 a to 20 c constituting the first fly-eye lens 20, and the adjacent lens groups The overlap between the divided luminous fluxes 59a and 59b and between the 59b and 59c is prevented. As a result, the uniformity of the illuminance on the lens groups 20a to 20c constituting the first fly-eye lens 20 is improved, and in this regard, the illuminance on the irradiated surface (reticle R and wafer W) is also improved. Illuminance uniformity is assured Is maintained.
なお、 分割光束 5 9 a ~ 5 9 c相互間の干渉を一層低減するために、 レーザ 光束 5 7の光路中や、 第 1 フライアイレンズ 2 0の入射面または射出面の近傍 に、 それぞれ偏光回転角度の異なる偏光方向回転素子を設け、 分割光束 5 9 a 〜5 9 c相互の偏光状態を異ならせるようにすることもできる。 偏光方向回転 素子としては、 厚さにテーパーを有する複屈折材料 (水晶、 方解石等) を使用 したり、 分割光束 5 9 a〜5 9 c毎に、 厚さの異なる複屈折材料を使用すると 良い。  In order to further reduce the interference between the divided light beams 59 a to 59 c, the polarized light is placed in the optical path of the laser light beam 57 or near the entrance surface or the exit surface of the first fly-eye lens 20. It is also possible to provide polarization direction rotating elements having different rotation angles so that the polarization states of the divided light beams 59a to 59c are different from each other. As the polarization direction rotating element, a birefringent material having a tapered thickness (crystal, calcite, etc.) or a birefringent material having a different thickness for each of the divided light beams 59 a to 59 c may be used. .
次に、 上述のようにして構成された本実施形態の露光装置 1 0による IS光動 作の流れについて図 1 に基づいて簡単に説明する。  Next, the flow of the IS light operation by the exposure apparatus 10 of the present embodiment configured as described above will be briefly described with reference to FIG.
まず、 主制御装置 5 0の管理の下、 不図示のレチクルローダ、 ウェハローダ によって、 レチクルロード、 ウェハロードが行なわれ、 また、 レチクル顕微鏡、 ウェハステージ W S T上の基準マーク板、 オファクシス ·ァライメン卜検出系 (いずれも図示省略) 等を用いて、 レチクルァライメン卜、 ベースライン計測 (ァライメント検出系の検出中心と投影光学系 P Lの光軸との距離の計測) 等 の準備作業が所定の手順で行なわれる。  First, a reticle loader and a wafer loader (not shown) perform reticle loading and wafer loading under the control of the main controller 50, and a reticle microscope, a reference mark plate on the wafer stage WST, and an off-axis alignment detection system. (Both not shown), etc., are used to carry out preparatory work such as reticle alignment and baseline measurement (measurement of the distance between the detection center of the alignment detection system and the optical axis of the projection optical system PL) in a predetermined procedure. Done.
その後、 主制御装置 5 0により、 不図示のァライメン卜検出系を用いてゥェ ハ Wに対する E G A (ェンハンス卜 ·グロ一バル ·ァライメン卜) 等のァライ メン卜計測が実行される。 このような動作においてウェハ Wの移動が必要な場 合には、 主制御装置 5 0力 ウェハステージ W S T (ウェハ W ) を所定の方向 に移動させる。  After that, the main controller 50 executes an alignment measurement such as EGA (enhanced global alignment) for the wafer W using an alignment detection system (not shown). If the movement of the wafer W is necessary in such an operation, the main controller 50 moves the wafer stage WST (wafer W) in a predetermined direction.
なお、 上記のレチクルァライメン卜、 ベースライン計測等の準備作業につい ては、 例えば特開平 4— 3 2 4 9 2 3号公報及びこれに対応する米国特許第 5 2 4 3 1 9 5号に詳細に開示され、 また、 これに続く E G Aについては、 特開 昭 6 1 — 4 4 4 2 9号公報及びこれに対応する米国特許第 4 , 7 8 0, 6 1 7 号等に詳細に開示されており、 本国際出願で指定した指定国又は選択した選択 国の国内法令が許す限りにおいて、 上記各公報並びにこれらに対応する上記米 国特許における開示を援用して本明細書の記載の一部とする。 The above-mentioned preparation work for reticle alignment, baseline measurement, etc. is described in, for example, Japanese Patent Application Laid-Open No. Hei 4-324249 and the corresponding US Pat. No. 5,243,195. The EGA following this is described in detail in Japanese Patent Application Laid-Open No. 61-44429 and US Patent No. 4,780,617 corresponding thereto. The designated country or election chosen in this international application To the extent permitted by national laws and regulations of the country, the disclosures in the above publications and the corresponding US patents corresponding thereto are incorporated herein by reference.
上述のようなァライメン卜計測の終了後、 以下のようにしてステップ ·アン ド -スキャン方式の露光動作が行なわれる。  After the alignment measurement as described above, the step-and-scan exposure operation is performed as follows.
この露光動作にあたって、 まず、 ウェハ Wの X Y位置が、 ウェハ W上の最初 のショッ卜領域 (ファース卜 · ショッ卜) の露光のための走査開始位置となる ように、 ウェハステージ W S Tが移動される。 同時に、 レチクル Rの X Y位置 力^ 走査開始位置となるように、 レチクルステージ R S Tが移動される。 そし て、 主制御装置 5 0力 ウェハ干渉計 5 4 Wによって計測されたウェハ Wの位 置情報、 及びレチクル干渉計 5 4 Rによって計測されたレチクル Rの位置情報 に基づき、 レチクル R (レチクルステージ R S T ) とウェハ W (ウェハステー ジ W S T ) とを同期移動させつつ、 照明光学系 4 0からの露光光 E Lにより照 明領域 I A Rを照明することにより、 そのショット領域に対する走査露光 (レ チクルパターンのま云写) が行なわれる。  In this exposure operation, first, the wafer stage WST is moved so that the XY position of the wafer W becomes the scanning start position for the exposure of the first shot area (first shot) on the wafer W. . At the same time, the reticle stage R ST is moved so that the XY position of the reticle R becomes the scanning start position. Then, based on the position information of wafer W measured by main controller 50 wafer force interferometer 54 W and the position information of reticle R measured by reticle interferometer 54 R, reticle R (reticle stage RST) and the wafer W (wafer stage WST), while illuminating the illuminated area IAR with the exposure light EL from the illumination optical system 40 while synchronizing the movement of the wafer W (wafer stage WST). Is performed.
このようにして、 1 つのショッ 卜領域に対するレチクルパターンの転写が終 了すると、ウェハステージ W S Tが 1 ショッ卜領域分だけステッピングされて、 次のショット領域に対する走査露光が行なわれる。 このようにして、 ステツピ ングと走査露光とが順次繰り返され、 ウェハ W上に必要なショッ卜数のパター ンが転写される。  In this way, when the transfer of the reticle pattern to one shot area is completed, the wafer stage WST is stepped by one shot area, and scanning exposure is performed for the next shot area. In this way, the stepping and the scanning exposure are sequentially repeated, and the required number of shot patterns are transferred onto the wafer W.
ここで、 上記の走査露光に際して、 前述の如く照度均一性良く、 露光光 E L によりレチクル Rが照明されるので、 結果的に像面 (ウェハ W面) における照 度均一性が向上し、 ウェハ W上の各ショッ卜領域に転写されるパターンの線幅 均一性も良好となる。  Here, in the above scanning exposure, the reticle R is illuminated by the exposure light EL with good illuminance uniformity as described above, and as a result, the illuminance uniformity on the image plane (wafer W surface) is improved, and the wafer W The line width uniformity of the pattern transferred to each of the above shot areas is also improved.
以上説明したように、 本実施形態に係る照明系 ( 1 1 、 4 0 ) によると、 光 源 1 1からレーザビーム L Bが出力されると、 このレーザビームは、 ミラー 1 3, 1 4を経てビーム整形光学系 3 3に至り、 そこでその断面形状が整形され てレーザ光束 5 7として光分割ユニット 1 8に入射し、 該ユニット 1 8を構成 する複数の平面ミラー 4 8 a〜 4 8 bによりそれぞれ反射されて分割光束 5 9 a、 5 9 b、 5 9 cとなって第 1 フライアイレンズ 2 0にそれぞれ入射し、 光 学素子群を介して前記第 1 フライアイレンズ 2 0の入射面と共役な被照射面で あるレチクル Rのパターン面に露光光 E Lとして照射される。 この場合、 複数 の分割光束のそれぞれは平面ミラ一 4 8 a ~ 4 8 bで反射される際に光源 1 1 から被照射面に至る光路長が異ならされ、 光路長差 (光路差) が付与されてい る。 従って、 被照射面における照度均一性を悪化させる原因となるスペックル (干渉縞) の発生が抑制されるので、 被照射面を均一な照度で照明することが 可能となる。 また、 光分割ユニット 1 8では、 平面ミラー 4 8 a〜 4 8 bとし て、 反射率が 9 5 %程度以上の反射面を有するものが採用されており、 基本的 にはそれらの平面ミラーによりレーザ光束を 1 回反射させるのみであるから、 光量ロスが少なく、 被照射面に豊冨な照明光量を提供することができるという メリッ 卜がある。 従って、 この光分割ュニット 1 8を含む照明系の露光装置へ の採用は、 露光パワーの増大、 更には、 スループット (処理能力) の向上を実 現可能とする。 また、 本実施形態のように、 空間的コヒーレンスの高い狭帯域 化レーザ光を使用する場合には、 上記のスペックル発生を抑制することのメリ ッ 卜は特に大きい。 As described above, according to the illumination system (11, 40) according to the present embodiment, when the laser beam LB is output from the light source 11, this laser beam passes through the mirrors 13, 14 The beam shaping optical system 3 3 is reached, where its cross-sectional shape is shaped. And enters the beam splitting unit 18 as a laser beam 57, and is reflected by a plurality of plane mirrors 48 a to 48 b constituting the unit 18 to be split beam 59 a, 59 b, 59 c, the light is incident on the first fly-eye lens 20, respectively, and is exposed through the optical element group to the pattern surface of the reticle R, which is the illuminated surface conjugate with the incident surface of the first fly-eye lens 20. Irradiated as EL. In this case, when each of the plurality of divided light beams is reflected by the plane mirrors 48a to 48b, the optical path length from the light source 11 to the irradiated surface is made different, and an optical path length difference (optical path difference) is given. It has been done. Therefore, the generation of speckles (interference fringes) which may deteriorate the illuminance uniformity on the irradiated surface is suppressed, so that the irradiated surface can be illuminated with uniform illuminance. In the light splitting unit 18, as the plane mirrors 48 a to 48 b, those having a reflection surface with a reflectivity of about 95% or more are adopted. Since the laser beam is only reflected once, there is a merit that the light amount loss is small and abundant illumination light amount can be provided on the irradiated surface. Therefore, adoption of an illumination system including the light splitting unit 18 in an exposure apparatus makes it possible to increase the exposure power and further improve the throughput (processing capacity). Further, when a narrow-band laser beam having high spatial coherence is used as in the present embodiment, the advantage of suppressing the generation of speckle is particularly great.
また、 光分割ユニット 1 8では、 レーザ光束 5 7力 その可干渉性が高い第 1方向について複数に分割され、 各分割光束相互間に光路長差が生じているこ とから、 被照射面上でのスペックルの発生を効率的に抑制することができる。 また、 本実施形態に係る露光装置 1 0によると、 照明系 ( 1 1 、 4 0 ) によ りレチクルパターン面 (被照射面) 上における干渉縞の発生を低減しかつ高い 照度均一性でレチクル Rを照明することにより、 投影光学系 P Lによってゥェ ハ W面に投射されるレーザ光の照度均一性の向上、 ひいてはパターン線幅均一 性が向上した高精度な露光を実現することが可能となる。 また、 光源 1 1 とし て空間的コヒーレンスの高い狭帯域化レーザ光源の使用が可能となるので、 投 影光学系 P Lの色収差の悪影響を実質的に解消できる。 In the light splitting unit 18, the laser light beam 57 is divided into a plurality of beams in the first direction where the coherence is high, and there is an optical path length difference between each of the split light beams. The generation of speckles can be suppressed efficiently. Further, according to the exposure apparatus 10 of the present embodiment, the illumination system (11, 40) reduces the generation of interference fringes on the reticle pattern surface (the surface to be irradiated) and achieves high illuminance uniformity of the reticle. By illuminating R, it is possible to improve the uniformity of the illuminance of the laser beam projected on the wafer W surface by the projection optical system PL, and to achieve high-precision exposure with improved uniformity of the pattern line width. Become. Light source 1 1 As a result, it is possible to use a narrow-band laser light source having a high spatial coherence, thereby substantially eliminating the adverse effect of chromatic aberration of the projection optical system PL.
なお、上記実施形態では、 レーザ光束を可干渉性の高い方向について分割し、 1 回だけ反射する光分割ユニッ ト 1 8を用いる場合について説明したが、 本発 明がこれに限定されることはなく、 例えば、 図 3に示されるように、 レーザ光 束 5 7の分割反射をそれぞれ 2回行う光分割ュニッ卜 1 1 8を光分割ュニッ卜 1 8に代えて採用しても良い。 ここで、 この図 3の光分割ユニット 1 1 8の作 用について説明する。 この光分割ユニット 1 1 8では、 + Y方向に向かって進 んで来たレーザ光束 5 7が、 X、 Y軸に対して 4 5度の角度で斜設され、 前述 した平面ミラー 4 8 a〜 4 8 cと同様に、 X軸方向 (第 1方向) 及び Y軸方向 In the above embodiment, the case where the laser beam is divided in the direction of high coherence and the light dividing unit 18 that reflects only once is used has been described. However, the present invention is not limited to this. Instead, for example, as shown in FIG. 3, the light division unit 118 that performs the two-way reflection of the laser beam 57 may be used instead of the light division unit 18. Here, the operation of the light splitting unit 118 of FIG. 3 will be described. In the light splitting unit 118, the laser beam 57 traveling in the + Y direction is inclined at an angle of 45 degrees with respect to the X and Y axes, and the flat mirrors 48a to 4 As in 8c, X-axis direction (first direction) and Y-axis direction
(光軸方向) について所定距離ずつずらして配置された第 1の反射面群を構成 する 3枚の平面ミラ一 4 8 a !〜 4 8 により、 それぞれ + X方向 (第 2方向) に向けて反射され、 X軸方向について 3分割 (3等分) される。 なお、 本実施 形態では、 光束が分割される第 1方向と各分割光束が折り曲げられる第 2方向 とが同じ方向となっているが、 必ずしもこのようにする必要はない。すなわち、 平面ミラー 4 8 a 〜 4 8 c ,を必ずしも X、 Y铀に対して 4 5度の角度で斜設 する必要はない。 光束 5 7がその光軸に直交する面内で見て、 Y Z面に平行な 面を境として 3分割されていれば良い。 The three plane mirrors 48 a! To 48 composing the first reflecting surface group which are displaced by a predetermined distance (in the optical axis direction) are directed in the + X direction (second direction), respectively. The light is reflected and divided into three parts (divided into three equal parts) in the X-axis direction. In the present embodiment, the first direction in which the light beam is split is the same as the second direction in which each split light beam is bent, but this is not necessarily required. That is, the plane mirrors 48a to 48c need not necessarily be inclined at an angle of 45 degrees with respect to X and Y 铀. It is only necessary that the light beam 57 be divided into three parts on a plane parallel to the YZ plane when viewed in a plane perpendicular to the optical axis.
次いで、 この + X方向に進む 3つの分割光束 5 9 ,、 5 9」、 5 9 ;のそれぞれ が、 X、 Z軸に対して 4 5度の角度で斜設され、 前述した平面ミラー 4 8 a〜Next, each of the three divided light beams 59, 59, 59 ; traveling in the + X direction is inclined at an angle of 45 degrees with respect to the X and Z axes, and the above-described plane mirror 48 a ~
4 8 cと同様に、 X軸方向及び Z铀方向 (第 3方向) について所定距離ずつず らして配置された第 2の反射面群を構成する 3枚の平面ミラー 4 8 a」〜 4 8Similarly to 48 c, three plane mirrors 48 a to 48 forming a second reflecting surface group arranged at a predetermined distance in the X-axis direction and the Z 铀 direction (third direction).
(^により、 それぞれ + Z方向 (第 4方向) に向けて反射され、 Z軸方向につい て 3分割 (3等分) される。 これにより、 レーザ光束 5 7は、 X Z 2次元方向 について 9分割され、 9つの分割光束 5 9 Μ〜 5 9 :i3となる。 なお、 本実施形態 では、 各分割光束が分割される第 3方向と各分割光束が折り曲げられる第 4方 向とが同じ方向となっているが、 必ずしもこのようにする必要はない。 すなわ ち、 平面ミラー 4 8 a 〜 4 8 c」を X、 Z軸に対して 4 5度の角度で斜設する 必要はない。 分割光束 5 9 5 9 ,、 5 9 :iのそれぞれがその光軸に直交する面 内で見て、 X Y面に平行な面を境として 3分割されていれば良い。 (By ^, each is reflected in the + Z direction (fourth direction) and is divided into three parts (divided into three parts) in the Z-axis direction. As a result, the laser beam 57 is divided into nine parts in the XZ two-dimensional direction. is, nine split beam 5 9 Μ ~ 5 9:. i3 become in this embodiment, the four-way that the third direction and the divided light fluxes each split light beams are split is folded Although the direction is the same, it is not always necessary to do so. That is, it is not necessary to tilt the plane mirrors 48a to 48c at an angle of 45 degrees with respect to the X and Z axes. It is only necessary that each of the divided light beams 5959, 59 : i be divided into three parts on a plane parallel to the XY plane as viewed in a plane perpendicular to the optical axis.
このとき、 1 回目の反射で分割された分割光束 5 9 ,と 5 9 .」と 5 9 tとの間に は、 前述の如く光路差が生じており、 分割光束 5 9 :が 2回目の反射で更に分割 されて生じる分割光束 5 9 u、 5 9 5 9 間にも光路差が生じている。 同様 に、 1 回目の反射で生じた分割光束 5 9」、 5 9 ,,から生じる分割光束の間にも 光路差が生じている。 従って、 9分割された全ての分割光束相互間に光路差を 生じさせることができ、 各光路差が前述の如くレーザ光束 5 7の時間的コヒー レンス長以上の長さとなるように平面ミラー 4 8 a :〜 4 8 c :、 平面ミラ一 4 8 a ,~ 4 8 c」を配置することにより、 9つの分割光束 5 9 μ〜 5 9 :1:!相互間に は、 空間的コヒ一レンス (可干渉性) が無くなり、 被照射面 (レチクルパター ン面及びウェハ W面) 上の干渉縞の発生をよリー層低減することができる。 こ の場合、 9つの分割光束 5 9 Μ〜 5 9 uが第 1 フライアイレンズを橫成する異な るレンズ群に入射するように、 平面ミラ一 4 8 a :〜 4 8 c t、 平面ミラ一 4 8 a ,~ 4 8 C ,が配置される。 . In this case, first reflected in divided split light beams 5 9, 5 9, "and between 5 9 t is cause optical path difference as described above, the divided light fluxes 5 9: is the second time also between the reflection occurs is further divided by the split light beams 5 9 u, 5 9 5 9 optical path difference occurs. Similarly, there is an optical path difference between the split light beams generated from the split light beams 59 ", 59, and so on generated by the first reflection. Therefore, an optical path difference can be generated between all of the nine divided light beams, and the plane mirrors 48 and 48 are so arranged that each optical path difference is longer than the temporal coherence length of the laser light beam 57 as described above. a: ~ 4 8 c:, plane mirror one 4 8 a, by arranging the ~ 4 8 c ", nine split beam 5 9 μ ~ 5 9: 1 :! the mutual spatial Kohi one Reference (Coherence) is eliminated, and the generation of interference fringes on the irradiated surface (reticle pattern surface and wafer W surface) can be further reduced. In this case, as the nine split beam 5 9 Micromax ~ 5 9 u is incident on different that lens groups橫成the first fly-eye lens, a plane mirror one 4 8 a: ~ 4 8 c t, the plane mirror One 48 a, ~ 48 C, is arranged.
上記のような 2回折り曲げ反射が可能な光分割ユニット 1 1 8を用いると、 ビーム整形光学系 3 3におけるレーザ光束の断面の整形 (ビームの拡大) を任 意の方向について行っても良くなるので、 そのビーム整形光学系を含む各光学 素子の配置の自由度が向上する。 また、 ミラーの数や、 フライアイレンズを構 成するレンズエレメントの数を調整することにより、 第 1 フライアイレンズを 構成する 1つのレンズエレメントに 1対 1で分割光束を入射させることも可能 であるので、 より一層照度均一性を向上させることが可能となる。  By using the light splitting unit 1 18 that can perform two-fold bending reflection as described above, it is possible to shape the cross section of the laser beam in the beam shaping optical system 33 (enlarge the beam) in any direction. Therefore, the degree of freedom of arrangement of each optical element including the beam shaping optical system is improved. In addition, by adjusting the number of mirrors and the number of lens elements that compose the fly-eye lens, it is also possible to make a one-to-one split light beam incident on one lens element that composes the first fly-eye lens. As a result, the illuminance uniformity can be further improved.
《第 2の実施形態》  << 2nd Embodiment >>
次に、 本発明の第 2の実施形態を図 4に基づいて説明する。 ここで、 前述し た第 1の実施形態と同一若しくは同等の構成部分については、 同一の符号を用 いるとともに、 その説明を簡略化し若しくは省略するものとする。 この第 2の 実施形態の露光装置は、 光分割ュニッ卜と第 1 フライアイレンズの構成が異な るのみで、 その他の部分の構成は前述した第 1の実施形態と同一であるから、 以下においては上記の異なる点を中心として説明する。 Next, a second embodiment of the present invention will be described with reference to FIG. Where The same or equivalent components as those of the first embodiment are denoted by the same reference numerals, and the description thereof will be simplified or omitted. The exposure apparatus according to the second embodiment is different from the first embodiment only in the configuration of the light dividing unit and the first fly-eye lens. The configuration of the other parts is the same as that of the above-described first embodiment. Will be described centering on the different points described above.
図 4には、 本第 2の実施形態に係る光分割ユニット 1 8 ' 及び第 1 フライア ィレンズ 20 ' の構成が側面図にて示されている。  FIG. 4 is a side view showing the configuration of the light splitting unit 18 ′ and the first fly-eye lens 20 ′ according to the second embodiment.
光分割ユニット 1 8 ' は、 前述したビーム整形光学系 3 3からのレーザ光束 5 7の光路上に配置されている。 この光分割ユニット 1 8 ' は、 図 4に示され るように、 取付け枠 49と、 この取付け枠 4 9を構成する相互に対向する板状 部材 4 9 a、 4 9 b (但し、 図 4では紙面奧側の板状部材は隠れている) によ つて、 その傾斜角が (45 ° — α)、 45° 、 (45° + α) となるように、 保 持された長方形の 3枚の平面ミラー 48 d、 48 e、 48 f とを備えている。 これらの平面ミラー 48 d、 48 e、 48 f は、 レーザ光束 5 7の光軸に垂 直な断面 (X Z断面) 内の第 1方向 (Z軸方向) についてレーザ光束 5 7を複 数に分割可能なように Z軸方向に関して多段に配置されかつ前記光軸方向 (Y 華由方向) に所定距離ずつずらして配置されている。 このため、 これらの平面ミ ラー 48 d〜48 f に + Y方向に進んで来たレーザ光束 5 7が入射すると、 こ のレーザ光束 5 7は、 最も一 Y側 (+ Z側) に位置する平面ミラ一 4 8 dに入 射し該平面ミラー 48 dで反射される分割光束 5 9 dと、 平面ミラ一 48 dに 入射せずに平面ミラー 48 eに入射し該平面ミラー 48 eで反射される分割光 束 5 9 eと、 平面ミラ一 48 d及び 48 eに入射せずに平面ミラー 48 f に入 射し該平面ミラーで反射される分割光束 5 9 f とに分割される。  The light splitting unit 18 ′ is arranged on the optical path of the laser beam 57 from the beam shaping optical system 33 described above. As shown in FIG. 4, the light splitting unit 18 ′ includes a mounting frame 49 and plate members 49 a and 49 b facing each other, which constitute the mounting frame 49 (see FIG. 4). In the figure, the plate-like member on the far side of the paper is hidden), so that the inclination angles are (45 ° -α), 45 °, and (45 ° + α) The plane mirrors 48d, 48e and 48f are provided. These plane mirrors 48d, 48e, and 48f divide the laser beam 57 into a plurality in the first direction (Z-axis direction) in a cross section (XZ section) perpendicular to the optical axis of the laser beam 57. As far as possible, they are arranged in multiple stages in the Z-axis direction, and are arranged so as to be shifted by a predetermined distance in the optical axis direction (Y direction). Therefore, when the laser beam 57 traveling in the + Y direction enters these plane mirrors 48d to 48f, this laser beam 57 is located at the most Y side (+ Z side). The split beam 59 d that enters the plane mirror 48 d and is reflected by the plane mirror 48 d, enters the plane mirror 48 e without being incident on the plane mirror 48 d, and is reflected by the plane mirror 48 e The split light beam 59e is split into a split light beam 59e and a split light beam 59f which enters the plane mirror 48f without being incident on the plane mirrors 48d and 48e and is reflected by the plane mirror.
この場合、 平面ミラー 48 d~48 f の傾斜角が上記の如く設定されている ので、 分割光束 5 9 d〜5 9 f は、 平面ミラ一 48 d~48 f でそれぞれ反射 され、 いずれも前述した第 1 フライアイレンズ 20に代えて設けられた第 1 フ ライアイレンズ 2 0 ' の全面に向かって出射される。 すなわち、 このように分 割光束 5 9 d〜 5 9 f が第 1 フライアイレンズ 2 0 ' の全面に向かって出射さ れるように上記所定角度 αが定められている。 In this case, since the inclination angles of the plane mirrors 48 d to 48 f are set as described above, the split light fluxes 59 d to 59 f are reflected by the plane mirrors 48 d to 48 f, respectively, all of which are described above. The first fly eye provided in place of the first fly eye lens 20 Light is emitted toward the entire surface of the lie-eye lens 20 '. That is, the predetermined angle α is determined so that the split light fluxes 59 d to 59 f are emitted toward the entire surface of the first fly-eye lens 20 ′.
前記第 1 フライアイレンズ 2 0 ' としては、 第 1の実施形態の第 1 フライア ィレンズ 2 0のような特殊なものでは無く、 多数のレンズが集束された公知の フライアイレンズが用いられている。  The first fly-eye lens 20 ′ is not a special one like the first fly-eye lens 20 of the first embodiment, but a known fly-eye lens in which a large number of lenses are converged is used. .
本実施形態においては、 平面ミラー 4 8 d〜4 8 f の位置関係に応じて、 分 割光束 5 9 d〜 5 9 f 相互間に光路差及び入射角の角度差が生じ、 第 1 フライ アイレンズ 2 0 ' に入射する光束の空間的コヒーレンスが低下するので、 被照 射面での干渉縞が平滑化される。 したがって、 被照射面上の照度均一性を向上 させることが可能であり、 結果的にウェハ上に転写されるパターン線幅の均一 性を向上させることができる。  In the present embodiment, an optical path difference and an angle difference of an incident angle are generated between the divided luminous fluxes 59 d to 59 f according to the positional relationship between the plane mirrors 48 d to 48 f, and the first fly eye Since the spatial coherence of the light beam incident on the lens 20 ′ is reduced, the interference fringes on the illuminated surface are smoothed. Therefore, it is possible to improve the illuminance uniformity on the irradiated surface, and as a result, it is possible to improve the uniformity of the pattern line width transferred onto the wafer.
本第 2の実施形態では、 フライアイレンズ 2 0 ' に入射する各光束は、 それ ぞれ異なる入射角を有するので、 フライアイレンズ 2 0 ' を橫成する複数のレ ンズエレメントの射出面の面形状を、 凸面 (凸レンズ) とすることが望ましい。 これにより、 異なる入射角を持つ分割光束 5 9 d ~ 5 9 f の全てを、 効率良く レチクル Rに導くことが可能となる。  In the second embodiment, since each light beam incident on the fly-eye lens 20 ′ has a different incident angle, the exit surface of the plurality of lens elements forming the fly-eye lens 20 ′ is formed. It is desirable that the surface shape be a convex surface (convex lens). This makes it possible to efficiently guide all of the divided light beams 59 d to 59 f having different incident angles to the reticle R.
なお、 上記各実施形態では、 光分割ユニットを構成する反射ミラーは、 全て 平面ミラーであるものとしたが、 本発明がこれに限定されることはなく、 反射 ミラーの形状は、 凸面、 凹面、 シリンダ面等の形状であっても良い。 また、 複 数の反射面は、 同一部材の異なる箇所に形成されても良い。 また、 必要に応じ て、 光分割ユニッ トと第 1 フライアイレンズとの間に、 レンズ、 ミラー等、 他 の光学エレメントを配置することも可能である。 更に、 光分割ユニットを構成 する反射ミラーの枚数も上記各実施形態の如く 3枚に限定されるものではなく、 より多くのミラーを使用することで、 より一層干渉性を低減させることが可能 であることは言うまでもない。 また、 上記各実施形態では、 照度均一化光学系をダブルフライアイレンズで 構成するものとしたが、 これに限らず、 単一のフライアイレンズで構成しても 良く、 あるいは単一若しくはダブルのロッドレンズ (内面反射型インテグレー 夕) を使用することも勿論可能である。 また、 第 1 フライアイレンズに代えて、 D O E (回折光学素子) を使用し、 オプティカルインテグレー夕 (フライアイ レンズ、 又はロッドレンズなど) と組み合わせて照度均一化光学系を構成する こともできる。 例えば、 輪帯照明を用いる場合に、 光量ロスを少なくする観点 からは光源面における照度分布を輪帯状に設定することが望ましい。 かかる照 明分布を実現するためには、 フライアイレンズの場合には、 各レンズエレメン トを非球面に加工する必要があるがかかる加工作業は非現実的である。 これに 対して、 D〇 Eの場合には、 比較的簡単に非球面レンズと同等の機能を有する フレネルレンズを作製できるので、 このような場合に便利である。 また、 上記 第 1の実施形態の第 1 フライアイレンズ 2 0と同等の機能の D O Eを作成する 場合には、 同一透明基板上に第 1 フライアイレンズ 2 0の各レンズエレメン卜 に対応する配置で複数のフレネルレンズを作製し、 前述した遮蔽材 2 0 sに対 応する遮蔽膜 (遮光膜) をフレネルレンズ群の間に設ければ良い。 In each of the above embodiments, the reflection mirrors constituting the light splitting unit are all flat mirrors. However, the present invention is not limited to this, and the shape of the reflection mirror may be a convex surface, a concave surface, It may have a shape such as a cylinder surface. Further, a plurality of reflecting surfaces may be formed in different places of the same member. If necessary, another optical element such as a lens and a mirror can be arranged between the light splitting unit and the first fly-eye lens. Further, the number of reflecting mirrors constituting the light splitting unit is not limited to three as in the above embodiments, and the coherence can be further reduced by using more mirrors. Needless to say, there is. Further, in each of the above embodiments, the illuminance uniforming optical system is configured by a double fly-eye lens. However, the present invention is not limited thereto, and a single fly-eye lens may be configured. Of course, it is also possible to use a rod lens (internal reflection type integrator). Further, a DOE (diffractive optical element) may be used instead of the first fly-eye lens, and an illuminance uniforming optical system may be configured in combination with an optical integrator (such as a fly-eye lens or a rod lens). For example, when using annular illumination, it is desirable to set the illuminance distribution on the light source surface in an annular shape from the viewpoint of reducing the light amount loss. In order to realize such an illumination distribution, in the case of a fly-eye lens, it is necessary to machine each lens element into an aspherical surface, but such a machining operation is impractical. In contrast, in the case of D〇E, a Fresnel lens having the same function as an aspherical lens can be produced relatively easily, which is convenient in such a case. When a DOE having the same function as the first fly-eye lens 20 of the first embodiment is created, an arrangement corresponding to each lens element of the first fly-eye lens 20 is made on the same transparent substrate. Then, a plurality of Fresnel lenses may be manufactured, and a shielding film (light shielding film) corresponding to the above-described shielding material 20 s may be provided between the Fresnel lens groups.
なお、 第〗 フライアイレンズに代えて、 D O E (回折光学素子) を使用し、 フライアイレンズと組み合わせて照度均一化光学系を構成する場合、 D O巳の 構成によっては、 ◦次光がフライアイレンズの特定のレンズエレメント、 例え ば光軸上に位置するレンズエレメントに集中的に照射される場合が考えられる このような場合には、 レチクルパターン面における照度分布が不均一となるた め、 これを防止する観点から、 特定のレンズエレメントとして 0次光カツ 卜用 のダミーエレメン卜を用いたり、 その特定のレンズエレメン卜から出射される 光を遮光するようにすることが望ましい。  When a DOE (diffractive optical element) is used instead of the first fly-eye lens, and the illuminance uniforming optical system is configured in combination with the fly-eye lens, the next light may be It is conceivable that a specific lens element of the lens, for example, a lens element located on the optical axis is intensively irradiated.In such a case, the illuminance distribution on the reticle pattern surface becomes non-uniform. From the viewpoint of preventing the above, it is desirable to use a dummy element for the 0th-order light cut as a specific lens element or to shield light emitted from the specific lens element.
また、 上記各実施形態では、 光源 1 1 として狭帯域化レーザ光源を用いるこ とによりレ一ザ光の空間的コヒーレンスが上昇している場合を想定したが、 こ れに限らず、 任意の空間的コヒーレンスの高い光を出力する光源であれば、 レ 一ザ光源は勿論、 レーザ光源以外のその他の光源を使用する照明系及び露光装 置に対して、 本発明は好適に適用できる。 Also, in each of the above embodiments, it is assumed that the spatial coherence of the laser light is increased by using a narrow band laser light source as the light source 11. However, the present invention is not limited to a laser light source as well as an illumination system and an exposure apparatus that use other light sources other than a laser light source, as long as the light source outputs light with high spatial coherence. Can be suitably applied.
なお、 上記各実施形態では、 投影光学系 P Lとして縮小系を用いていたが、 これに限らず, 等倍系および拡大系のいずれを用いていも良い。  In each of the above embodiments, the reduction optical system is used as the projection optical system PL. However, the present invention is not limited to this, and any one of an equal magnification system and an enlargement optical system may be used.
また、 複数のレンズから構成される照明光学系、 投影光学系を露光装置本体 に組み込み光学調整するとともに、 多数の機械部品からなるレチクルステージ やウェハステージを露光装置本体に取り付けて配線や配管を接続し, 更に総合 調整 (電気調整、 動作確認等) をすることにより上記各実施形態の露光装置を 製造することができる。 なお、 IS光装置の製造は温度およびクリーン度等が管 理されたクリーンルームで行なうことが望ましい。  In addition, the illumination optical system and projection optical system composed of multiple lenses are incorporated into the exposure apparatus main body for optical adjustment, and a reticle stage and wafer stage consisting of many mechanical parts are attached to the exposure apparatus main body to connect wiring and piping. The exposure apparatus of each of the above embodiments can be manufactured by performing overall adjustment (electrical adjustment, operation check, etc.). It is desirable that the IS optical device be manufactured in a clean room where the temperature, cleanliness, etc. are controlled.
なお、 上記実施形態では、 本発明がスキャニング · ステツパに適用された場 合について説明したが、 これに限らず、 マスクと基板とを静止した状態でマス クのパターンを基板に転写するとともに、 基板を順次ステップ移動させるステ ップ · アンド · リピート方式の投影 11光装置は勿論、 投影光学系を用いること なくマスクと基板とを密着させてマスクのパターンを基板に転写するプロキシ ミティ 15光装置にも本発明は好適に適用できるものである。 後者の場合であつ ても、 本発明に係る照明装置によりマスクを均一な照度で照明することができ るので、 該マスクに形成されたパターンが転写される基板上の照度均一性を確 保することができ、 これにより基板上に形成されるパターン線幅の均一性が向 上し、 基板上に微細パターンを高精度に転写することが可能となる。  In the above embodiment, the case where the present invention is applied to the scanning stepper has been described. However, the present invention is not limited to this, and the mask pattern is transferred to the substrate while the mask and the substrate are kept stationary. Step-and-repeat type projection, in which the mask pattern is transferred to the substrate in a step-and-repeat manner, and the proximity of the mask to the substrate without using a projection optical system to transfer the mask pattern to the substrate. However, the present invention can be suitably applied. Even in the latter case, the mask can be illuminated with uniform illuminance by the illuminating device according to the present invention, so that the illuminance uniformity on the substrate onto which the pattern formed on the mask is transferred is ensured. As a result, the uniformity of the pattern line width formed on the substrate is improved, and the fine pattern can be transferred onto the substrate with high accuracy.
また、 上記各実施形態では、 本発明が露光光 E Lとして、 A r Fエキシマレ —ザ光 (波長 1 9 3 n m )、 K r Fエキシマレ一ザ光 (波長 2 4 8 n m )、 ある いは F ._,レーザ光(波長 1 5 7 n m )等を用いる露光装置に適用された場合につ いて説明したが、 これに限らず、 波長 1 4 6 n mの K r _,レーザ光、 波長 1 2 6 n mの A r , レーザ光等の真空紫外光を用いる露光装置にも本発明は好適に適 用できる。 In each of the above embodiments, the present invention provides an exposure light EL as an ArF excimer laser light (wavelength: 193 nm), a KrF excimer laser light (wavelength: 248 nm), or an Fr excimer laser light (wavelength: 248 nm). Although the description has been given of the case where the present invention is applied to an exposure apparatus using ._, laser light (wavelength: 157 nm), etc., the present invention is not limited to this. Kr_, laser light, wavelength 1 The present invention is also suitable for an exposure apparatus using vacuum ultraviolet light such as 6 nm Ar and laser light. Can be used.
また、 D F B半導体レーザ又はファイバ一レーザから発振される赤外域、 又 は可視域の単一波長レーザ光を、 例えばエルビウム (又はエルビウムとイツテ ルビゥ厶の両方) がドープされたファイバーアンプで増幅し、 非線形光学結晶 を用いて紫外光に波長変換した高調波を用いても良い。  In addition, a single-wavelength laser beam in the infrared or visible range oscillated from a DFB semiconductor laser or a fiber laser is amplified by, for example, a fiber amplifier doped with erbium (or both erbium and ytterbium). It is also possible to use a harmonic whose wavelength has been converted to ultraviolet light using a nonlinear optical crystal.
例えば、 単一波長レーザの発振波長を 1 . 5 1〜 1 . 5 9 imの範囲内とす ると、 発生波長が 1 89〜 "! 9 9 n mの範囲内である 8倍高調波、 又は発生波 長が 1 5 1 ~ 1 5 9 nmの範囲内である 1 0倍高調波が出力される。 特に発振 波長を 1 . 544〜 1 . 5 5 3 imの範囲内とすると、 発生波長が 1 9 3〜 1 94 n mの範囲内の 8倍高調波、 即ち A r Fエキシマレーザ光とほぼ同一波長 となる紫外光が得られ、 発振波長を 1 . 5 7~ 1 . 58 の範囲内とすると、 発生波長が 1 5 7~ 1 58 nmの範囲内の 1 0倍高調波、即ち F レーザ光とほ ぼ同一波長となる紫外光が得られる。  For example, if the oscillation wavelength of a single-wavelength laser is in the range of 1.51 to 1.59 im, the 8th harmonic whose generation wavelength is in the range of 189 to "! 99 nm, or The 10th harmonic whose output wavelength is in the range of 151 to 159 nm is output, especially when the oscillation wavelength is in the range of 1.544 to 1.553 im. An 8th harmonic within the range of 93 to 194 nm, that is, ultraviolet light having substantially the same wavelength as the ArF excimer laser light is obtained, and the oscillation wavelength is within the range of 1.57 to 1.58. Then, the 10th harmonic having a generated wavelength in the range of 157 to 158 nm, that is, ultraviolet light having substantially the same wavelength as the F laser light is obtained.
また、 発振波長を 1 . 03~ 1 . 1 2 mの範囲内とすると、 発生波長が 1 4 7〜 1 60 n mの範囲内である 7倍高調波が出力され、 特に発振波長を 1 . 09 9〜 1 . 1 0 6 / mの範囲内とすると、 発生波長が 1 57〜 1 58 timの 範囲内の 7倍高調波、即ち レーザ光とほぼ同一波長となる紫外光が得られる c この場合、 単一波長発振レーザとしては例えばイッテルビウム ' ド一プ ' ファ ィバ一レーザを用いることができる。 If the oscillation wavelength is in the range of 1.03 to 1.12 m, a 7th harmonic whose output wavelength is in the range of 147 to 160 nm is output, and especially the oscillation wavelength is 1.09. 9 to 1.1 0 when in the range of 6 / m, 7 harmonic in the range generation wavelength of 1 57~ 1 58 tim, i.e. the c substantially the same wavelength as comprising ultraviolet light is obtained when the laser beam As the single-wavelength oscillation laser, for example, a ytterbium 'doped' fiber laser can be used.
《デバイス製造方法》  《Device manufacturing method》
次に上述したリソグラフィシステム (露光装置) 及び露光方法をリソグラフ ィ工程で使用したデバィスの製造方法の実施形態について説明する。  Next, an embodiment of a device manufacturing method using the above-described lithography system (exposure apparatus) and exposure method in a lithography step will be described.
図 5には、 デバイス ( I Cや L S I等の半導体チップ、 液晶パネル、 CC D、 薄膜磁気ヘッド、 マイクロマシン等) の製造例のフローチャートが示されてい る。 図 5に示されるように、 まず、 ステップ 20 1 (設計ステップ) において、 デバイスの機能 ·性能設計 (例えば、 半導体デバイスの回路設計等) を行い、 その機能を実現するためのパターン設計を行う。引き続き、ステップ 2 0 2 (マ スク製作ステップ) において、 設計した回路パターンを形成したマスクを製作 する。 一方、 ステップ 2 0 3 (ウェハ製造ステップ) において、 シリコン等の 材料を用いてウェハを製造する。 Figure 5 shows a flowchart of an example of manufacturing devices (semiconductor chips such as ICs and LSIs, liquid crystal panels, CCDs, thin-film magnetic heads, micromachines, etc.). As shown in FIG. 5, first, in step 201 (design step), a device function / performance design (for example, circuit design of a semiconductor device) is performed. A pattern is designed to realize the function. Subsequently, in step 202 (mask manufacturing step), a mask on which the designed circuit pattern is formed is manufactured. On the other hand, in step 203 (wafer manufacturing step), a wafer is manufactured using a material such as silicon.
次に、 ステップ 2 0 4 (ウェハ処理ステップ) において、 ステップ 2 0 1 〜 ステップ 2 0 3で用意したマスクとウェハを使用して、 後述するように、 リソ グラフィ技術等によってウェハ上に実際の回路等を形成する。 次いで、 ステツ プ 2 0 5 (デバイス組立てステップ) において、 ステップ 2 0 4で処理された ウェハを用いてデバイス組立てを行う。 このステップ 2 0 5には、 ダイシング 工程、 ボンディング工程、 及びパッケージング工程 (チップ封入) 等の工程が 必要に応じて含まれる。  Next, in step 204 (wafer processing step), using the mask and the wafer prepared in steps 201 to 203, an actual circuit is formed on the wafer by lithography technology or the like as described later. Etc. are formed. Next, in step 205 (device assembling step), device assembling is performed using the wafer processed in step 204. Step 205 includes, as necessary, processes such as a dicing process, a bonding process, and a packaging process (chip encapsulation).
最後に、 ステップ 2 0 6 (検査ステップ) において、 ステップ 2 0 5で作成 されたデバイスの動作確認テス卜、 耐久テスト等の検査を行う。 こうした工程 を経た後にデバイスが完成し、 これが出荷される。  Finally, in step 206 (inspection step), inspections such as an operation confirmation test and a durability test of the device created in step 205 are performed. After these steps, the device is completed and shipped.
図 6には、 半導体デバイスにおける、 上記ステップ 2 0 4の詳細なフロー例 が示されている。 図 6のステップ 2 1 1 (酸化ステップ) においてはウェハの 表面を酸化させる。 ステップ 2 1 2 ( C V Dステップ) においてはウェハ表面 に絶縁膜を形成する。 ステップ 2 〗 3 (電極形成ステップ) においてはウェハ 上に電極を蒸着によって形成する。ステップ 2 1 4 (イオン打ち込みステップ) においてはウェハにイオンを打ち込む。 以上のステップ 2 1 1 〜ステップ 2 1 4それぞれは、 ウェハ処理の各段階の前処理工程を構成しており、 各段階にお いて必要な処理に応じて選択されて実行される。  FIG. 6 shows a detailed flow example of step 204 in the semiconductor device. In step 2 11 (oxidation step) in FIG. 6, the wafer surface is oxidized. In step 2 12 (CVD step), an insulating film is formed on the wafer surface. In steps 2-3 (electrode formation step), electrodes are formed on the wafer by vapor deposition. In step 2 14 (ion implantation step), ions are implanted into the wafer. Each of the above-mentioned steps 211 to 214 constitutes a pre-processing step of each stage of wafer processing, and is selected and executed according to a necessary process in each stage.
ウェハプロセスの各段階において、 上述の前処理工程が終了すると、 以下の ようにして後処理工程が実行される。 この後処理工程では、 まず、 ステップ 2 1 5 (レジス卜形成ステップ) において、 ウェハに感光剤を塗布する。 引き続 き、 ステップ 2 1 6 (露光ステップ) において、 上で説明した露光装置及び露 光方法によってマスク (レチクル) の回路パターンをウェハに転写する。 次に、 ステップ 2 1 8 (エッチングステップ) において、 レジス卜が残存している部 分以外の部分の露出部材をエッチングにより取り去る。 そして、 ステップ 2 1 9 (レジス卜除去ステップ) において、 エッチングが済んで不要となったレジ ス卜を取り除く。 In each stage of the wafer process, when the above-described pre-processing step is completed, the post-processing step is executed as follows. In this post-processing step, first, in step 2 15 (register forming step), a photosensitive agent is applied to the wafer. Subsequently, in step 2 16 (exposure step), the exposure apparatus and the exposure apparatus described above are used. The circuit pattern of the mask (reticle) is transferred to the wafer by an optical method. Next, in Step 218 (etching step), the exposed members other than the portion where the resist remains are removed by etching. Then, in step 219 (resist removing step), the unnecessary resist after etching is removed.
これらの前処理工程と後処理工程とを繰り返し行うことによって、 ウェハ上 に多重に回路パターンが形成される。  By repeating these pre-processing and post-processing steps, multiple circuit patterns are formed on the wafer.
以上説明した本実施形態のデバイス製造方法を用いれば、 露光工程 (ステツ プ 2 1 6 ) において上記各実施形態の露光装置が用いられるので、 均一な照度 の露光光により、 微細パターンを基板上に精度良く転写することができ、 結果 的に、 高集積度のマイクロデバイスの生産性を向上させることが可能となる。 産業上の利用可能性  If the device manufacturing method of the present embodiment described above is used, the exposure apparatus of each of the above embodiments is used in the exposure step (Step 2 16), so that the fine pattern is formed on the substrate by the exposure light with uniform illuminance. The transfer can be performed with high accuracy, and as a result, the productivity of a highly integrated microdevice can be improved. Industrial applicability
以上説明したように、 本発明の照明装置は、 被照射面を均一な照度で照明す るのに適している。 また、 本発明の露光装置は、 集積回路等のマイクロデバイ スを製造するリソグラフイエ程において、 微細パターンをウェハ等の基板上に 精度良く複数層重ねて形成するのに適している。 また、 本発明に係るデバイス 製造方法は、 微細なパターンを有するデバイスの製造に適している。  As described above, the illumination device of the present invention is suitable for illuminating an irradiated surface with uniform illuminance. Further, the exposure apparatus of the present invention is suitable for forming a plurality of fine patterns on a substrate such as a wafer with high precision in a lithography process for manufacturing microdevices such as integrated circuits. Further, the device manufacturing method according to the present invention is suitable for manufacturing a device having a fine pattern.

Claims

請 求 の 範 囲 The scope of the claims
1 . 被照射面を照明する照明装置であって、 1. A lighting device for illuminating an irradiated surface,
光源と ;  Light source;
前記光源からの光束を複数に分割するとともに、 各分割光束相互間の前記光 源から前記被照射面に至る光路長を異ならせる複数の反射面を有する光分割ュ ニットと ; を備える照明装置。  A light splitting unit that splits a light beam from the light source into a plurality of light beams and has a plurality of reflective surfaces that make the optical path length from the light source to the irradiated surface between the split light beams different from each other.
2 . 請求項 1 に記載の照明装置において、 2. The lighting device according to claim 1,
前記複数の反射面は、 前記光源からの前記光束の光軸に垂直な断面内の所定 の一方向について前記光束を複数に分割可能なように前記所定の一方向に関し て多段に配置されかつ前記光軸方向に所定距離ずつずらして配置されているこ とを特徴とする照明装置。  The plurality of reflection surfaces are arranged in multiple stages in the predetermined one direction so that the light beam can be divided into a plurality of predetermined one directions in a cross section perpendicular to an optical axis of the light beam from the light source, and An illuminating device, wherein the illuminating device is displaced by a predetermined distance in an optical axis direction.
3 . 請求項 2に記載の照明装置において、 3. The lighting device according to claim 2,
前記所定の一方向は、 前記光源から出力される光の可干渉性が高い方向であ ることを特徴とする照明装置。  The lighting device according to claim 1, wherein the predetermined direction is a direction in which the light output from the light source has high coherence.
4 . 請求項 1 に記載の照明装置において、 4. The lighting device according to claim 1,
前記複数の反射面は、 それぞれ異なる反射ミラーの反射面であることを特徴 とする照明装置。  The plurality of reflecting surfaces are respectively reflecting surfaces of different reflecting mirrors.
5 . 請求項 4に記載の照明装置において、 5. The lighting device according to claim 4,
前記複数の反射ミラーのうち、 前記光束の光軸方向の後側に隣接する他の反 射ミラーが存在するという条件を満たす反射ミラーは、 その姿勢を維持した状 態で前記光軸に沿って後側に所定距離平行移動したときに、 前記他の反射ミラ 一の反射面と自身の反射面とによって隙間のない単一の反射面を構成するよう に、 その側面の断面形状が設定されていることを特徴とする照明装置。 Among the plurality of reflecting mirrors, a reflecting mirror that satisfies the condition that there is another reflecting mirror adjacent to the rear side in the optical axis direction of the light beam is provided along the optical axis while maintaining its posture. When translated rearward by a predetermined distance, the other reflection mirror A lighting device, wherein a cross-sectional shape of a side surface is set so that a single reflecting surface having no gap is formed by one reflecting surface and its own reflecting surface.
6 . 請求項 1 に記載の照明装置において、 6. The lighting device according to claim 1,
前記複数の反射面は、 同一部材の異なる箇所にそれぞれ形成されていること を特徴とする照明装置。  The lighting device according to claim 1, wherein the plurality of reflection surfaces are formed at different portions of the same member.
7 . 請求項 1 に記載の照明装置において、 7. The lighting device according to claim 1,
前記複数の反射面のそれぞれは、 反射率が 9 5 %程度以上であることを特徴 とする照明装置。  The lighting device, wherein each of the plurality of reflection surfaces has a reflectance of about 95% or more.
8 . 請求項 1 に記載の照明装置において、 8. The lighting device according to claim 1,
前記光分割ユニットは、 前記複数の反射面として、 前記光源からの前記光束 の光軸に垂直な断面内の所定の第 1方向に関して多段に配置されかつ前記光軸 方向に所定距離ずつずらして配置され、 前記光束を複数に分割するとともに各 分割光束の光軸をそれぞれ第 2方向に折り曲げる第 1の反射面群と、 前記第 2 方向に垂直な断面内の所定の第 3方向に関して多段に配置されかつ前記第 2方 向に所定距離ずつずらして配置され、 前記各分割光束を複数に分割するととも に各分割光束の光軸をそれぞれ第 4方向に折り曲げる第 2の反射面群とを有す ることを特徴とする照明装置。  The light splitting units are arranged in multiple stages with respect to a predetermined first direction in a cross section perpendicular to an optical axis of the light flux from the light source as the plurality of reflecting surfaces, and are arranged by being shifted by a predetermined distance in the optical axis direction. A first reflecting surface group that divides the light beam into a plurality of light beams and bends the optical axis of each of the divided light beams in a second direction, and is arranged in multiple stages with respect to a predetermined third direction in a cross section perpendicular to the second direction. And a second reflection surface group that is arranged so as to be shifted by a predetermined distance in the second direction and divides each of the divided light beams into a plurality of light beams and bends the optical axis of each of the divided light beams in the fourth direction. A lighting device, comprising:
9 . 請求項 1 に記載の照明装置において、 9. The lighting device according to claim 1,
前記光分割ュニッ卜は、 前記複数の反射面でそれぞれ反射される前記分割光 束相互間に前記光の時間的コヒーレンス長以上の前記光路長の差を生じさせる ことを特徴とする照明装置。 The lighting device according to claim 1, wherein the light splitting unit causes a difference in the optical path length equal to or longer than a temporal coherence length of the light between the split light beams respectively reflected by the plurality of reflecting surfaces.
1 0 . 請求項 1 に記載の照明装置において、 10. The lighting device according to claim 1,
前記光分割ュニッ 卜と前記被照射面との間の前記光の光路上に配置され、 前 記光分割ュニッ卜で分割された各分割光束が照射されるオプティカルインテグ レータを含む照度均一化光学系を更に備えることを特徴とする照明装置。  An illuminance equalizing optical system including an optical integrator disposed on an optical path of the light between the light splitting unit and the irradiated surface and irradiated with each split light beam split by the light splitting unit. A lighting device, further comprising:
1 1 . 請求項 1 0に記載の照明装置において、 11. The lighting device according to claim 10, wherein
前記オプティカルインテグレー夕は、 フライアイレンズ、 ロッドレンズ、 及 び回折光学素子のいずれかであることを特徴とする照明装置。  The lighting device according to claim 1, wherein the optical integrator is one of a fly-eye lens, a rod lens, and a diffractive optical element.
1 2 . 請求項 1 0に記載の照明装置において、 12. The lighting device according to claim 10, wherein
前記オプティカルィンテグレー夕は、 複数のエレメン卜を有し、  The optical lighting device has a plurality of elements,
前記光分割ュニッ卜により分割される各分割光束が、 少なくとも 1つの前記 エレメン卜を要素とする相互に異なるエレメント集合に、 それぞれ照射される ことを特徴とする照明装置。  A lighting device, wherein each split light beam split by the light splitting unit is applied to a different element set having at least one of the elements as an element.
1 3 . 請求項 1 2に記載の照明装置において、 13. The lighting device according to claim 12,
前記異なる分割光束がそれぞれ照射されるエレメン卜集合相互間は、 遮光部 材により区画されていることを特徴とする照明装置。  A lighting device characterized in that a space between element sets to which the different divided light beams are respectively irradiated is partitioned by a light shielding member.
1 . 請求項 1 3に記載の照明装置において、 1. The lighting device according to claim 13,
前記オプティカルィンテグレ一タは、 フライアイレンズ及び回折光学素子の いずれかであることを特徴とする照明装置。  The lighting device according to claim 1, wherein the optical integral is one of a fly-eye lens and a diffractive optical element.
1 5 . 請求項 1 0に記載の照明装置において、 15. The lighting device according to claim 10, wherein
前記光分割ユニッ トは、 前記各分割光束が、 前記オプティカルインテグレー 夕の全面にそれぞれ入射するように前記分割光束相互の前記オプティカルィン テグレー夕に対する入射角を異ならせることを特徴とする照明装置。 The light splitting unit is arranged so that each of the split light beams is incident on the entire surface of the optical integrator. An illuminating device characterized in that the incident angle with respect to the tigray is different.
1 6 . 請求項 1 に記載の照明装置において、 16. The lighting device according to claim 1,
前記光源は、 レーザ光源であることを特徴とする照明装置。  The lighting device, wherein the light source is a laser light source.
1 7 . 被照射面を照明する照明装置であって、 1 7. A lighting device for illuminating an irradiated surface,
光源と ;  Light source;
前記光源からの光束の光軸に垂直な断面内の所定の一方向について前記光束 を複数に分割可能なように前記所定の一方向に関して多段に配置され、 かつ前 記光軸方向に所定距離ずらして配置される複数の反射面を有する反射ュニッ卜 と ; を備える照明装置。  The light flux from the light source is arranged in multiple stages with respect to the predetermined one direction so that the light flux can be divided into a plurality of pieces in a predetermined direction in a cross section perpendicular to the optical axis of the light flux, and is shifted by a predetermined distance in the optical axis direction. A reflecting unit having a plurality of reflecting surfaces arranged in a horizontal direction.
1 8 . 請求項 1 7に記載の照明装置であって、 18. The lighting device according to claim 17, wherein
前記光源と、 前記反射ユニットとの間に配置され、 前記光源からの光束の断 面形状を整形する整形光学系を有し、  A shaping optical system arranged between the light source and the reflection unit, for shaping a cross-sectional shape of a light beam from the light source;
前記反射ュニッ卜は、 前記整形光学系で整形された後の前記光束を複数に分 割することを特徴とする照明装置。  The illumination unit, wherein the reflection unit divides the light beam after being shaped by the shaping optical system into a plurality of light beams.
1 9 . 請求項 1 7に記載の照明装置であって、 19. The lighting device according to claim 17, wherein
前記複数の反射面は、 前記光源からの光束を複数に分割すると共に、 各分割 光束相互間の前記光源から前記被照射面に至る光路長を異ならせることを特徴 とする照明装置。  The illuminating device, wherein the plurality of reflection surfaces divides a light beam from the light source into a plurality of light beams, and changes a light path length from the light source to the irradiated surface between the divided light beams.
2 0 . マスクのパターン面に形成されたパターンを基板に転写する露光装置 であって、 20. An exposure apparatus for transferring a pattern formed on a pattern surface of a mask to a substrate,
光源と ; 前記光源からの光束を複数に分割するとともに、 各分割光束相互間の前記光 源から前記パターンが形成されたパターン面に至る光路長を異ならせる複数の 反射面を有する光分割ュニッ卜と ; を備える露光装置。 Light source; A light splitting unit having a plurality of reflecting surfaces for splitting a light beam from the light source into a plurality of light beams and having different optical path lengths from the light source to the pattern surface on which the pattern is formed between the split light beams; Exposure equipment provided.
2 1 . 請求項 2 0に記載の露光装 Sにおいて、 21. In the exposure apparatus S according to claim 20,
前記光分割ュニッ卜と前記パターン面との間の前記光の光路上に配置され、 前記光分割ュニッ卜で分割された各分割光束が照射される才プティカルインテ グレータを含む照度均一化光学系を更に備えることを特徴とする露光装置。  An illuminance uniforming optical system that is disposed on an optical path of the light between the light splitting unit and the pattern surface and includes a optical integrator that is irradiated with each split light beam split by the light splitting unit. An exposure apparatus, further comprising:
2 2 . 請求項 2 1 に記載の 光装 ^において、 22. In the optical device ^ according to claim 21,
前記オプティカルィンテグレー夕は、 複数のエレメン卜を有し、  The optical lighting device has a plurality of elements,
前記光分割ュニッ卜により分割される各分割光束が、 少なくとも 1 つの前記 エレメン卜を要素とする相互に異なるエレメン卜集合に、 それぞれ照射される ことを特徴とする露光装置。  An exposure apparatus, wherein each of the split light beams split by the light splitting unit is irradiated to mutually different element sets each including at least one of the elements.
2 3 . 請求項 2 0に記載の露光装置において、 23. The exposure apparatus according to claim 20, wherein
前記マスクから出射される前記光を前記基板に投射する投影光学系を更に備 えることを特徴とする Ϊ1光装置。  The optical device according to claim 1, further comprising a projection optical system for projecting the light emitted from the mask onto the substrate.
2 4 . 請求項 2 0に記載の露光装置において、 24. The exposure apparatus according to claim 20, wherein
前記光源は、 レーザ光源であることを特徴とする露光装置。  An exposure apparatus, wherein the light source is a laser light source.
2 5 . マスクのパターン面に形成されたパターンを基板に転写する露光装置 であって、 25. An exposure apparatus for transferring a pattern formed on a pattern surface of a mask onto a substrate,
光源と ;  Light source;
前記光源からの光束の光軸に垂直な断面内の所定の一方向について前記光束 を複数に分割可能なように前記所定の一方向に関して多段に配置され、 力つ前 記光軸方向に所定距離ずらして配置される複数の反射面を有する反射ュニット と ;を備える露光装置。 The light beam in a predetermined direction in a cross section perpendicular to the optical axis of the light beam from the light source; A reflection unit having a plurality of reflection surfaces which are arranged in multiple stages with respect to the predetermined direction so as to be able to be divided into a plurality of parts, and which are displaced by a predetermined distance in the optical axis direction.
2 6 . 請求項 2 5に記載の露光装置であって、 26. The exposure apparatus according to claim 25, wherein
前記複数の反射面は、 前記光源からの光束を複数に分割すると共に、 各分割 光束相互間の前記光源から前記被照射面に至る光路長を異ならせることを特徴 とする露光装置。  An exposure apparatus, wherein the plurality of reflecting surfaces divide a light beam from the light source into a plurality of light beams and vary the optical path length from the light source to the irradiated surface between the divided light beams.
2 7 . リソグラフイエ程を含むデバイス製造方法であって、 27. A device manufacturing method including a lithographic process,
前記リソグラフイエ程において、 請求項 2 0 - 2 6のいずれか一項に記載の 露光装置を用いて露光を行うことを特徴とするデバイス製造方法。  27. A device manufacturing method, comprising performing exposure using the exposure apparatus according to claim 20 in the lithographic process.
PCT/JP2000/007830 1999-11-09 2000-11-08 Illuminator, aligner, and method for fabricating device WO2001035451A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU13018/01A AU1301801A (en) 1999-11-09 2000-11-08 Illuminator, aligner, and method for fabricating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31773299 1999-11-09
JP11/317732 1999-11-09

Publications (1)

Publication Number Publication Date
WO2001035451A1 true WO2001035451A1 (en) 2001-05-17

Family

ID=18091433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007830 WO2001035451A1 (en) 1999-11-09 2000-11-08 Illuminator, aligner, and method for fabricating device

Country Status (2)

Country Link
AU (1) AU1301801A (en)
WO (1) WO2001035451A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029875A2 (en) * 2001-09-28 2003-04-10 Carl Zeiss Microelectronic Systems Gmbh Lighting system
WO2003029873A2 (en) * 2001-09-28 2003-04-10 Carl Zeiss Jena Gmbh Method and device for reducing speckle in an optical system
EP1324136A1 (en) * 2001-12-28 2003-07-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
JP2007189079A (en) * 2006-01-13 2007-07-26 Canon Inc Illuminating optical system, exposure device having it, and manufacturing method of device
WO2007141185A2 (en) * 2006-06-09 2007-12-13 Carl Zeiss Laser Optics Gmbh Homogenizer with reduced interference
DE102009009366A1 (en) * 2009-02-18 2010-08-19 Limo Patentverwaltung Gmbh & Co. Kg Device for homogenizing laser radiation
JP2010192914A (en) * 2003-10-28 2010-09-02 Nikon Corp Illumination optical apparatus, and projection exposure apparatus
JP2010199485A (en) * 2009-02-27 2010-09-09 Ushio Inc Light source device
JP2010226117A (en) * 2003-11-20 2010-10-07 Nikon Corp Light flux conversion element, lighting optical device, exposure system, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US10388543B2 (en) 2017-03-28 2019-08-20 SCREEN Holdings Co., Ltd. Substrate processing device, substrate processing method, and ultraviolet irradiator selecting method
JP2019148694A (en) * 2018-02-27 2019-09-05 株式会社オーク製作所 Projection exposure device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358827A (en) * 1986-08-29 1988-03-14 Nippon Telegr & Teleph Corp <Ntt> Exposure device
EP0266203A2 (en) * 1986-10-30 1988-05-04 Canon Kabushiki Kaisha An illumination device
US5463497A (en) * 1989-06-08 1995-10-31 Canon Kabushiki Kaisha Illumination device including an optical integrator defining a plurality of secondary light sources and related method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6358827A (en) * 1986-08-29 1988-03-14 Nippon Telegr & Teleph Corp <Ntt> Exposure device
EP0266203A2 (en) * 1986-10-30 1988-05-04 Canon Kabushiki Kaisha An illumination device
US5463497A (en) * 1989-06-08 1995-10-31 Canon Kabushiki Kaisha Illumination device including an optical integrator defining a plurality of secondary light sources and related method

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003029873A2 (en) * 2001-09-28 2003-04-10 Carl Zeiss Jena Gmbh Method and device for reducing speckle in an optical system
WO2003029873A3 (en) * 2001-09-28 2003-09-12 Zeiss Carl Jena Gmbh Method and device for reducing speckle in an optical system
WO2003029875A3 (en) * 2001-09-28 2003-12-11 Zeiss Carl Microelectronic Sys Lighting system
WO2003029875A2 (en) * 2001-09-28 2003-04-10 Carl Zeiss Microelectronic Systems Gmbh Lighting system
EP1324136A1 (en) * 2001-12-28 2003-07-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
US6753946B2 (en) 2001-12-28 2004-06-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
KR101699827B1 (en) 2003-10-28 2017-01-25 가부시키가이샤 니콘 Projection aligner
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2011211230A (en) * 2003-10-28 2011-10-20 Nikon Corp Optical illumination device and projection exposure device
KR101921434B1 (en) 2003-10-28 2018-11-22 가부시키가이샤 니콘 Projection aligner
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2013191858A (en) * 2003-10-28 2013-09-26 Nikon Corp Illumination optical device and projection aligner
JP2013211558A (en) * 2003-10-28 2013-10-10 Nikon Corp Illumination optical device and projection exposure device
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2016053718A (en) * 2003-10-28 2016-04-14 株式会社ニコン Illumination optical device and projection exposure device
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2010192914A (en) * 2003-10-28 2010-09-02 Nikon Corp Illumination optical apparatus, and projection exposure apparatus
KR20150031454A (en) * 2003-10-28 2015-03-24 가부시키가이샤 니콘 Projection aligner
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
JP2016026306A (en) * 2003-11-20 2016-02-12 株式会社ニコン Light flux conversion device, illumination optical device, exposure device and exposure method
JP2016212434A (en) * 2003-11-20 2016-12-15 株式会社ニコン Light flux conversion element, illumination optical device, exposure apparatus, and exposure method
JP2015008304A (en) * 2003-11-20 2015-01-15 株式会社ニコン Light flux conversion element, illumination optical device, exposure device, and exposure method
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
JP2014195094A (en) * 2003-11-20 2014-10-09 Nikon Corp Light flux conversion element, illumination optical device, exposure device, and exposure method
JP2010226117A (en) * 2003-11-20 2010-10-07 Nikon Corp Light flux conversion element, lighting optical device, exposure system, and exposure method
JP2017227906A (en) * 2003-11-20 2017-12-28 株式会社ニコン Flux conversion element, illumination optical device, exposure device, and exposure method
JP2011233911A (en) * 2003-11-20 2011-11-17 Nikon Corp Light flux conversion element, illumination optical device, exposure device, and exposure method
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
JP2007189079A (en) * 2006-01-13 2007-07-26 Canon Inc Illuminating optical system, exposure device having it, and manufacturing method of device
WO2007141185A3 (en) * 2006-06-09 2008-02-28 Zeiss Carl Laser Optics Gmbh Homogenizer with reduced interference
KR101227803B1 (en) 2006-06-09 2013-01-29 칼 짜이스 레이저 옵틱스 게엠베하 Homogenizer with reduced interference
WO2007141185A2 (en) * 2006-06-09 2007-12-13 Carl Zeiss Laser Optics Gmbh Homogenizer with reduced interference
US8724223B2 (en) 2009-02-18 2014-05-13 Limo Patentverwaltung Gmbh & Co. Kg Device for homogenizing laser radiation
DE102009009366A1 (en) * 2009-02-18 2010-08-19 Limo Patentverwaltung Gmbh & Co. Kg Device for homogenizing laser radiation
JP2010199485A (en) * 2009-02-27 2010-09-09 Ushio Inc Light source device
US10388543B2 (en) 2017-03-28 2019-08-20 SCREEN Holdings Co., Ltd. Substrate processing device, substrate processing method, and ultraviolet irradiator selecting method
TWI679503B (en) * 2017-03-28 2019-12-11 日商斯庫林集團股份有限公司 Substrate processing device, substrate processing method, and ultraviolet irradiation means selecting method
JP2019148694A (en) * 2018-02-27 2019-09-05 株式会社オーク製作所 Projection exposure device

Also Published As

Publication number Publication date
AU1301801A (en) 2001-06-06

Similar Documents

Publication Publication Date Title
US7326948B2 (en) Beam modifying device, lithographic projection apparatus, method of treating a beam, and device manufacturing method
JP4333033B2 (en) Exposure apparatus, exposure method, and device manufacturing method
US7924406B2 (en) Stage apparatus, lithographic apparatus and device manufacturing method having switch device for two illumination channels
US6238063B1 (en) Illumination optical apparatus and projection exposure apparatus
EP1681710A1 (en) Lighting optical device and projection aligner
JP2017045064A (en) Illumination optical apparatus, exposure apparatus, and method for manufacturing device
US7224441B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
US8431916B2 (en) Radiation source and lithographic apparatus
JP2002043221A (en) Lithography projection device
WO2006070580A1 (en) Optical integrator, illumination optical device, photolithograph, photolithography, and method for fabricating device
US7081962B2 (en) Aberration measuring apparatus for an optical system utilizing soft x-rays
WO2001035451A1 (en) Illuminator, aligner, and method for fabricating device
JP2001264696A (en) Illumination optical system and exposure device provided with the same
US7486439B2 (en) Projection optical system, exposure apparatus and device fabricating method
JP2001237183A (en) Microlithography projection apparatus
WO2002016992A1 (en) Optical element holding device
JP2000277421A (en) Lighting device
US8030628B2 (en) Pulse modifier, lithographic apparatus and device manufacturing method
JP4999827B2 (en) Lithographic apparatus
KR100660504B1 (en) Lithographic apparatus, illumination system, and optical element for rotating an intensity distribution
US7382437B2 (en) Projection optical system, exposure apparatus and device fabricating method
KR100677701B1 (en) Projection optical system
WO2021076658A1 (en) Series of stacked confocal pulse stretchers for speckle reduction
US6765649B2 (en) Exposure apparatus and method
JPH09246179A (en) Projection exposure apparatus and manufacture of device using the aligner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AU BA BB BG BR CA CN CR CU CZ DM DZ EE GD GE HR HU ID IL IN IS JP KP KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 537095

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase