WO2001042755A1 - Aktorintegrierter kraftsensor - Google Patents

Aktorintegrierter kraftsensor Download PDF

Info

Publication number
WO2001042755A1
WO2001042755A1 PCT/DE2000/004319 DE0004319W WO0142755A1 WO 2001042755 A1 WO2001042755 A1 WO 2001042755A1 DE 0004319 W DE0004319 W DE 0004319W WO 0142755 A1 WO0142755 A1 WO 0142755A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
actuator base
actuator
support ring
force sensor
Prior art date
Application number
PCT/DE2000/004319
Other languages
English (en)
French (fr)
Inventor
Hans WÜNSCHE
Dieter Spriegel
Günter DOEMENS
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to JP2001543995A priority Critical patent/JP4044761B2/ja
Priority to EP00993337A priority patent/EP1242797B1/de
Priority to US10/148,948 priority patent/US6772647B2/en
Priority to DE50002620T priority patent/DE50002620D1/de
Publication of WO2001042755A1 publication Critical patent/WO2001042755A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/14Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • G01L1/142Measuring force or stress, in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators using capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/28Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for testing brakes

Definitions

  • the invention relates to a force sensor which is integrated in an actuator for generating or transmitting a force in the force flow and has an actuator base transversely to the force flow.
  • the advantages are the individual and variable design of the braking process as well as the simultaneous performance of other functions, such as the ABS function (anti-lock braking system). Since an electromechanical brake system will generally work with brake force control, the precise brake force measurement is an essential basis for the performance of the overall system. Due to the synchronism, high demands are placed on the accuracy of the system. For example, error tolerances should be ⁇ 1%, even if the braking force is 5 t, for example. The measuring task is also made considerably more difficult by the restricted accessibility of relevant measuring locations, by the small free space in the direction of the force and by the extremely high spatial and temporal temperature gradients. These aspects include the use of known ones
  • the object of the invention is to enable an exact and unambiguous detection of braking forces as close as possible to the point of action of the braking force. This task is solved by the combination of features in accordance with claim 1.
  • the invention is based on the finding that a force sensor can be easily integrated into an actuator.
  • the deflection of an actuator base or a brake piston base (a designation based on hydraulic systems) can be used as a measurement variable for the braking force.
  • the actuator base is designed accordingly.
  • the actuator is generally constructed in the form of a hollow cylinder, has an actuator base and furthermore contains a support ring with which it bears directly or indirectly on the brake lining of a brake.
  • the braking force is generated centrally and applied to the actuator floor.
  • the deformation of the actuator base is advantageously determined by means of various measuring methods.
  • a capacitive measuring method is a method suitable for series production, the actuator base representing an electrode of a capacitor, the capacitance of which changes with the deformation is determined.
  • the capacitor will therefore generally be a plate capacitor, the electrode opposite the actuator base being plate-shaped and spring-supported being pressed onto a support, so that no mechanical stresses are transmitted to the insulator of the electrode due to the high temperature gradients and accordingly a defined one Electrode distance is ensured, as is the case, for example, in the. European patent EP 0 849 576 B1 is described.
  • the connection point between the actuator base and the generally cylindrical rear part of the actuator on the one hand and on the other hand the support ring is relatively rigid, the braking force at this point can transmit torques to the support ring, which lead to hysteresis-related measurements due to friction effects. Therefore the material cross-section is Bmdungsstelle advantageously reduced by an inner circumferential groove, an outer circumferential groove or a combination thereof, so that only minimal torques are transmitted.
  • the measures provided for a minimized hysteresis are also suitable for suppressing a temperature gradient in the actuator base in the axial direction by largely radial arm introduction. Axial temperature gradients resulted in a curvature of the actuator base in the direction of the force to be measured and thus an incorrect measurement.
  • FIG. 1 shows an actuator base with a support ring, isotherms and heat flow being entered
  • FIG. 2 shows an actuator base in the idle state and in the deformed state
  • FIG. 3 shows an actuator with circumferential grooves on the inside and outside to reduce the material cross section between the actuator base and the support ring
  • FIG. 4 shows a similar representation corresponding to FIG. 2, but with a hysteresis-free deformation path of the actuator base
  • FIG. 5 shows an actuator with measuring elements for the deformation ⁇ z
  • FIG. 6 shows an actuator with a capacitive measuring device for the deformation .DELTA.z
  • Figure 7 shows a schematic sectional view of a
  • Motor vehicle braking system with a sensor integrated in the frictional connection and in the actuator.
  • An essential element of the invention is the integration of the force sensor and the actuator, the actuator base being used as the measuring element.
  • the elastic deformation of the actuator base with a corresponding application of a force is thus the measurement variable on this deformation element.
  • the magnitude of the force can be deduced from the deformation.
  • FIG. 1 shows the section through an actuator 1, the actuator base 2 being arranged perpendicular to the direction of force.
  • the direction of force is shown in Figure 2.
  • FIG. 1 also shows a base plane 12 as a point of application for the force, a support ring 3, a brake pad 18 and the direction of the heat flow.
  • the actuator 1 is designed in the shape of a cylinder, for the most part in the form of a hollow cylinder.
  • the support ring 3 is arranged in the area of the outer circumference of the actuator base 2 in the direction of force behind the actuator base 2.
  • the hollow-cylindrical design is extended opposite the support ring 3 beyond the actuator base 2 against the direction of force.
  • FIG. 1 contains no sensor elements and has no features that can prevent temperature or hysteresis effects. It is essential in FIG. 1 that the heat flow Q, starting from the brake system with the brake lining 18 on which the bearing ring 3 rests, is introduced into the actuator base 2 in a manner that temperature gradients occur in the direction of the force in the actuator base 2. This leads to temperature-related deformation of the actuator base, which results in incorrect force measurement.
  • FIG. 2 shows a representation corresponding to FIG. 1, the force F, the braking force, being plotted schematically and the deformation of the actuator base 2 m in the form of the bent actuator base 2.
  • the maximum deflection ⁇ Z will occur in the middle of the mostly radially symmetrical component.
  • the deformation shown will generate a torque at the connection point between the actuator base 2 and the support ring 3, the pivot point 10 of which is marked. By this torque when the force is applied to the brake pad 18 Move the surface of the support ring 3 outwards.
  • the torques M are shown schematically.
  • FIG. 3 shows a representation corresponding to FIG. 1, wherein the introduction of the heat flow into the actuator base 2 is approximately perpendicular to the direction of force, that is, by means of an inner circumferential groove 8 and an outer circumferential groove 9. H. radially from the outside in, happens. This leads to almost force-parallel isotherms 11. No temperature-induced deformations will occur as a result of this measure.
  • FIG. 4 shows an arrangement corresponding to FIG. 2, measures likewise being taken by circumferential grooves 8 and 9 between actuator base 2 and support ring 3 in order to eliminate torques M occurring when force is applied.
  • the actuator base 2 can deflect by a maximum amount of ⁇ Z without any torques acting on the support ring 3 on its outer edges, which allow its support surface to migrate outwards onto the brake lining 18.
  • the material cross section is correspondingly reduced by the grooves 8 and 9, so that an articulated design is achieved.
  • FIG. 5 shows an actuator arrangement with a measurement of the actuator base deflection ⁇ Z using different sensors.
  • the deflection of the actuator base 2 can be measured inductively or optically with a non-contact distance sensor 13.
  • this non-contact sensor is mounted on the base plane 12 oriented perpendicular to the direction of force and is thus offset by ⁇ Z in accordance with the central region of the actuator base 2. This displacement is carried out without contact by the sensor approaching the actuator base 2.
  • strain sensors 6 which are suitable for higher temperatures. According to their designation, these sensors measure an expansion ⁇ that occurs when a force F is exerted on the actuator base 2 acts.
  • Metallic, semiconductor or piezoresistive strain gauges as well as capacitive strain sensors in silicon surface micromechanics can be used as strain sensors.
  • the circumferential grooves 8 and 9 are shown in FIG. 5 and the support of the support ring 3 on the brake pad 18.
  • FIG. 6 shows the actuator 1 with a capacitive measuring arrangement. ⁇ Z is again measured.
  • the capacitive measuring arrangement contains an electrode 5 mounted on an electrode holder 7.
  • the outer part of the electrode holder is printed on a support 14 with spring support.
  • the pad 14 will remain stationary, even when subjected to force.
  • the spring support is brought about by the spring 15, which is supported on a rear cover 4. This ensures that the electrode 5 m in the rest position is aligned approximately plane-parallel to the actuator base 2.
  • the actuator base 2 thus represents the counter electrode to the electrode 5. A change in the distance between these two electrodes produces a signal proportional to ⁇ Z.
  • Figure 7 shows the entire arrangement of a brake system which engages a brake disc 17.
  • the brake pads 18 held together by the brake caliper 16 are printed on both sides of the brake disc 17 when a spindle 20 exerts a braking force on the actuator 1 by means of an electric motor.
  • the electric motor drive is usually connected to a reduction.
  • the spindle 20 transmits the braking force centrally to the actuator base 2, the motor 19 abuttingly abutting on part of the brake caliper 16.
  • the capacitive sensor 22 is entered schematically.
  • the heat flow can be clarified, which, starting from the contact surfaces between the brake disc 17 and the brake lining 18, is introduced backwards through the brake lining m into the support ring 3 and via this into the actuator base 2. Since temperature differences of several 100 ° C can occur here, it becomes clear that door deformations can prevent reproducible measurements.
  • the temperature influence on a brake can be enormous, since during the braking process, the actuator 1 heats up considerably in a few seconds.
  • the heat flow Q occurs exclusively via the support ring 3 and is then distributed in the actuator base 2.
  • considerable axial temperature gradients occur in the actuator base, which is shown in FIG. 1. This leads to a temperature-dependent curvature ⁇ Z of the actuator base 3 and thus to an incorrect measurement. If, however, a rotation in the form of a circumferential groove 8 is provided in the interior of the support ring 3, the heat flow is introduced almost radially into the actuator base 3 and thus a temperature-related axial curvature ⁇ Z is excluded.
  • the hysteresis phenomena on the actuator described occur due to the relatively rigid connection of the actuator base 2 to the support ring 3.
  • the centrally applied braking force not only causes a deflection .DELTA.Z on the actuator base 2, but also generates a torque M corresponding to FIG. 2.
  • This torque ensures that the support surface of the support ring 3 radially migrates.
  • Hysteresis which prevents a certain decrease in the deformation ⁇ Z proportional to the force F.
  • the hysteresis is avoided in that the rigid connection between the actuator base 2 and the support ring is considerably weakened in cross section.
  • connection between these two parts is arranged approximately centrally to the support surface, as shown in FIG. 4.
  • a low-hysteresis material is used to manufacture the sensor.
  • Precipitation-hardenable stainless steel for example of the 17-4PH type, is preferably used here.
  • the measurement of the brake force proportional deformation tion ⁇ Z is expediently carried out relative to the edge of the actuator. Inductive and optical methods can be used for this. Due to the high temperatures, capacitive measuring principles as shown in FIG. 6 are also particularly suitable. The corresponding change in capacitance results from a change in the electrode distance from the actuator base 2, which is dependent on the braking force.
  • a measurement signal proportional to the deformation ⁇ Z and thus to the braking force F also results from the radial expansion ⁇ of the actuator base 2.
  • strain sensors, high-temperature measuring strips, piezoresistive sensors or capacitive micromechanical strain sensors in question.
  • the invention is based on the use of the already existing actuator base 2 as a deformation body for a direct braking force measurement and in its geometric design with regard to a largely temperature-independent and hysteresis-free force measurement.

Abstract

Zur genauen und eindeutigen Erfassung von Bremskräften muss möglichst nahe an der Stelle gemessen werden, wo die Kraft auf den Bremsbelag unmittelbar eingeleitet wird. Es wird vorgeschlagen, die Durchbiegung ΔZ eines Aktorbobens (2) als Messgrösse für die Bremskraft zu nutzen und diesen dafür entsprechend zu gestalten. Der Auflagering (3) des Aktors (1) liegt ringförmig an den Bremsbelag (18) an. Die Bremskraft F wird zentrisch auf den Aktorboden (2) aufgebracht. Um Temperatureinflüsse sowie Hysterese-Effekte bei der Umsetzung der Bremskraft F in eine proportionale Verformung ΔZ möglichst weitgehend zu eliminieren, werden verschiedene Massnahmen ergriffen.

Description

Beschreibung
Aktorintegrierter Kraftsensor
Die Erfindung betrifft einen Kraftsensor, der m einen Aktor zur Erzeugung bzw. Übertragung einer Kraft im Kraftfluß integriert ist und quer zum Kraftfluß einen Aktorboden aufweist.
Heute wird bei Kraftfahrzeugen die Bremsfunktion durch hy- draulisch betätigte Aktoren realisiert. Bei dem als "Brake- by- ire" bezeichneten Verfahren handelt es sich um elektrisch betriebene Bremsvorrichtungen. Darin werden Aktoren, d.h. Elemente, m denen die Bremskraft erzeugt wird, und mittels der die Bremskraft übertragen wird, über elektromotorische Untersetzungsantriebe betätigt. Die daraus resultierenden
Vorteile liegen in der individuellen und variablen Gestaltung des Bremsprozesses sowie in der gleichzeitigen Wahrnehmung anderer Funktionen, wie beispielsweise der ABS-Funktion (An- ti-Blockier-System) . Da ein elektromechanisch.es Bremssystem m der Regel bremskraftgeregelt arbeiten wird, stellt die präzise Bremskraftmessung eine wesentliche Grundlage für die Leistungsfähigkeit des Gesamtsystems dar. An die Genauigkeit des Systems werden dabei aufgrund des Gleichlaufes hohe Anforderungen gestellt. Beispielsweise sollen Fehlertoleranzen < 1% sein, auch wenn die Bremskraft beispielsweise 5 t betragt. Die Meßaufgabe wird ferner durch die eingeschränkte Zuganglichkeit relevanter Meßorte, durch den geringen Freiraum m Kraftrichtung sowie den extrem hohen raumlichen sowie zeitlichen Temperaturgradienten erheblich erschwert. Diese Aspekte schließen die Verwendung von bekannten
Kraftsensoren, wie z.B. Dehnungsmeßstreifen weitgehend aus.
Der Erfindung liegt die Aufgabe zugrunde, eine genaue und eindeutige Erfassung von Bremskräften möglichst nahe am Wir- kungsort der Bremskraft zu ermöglichen. Die Losung dieser Aufgabe geschieht durch die Merkmalskombi- nation entsprechend Anspruch 1.
Vorteilhafte Ausgestaltungen sind den Unteranspruchen zu ent- nehmen. Der Erfindung liegt die Erkenntnis zugrunde, daß ein Kraftsensor in einfacher Weise in einem Aktor integrierbar ist. Die Durchbiegung eines Aktorbodens bzw. eines Bremskol- benbodens (eine Bezeichnung in Anlehnung an hydraulische Systeme) kann als Meßgroße für die Bremskraft genutzt werden. Der Aktorboden wird dazu entsprechend ausgestaltet. Der Aktor ist in der Regel hohlzylinderformig aufgebaut, weist einen Aktorboden auf und enthält weiterhin einen Auflagering mit dem er am Bremsbelag einer Bremse direkt oder mittelbar anliegt. Die Bremskraft wird zentrisch erzeugt und auf den Ak- torboden eingeleitet.
In vorteilhafter Weise wird die Verformung des Aktorbodens mittels verschiedener Meßverfahren ermittelt. Ein serientaugliches Verfahren ist das kapazitive Meßverfahren, wobei der Aktorboden eine Elektrode eines Kondensators darstellt, dessen mit der Verformung veränderte Kapazität ermittelt wird. Der Kondensator wird also in der Regel ein Plattenkondensator sein, wobei die dem Aktorboden gegenüberliegende Elektrode plattenfor ig ausgebildet und federunterstutzt an eine Aufla- ge angedruckt wird, so daß durch die hohen Temperaturgradienten keine mechanischen Spannungen in den Isolator der Elektrode übertragen werden und demnach ein definierter Elektrodenabstand sichergestellt ist, wie es beispielsweise in der . Europaischen Patentschrift EP 0 849 576 Bl beschrieben wird.
Da die Verbindungsstelle zwischen Aktorboden und dem in der Regel zylindrisch ausgeführten rückwärtigen Teil des Aktors einerseits und andererseits dem Auflagering relativ starr ausgebildet ist, können durch die Bremskraft an dieser Stelle Drehmomente auf den Auflagering übertragen werden, welche durch Reibungseffekte zu einem hysteresebehafteten Messen fuhren. Deshalb wird der Materialquerschnitt an dieser Ver- bmdungsstelle in vorteilhafter Weise durch eine innen umlaufende Nut, eine außen umlaufende Nut oder durch eine Kombination daraus verringert, so daß nur minimale Drehmomente übertragen werden.
Die für eine minimierte Hysterese vorgesehenen Maßnahmen sind ebenso dazu geeignet, in axialer Richtung einen Temperaturgradienten im Aktorboden durch weitgehend radiale armeein- leitung zu unterdrucken. Axiale Temperaturgradienten hatten eine Verwolbung des Aktorbodens in Richtung der zu messenden Kraft und dadurch ein Fehlmessung zur Folge.
Im folgenden werden anhand von schematischen die Erfindung nicht einschränkenden Figuren Ausfuhrungsbeispiele beschrie- ben.
Figur 1 zeigt einen Aktorboden mit Auflagering, wobei Isothermen und Warmefluß eingetragen sind,
Figur 2 zeigt einen Aktorboden im Ruhezustand, sowie im verformten Zustand,
Figur 3 zeigt einen Aktor mit innen und außen umlaufend angebrachten Nuten zur Verringerung des Materialquer- Schnittes zwischen Aktorboden und Auflagering,
Figur 4 zeigt eine ähnliche Darstellung entsprechend Figur 2, jedoch mit hysteresefreiem Verformungsweg des Aktorbodens,
Figur 5 zeigt einen Aktor mit Meßelementen für die Verformung Δz,
Figur 6 zeigt einen Aktor mit kapazitiver Meßeinrichtung für die Verformung Δz, Figur 7 zeigt eine schematische Schnittdarstellung eines
Kraftfahrzeug-Bremssystemes mit im Kraftschluß und im Aktor integrierten Sensor.
Ein wesentliches Element der Erfindung besteht m der Integration des Kraftsensors m Aktor, wobei der Aktorboden als Meßelement herangezogen wird. Die elastische Deformation des Aktorbodens bei entsprechender Aufbringung einer Kraft ist somit die Meßgroße an diesem Verformungselement. Von der Ver- formung kann auf die Große der Kraft geschlossen werden.
Zur Verhinderung einer temperaturbedingten Verformung am Aktorboden m Meßrichtung, d. h. m Kraftrichtung, wird dafür gesorgt, daß an der Verbindungsstelle Aktorboden-Auflagering die Temperaturemleitung bzw. der Warmeemfluß derart gestaltet ist, daß Temperaturgradienten m Kraftrichtung minimiert werden, was gleichbedeutend mit einem annähernd axialen in Kraftrichtung ausgebildeten Verlauf der Isothermen. Somit wird der Warmefluß fast ausschließlich in radialer Richtung nach innen laufen.
Zur Verhinderung von Hysterese-Effekten wahrend verschiedener Lastwechsel, m denen die Kraft auf- und abgefahren wird, wird die Entstehung von Drehmomenten bzw. deren Übertragung auf den Auflagering gezielt minimiert. Dies fuhrt zu einer gelenkahnlichen Ausfuhrung der Verbindungsstelle zwischen Aktorboden und Auflagering. Da der Aktorboden als membranartiger Verformungskorper dient, wird bei Kraftbeaufschlagung an der Verbindungsstelle zwischen Aktorboden und äußerem Zylin- der bzw. Auflagering ein Drehmoment entstehen, dessen Drehpunkt innerhalb dieser T-Verbindung positioniert ist. Dies fuhrt zu einem radialen Auswandern der Auflageflache des Auf- lageπnges auf dem Bremsbelag. Durch an der Auflagestelle vorhandene Reibungskräfte wird beim Zurückfahren der Last die ursprüngliche Auflageposition nicht mehr erreicht, so daß Hysterese-Effekte auftauchen, die reproduzierbare Messungen verhindern. Durch entsprechend eingebrachte Nuten, die u lau- fend ausgebildet sind, wird die Übertragung von Drehmomenten an der angesprochenen Stelle verhindert.
Figur 1 zeigt den Schnitt durch einen Aktor 1, wobei der Ak- torboden 2 senkrecht zur Kraftrichtung angeordnet ist. Die Kraftrichtung wird in Figur 2 dargestellt. In Figur 1 sind weiterhin eine Sockelebene 12 als Angriffspunkt für die Kraft, ein Auflagering 3, ein Bremsbelag 18 sowie die Richtung des Warmeflusses eingezeichnet. Der Aktor 1 ist insge- samt zylmderformig, größtenteils hohlzylinderformig, ausgebildet. Dabei ist m Kraftrichtung hinter dem Aktorboden 2 der Auflagering 3 im Bereich des äußeren Umfanges des Aktorbodens 2 angeordnet. Zur Fuhrung des Aktorbodens ist gegenüberliegend vom Auflagering 3 die hohlzylinderformige Ausbil- düng über den Aktorboden 2 hinaus entgegen der Kraftrichtung verlängert. Weiterhin sind im Aktorboden 2 Isothermen 11 eingetragen, die verschiedene Temperaturen Ti bis T4 kennzeichnen. Die Ausfuhrung entsprechend Figur 1 enthalt keinerlei Sensorelemente und weist keine Merkmale auf, die Temperatur- bzw. Hysterese-Effekte verhindern können. Wesentlich in Figur 1 ist, daß der Warmefluß Q, ausgehend von dem Bremssystem mit dem Bremsbelag 18, auf dem der Auflagering 3 aufliegt, m einer Art und Weise m den Aktorboden 2 eingeleitet wird, daß im Aktorboden 2 Temperaturgradienten in Kraftrichtung auftre- ten. Dies fuhrt zu temperaturbedingten Verformungen des Aktorbodens, welche eine fehlerhafte Kraft essung zur Folge hat.
Figur 2 zeigt eine Darstellung entsprechend Figur 1, wobei die Kraft F, die Bremskraft, schematisch angetragen ist sowie die Verformung des Aktorbodens 2 m Form des durchgebogenen Aktorbodens 2. Die maximale Durchbiegung ΔZ wird in der Mitte des meist radialsymmetrischen Bauteiles auftreten. Die eingezeichnete Verformung wird an der Verbindungsstelle zwischen Aktorboden 2 und Auflagering 3 ein Drehmoment erzeugen, dessen Drehpunkt 10 markiert ist. Durch dieses Drehmoment wird bei Kraftbeaufschlagung die auf dem Bremsbelag 18 aufliegende Flache des Auflageringes 3 nach außen versetzen. Die Drehmomente M sind schematisch angetragen.
Figur 3 zeigt eine Darstellung entsprechend Figur 1, wobei durch eine innen umlaufende Nut 8 und eine außen umlaufende Nut 9 die Einleitung des Warmeflusses in den Aktorboden 2 annähernd senkrecht zur Kraftrichtung, d. h. radial von außen nach innen, geschieht. Dies fuhrt zu annähernd kraftparallelen Isothermen 11. Durch diese Maßnahme werden keine tempera- turbedmgten Verformungen auftreten.
Figur 4 zeigt eine Anordnung entsprechend Figur 2, wobei ebenfalls durch umlaufende Nuten 8 und 9 zwischen Aktorboden 2 und Auflagering 3 Maßnahmen ergriffen wurden, um bei Kraft- einwirkung auftretende Drehmomente M zu eliminieren. Somit kann sich der Aktorboden 2 um einen maximalen Betrag von ΔZ durchbiegen, ohne daß an seinen äußeren Randern Drehmomente auf den Auflagering 3 wirken, die dessen Auflageflache auf den Bremsbelag 18 nach außen auswandern lassen. Durch die Nu- ten 8 und 9 ist der Materialquerschnitt entsprechend verringert, so daß eine gelenkartige Ausbildung erreicht wird.
Figur 5 zeigt eine Aktoranordnung mit einer Messung der Aktorbodendurchbiegung ΔZ mit unterschiedlichen Sensoren. Zum einen kann die Durchbiegung des Aktorbodens 2 mit einem be- ruhrungslosen Abstandssensor 13 induktiv oder optisch gemessen werden. Dieser beruhrungslose Sensor ist dazu auf der senkrecht zur Kraftrichtung ausgerichteten Sockelebene 12 montiert und wird somit entsprechend dem zentralen Bereich des Aktorbodens 2 um ΔZ versetzt. Diese Versetzung wird be- ruhrungslos durch Annäherung des Sensors an den Aktorboden 2 durchgeführt.
Eine weitere Meßmethode beinhaltet den Einsatz von Dehnungs- sensoren 6, die für höhere Temperaturen geeignet sind. Diese Sensoren messen entsprechend ihrer Bezeichnung eine Dehnung ε, die auftritt, wenn eine Kraft F auf den Aktorboden 2 wirkt. Als Dehnungssensoren können metallische, Halbleiter- oder piezoresistive Dehnungsmeßstreifen, sowie kapazitive Dehnungssensoren in SiJ lzium-Oberflachenmikromechanik verwendet werden. Wie bisher sind die umlaufenden Nuten 8 und 9 in Figur 5 dargestellt sowie die Auflage des Auflageringes 3 auf dem Bremsbelag 18.
Figur 6 zeigt den Aktor 1 mit einer kapazitiven Meßanordnung. Gemessen wird wiederum ΔZ . Die kapazitive Meßanordnung bein- haltet eine auf einer Elektrodenhalterung 7 angebrachte Elektrode 5. Die Elektrodenhalterung ist in ihrem äußeren Bereich auf einer Auflage 14 federunterstutzt angedruckt. Die Auflage 14 wird, auch bei Krafteinwirkung, ortsfest bleiben. Die Fe- derunterstutzung wird durch die Feder 15 bewerkstelligt, die sich an einem rückwärtigen Deckel 4 abstutzt. Somit ist gewährleistet, daß die Elektrode 5 m Ruhestellung annähernd planparallel zum Aktorboden 2 ausgerichtet ist. Der Aktorboden 2 stellt somit die Gegenelektrode zur Elektrode 5 dar. Eine Veränderung des Abstandes dieser beiden Elektroden er- zeugt ein zu ΔZ proportionales Signal.
Figur 7 zeigt die gesamte Anordnung eines Bremssystemes, das an einer Bremsscheibe 17 angreift. Die durch den Bremssattel 16 zusammengehaltenen Bremsbelage 18 werden beiderseitig an die Bremsscheibe 17 angedruckt, wenn über den Motor 19 eine Spindel 20 elektromotorisch eine Bremskraft auf den Aktor 1 ausübt. Der elektromotorische Antrieb ist meist mit einer Untersetzung verbunden. Die Spindel 20 übertragt die Bremskraft zentral auf den Aktorboden 2, wobei sich der Motor 19 ruck- wartig an einem Teil des Bremssattels 16 abstutzt. Weiterhin ist der kapazitive Sensor 22 schematisch eingetragen. In der Darstellung entsprechend Figur 7 laßt sich der Warmefluß verdeutlichen, der ausgehend von den Kontaktflachen zwischen Bremsscheibe 17 und Bremsbelag 18 über den Bremsbelag nach hinten m den Auflagering 3 und über diesen in den Aktorboden 2 eingeleitet wird. Nachdem hier Temperaturunterschiede von mehreren 100°C auftreten können, wird deutlich, daß tempera- turbedmgte Verformungen reproduzierbare Messungen verhindern können.
In Bezug auf Temperatureinfluß und Hysterese ist weiterhin folgendes anzumerken. Der Temperatureinfluß an einer Bremse kann enorm sein, da beim Bremsvorgang m wenigen Sekunden eine erhebliche Erwärmung des Aktors 1 geschieht. Der Warmefluß Q geschieht dabei ausschließlich über den Auflagering 3 und verteilt sich dann m den Aktorboden 2. Dabei treten erhebli- ehe axiale Temperaturgradienten im Aktorboden auf, was in Figur 1 dargestellt ist. Dies fuhrt zu einer te peraturabhangi- gen Verwolbung ΔZ des Aktorbodens 3 und damit zu einer Fehlmessung. Bringt man jedoch im Innenraum des Auflageringes 3 eine Emdrehung in Form einer umlaufenden Nut 8 an, so wird der Warmestrom nahezu radial in den Aktorboden 3 eingeleitet und damit eine temperaturbedingte axiale Verwolbung ΔZ ausgeschlossen.
Die Hysterese-Erscheinungen an dem beschriebenen Aktor treten aufgrund der relativ starren Verbindung des Aktorbodens 2 mit dem Auflagering 3 auf. Die zentrisch eingeleitete Bremskraft verursacht nicht nur eine Durchbiegung ΔZ am Aktorboden 2, sondern erzeugt auch ein Drehmoment M entsprechend Figur 2. Dieses Drehmoment sorgt für ein radiales Auswandern der Auf- lageflache des Auflageringes 3. Bei Entlastung tritt jedoch dann aufgrund der betrachtlichen Reibungskräfte eine erhebliche Hysterese auf, die ein der Kraft F proportionales Zurückgehen der Verformung ΔZ zu einem gewissen Teil verhindert. Erfmdungsgemäß wird die Hysterese dadurch vermieden, daß die starre Verbindung zwischen Aktorboden 2 und Auflagering erheblich im Querschnitt geschwächt wird. Weiterhin wird die Verbindung zwischen diesen beiden Teilen in etwa mittig zur Auflageflache angeordnet, wie m Figur 4 dargestellt. Darüber hinaus wird zur Herstellung des Sensors ein hysteresearmer Werkstoff verwendet. Vorzugsweise werden hier ausscheidungs- hartbare rostfreie Edelstahle, beispielsweise vom Typ 17-4PH eingesetzt. Die Messung der Bremskraft proportionalen Verfor- mung ΔZ wird zweckmäßigerweise relativ zum Rand des Aktors durchgeführt. Hierfür können induktive sowie optische Methoden verwendet werden. Besonders geeignet sind aufgrund der hohen Temperaturen auch kapazitive Meßprinzipien wie es in Figur 6 dargestellt wird. Die entsprechende Kapazitätsänderung entsteht durch eine bremskraftabhängige Änderung des Elektrodenabstandes zum Aktorboden 2. Ein zur Verformung ΔZ und damit zur Bremskraft F proportionales Meßsignal ergibt sich auch aus der radialen Dehnung ε des Aktorbodens 2. Als Dehnungssensoren kommen in diesem Fall Hochtemperatur- Meßstreifen, piezoresistive Sensoren oder kapazitive mikromechanische Dehnungssensoren in Frage.
Die Erfindung basiert auf der Nutzung des bereits vorhandenen Aktorbodens 2 als Verformungskörper für eine direkte Bremskraftmessung sowie in dessen geometrische Gestaltung hinsichtlich einer weitgehend temperaturunabhängigen und hysteresefreien Kraftmessung.

Claims

Patentansprüche
1. Aktorintegrierter Kraftsensor zur Kraftmessung im Kraftfluß mit einem quer zum Kraftfluß ausgebildeten Aktorboden (2) , auf den die Kraft (F) zentral einwirkt und einem am Aktorbodenaußenrand in Kraftrichtung umlaufend angeordneten Auflagering (3) zur Weiterleitung der Kraft (F) , wobei der mit der Kraft (F) verformbare Aktorboden (2) Teil des Kraftsensors ist und dessen detektierbare Verformung ein Maß für die Kraft (F) darstellt.
2. Kraftsensor nach Anspruch 1, wobei die Verformung mittels induktiver oder optischer Meßverfahren oder mit metallischen, piezoresistiven oder Halbleiter-Dehnungsmeßstreifen oder mit Dehnungssensoren in Silizium-
Oberflächenmikromechanik detektierbar ist.
3. Kraftsensor nach Anspruch 1, wobei die Verformung mittels kapazitiver Meßverfahren detektierbar ist.
4. Kraftsensor nach Anspruch 3, wobei eine zentrale Durchbiegung (Δz) des Aktorbodens (2) relativ zum Aktorrand mittels einer Plattenkondensatoranordnung, bestehend aus einer auf einer federunterstützt an eine Auflage (14) ange- drückten Elektrodenhalterung (7) aufgebrachten Elektrode (5) und einer durch den Aktorboden (2) dargestellten Gegenelektrode, detektierbar ist.
5. Kraftsensor nach einem der vorhergehenden Ansprüche, wobei der Querschnitt der Verbindung zwischen Aktorboden (2) und
Auflagering (3) mittels einer inneren umlaufenden Nut (8) verringert ist, so dass im Aktorboden minimierte Temperaturgradienten in Kraftrichtung auftreten.
6. Kraftsensor nach Anspruch 5, wobei zur verminderten mechanischen Kopplung zwischen Aktorboden (2) und Auflagering (3) eine Verringerung im Materialquerschnitt vorgesehen ist, so dass eine Momentenübertragung vom Aktorboden auf den Auflagering minimiert ist.
7. Kraftsensor nach einem der vorhergehenden Ansprüche, wobei der Auflagering (3) mindestens eine Öffnung aufweist.
8. Kraftsensor nach Anspruch 7, wobei mehrere Öffnungen gleichmäßig über den Umfang des Auflageringes (3) verteilt sind.
PCT/DE2000/004319 1999-12-07 2000-12-04 Aktorintegrierter kraftsensor WO2001042755A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001543995A JP4044761B2 (ja) 1999-12-07 2000-12-04 アクチュエータ組み込み式の力センサー
EP00993337A EP1242797B1 (de) 1999-12-07 2000-12-04 Aktorintegrierter kraftsensor
US10/148,948 US6772647B2 (en) 1999-12-07 2000-12-04 Actuator-integrated force sensor
DE50002620T DE50002620D1 (de) 1999-12-07 2000-12-04 Aktorintegrierter kraftsensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19958903A DE19958903A1 (de) 1999-12-07 1999-12-07 Aktorintegrierter Kraftsensor
DE19958903.8 1999-12-07

Publications (1)

Publication Number Publication Date
WO2001042755A1 true WO2001042755A1 (de) 2001-06-14

Family

ID=7931680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004319 WO2001042755A1 (de) 1999-12-07 2000-12-04 Aktorintegrierter kraftsensor

Country Status (5)

Country Link
US (1) US6772647B2 (de)
EP (1) EP1242797B1 (de)
JP (1) JP4044761B2 (de)
DE (2) DE19958903A1 (de)
WO (1) WO2001042755A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7808479B1 (en) 2003-09-02 2010-10-05 Apple Inc. Ambidextrous mouse
DE10223870A1 (de) * 2002-05-29 2003-12-11 Daimler Chrysler Ag Vorrichtung mit einem elektromagnetischen Aktuator
US7656393B2 (en) 2005-03-04 2010-02-02 Apple Inc. Electronic device having display and surrounding touch sensitive bezel for user interface and control
US11275405B2 (en) * 2005-03-04 2022-03-15 Apple Inc. Multi-functional hand-held device
FR2847515B1 (fr) * 2002-11-27 2006-07-14 Roulements Soc Nouvelle Butee de suspension instrumentee en deformation pour mesurer les efforts
DE102004059081B4 (de) * 2004-12-04 2014-04-03 Intelligente Sensorsysteme Dresden Gmbh Kraftsensor zur Bremskraftbestimmung an einer Reibbremse für rotierende Körper
DE102005041894B4 (de) * 2005-09-03 2007-12-13 Audi Ag Trägerelement, insbesondere in einem Kraftfahrzeug
US7538760B2 (en) 2006-03-30 2009-05-26 Apple Inc. Force imaging input device and system
JP4909104B2 (ja) * 2007-01-31 2012-04-04 本田技研工業株式会社 力覚センサ
DE102007017361B4 (de) 2007-04-02 2016-03-24 I2S Intelligente Sensorsysteme Dresden Gmbh Kraftsensor und seine Verwendung
US8654524B2 (en) 2009-08-17 2014-02-18 Apple Inc. Housing as an I/O device
AT514184B1 (de) * 2013-04-02 2015-05-15 Set Software Engineering Tschürtz Gmbh Vorrichtung zur Qualitätsprüfung von Bremsbelägen innerhalb der Fertigung
DE102013021575B4 (de) * 2013-12-19 2016-01-21 Audi Ag Kapazitiver Sensor für Weg- und/oder Kraftmessungen und Fahrzeug
JP6442045B2 (ja) 2014-09-04 2018-12-19 ザ・ティムケン・カンパニーThe Timken Company オフセット補償を用いるホール効果センサー回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1807613A1 (de) * 1967-11-07 1969-07-24 Trayvou Sa Kapazitiver Druckgeber
DE4132110A1 (de) * 1991-09-26 1993-04-01 Siemens Ag Kraftsensor
DE19637614A1 (de) * 1996-09-16 1997-11-13 Bosch Gmbh Robert Kraftsensor
EP0849576A1 (de) * 1996-12-20 1998-06-24 Siemens Aktiengesellschaft Kapazitiver Kraftsensor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE325780B (de) * 1968-10-30 1970-07-06 E E Andersson
US5313022A (en) * 1992-11-12 1994-05-17 Kistler-Morse Corporation Load cell for weighing the contents of storage vessels
US6048723A (en) * 1997-12-02 2000-04-11 Flexcell International Corporation Flexible bottom culture plate for applying mechanical load to cell cultures
US6279407B1 (en) * 2000-04-25 2001-08-28 Kavlico Corporation Linkage with capacitive force sensor assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1807613A1 (de) * 1967-11-07 1969-07-24 Trayvou Sa Kapazitiver Druckgeber
DE4132110A1 (de) * 1991-09-26 1993-04-01 Siemens Ag Kraftsensor
DE19637614A1 (de) * 1996-09-16 1997-11-13 Bosch Gmbh Robert Kraftsensor
EP0849576A1 (de) * 1996-12-20 1998-06-24 Siemens Aktiengesellschaft Kapazitiver Kraftsensor

Also Published As

Publication number Publication date
JP2004510124A (ja) 2004-04-02
EP1242797A1 (de) 2002-09-25
US20030074977A1 (en) 2003-04-24
DE50002620D1 (de) 2003-07-24
EP1242797B1 (de) 2003-06-18
JP4044761B2 (ja) 2008-02-06
US6772647B2 (en) 2004-08-10
DE19958903A1 (de) 2001-06-28

Similar Documents

Publication Publication Date Title
WO2001042755A1 (de) Aktorintegrierter kraftsensor
DE10151950B4 (de) Selbstverstärkende elektromechanische Scheibenbremse mit Reibmomentermittlung
DE102006015034B4 (de) Verfahren und Recheneinheit zur Bestimmung eines Leistungsparameters einer Bremse
DE10017572B4 (de) Wälzlager mit fernabfragbaren Erfassungseinheiten
EP2300739B1 (de) Druckmittler und druckmessgerät mit einem solchen druckmittler
DE19653427A1 (de) Kraftsensor
EP1057586B1 (de) Werkzeug für die Umform-, Stanz- oder Spritzgusstechnik
WO1997042482A1 (de) Rotationsviskosimeter
DE102009004424A1 (de) Scheibenbremse
EP1654473B1 (de) Kraftfahrzeugbremse
EP3822577A1 (de) Mikromechanisches dehnungsmesssystem
DE102006058882B4 (de) Separate Erfassung von Zuspann- und Reibkräften an einer Bremse
DE102011002567A1 (de) Scheibenbremse sowie Verfahren zur Ermittlung einer wirkenden Bremskraft oder eines wirkenden Bremsmoments
DE10106378A1 (de) Elektromechanische Bremzuspanneinrichtung
DE102019004953B4 (de) Brems- und/oder Klemmvorrichtung mit einteiligem Spaltgehäuse und Sensormodul
DE102006007406B3 (de) Schubmessbrücke und Verfahren zur messtechnischen Erfassung des Schubes von Triebwerken
DE102004059081B4 (de) Kraftsensor zur Bremskraftbestimmung an einer Reibbremse für rotierende Körper
DE10006534B4 (de) Verfahren und Sensorelement zur Verformungsmessung
EP3147528B1 (de) Messeinrichtung und verfahren zur erfassung eines schleifmoments
DE4132110A1 (de) Kraftsensor
WO2010000468A1 (de) Anordnung zur bremskraftmessung
DE3812741A1 (de) Einbaugeraet fuer sicherungsringe
DE102021119258A1 (de) Linearaktuator mit Kraftsensorik
DE102022205634A1 (de) Elektromechanische Bremsvorrichtung
DE102016111881A1 (de) Messaufnehmer zur Messung von Verformungen und Bremse mit einem solchen Messaufnehmer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000993337

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 543995

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10148948

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000993337

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000993337

Country of ref document: EP