WO2001038602A1 - Compound vapor spraying device and focusing ion beam device using it - Google Patents

Compound vapor spraying device and focusing ion beam device using it Download PDF

Info

Publication number
WO2001038602A1
WO2001038602A1 PCT/JP2000/008028 JP0008028W WO0138602A1 WO 2001038602 A1 WO2001038602 A1 WO 2001038602A1 JP 0008028 W JP0008028 W JP 0008028W WO 0138602 A1 WO0138602 A1 WO 0138602A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound vapor
container
compound
spray device
ion beam
Prior art date
Application number
PCT/JP2000/008028
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Koyama
Toshiaki Fujii
Tadashi Kawashima
Masamichi Oi
Original Assignee
Seiko Instruments Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc. filed Critical Seiko Instruments Inc.
Priority to JP2001539939A priority Critical patent/JP4350333B2/en
Publication of WO2001038602A1 publication Critical patent/WO2001038602A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/047Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31742Etching microareas for repairing masks
    • H01J2237/31744Etching microareas for repairing masks introducing gas in vicinity of workpiece

Definitions

  • the present invention relates to a focused ion beam apparatus for irradiating a focused ion beam while spraying a compound gas onto a sample surface to form a thin film or perform an etching process, and a compound vapor spray apparatus used for the focused ion beam apparatus.
  • the focused ion beam device scans the sample surface with the focused ion beam, detects secondary electrons and secondary ions generated from the sample surface, and can observe the sample surface enlarged from the distribution.
  • the focused ion beam is scanned on the sample surface, and the sample surface can be subjected to sputter etching.
  • gas assist etching can be performed in which etching is performed while simultaneously spraying compound vapor onto the sample surface.
  • gas assisted etching is performed, the combination of the compound vapor and the sample material is used to perform etching that is faster in processing speed than normal sputter etching, or to perform selective etching using the fact that the etching speed changes depending on the sample material. be able to.
  • a compound vapor which is a raw material of the thin film
  • a focused ion beam is scanned on the sample surface while being sprayed on the sample surface, thereby performing a deposition process for forming a thin film on the sample surface.
  • a compound vapor which is a raw material of the thin film
  • a focused ion beam is scanned on the sample surface while being sprayed on the sample surface, thereby performing a deposition process for forming a thin film on the sample surface.
  • JP-A-61-12864 discloses the most basic structure for spraying a compound vapor onto a sample.
  • the compound vapor raw material is stored in a container, a valve is provided in the middle of the pipe connecting the sample chamber in which the sample is placed, and spraying of the compound vapor onto the sample surface is controlled by opening and closing the valve.
  • Japanese Patent Application Laid-Open No. 11-185691 discloses a structure of a container and a reservoir for storing a compound vapor raw material.
  • the compound vapor raw material is generally in the form of a powder, and it is indicated that the powder is packed in a reservoir, and the container "reservoir" filled with the powder as the compound vapor raw material is compounded. Issues and solutions for mounting it on a steam blower or “gas gun” are shown.
  • the challenge presented here is that the powder, which is the compound vapor source, spills around the reservoir, and the solution is to always open the reservoir opening for filling the compound vapor source, facing the sky.
  • a structure for maintaining the reservoir posture is shown.
  • preventing the compound vapor raw material from spilling out of the reservoir having such a normally open opening cannot be realized only by the posture of the reservoir.
  • the state of the compound vapor raw material at room temperature may be not only powder but also solid or liquid.
  • those with very low vapor pressure and easy to vaporize are also conceivable.
  • some may be harmful to the human body or the environment, and others may be highly flammable and highly dangerous.
  • a wide variety of compound vapor raw materials can be It is difficult to handle in one reservoir.
  • special equipment is required for refilling work. Disclosure of the invention
  • the present invention relates to a compound vapor spraying device attached to a focused ion beam device that irradiates a focused ion beam to a predetermined position of a sample in an atmosphere in which a compound vapor is present, wherein a compound is stored while shutting off the compound from the atmosphere.
  • a syringe-shaped guide for guiding the compound vapor from the second container to the outside through a part of the second container, and communicating with the guide via an on-off valve, and It has a nozzle for spraying a compound vapor to a predetermined position, and a first container for accommodating the second container.
  • a sample chamber provided between the opening / closing valve and the nozzle for mounting the sample, or a second valve connected to one or all of a plurality of sample chambers. .
  • the nozzle is characterized in that it communicates with other compound vapor spraying devices via respective opening / closing valves.
  • the second container is characterized in that it has a structure in which the inside can be seen, and the second container is characterized by being made of a material having good heat conductivity.
  • the guide portion is attached to a lid, and when the second container is stored therein and the lid is closed, the inside of the case is inserted into the lid of the second container. It is characterized in that the second container can be taken out of the first container by lifting the lid of the first container. Further, a temperature control system is provided, which controls the temperature of the first container so that the amount of the compound vapor generated in the compound contained in the second container becomes a predetermined amount. I have.
  • the guide, the nozzle and the valve communicate with each other by a pipe, and the pipe is controlled in temperature.
  • the temperature of the nozzle is controlled. Further, the guide section is temperature-controlled. Further, the second container has a seal, seals the compound, and penetrates the seal with the injection needle-shaped guide.
  • Figure 1 is an illustration of a focused ion beam column
  • Figure 2 shows an example of a focused ion beam device.
  • FIG. 3 is an explanatory diagram of the present invention.
  • FIG. 4 is an explanatory diagram of the present invention.
  • FIG. 5 is an explanatory diagram of the present invention.
  • FIG. 1 shows an example of a focused ion beam column used in the present invention.
  • the focused ion beam column mainly includes an ion source 1, a condenser lens 2, a blanking electrode 3, a movable diaphragm 4, a deflection electrode 5, and an objective lens 6.
  • an optical axis correction electrode, astigmatism correction electrode, etc. there is.
  • liquid metal gallium is used as the ion source.
  • the liquid metal gallium stored in the gallium reservoir is supplied to the needle-shaped emitter by surface tension.
  • the gallium reservoir and the emitter can be heated by the filament.
  • An electric field is applied to the emitter part by one or more electrodes, and the gallium accumulated in the emitter part is extracted as an ion beam.
  • the ion beam is accelerated by this electric field because a high voltage of about +30 kV with respect to the ground potential is applied to the emitter.
  • the ion beam is focused by the condenser lens 2 and focused on the sample surface by the objective lens 6.
  • Fig. 1 shows an Einzern-type lens in which high voltage and ground potential are connected to three electrodes, but this is only an example, and other types of lenses may be used.
  • the objective lens 6 is arranged at a position closest to the sample, but the position can be changed according to the required performance and function.
  • the movable aperture 4 has a plurality of through-holes having different diameters.
  • the aperture control unit 11 controls the position of the through-hole, and the used through-hole is switched. By passing the beam through each through hole, the amount of beam reaching the sample, ie, the sample current, can be changed. Further, the position of the through hole can be adjusted so as to match the center of the ion beam.
  • the blanking electrode 3 can generate a large electric field between the two electrodes. If the same potential, usually the ground potential, is applied to each electrode, the ion beam reaches the sample.
  • the deflection electrode 5 is composed of at least two pairs of electrodes facing each other, and the trajectory of the ion beam is two-dimensionally controlled by an electric field generated between the electrodes.
  • FIG. 2 shows an example of the focused ion beam device according to the present invention. Here, an example is shown in which a plurality of the focused ion beam columns described in FIG.
  • the first focused ion beam column 21 is installed at a position where the ion beam is vertically incident on the sample 27 installed horizontally.
  • the second focusing ion beam column 22 is installed at different angles. In the example of Figure 2, 60 It is installed at an angled position. And, the center of the ion beam of each focused ion beam column is set to intersect with the surface of the sample 27 placed on the sample stage 26.
  • the sample stage 26 can be moved at least in three axes of horizontal X, Y, and vertical Z. The horizontal X and Y axes are used to observe the sample and determine the processing position.
  • the Z-axis is required so that the height of the sample surface is always at the intersection of the focused ion beams emitted from the two focused ion beam columns.
  • the focused ion beam irradiation positions of the two focused ion beam barrels can be made the same on the sample surface.
  • it can also have an inclined T axis and a rotating R axis.
  • the detector 23 detects secondary charged particles (electrons or ions) generated by irradiating the sample 27 with the focused ion beam.
  • a thin film is formed by a beam assisted CVD method using a compound vapor spraying device 24 attached to the focused ion beam device.
  • a compound vapor containing a thin film material deposited on a sample surface is used.
  • the compound vapor is sprayed on the surface of the sample 27 by the compound vapor spraying device 24.
  • the compound vapor sprayed on the sample surface adsorbs on the sample surface.
  • a focused ion beam is irradiated in this state, the compound vapor is decomposed by its kinetic energy.
  • the decomposed gas component is exhausted to the outside of the sample chamber 25 by the vacuum pump 28, and the solid component remains as a thin film on the sample surface.
  • the focused ion beam performs sputter etching simultaneously with the deposition. Therefore, compound vapor is introduced so that the deposition rate of the thin film is higher than the processing rate of sputter etching. It is necessary to control the dose and the dose of the focused ion beam.
  • the compound vapor introduced into the sample chamber 25 by the compound vapor spraying device 24 is also used as an etching assist gas for improving the processing speed of sputter etching by spraying the sample surface simultaneously with the irradiation of the focused ion beam. good.
  • the etching assist gas chemically reacts with the workpiece sputtered by the focused ion beam irradiation to form a molecular gas combined with the workpiece, thereby forming a vacuum pump. As a result, the gas is exhausted out of the sample chamber 25.
  • etching assist gas chemically reacts with a specific substance, it is possible to perform selective etching utilizing the fact that the processing speed is different between a substance which does not react chemically and a substance which does not react.
  • a gas that reacts with a specific sample and suppresses the progress of sputter etching is known. Selective etching using the difference in processing speed depending on the material is possible.
  • the sample chamber 25 and the focused ion beam column are evacuated by the vacuum pump 28. I'm concerned.
  • a load lock chamber for loading and unloading a sample without setting the sample chamber 25 to the atmosphere can be provided.
  • the compound vapor spray device of the present invention shown in FIG. 3 will be described.
  • the compound vapor raw material 35 is stored in the second container 32.
  • the second container 32 is installed in the first container 31.
  • the second container 32 is provided by a heater 33 of the first container 31, a temperature sensor (not shown) for measuring the temperature of the second container 32, and a temperature controller (not shown). Temperature is controlled.
  • an injection needle serving as a guide attached to the first container 31 is inserted.
  • the compound vapor generated in the second container 32 reaches the nozzle via a syringe needle pipe and a pipe connected to the pipe.
  • valve on the way, and the valve can be opened and closed as needed, so that the vapor of the conjugate can be sprayed on the sample surface when needed.
  • valve The operation of the valve is performed by the device control computer 7. At the end of the valve is a nozzle through a pipe. Although not shown, the nozzle is adapted to be variable in length.
  • the nozzle tip When compound vapor is sprayed on the sample surface, the nozzle tip is brought close to the sample surface to efficiently spray compound vapor on the sample surface. If it is not necessary to spray compound vapor on the sample surface, keep the nozzle tip away from the sample surface. If the deposition or etching process is performed while spraying the compound vapor onto the sample surface, the position of the nozzle should be the same as that during the processing at the stage of observation to determine the processing region. This is to avoid that the electric field near the sample surface changes depending on the position of the nozzle and the irradiation position of the focused ion beam changes.
  • the heater 33 is shown because the compound becomes a vapor above room temperature. In this case, if the temperature of pipes, valves, nozzles, etc. is low, compound vapor may be deposited at these locations. Therefore, these places are heated by the heater similarly to the first container 31.
  • the heater of the first container 31 is a cooling device such as Pelliche, and is controlled to a temperature lower than room temperature. Even if the amount of compound vapor supplied to the sample surface is large or small, desired processing cannot be performed. Therefore, optimization is performed by selecting the temperature and the nozzle opening. Also, the sample stage 26 is moved so that the distance of the sample surface from the nozzle is optimized.
  • a second valve can be provided.
  • the second valve is located between the nozzle and the valve, and opens and closes between the sample chamber. If the opening of the nozzle is small, there is a possibility that compound vapor may stay between the nozzle and the valve 34.
  • FIG. 4 shows a more detailed view of the first container 31 and the second container 32.
  • the second container includes a container body 44, a cap 42 having an opening, and a seal 43 sandwiched between the container body 44 and the cap 42 when the cap 42 is fixed.
  • a needle 41 is attached to the lid 41 of the first container.
  • the pipe of the injection needle 45 is connected to the pipe of the first container body 47 through the lid.
  • the lid 41 of the first container has a mechanism for sandwiching the second container.
  • the second container can be pulled out of the first container by lifting the lid of the first container.
  • the second container is preferably a transparent container. Thereby, the remaining amount of the compound vapor raw material can be confirmed. Further, it is desirable that the second container is made of a material having high thermal conductivity. This makes it possible to eliminate the temperature gradient in the second container.
  • FIG. 5 shows an example in which a raw material container for storing a plurality of compound vapor raw materials is connected.
  • Raw material containers are connected to the nozzles via valves 54, respectively.
  • Each raw material container is temperature-controlled at a temperature optimal for the compound vapor raw material.
  • the temperature of the nozzle and pipe is also controlled, but the temperature is controlled so that the compound vapor raw material does not precipitate.
  • the injection needle may be temperature-controlled in order to reduce the temperature gradient in the second container.
  • the compound vapor required for the deposition or etching process is sprayed on the sample surface by opening and closing a valve 54 connecting the nozzle and the container for the compound vapor raw material.
  • the valves 54 connected to the raw material containers are not opened at the same time in order to avoid any reaction from being caused by mixing of a plurality of compound vapors.
  • a compound vapor raw material can be packed in a second container in a place where equipment such as a glove box is provided.
  • equipment such as a glove box
  • a focused ion beam equipment manufacturer or a compound vapor raw material manufacturer packs a second container with a compound vapor raw material and supplies it to the focused ion beam equipment user, so that the focused ion beam equipment user can surround the compound vapor raw material. Can be handled without being scattered.
  • many of the compound vapors that are considered to be necessary for future applications include many dangerous ones, but by applying the present invention, it can be used safely. Become.

Abstract

A compound vapor spraying device used in a focusing ion beam device, capable of handling safely a compound vapor material, wherein a compound vapor-filled container (32) is mounted on a compound vapor material container (31) having an injection needle-shaped guide (45) passing through part of the container (32) and introducing the compound vapor to a sample room of the focusing ion beam device.

Description

明 細 書 化合物蒸気吹付け装置およびそれを用いた集束イオンビーム装置 技術分野  Description Compound vapor spray device and focused ion beam device using the same
本発明は、 試料表面に化合物ガスを吹付けながら集束イオンビームを 照射し、 薄膜形成をしたり、 エッチング加工をする集束イオンビーム装 置と集束イオンビーム装置に用いられる化合物蒸気吹付け装置に関する。 背景技術  The present invention relates to a focused ion beam apparatus for irradiating a focused ion beam while spraying a compound gas onto a sample surface to form a thin film or perform an etching process, and a compound vapor spray apparatus used for the focused ion beam apparatus. Background art
集束イオンビーム装置は集束イオンビームを試料表面で走査し、 試料 表面から発生する二次電子や二次イオンを検出し、 その分布から試料表 面の拡大観察をすることができる。 また、 集束イオンビームを試料表面 で走査し、 試料表面をスパッタエッチング加工することができる。 この とき、 同時に化合物蒸気を試料表面に吹付けながらエッチング加工を行 うガスアシス 卜エツチング加工ができる。 ガスアシス 卜エツチングを行 うと、 化合物蒸気と試料材質の組合せにより、 通常のスパッタエツチン グと比較して加工速度の速いェツチングや、 試料材質によってェッチン グ速度が変わることを利用した選択性ェツチングを行うことができる。 さらに、 薄膜の原料となる化合物蒸気を試料室に導入して試料表面に吹 き付けながら集束イオンビームを試料表面で走査し、 試料表面に薄膜を 形成するデポジション加工ができる。 このように、 集束イオンビーム装置の試料室に化合物蒸気を導入する ことは有効であるため、 いくつかの化合物蒸気を試料表面に吹付けるた めの装置が提案されている。 例えば、特開昭 61 - 12864号は化合物蒸気を試料に吹付けるための最も 基本的な構造が示されている。 化合物蒸気原料を容器に貯え、 試料の設 置された試料室を接続するパイプの途中にバルブを設け、 バルブの開閉 によつて試料表面への化合物蒸気吹き付けを制御している。 また、 特開平 1 1 - 185691号では、 化合物蒸気原料を貯える容器、 リザ —バーの構造が示されている。 前述した特開平 1 1 -185691号では、 化合物蒸気原料が一般に粉末状で あり、 その粉末をリザ—バーに詰めることが示され、 化合物蒸気原料で ある粉末が詰められた容器 「リザーバー」 を化合物蒸気吹き付け装置、 「ガス銃」 に装着するときの課題とその解決策が示されている。 ここで 示されている課題は、 化合物蒸気原料である粉末がリザーバー周辺にこ ぼれることであり、 その解決策として、 リザ—バーの化合物蒸気原料詰 め込みのための開口が常に天に向かっているように、 リザ一バーの姿勢 を維持する構造が示されている。 しかしながら、 このような常時開放されている開口を持つリザ一バー から化合物蒸気原料がこぼれないようにすることは、 リザ一バーの姿勢 だけでは実現できないことは明らかである。 The focused ion beam device scans the sample surface with the focused ion beam, detects secondary electrons and secondary ions generated from the sample surface, and can observe the sample surface enlarged from the distribution. In addition, the focused ion beam is scanned on the sample surface, and the sample surface can be subjected to sputter etching. At this time, gas assist etching can be performed in which etching is performed while simultaneously spraying compound vapor onto the sample surface. When gas assisted etching is performed, the combination of the compound vapor and the sample material is used to perform etching that is faster in processing speed than normal sputter etching, or to perform selective etching using the fact that the etching speed changes depending on the sample material. be able to. In addition, a compound vapor, which is a raw material of the thin film, is introduced into the sample chamber, and a focused ion beam is scanned on the sample surface while being sprayed on the sample surface, thereby performing a deposition process for forming a thin film on the sample surface. As described above, it is effective to introduce a compound vapor into a sample chamber of a focused ion beam apparatus. Therefore, an apparatus for spraying some compound vapor onto a sample surface has been proposed. For example, JP-A-61-12864 discloses the most basic structure for spraying a compound vapor onto a sample. The compound vapor raw material is stored in a container, a valve is provided in the middle of the pipe connecting the sample chamber in which the sample is placed, and spraying of the compound vapor onto the sample surface is controlled by opening and closing the valve. Japanese Patent Application Laid-Open No. 11-185691 discloses a structure of a container and a reservoir for storing a compound vapor raw material. In the above-mentioned JP-A-11-185691, the compound vapor raw material is generally in the form of a powder, and it is indicated that the powder is packed in a reservoir, and the container "reservoir" filled with the powder as the compound vapor raw material is compounded. Issues and solutions for mounting it on a steam blower or “gas gun” are shown. The challenge presented here is that the powder, which is the compound vapor source, spills around the reservoir, and the solution is to always open the reservoir opening for filling the compound vapor source, facing the sky. As shown in the figure, a structure for maintaining the reservoir posture is shown. However, it is obvious that preventing the compound vapor raw material from spilling out of the reservoir having such a normally open opening cannot be realized only by the posture of the reservoir.
また、 集束イオンビーム装置のアプリケ一ションが多岐に亘ることか ら、 用いられる化合物蒸気の種類も多い。 そのため、 化合物蒸気原料の 室温での状態も粉末のみならず、 固体や液体などが考えられる。 また、 非常に蒸気圧が低く、 気化しやすいものも考えられる。 さらに、 化学的 に性質により、 人体や環境に有害なもの、 発火性が高いなどの危険性の 高いものも考えられる。 このように多岐に亘る化合物蒸気原料を開口の あるリザーバーで扱うことは難しい。 また、 詰め換え作業に特別な設備 が必要になる。 発明の開示 Also, since there are a wide variety of applications for focused ion beam devices, there are many types of compound vapors to be used. Therefore, the state of the compound vapor raw material at room temperature may be not only powder but also solid or liquid. In addition, those with very low vapor pressure and easy to vaporize are also conceivable. Furthermore, due to their chemical properties, some may be harmful to the human body or the environment, and others may be highly flammable and highly dangerous. In this way, a wide variety of compound vapor raw materials can be It is difficult to handle in one reservoir. In addition, special equipment is required for refilling work. Disclosure of the invention
本発明は、 化合物蒸気の存在する雰囲気内でサンプルの所定の位置に 集束イオンビームを照射する集束イオンビーム装置に装着される化合物 蒸気吹付け装置において、 化合物を大気と遮断して収納する第 2の容器 と、 前記第 2の容器の一部を貫いて前記化合物蒸気を前記第 2の容器か ら外部へ導く注射針形状の案内部と、 前記案内部と開閉バルブを介して 連通すると共に前記化合物蒸気を所定の位置に吹付けるためのノズルと、 前記第 2の容器を収納する第 1の容器とを有することを特徴としている。 また、 前記開閉バルブと前記ノズルとの間に設けられて前記サンプル を載置する試料室、 又は複数ある試料室の中の一つ若しくは全部と接続 する第 2のバルブを有することを特徴としている。  The present invention relates to a compound vapor spraying device attached to a focused ion beam device that irradiates a focused ion beam to a predetermined position of a sample in an atmosphere in which a compound vapor is present, wherein a compound is stored while shutting off the compound from the atmosphere. A syringe-shaped guide for guiding the compound vapor from the second container to the outside through a part of the second container, and communicating with the guide via an on-off valve, and It has a nozzle for spraying a compound vapor to a predetermined position, and a first container for accommodating the second container. In addition, there is provided a sample chamber provided between the opening / closing valve and the nozzle for mounting the sample, or a second valve connected to one or all of a plurality of sample chambers. .
また、 前記ノズルは、 他の複数の化合物蒸気吹付け装置とも各々の開 閉バルブを介して連通していることを特徴としている。  Further, the nozzle is characterized in that it communicates with other compound vapor spraying devices via respective opening / closing valves.
また、 前記第 2の容器は、 中が見える構造であることを特徴としてい また、 前記第 2の容器は、 熱伝導性の良い材質でできていることを特 徴としている。  Further, the second container is characterized in that it has a structure in which the inside can be seen, and the second container is characterized by being made of a material having good heat conductivity.
また、 前記第 1 の容器は、 蓋に前記案内部が取付けられており、 前記 第 2の容器を中に収納して前記蓋をすると前記第 2の容器の蓋に前記案 内部が挿入される構造になっており、 前記第 1 の容器の蓋を持ち上げる と、 前記第 2の容器が前記第 1 の容器から取り出せる構造になっている ことを特徴としている。 また、 前記第 1 の容器の温度制御をすることにより前記第 2の容器に 収納されている前記化合物の化合物蒸気発生量を所定の量にする温度制 御系が設けられていることを特徴としている。 In the first container, the guide portion is attached to a lid, and when the second container is stored therein and the lid is closed, the inside of the case is inserted into the lid of the second container. It is characterized in that the second container can be taken out of the first container by lifting the lid of the first container. Further, a temperature control system is provided, which controls the temperature of the first container so that the amount of the compound vapor generated in the compound contained in the second container becomes a predetermined amount. I have.
また、 前記案内部、 ノズル及びバルブはパイプにて連通しており、 当 該パイプは温度制御されていることを特徴としている。  Further, the guide, the nozzle and the valve communicate with each other by a pipe, and the pipe is controlled in temperature.
また、 前記ノズルは温度制御されていることを特徴としている。 また、 前記案内部は温度制御されていることを特徴としている。 また、 前記第 2の容器は、 シールを有しており前記化合物を密閉して おり、 前記注射針形状の案内部で当該シールを貫くことを特徴としてい る o '  Further, the temperature of the nozzle is controlled. Further, the guide section is temperature-controlled. Further, the second container has a seal, seals the compound, and penetrates the seal with the injection needle-shaped guide.
また、 この様な化合物蒸気吹付け装置を少なくとも 1 つ以上取付けた ことを特徴としている。 図面の簡単な説明  Also, it is characterized in that at least one such compound vapor spraying device is installed. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 集束イオンビーム鏡筒の説明図である  Figure 1 is an illustration of a focused ion beam column
図 2は、 集束イオンビーム装置の例である。  Figure 2 shows an example of a focused ion beam device.
図 3は、 本発明の説明図である。  FIG. 3 is an explanatory diagram of the present invention.
図 4は、 本発明の説明図である。  FIG. 4 is an explanatory diagram of the present invention.
図 5は、 本発明の説明図である。  FIG. 5 is an explanatory diagram of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
図 1 に本発明に用いる集束イオンビーム鏡筒の一例を示す。  FIG. 1 shows an example of a focused ion beam column used in the present invention.
集束イオンビーム鏡筒は、主に、 イオン源部 1 、 コンデンサレンズ 2、 ブランキング電極 3、 可動絞り 4、 偏向電極 5、 対物レンズ 6から構成 される。 その他、 図示していないが、 光軸補正電極や非点補正電極など がある。 イオン源としては、 液体金属ガリウムを用いるのが一般的である。 ガ リウムリザ—バに溜められた液体金属ガリウ厶は表面張力で針状のエミ ッタに供給される。 また、 ガリウムリザ一バ、 ェミッタはフィラメント により加熱できるようになつている。 ェミッタ部分には一つまたは複数 の電極により電界がかけられ、 エミッ夕部分に溜まっているガリゥムが イオンビームとして引き出される。 イオンビームは、 ェミッタにグラン ド電位に対して +30kV程度の高電圧が印加されているため、 この電界に よつて加速される。 イオンビームは、 コンデンサレンズ 2によって集束され、 対物レンズ 6によって試料表面に焦点が合わせられる。 図 1 では、 3枚の電極に高 電圧とグランド電位を接続するアインツエルン型レンズを示しているが、 これは一例であり、 その他のタイプのレンズでもかまわない。 また、 対 物レンズ 6を試料に最も近い位置に配置しているが、 その位置も求める 性能、 機能に応じて変更することができる。 The focused ion beam column mainly includes an ion source 1, a condenser lens 2, a blanking electrode 3, a movable diaphragm 4, a deflection electrode 5, and an objective lens 6. In addition, although not shown, an optical axis correction electrode, astigmatism correction electrode, etc. There is. Generally, liquid metal gallium is used as the ion source. The liquid metal gallium stored in the gallium reservoir is supplied to the needle-shaped emitter by surface tension. In addition, the gallium reservoir and the emitter can be heated by the filament. An electric field is applied to the emitter part by one or more electrodes, and the gallium accumulated in the emitter part is extracted as an ion beam. The ion beam is accelerated by this electric field because a high voltage of about +30 kV with respect to the ground potential is applied to the emitter. The ion beam is focused by the condenser lens 2 and focused on the sample surface by the objective lens 6. Fig. 1 shows an Einzern-type lens in which high voltage and ground potential are connected to three electrodes, but this is only an example, and other types of lenses may be used. Further, the objective lens 6 is arranged at a position closest to the sample, but the position can be changed according to the required performance and function.
可動絞り 4には、 複数の直径の異なる貫通孔があり、 絞り制御部 1 1 により貫通孔の位置を制御し、 使用する貫通孔が切り替えられる。 ィ才 ンビームを各々の貫通孔を通過させることにより、 試料に到達するィ才 ンビ一厶量すなわち試料電流を変更することができる。 また、 貫通孔の 位置がイオンビームの中心と整合するように、 その位置を調整すること ができる。 ブランキング電極 3は、 2枚の電極間に大きな電界を発生できるよう になっている。 各電極に同電位、 通常はグランド電位、 が印加されてい ると、 イオンビ一ムは試料に到達する。 しかし、 ブランキング電極 3の 各電極に電位差の大きな信号を印加して大きな電界が発生すると、 ィ才 ンビームは大きく偏向され、 可動絞り 4などの遮蔽物に当たり、 イオン ビ一厶は試料に到達しない。 偏向電極 5は少なくとも、 対向する 2つの電極からなる 2組の電極か ら構成され、 各電極間に発生する電界により、 イオンビームの軌道は二 次元的に制御される。 The movable aperture 4 has a plurality of through-holes having different diameters. The aperture control unit 11 controls the position of the through-hole, and the used through-hole is switched. By passing the beam through each through hole, the amount of beam reaching the sample, ie, the sample current, can be changed. Further, the position of the through hole can be adjusted so as to match the center of the ion beam. The blanking electrode 3 can generate a large electric field between the two electrodes. If the same potential, usually the ground potential, is applied to each electrode, the ion beam reaches the sample. However, when a large electric field is generated by applying a signal having a large potential difference to each electrode of the blanking electrode 3, the electron beam is largely deflected, hits a shield such as the movable diaphragm 4, and the ion beam does not reach the sample. . The deflection electrode 5 is composed of at least two pairs of electrodes facing each other, and the trajectory of the ion beam is two-dimensionally controlled by an electric field generated between the electrodes.
これらの各電極、 可動絞り 4に印加される信号を発生する電源はコン ピュー夕によって制御されている。 また、 ブランキング電極 3と偏向電 極 5に印加される信号は、 走査信号発生部 1 0から発生する。 これによ り、 イオンビームの試料照射位置により、 ビームを試料に照射するかど うかを決めることができる。 また、 検出器の出力信号は走査信号発生部 1 0に入力され処理される。 イオンビームの照射位置と、 その照射位置 でイオンビーム照射によって発生した二次荷電粒子を検出器で検出し、 電気信号とした出力信号を合わせて記憶することにより、 試料表面の観 察をすることができる。 図 2に本発明に係る集束イオンビーム装置の一例を示す。 ここでは、 図 1 に説明した集束イオンビーム鏡筒が試料室 2 5に複数装着された例 を示している。  A power supply for generating a signal applied to each of these electrodes and the movable diaphragm 4 is controlled by a computer. Further, signals applied to the blanking electrode 3 and the deflection electrode 5 are generated from the scanning signal generator 10. This makes it possible to determine whether or not to irradiate the sample with the ion beam according to the sample irradiation position. The output signal of the detector is input to the scanning signal generator 10 and processed. Observation of the sample surface by detecting the ion beam irradiation position and secondary charged particles generated by ion beam irradiation at the irradiation position with a detector and storing the output signal as an electric signal together Can be. FIG. 2 shows an example of the focused ion beam device according to the present invention. Here, an example is shown in which a plurality of the focused ion beam columns described in FIG.
第 1 の集束イオンビーム鏡筒 2 1 は水平に設置された試料 2 7に対し てイオンビームが垂直に入射する位置に設置されている。 第 2の集束ィ オンビーム鏡筒 2 2は、 異なる角度で設置されている。 図 2の例では 60 度傾いた位置に取付けられている。 そして、 試料ステージ 2 6上に載置 された試料 2 7の表面で各集束イオンビーム鏡筒のイオンビームの中心 が交叉するように設置されている。 試料ステージ 2 6は、 少なく とも水平 X, Y、 及び垂直 Zの 3軸に移 動可能である。 水平方向 X, Y軸は試料の観察、 加工位置の決定に用い られる。 また、 Z軸は常に試料表面の高さが、 2つの集束イオンビーム鏡 筒から発射される集束イオンビームの交点の位置になるようにするため に必要となる。 試料表面の高さを集束イオンビームの交点にすることに より、 2つの集束イオンビ一厶鏡筒の集束イオンビーム照射位置を試料 表面の同一位置にすることができる。 その他、 傾斜 T軸、 回転 R軸など を持つこともできる。 検出器 2 3は集束イオンビームが試料 2 7に照射されたことにより発 生する二次荷電粒子 (電子またはイオン) を検出する。 The first focused ion beam column 21 is installed at a position where the ion beam is vertically incident on the sample 27 installed horizontally. The second focusing ion beam column 22 is installed at different angles. In the example of Figure 2, 60 It is installed at an angled position. And, the center of the ion beam of each focused ion beam column is set to intersect with the surface of the sample 27 placed on the sample stage 26. The sample stage 26 can be moved at least in three axes of horizontal X, Y, and vertical Z. The horizontal X and Y axes are used to observe the sample and determine the processing position. In addition, the Z-axis is required so that the height of the sample surface is always at the intersection of the focused ion beams emitted from the two focused ion beam columns. By setting the height of the sample surface to the intersection of the focused ion beams, the focused ion beam irradiation positions of the two focused ion beam barrels can be made the same on the sample surface. In addition, it can also have an inclined T axis and a rotating R axis. The detector 23 detects secondary charged particles (electrons or ions) generated by irradiating the sample 27 with the focused ion beam.
集束イオンビーム装置に装着された化合物蒸気吹付け装置 2 4によつ て、 ビームアシステッ ド CVD法による薄膜形成を行う。 ビームアシステ ッ ド CVD法では、 試料表面にデポジションされる薄膜の材料を含む化合 物蒸気を用いる。 化合物蒸気は化合物蒸気吹付け装置 2 4により試料 2 7表面に吹付けられる。 試料表面に吹き付けられた化合物蒸気は試料表 面に吸着する。 この状態で集束イオンビームが照射されると、 その運動 エネルギーにより化合物蒸気が分解する。 分解した気体成分は真空ボン プ 2 8により試料室 2 5外に排気され、 固体成分は薄膜となって試料表 面に残る。 このとき、 集束イオンビ一厶はデポジションと同時にスパッ タエッチングも行っている。 従って、 デポジションによる薄膜形成速度 がスパッタエツチングの加工速度より高くなるよう、 化合物蒸気の導入 量と、 集束イオンビームの照射量を制御する必要がある。 また、 化合物蒸気吹付け装置 2 4によって試料室 2 5に導入される化 合物蒸気は、 集束イオンビーム照射と同時に試料表面に吹き付けること により、 スパッタエッチングの加工速度を向上させるエッチングアシス 卜ガスでも良い。 A thin film is formed by a beam assisted CVD method using a compound vapor spraying device 24 attached to the focused ion beam device. In the beam assisted CVD method, a compound vapor containing a thin film material deposited on a sample surface is used. The compound vapor is sprayed on the surface of the sample 27 by the compound vapor spraying device 24. The compound vapor sprayed on the sample surface adsorbs on the sample surface. When a focused ion beam is irradiated in this state, the compound vapor is decomposed by its kinetic energy. The decomposed gas component is exhausted to the outside of the sample chamber 25 by the vacuum pump 28, and the solid component remains as a thin film on the sample surface. At this time, the focused ion beam performs sputter etching simultaneously with the deposition. Therefore, compound vapor is introduced so that the deposition rate of the thin film is higher than the processing rate of sputter etching. It is necessary to control the dose and the dose of the focused ion beam. The compound vapor introduced into the sample chamber 25 by the compound vapor spraying device 24 is also used as an etching assist gas for improving the processing speed of sputter etching by spraying the sample surface simultaneously with the irradiation of the focused ion beam. good.
エッチングアシス 卜ガスは、 一般的に、 集束イオンビ一厶照射によつ てスパッ夕された被加工物と化学的に反応し、 被加工物と結合した分子 ガスを形成することにより、真空ポンプ 28によつて試料室 2 5の外に排 気される。  Generally, the etching assist gas chemically reacts with the workpiece sputtered by the focused ion beam irradiation to form a molecular gas combined with the workpiece, thereby forming a vacuum pump. As a result, the gas is exhausted out of the sample chamber 25.
通常、 スパッタエッチング加工をミクロに観察すると、 スパッタエツ チング加工による被加工物が試料表面に落下して再付着することにより、 繰り返しスパッタエツチング行わなければならない。  Normally, when a sputter etching process is observed microscopically, it is necessary to repeatedly perform the sputter etching process because a workpiece to be processed by the sputter etching process drops on the sample surface and adheres again.
ところが、 エッチングアシス トガスを用いることにより、 再付着を抑 制することができることから、 スパッタエツチング加工による加工時間 を短縮することができる。 さらに、 一般に、 エッチングアシス 卜ガスは 特定の物質と化学反応をすることから、 化学反応する物質としない物質 で加工速度の異なることを利用した選択エッチングも可能である。また、 特定の試料と反応して、 スパッタエツチング加工の進展を抑制するガス も知られている。 材料による加工速度の相違を利用した選択エッチング が可能である。 なお、図には 1つの化合物蒸気吹付け装置 2 4 しか描かれていないが、 目的に応じたガスを使い分かられるよう、 複数の化合物蒸気吹付け装置 を用いても良い。  However, by using an etching assist gas, reattachment can be suppressed, so that the processing time by sputter etching can be shortened. Further, in general, since the etching assist gas chemically reacts with a specific substance, it is possible to perform selective etching utilizing the fact that the processing speed is different between a substance which does not react chemically and a substance which does not react. Also, a gas that reacts with a specific sample and suppresses the progress of sputter etching is known. Selective etching using the difference in processing speed depending on the material is possible. Although only one compound vapor spraying device 24 is shown in the figure, a plurality of compound vapor spraying devices may be used so as to properly use a gas according to the purpose.
試料室 2 5及び集束イオンビーム鏡筒は真空ポンプ 28によつて真空排 気されている。 また、 図示していないが、 試料室 2 5を大気にすること なく試料の出し入れを行うためのロードロック室を設けることもできる。 さて、 図 3に示す本発明の化合物蒸気吹付け装置について説明する。 化合物蒸気原料 3 5は、 第 2の容器 3 2に貯蔵されている。 第 2の容 器 3 2は、 第 1 の容器 3 1 に設置されている。 The sample chamber 25 and the focused ion beam column are evacuated by the vacuum pump 28. I'm concerned. In addition, although not shown, a load lock chamber for loading and unloading a sample without setting the sample chamber 25 to the atmosphere can be provided. Now, the compound vapor spray device of the present invention shown in FIG. 3 will be described. The compound vapor raw material 35 is stored in the second container 32. The second container 32 is installed in the first container 31.
第 2の容器 3 2は、 第 1 の容器 3 1 のヒーター 3 3と、 図示されてい ないが第 2の容器 3 2の温度を測定する温度センサと、 やはり図示され ていない温度調節器によつて温度制御されている。  The second container 32 is provided by a heater 33 of the first container 31, a temperature sensor (not shown) for measuring the temperature of the second container 32, and a temperature controller (not shown). Temperature is controlled.
第 2の容器 3 2には、 第 1 の容器 3 1 に付属する案内部である注射針 が挿入されている。  In the second container 32, an injection needle serving as a guide attached to the first container 31 is inserted.
第 2の容器 3 2で発生した化合物蒸気は注射針のパイプどさらにそれ につながるパイプを介してノズルに至る。  The compound vapor generated in the second container 32 reaches the nozzle via a syringe needle pipe and a pipe connected to the pipe.
途中にバルブがあり、 バルブを必要に応じて開閉することにより、 ィ匕 合物蒸気を必要なときに試料表面に吹付けることができる。  There is a valve on the way, and the valve can be opened and closed as needed, so that the vapor of the conjugate can be sprayed on the sample surface when needed.
バルブの操作は装置制御コンピュータ 7で行う。 バルブの先に、 パイ プを介してノズルがある。 ノズルは、 図示されていないがその長さが変 えられるようになつている。  The operation of the valve is performed by the device control computer 7. At the end of the valve is a nozzle through a pipe. Although not shown, the nozzle is adapted to be variable in length.
化合物蒸気を試料表面に吹付けるときは、 試料表面に効率良く化合物 蒸気を吹付けるためノズル先端が試料表面に近づけられる。 また、 化合 物蒸気を試料表面に吹付ける必要がない場合は、 ノズル先端が試料表面 から離れるようにする。 なお、 化合物蒸気を試料表面に吹付けながらデ ポジションまたはエッチング加工を行う場合は、 加工領域を決定する観 察の段階で、 ノズルの位置は加工時と同じ位置になるようにする。 これ は、 ノズルの位置により、 試料表面近傍の電界が変わってしまい、 集束 イオンビームの照射位置が変わってしまうことを避けるためである。 —般に、 化合物は室温より高い温度で蒸気となることからヒーター 3 3を図示した。 この場合、 パイプ、 バルブ、 ノズルなどの温度が低い場 合、化合物蒸気がこれらの箇所で析出してしまう恐れがある。そのため、 これらの場所を第 1 の容器 3 1 と同様にヒータによって加熱する。 When compound vapor is sprayed on the sample surface, the nozzle tip is brought close to the sample surface to efficiently spray compound vapor on the sample surface. If it is not necessary to spray compound vapor on the sample surface, keep the nozzle tip away from the sample surface. If the deposition or etching process is performed while spraying the compound vapor onto the sample surface, the position of the nozzle should be the same as that during the processing at the stage of observation to determine the processing region. This is to avoid that the electric field near the sample surface changes depending on the position of the nozzle and the irradiation position of the focused ion beam changes. In general, the heater 33 is shown because the compound becomes a vapor above room temperature. In this case, if the temperature of pipes, valves, nozzles, etc. is low, compound vapor may be deposited at these locations. Therefore, these places are heated by the heater similarly to the first container 31.
また、 蒸気圧の高いものが化合物蒸気原料の場合、 室温ではむしろ発 生する化合物蒸気の量が多〈なってしまうことがある。 この場合、 第 1 の容器 3 1 のヒータをペリチェなどの冷却装置にし、 室温より低い温度 に制御する。 試料表面に供給される化合物蒸気の量は、 多くても少な〈ても所望の 加工を行うことができない。 そこで、 温度及びノズルの開口などを選択 することにより最適化する。 また、 試料ステ—ジ 2 6を移動させ、 試料 表面のノズルからの距離が最適になるようにする。  In addition, when the material having a high vapor pressure is a compound vapor raw material, the amount of the generated compound vapor may be large at room temperature. In this case, the heater of the first container 31 is a cooling device such as Pelliche, and is controlled to a temperature lower than room temperature. Even if the amount of compound vapor supplied to the sample surface is large or small, desired processing cannot be performed. Therefore, optimization is performed by selecting the temperature and the nozzle opening. Also, the sample stage 26 is moved so that the distance of the sample surface from the nozzle is optimized.
さらに、 図 3には図示していないが、 第 2のバルブを設けることがで きる。 第 2のバルブは、 ノズルとバルブの間にあり、 試料室との間を開 閉する。 ノズルの開口が小さい場合、 ノズルとバルブ 3 4の間に化合物 蒸気が滞留してしまう恐れがある。  Further, although not shown in FIG. 3, a second valve can be provided. The second valve is located between the nozzle and the valve, and opens and closes between the sample chamber. If the opening of the nozzle is small, there is a possibility that compound vapor may stay between the nozzle and the valve 34.
この場合、 化合物蒸気が時間をかけて試料室に放出されることから、 本来意図しないときに化合物蒸気が試料表面に吹付けられ、 その影響が 現れてしまう。  In this case, since the compound vapor is released into the sample chamber over time, the compound vapor is sprayed onto the sample surface when it is not originally intended, and the effect appears.
そこで、化合物蒸気を用いた加工が終了した後に第 2のバルブを開く。 第 2のバルブはノズルよりはるかに大きな開口を持っため、 ノズルとバ ルブ 3 4の間のパイプに化合物蒸気が試料室を介して真空ポンプで排気 される。 これにより、 先の問題は回避される。 図 4に第 1 の容器 3 1 と第 2の容器 3 2のより詳細な図を示す。 Then, after the processing using the compound vapor is completed, the second valve is opened. Since the second valve has a much larger opening than the nozzle, the compound vapor is exhausted to the pipe between the nozzle and the valve 34 by the vacuum pump through the sample chamber. This avoids the previous problem. FIG. 4 shows a more detailed view of the first container 31 and the second container 32.
第 2の容器は、 容器本体 4 4と、 開口部のあるキャップ 4 2と、 キヤ ップ 4 2を固定する際に容器本体 4 4とキャップ 4 2の間に挟むシール 4 3からなる。第 1 の容器の蓋 4 1 には、注射針 4 5が付けられている。 注射針 4 5のパイプは、 蓋を通過して第 1 の容器本体 4 7のパイプに接 続する。 また、 第 1 の容器の蓋 4 1 には第 2の容器を挟む機構がついて いる。 これにより、 第 2の容器は第 1 の容器の蓋を持ち上げることによ り、 第 1の容器から引き出すことができる。 また、 第 2の容器は透明な容器であることが望ましい。 それにより、 化合物蒸気原料の残量を確認することができる。 さらに、 第 2の容器は 熱伝導率の高い材質でできていることが望ましい。 これにより、 第 2の 容器内温度勾配をない状態にすることができる。  The second container includes a container body 44, a cap 42 having an opening, and a seal 43 sandwiched between the container body 44 and the cap 42 when the cap 42 is fixed. A needle 41 is attached to the lid 41 of the first container. The pipe of the injection needle 45 is connected to the pipe of the first container body 47 through the lid. Further, the lid 41 of the first container has a mechanism for sandwiching the second container. Thus, the second container can be pulled out of the first container by lifting the lid of the first container. The second container is preferably a transparent container. Thereby, the remaining amount of the compound vapor raw material can be confirmed. Further, it is desirable that the second container is made of a material having high thermal conductivity. This makes it possible to eliminate the temperature gradient in the second container.
図 5に複数の化合物蒸気原料を保管する原料容器を接続した例を示す。 ノズルには、それぞれバルブ 5 4を介して原料容器が接続されている。 各々の原料容器は、化合物蒸気原料に最適な温度で温度制御されている。  FIG. 5 shows an example in which a raw material container for storing a plurality of compound vapor raw materials is connected. Raw material containers are connected to the nozzles via valves 54, respectively. Each raw material container is temperature-controlled at a temperature optimal for the compound vapor raw material.
この場合、 ノズルやパイプも温度制御されているが、 化合物蒸気原料 が析出しないように温度制御する。  In this case, the temperature of the nozzle and pipe is also controlled, but the temperature is controlled so that the compound vapor raw material does not precipitate.
また、 注射針は、 第 2の容器内の温度勾配を小さくするため、 温度制 御しても良い。  In addition, the injection needle may be temperature-controlled in order to reduce the temperature gradient in the second container.
デポジションまたはエッチング加工に必要な化合物蒸気は、 その化合 物蒸気原料の容器とノズルを接続しているバルブ 5 4を開閉することに より、 試料表面への化合物蒸気吹付けを行う。 このとき、 複数の化合物 蒸気が混ざることによって何らかの反応が発生することを回避するため、 原料容器に接続されるバルブ 5 4は同時に開かないものとする。 第 1 の化合物蒸気の吹付けが終了したら、 試料室に接続するバルブ 5 2によって、 ノズルからパイプに滞留している化合物蒸気を排気し、 残 らないようにする。 残っている化合物蒸気を十分排気した後に、 試料室 に接続するバルブ 5 2を閉じ、 第 2の化合物蒸気を試料表面に吹付ける ためにバルブ 5 4の内、 対応するバルブを開く。 The compound vapor required for the deposition or etching process is sprayed on the sample surface by opening and closing a valve 54 connecting the nozzle and the container for the compound vapor raw material. At this time, the valves 54 connected to the raw material containers are not opened at the same time in order to avoid any reaction from being caused by mixing of a plurality of compound vapors. When the spraying of the first compound vapor is completed, the compound vapor remaining in the pipe is exhausted from the nozzle by the valve 52 connected to the sample chamber so that it does not remain. After sufficiently exhausting the remaining compound vapor, the valve 52 connected to the sample chamber is closed, and the corresponding one of the valves 54 is opened to spray the second compound vapor onto the sample surface.
また、 化合物蒸気の種類によっては、 複数の化合物蒸気を混合して用 いる場合もある。 産業上の利用可能性  Also, depending on the type of compound vapor, a mixture of plural compound vapors may be used. Industrial applicability
以上詳細に説明したように、 本発明により、 化合物蒸気原料を第 2の 容器にグローブボックスなどの設備のあるところで詰め込むことができ るようになった。 例えば、 集束イオンビーム装置メ—力や化合物蒸気原 料メーカで第 2の容器に化合物蒸気原料を詰め込み、 集束イオンビーム 装置ユーザに供給することにより、 集束イオンビーム装置ユーザは化合 物蒸気原料を周囲に撒き散らすことなく、 取り扱うことができるように なる。 それにより、 更に今後のアプリケ一ションに必要になると考えられる 化合物蒸気の中には、 危険なものが多数含まれているが、 本発明を適用 することにより、 安全に使用することができるようになる。  As described in detail above, according to the present invention, a compound vapor raw material can be packed in a second container in a place where equipment such as a glove box is provided. For example, a focused ion beam equipment manufacturer or a compound vapor raw material manufacturer packs a second container with a compound vapor raw material and supplies it to the focused ion beam equipment user, so that the focused ion beam equipment user can surround the compound vapor raw material. Can be handled without being scattered. As a result, many of the compound vapors that are considered to be necessary for future applications include many dangerous ones, but by applying the present invention, it can be used safely. Become.

Claims

請 求 の 範 囲 The scope of the claims
1 . 化合物蒸気の存在する雰囲気内でサンプルの所定の位置に集束ィ オンビームを照射する集束イオンビーム装置に装着される化合物蒸気吹 付け装置において、 1. In a compound vapor spray device attached to a focused ion beam device that irradiates a focused ion beam to a predetermined position of a sample in an atmosphere where compound vapor exists,
化合物を大気と遮断して収納する第 2の容器と、  A second container for containing the compound in isolation from the atmosphere;
前記第 2の容器の一部を貫いて前記化合物蒸気を前記第 2の容器から 外部へ導く注射針形状の案内部と、  A needle-shaped guide for guiding the compound vapor from the second container to the outside through a part of the second container;
前記案内部と開閉バルブを介して連通すると共に前記化合物蒸気を所 定の位置に吹付けるためのノズルと、  A nozzle communicating with the guide via an on-off valve and spraying the compound vapor to a predetermined position;
前記第 2の容器を収納する第 1 の容器とを有することを特徴とする化 合物蒸気吹付け装置。  And a first container for storing the second container.
2 . 請求項 1記載の化合物蒸気吹付け装置であって、 2. The compound vapor spray device according to claim 1, wherein
前記開閉バルブと前記ノズルとの間に設けられて前記サンプルを載置 する試料室、 又は複数ある試料室の中の一つ若しくは全部と接続する第 2のバルブを有することを特徴とする化合物蒸気吹付け装置。  A compound vapor comprising a sample chamber provided between the opening / closing valve and the nozzle, on which the sample is placed, or a second valve connected to one or all of a plurality of sample chambers. Spray device.
3 . 請求項 1記載の化合物蒸気吹付け装置であって、 3. The compound vapor spray device according to claim 1, wherein
前記ノズルは、 他の複数の化合物蒸気吹付け装置とも各々の開閉バル ブを介して連通していることを特徴とする化合物蒸気吹付け装置。  The compound vapor spraying device, wherein the nozzle communicates with a plurality of other compound vapor spraying devices via respective opening / closing valves.
4 . 請求項 1記載の化合物蒸気吹付け装置であって、 4. The compound vapor spray device according to claim 1, wherein
前記第 2の容器は、 中が見える構造であることを特徴とする化合物蒸 気吹付け装置。 The said 2nd container is a structure which can see inside, The compound vapor spray apparatus characterized by the above-mentioned.
5 . 請求項 1記載の化合物蒸気吹付け装置であって、 前記第 2の容器は、 熱伝導性の良い材質でできていることを特徴とす る化合物蒸気吹付け装置。 5. The compound vapor spray device according to claim 1, wherein the second container is made of a material having good heat conductivity.
6 . 請求項 1記載の化合物蒸気吹付け装置であって、 6. The compound vapor spray device according to claim 1, wherein
前記第 1 の容器は、 蓋に前記案内部が取付けられており、 前記第 2の 容器を中に収納して前記蓋をすると前記第 2の容器の蓋に前記案内部が 挿入される構造になっており、  The first container has a structure in which the guide portion is attached to a lid, and the guide portion is inserted into the lid of the second container when the second container is stored therein and the lid is closed. Has become
前記第 1 の容器の蓋を持ち上げると、 前記第 2の容器が前記第 1 の容 器から取り出せる構造になっていることを特徴とする化合物蒸気吹付け  A compound vapor sprayer, wherein the second container is configured to be taken out of the first container by lifting a lid of the first container.
7 . 請求項 1記載の化合物蒸気吹付け装置であって、 7. The compound vapor spray device according to claim 1, wherein
前記第 1 の容器の温度制御をすることにより前記第 2の容器に収納さ れている前記化合物の化合物蒸気発生量を所定の量にする温度制御系が 設けられていることを特徴とする化合物蒸気吹付け装置。  A compound provided with a temperature control system for controlling the temperature of the first container so as to make the amount of compound vapor generated by the compound contained in the second container a predetermined amount. Steam spray equipment.
8 . 請求項 1記載の化合物蒸気吹付け装置であって、 8. The compound vapor spray device according to claim 1, wherein
前記案内部、 ノズル及びバルブはパイプにて連通しており、 当該パイ プは温度制御されていることを特徴とする化合物蒸気吹付け装置。  The guide, the nozzle, and the valve communicate with each other via a pipe, and the pipe is temperature-controlled.
9 . 請求項 1記載の化合物蒸気吹付け装置であって、 前記ノズルは温 度制御されていることを特徴とする化合物蒸気吹付け装置。 9. The compound vapor spray device according to claim 1, wherein the temperature of the nozzle is controlled.
1 0 . 請求項 1記載の化合物蒸気吹付け装置であって、 前記案内部は 温度制御されていることを特徴とする化合物蒸気吹付け装置。 10. The compound vapor spray device according to claim 1, wherein the guide portion is controlled in temperature.
1 1 . 請求項 1記載の化合物蒸気吹付け装置であって、 11. The compound vapor spray device according to claim 1, wherein
前記第 2の容器は、 シールを有しており前記化合物を密閉しており、 前記注射針形状の案内部で当該シールを貫く ことを特徴とする化合物 蒸気吹付け装置。  The second container has a seal, seals the compound, and penetrates the seal with the injection needle-shaped guide.
1 2 . 請求項 1 から 1 1 のいずれかに記載の化合物蒸気吹付け装置を 少なくとも 1 つ以上取付けたことを特徴とする集束イオンビーム装置。 12. A focused ion beam device comprising at least one compound vapor spray device according to any one of claims 1 to 11.
PCT/JP2000/008028 1999-11-22 2000-11-14 Compound vapor spraying device and focusing ion beam device using it WO2001038602A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001539939A JP4350333B2 (en) 1999-11-22 2000-11-14 Compound vapor spraying apparatus and focused ion beam apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11-331460 1999-11-22
JP33146099 1999-11-22

Publications (1)

Publication Number Publication Date
WO2001038602A1 true WO2001038602A1 (en) 2001-05-31

Family

ID=18243904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008028 WO2001038602A1 (en) 1999-11-22 2000-11-14 Compound vapor spraying device and focusing ion beam device using it

Country Status (3)

Country Link
JP (1) JP4350333B2 (en)
TW (1) TW476978B (en)
WO (1) WO2001038602A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220344A (en) * 2006-02-14 2007-08-30 Sii Nanotechnology Inc Focused ion beam device and method of processing and observing test piece
JP2013167018A (en) * 2012-01-23 2013-08-29 Carl Zeiss Microscopy Gmbh Particle beam system including source of process gas to processing place
US20140322445A1 (en) * 2013-04-24 2014-10-30 Diamon Fusion International, Inc. Defined dosing atmospheric temperature and pressure vapor deposition system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612441B2 (en) * 1984-11-20 1994-02-16 セイコー電子工業株式会社 Mask defect repair method
JPH07310185A (en) * 1994-05-12 1995-11-28 Hitachi Ltd Cvd gas feeder
JPH1186772A (en) * 1997-09-03 1999-03-30 Jeol Ltd Assist gas introducing device for fib

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0612441B2 (en) * 1984-11-20 1994-02-16 セイコー電子工業株式会社 Mask defect repair method
JPH07310185A (en) * 1994-05-12 1995-11-28 Hitachi Ltd Cvd gas feeder
JPH1186772A (en) * 1997-09-03 1999-03-30 Jeol Ltd Assist gas introducing device for fib

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220344A (en) * 2006-02-14 2007-08-30 Sii Nanotechnology Inc Focused ion beam device and method of processing and observing test piece
JP2013167018A (en) * 2012-01-23 2013-08-29 Carl Zeiss Microscopy Gmbh Particle beam system including source of process gas to processing place
US20140322445A1 (en) * 2013-04-24 2014-10-30 Diamon Fusion International, Inc. Defined dosing atmospheric temperature and pressure vapor deposition system
US9562288B2 (en) * 2013-04-24 2017-02-07 Diamon Fusion International, Inc. Defined dosing atmospheric temperature and pressure vapor deposition system

Also Published As

Publication number Publication date
TW476978B (en) 2002-02-21
JP4350333B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
US8921811B2 (en) High pressure charged particle beam system
US4698236A (en) Augmented carbonaceous substrate alteration
JPS63270458A (en) Device for forming compound thin film
JP3253675B2 (en) Charged beam irradiation apparatus and method
EP2501839B1 (en) Gas delivery for beam processing systems
US6730237B2 (en) Focused ion beam process for removal of copper
JP7048703B2 (en) Charged particle beam induced etching
WO1994013010A1 (en) Process of shaping features of semiconductor devices
US9336979B2 (en) Focused ion beam apparatus with precious metal emitter surface
JP3457855B2 (en) FIB assist gas introduction device
EP2061066B1 (en) System and method for processing an object with a charged particle beam
JP2011034895A (en) Charged particle beam device and sample decontamination mechanism
KR100670714B1 (en) Electron beam plasma formation for surface chemistry
WO2001038602A1 (en) Compound vapor spraying device and focusing ion beam device using it
WO2007086254A1 (en) Charged particle beam equipment
US20040173759A1 (en) Device, set and method for carrying a gas or a liquid to a surface through a tube
WO2008026366A1 (en) Surface treatment method and apparatus
JP2000048759A (en) Observation and working method by focused ion beam and its device
JP6758755B2 (en) Charged particle beam system with improved imaging gas and how to use it
JP2001148340A (en) Method and apparatus for aligning with charged particle beam
JP7179661B2 (en) Gas cluster ion beam device, analyzer
WO2001018844A1 (en) Processing method using focused ion beam
JP3944384B2 (en) Focused ion beam processing equipment
JPS62218558A (en) Device for vapor-depositing thin film of compound
WO1986000426A1 (en) Mask repairing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 539939

Kind code of ref document: A

Format of ref document f/p: F