WO2001046874A2 - Correlation of behavioral hdl signals - Google Patents

Correlation of behavioral hdl signals Download PDF

Info

Publication number
WO2001046874A2
WO2001046874A2 PCT/US2000/034666 US0034666W WO0146874A2 WO 2001046874 A2 WO2001046874 A2 WO 2001046874A2 US 0034666 W US0034666 W US 0034666W WO 0146874 A2 WO0146874 A2 WO 0146874A2
Authority
WO
WIPO (PCT)
Prior art keywords
description
intermediate signals
behavioral
structural
behavioral description
Prior art date
Application number
PCT/US2000/034666
Other languages
French (fr)
Other versions
WO2001046874A3 (en
Inventor
Khalil Shalish
Original Assignee
Speedgate, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Speedgate, Inc. filed Critical Speedgate, Inc.
Priority to AU32648/01A priority Critical patent/AU3264801A/en
Publication of WO2001046874A2 publication Critical patent/WO2001046874A2/en
Publication of WO2001046874A3 publication Critical patent/WO2001046874A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design

Abstract

A system and method for providing correlation of HDL signal names in the structural gate level description. In one embodiment, an HDL behavioral description of a circuit is processed by a correlation compiler to identify intermediate signals. The behavioral description is modified to specify that the intermediate signals are primary outputs of the circuit. The modified behavioral description is then processed by a synthesis tool to generate a structural description corresponding to the modified behavioral description. The structural description includes as outputs the identified intermediate signals.

Description

DESCRIPTION
CORRELATION OF BEHAVIORAL HDL SIGNALS
TECHNICAL FIELD OF THE INVENTION
The present invention relates generally to computers and more specifically to systems and methods for enhancing observability of circuit designs described using behavioral level HDLs.
BACKGROUND OF THE INVENTION
Digital circuit design is a complicated process. Initially, designers could design integrated circuits at the gate level. In other words, the designers would determine the particular arrangement and interconnection of logic gates (e.g., NAND or NOR gates) which would achieve the desired functionality. The physical layout of the logic gates could then be determined and the corresponding physical device constructed.
As the size and complexity of integrated circuits has increased, various automation tools have been developed to assist designers in their work. For example, physical layout EDA (Electronic
Design Automation) tools can accept a structural gate level description and generate a physical configuration for the circuit. This provided designers with a level of abstraction which simplified the design process. This was the prevalent starting point for the design process until further increases in complexity required a higher level of abstraction.
Currently, typical circuit design methodology involves providing an abstracted description of the circuit and transforming it into a structural description with an aid of a synthesis tool. In other words, behavioral descriptions of various sub-components within the circuit are generated and then transformed by the synthesis tool into structural, gate level descriptions of the sub-components and the circuit.
At the behavioral level, a circuit (or sub-component of a circuit) can be described in terms of the inputs to the circuit, the outputs from the circuit, and the processes which are performed by the circuit and thereby transform the input signals into the output signals. The behavioral characterization of the circuit is normally provided in an HDL module or entity. HDL is an acronym for Hardware Description Language. HDLs are specifically designed to provide a means for specifying the behavior of a digital system or design at various levels of abstraction. (The terms
"design" and "digital system" are used interchangeably throughout this description.) HDLs have evolved into two standards: Verilog and VHDL.
An HDL behavioral description is an abstraction of how a digital system works. This description is essentially a "black box" with a certain set of inputs and a certain set of outputs. The manner in which the outputs are g ϊnerated from the inputs is described functionally, but not in terms of the specific arrangement of logic gates.
The HDL behavioral description is transformed into a gate-level structural description of the circuit by a synthesis tool. The synthesis tool reads the HDL behavioral description and generates a corresponding description which consists of a list of logic gates and the interconnections between the gates.
The synthesis tool is configured to optimize the generated design. In other words, if a particular set of functions can be performed either by a single gate component or a series of interconnected components, the synthesis tool will normally selected the single component, which would typically be configured to perform the function in a faster and more efficient manner.
While this optimization is typically desirable, there are situations in which it would be preferable to prevent full or partial optimization of the functional design. For instance, in order to easily debug the design, it may be helpful to have access to certain signals which are internal to the circuit. Thus, rather than simply being able to observe the inputs to the circuit and outputs from circuit, a designer could observe intermediate signals which allow him or her to isolate errors within particular portions of the circuit.
SUMMARY OF THE INVENTION
One or more of the problems outlined above may be solved by the various embodiments of the invention. Broadly speaking, the invention comprises systems and methods for enhancing the observability of circuit designs which are described using behavioral level HDLs. The systems and methods may, for example, provide means for correlating HDL behavioral description signal names to signals in the structural gate level description of the design.
In one embodiment, an HDL behavioral description of a circuit is processed by a correlation compiler to identify intermediate signals. The behavioral description is modified to specify that the intermediate signals are primary outputs of the circuit. The modified behavioral description is then processed by a synthesis tool to generate a structural description corresponding to the modified behavioral description. The structural description includes as outputs the identified intermediate signals.
In another embodiment, an HDL behavioral description of a design is provided in the same manner as in the first embodiment. In this instance, however, the HDL behavioral description is not modified by the correlation compiler. Instead, the correlation compiler generates a set of constraints that are formatted for use by the synthesis tool. These constraints, along with the original HDL behavioral description, forming a constrained HDL behavioral description which the synthesis tool transforms into a structural, gate level description. In another embodiment, an HDL behavioral description is provided to a non-optimizing synthesis tool, rather than to a separate correlation compiler. The non-optimizing synthesis tool incoφorates the functions of the correlation compiler described in the previous embodiments, but does not necessarily generate a modified behavioral description. The non-optimizing synthesis tool may instead provide various internal data structures and functions for identifying intermediate signals that are to be maintained in the structural description of the circuit.
In yet another embodiment, the initial HDL behavioral description is processed by a correlation compiler to generate a modified HDL behavioral description. The HDL behavioral description is modified in this embodiment by encapsulating each process which is contained in the description. That is, each process is identified and an independent HDL behavioral description corresponding to that process is generated. The individual HDL behavioral descriptions are then fed to the synthesis tool for processing. The synthesis tool generates a structural description for each of the individual HDL behavioral descriptions. These structural descriptions are then integrated to produce a structural description of the entire design. Depending upon the particular embodiment, the individual structural descriptions may be integrated into a single structural descriptions for the entire circuit by either the synthesis tool or the correlation compiler.
BRIEF DESCRIPTION OF THE DRAWINGS
Other objects and advantages of the invention may become apparent upon reading the following detailed description and upon reference to the accompanying drawings in which: FIGURE 1 is a diagram illustrating a prior art method for converting an HDL behavioral description of a circuit into a structural description of the circuit;
FIGURE 2 is a diagram illustrating one embodiment of the present method in which a modified behavioral description of the circuit generated by a correlation compiler is provided to a synthesis tool for generation of the structural description of the circuit; FIGURE 3 is an example of an HDL behavioral description in one embodiment;
FIGURE 4 is an illustration of a gate-level design corresponding to the behavioral description of FIGURE 3, wherein the design includes the intermediate signal int;
FIGURE 5 is an illustration of an optimized gate-level design corresponding to the behavioral description of FIGURE 3, wherein the design does not maintain the intermediate signal int;
FIGURE 6 is a modified behavioral description corresponding to the initial behavioral description of FIGURE 3, wherein the signal int is declared as a primary output; FIGURE 7 is a diagram illustrating a second embodiment of the present method in which a correlation compiler generates one or more constraints which are configured to maintain the intermediate signals of a behavioral description in the corresponding structural description;
FIGURE 8 is a diagram illustrating a third embodiment of the present method in which the functions of the correlation compiler are integrated into a non-optimizing synthesis tool;
FIGURE 9 is a diagram illustrating a fourth embodiment of the present method in which each process of a behavioral description is encapsulated to form an independent behavioral description which is synthesized into a separate structural description which is integrated into a circuit-level structural description; FIGURE 10 is a diagram illustrating the structure of an behavioral description and a corresponding set of separate behavioral descriptions corresponding to each of the processes within the initial behavioral description;
FIGURES 1 la and 1 lb are modified behavioral descriptions corresponding to the processes contained within the behavioral description of FIGURE 3; FIGURE 12 is an illustration of a system in which a correlation compiler generates individual behavioral descriptions corresponding to each of the processes within an initial behavioral description and conveys the individual behavioral descriptions to a synthesis tool which generates corresponding structural descriptions for each of the processes and conveys them back to the correlation compiler for reconstruction into a single, circuit-level structural description. While the invention is subject to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and the accompanying detailed description. It should be understood, however, that the drawings and detailed description are not intended to limit the invention to the particular embodiment which is described. This disclosure is instead intended to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
DETAILED DESCRIPTION OF THE INVENTION
A preferred embodiment of the invention is described below. It should be noted that this and any other embodiments described below are exemplary and are intended to be illustrative of the invention rather than limiting. Generally speaking, the present systems and methods enhance the observability of circuit designs which are described using behavioral level HDLs. The present systems and methods may, for example, provide means for correlating HDL behavioral description signal names to signals in the structural gate level description of the design. In various embodiments, a correlation compiler may be configured to modify the HDL behavioral description to specify that intermediate signals are primary outputs of the described circuit, thereby preventing the elimination of these signals through optimization. In other embodiments, the correlation compiler may generate constraints which force a synthesis tool to maintain the intermediate signals in the structural description of the circuit. In other embodiments, these functions may be incoφorated into the synthesis tool itself, so that equivalent data is stored internally and used in the same manner as the constraints or modifications of the behavioral description. These variations will be described in more detail below.
An HDL module or entity is a self-contained block of HDL descriptions that can reused through instantiation. HDL modules/entities contain processes and instantiations of other modules/entities. HDL module corresponds to the definition of module in the Verilog HDL. HDL entity corresponds to the definition of entity in the VHDL HDL. The terms HDL module and HDL entity are used interchangeably throughout this description.
An HDL process is the basic essence of the HDL behavioral description. A process can be thought of as independent concurrent thread of control. HDL processes are integral part of HDL module/entity. An HDL gate is an HDL module/entity which describes a generic logic function or technology specific logic function (for example, a NAND gate).
An HDL object is a self-contained independent block within the HDL description that can be reused through instantiation. HDL objects can be defined explicitly and implicitly. Explicit HDL objects are formally defined within the HDL description. Examples of explicit HDL objects are HDL module/entities and HDL gates. Implicit HDL objects are described in a non-HDL (HDL tool specific) format or implied through the internal data structure of a HDL tool.
A structural gate level description is the representation of the design in terms logic gates or technology specific components. The structural description is typically in the form of a netlist which lists the logic components and the interconnections between them. This representation can be described using HDLs or specific formats such as EDIF, XNF. Typically, the structural gate level description is the output of the synthesis process (which is the process of transforming an HDL behavioral description into a structural, gate level description).
FIGURE 1 shows a prior art method for converting an HDL behavioral description of a design into a structural, gate-level description. As shown in FIGURE 1, the task of converting the behavioral description into a structural description is referred to as "synthesis". Normally, the synthesis task is performed on the behavioral description as a whole. That is, the description is treated as a "black box" characterized by a set of inputs, a set of outputs and a set of processes which are performed within the black box to generate the outputs from the inputs. The synthesis of the structural description of the design is configured in prior art systems to optimize the design so that the structural description incoφorates a minimal number of components or propagation levels. The intent of this optimization is to decrease the costs and increased the efficiency of the design at the structural level. The process, however, proceeds without regard to the observability of signals within the black box. Particular intermediate signals may therefore be optimized out of existence. Alternatively, these intermediate signals may be renamed in the synthesis process. Consequently, it may be impossible to identify these HDL signals within the resulting gate level design. The inability to identify these signals and to use them for debugging puφoses may lead to problems in identifying flaws in the design. Referring to FIGURE 2, a diagram illustrating one embodiment of the present method is shown. In this method, the behavioral description of the design is modified so that every signal incoφorated in the description is identified as a primary output of the design. Then, the synthesis task is performed on the modified behavioral description to generate a structural description of the design. Because each of the signals in the modified behavioral description is a primary output of the design, none of these signals can be optimized away. The synthesis tool is constrained to maintain or correlate the signals and corresponding names in the generated structural description.
Broadly speaking, the process of modifying the HDL behavioral description comprises parsing the behavioral description, identifying intermediate signals within the behavioral description, determining the type and direction of the intermediate signals, and generating the modified behavioral description which specifies that the intermediate signals are primary outputs of the design. This process may be broken down further to include such tasks as building a database, identifying the direction of signals, identifying whether signals are associated with wire, registers or other data types, and following other syntactical and semantical rules of the HDL.
By performing the synthesis task on the whole HDL behavioral description, any HDL signal that are not primary outputs of the design can be optimized away and/or transformed (in non- deterministic way) to a different name in the resulting synthesized structural gate level description. Thus, the resulting structural gate level is not correlated with its HDL behavioral description.
Referring to FIGURE 3, an example of an HDL module is shown. The HDL module shown in this example comprises only a few lines which define the inputs, outputs and processes of the corresponding circuit design. More specifically, the module comprises a module declaration 31, the declaration of inputs to the circuit 32, a declaration of outputs from the circuit 33, two lines which defined in the processes performed by the circuit 34 and 35, and a delimiter identifying the end of the module 36. Referring to FIGURE 4, a gate level circuit design 40 corresponding to the HDL module of FIGURE 3 is shown Circuit 40 comprises two and gates 41 and 42 Gate 41 has two inputs, 43 and 44, and one output 45 Input 43 carries signal ιn_l, while input 44 carries signal ιn_2 It can be seen from this figure that the output of gate 41 is coupled to one of the inputs of gate 42 The signal which is carried from the output of gate 41 to the input of gate 42 it is intermediate signal int the other input of this gate, input 46, carries a signal ιn_3 Output 47 of gate 42 carries the output signal out
It is clear that the logic circuit illustrated in FIGURE 4 corresponds directly to the behavioral description specified by module A of FIGURE 3 That is, each of the signals identified in module A appears in the gate level design It can also be seen that each of the processes in module A (34 and 35) corresponds to one of the logic (AND) gates in the circuit If it were necessary to debug the gate level design, the designer (tester) would have access to all of the signals, including the input signals (ιn_l, ιn_2 and ιn_3,) the output signal (out) and the intermediate signal (int )
Referring to FIGURE 5, a second gate level circuit design 50 is shown Circuit 50 includes only a single component, three-input and gate 51 Inputs 52-54 of gate 51 carry signals ιn_l, ιn_2 and ιn_3 Output 55 carries signal out While circuit 50 also corresponds to the behavioral description of module a shown in FIGURE 3 (I e , it accepts the same input signals and generates the same output signal,) it does not include the intermediate signal, int
Circuit 50 is representative of the typical structural circuit description generated by prior art synthesis tools In other words, it is an optimized design which uses less components than circuit 40 and is presumably faster and more efficient It is, however, impossible in this circuit to observe the intermediate signal, int, because it does not exist in the optimized design (While it may not be particularly important to ensure that the intermediate signal in a simple design such as this is observable at the structural level, more complex circuits may have substantially more intermediate signals and may therefore present a substantially greater need to have access to the signals for debugging puφoses )
Referring again to FIGURE 2, a behavioral description for which it desired to maintain the intermediate or internal signals of the design can be modified so that these signals will be maintained in the resulting structural description It may be necessary in some instances (e g , to avoid duplication of names) to generate a correlated name rather than maintaining the identical name As shown in the figure, the initial HDL module (module A in the example above) is processed by a correlation compiler to generate a modified HDL module The modified HDL module is then processed by the synthesis tool to generate a structural description of the circuit described by the initial HDL module The correlation compiler is configured to analyze the initial HDL module to identify the intermediate signals. For example, in the example of FIGURES 3 and 4, the signal int would be identified. The correlation compiler would then modify the HDL module to identify the intermediate signal as a primary output signal. Because the intermediate signal is described in the modified HDL modle as a primary output signal, the synthesis tool will ensure that the signal is provided in the generated structural description. This signal will therefore be available to the designer for testing puφoses.
Referring to FIGURE 6, the modified HDL module for the above example is shown. It can be seen from this figure that several lines of the initial HDL module (see FIGURE 3) have been modified by the correlation compiler. First, the declaration of the module (61) has been modified so that the declaration now includes intermediate signal int. the declaration of output signals (63) within the module has also been modified to explicitly declare int as a primary output signal. The remainder of the modified HDL module is identical to the initial HDL module shown in FIGURE 3. When the modified HDL module is processed by the synthesis tool, the tool will be constrained to maintain intermediate signal int, since it has been declared as a primary output. Thus, the generated structural description would correspond to the gate configuration shown in FIGURE 4 rather than the one shown in FIGURE 5.
Referring to FIGURE 7, a second embodiment of the present method is shown. In this embodiment, an HDL behavioral description of a design is provided in the same manner as in the first embodiment. In this instance, however, the HDL behavioral description is not modified by the correlation compiler. Instead, the correlation compiler generates a set of constraints that are formatted for use by the synthesis tool. These constraints, along with the original HDL behavioral description, forming a constrained HDL behavioral description which the synthesis tool transforms into a structural, gate level description. Various prior art synthesis tools are configured to allow certain constraints to be specified, wherein the constraints are honored (implemented) in the transformation of the behavioral description to a structural description. The constraints control the transformation performed by the synthesis tool, but do not actually affect the HDL behavioral description which is provided to the synthesis tool. This situation is distinct from the previously described embodiment, in which the HDL behavioral description is itself modified prior to being transformed by the synthesis tool. Referring to FIGURE 8, a third embodiment of the present method is shown. In this embodiment, an HDL behavioral description is provided to a non-optimizing synthesis tool, rather than to a separate correlation compiler. The non-optimizing synthesis tool incoφorates the functions of the correlation compiler, but does not necessarily generate a modified behavioral description. The non-optimizing synthesis tool may instead provide various internal data structures and functions for identifying intermediate signals that are to be maintained in the structural description of the circuit.
In the embodiment of FIGURE 8, essentially the same processes are being carried out by the non-optimizing synthesis tool up as are carried out by the correlation compiler and synthesis tool in the embodiment of FIGURE 2. The embodiment of FIGURE 8 might be considered a less general case of the present method because the synthesis tool must be designed such that it incoφorates the functions of the correlation compiler. The embodiment of FIGURE 2 might be considered more general because, once the correlation compiler generates the modified HDL behavioral description, the modified description can be provided to any synthesis tool which is configured to read the corresponding type of HDL files for generation of the structural circuit description.
Referring to FIGURE 9, another embodiment of the present method is shown. In this embodiment, the initial HDL behavioral description is processed by a correlation compiler to generate a modified HDL behavioral description. The HDL behavioral description is modified in this embodiment by encapsulating each process within the description. That is, each process is identified and an independent HDL behavioral description corresponding to that process is generated. The individual HDL behavioral descriptions are then fed to the synthesis tool for processing. The synthesis tool generates a structural description for each of the individual HDL behavioral descriptions. These structural descriptions are then integrated to produce a structural description of the entire design. Depending upon the particular embodiment, the individual structural descriptions may be integrated into a single structural descriptions for the entire circuit by either the synthesis tool or the correlation compiler.
By encapsulating each of the processes which is contained in the behavioral description, the intermediate signals which convey information to and from each process are effectively transformed into primary inputs and outputs of the corresponding independent, process-level behavioral descriptions. Consequently, the intermediate signals cannot be optimized away by the synthesis tool. The intermediate signals are therefore accessible in the integrated structural description.
Referring to FIGURE 10, a diagram illustrating the structure of an HDL behavioral description 100 prior to processing and a corresponding set of encapsulated processes 110 is shown. It can be seen in this figure that the behavioral description comprises a plurality of modules which, in this case, are nested within one another. (It should be noted that the behavioral description may comprise a single module, or a plurality of modules which are interrelated in a manner other than that shown in FIGURE 10.) In the behavioral description of FIGURE 10, module C contains process 1 and process 2, module B contains module C and process 3, and module A contains module B, process 4 and process 5. In the encapsulation process, a module is generated for each of the processes contained in the initial behavioral description (the ehavioral description prior to processing.) when the module corresponding to each process is generated, the new module will obviously inherit the necessary process definitions from its parent module(s). Some of the declarations and other statements in the new HDL module may also be inherited directly from the parent module(s), while others may be implicit in the parent module(s).
For example, referring to module A of FIGURE 3, there are two processes, 34 and 35. In producing a module corresponding to process 34, it can be seen that this process generates an output int from two inputs, in_l and in_2. While inputs in_l and in_2 are explicitly declared in module A, the fact that int is an output is inherent in the assignment of a value (in_l & in_2) to this signal. In the new HDL module corresponding to process 34, these inputs and outputs are all explicitly declared. Thus, the new module for process 34 would appear as shown in FIGURE 1 la. The new module for process 35 would appear as shown in FIGURE 1 lb.
In one embodiment, the encapsulation process is performed in a system configured as shown in FIGURE 12. In this embodiment, the initial HDL behavioral description is processed by the correlation compiler 121, which generates the individual modules corresponding to each of the processes in the description. As each of the new modules is generated, it is conveyed to the synthesis tool 122, which generates a structural description corresponding to the new module. This structural description is then processed back to the correlation compiler, which integrates the structural descriptions of the individual processes into the structural description of the entire circuit.
It should be noted that this configuration corresponds to one particular embodiment, and that other embodiments may have differing configurations. For example, in another embodiment, the individual structural descriptions may be reconstructed by the synthesis tool, rather than the correlation compiler. In yet another embodiment, the correlation compiler and synthesis tool may be integrated into a single system, so that it is not necessary to generate separate behavioral descriptions for each other processes. In this embodiment, the process and signal information may be stored in various data structures which are internal to the system and which contain the same information as the behavioral descriptions.
Those systems and methods described above can be implemented in various types of computer systems. The particular types of computers which may be suitable for this puφose will be apparent to persons of ordinary skill in the art, and may include general-puφose computers, specialized computers and processors and other computing systems. It is also contemplated that those systems and methods described above can be implemented in software applications which may be executed on one or more of these types of computers. These applications may be embodied in various types of computer-readable media such as floppy disks, CD-ROMs, magnetic tapes, RAM, and the like. This disclosure is contemplated to encompass all such implementations.
While the present invention has been described with reference to particular embodiments, it should be understood that the embodiments are illustrative and that the scope of the invention is not limited to these embodiments. Many variations, modifications, additions and improvements to the embodiments described above are possible. It is contemplated that these variations, modifications, additions and improvements fall within the scope of the invention as detailed within the following claims.

Claims

1. A method comprising: providing an initial behavioral description of a circuit; identifying one or more intermediate signals in the initial behavioral description, wherein the one or more intermediate signals are not primary inputs or outputs of the circuit; and modifying the initial behavioral description to produce a modified behavioral description, wherein the modified behavioral description identifies the one or more intermediate signals as primary outputs of the circuit.
2. The method of claim 1 wherein the initial behavioral description is written in a hardware description language (HDL).
3. The method of claim 1 wherein identifying the one or more intermediate signals in the initial behavioral description comprises parsing the behavioral description, identifying the intermediate signals within the initial behavioral description and determining the type and direction of the one or more intermediate signals.
4. The method of claim 1 wherein the one or more identified intermediate signals comprise a subset of all of the intermediate signals in the initial behavioral description.
5. The method of claim 1 further comprising generating a first structural description from the modified behavioral description.
6. The method of claim 5 wherein each of the one or more intermediate signals identified in the initial behavioral description has a corresponding signal name and wherein the signal name corresponding to each of the one or more intermediate signals is correlated in the first structural description.
7 . The method of claim 5 wherein modifying the initial behavioral description comprises identifying each of a plurality of processes contained therein and encapsulating each of the plurality of processes in an intermediate behavioral description.
8. The method of claim 7 wherein generating the structural description comprises generating an intermediate structural description from each of the intermediate behavioral descriptions and constructing the first structural description from the intermediate structural descriptions.
9. A method comprising: providing a behavioral description of a circuit; identifying one or more intermediate signals in the behavioral description, wherein the one or more intermediate signals are not primary outputs of the circuit; and synthesizing a structural description from the behavioral description, wherein the one or more intermediate signals are maintained in the structural description.
10. The method of claim 9 wherein identifying one or more intermediate signals in the behavioral description comprises parsing the behavioral description, identifying intermediate signals within the parsed behavioral description, and determining the type and direction of the intermediate signals.
11. The method of claim 9 further comprising storing an indication of the identified intermediate signals in one or more data structures.
12. The method of claim 9 further comprising generating one or more constraints for maintaining the one or more intermediate signals in the structural description.
13. The method of claim 12 wherein the one or more constraints are contained in one or more data files which is provided to a synthesis tool.
14. The method of claim 12 wherein the one or more constraints are contained in one or more data structures internal to a software application.
15. A system for generating a structural description of a circuit design based on a corresponding behavioral description comprising: a correlation compiler configured to identify one or more intermediate signals in the circuit design; and a synthesis tool coupled to the correlation compiler and configured to generate a structural description, wherein the structural description includes the one or more identified intermediate signals.
16. The system of claim 15 wherein the correlation compiler is configured to generate a modified behavioral description identifying the one or more intermediate signals as primary outputs and wherein the synthesis tool is configured to generate the structural description from the modified behavioral description.
17. The system of claim 16 wherein the correlation compiler is configured to parse the behavioral description, identify the intermediate signals within the initial behavioral description and determine the type and direction of the one or more intermediate signals.
18. The system of claim 16 wherein the correlation compiler is configured to identify a selected subset of all of the intermediate signals in the initial behavioral description.
19. The system of claim 16 wherein each of the one or more intermediate signals identified in the initial behavioral description has a corresponding signal name and wherein the synthesis tool is configured to maintain the signal name corresponding to each of the one or more intermediate signals in generating the structural description.
20. The system of claim 16 v/herein the correlation compiler is configured to modify the initial behavioral description by identifying each of a plurality of processes contained therein and encapsulating each of the plurality of processes in an intermediate behavioral description.
21. The system of claim 20 wherein the synthesis tool is configured to generate an intermediate structural description from each of the intermediate behavioral descriptions
22. The system of claim 21 wherein the synthesis tool is configured to construct the first structural description from the intermediate structural descriptions.
23. The system of claim 21 wherein the synthesis tool is configured to feed the intermediate structural descriptions to the correlation compiler, which is configured to construct the first structural description from the intermediate structural descriptions.
24. The system of claim 15 wherein the correlation compiler is configured to generate one or more constraints based upon the one or more identified intermediate signals and wherein the synthesis tool is configured to generate the structural description from the behavioral description and the constraints.
25. A computer-readable storage medium having a plurality of instructions embodied therein, wherein the instructions are configured to identify one or more intermediate signals in an initial behavioral description of a circuit, wherein the one or more intermediate signals are not primary outputs of the circuit; and modify the initial behavioral description to produce a modified behavioral description, wherein the modified behavioral description identifies the one or more intermediate signals as primary outputs of the circuit.
26. A computer-readable storage medium having a plurality of instructions embodied therein, wherein the instructions are configured to identify one or more intermediate signals in the behavioral description, wherein the one or more intermediate signals are not primary outputs of the circuit; and synthesize a structural description from the behavioral description, wherein the one or more intermediate signals are maintained in the structural description.
27. A computer-readable storage medium having a plurality of instructions embodied therein, wherein the instructions are configured to identify one or more intermediate signals in the behavioral description, wherein the one or more intermediate signals are not primary outputs of the circuit; and generate a set of constraints for use by a synthesis tool, wherein the constraints are configured to cause the one or more intermediate signals in the structural description to be maintained in the resulting structural description.
PCT/US2000/034666 1999-12-21 2000-12-20 Correlation of behavioral hdl signals WO2001046874A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU32648/01A AU3264801A (en) 1999-12-21 2000-12-20 Correlation of behavioral hdl signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17141699P 1999-12-21 1999-12-21
US60/171,416 1999-12-21

Publications (2)

Publication Number Publication Date
WO2001046874A2 true WO2001046874A2 (en) 2001-06-28
WO2001046874A3 WO2001046874A3 (en) 2002-06-06

Family

ID=22623650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/034666 WO2001046874A2 (en) 1999-12-21 2000-12-20 Correlation of behavioral hdl signals

Country Status (3)

Country Link
US (2) US6557160B2 (en)
AU (1) AU3264801A (en)
WO (1) WO2001046874A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1784749A2 (en) * 2004-09-02 2007-05-16 Logiccon Design Automation Ltd. Method and system for designing a structural level description of an electronic circuit
US10078722B2 (en) 2016-06-13 2018-09-18 International Business Machines Corporation Dynamic microprocessor gate design tool for area/timing margin control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027948A1 (en) * 1994-04-12 1995-10-19 Synopsys, Inc. Architecture and methods for a hardware description language source level analysis and debugging system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146583A (en) * 1987-09-25 1992-09-08 Matsushita Electric Industrial Co., Ltd. Logic design system for creating circuit configuration by generating parse tree from hardware description language and optimizing text level redundancy thereof
US5465216A (en) * 1993-06-02 1995-11-07 Intel Corporation Automatic design verification
US6132109A (en) * 1994-04-12 2000-10-17 Synopsys, Inc. Architecture and methods for a hardware description language source level debugging system
US5537580A (en) * 1994-12-21 1996-07-16 Vlsi Technology, Inc. Integrated circuit fabrication using state machine extraction from behavioral hardware description language
US5841663A (en) * 1995-09-14 1998-11-24 Vlsi Technology, Inc. Apparatus and method for synthesizing integrated circuits using parameterized HDL modules
JPH1054726A (en) * 1996-08-08 1998-02-24 Murata Mfg Co Ltd Vibrating gyroscope and its manufacture
JPH1063707A (en) * 1996-08-15 1998-03-06 Nec Corp Device and method for logic circuit verification
JP2988521B2 (en) * 1997-08-29 1999-12-13 日本電気株式会社 Automatic synthesis of logic circuits
US6145117A (en) * 1998-01-30 2000-11-07 Tera Systems Incorporated Creating optimized physical implementations from high-level descriptions of electronic design using placement based information
US6292931B1 (en) * 1998-02-20 2001-09-18 Lsi Logic Corporation RTL analysis tool
US6223142B1 (en) * 1998-11-09 2001-04-24 International Business Machines Corporation Method and system for incrementally compiling instrumentation into a simulation model
US6292131B1 (en) * 2000-01-26 2001-09-18 Ohmart - Vega, Inc. Apparatus and method for liquid level measurement and content purity measurement in a sounding tube

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995027948A1 (en) * 1994-04-12 1995-10-19 Synopsys, Inc. Architecture and methods for a hardware description language source level analysis and debugging system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIJHAR T P K ET AL: "HDL-SPECIFIC SOURCE LEVEL BEHAVIOURAL OPTIMISATION" IEE PROCEEDINGS: COMPUTERS AND DIGITAL TECHNIQUES, IEE, GB, vol. 144, no. 2, 1 March 1997 (1997-03-01), pages 138-144, XP000723692 ISSN: 1350-2387 *

Also Published As

Publication number Publication date
US20010004764A1 (en) 2001-06-21
US20030154459A1 (en) 2003-08-14
US7185308B2 (en) 2007-02-27
AU3264801A (en) 2001-07-03
US6557160B2 (en) 2003-04-29
WO2001046874A3 (en) 2002-06-06

Similar Documents

Publication Publication Date Title
US5764951A (en) Methods for automatically pipelining loops
Panda SystemC: a modeling platform supporting multiple design abstractions
US8719742B2 (en) Conversion of circuit description to an abstract model of the circuit
Eles et al. System synthesis with VHDL
US6292931B1 (en) RTL analysis tool
US6263483B1 (en) Method of accessing the generic netlist created by synopsys design compilier
Airiau et al. Circuit synthesis with VHDL
KR100305463B1 (en) Method and system for the design and simulation of digital computer hardware
US8386973B2 (en) Behavioral synthesis apparatus, method, and program having test bench generation function
KR100329896B1 (en) Toggle based application specific core methodology
US7210109B2 (en) Equivalence checking of scan path flush operations
CN114169271A (en) Automatic debugging of fake-certified power-aware formal attributes using static checker results
US7194715B2 (en) Method and system for performing static timing analysis on digital electronic circuits
Fujita Equivalence checking between behavioral and RTL descriptions with virtual controllers and datapaths
US6557160B2 (en) Correlation of behavioral HDL signals
WO2022198447A1 (en) Synthesis method and synthesis device for digital circuit
US7991605B1 (en) Method and apparatus for translating a verification process having recursion for implementation in a logic emulator
US20030144826A1 (en) Register repositioning method for functional verification systems
Gauthier et al. HDLRuby, a new high productivity hardware description language
US8813005B1 (en) Debugging using tagged flip-flops
EP1221663A2 (en) A method of circuit verification in digital design
Vahid et al. A transformation for integrating VHDL behavioral specification with synthesis and software generation.
Haba et al. CSLC: The infrastructure compiler for SoC design
Kission et al. High level specification in electronic design
Bappudi Example Modules for Hardware-software Co-design

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP