WO2001052356A1 - Resonant cavity antenna having a beam conformed according to a predetermined radiation diagram - Google Patents

Resonant cavity antenna having a beam conformed according to a predetermined radiation diagram Download PDF

Info

Publication number
WO2001052356A1
WO2001052356A1 PCT/FR2001/000109 FR0100109W WO0152356A1 WO 2001052356 A1 WO2001052356 A1 WO 2001052356A1 FR 0100109 W FR0100109 W FR 0100109W WO 0152356 A1 WO0152356 A1 WO 0152356A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonant cavity
semi
dielectric substrate
face
cavity
Prior art date
Application number
PCT/FR2001/000109
Other languages
French (fr)
Inventor
Ronan Sauleau
Philippe Coquet
Toshiaki Matsui
Jean-Pierre Daniel
Original Assignee
Universite De Rennes 1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Rennes 1 filed Critical Universite De Rennes 1
Priority to AU2001231893A priority Critical patent/AU2001231893A1/en
Publication of WO2001052356A1 publication Critical patent/WO2001052356A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0053Selective devices used as spatial filter or angular sidelobe filter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • H01Q19/065Zone plate type antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/185Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces wherein the surfaces are plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • Resonant cavity antenna having a beam shaped according to a predetermined radiation pattern.
  • the field of the invention is that of focusing devices for electromagnetic waves, mainly (but not exclusively) at millimeter and submillimeter wavelengths.
  • the invention relates to an antenna of the type comprising a resonant cavity and means for exciting the latter, so as to present a beam shaped according to a predetermined radiation pattern.
  • the predetermined radiation pattern can in particular, but not exclusively, be Gaussian.
  • the invention has numerous applications, such as for example point-to-point communications applications, which are currently developing in millimeter bands (intra-building wireless communications, high-speed communications (60 GHz), anti-collision radars automotive (77 GHz), .
  • planar reflectors In this type of application, the main techniques known from the prior art are the following: planar reflectors, lens antennas, substrate lenses, antenna arrays and Gaussian beam antennas.
  • planar reflectors and antenna arrays sometimes have insufficient efficiency.
  • the lens antennas and the substrate lenses do not have sufficient compactness.
  • the Gaussian beam antennas also have faults which are discussed in detail below.
  • a classic Gaussian beam antenna (or GBA, for "Gaussian Beam Antenna" in English) is illustrated in FIGS. 1A (overall simplified diagram of the antenna), 1B (top view of the upper grid) and 1C (diagram of Gaussian radiation).
  • the resonant cavity 1, of the Perot-Fabry type comprises a dielectric substrate 2 (permittivity ⁇ r ) of "convex piano" shape: the lower face is planar while the upper face is spherical (radius of curvature R 0 ).
  • This dielectric substrate 2 has a thickness D ( ⁇ ⁇ J2) in the center.
  • a grid is formed two-dimensional (2D) semi-reflective and uniform 3, 4 (cf. fig.lB), the patterns of which are identical and repeat periodically (spatial period a, and track width d adoptedwith i equal to 1 (for the lower grid ) or 2 (for the upper grid)).
  • the lower 3 and upper 4 grids can be identical or different.
  • the radiated field (cf. fig. LC) has the form of an undepointed Gaussian beam, more or less directional and having no secondary lobe.
  • the resonant cavity 1 is excited from the side of the underside thereof, by a radiating source 5 (source of horn type, as in the example illustrated).
  • Its radius of curvature R 0 determines in particular the directivity of the antenna, that is to say its focusing power.
  • the convex piano substrates are expensive and do not lend themselves easily to the usual process of making grids by photolithography, especially for "low" values of R 0 (UV diffraction due to the curvature (arrow) of the piano-convex substrate ).
  • the spherical surface is generally obtained by polishing and the thickness of the substrate (which forms a lens) can only be guaranteed to within a few tens of microns.
  • the resonant frequency of the cavity strongly depends on the thickness D of this lens, it is essential to measure this thickness precisely beforehand, then to choose the grid parameters of the two faces accordingly, in order to respond to a specification of loads imposing resonant frequency and bandwidth. Otherwise, the frequency shift, which can reach several bandwidths at half power, penalizes the power budget (hence a degradation in the quality of a wireless link for example).
  • one of the objectives of the present invention is to provide an antenna of the type comprising a resonant cavity and means for exciting the latter, this antenna not requiring a convex piano substrate.
  • the invention also aims to provide an antenna that is simpler to manufacture and less expensive than conventional antenna GBA discussed above.
  • a beam antenna conformed according to a predetermined radiation pattern comprising: a resonant cavity having in particular a face lower and an upper face, and consisting of a dielectric substrate covered on each of its upper and lower faces with a network of semi-reflecting patterns, upper and lower respectively, means for exciting said resonant cavity, on the side of said lower face, by a radiating source, - optionally, at least one layer of a buffer dielectric substrate, situated between the lower face of said resonant cavity and said excitation means.
  • said resonant cavity is a cavity with planar faces, said upper and lower faces of the dielectric substrate of said resonant cavity being plane and substantially parallel to one another.
  • said arrays of upper and lower semi-reflecting patterns and / or said excitation means and / or said at least one layer of buffer dielectric substrate are chosen with characteristics making it possible to simulate the effect of at least one curvature. on at least one of said flat faces of said cavity, and thus allow the obtaining of said predetermined radiation pattern.
  • the general principle of the invention therefore consists in using a blade with parallel faces (instead of a convex piano lens) and playing on certain specific parameter (s) of at least one of the elements included. in the antenna to simulate the effect of at least one curvature of the cavity, and therefore adjust in particular the directivity of the antenna.
  • specific parameters we mean in particular, but not exclusively, the dimensions, the geometry, the permittivity, the uniformity, the thickness, etc.
  • the antenna may possibly not include a layer of buffer dielectric substrate. In this case, one can of course only play on the networks of semi-reflecting patterns (or semi-reflecting mirrors) and / or the excitation means.
  • Such a blade with parallel faces is inexpensive and easily lends itself to the usual method of manufacturing semi-reflective patterns by photolithography. It is also understood that the antenna according to the present invention makes it possible to easily respond to specifications imposing resonant frequency and bandwidth, since these are parameters of constituent elements of the antenna that should be chosen appropriately.
  • said network of lower semi-reflective patterns is uniform
  • said network of upper semi-reflective patterns is non-uniform and has characteristics such that the planar upper face of said resonant cavity simulates the effect of at least one curvature.
  • the non-uniformity (or non-periodicity) of the patterns of the upper network to simulate at least one curvature on the upper flat face of the cavity.
  • the characteristics (or parameters) of this upper network are in particular the geometry and / or the dimensions of each pattern. For example, if the patterns of this network form a grid, the spatial (pseudo-) period and the width of the metal tracks constituting this grid are chosen. This choice is for example such that the equiphase surface of the wave reflected on the internal face of the non-uniform upper network is spherical, with a radius of curvature R Q.
  • said excitation means belong to the group comprising: planar antennas and radiating openings having no conductive collar and / or not creating phase discontinuity on the underside of the cavity.
  • excitation means do not create phase discontinuity on the underside of the cavity.
  • said excitation means and / or said at least one layer of buffer dielectric substrate create at least one phase discontinuity on said underside of said resonant cavity, so that the planar underside of said resonant cavity simulates at least one curved face.
  • At least one phase discontinuity to simulate at least one curvature on the flat face of the cavity which carries the lower network.
  • a total of at least two curvatures is simulated (at least one on each of the plane faces of the cavity).
  • said arrays of upper and lower semi-reflecting patterns are uniform, and said excitation means and / or said at least one layer of a dielectric buffer substrate create at least one discontinuity phase on said underside of said resonant cavity, so that the planar underside of said resonant cavity simulates at least one curved face.
  • one therefore does not play on the networks of semi-reflecting patterns but on the excitation means and / or on the layer (s) of buffer dielectric substrate.
  • said excitation means belong to the group comprising: radiating openings with conductive flange; slots or networks of slots; planar antennas each associated with at least one layer of a partially metallized buffer dielectric substrate on its upper face.
  • said networks of semi-reflecting patterns belong to the group comprising: networks of uniform semi-reflecting patterns and networks of non-uniform semi-reflecting patterns.
  • said antenna operates at millimeter and sub-millimeter wavelengths.
  • FIG. 1A presents a simplified diagram of a Gaussian beam antenna according to the prior art
  • Figure 1B shows a top view of the upper grid appearing in Figure 1 A
  • - Figure 1C shows the radiation pattern of the antenna according to the prior art shown in Figure 1 A
  • FIG. 2A shows a first preferred embodiment of an antenna according to the present invention
  • Figure 2B shows the radiation pattern of the antenna shown in Figure 2A
  • Figure 3 shows a second preferred embodiment of an antenna according to the present invention
  • FIGS. 4A and 4B illustrate the operation of the antenna of FIG.
  • the invention therefore relates to an antenna of the type comprising a resonant cavity and means for exciting the latter, so as to present a beam shaped according to a predetermined radiation pattern.
  • Gaussian single-beam radiation diagram we only discuss the case of a Gaussian single-beam radiation diagram. It is clear that the present invention applies more generally to all types of radiation diagrams, substantially Gaussian or not, mono or multi-beam (x), of revolution or not, defocused or not, electronically controllable, ...
  • the antenna according to the invention operates for example in linear or circular polarization.
  • FIGS. 2A and 2B a first preferred embodiment of an antenna according to the present invention.
  • the resonant cavity 21 is a dielectric strip 22 with parallel faces, of permittivity ⁇ r , of thickness D and of diameter ⁇ ⁇
  • the dielectric constituting the strip 22 may be air or any other dielectric material. In the case of air, at least one layer of dielectric material 26, 27 should be provided, on either side of the cavity, in order to form a support for the cavity made up of air.
  • this dielectric strip 22 On the lower face (excitation side) of this dielectric strip 22 is produced a uniform semi-reflective 2D grid 23. On the upper face (radiation side) is produced a non-uniform semi-reflective 2D grid 24.
  • the excitation is done by a planar antenna 25, via a layer of a dielectric buffer substrate 26 (air for example, or any other dielectric material).
  • the parameters (spatial period and width of the metal tracks in particular) of the non-uniform grid 24 are for example chosen so that the equiphase surface of the wave reflected on the internal face of the non-uniform grid 24 is spherical.
  • the radiation diagram is of revolution of the Gaussian type.
  • the equiphase wave surface has a radius R 0 . It is the optical path which compensates for the phase difference existing between the reflection coefficients at the different reflection points. If it is assumed that the spatial period of the non-uniform grid 24 is constant, the problem therefore consists in defining the width d (p) of the metal tracks.
  • the effect of a curvature on the upper face (radiation side) is simulated.
  • the directivity of the antenna can be adjusted by checking the non-uniformity of the upper grid 24.
  • this technique can of course extend to the formation of other types of radiation patterns, not necessarily Gaussian.
  • this technique also makes it possible to generate single or multi-beam (x) radiation patterns, possibly depointed, electronically controllable, etc.
  • FIGS. 3, 4A and 4B a second preferred embodiment of an antenna according to the present invention.
  • the resonant cavity 31 is a dielectric strip 32 with parallel faces, of permittivity ⁇ r , of thickness D and of diameter ⁇ j .
  • a uniform semi-reflective 2D grid 33, 34 is produced on each of the two faces (lower, excitation side, and upper (radiation side) of this dielectric strip 32.
  • phase discontinuity (cf. fig. 4A) on the underside of the resonant cavity.
  • This phase discontinuity can be represented by an equivalent convex mirror with a radius of curvature R 0 ', causing the beam to be focused inside the resonant cavity.
  • the lower (flat) face of the resonant cavity simulates a curved face with a radius of curvature R 0 '(cf. f ⁇ g.4B), and therefore allows the formation of a beam, for example of the Gaussian type.
  • the directivity and the opening angle at - 3 dB depend essentially on the geometry of the grid printed on the lower flat face and on the dimensions of the horn.
  • excitation means allowing the creation of such a phase discontinuity can be used, such as in particular waveguides with conductive flange, slots, networks of slots, etc.
  • At least one curvature is simulated on each of the two flat faces of the resonant cavity, thanks to the use of a non-uniform upper grid (first embodiment) and of excitation means creating a phase discontinuity. on the underside (second embodiment).
  • This example has been successfully tested in the 60 GHz frequency range.
  • the radiation pattern (not shown) of this antenna is indeed directional and Gaussian in appearance with secondary lobes less than - 30 dB.
  • the assembly comprising the cavity and the horn constitutes the antenna.
  • the lower grid is uniform and on the outside, the upper grid is non-uniform and simulates a curved face.
  • the geometric characteristics of the resonant cavity in this example are as follows (“a,” denotes the spatial period of the grids and "d," the width of the metal tracks):
  • a one-dimensional grid (1D) is for example made up of a plurality of tracks or conductive strips parallel to each other.
  • a two-dimensional (2D) grid is for example made up of two sets of tracks or conductive strips parallel to each other within the same set, each set being associated with a separate direction (the directions of the two sets can be orthogonal or not ).

Abstract

The invention concerns a resonant cavity antenna having a beam conformed according to a predetermined radiation diagram and comprising: a resonant cavity (21; 31) especially having a lower face and an upper face and consisting of a dielectric substrate (22; 32) covered respectively on the bottom and top faces thereof with a network of semi-reflective patterns (24, 23; 34, 33); excitation means (25; 35) of said resonant cavity in said bottom face for a radiating source; optionally, at least one layer consisting of a dielectric buffer substrate (26) located between the bottom face of said resonant cavity and the aforementioned excitation means. According to the invention, said resonant cavity is a flat plane cavity, the top and bottom faces of the dielectric substrate of said resonant cavity being flat and substantially parallel relative to one another.

Description

Antenne à cavité résonante ayant un faisceau conformé selon un diagramme de rayonnement prédéterminé. Resonant cavity antenna having a beam shaped according to a predetermined radiation pattern.
Le domaine de l'invention est celui des dispositifs focalisants pour les ondes électromagnétiques, principalement (mais non exclusivement) aux longueurs d'ondes millimétriques et submillimétriques.The field of the invention is that of focusing devices for electromagnetic waves, mainly (but not exclusively) at millimeter and submillimeter wavelengths.
Plus précisément, l'invention concerne une antenne du type comprenant une cavité résonante et des moyens d'excitation de cette dernière, de façon à présenter un faisceau conformé selon un diagramme de rayonnement prédéterminé. Le diagramme de rayonnement prédéterminé peut notamment, mais non exclusivement, être gaussien. L'invention a de nombreuses applications, telles que par exemple les applications de communications point à point, qui se développent à l'heure actuelle dans les bandes millimétriques (communications sans fil intra bâtiment, communications à haut débit (60 GHz), radars anticollision automobile (77 GHz), ...).More specifically, the invention relates to an antenna of the type comprising a resonant cavity and means for exciting the latter, so as to present a beam shaped according to a predetermined radiation pattern. The predetermined radiation pattern can in particular, but not exclusively, be Gaussian. The invention has numerous applications, such as for example point-to-point communications applications, which are currently developing in millimeter bands (intra-building wireless communications, high-speed communications (60 GHz), anti-collision radars automotive (77 GHz), ...).
Plus généralement, elle peut s'appliquer dans tous les cas où des dispositifs de rayonnements plus ou moins directifs et compacts (applications "grand public") sont nécessaires.More generally, it can be applied in all cases where more or less directive and compact radiation devices ("general public" applications) are necessary.
Dans ce type d'applications, les principales techniques connues de l'art antérieur sont les suivantes : réflecteurs plans, antennes lentilles, lentilles substrats, réseaux d'antennes et antennes à faisceau gaussien. Or, il apparaît qu'aucune de ces techniques n'est satisfaisante. En effet, les réflecteurs plans et les réseaux d'antennes présentent parfois un rendement insuffisant. Par ailleurs, les antennes lentilles et les lentilles substrats ne présentent pas une compacité suffisante. Enfin, les antennes à faisceau gaussien présentent elles aussi des défauts qui sont discutés en détail ci-dessous. Une antenne à faisceau gaussien (ou GBA, pour "Gaussian Beam Antenna" en anglais) classique est illustrée sur les figures 1A (schéma simplifié global de l'antenne), 1B (vue de dessus de la grille supérieure) et 1C (diagramme de rayonnement gaussien). La cavité résonante 1, de type Pérot-Fabry, comprend un substrat diélectrique 2 (permittivité εr) de forme "piano convexe" : la face inférieure est plane tandis que la face supérieure est sphérique (rayon de courbure R0). Ce substrat diélectrique 2 possède une épaisseur D (≈ λJ2) au centre. Sur chacune de ces faces, est formée une grille bidimensionnelle (2D) semi-réfléchissante et uniforme 3, 4 (cf. fig.lB), dont les motifs sont identiques et se répètent périodiquement (période spatiale a, et largeur de piste d„ avec i égal à 1 (pour la grille inférieure) ou 2 (pour la grille supérieure)). Les grilles inférieure 3 et supérieure 4 peuvent être identiques ou différentes. Le champ rayonné (cf. fig.lC) a la forme d'un faisceau gaussien non dépointé, plus ou moins directif et ne présentant pas de lobe secondaire. L'excitation de la cavité résonante 1 se fait du côté de la face inférieure de celle-ci, par une source rayonnante 5 (source de type cornet, comme dans l'exemple illustré).In this type of application, the main techniques known from the prior art are the following: planar reflectors, lens antennas, substrate lenses, antenna arrays and Gaussian beam antennas. However, it appears that none of these techniques is satisfactory. In fact, planar reflectors and antenna arrays sometimes have insufficient efficiency. Furthermore, the lens antennas and the substrate lenses do not have sufficient compactness. Finally, the Gaussian beam antennas also have faults which are discussed in detail below. A classic Gaussian beam antenna (or GBA, for "Gaussian Beam Antenna" in English) is illustrated in FIGS. 1A (overall simplified diagram of the antenna), 1B (top view of the upper grid) and 1C (diagram of Gaussian radiation). The resonant cavity 1, of the Perot-Fabry type, comprises a dielectric substrate 2 (permittivity ε r ) of "convex piano" shape: the lower face is planar while the upper face is spherical (radius of curvature R 0 ). This dielectric substrate 2 has a thickness D (≈ λJ2) in the center. On each of these faces, a grid is formed two-dimensional (2D) semi-reflective and uniform 3, 4 (cf. fig.lB), the patterns of which are identical and repeat periodically (spatial period a, and track width d „with i equal to 1 (for the lower grid ) or 2 (for the upper grid)). The lower 3 and upper 4 grids can be identical or different. The radiated field (cf. fig. LC) has the form of an undepointed Gaussian beam, more or less directional and having no secondary lobe. The resonant cavity 1 is excited from the side of the underside thereof, by a radiating source 5 (source of horn type, as in the example illustrated).
Avec une telle antenne GBA classique, c'est la géométrie sphérique de la cavité qui est responsable de l'établissement d'une distribution transverse de champ gaussienne.With such a conventional GBA antenna, it is the spherical geometry of the cavity which is responsible for establishing a transverse distribution of the Gaussian field.
La face courbe du substrat "piano convexe", sur laquelle est placée la grille 2D uniforme supérieure, forme un miroir sphérique et joue le rôle d'une surface équiphase pour le faisceau gaussien généré. Son rayon de courbure R0 détermine en particulier la directivité de l'antenne, c'est-à-dire son pouvoir de focalisation. Malheureusement, les substrats piano convexes sont coûteux et ne se prêtent pas facilement au procédé habituel de fabrication des grilles par photolithographie, surtout pour des "faibles" valeurs de R0 (diffraction des UV due à la courbure (flèche) du substrat piano-convexe).The curved face of the "convex piano" substrate, on which the upper uniform 2D grid is placed, forms a spherical mirror and plays the role of an equiphase surface for the generated Gaussian beam. Its radius of curvature R 0 determines in particular the directivity of the antenna, that is to say its focusing power. Unfortunately, the convex piano substrates are expensive and do not lend themselves easily to the usual process of making grids by photolithography, especially for "low" values of R 0 (UV diffraction due to the curvature (arrow) of the piano-convex substrate ).
En outre, la surface sphérique est généralement obtenue par polissage et l'épaisseur du substrat (qui forme lentille) ne peut être garantie qu'à quelques dizaines de microns près. Comme la fréquence de résonance de la cavité dépend fortement de l'épaisseur D de cette lentille, il est indispensable de mesurer précisément au préalable cette épaisseur, puis de choisir en conséquence les paramètres de grilles des deux faces, afin de répondre à un cahier des charges imposant fréquence de résonance et bande passante. Sinon, le décalage en fréquence, qui peut atteindre plusieurs bandes passantes à mi-puissance, pénalise le bilan de puissance (d'où une dégradation de la qualité d'une liaison sans fil par exemple).In addition, the spherical surface is generally obtained by polishing and the thickness of the substrate (which forms a lens) can only be guaranteed to within a few tens of microns. As the resonant frequency of the cavity strongly depends on the thickness D of this lens, it is essential to measure this thickness precisely beforehand, then to choose the grid parameters of the two faces accordingly, in order to respond to a specification of loads imposing resonant frequency and bandwidth. Otherwise, the frequency shift, which can reach several bandwidths at half power, penalizes the power budget (hence a degradation in the quality of a wireless link for example).
L'invention a notamment pour objectif de pallier ces différents inconvénients de l'état de la technique. Plus précisément, l'un des objectifs de la présente invention est de fournir une antenne du type comprenant une cavité résonante et des moyens d'excitation de cette dernière, cette antenne ne nécessitant pas de substrat piano convexe.The invention particularly aims to overcome these various drawbacks of the state of the art. More specifically, one of the objectives of the present invention is to provide an antenna of the type comprising a resonant cavity and means for exciting the latter, this antenna not requiring a convex piano substrate.
L'invention a également pour objectif de fournir une telle antenne qui soit plus simple à fabriquer et moins coûteuse que l'antenne GBA classique discutée ci-dessus.The invention also aims to provide an antenna that is simpler to manufacture and less expensive than conventional antenna GBA discussed above.
Ces différents objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints selon l'invention à l'aide d'une antenne à faisceau conformé selon un diagramme de rayonnement prédéterminé, du type comprenant : une cavité résonante possédant notamment une face inférieure et une face supérieure, et constituée d'un substrat diélectrique recouvert sur chacune de ses faces supérieure et inférieure d'un réseau de motifs semi- réfléchissants, supérieur et inférieur respectivement, des moyens d'excitation de ladite cavité résonante, du côté de ladite face inférieure, par une source rayonnante, - éventuellement, au moins une couche d'un substrat diélectrique tampon, située entre la face inférieure de ladite cavité résonante et lesdits moyens d'excitation.These various objectives, as well as others which will appear subsequently, are achieved according to the invention using a beam antenna conformed according to a predetermined radiation pattern, of the type comprising: a resonant cavity having in particular a face lower and an upper face, and consisting of a dielectric substrate covered on each of its upper and lower faces with a network of semi-reflecting patterns, upper and lower respectively, means for exciting said resonant cavity, on the side of said lower face, by a radiating source, - optionally, at least one layer of a buffer dielectric substrate, situated between the lower face of said resonant cavity and said excitation means.
Selon la présente invention, ladite cavité résonante est une cavité à faces planes, lesdites faces supérieure et inférieure du substrat diélectrique de ladite cavité résonante étant planes et sensiblement parallèles entre elles. En outre, lesdits réseaux de motifs semi-réfléchissants supérieur et inférieur et/ou lesdits moyens d'excitation et/ou ladite au moins une couche de substrat diélectrique tampon sont choisis avec des caractéristiques permettant de simuler l'effet d'au moins une courbure sur au moins une desdites faces planes de ladite cavité, et ainsi permettre l'obtention dudit diagramme de rayonnement prédéterminé.According to the present invention, said resonant cavity is a cavity with planar faces, said upper and lower faces of the dielectric substrate of said resonant cavity being plane and substantially parallel to one another. In addition, said arrays of upper and lower semi-reflecting patterns and / or said excitation means and / or said at least one layer of buffer dielectric substrate are chosen with characteristics making it possible to simulate the effect of at least one curvature. on at least one of said flat faces of said cavity, and thus allow the obtaining of said predetermined radiation pattern.
Le principe général de l'invention consiste donc à utiliser une lame à faces parallèles (au lieu d'une lentille piano convexe) et à jouer sur certain(s) paramètre(s) spécifιque(s) d'au moins un des éléments compris dans l'antenne pour simuler l'effet d'au moins une courbure de la cavité, et donc régler notamment la directivité de l'antenne. Par paramètres spécifiques, on entend notamment, mais non exclusivement, les dimensions, la géométrie, la permittivité, l'homogénéité, l'épaisseur, ... Ainsi, on joue par exemple sur les dimensions et/ou la géométrie de chaque motif semi-réfléchissant pris individuellement, ou encore sur l'homogénéité et/ou l'épaisseur de la ou des couche(s) de substrat(s) diélectrique(s) tampon(s), ou encore sur la géométrie des moyens d'excitation. II est important de noter que l'antenne peut éventuellement ne pas comporter de couche de substrat diélectrique tampon. Dans ce cas, on ne peut bien sûr jouer que sur les réseaux de motifs semi-réfléchissants (ou miroirs semi-réfléchissants) et/ou les moyens d'excitation.The general principle of the invention therefore consists in using a blade with parallel faces (instead of a convex piano lens) and playing on certain specific parameter (s) of at least one of the elements included. in the antenna to simulate the effect of at least one curvature of the cavity, and therefore adjust in particular the directivity of the antenna. By specific parameters, we mean in particular, but not exclusively, the dimensions, the geometry, the permittivity, the uniformity, the thickness, etc. Thus, we play for example on the dimensions and / or the geometry of each semi-reflective pattern taken individually, or on the homogeneity and / or the thickness of the layer (s) of dielectric substrate (s) buffer (s) , or also on the geometry of the excitation means. It is important to note that the antenna may possibly not include a layer of buffer dielectric substrate. In this case, one can of course only play on the networks of semi-reflecting patterns (or semi-reflecting mirrors) and / or the excitation means.
Une telle lame à faces parallèles est peu coûteuse et se prête facilement au procédé habituel de fabrication des motifs semi-réfléchissants par photolithographie. On comprend également que l'antenne selon la présente invention permet de répondre aisément à un cahier des charges imposant fréquence de résonance et bande passante, puisque ce sont des paramètres d'éléments constitutifs de l'antenne qu'il convient de choisir convenablement. Dans un premier mode de réalisation préférentiel de l'invention, ledit réseau de motifs semi-réfléchissants inférieur est uniforme, et ledit réseau de motifs semi- réfléchissants supérieur est non-uniforme et possède des caractéristiques telles que la face supérieure plane de ladite cavité résonante simule l'effet d'au moins une courbure.Such a blade with parallel faces is inexpensive and easily lends itself to the usual method of manufacturing semi-reflective patterns by photolithography. It is also understood that the antenna according to the present invention makes it possible to easily respond to specifications imposing resonant frequency and bandwidth, since these are parameters of constituent elements of the antenna that should be chosen appropriately. In a first preferred embodiment of the invention, said network of lower semi-reflective patterns is uniform, and said network of upper semi-reflective patterns is non-uniform and has characteristics such that the planar upper face of said resonant cavity simulates the effect of at least one curvature.
Dans ce premier mode de réalisation préférentiel, on joue donc sur la non- uniformité (ou non-périodicité) des motifs du réseau supérieur pour simuler au moins une courbure sur la face plane supérieure de la cavité. Les caractéristiques (ou paramètres) de ce réseau supérieur, qu'il convient selon la présente invention de choisir convenablement, sont notamment la géométrie et/ou les dimensions de chaque motif. Par exemple, si les motifs de ce réseau forment une grille, on choisit la (pseudo-)période spatiale et la largeur des pistes métalliques constituant cette grille. Ce choix est par exemple tel que la surface équiphase de l'onde réfléchie sur la face interne du réseau supérieur non uniforme soit sphérique, avec un rayon de courbure RQ. C'est le chemin optique qui compense la différence de phase existant entre les coefficients de réflexion aux différents points de réflexion. De façon avantageuse, lesdits moyens d'excitation appartiennent au groupe comprenant : des antennes planaires et des ouvertures rayonnantes ne possédant pas de collerette conductrice et/ou ne créant pas de discontinuité de phase sur la face inférieure de la cavité.In this first preferred embodiment, we therefore play on the non-uniformity (or non-periodicity) of the patterns of the upper network to simulate at least one curvature on the upper flat face of the cavity. The characteristics (or parameters) of this upper network, which it is appropriate to choose according to the present invention, are in particular the geometry and / or the dimensions of each pattern. For example, if the patterns of this network form a grid, the spatial (pseudo-) period and the width of the metal tracks constituting this grid are chosen. This choice is for example such that the equiphase surface of the wave reflected on the internal face of the non-uniform upper network is spherical, with a radius of curvature R Q. It is the optical path which compensates for the phase difference existing between the reflection coefficients at the different reflection points. Advantageously, said excitation means belong to the group comprising: planar antennas and radiating openings having no conductive collar and / or not creating phase discontinuity on the underside of the cavity.
Ces différents moyens d'excitation ne créent pas de discontinuité de phase sur la face inférieure de la cavité. Selon une variante avantageuse, lesdits moyens d'excitation et/ou ladite au moins une couche de substrat diélectrique tampon créent au moins une discontinuité de phase sur ladite face inférieure de ladite cavité résonante, de façon que la face inférieure plane de ladite cavité résonante simule au moins une face courbe.These different excitation means do not create phase discontinuity on the underside of the cavity. According to an advantageous variant, said excitation means and / or said at least one layer of buffer dielectric substrate create at least one phase discontinuity on said underside of said resonant cavity, so that the planar underside of said resonant cavity simulates at least one curved face.
Dans ce cas particulier du premier mode de réalisation préférentiel, on crée donc en outre au moins une discontinuité de phase, pour simuler au moins une courbure sur la face plane de la cavité qui porte le réseau inférieur. En d'autres termes, on simule au total au moins deux courbures (au moins une sur chacune des faces planes de la cavité). Il est à noter qu'en combinant plusieurs discontinuités de phase, on peut aussi créer plusieurs courbures sur chaque face de la cavité résonante. Une liste non exhaustive de tels moyens d'excitation créant au moins une discontinuité de phase est donnée ci-dessous, en relation avec un second mode de réalisation de l'invention.In this particular case of the first preferred embodiment, it is therefore also created at least one phase discontinuity, to simulate at least one curvature on the flat face of the cavity which carries the lower network. In other words, a total of at least two curvatures is simulated (at least one on each of the plane faces of the cavity). It should be noted that by combining several phase discontinuities, it is also possible to create several curvatures on each face of the resonant cavity. A non-exhaustive list of such excitation means creating at least one phase discontinuity is given below, in relation to a second embodiment of the invention.
Dans un second mode de réalisation préférentiel de l'invention, lesdits réseaux de motifs semi-réfléchissants supérieur et inférieur sont uniformes, et lesdits moyens d'excitation et/ou ladite au moins une couche d'un substrat diélectrique tampon créent au moins une discontinuité de phase sur ladite face inférieure de ladite cavité résonante, de façon que la face inférieure plane de ladite cavité résonante simule au moins une face courbe.In a second preferred embodiment of the invention, said arrays of upper and lower semi-reflecting patterns are uniform, and said excitation means and / or said at least one layer of a dielectric buffer substrate create at least one discontinuity phase on said underside of said resonant cavity, so that the planar underside of said resonant cavity simulates at least one curved face.
Dans ce second mode de réalisation préférentiel, on ne joue donc pas sur les réseaux de motifs semi-réfléchissants mais sur les moyens d'excitation et/ou sur la(les) couche(s) de substrat diélectrique tampon. Il s'agit ici de simuler (par création d'au moins une discontinuité de phase) au moins une courbure sur la face plane inférieure de la cavité (qui porte le réseau de motifs semi-réfléchissants inférieur).In this second preferred embodiment, one therefore does not play on the networks of semi-reflecting patterns but on the excitation means and / or on the layer (s) of buffer dielectric substrate. This involves simulating (by creating at least one phase discontinuity) at least one curvature on the lower flat face of the cavity (which carries the network of lower semi-reflective patterns).
De façon avantageuse, lesdits moyens d'excitation appartiennent au groupe comprenant : des ouvertures rayonnantes à collerette conductrice ; des fentes ou des réseaux de fentes ; des antennes planaires associées chacune à au moins une couche d'un substrat diélectrique tampon partiellement métallisé sur sa face supérieure. De façon préférentielle, lesdits réseaux de motifs semi-réfléchissants appartiennent au groupe comprenant : des réseaux de motifs semi-réfléchissants uniformes et des réseaux de motifs semi-réfléchissants non uniformes.Advantageously, said excitation means belong to the group comprising: radiating openings with conductive flange; slots or networks of slots; planar antennas each associated with at least one layer of a partially metallized buffer dielectric substrate on its upper face. Preferably, said networks of semi-reflecting patterns belong to the group comprising: networks of uniform semi-reflecting patterns and networks of non-uniform semi-reflecting patterns.
Il est clair que cette liste n'est pas exhaustive. Par ailleurs, qu'ils soient uniformes ou non (c'est-à-dire périodiques ou non), les motifs peuvent être de différents types, et même éventuellement associés à des surfaces pleines.It is clear that this list is not exhaustive. Furthermore, whether they are uniform or not (that is to say periodic or not), the patterns can be of different types, and even possibly associated with solid surfaces.
Avantageusement, ladite antenne fonctionne aux longueurs d'ondes millimétriques et sub-millimétriques.Advantageously, said antenna operates at millimeter and sub-millimeter wavelengths.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante d'un mode de réalisation préférentiel de l'invention, donné à titre d'exemple indicatif et non limitatif, et des dessins annexés, dans lesquels : la figure 1A présente un schéma simplifié d'une antenne à faisceau gaussien selon l'art antérieur ; la figure 1B présente une vue de dessus de la grille supérieure apparaissant sur la figure 1 A ; - la figure 1C présente le diagramme de rayonnement de l'antenne selon l'art antérieur représentée sur la figure 1 A ; la figure 2A présente un premier mode de réalisation préférentiel d'une antenne selon la présente invention ; la figure 2B présente le diagramme de rayonnement de l'antenne représentée sur la figure 2A ; la figure 3 présente un second mode de réalisation préférentiel d'une antenne selon la présente invention ; et les figures 4A et 4B illustrent le fonctionnement de l'antenne de la figure 3, avec notamment une discontinuité de phase (fig.4A) et une courbure simulée (fig.4B). L'invention concerne donc concerne une antenne du type comprenant une cavité résonante et des moyens d'excitation de cette dernière, de façon à présenter un faisceau conformé selon un diagramme de rayonnement prédéterminé.Other characteristics and advantages of the invention will appear on reading the following description of a preferred embodiment of the invention, given by way of non-limiting example, and the accompanying drawings, in which: FIG. 1A presents a simplified diagram of a Gaussian beam antenna according to the prior art; Figure 1B shows a top view of the upper grid appearing in Figure 1 A; - Figure 1C shows the radiation pattern of the antenna according to the prior art shown in Figure 1 A; FIG. 2A shows a first preferred embodiment of an antenna according to the present invention; Figure 2B shows the radiation pattern of the antenna shown in Figure 2A; Figure 3 shows a second preferred embodiment of an antenna according to the present invention; and FIGS. 4A and 4B illustrate the operation of the antenna of FIG. 3, with in particular a phase discontinuity (fig.4A) and a simulated curvature (fig.4B). The invention therefore relates to an antenna of the type comprising a resonant cavity and means for exciting the latter, so as to present a beam shaped according to a predetermined radiation pattern.
Dans la suite de la description, on discute uniquement du cas d'un diagramme de rayonnement mono-faisceau gaussien. Il est clair que la présente invention s'applique plus généralement à tous types de diagrammes de rayonnement, sensiblement gaussiens ou non, mono ou multi-faisceau(x), de révolution ou non, dépointés ou non, contrôlables électroniquement, ...In the following description, we only discuss the case of a Gaussian single-beam radiation diagram. It is clear that the present invention applies more generally to all types of radiation diagrams, substantially Gaussian or not, mono or multi-beam (x), of revolution or not, defocused or not, electronically controllable, ...
L'antenne selon l'invention fonctionne par exemple en polarisation linéaire ou circulaire.The antenna according to the invention operates for example in linear or circular polarization.
On présente maintenant, en relation avec les figures 2A et 2B, un premier mode de réalisation préférentiel d'une antenne selon la présente invention.We now present, in relation to FIGS. 2A and 2B, a first preferred embodiment of an antenna according to the present invention.
La cavité résonante 21 est une lame diélectrique 22 à faces parallèles, de permittivité εr, d'épaisseur D et de diamètre φ^ Le diélectrique constituant la lame 22 peut être de l'air ou tout autre matériau diélectrique. Dans le cas de l'air, il convient de prévoir au moins une couche de matériau diélectrique 26, 27, de part et d'autre de la cavité, afin de former support pour la cavité constituée d'air.The resonant cavity 21 is a dielectric strip 22 with parallel faces, of permittivity ε r , of thickness D and of diameter φ ^ The dielectric constituting the strip 22 may be air or any other dielectric material. In the case of air, at least one layer of dielectric material 26, 27 should be provided, on either side of the cavity, in order to form a support for the cavity made up of air.
Sur la face inférieure (côté excitation) de cette lame diélectrique 22 est réalisée une grille 2D semi-réfléchissante uniforme 23. Sur la face supérieure (côté rayonnement) est réalisée une grille 2D semi-réfléchissante non uniforme 24.On the lower face (excitation side) of this dielectric strip 22 is produced a uniform semi-reflective 2D grid 23. On the upper face (radiation side) is produced a non-uniform semi-reflective 2D grid 24.
L'excitation se fait par une antenne planaire 25, via une couche d'un substrat diélectrique tampon 26 (de l'air par exemple, ou tout autre matériau diélectrique).The excitation is done by a planar antenna 25, via a layer of a dielectric buffer substrate 26 (air for example, or any other dielectric material).
Les paramètres (période spatiale et largeur des pistes métalliques notamment) de la grille non uniforme 24 sont par exemple choisis de façon que la surface équiphase de l'onde réfléchie sur la face interne de la grille non-uniforme 24 soit sphérique. Dans ce cas, comme illustré sur la figure 2B, le diagramme de rayonnement est de révolution de type gaussien. La surface d'onde équiphase est de rayon R0. C'est le chemin optique qui compense la différence de phase existant entre les coefficients de réflexion aux différents points de réflexion. Si l'on suppose que la période spatiale de la grille non uniforme 24 est constante, le problème consiste donc à définir la largeur d(p) des pistes métalliques. Soit T0, le coefficient de réflexion au centre de la grille non uniforme 24 (en p = 0). La grille non uniforme 24 se comporte comme une surface équiphase sphérique (de rayon de courbure Ro) à la fréquence de résonance fres = c0 / λ0, si l'argument de T(p) est défini par la relation suivante :The parameters (spatial period and width of the metal tracks in particular) of the non-uniform grid 24 are for example chosen so that the equiphase surface of the wave reflected on the internal face of the non-uniform grid 24 is spherical. In this case, as illustrated in FIG. 2B, the radiation diagram is of revolution of the Gaussian type. The equiphase wave surface has a radius R 0 . It is the optical path which compensates for the phase difference existing between the reflection coefficients at the different reflection points. If it is assumed that the spatial period of the non-uniform grid 24 is constant, the problem therefore consists in defining the width d (p) of the metal tracks. Let T 0 be the reflection coefficient at the center of the non-uniform grid 24 (at p = 0). The non-uniform grid 24 behaves like a spherical equiphase surface (of radius of curvature Ro) at the resonance frequency f res = c 0 / λ 0 , if the argument of T (p) is defined by the following relation:
Figure imgf000010_0001
Figure imgf000010_0001
Pour déterminer la largeur de la piste métallique à la distance p du centre, il suffit alors de se reporter à des abaques donnant l'évolution de la phase du coefficient de réflexion d'une onde plane en incidence normale sur une grille située à une interface diélectrique (εr) / diélectrique(s) tampon(s) 26. La démarche revient donc à effectuer une approximation linéaire par morceaux du front d'onde sphérique défini par la relation (1) ci-dessus.To determine the width of the metal track at the distance p from the center, it suffices to refer to charts giving the evolution of the phase of the reflection coefficient of a plane wave at normal incidence on a grid located at an interface. dielectric (ε r ) / dielectric (s) buffer (s) 26. The approach therefore amounts to performing a linear approximation by pieces of the spherical wavefront defined by the relation (1) above.
Ainsi, à partir d'une cavité résonante à faces planes, on simule l'effet d'une courbure sur la face supérieure (côté rayonnement). On peut régler la directivité de l'antenne en contrôlant la non uniformité de la grille supérieure 24.Thus, from a resonant cavity with planar faces, the effect of a curvature on the upper face (radiation side) is simulated. The directivity of the antenna can be adjusted by checking the non-uniformity of the upper grid 24.
En choisissant correctement le type des grilles et les paramètres de celles-ci, cette technique peut bien sûr s'étendre à la formation d'autres types de diagrammes de rayonnement, pas forcément gaussiens. De plus, cette technique permet également de générer des diagrammes de rayonnement mono ou multi-faisceau(x), éventuellement dépointés, contrôlables électroniquement, etc.By correctly choosing the type of grids and their parameters, this technique can of course extend to the formation of other types of radiation patterns, not necessarily Gaussian. In addition, this technique also makes it possible to generate single or multi-beam (x) radiation patterns, possibly depointed, electronically controllable, etc.
On présente maintenant, en relation avec les figures 3, 4A et 4B, un second mode de réalisation préférentiel d'une antenne selon la présente invention.We now present, in relation to FIGS. 3, 4A and 4B, a second preferred embodiment of an antenna according to the present invention.
De même que dans le premier mode de réalisation, la cavité résonante 31 est une lame diélectrique 32 à faces parallèles, de permittivité εr, d'épaisseur D et de diamètre φj. Sur chacune des deux faces (inférieure, côté excitation, et supérieure (côté rayonnement)) de cette lame diélectrique 32 est réalisée une grille 2D semi- réfléchissante uniforme 33, 34.As in the first embodiment, the resonant cavity 31 is a dielectric strip 32 with parallel faces, of permittivity ε r , of thickness D and of diameter φ j . On each of the two faces (lower, excitation side, and upper (radiation side)) of this dielectric strip 32, a uniform semi-reflective 2D grid 33, 34 is produced.
L'excitation se fait par un cornet 35 (par exemple pyramidal) à collerette conductrice créant une discontinuité de phase (cf. fig. 4A) sur la face inférieure de la cavité résonante. Cette discontinuité de phase peut être représentée par un miroir convexe équivalent de rayon de courbure R0', provoquant une focalisation du faisceau à l'intérieur de la cavité résonante. En d'autres termes, la face inférieure (plane) de la cavité résonante simule une face courbe de rayon de courbure R0' (cf. fιg.4B), et permet donc la formation d'un faisceau par exemple de type gaussien. La directivité et l'angle d'ouverture à - 3 dB dépendent essentiellement de la géométrie de la grille imprimée sur la face plane inférieure et des dimensions du cornet.The excitation is done by a horn 35 (for example pyramidal) with conductive flange creating a phase discontinuity (cf. fig. 4A) on the underside of the resonant cavity. This phase discontinuity can be represented by an equivalent convex mirror with a radius of curvature R 0 ', causing the beam to be focused inside the resonant cavity. In other words, the lower (flat) face of the resonant cavity simulates a curved face with a radius of curvature R 0 '(cf. fιg.4B), and therefore allows the formation of a beam, for example of the Gaussian type. The directivity and the opening angle at - 3 dB depend essentially on the geometry of the grid printed on the lower flat face and on the dimensions of the horn.
D'une façon générale, tous types de moyens d'excitation permettant la création d'une telle discontinuité de phase peuvent être utilisés, tels que notamment des guides d'onde à collerette conductrice, des fentes, des réseaux de fentes, ...In general, all types of excitation means allowing the creation of such a phase discontinuity can be used, such as in particular waveguides with conductive flange, slots, networks of slots, etc.
Il est bien sûr possible de combiner les deux modes de réalisation décrits ci- dessus. Dans ce cas, on simule au moins une courbure sur chacune des deux faces planes de la cavité résonante, grâce à l'utilisation d'une grille supérieure non uniforme (premier mode de réalisation) et de moyens d'excitation créant une discontinuité de phase sur la face inférieure (second mode de réalisation).It is of course possible to combine the two embodiments described above. In this case, at least one curvature is simulated on each of the two flat faces of the resonant cavity, thanks to the use of a non-uniform upper grid (first embodiment) and of excitation means creating a phase discontinuity. on the underside (second embodiment).
Optionnellement, on peut jouer en outre sur l'épaisseur et/ou l'homogénéité de la couche de substrat diélectrique tampon 26, de façon à créer au moins une discontinuité de phase supplémentaire sur la face inférieure de la cavité résonante, et donc simuler au moins une courbure supplémentaire sur cette face inférieure. On présente maintenant un exemple de réalisation d'une telle combinaison. Cet exemple a été testé avec succès dans la gamme de fréquence des 60 GHz. Le diagramme de rayonnement (non illustré) de cette antenne est en effet directif et d'allure gaussienne avec des lobes secondaires inférieurs à - 30 dB.Optionally, one can also play on the thickness and / or the homogeneity of the dielectric buffer substrate layer 26, so as to create at least one additional phase discontinuity on the underside of the resonant cavity, and therefore simulate at minus an additional curvature on this underside. We now present an embodiment of such a combination. This example has been successfully tested in the 60 GHz frequency range. The radiation pattern (not shown) of this antenna is indeed directional and Gaussian in appearance with secondary lobes less than - 30 dB.
La cavité résonante est constituée d'une lame diélectrique (substrat de quartz fondu, de permittivité εr = 3,80, de diamètre φj = 20 mm et d'épaisseur D = 1,259 mm) à faces parallèles sur lesquelles sont réalisées des grilles (inférieure et supérieure). Cette cavité résonante est excitée par un cornet pyramidal d'ouverture carrée et de côté c = 9 mm. L'ensemble comprenant la cavité et le cornet constitue l'antenne. Côté excitateur, la grille inférieure est uniforme et côté extérieur, la grille supérieure est non uniforme et simule une face courbe. Les caractéristiques géométriques de la cavité résonante sont dans cet exemple les suivantes ("a," désigne la période spatiale des grilles et "d," la largeur des pistes métalliques) :The resonant cavity consists of a dielectric plate (molten quartz substrate, with permittivity ε r = 3.80, diameter φj = 20 mm and thickness D = 1.259 mm) with parallel faces on which grids are made ( lower and upper). This resonant cavity is excited by a pyramidal horn with square opening and side c = 9 mm. The assembly comprising the cavity and the horn constitutes the antenna. On the exciter side, the lower grid is uniform and on the outside, the upper grid is non-uniform and simulates a curved face. The geometric characteristics of the resonant cavity in this example are as follows ("a," denotes the spatial period of the grids and "d," the width of the metal tracks):
- face inférieure (i = 1) : a! = 1,3 mm d^a, = 50 % réflectivité à la résonance : 97,7 %- lower face (i = 1): a ! = 1.3 mm d ^ a, = 50% reflectivity at resonance: 97.7%
- face supérieure (i = 2) : d^ = 0,6 mm- upper face (i = 2): d ^ = 0.6 mm
30 % < d2/a2 < 51,6 % réflectivité R à la résonance : 96,2 % < R < 99,7 % rayon de courbure simulé : 400 mm30% <d 2 / a 2 <51.6% reflectivity R at resonance: 96.2% <R <99.7% simulated radius of curvature: 400 mm
Il est clair que de nombreux autres modes de réalisation de l'invention peuvent être envisagés.It is clear that many other embodiments of the invention can be envisaged.
On peut notamment remplacer les grilles inductives bidimensionnelles décrites ci-dessus par d'autres types de réseaux de motifs semi-réfléchissants : - grilles, capacitives ou inductives, mono (1D) ou bidimensionnelles (2D) ; grilles avec croix de Jérusalem ; anneaux concentriques de longeurs et/ou de rayons éventuellement variables ; réseaux de motifs formant des ouvertures selon une forme prédéterminée (pseudo-circulaire, pseudo-carrée, pseudo-rectangulaires, ...) ; réseaux de dipôles ; etc. Une grille mono-dimensionnelle (1D) est par exemple constituée d'une pluralité de pistes ou rubans conducteurs parallèles entre eux. Une grille bi-dimensionnelle (2D) est par exemple constituée de deux ensembles de pistes ou rubans conducteurs parallèles entre eux au sein d'un même ensemble, chaque ensemble étant associé à une direction distincte (les directions des deux ensembles pouvant être orthogonales ou non). We can in particular replace the two-dimensional inductive grids described above by other types of networks of semi-reflecting patterns: - grids, capacitive or inductive, mono (1D) or two-dimensional (2D); grids with Jerusalem cross; concentric rings of possibly variable lengths and / or radii; patterns networks forming openings in a predetermined shape (pseudo-circular, pseudo-square, pseudo-rectangular, ...); dipole arrays; etc. A one-dimensional grid (1D) is for example made up of a plurality of tracks or conductive strips parallel to each other. A two-dimensional (2D) grid is for example made up of two sets of tracks or conductive strips parallel to each other within the same set, each set being associated with a separate direction (the directions of the two sets can be orthogonal or not ).

Claims

REVENDICATIONS
1. Antenne à faisceau conformé selon un diagramme de rayonnement prédéterminé, du type comprenant : une cavité résonante (21 ; 31) possédant notamment une face inférieure et une face supérieure, et constituée d'un substrat diélectrique (22 ; 32) recouvert sur chacune de ses faces supérieure et inférieure d'un réseau de motifs semi-réfléchissants, supérieur et inférieur respectivement (24, 23 ; 34, 33), des moyens (25 ; 35) d'excitation de ladite cavité résonante, du côté de ladite face inférieure, par une source rayonnante, éventuellement, au moins une couche d'un substrat diélectrique tampon1. Beam antenna shaped according to a predetermined radiation pattern, of the type comprising: a resonant cavity (21; 31) having in particular a lower face and an upper face, and consisting of a dielectric substrate (22; 32) covered on each from its upper and lower faces of a network of semi-reflecting patterns, upper and lower respectively (24, 23; 34, 33), means (25; 35) of excitation of said resonant cavity, on the side of said face lower, by a radiating source, possibly, at least one layer of a buffer dielectric substrate
(26), située entre la face inférieure de ladite cavité résonante et lesdits moyens d'excitation, caractérisée en ce que ladite cavité résonante est une cavité à faces planes, lesdites faces supérieure et inférieure du substrat diélectrique de ladite cavité résonante étant planes et sensiblement parallèles entre elles, et en ce que lesdits réseaux de motifs semi-réfléchissants supérieur et inférieur et/ou lesdits moyens d'excitation et/ou ladite au moins une couche de substrat diélectrique tampon sont choisis avec des caractéristiques permettant de simuler l'effet d'au moins une courbure sur au moins une desdites faces planes de ladite cavité, et ainsi permettre l'obtention dudit diagramme de rayonnement prédéterminé.(26), located between the underside of said resonant cavity and said excitation means, characterized in that said resonant cavity is a cavity with planar faces, said upper and lower faces of the dielectric substrate of said resonant cavity being planar and substantially parallel to each other, and in that said arrays of upper and lower semi-reflecting patterns and / or said excitation means and / or said at least one layer of buffer dielectric substrate are chosen with characteristics making it possible to simulate the effect of 'at least one curvature on at least one of said flat faces of said cavity, and thus allow obtaining said predetermined radiation pattern.
2. Antenne selon la revendication 1, caractérisée en ce que ledit réseau de motifs semi-réfléchissants inférieur (23) est uniforme, et en ce que ledit réseau de motifs semi-réfléchissants supérieur (24) est non-uniforme et possède des caractéristiques telles que la face supérieure plane de ladite cavité résonante simule l'effet d'au moins une courbure.2. Antenna according to claim 1, characterized in that said array of lower semi-reflective patterns (23) is uniform, and in that said array of upper semi-reflective patterns (24) is non-uniform and has such characteristics that the planar upper face of said resonant cavity simulates the effect of at least one curvature.
3. Antenne selon la revendication 2, caractérisée en ce que lesdits moyens d'excitation appartiennent au groupe comprenant : des antennes planaires (25) ; des ouvertures rayonnantes ne possédant pas de collerette conductrice et/ou ne créant pas de discontinuité de phase sur la face inférieure de la cavité.3. Antenna according to claim 2, characterized in that said excitation means belong to the group comprising: planar antennas (25); radiant openings having no conductive collar and / or not creating phase discontinuity on the underside of the cavity.
4. Antenne selon la revendication 2, caractérisée en ce que lesdits moyens d'excitation (35) et/ou ladite au moins une couche de substrat diélectrique tampon créent au moins une discontinuité de phase sur ladite face inférieure de ladite cavité résonante, de façon que la face inférieure plane de ladite cavité résonante simule au moins une face courbe.4. Antenna according to claim 2, characterized in that said excitation means (35) and / or said at least one layer of buffer dielectric substrate create at least one phase discontinuity on said underside of said resonant cavity, so that the flat underside of said resonant cavity simulates at least one curved face.
5. Antenne selon la revendication 1, caractérisée en ce que lesdits réseaux de motifs semi-réfléchissants supérieur et inférieur (34, 33) sont uniformes, et en ce que lesdits moyens d'excitation (35) et/ou ladite au moins une couche d'un substrat diélectrique tampon créent au moins une discontinuité de phase sur ladite face inférieure de ladite cavité résonante, de façon que la face inférieure plane de ladite cavité résonante simule au moins une face courbe. 5. Antenna according to claim 1, characterized in that said arrays of upper and lower semi-reflecting patterns (34, 33) are uniform, and in that said excitation means (35) and / or said at least one layer of a buffer dielectric substrate create at least one phase discontinuity on said underside of said resonant cavity, so that the planar underside of said resonant cavity simulates at least one curved face.
6. Antenne selon l'une quelconque des revendications 4 et 5, caractérisée en ce que lesdits moyens d'excitation appartiennent au groupe comprenant : des ouvertures rayonnantes à collerette conductrice (35) ; des fentes ou des réseaux de fentes ; des antennes planaires associées chacune à au moins une couche d'un substrat diélectrique tampon partiellement métallisé sur sa face supérieure.6. An antenna according to any one of claims 4 and 5, characterized in that said excitation means belong to the group comprising: radiating openings with conductive flange (35); slots or networks of slots; planar antennas each associated with at least one layer of a partially metallized buffer dielectric substrate on its upper face.
7. Antenne selon l'une quelconque des revendications 1 à 6, caractérisée en ce que lesdits réseaux de motifs semi-réfléchissants appartiennent au groupe comprenant : des réseaux de motifs semi-réfléchissants uniformes ; - des réseaux de motifs semi-réfléchissants non uniformes.7. An antenna according to any one of claims 1 to 6, characterized in that said arrays of semi-reflective patterns belong to the group comprising: arrays of uniform semi-reflective patterns; - networks of non-uniform semi-reflective patterns.
8. Antenne selon l'une quelconque des revendications 1 à 7, caractérisée en ce qu'elle fonctionne aux longueurs d'ondes millimétriques et sub-millimétriques. 8. An antenna according to any one of claims 1 to 7, characterized in that it operates at millimeter and sub-millimeter wavelengths.
PCT/FR2001/000109 2000-01-12 2001-01-12 Resonant cavity antenna having a beam conformed according to a predetermined radiation diagram WO2001052356A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001231893A AU2001231893A1 (en) 2000-01-12 2001-01-12 Resonant cavity antenna having a beam conformed according to a predetermined radiation diagram

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0000369A FR2803694A1 (en) 2000-01-12 2000-01-12 RESONANT CAVITY ANTENNA HAVING A CONFORMING BEAM ACCORDING TO A PREDETERMINED RADIATION DIAGRAM
FR00/00369 2000-01-12

Publications (1)

Publication Number Publication Date
WO2001052356A1 true WO2001052356A1 (en) 2001-07-19

Family

ID=8845851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/000109 WO2001052356A1 (en) 2000-01-12 2001-01-12 Resonant cavity antenna having a beam conformed according to a predetermined radiation diagram

Country Status (3)

Country Link
AU (1) AU2001231893A1 (en)
FR (1) FR2803694A1 (en)
WO (1) WO2001052356A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334979A1 (en) * 2003-07-29 2005-03-03 Wengler, Peter, Dipl.-Phys. Dr.-Ing. Directional antenna e.g. for satellite television, radar, has reflecting and partially transmitting-reflecting surfaces for transmission of electromagnetic energy and area between surfaces, resonator field is formed

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2858469B1 (en) * 2003-07-30 2005-11-18 Univ Rennes RESONANT CAVITY ANTENNA, RECONFIGURABLE
EP3648251A1 (en) 2018-10-29 2020-05-06 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Integration of all components being necessary for transmitting / receiving electromagnetic radiation in a component carrier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2763860A (en) * 1949-12-03 1956-09-18 Csf Hertzian optics
EP0627783A1 (en) * 1993-06-03 1994-12-07 Alcatel N.V. Radiating multi-layer structure with variable directivity
US5394163A (en) * 1992-08-26 1995-02-28 Hughes Missile Systems Company Annular slot patch excited array
WO1998049750A1 (en) * 1997-04-29 1998-11-05 Era Patents Limited Twist reflector antenna
DE19848722A1 (en) * 1998-02-19 1999-08-26 Daimler Benz Aerospace Ag Microwave reflector antenna for polarised microwaves

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2763860A (en) * 1949-12-03 1956-09-18 Csf Hertzian optics
US5394163A (en) * 1992-08-26 1995-02-28 Hughes Missile Systems Company Annular slot patch excited array
EP0627783A1 (en) * 1993-06-03 1994-12-07 Alcatel N.V. Radiating multi-layer structure with variable directivity
WO1998049750A1 (en) * 1997-04-29 1998-11-05 Era Patents Limited Twist reflector antenna
DE19848722A1 (en) * 1998-02-19 1999-08-26 Daimler Benz Aerospace Ag Microwave reflector antenna for polarised microwaves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CRONE G A E ET AL: "COMPACT ANTENNA REPLACEMENTS FOR C-BAND GLOBAL HORNS", PREPARING FOR THE FUTURE,NL,ESA, NOORDWIJK, vol. 5, no. 2, 1 June 1995 (1995-06-01), pages 10 - 11, XP000513392, ISSN: 1018-8657 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334979A1 (en) * 2003-07-29 2005-03-03 Wengler, Peter, Dipl.-Phys. Dr.-Ing. Directional antenna e.g. for satellite television, radar, has reflecting and partially transmitting-reflecting surfaces for transmission of electromagnetic energy and area between surfaces, resonator field is formed
DE10334979B4 (en) * 2003-07-29 2009-10-29 Wengler, Peter, Dipl.-Phys. Dr.-Ing. directional antenna

Also Published As

Publication number Publication date
AU2001231893A1 (en) 2001-07-24
FR2803694A1 (en) 2001-07-13

Similar Documents

Publication Publication Date Title
CA2793126C (en) Reflector array antenna with crossed polarization compensation and method for producing such an antenna
EP2564466B1 (en) Compact radiating element having resonant cavities
EP1751820B1 (en) Planar antenna provided with conductive studs above a ground plane and/or with at least one radiator element, and corresponding production method
EP2415120B1 (en) Multilayer pillbox antenna having parallel planes, and corresponding antenna system
EP1568104B1 (en) Multiple-beam antenna with photonic bandgap material
EP0899814B1 (en) Radiating structure
EP0598656B1 (en) Radiating element for an antenna array and sub-set with such elements
EP2571098B1 (en) Reconfigurable radiating phase-shifter cell based on resonances, slots and complementary microstrips
CA2681548A1 (en) Reflector network and antenna comprising such a reflector network
EP0147325B1 (en) Antenna with two orthogonal parabolic cylindrical reflectors and process for making it
EP1554777B1 (en) Multibeam antenna with photonic bandgap material
EP0661773A1 (en) Conically shaped microstrip patch antenna prepared on a planar substrate and method of its manufacturing
EP1430566A1 (en) Broadband or multiband antenna
FR2568062A1 (en) BIFREQUENCE ANTENNA WITH THE SAME CROSS-POLARIZATION ZONE COVER FOR TELECOMMUNICATIONS SATELLITES
WO2001052356A1 (en) Resonant cavity antenna having a beam conformed according to a predetermined radiation diagram
WO2020043632A1 (en) Antenna for transmitting and/or receiving an electromagnetic wave, and system comprising this antenna
FR2854737A1 (en) Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band
FR2552273A1 (en) Omnidirectional microwave antenna
FR2858469A1 (en) Antenna for e.g. motor vehicle obstacles detecting radar, has assembly with two zones of active material layer that are controlled by respective polarization zones defined by metallic patterned layers
EP0762534B1 (en) Method for enlarging the radiation diagram of an antenna array with elements distributed in a volume
WO2023218008A1 (en) Low-profile antenna with two-dimensional electronic scanning
EP4262024A1 (en) Device for controlling rf electromagnetic beams according to their frequency band and manufacturing method
FR2854735A1 (en) Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band
FR2854734A1 (en) Earth communications geostationary satellite multiple beam antenna having focal point radiation pattern and photonic band gap material outer surface with periodicity default providing narrow pass band
FR2952758A1 (en) Supply system and reflector integrated antenna for covering geographical area of geostationary orbit, has main reflector with reflective surface that is conformed of three-dimensional manner to reflect beam delivered by each source

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP