WO2001048675A2 - Large-scale processing loop for implantable medical devices - Google Patents

Large-scale processing loop for implantable medical devices Download PDF

Info

Publication number
WO2001048675A2
WO2001048675A2 PCT/US2000/034520 US0034520W WO0148675A2 WO 2001048675 A2 WO2001048675 A2 WO 2001048675A2 US 0034520 W US0034520 W US 0034520W WO 0148675 A2 WO0148675 A2 WO 0148675A2
Authority
WO
WIPO (PCT)
Prior art keywords
imd
network
patient
data
link
Prior art date
Application number
PCT/US2000/034520
Other languages
French (fr)
Other versions
WO2001048675A3 (en
Inventor
Michael T. Lee
Nancy P. Pool
Original Assignee
Medtronic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medtronic, Inc. filed Critical Medtronic, Inc.
Priority to EP00988167A priority Critical patent/EP1244993A2/en
Publication of WO2001048675A2 publication Critical patent/WO2001048675A2/en
Publication of WO2001048675A3 publication Critical patent/WO2001048675A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • A61N1/37264Changing the program; Upgrading firmware
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37211Means for communicating with stimulators
    • A61N1/37252Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data
    • A61N1/37282Details of algorithms or data aspects of communication system, e.g. handshaking, transmitting specific data or segmenting data characterised by communication with experts in remote locations using a network
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/65Updates
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/40ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management of medical equipment or devices, e.g. scheduling maintenance or upgrades
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0031Implanted circuitry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7217Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise originating from a therapeutic or surgical apparatus, e.g. from a pacemaker

Definitions

  • the invention generally relates to implantable medical devices (IMDs) Specifically, the invention relates to a large-scale processing loop based on high resolution diagnostic/physiologic data collected by the IMDs More specifically, the data collected by the IMDs is transferred to a remote computation center where evaluation and analysis is performed by high-speed computer resources In the event a change, modification or reprogramming of the LMDs is indicated, the instruction is implemented in the IMDs at the next connection point in time, thus providing continuous momto ⁇ ng to proactively effect changes in the IMDs for efficient therapy and clinical care, in contrast to responding to an adverse patient event or subjecting the patient and clinician to the inconvenience of frequent m-person encounters
  • IMD While some data regarding IMD operation may be stored internally to the device, human physiological systems are very complex and nonlinear, I e , exhibiting effects that may appear surprising or chaotic based on predictions using simple periodic or linear models IMDs are designed to dynamically interact with these physiological systems on the fly, but often can only work with simplified models or the most elemental of the systems
  • IMDs in interacting with physiological systems are twofold There may be an incomplete understanding of the characteristics of the physiological system in all of its nonlinear complexity However, there may be simply a lack of raw computing power on the part of the IMD Despite the limitations of IMDs with regard to processing power, IMDs are m a unique position to monitor physiological systems continuously High-resolution data can be collected but implantable devices may only store and process limited amounts of complex physiological and medical data
  • Prior art methods of clinical services are generally limited to m-hospital procedures or other scenarios involving patient transportation to a clinical setting
  • a physician needs to review the performance parameters of an IMD in a patient, it is likely that the patient has to go to the clinic
  • the medical conditions of a patient with an IMD warrant a continuous monitoring or adjustment of the device, the patient would have to stay in a hospital indefinitely
  • Such a continued treatment plan poses both economic and social problems
  • many more hospitals and clinics, and attendant clinicians and service personnel will be needed to provide m-hospital service for the patients, thus escalating the cost of healthcare Additionally, the patients will be unduly restricted and inconvenienced by the need to either stay in the hospital or make very frequent visits to a clinic
  • the report contains the identification of all the medical devices involved in any interactive procedure Specifically, all peripheral and major devices that are used in downlinking to the IMD may be reported Currently, such procedures are manually reported, and require an operator or a medical person to manually enter data during each procedure.
  • One of the limitations of such manual reporting procedures is the possibility for human error in data entry, thus motivating rechecking of the data to verify accuracy
  • the use of human clinicians to analyze data and implement changes in device therapy can result in inefficiencies and errors
  • IMDs such as a defib ⁇ llator or a pacer, a neural implant, a drug pump, a separate physiologic monitor and various other IMDs may be implanted in a single patient
  • IMDs such as a defib ⁇ llator or a pacer, a neural implant, a drug pump, a separate physiologic monitor and various other IMDs
  • To successfully manage the operations and assess the performance of each device in a patient with multi-implants requires a continuous update and monitoring of the devices
  • there is a need to monitor the IMDs and the programmer on a regular, if not a continuous, basis to ensure optimal patient care In the absence of other alternatives, this imposes a great burden on the patient if a hospital or clinic is the only center where the necessary upgrade follow up, evaluation and adjustment of the IMDs could be made Further, even if feasible, the situation would require the establishment of multiple service
  • IMDs of the prior art are limited in that the features and functions of implantable medical device mav not take full advantage of the complex modeling of physiologic systems that are being continually established, these devices simply lack the processing power to perform the required calculations, and may be expected to lack this power indefinitely Accordingly, civilization's ever-increasing knowledge of physiologic systems must be simplified considerably in order to be implemented within an IMD It would be desirable to provide a system by which the complex modeling of physiologic systems could be brought to bear in IMD instruction in order to improve patient outcomes
  • This invention proposes to link the power of the external computing world to the implantable medical device via a network of commumcations devices
  • a technology-based health care system that fully integrates the technical and social aspects of patient care and therapy will preferably flawlessly connect the client with care providers irrespective of separation distance or location of the participants
  • a programmer unit that would connect to a centralized data source and repository
  • This remote data center will preferably provide access to an expert system allowing for downloading of upgrade data or other information to a local environment
  • it is important to have a large scale processing loop to enable the gathering of high resolution diagnostic/physiologic data, and to transfer information between the IMDs and a remote expert data center to dispense therapy and clinical care on real-time basis
  • the large-scale processing loop contemplated bv the present invention enables an efficient system for data storage, collection and processing to effect changes in control algorithms of the IMDs and associated medical units to promote real time therapy and clinical care
  • one or more IMDs such as a pacemaker defib ⁇ llator, drug pump, neurological stimulator, physiological signal recorder may be deployed in a patient
  • This IMD may be equipped with a radio frequency transmitter or receiver, or an alternate wireless communication telemetry technique or media which may travel through human tissue
  • the IMD may contain a transmission device capable of transmitting through human tissue such as radio frequency telemetry, acoustic telemetry, or a transmission technique that uses patient tissue as a transmission medium
  • an IMD may be deployed in a fashion by which a transmission or receiving device is
  • the amount of historical data, particularly patient-specific historical data used as input to control systems can be virtually unlimited when it is stored externally to the patient
  • a more thorough comparison can be made between patients with similar diseases as data and therapy information, procedure and direction are centralized which mav be expected to result in gains to the body of medical knowledge and treatment efficacy
  • Data from other medical systems either implanted or external, such as etiological databases can be incorporated easily into the control system
  • Other anonymous patient experiences or treatment data may be more quickly incorporated into a subject patient's IMD regime than might be possible with existing systems of IMD programming or upgrading
  • a subject patient's own historical treatment parameters and corresponding outcomes mav be used in making IMD programming and other treatment decisions
  • the instant invention provides IMDs with access to virtually unlimited computing power as part of their data collection and therapy calculation processes
  • the IMD may be used by an external computing device as a data collection agent, and as an agent to implement changes to a treatment regimen based on a complex dynamical or
  • a communications system provides the ability to have high-power computing systems interact with implanted medical devices, thus providing the ability to use complex control algorithms and models in implanted medical devices.
  • implanted medical devices thus providing the ability to use complex control algorithms and models in implanted medical devices.
  • relatively simple modeling, or in stochastic models relatively large amounts of historical data from a single or multiple medical devices may be brought to bear for predictive purposes in evaluating alternate therapy and IMD instruction prescriptions
  • the present invention provides a system that establishes an external communications device and data network as a 'data bus' for extending the processing power of deployed IMDs, while minimizing host patient and clinician inconvenience
  • Figure 1 depicts a general network architecture diagram of system embodying the subject invention
  • Figure 2 depicts the system of Figure 1 including specific functional modules within the components of the system
  • FIG. 3 depicts an alternate embodiment of the system depicted in Figure 2 DETAILED DESCRIPTION OF THE DRAWINGS
  • Figure 1 depicts a general architectural view of a large-scale processing network according to an embodiment of the present invention
  • An IMD programming and instruction system 1 10 is provided IMD 1 12 has been deployed in a patient 1 14, for example, a patient at a location remote from large-scale processor 1 16
  • the IMD mav be one of a number of existing or to be developed IMDs, for example, a pacemaker, defib ⁇ llator, drug pump, neurological stimulator, physiological signal recorder, oxygen sensor, or the like
  • a single IMD 1 12 is depicted, the subject invention permits of use with multiple IMDs deployed in a single patient, each making separate transmissions and receiving separate instructions from routing instrument 1 18
  • multiple IMDs deployed in a single patient are all linked to a single telemetry device implanted in a patient This telemetry device may be separate from or incorporated into one of the I
  • IMD 1 12 is equipped with or linked to a transmission and receiving device such as a radio frequency telemetry device 120, also implanted in patient 1 14
  • a transmission and receiving device such as a radio frequency telemetry device 120
  • an external device is provided which may be termed a routing instrument
  • This routing instrument 1 18 may communicate with the IMD via radio frequency, as discussed above
  • the routing device 1 18 may also communicate with a data network via modem, LAN, WAN, wireless or infrared means
  • This data network 120 is preferably able to communicate via a computer network or other suitable data communications connection with a central computer 1 16 capable of carrying out large scale or parallel processing of patient data from one or more patients having deployed IMDs
  • the large-scale computing center or central computer 1 16 preferably has sufficient computing power and storage capability to collect and process large amounts of physiological data using complex control systems
  • the patient is placed or places himself or herself in proximity to routing instrument 1 18
  • routing instrument 1 18 may be placed in a patient's home at their bedside perhaps, or may be
  • routing instrument 1 18 contains a radio frequency transmitter/receiver or similar radio frequency telemetry device
  • routing instrument 1 18 may communicate with central large-scale computer 1 16 via a number of network schemes or connections, with regard to any of the OSI layers
  • communication mav be effected bv way of a TCP/IP connection, particularly one using the Internet, as well as a LAN, WAN, MAN, direct dial-up connection, a dedicated line, or a dedicated terminal connection to a mainframe
  • Large-scale computer 1 16 will preferably possess appreciably more computing power than possible with an IMD in terms of processor speed, RAM available, and data storage While computer 1 16 is referred to a large-scale, it is large scale only relative to such processors that are available for incorporation into an IMD For example, some commercially-available personal computers may contain sufficient computing power to operate as a server capable of carrying out many IMD diagnostic and programming tasks
  • large-scale computer 1 16 will be a mainframe, multi-processor supercomputer, or a multi-processor workstation, such as a type available from Silicon Graphics, Inc /SGI of Mountain View, California
  • Such relatively high-powered computing devices are better suited to calculations involving nonlinear systems and models such as those being developed to model physiologic systems
  • the computing device will be configured as a server capable of communicating directly or indirectly with routing instrument 1 18
  • the computer 1 16 will preferably have sufficient storage, either internal to the computer or linked to the computer, for the storage of massive amounts of historical patient data from, for example, a particular patient having an
  • IMD in communication with computer 1 16, and/or subject data from relevant physiologic studies or from cohort groups having similar medical conditions and/or deployed IMDs
  • Security and integrity of the patient information will preferably be closely guarded for at least the following reasons
  • patient physiologic data detected by a deployed IMD will be transmitted via routing instrument 1 18 to computer 1 16 for purposes of analysis of this data, and treatment regimens and/or IMD instructions, firmware, or software may be changed on the basis of this information
  • integrity of transmitted data and instructions will preferably be maintained so as to avoid adverse patient outcomes or patient outcomes that do not take full advantage of the subject invention
  • patient information that may be linked to an identifiable individual is typically regarded as confidential
  • encryption will preferably be provided to ensure patient confidentiality, particularly when transmissions between routing instrument 1 18 and computer 1 16 takes place though media other than a dedicated line/direct dial-up connection, such as a packet based network technology over a public network or internetwork
  • TCP/IP encryption will preferably be used as an alternative to
  • a preferred embodiment of the subject invention utilizes digital signatures and encryption of the patient information and IMD instructions being transmitted according to the present invention
  • Encryption of patient information will serve to protect patient confidentiality
  • Each transmission of patient data will preferably have a digital signature that can be checked against the transmission payload to ensure that patient data and IMD instructions were not corrupted during transmission
  • Examples of encryption/digital signature schemes that should prove sufficient Encryption of patient information and digital signatures include PGP, the RSA public key infrastructure scheme, or other consumer-level or higher, prime number based encryption signature scheme
  • Transmissions between an IMD 1 12 and a routing device 1 18 will also preferably be protected from transmission errors using similar encryption, authentication, and verification techmques, and/or wireless communication enhancement techniques such as wireless modulation or another suitable wide-frequency spectra technique
  • encryption and/or authentication will be effected end-to-end, I e , covering the entire transmission from IMD 1 12 to computer 1 16 or from computer 1 16 to IMD 1 12, rather than effecting one encryption/verification scheme between IMD 1 12 and routing instrument 1 18, and a different scheme from routing instrument 1 18 and computer 1 16
  • radio frequency pulse coding, spread spectrum, direct sequence time-hopping, frequency hopping, a hybrid spread spectrum technique, or other wireless modulation techniques may be employed in order to reduce interference between IMD 1 12 and other IMD or other wireless devices, and to generally offer improved accuracy, reliability, and security to transmissions between IMD 1 12 and routing instrument 1 18, mav be used to avoid cross-talk or confusion among IMDs and/or routing instruments in proximity to
  • the deployed IMD collects physiological data from the host patient via electrical, mechanical or chemical sensors, according to the type of IMD deployed in the host patient Some of this data may be used locally, I e , processed and analyzed internally to the IMD itself, to modify therapy or treatment on a 'real-time' basis Regardless of whether the physiological data from the host patient is used to modify therapy on this self- contained basis, the patient data will preferably be buffered in the IMD until such time as the device is polled or interrogated" by routing instrument 1 18 This interrogation may take place in accordance with co-pending application of the common assignee, entitled
  • the routing instrument 1 18 may also pass instructions received from the computing center to the IMD
  • Routing instrument 1 18 may contact the computing center or central large-scale processor 1 16 and transmit the physiologic data uploaded from IMD 1 12 to routing instrument 1 18
  • the powerful computer(s) at the computing center 1 16 may store and/or process the data, perhaps combining it with historical data of the same type from the same device, or perhaps with data from other implanted and medical devices
  • the physiologic data may be combined with anonymous data from other demographic or clinical groups consisting of subjects which may have data relevant or genera zable to host patient 1 14
  • comparisons of the data collected mav be made with data from other patients with similar disease states, and therapy solutions constructed and compared
  • the computing center may then transfer instructions on modifications to therapy and data collection to the routing device 1 18
  • the routing device transfers the instructions to the IMD and may also collect an additional batch of data buffered in the IMD
  • This opportunity for communication between routing device 1 18 and IMD 1 12 may not be immediately present
  • host patient 1 14 mav be located away from routing instrument temporarily if the host patient has left their house or clinical setting where the
  • Data may also be held at central computing center 1 16, for example, if the routing device 1 18 is carried by host patient 1 14 as a portable device, and an analog connection for a modem or suitable network connection may not be available
  • communication system 1 10 will operate asynchronously, permitting for the possibility for breaks in the continuous and realtime communications and/or processing of the three subsystems (IMD 1 12, routing instrument 1 18, and large scale computer 1 16
  • IMD 1 12, routing instrument 1 18, and large scale computer 1 16 alternate embodiments of the invention are also possible, including synchronous, "real-time' control of the target IMD 1 12
  • This alternate "real-time" embodiment of the system 1 10 may be enhanced upon the establishment of more ubiquitous and robust communications systems or links
  • IMD 1 12 effects the collection of high resolution physiological data, and provides for its temporary storage or buffering, for example in storage device 210
  • This storage device is preferably a RAM module of a type suitable for implementation in IMDs
  • IMD processor 212 will preferably compress the physiologic data collected by physiologic sensor 214
  • IMD processor 212 in addition to processing the reception and storage of physiologic data, also preferably effects implementation of IMD therapy
  • processor 212 may control the amount or frequency of electrical stimuli or drug delivered by IMD 1 12 This control will preferably be based on instructions originating from central computer 1 16, after processing of relevant historical or patient cohort data and determination of a suitable treatment regimen that may be effected by IMD 1 12
  • Figure 2 also depicts in greater detail the architecture of routing instrument 1 18 of Figure 1 As shown in Figure 2, routing instrument 1 18 contains a transmitter/receiver
  • routing instrument 1 18 contains architecture components similar to those seen in a computer
  • Figure 3 depicts the communication system 1 10 of Figures 1 and 2 with routing instrument 1 18 implemented as a computer 310 with a peripheral device 314 that may communicate with IMD 1 12
  • communications between routing instrument 1 18 and computing center 1 16 may be effected either through a network 230, such as a LAN or the Internet, or communications may be effected through a direct dial-up or dedicated line, or through a terminal connection to a mainframe
  • communications link 232 Typically, these connections may be considered alternatives, or both communications links, l e , relatively direct link 232 and link through network 230 may be implemented in order to provide a backup commumcations system to the link used as the primary communication method
  • Routing instrument 1 18 Upon establishing contact with routing instrument 1 18, an IMD instruction regimen may be pushed or generally transmitted to routing instrument 1 18, or computer 310 in Figure 3 implementing the routing function Routing instrument 1 18 or equivalent then stores the results of processing or analysis carried out by large-scale computer 1 16 The
  • IMD instruction regimen prescribed by central computer 1 16 may be stored within routing device 1 18 indefinitely or for a fixed period of time prior to expiration At the next opportunity for communication between routing device 1 18 and IMD 1 12, routing instrument provides new therapy programming, as well as new instructions for data collection if necessary
  • routing device 1 18 if an instruction regimen has been received by routing device 1 18 for communication to target IMD 1 12, routing device 1 18 will periodically poll IMD 1 12 m attempts to establish a communication link, such as a wireless link
  • routing device 1 18 may have a display feature, which could be for example an LCD display or a simple indicator light indicating that an instruction regimen has been received for forwarding from central computer 1 16
  • a human user for example, host patient 1 14 of
  • Figure 1 may press a button or otherwise initiate the process of communication between routing device 1 18 and target IMD 1 12 If routing device 1 18 is implemented on a computer such as a PC 310 of Figure 3 with a transmitter/receiver peripheral device, a suitable pop-up message on PC monitor 312 may indicate a pending IMD instruction or request, or an indicator on a display of peripheral transmitter/receiver 314 may indicate a pending instruction as above
  • routing device may send an error message identifying the IMD and/or instruction regimen by a suitable code
  • central computer 1 16 may be programmed to carry out suitable updating of an instruction regimen, or an error message may be output to a human operator or clinician for direct intervention by voice telephony or direct contact by mobile clinical personnel, for example
  • routing device 1 18 is portrayed in Figure 2 as a self-contained or stand-alone umt, it will be appreciated that routing device 1 18 may also be implemented, as depicted in
  • FIG 3 as a peripheral transmitter receiver capable of wireless communication with IMD 1 12, and also in communication with computer 310, such as a personal computer such as a laptop or portable computer
  • Computer 310 may also be a terminal of a remote mainframe computer 1 16, at which large-scale computing tasks may be carried out
  • routing instrument 1 18 is implemented as a peripheral and mainframe terminal, some of the components of routing device 1 18, such as storage device 224, may be implemented on a mainframe computer 1 16 rather than in the terminal implementing routing device 1 18
  • transmitter/ receiver 3 14 serves merely as a communication interface between IMD 1 12 and routing computer 3 10
  • the functions of routing instrument 1 18 of Figure 2 may be implemented in software resident on routing computer 310
  • Communications interfaces of routing computer 3 10 may include a modem, network card, direct connection, or terminal connection
  • a IMD-local computer 3 10 carries out communication with large scale computer or mainframe 1 16 preferably all data communication security and message

Abstract

A communication system is provided which permits communication between a deployed implantable medical device (IMD) and a large-scale powerful computer capable of manipulating complex nonlinear modeling of physiologic systems, and also capable of accounting for large amounts of historical data from a particular patient or a cohort group for improved modeling and predictive power, which may be expected to lead to improved patient outcomes. A deployed IMD may be polled by a routing instrument external to the host patient, and data may be received by wireless communication. This data may be transmitted to a central large-scale or other relatively powerful computer for processing according to an appropriate model. A treatment or instruction regimen, as well as appropriate firmware or software upgrades, may then be transmitted to the routing instrument for immediate or eventual loading into the IMD via wireless communication.

Description

LARGE-SCALE PROCESSING LOOP FOR IMPLANTABLE MEDICAL DEVICES
FIELD OF THE INVENTION The invention generally relates to implantable medical devices (IMDs) Specifically, the invention relates to a large-scale processing loop based on high resolution diagnostic/physiologic data collected by the IMDs More specifically, the data collected by the IMDs is transferred to a remote computation center where evaluation and analysis is performed by high-speed computer resources In the event a change, modification or reprogramming of the LMDs is indicated, the instruction is implemented in the IMDs at the next connection point in time, thus providing continuous momtoπng to proactively effect changes in the IMDs for efficient therapy and clinical care, in contrast to responding to an adverse patient event or subjecting the patient and clinician to the inconvenience of frequent m-person encounters
BACKGROUND OF THE INVENTION In the traditional provision of any medical services, including routine check-ups and monitoring, a patient is required to physically present themselves at a provider's office or other clinical setting In emergency situations, health care providers may travel to a patient's location, typically to provide stabilization during transport to a clinical setting, e g , an emergency room In some medical treatment applications, accepted medical practice for many procedures will naturally dictate physical proximity of medical providers and patients However, the physical transport of patients to clinical settings requires logistical planning such as transportation, appointments, and dealing with cancellations and other scheduling complications As a result of such logistical complications, patient compliance and clinician efficiency may suffer In certain situations, delays caused by patient transport or scheduling may result in attendant delays in detection of medical conditions such as life-threatening situations It is desirable, therefore, to minimize situations in which the physical transport of a patient to a clinical setting is required It may also be desirable to minimize the extent to which an patient or patient information must be considered by a clinician at a particular time, 1 e during an appointment After the implantation of an IMD for example, a cardiac pacemaker, clinician involvement with respect to the IMD has typically only begun The IMD usually cannot be merely implanted and forgotten, but must be monitored for optimal results, and mav require adjustment of certain parameters or settings, or even replacement, in response to or m anticipation of changes in patient condition or other environmental factors, or based on factors internal to the device IMDs may also contain logic devices such as digital controllers, which may need to undergo firmware or software upgrades or modifications In addition information about the IMD may be gathered for treatment or research purposes For example, many IMDs are capable of storing certain state information or other data regarding their operation internally
While some data regarding IMD operation may be stored internally to the device, human physiological systems are very complex and nonlinear, I e , exhibiting effects that may appear surprising or chaotic based on predictions using simple periodic or linear models IMDs are designed to dynamically interact with these physiological systems on the fly, but often can only work with simplified models or the most elemental of the systems
The limitations of IMDs in interacting with physiological systems are twofold There may be an incomplete understanding of the characteristics of the physiological system in all of its nonlinear complexity However, there may be simply a lack of raw computing power on the part of the IMD Despite the limitations of IMDs with regard to processing power, IMDs are m a unique position to monitor physiological systems continuously High-resolution data can be collected but implantable devices may only store and process limited amounts of complex physiological and medical data
Computing power (processor capability, memory, and adequate power supply) is abundantly available in the non-implantable ("external") world The computing industry is still following Moore's Law (stating that transistor density will double every 18 months), delivering increasingly sophisticated computing devices yearly, and some of these gains accrue to the computer power of IMDs However, frequent upgrading and replacement of IMDs based on more powerful models subjects a patient to additional stresses, and additional costs are imposed on the patient or health care system Models of physiological systems researched and developed on powerful external computing systems are often valuable in the medical world, but are not suitable for use in implantable medical devices Cases involving long-term monitoring or forecasting are particularly well suited to external computing systems External systems can deal with the complexity and amount of data, but because of their size are of course not suitable for implantation
Prior art methods of clinical services, particularly IMD monitoring and adjustment, are generally limited to m-hospital procedures or other scenarios involving patient transportation to a clinical setting For example, if a physician needs to review the performance parameters of an IMD in a patient, it is likely that the patient has to go to the clinic Further, if the medical conditions of a patient with an IMD warrant a continuous monitoring or adjustment of the device, the patient would have to stay in a hospital indefinitely Such a continued treatment plan poses both economic and social problems Under the prior art, as the segment of the population with IMDs increases, many more hospitals and clinics, and attendant clinicians and service personnel will be needed to provide m-hospital service for the patients, thus escalating the cost of healthcare Additionally, the patients will be unduly restricted and inconvenienced by the need to either stay in the hospital or make very frequent visits to a clinic
Yet another condition of the prior art practice requires that a patient visit a clinic center for occasional retrieval of data from the implanted device to assess the operations of the device and gather patient history for both clinical and research purposes Such data is acquired by having the patient in a hospital/clinic to download the stored data from the IMD Depending on the frequency of data collection, this procedure may pose serious difficulty and inconvenience for patients who live in rural areas or have limited mobility Similarly, in the event a need arises to upgrade the software of an implantable medical device, the patient will be required to come into the clinic or hospital to have the upgrade installed
Further, it is a typical medical practice to keep an accurate record of past and contemporaneous procedures relating to an IMD uplink with, for example, an IMD programmer, l e a computer capable of making changes to the firmware or software of an
IMD It is typically desired that the report contain the identification of all the medical devices involved in any interactive procedure Specifically, all peripheral and major devices that are used in downlinking to the IMD may be reported Currently, such procedures are manually reported, and require an operator or a medical person to manually enter data during each procedure One of the limitations of such manual reporting procedures is the possibility for human error in data entry, thus motivating rechecking of the data to verify accuracy Generally, the use of human clinicians to analyze data and implement changes in device therapy can result in inefficiencies and errors
Yet a further condition of the prior art relates to the interface between a human operator and a programmer system Generally, a medical device manager/technician, should be trained on the clinical and operational aspects of the programmer Under current practices, an operator may attend a class/session sponsored by a clinic, hospital, or the manufacturer to successfully manage a programmer-IMD procedure Further, the operator will preferably keep abreast of new developments and new procedures in the management, maintenance and upgrade of the IMD Accordingly, it is desirable that operators of programmers, IMDs, and related medical devices receive regular training or information about the IMDs they work with This information will preferably be widely distributed, because IMDs, programmers and related medical devices are distributed throughout the world Further, the number of people having implanted medical devices has been increasing over the last few years, with an attendant increase in operator personnel The total effect of these developments is a widely dispersed and large body of operators Thus, it is desirable to have a high efficiency communications system that would enhance data communications, both between the IMDs and medical instruments, such as programmers, and between operators and entities providing IMD updates and education such as manufacturers
A further limitation of the prior art relates to the management of multiple medical devices in a single patient Advances in modern patient therapy and treatment have made it possible to implant a number of devices in a patient For example, IMDs such as a defibπllator or a pacer, a neural implant, a drug pump, a separate physiologic monitor and various other IMDs may be implanted in a single patient To successfully manage the operations and assess the performance of each device in a patient with multi-implants requires a continuous update and monitoring of the devices Further, it may be preferred to have an operable communication between the various implants to provide a coordinated clinical therapy to the patient Thus, there is a need to monitor the IMDs and the programmer on a regular, if not a continuous, basis to ensure optimal patient care In the absence of other alternatives, this imposes a great burden on the patient if a hospital or clinic is the only center where the necessary upgrade follow up, evaluation and adjustment of the IMDs could be made Further, even if feasible, the situation would require the establishment of multiple service areas or clinic centers to support the burgeoning number of multi-implant patients worldwide
Generally, IMDs of the prior art are limited in that the features and functions of implantable medical device mav not take full advantage of the complex modeling of physiologic systems that are being continually established, these devices simply lack the processing power to perform the required calculations, and may be expected to lack this power indefinitely Accordingly, mankind's ever-increasing knowledge of physiologic systems must be simplified considerably in order to be implemented within an IMD It would be desirable to provide a system by which the complex modeling of physiologic systems could be brought to bear in IMD instruction in order to improve patient outcomes
SUMMARY OF THE INVENTION
This invention proposes to link the power of the external computing world to the implantable medical device via a network of commumcations devices
A technology-based health care system that fully integrates the technical and social aspects of patient care and therapy will preferably flawlessly connect the client with care providers irrespective of separation distance or location of the participants
Accordingly it is desirable to have a programmer unit that would connect to a centralized data source and repository This may be termed, for example, a remote expert data center, a remote web-based data center, or a remote data center This remote data center will preferably provide access to an expert system allowing for downloading of upgrade data or other information to a local environment Further, it is important to have a large scale processing loop to enable the gathering of high resolution diagnostic/physiologic data, and to transfer information between the IMDs and a remote expert data center to dispense therapy and clinical care on real-time basis Further, the large-scale processing loop contemplated bv the present invention enables an efficient system for data storage, collection and processing to effect changes in control algorithms of the IMDs and associated medical units to promote real time therapy and clinical care
The proliferation of patients with multi-implant medical devices worldwide has made it imperative to provide remote services to the IMDs and timely clinical care to the patient The use of programmers and related devices to communicate with the IMDs and provide various remote services has become an important aspect of patient care In addition to the instant invention, the use of programmers may be implemented in a manner consistent with the following co-pending applications assigned to the assignee of the instant invention "System and Method for Transferring Information Relating to an Implantable
Medical Device to a Remote Location," filed on July 21, 1999, Ser No 09/358,081, "Apparatus and Method for Remote Troubleshooting, Maintenance and Upgrade of Implantable Device Systems," filed on October 26, 1999, Ser No 09/426,741, "Tactile Feedback for Indicating Validity of Communication Link with an Implantable Medical Device," filed October 29, 1999, Ser No 09/430,708, "Apparatus and Method for
Automated Invoicing of Medical Device Systems," filed October 29, 1999, Ser No 09/430,208, "Apparatus and Method for Remote Self-Identification of Components in Medical Device Systems," filed October 29, 1999, Ser No 09/429,956, "Apparatus and Method to Automate Remote Software Updates of Medical Device Systems," filed October 29, 1999, Ser No 09/429,960, "Method and Apparatus to Secure Data Transfer From
Medical Device Systems," filed November 2, 1999, Ser No 09/431,881, "Implantable Medical Device Programming Apparatus Having An Auxiliary Component Storage Compartment," filed November 4, 1999, Ser No 09/433,477, "Remote Delivery Of Software-Based Training For Implantable Medical Device Systems," filed November 1 1, 1999, Ser No 09/460,580 "Apparatus and Method for Remote Therapy and Diagnosis in
Medical Devices Via Interface Systems," filed December 14, 1999, Ser No 09/466,284, "Virtual Remote Monitor, Alert, Diagnostics and Programming For Implantable Medical Device Systems" filed December 17, 1999, Ser No 09/466,284, which are all incorporated by reference herein in their entirety In light of the disclosures of these incorporated references, the present invention provides a vital system and method of delivering efficient therapy and clinical care to the patient In a representative embodiment of the instant invention, one or more IMDs, such as a pacemaker defibπllator, drug pump, neurological stimulator, physiological signal recorder may be deployed in a patient This IMD may be equipped with a radio frequency transmitter or receiver, or an alternate wireless communication telemetry technique or media which may travel through human tissue For example, the IMD may contain a transmission device capable of transmitting through human tissue such as radio frequency telemetry, acoustic telemetry, or a transmission technique that uses patient tissue as a transmission medium Alternately, an IMD may be deployed in a fashion by which a transmission or receiving device is visible externally to the patient but is connected directly or via wires to the IMD An external device, which may generally be termed a routing instrument, mav be positioned outside the patient, the routing device being equipped with a radio frequency or other communication means compatible with the communication media of the IMD or the IMD transmitter/receiver, which may be external to the IMD and may further be external to the patient Communication may be effected between the IMD transmitter/receiver and the external routing instrument, e g via radio frequency The routing instrument will be connected via a wireless or physical communication media e g via modem and direct dial connection, with a data network, LAN, WAN, wireless or infrared network In an alternate embodiment of the subject invention, the routing instrument may have a direct connection or networked connection directly to the centralized computing resource In yet another alternate embodiment of the subject invention, the system may be implemented as a data network that allows the routing instrument access to the computing center from many locations, for example providing for a routing instrument that is portable
Using the computing power of external computing devices, and control systems using complex nonlinear analysis made possible by this computing power, the monitoring of long-term disease progression (e g heart failure, hypertension, diabetes) can be improved Furthermore, therapies may be adjusted with finer granularity and improved results, with reduced need for human intervention and reduced opportunity for clinician error
In addition to improved modeling of physiologic systems, the amount of historical data, particularly patient-specific historical data used as input to control systems can be virtually unlimited when it is stored externally to the patient Furthermore, a more thorough comparison can be made between patients with similar diseases as data and therapy information, procedure and direction are centralized which mav be expected to result in gains to the body of medical knowledge and treatment efficacy Data from other medical systems either implanted or external, such as etiological databases can be incorporated easily into the control system Other anonymous patient experiences or treatment data may be more quickly incorporated into a subject patient's IMD regime than might be possible with existing systems of IMD programming or upgrading In addition a subject patient's own historical treatment parameters and corresponding outcomes mav be used in making IMD programming and other treatment decisions The instant invention provides IMDs with access to virtually unlimited computing power as part of their data collection and therapy calculation processes In an alternate embodiment of the present invention, the IMD may be used by an external computing device as a data collection agent, and as an agent to implement changes to a treatment regimen based on a complex dynamical or stochastic physiological model Rather than continuously increasing the processing power of IMDs, the present invention provides a link with external computing power, which is more easily upgraded In addition, control system algorithms based on current knowledge about physiologic systems could be more easily updated using a centralized powerful processor, rather than individually updating the firmware or software of thousands of deployed IMDs When multiple IMDs are deployed within a single patient, the data and therapy from these IMDs may be more easily and efficiently orchestrated, thus further improving treatment efficacy and convenience to the patient and clinician, and in some cases judiciously limiting clinician involvement In addition, high resolution or finely grained data may be collected and stored from a vast number of subject IMDs This finely grained patient data may be expected to prove valuable in defining and modifying an individual patient's treatment regimen as implemented by an IMD In addition, this high-resolution data may be analyzed on a mass scale, providing opportunities for improvement of existing physiologic models This data may serve, for example, to validate physiologic models being employed, or may suggest refinement of these models based on numerous patient outcomes This refinement of therapy and diagnostic algorithms or models may further be refined in conjunction with external medical devices as well According to the present invention, IMD management and manipulation will be more efficient and efficacious For example, an embodiment of the present invention permits the use of complex control systems to manage therapy of implantable medical devices In addition, the invention permits the orchestration of the data collection and therapy functions of IMDs, particularly the functions of multiple IMDs implanted in one patient In addition, an embodiment of the present invention permits of centralized therapv prescription, and provides the ability to compare disease states, diagnostic data and therapy prescription across patients with fine granulaπt\ The ability to update control system software and hardware at a central location is also provided as well as the ability to upgrade the firmware or software in remotely distributed, deployed IMDs from one central location
A communications system according to the present invention provides the ability to have high-power computing systems interact with implanted medical devices, thus providing the ability to use complex control algorithms and models in implanted medical devices In addition, even with relatively simple modeling, or in stochastic models, relatively large amounts of historical data from a single or multiple medical devices may be brought to bear for predictive purposes in evaluating alternate therapy and IMD instruction prescriptions The present invention provides a system that establishes an external communications device and data network as a 'data bus' for extending the processing power of deployed IMDs, while minimizing host patient and clinician inconvenience
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 depicts a general network architecture diagram of system embodying the subject invention
Figure 2 depicts the system of Figure 1 including specific functional modules within the components of the system
Figure 3 depicts an alternate embodiment of the system depicted in Figure 2 DETAILED DESCRIPTION OF THE DRAWINGS Figure 1 depicts a general architectural view of a large-scale processing network according to an embodiment of the present invention An IMD programming and instruction system 1 10 is provided IMD 1 12 has been deployed in a patient 1 14, for example, a patient at a location remote from large-scale processor 1 16 The IMD mav be one of a number of existing or to be developed IMDs, for example, a pacemaker, defibπllator, drug pump, neurological stimulator, physiological signal recorder, oxygen sensor, or the like While in Figure 1, a single IMD 1 12 is depicted, the subject invention permits of use with multiple IMDs deployed in a single patient, each making separate transmissions and receiving separate instructions from routing instrument 1 18 In an alternate embodiment of the subject invention, multiple IMDs deployed in a single patient are all linked to a single telemetry device implanted in a patient This telemetry device may be separate from or incorporated into one of the IMDs deployed in a patient
Returning to the single IMD embodiment depicted in Figure 1, IMD 1 12 is equipped with or linked to a transmission and receiving device such as a radio frequency telemetry device 120, also implanted in patient 1 14 In a preferred embodiment of the subject invention, an external device is provided which may be termed a routing instrument This routing instrument 1 18 may communicate with the IMD via radio frequency, as discussed above The routing device 1 18 may also communicate with a data network via modem, LAN, WAN, wireless or infrared means This data network 120 is preferably able to communicate via a computer network or other suitable data communications connection with a central computer 1 16 capable of carrying out large scale or parallel processing of patient data from one or more patients having deployed IMDs The large-scale computing center or central computer 1 16 preferably has sufficient computing power and storage capability to collect and process large amounts of physiological data using complex control systems The patient is placed or places himself or herself in proximity to routing instrument 1 18 For example, routing instrument 1 18 may be placed in a patient's home at their bedside perhaps, or may be placed in a community center, clinical office setting, nursing home, or other care facility Routing instrument 1 18 may also be embodied in a portable device that may be carried by the patient while outside the home or traveling
Routing device 1 18, like IMD 1 12, contains or is linked to a commumcations media transmitter/receiver compatible with the type incorporated into or linked to IMD 1 12 In an illustrative embodiment of the subject invention, routing instrument 1 18 contains a radio frequency transmitter/receiver or similar radio frequency telemetry device
In addition to communicating with IMD 1 12 as discussed above, routing instrument 1 18 may communicate with central large-scale computer 1 16 via a number of network schemes or connections, with regard to any of the OSI layers For example, communication mav be effected bv way of a TCP/IP connection, particularly one using the Internet, as well as a LAN, WAN, MAN, direct dial-up connection, a dedicated line, or a dedicated terminal connection to a mainframe Large-scale computer 1 16 will preferably possess appreciably more computing power than possible with an IMD in terms of processor speed, RAM available, and data storage While computer 1 16 is referred to a large-scale, it is large scale only relative to such processors that are available for incorporation into an IMD For example, some commercially-available personal computers may contain sufficient computing power to operate as a server capable of carrying out many IMD diagnostic and programming tasks
In a preferred embodiment of the subject invention, however, large-scale computer 1 16 will be a mainframe, multi-processor supercomputer, or a multi-processor workstation, such as a type available from Silicon Graphics, Inc /SGI of Mountain View, California Such relatively high-powered computing devices are better suited to calculations involving nonlinear systems and models such as those being developed to model physiologic systems
Regardless of which computing device is used, in accordance with the present invention, the computing device will be configured as a server capable of communicating directly or indirectly with routing instrument 1 18 The computer 1 16 will preferably have sufficient storage, either internal to the computer or linked to the computer, for the storage of massive amounts of historical patient data from, for example, a particular patient having an
IMD in communication with computer 1 16, and/or subject data from relevant physiologic studies or from cohort groups having similar medical conditions and/or deployed IMDs Security and integrity of the patient information will preferably be closely guarded for at least the following reasons First, patient physiologic data detected by a deployed IMD will be transmitted via routing instrument 1 18 to computer 1 16 for purposes of analysis of this data, and treatment regimens and/or IMD instructions, firmware, or software may be changed on the basis of this information Accordingly, integrity of transmitted data and instructions will preferably be maintained so as to avoid adverse patient outcomes or patient outcomes that do not take full advantage of the subject invention In addition patient information that may be linked to an identifiable individual is typically regarded as confidential Accordingly, encryption will preferably be provided to ensure patient confidentiality, particularly when transmissions between routing instrument 1 18 and computer 1 16 takes place though media other than a dedicated line/direct dial-up connection, such as a packet based network technology over a public network or internetwork For example, if the transmissions are routed over the Internet using TCP/IP encryption will preferably be used As an alternative to encryption, a proprietary data exchange format/interface that is kept secret may be used in communications between IMD 1 12 and computer 1 16 However, even with secure dedicated lines or a secret data format, digital signatures will preferably be used to detect corruption of data
Accordingly, a preferred embodiment of the subject invention utilizes digital signatures and encryption of the patient information and IMD instructions being transmitted according to the present invention Encryption of patient information will serve to protect patient confidentiality Each transmission of patient data will preferably have a digital signature that can be checked against the transmission payload to ensure that patient data and IMD instructions were not corrupted during transmission Examples of encryption/digital signature schemes that should prove sufficient Encryption of patient information and digital signatures include PGP, the RSA public key infrastructure scheme, or other consumer-level or higher, prime number based encryption signature scheme
Transmissions between an IMD 1 12 and a routing device 1 18 will also preferably be protected from transmission errors using similar encryption, authentication, and verification techmques, and/or wireless communication enhancement techniques such as wireless modulation or another suitable wide-frequency spectra technique Preferably, encryption and/or authentication will be effected end-to-end, I e , covering the entire transmission from IMD 1 12 to computer 1 16 or from computer 1 16 to IMD 1 12, rather than effecting one encryption/verification scheme between IMD 1 12 and routing instrument 1 18, and a different scheme from routing instrument 1 18 and computer 1 16 As an alternative to, or in addition to the above authentication scheme, radio frequency pulse coding, spread spectrum, direct sequence time-hopping, frequency hopping, a hybrid spread spectrum technique, or other wireless modulation techniques may be employed in order to reduce interference between IMD 1 12 and other IMD or other wireless devices, and to generally offer improved accuracy, reliability, and security to transmissions between IMD 1 12 and routing instrument 1 18, mav be used to avoid cross-talk or confusion among IMDs and/or routing instruments in proximity to each other For example radio coding may be implemented to avoid transmission errors or device confusion between neighboring IMD patients utilizing a device embodying the present invention in a managed-care setting Preferably, a data network is provided that allows the external communications device, or routing instrument 1 18, access to the computing center from one of many possible locations This provides portability to the administration of the routing instrument and patient lifestyle
In operation, the deployed IMD collects physiological data from the host patient via electrical, mechanical or chemical sensors, according to the type of IMD deployed in the host patient Some of this data may be used locally, I e , processed and analyzed internally to the IMD itself, to modify therapy or treatment on a 'real-time' basis Regardless of whether the physiological data from the host patient is used to modify therapy on this self- contained basis, the patient data will preferably be buffered in the IMD until such time as the device is polled or interrogated" by routing instrument 1 18 This interrogation may take place in accordance with co-pending application of the common assignee, entitled
"Implantable Medical Device Interrogation Network, Docket No P-8865, Ser No 60/173,082", and filed on December 24, 1999, this co-pending application is hereby incorporated by reference in its entirety into the instant application During this transaction, the routing instrument 1 18 may also pass instructions received from the computing center to the IMD
Routing instrument 1 18 may contact the computing center or central large-scale processor 1 16 and transmit the physiologic data uploaded from IMD 1 12 to routing instrument 1 18 The powerful computer(s) at the computing center 1 16 may store and/or process the data, perhaps combining it with historical data of the same type from the same device, or perhaps with data from other implanted and medical devices For example, the physiologic data may be combined with anonymous data from other demographic or clinical groups consisting of subjects which may have data relevant or genera zable to host patient 1 14 For example, comparisons of the data collected mav be made with data from other patients with similar disease states, and therapy solutions constructed and compared The computing center may then transfer instructions on modifications to therapy and data collection to the routing device 1 18 At the next opportunity for communications the routing device transfers the instructions to the IMD and may also collect an additional batch of data buffered in the IMD This opportunity for communication between routing device 1 18 and IMD 1 12 may not be immediately present For example, host patient 1 14 mav be located away from routing instrument temporarily if the host patient has left their house or clinical setting where the routing device is kept An alternate barrier to routing device to IMD communication may be a poor environment for the communication media employed between the IMD and the routing device 1 18
Data may also be held at central computing center 1 16, for example, if the routing device 1 18 is carried by host patient 1 14 as a portable device, and an analog connection for a modem or suitable network connection may not be available
In a preferred embodiment of the subject invention communication system 1 10 will operate asynchronously, permitting for the possibility for breaks in the continuous and realtime communications and/or processing of the three subsystems (IMD 1 12, routing instrument 1 18, and large scale computer 1 16 However, alternate embodiments of the invention are also possible, including synchronous, "real-time' control of the target IMD 1 12 This alternate "real-time" embodiment of the system 1 10 may be enhanced upon the establishment of more ubiquitous and robust communications systems or links
Initially the system would act in an asynchronous manner, where precise timing of data transfer and therapy changes is not critical As the device-instrument and network communications become more ubiquitous and less reliant on specific hardware (e g RF head, network cables), the control loop could become more time-dependent
In a preferred embodiment of the subject invention, and as depicted in Figure 2, IMD 1 12 effects the collection of high resolution physiological data, and provides for its temporary storage or buffering, for example in storage device 210 This storage device is preferably a RAM module of a type suitable for implementation in IMDs Prior to storage in storage device 210, IMD processor 212 will preferably compress the physiologic data collected by physiologic sensor 214 IMD processor 212, in addition to processing the reception and storage of physiologic data, also preferably effects implementation of IMD therapy For example, and depending on the type of IMD in which the subject invention is implemented, processor 212 may control the amount or frequency of electrical stimuli or drug delivered by IMD 1 12 This control will preferably be based on instructions originating from central computer 1 16, after processing of relevant historical or patient cohort data and determination of a suitable treatment regimen that may be effected by IMD 1 12 Figure 2 also depicts in greater detail the architecture of routing instrument 1 18 of Figure 1 As shown in Figure 2, routing instrument 1 18 contains a transmitter/receiver
220, a processor 222 storage device 224, and communication device 226 Communication device 226 may be, for example, a modem or network interface card It may be seen in Figure 2 that routing instrument 1 18 contains architecture components similar to those seen in a computer, and Figure 3 depicts the communication system 1 10 of Figures 1 and 2 with routing instrument 1 18 implemented as a computer 310 with a peripheral device 314 that may communicate with IMD 1 12 As shown in Figure 2, communications between routing instrument 1 18 and computing center 1 16 may be effected either through a network 230, such as a LAN or the Internet, or communications may be effected through a direct dial-up or dedicated line, or through a terminal connection to a mainframe These possible implementations are indicated generally by communications link 232 Typically, these connections may be considered alternatives, or both communications links, l e , relatively direct link 232 and link through network 230 may be implemented in order to provide a backup commumcations system to the link used as the primary communication method In a preferred embodiment of the subject invention depicted in Figure 2, central computing center or computer 1 16 creates an instruction file for routing instrument 1 18 and/or for IMD This file may consist largely of instructions for the IMD 1 12 affiliated with the routing device 1 18 Central computer 1 16 may then contact the routing instrument to initiate transfer Preferably, this method of contact will correspond to the method of communication from routing instrument 1 18 to central computer 1 16, although an alternate method may be used, particularly if a first preferred method proves unsuccessful If communication with routing device 1 18 is possible, suitable instructions or information may be forwarded to routing device 1 18 for communication to IMD 1 12 If both a primary and backup methods of communication prove unsuccessful, central computer 1 16 may leave for routing instrument 1 18 an instruction file that it may collect upon establishment of a connection While the instant invention has been described primarily with a single IMD corresponding to a single routing device and to a single central computer, alternative embodiments of the present invention are possible For example, several IMDs, each with a separate identifying code or number, may utilize a single routing instrument These several IMDs sharing a routing instrument may be deployed within a single patient or the several IMDs sharing a routing instrument may be deploved in two or more separate patients where each patient has reasonable access to the routing instrument directly or to communications equipment which may send information to and receive information from routing instrument 1 18 While in an illustrative embodiment, several routing instruments share a single central computing resource, alternative embodiments may have a single routing instrument communicating with distributed computers In addition to or in place of large-scale computer 1 16 For example, a routing instrument 1 18 may submit physiologic data to one computer 1 16 for wide demographic or cohort analysis, or deep historical data about the patient whose treatment is being considered A second central computer of relatively large scale may be used for formulating instructions to particular deployed IMDs These instructions may be educated by or based on the outcome of a demographic analysis from the same or a different large-scale computer, or may be based on a nonlinear multivaπate model resident on the large-scale computer In addition, an instruction regimen for a target IMD may not be based solely on treatment considerations arising from patient data or from predictive modeling IN addition, an instruction regimen may contain firmware or software upgrades to target IMD 1 12 which are prescribed generally for all host patients of a particular IMD model or type
Upon establishing contact with routing instrument 1 18, an IMD instruction regimen may be pushed or generally transmitted to routing instrument 1 18, or computer 310 in Figure 3 implementing the routing function Routing instrument 1 18 or equivalent then stores the results of processing or analysis carried out by large-scale computer 1 16 The
IMD instruction regimen prescribed by central computer 1 16 may be stored within routing device 1 18 indefinitely or for a fixed period of time prior to expiration At the next opportunity for communication between routing device 1 18 and IMD 1 12, routing instrument provides new therapy programming, as well as new instructions for data collection if necessary In a preferred embodiment of the subject invention, if an instruction regimen has been received by routing device 1 18 for communication to target IMD 1 12, routing device 1 18 will periodically poll IMD 1 12 m attempts to establish a communication link, such as a wireless link In an alternate embodiment of the subject invention, routing device 1 18 may have a display feature, which could be for example an LCD display or a simple indicator light indicating that an instruction regimen has been received for forwarding from central computer 1 16 A human user, for example, host patient 1 14 of
Figure 1 may press a button or otherwise initiate the process of communication between routing device 1 18 and target IMD 1 12 If routing device 1 18 is implemented on a computer such as a PC 310 of Figure 3 with a transmitter/receiver peripheral device, a suitable pop-up message on PC monitor 312 may indicate a pending IMD instruction or request, or an indicator on a display of peripheral transmitter/receiver 314 may indicate a pending instruction as above
If an IMD instruction regimen has expired prior to establishment of contact with the target IMD 1 12, routing device may send an error message identifying the IMD and/or instruction regimen by a suitable code Upon reception of an error in instruction regimen transmission, central computer 1 16 may be programmed to carry out suitable updating of an instruction regimen, or an error message may be output to a human operator or clinician for direct intervention by voice telephony or direct contact by mobile clinical personnel, for example
While routing device 1 18 is portrayed in Figure 2 as a self-contained or stand-alone umt, it will be appreciated that routing device 1 18 may also be implemented, as depicted in
Figure 3, as a peripheral transmitter receiver capable of wireless communication with IMD 1 12, and also in communication with computer 310, such as a personal computer such as a laptop or portable computer Computer 310 may also be a terminal of a remote mainframe computer 1 16, at which large-scale computing tasks may be carried out It will be appreciated that in the event that routing instrument 1 18 is implemented as a peripheral and mainframe terminal, some of the components of routing device 1 18, such as storage device 224, may be implemented on a mainframe computer 1 16 rather than in the terminal implementing routing device 1 18 In the embodiment of the invention depicted in Figure 3 transmitter/ receiver 3 14 serves merely as a communication interface between IMD 1 12 and routing computer 3 10 The functions of routing instrument 1 18 of Figure 2 may be implemented in software resident on routing computer 310 Communications interfaces of routing computer 3 10 may include a modem, network card, direct connection, or terminal connection In the embodiment of the invention depicted in Figure 3, in which a IMD-local computer 3 10 carries out communication with large scale computer or mainframe 1 16 preferably all data communication security and message authentication and integrity confirmation as discussed above with regard to routing instrument 1 18 of Figure 2 will be implemented on local computer 3 10 of Figure 3 As discussed with reference to Figure 2 above, communication between the computer 310 implementing routing instrument 1 18, and central computer 1 16 may be implemented via network 230 or direct connection 232
Although the invention is described with reference to particular embodiments, it will be understood to those skilled in the art that this embodiment is merely illustrative of the application of the principles of the invention Numerous modifications may be made therein and other arrangements may be devised without departing from the spirit and scope of the invention

Claims

What is claimed is
1 A computerized method of controlling one or more IMDs deployed in one or more patients, said IMDs having firmware or software, comprising the steps of transmitting via a network communication link historical physiologic data gathered from at least one of the IMDs to a centralized computing resource external to any patient, analyzing the physiologic data so transmitted according to a suitable physiologic model, determining instructions comprising an IMD treatment regimen based on the results of the analysis of the physiologic data, and transmitting via a network communication link the instructions to the appropriate IMD for execution by the IMD in accordance with its firmware or software
2 The method of claim 1, wherein the network communication link comprises a radio frequency link
3 The method of claim 2, wherein the network commumcation link comprises a hybrid link
4 The method of claim 3 wherein the hybrid link comprises a radio frequency link from an IMD to a routing instrument, and a secondary network link from the routing device to the central computing resource
5 The method of claim 4 wherein the secondary network link is a direct dial up connection
6 The method of claim 4 wherein the secondary network link is an area network
7 The method of claim 6 wherein the area network is a LAN 8 The method of claim 6 wherein the area network is a WAN
9 The method of claim 6 wherein the area network is one of internet, intranet, extranet or world wide web
10 The method of claim 4, wherein the secondary network communication link comprises an asynchronous link
1 1 The method of claim 4, wherein the secondary network communications link comprises a synchronous link
12 The system of claim 1, wherein the one or more IMDs comprises one or more of a pacemaker, a PCD pacemaker/cardioverter/defibrillator, an oxygen sensing device, a nerve stimulator, a muscle stimulator, a drug pump, or an implantable monitoring device
13 The computerized method of claim 1, comprising the further step of transmitting from a centralized computing resource to one or more IMDs an upgrade to the IMD firmware or software
14 A computerized information network system linking one or more IMDs deployed in one or more patients to a centralized external computer via a data communication network, said network comprising a central computing resource accessible by the network, said central computing resource capable of applying a physiologic model to patient data recorded by an IMD, at least one routing instrument capable of wireless communication with at least one IMD deployed in a patient, said routing instrument being capable of commumcation with the network.
15 The computerized network of claim 13, wherein the network comprises a direct link between the at least one routing instrument and the central computing resource 16 The computerized network of claim 13, wherein the central computing resource comprises a supercomputer
17 The computerized network of claim 13, wherein the central computing resource comprises a multi-processor workstation
18 The computerized network of claim 13, wherein the central computing resource comprises a networked cluster of computers
19 The system of claim 13, wherein the data communication is asynchronous
20 The system of claim 13, where the data communication is synchronous
PCT/US2000/034520 1999-12-24 2000-12-19 Large-scale processing loop for implantable medical devices WO2001048675A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00988167A EP1244993A2 (en) 1999-12-24 2000-12-19 Large-scale processing loop for implantable medical devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17307999P 1999-12-24 1999-12-24
US60/173,079 1999-12-24

Publications (2)

Publication Number Publication Date
WO2001048675A2 true WO2001048675A2 (en) 2001-07-05
WO2001048675A3 WO2001048675A3 (en) 2002-05-30

Family

ID=22630450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/034520 WO2001048675A2 (en) 1999-12-24 2000-12-19 Large-scale processing loop for implantable medical devices

Country Status (2)

Country Link
EP (1) EP1244993A2 (en)
WO (1) WO2001048675A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1584349A1 (en) * 2004-04-04 2005-10-12 Pacesetter, Inc. Hierarchical data storage and analysis system for implantable medical devices
US7069552B2 (en) 2001-08-30 2006-06-27 St. Jude Medical Ab Method for providing software to an implantable medical device system
EP1676525A1 (en) * 2004-12-29 2006-07-05 DePuy Products, Inc. Medical device communications network
US7103578B2 (en) 2001-05-25 2006-09-05 Roche Diagnostics Operations, Inc. Remote medical device access
EP1895437A1 (en) * 2006-09-01 2008-03-05 F.Hoffmann-La Roche Ag Medical infusion devices and method for administrating such devices
US8080064B2 (en) 2007-06-29 2011-12-20 Depuy Products, Inc. Tibial tray assembly having a wireless communication device
US8176922B2 (en) 2004-06-29 2012-05-15 Depuy Products, Inc. System and method for bidirectional communication with an implantable medical device using an implant component as an antenna
CN110911001A (en) * 2018-09-17 2020-03-24 西门子医疗有限公司 Technical improvement assessment for a set of applications
CN113590499A (en) * 2020-04-30 2021-11-02 深圳市帝迈生物技术有限公司 Blood analyzer, data processing method thereof, and computer storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348008A (en) * 1991-11-25 1994-09-20 Somnus Corporation Cardiorespiratory alert system
WO1997009923A1 (en) * 1995-09-13 1997-03-20 Medison Co., Ltd. Real-time biological signal monitoring system using radio communication network
US5720770A (en) * 1995-10-06 1998-02-24 Pacesetter, Inc. Cardiac stimulation system with enhanced communication and control capability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5348008A (en) * 1991-11-25 1994-09-20 Somnus Corporation Cardiorespiratory alert system
WO1997009923A1 (en) * 1995-09-13 1997-03-20 Medison Co., Ltd. Real-time biological signal monitoring system using radio communication network
US5720770A (en) * 1995-10-06 1998-02-24 Pacesetter, Inc. Cardiac stimulation system with enhanced communication and control capability

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7103578B2 (en) 2001-05-25 2006-09-05 Roche Diagnostics Operations, Inc. Remote medical device access
US7069552B2 (en) 2001-08-30 2006-06-27 St. Jude Medical Ab Method for providing software to an implantable medical device system
EP1584349A1 (en) * 2004-04-04 2005-10-12 Pacesetter, Inc. Hierarchical data storage and analysis system for implantable medical devices
US8176922B2 (en) 2004-06-29 2012-05-15 Depuy Products, Inc. System and method for bidirectional communication with an implantable medical device using an implant component as an antenna
EP1676525A1 (en) * 2004-12-29 2006-07-05 DePuy Products, Inc. Medical device communications network
US10575140B2 (en) 2004-12-29 2020-02-25 DePuy Synthes Products, Inc. Medical device communications network
US9860717B2 (en) 2004-12-29 2018-01-02 DePuy Synthes Products, Inc. Medical device communications network
US8001975B2 (en) 2004-12-29 2011-08-23 Depuy Products, Inc. Medical device communications network
US9560969B2 (en) 2004-12-29 2017-02-07 DePuy Synthes Products, Inc. Medical device communications network
EP1895437A1 (en) * 2006-09-01 2008-03-05 F.Hoffmann-La Roche Ag Medical infusion devices and method for administrating such devices
WO2008025183A3 (en) * 2006-09-01 2008-05-08 Hoffmann La Roche Medical infusion device and method for managing such devices
WO2008025183A2 (en) * 2006-09-01 2008-03-06 F. Hoffmann-La Roche Ag Medical infusion device and method for managing such devices
US8080064B2 (en) 2007-06-29 2011-12-20 Depuy Products, Inc. Tibial tray assembly having a wireless communication device
CN110911001A (en) * 2018-09-17 2020-03-24 西门子医疗有限公司 Technical improvement assessment for a set of applications
CN110911001B (en) * 2018-09-17 2023-10-03 西门子医疗有限公司 Improved evaluation system and method for application set and storage medium thereof
CN113590499A (en) * 2020-04-30 2021-11-02 深圳市帝迈生物技术有限公司 Blood analyzer, data processing method thereof, and computer storage medium

Also Published As

Publication number Publication date
EP1244993A2 (en) 2002-10-02
WO2001048675A3 (en) 2002-05-30

Similar Documents

Publication Publication Date Title
US6920360B2 (en) Large-scale processing loop for implantable medical devices
US20050240246A1 (en) Large-scale processing loop for implantable medical devices
US6480745B2 (en) Information network interrogation of an implanted device
US6564104B2 (en) Dynamic bandwidth monitor and adjuster for remote communications with a medical device
US6442432B2 (en) Instrumentation and software for remote monitoring and programming of implantable medical devices (IMDs)
EP1244994B1 (en) Central network to facilitate remote collaboration with medical instruments
US6418346B1 (en) Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
JP4364644B2 (en) Method and apparatus for remotely programming an implantable medical device
US7791467B2 (en) Repeater providing data exchange with a medical device for remote patient care and method thereof
US6754538B2 (en) Apparatus and method for remote self-identification of components in medical device systems
US6385593B2 (en) Apparatus and method for automated invoicing of medical device systems
US6442433B1 (en) Apparatus and method for remote troubleshooting, maintenance and upgrade of implantable device systems
US20010037220A1 (en) Integrated software system for implantable medical device installation and management
JP2007524175A (en) Advanced patient management and medication management systems and methods
US20070168222A1 (en) System and method for providing hierarchical medical device control for automated patient management
WO2001048675A2 (en) Large-scale processing loop for implantable medical devices
EP1241982B1 (en) Integrated software system for implantable medical device installation and management

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000988167

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000988167

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP