WO2001062844A1 - Polymerzusammensetzung und daraus hergestellter formkörper - Google Patents

Polymerzusammensetzung und daraus hergestellter formkörper Download PDF

Info

Publication number
WO2001062844A1
WO2001062844A1 PCT/EP2001/000132 EP0100132W WO0162844A1 WO 2001062844 A1 WO2001062844 A1 WO 2001062844A1 EP 0100132 W EP0100132 W EP 0100132W WO 0162844 A1 WO0162844 A1 WO 0162844A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer composition
shaped body
cellulose
group
marine
Prior art date
Application number
PCT/EP2001/000132
Other languages
English (en)
French (fr)
Inventor
Stefan Zikeli
Thomas Endl
Michael Gert Martl
Original Assignee
Zimmer Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AT01953632T priority Critical patent/ATE283897T1/de
Application filed by Zimmer Ag filed Critical Zimmer Ag
Priority to EP01953632A priority patent/EP1259564B1/de
Priority to AU2001272079A priority patent/AU2001272079A1/en
Priority to BR0108585-9A priority patent/BR0108585A/pt
Priority to DE50104685T priority patent/DE50104685D1/de
Priority to CA002399954A priority patent/CA2399954C/en
Priority to AU42426/01A priority patent/AU4242601A/en
Priority to PCT/EP2001/001906 priority patent/WO2001062845A1/de
Priority to EP01915282A priority patent/EP1257598A1/de
Publication of WO2001062844A1 publication Critical patent/WO2001062844A1/de
Priority to NO20023945A priority patent/NO330413B1/no
Priority to US11/567,021 priority patent/US7951237B2/en
Priority to US13/049,468 priority patent/US8496748B2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/448Yarns or threads for use in medical applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/007Methods for continuous mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/885Adding charges, i.e. additives with means for treating, e.g. milling, the charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • B29B7/92Wood chips or wood fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F2/00Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof
    • D01F2/06Monocomponent artificial filaments or the like of cellulose or cellulose derivatives; Manufacture thereof from viscose
    • D01F2/08Composition of the spinning solution or the bath
    • D01F2/10Addition to the spinning solution or spinning bath of substances which exert their effect equally well in either
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/42Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft with screw or helix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/01Natural vegetable fibres
    • D10B2201/02Cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/22Cellulose-derived artificial fibres made from cellulose solutions
    • D10B2201/24Viscose
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • D10B2201/20Cellulose-derived artificial fibres
    • D10B2201/28Cellulose esters or ethers, e.g. cellulose acetate
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/06Details of garments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/06Bed linen
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/08Upholstery, mattresses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2915Rod, strand, filament or fiber including textile, cloth or fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • Y10T442/3146Strand material is composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/637Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/696Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/699Including particulate material other than strand or fiber material

Definitions

  • the invention relates to a polymer composition which comprises a biodegradable polymer, the use thereof for the production of a shaped body, the shaped body produced from the polymer composition, a process for its production and use and a garment which comprises the shaped body in the form of fibers.
  • US-PS-5, 565,007 describes modified rayon fibers with a modifier to improve the coloring properties of the fibers.
  • a “Lyocell fiber” is also known from “Lenzinger reports", 76/97, page 126, which was spun from a cellulose solution in N-methylmorpholine-N-oxide (hereinafter "NMMNO”), which contains 0.5 to 5% by weight. , based on the weight of the cellulose, can be incorporated in crosslinking agents to improve the wet abrasion value.
  • NMMNO N-methylmorpholine-N-oxide
  • lyocell fiber carboxymethylchitin, carboxymethylchitosan or polyethyleneimine to improve fungicidal properties, polyethyleneimine to adsorb metal and dye, hyaluronic acid to improve bactericidal properties, xanthan, guarane, carubin, bassorin or starch to improve hydrophilicity, water absorption or starch to improve water absorption and strength to incorporate accelerated enzymatic hydrolysis.
  • WO 98/58015 describes a composition which contains fine solid particles for admixing to a moldable solution of cellulose in an aqueous tertiary amine oxide.
  • the composition consists of solid particles, tertiary amine oxide, water and at least one other substance. This additional substance can be a stabilizer or a dispersant.
  • the solid particles can be pigments.
  • the decomposition temperature (T onset ° C) was reduced when copper was added to an NMMO cellulose solution without copper from 175 ° C to 114 ° C in the presence of 900 mg copper / kg mass.
  • stabilizers such as propyl gallates and ellagic acid is also described.
  • JP 1228916 describes a film consisting of two layers of woven material or nonwoven, between which fine flakes of algae material, such as Rhodophyceae, are filled by means of adhesives or by heat welding. This gives a film that improves health when used.
  • DE 19544097 describes a process for the production of moldings from polysaccharide mixtures by dissolving cellulose and a second polysaccharide in an organic, water-miscible polysaccharide solvent, which may also contain a second solvent, deforming the solution under pressure through a nozzle to give moldings and solidifying the shaped body is described by coagulation in a precipitation bath.
  • cellulose hexoses with glycosidic 1, 4 and 1, 6 linkage, uronic acids and starch, in particular pullulan, carubin, buanan, hyaluronic acid, pectin, algin, carrageenan or xanthan are listed as second polysaccharides.
  • a third polysaccharide preferably chitin, chitosan or a corresponding derivative
  • the shaped bodies obtained by this process are used as agents for binding water and / or heavy metals, as fibers with bactericidal and / or fungicidal properties or as yarn with an increased rate of degradation in the ruminant stomach.
  • nucleating agents in the production of moldings from thermoplastic high polymers, in particular ⁇ -olefinic polymers, is described in US Pat. No. 3,367,926.
  • the nucleating agents include Amino acids, their salts and proteins called.
  • cellulosic shaped bodies are known to apply defibrillation agents to the freshly spun or dried fiber in a post-treatment step. All defibrillation agents known to date are crosslinking agents.
  • cellulose fibers are treated in an alkaline medium with a chemical reagent which has 2 to 6 functional groups which can react with cellulose to reduce the tendency to fibrillation.
  • a chemical reagent which has 2 to 6 functional groups which can react with cellulose to reduce the tendency to fibrillation.
  • Another method for reducing the fibrillation tendency of cellulosic shaped articles by means of a textile auxiliary is described in WO 99/19555. So far, no solution has been found to reduce the fibrillation of the cellulose fibers during the spinning process.
  • the solution to this problem is a polymer composition which comprises a biodegradable polymer and a material from marine plants and / or shells of marine animals, a molded article produced therefrom and a process for its production according to claims 1 to 6 and 12 to 25.
  • a further solution to this problem is a polymer composition which comprises a biodegradable polymer and at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions, a molded article produced therefrom and a process for its production according to claims 7 to 25.
  • the biodegradable polymer is preferably selected from the group consisting of cellulose, modified cellulose, latex, protein of vegetable and animal origin, in particular cellulose, and mixtures thereof. Polyamides, polyurethanes and mixtures thereof can also be used insofar as they are biodegradable.
  • the polymer composition according to the invention and the shaped body produced therefrom preferably contain no non-biodegradable polymers or mixtures thereof.
  • the polymer compositions according to the invention can also contain non-biodegradable polymers.
  • Certain polymer solvents such as DMAc, DMSO or DMF etc. can also dissolve synthetic polymers such as aromatic polyamides (aramids), polyacrylonitrile (PACN) or polyvinyl alcohols (PVA), which in turn are combined nation with known cellulose solvents such as LiCI / DMAc, DMSO / PF, tertiary amine oxides / water can be combined to form polymer compositions.
  • modified cellulose examples include carboxyethyl cellulose, methyl cellulose, nitrate cellulose, copper cellulose, viscosexanthate, cellulose carbamate and cellulose acetate.
  • fibers from polycondensation and polymerization products are polyamides which are substituted by methyl, hydroxyl or benzyl groups.
  • polyurethanes examples are those which are based on polyester polyols.
  • the material from marine plants is preferably selected from the group consisting of algae, kelp and seaweed, in particular algae.
  • algae include brown algae, green algae, red algae, blue-green algae or mixtures thereof.
  • brown algae are Ascophyllum spp., Ascophyllum nodosum, Alaria esculenta, Fucus serratus, Fucus spiralis, Fucus vesiculosus, Laminaria saccharina, Laminaria hyperborea, Laminaria digitata, Laminaria echroleuca and mixtures thereof.
  • red algae include Asparagopsis armata, Chondrus cripus, Maerl beaches, Mastocarpus stellate, Palmaria palmata and mixtures thereof.
  • Examples of green algae are Enteromorpha compressa, Ulva rigida and mixtures thereof.
  • Examples of blue-green algae are Dermocarpa, Nostoc, Hapalosiphon, Hormogoneae, Porchlorone.
  • a classification of the algae is the textbook of botany for universities E. Strasburger; F.Noll; H. Schenk; A.F.W. Schimper; 33rd edition Gustav Fischer Verlag, Stuttgart-Jena-New York; Can be seen in 1991.
  • the material from marine plants can be obtained in various ways. First, it is harvested using three different harvesting methods:
  • the sea plants are cut from the stones or
  • the marine plants are harvested by divers in the sea.
  • the material from marine plants obtained by the last method is of the highest quality and is rich in vitamins, minerals, trace elements and polysaccharides.
  • seaweed material harvested by this method is preferably used.
  • the harvested material can be processed in various ways.
  • the material from sea plants can be dried at temperatures up to 450 ° C and crushed using ultrasound, wet ball mills, pin mills or counter-rotating mills, whereby a powder is obtained, which can also be optionally classified via a cyclone stage. A powder thus obtained can be used in the present invention.
  • this powder can be subjected to an extraction process such as steam, water or an alcohol such as ethanol, a material from marine plants, thereby obtaining a liquid extract.
  • This extract can also be used according to the invention.
  • the harvested material from marine plants can also be subjected to cryo-crushing. It is broken down into particles of approx. 100 ⁇ m at -50 ° C. If desired, the material obtained in this way can be further comminuted, particles with a size of approximately 6 to approximately 10 ⁇ m being obtained.
  • the material from the outer shell of marine animals is preferably selected from marine sediments, crushed shells of crabs or mussels, lobsters, crabs, shrimps, corals.
  • the material from shells of marine animals can be used directly in the case of marine sediments. If material from the shells of crabs or mussels, lobsters, crabs, shrimps is used, this is shredded.
  • Mixtures of material from marine plants and shells of marine animals and their extraction products can also be used.
  • the quantitative ratio of material from marine plants and shells of marine animals is preferably 50% by weight to 50% by weight.
  • Material from sea plants is preferably used according to the invention.
  • the material from marine plants and / or shells of marine animals can be present in the polymer composition and the molded body produced therefrom in an amount of 0.1 to 30% by weight, preferably 0.1 to 15% by weight, more preferably 1 to 8% by weight. -%, in particular 1 to 4 wt .-%, based on the weight of the biodegradable polymer, be present.
  • the amount of material from marine plants and / or shells of marine animals is preferably 0.1 to 15% by weight, in particular 1 to 5% by weight.
  • An example of a material from marine plants that can be used according to the invention is a powder from Ascophyllum nodosum with a particle size of 95% ⁇ 40 ⁇ m, which contains 5.7% by weight protein, 2.6% by weight fat, 7.0% by weight. % fibrous components, 10.7% by weight Contains moisture, 15.4% by weight of ash and 58.6% by weight of hydrocarbons. It also contains vitamins and trace elements such as ascorbic acid, tocopherols, carotene, barium, niacin, vitamin K, riboflavin, nickel, vanadium, thiamine, folic acid, folinic acid, biotin and vitamin B ⁇ 2 .
  • amino acids such as alanine, arginine, aspartic acid, glutamic acid, glycine, leucine, lysine, serine, threonine, tyrosine, valine and methionine.
  • the polymer composition comprises a biodegradable polymer and at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions.
  • the components can be synthetic in nature or of natural origin. These components can be used in dried form or with a moisture content which is preferably in a range between 5 and 15%.
  • the polymer composition comprises a biodegradable polymer and at least three components, particularly preferably at least four components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions.
  • the polymer composition particularly preferably comprises a biodegradable polymer and at least two components selected from the group consisting of saccharides and their derivatives and amino acids.
  • the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions can be present in the polymer composition and the molded article produced therefrom in an amount of 0.1 to 30% by weight, preferably 0.1 up to 15% by weight, in particular in an amount of 4 to 10% by weight, based on the weight of the biodegradable polymer.
  • the saccharides can be present in amounts of 0.05 to 9% by weight, preferably in amounts of 2 to 6% by weight, the vitamins in amounts of 0.00007 to 0.04% by weight, preferably in amounts of 0.003 up to 0.03% by weight, the proteins and / or amino acids in amounts of 0.005 to 4% by weight, preferably in amounts of 0.2 to 0.7% by weight and the metal ions and their counterions in amounts of 0.01 to 9% by weight, preferably in amounts of 0.5 to 1.6% by weight, based on the weight of the biodegradable polymer.
  • the biodegradable polymer is preferably selected from the same group as in the previous embodiment.
  • the saccharides or their derivatives used can be selected from the group consisting of monosaccharides, oligosaccharides and polysaccharides. Mixtures which contain alginic acid, laminarin, mannitol and methylpentosanes are preferably used.
  • the proteins used preferably contain alanine, arginine, aspartic acid, glutamic acid, glycine, leucine, lysine, serine, threonine, tyrosine, valine and methionine.
  • amino acids are preferably the same as those contained in the proteins used.
  • the vitamins used can be selected from the group consisting of ascorbic acid, tocopherol, carotene, niacin (vitamin B3), phytomenadione (vitamin K), riboflavin, thiamine, folic acid, folinic acid, biotin, retinol (vitamin A), pyridoxine (vitamin B6) and cyanocobalamin (vitamin B 12 ).
  • the metal ions can be selected from the group consisting of aluminum, antimony, barium, boron, calcium, chromium, iron, germanium, gold, potassium, cobalt, copper, lanthanum, lithium, magnesium, manganese, molybdenum, sodium, rubidium, selenium , Silicon, thallium, titanium, vanadium, tungsten, zinc and tin.
  • the counterions of the metal ions can be, for example, fluoride, chloride, bromide, iodide, nitrate, phosphate, carbonate and sulfate.
  • the proportion of the metal ions or the associated counterions is adjusted such that an ash content in the range of 5-95%, preferably a range of 10-60%, results when the at least two components or polymer composition are incinerated.
  • particles of the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions in the grain size range from 200 to 400 ⁇ m, preferably 150 to 300 ⁇ m can be used.
  • particles with small grain sizes such as 1 to 100 ⁇ m, preferably 0.1 to 10 ⁇ m, more preferably 0.1 to 7 ⁇ m, in particular 1 to 5 ⁇ m (measurement method: laser diffraction - device: Sympatec Rhodes).
  • Grain size mixtures of uniform material or different algae material can also be used.
  • the material from marine plants and / or shells of marine animals or the at least two components in this fineness In order to obtain the material from marine plants and / or shells of marine animals or the at least two components in this fineness, the material from marine plants and / or shells of marine animals or the at least two components with e.g. commercially available pin mills are crushed and then the fine fraction is separated off with appropriate classifiers.
  • Such a screening process of toner for the development of electrostatic images is described in DE 19803107, a fine fraction with approximately 5 ⁇ m being cut out of the product.
  • a further possibility of obtaining the material from marine plants and / or shells of marine animals or the at least two components in the required grain size is to obtain the material from marine plants and / or shells of marine animals or the at least two components by means of jet mills with static or rotating shred internal or external sifters.
  • Jet mills usually have a flat cylindrical grinding chamber, around which a number of jet nozzles distributed over the circumference are arranged. The crushing is essentially based on a mutual exchange of kinetic energy. Following the comminution achieved by particle collision, there is a viewing zone at the center of the grinding chamber, the fine fraction being discharged by means of static or rotating, internal or external classifiers. The coarse fraction remains in the grinding chamber due to the centrifugal forces and is further crushed. Some of the difficult-to-grind components can pass through suitable openings be discharged from the grinding chamber. Corresponding jet mills are described, for example, in US Pat. No. 1,935,344, EP 888818, EP 603602, DE 3620440.
  • FIG. 1 A typical particle size distribution is shown in FIG. 1.
  • the moldings according to the invention can be produced from the polymer composition according to the invention using conventional methods, the biodegradable polymer and the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, Amino acids, vitamins and metal ions for the preparation of the polymer composition are first mixed and then the shaped body is produced.
  • the continuous or discontinuous mixing of the biodegradable polymer and the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions can be carried out using apparatuses and Methods are carried out as described in WO 96/33221, US 5,626,810 and WO 96/33934.
  • the shaped body according to the invention is particularly preferably in the form of fibers, most preferably in the form of cellulose fibers.
  • the molded body according to the invention can also be in the form of a continuous filament or membrane or in the form of a tube or a flat film.
  • Processes for producing the cellulose fibers according to the invention are known, such as the Lyocell or NMMO, rayon or viscose or the carbamate process.
  • the Lyocell process can be carried out as described below.
  • a solution of cellulose, NMMNO and water is prepared by first forming a suspension of cellulose, NMMNO and water, and this suspension under reduced pressure in a 1 to 20 mm thick layer continuously over a Heat exchange surface is transported by rotating elements. currency During this process, water is evaporated until a homogeneous cellulose solution is formed.
  • the cellulose solutions obtained in this way can contain an amount of cellulose of 2 to 30% by weight, of NMMNO from 68 to 82% by weight and of water from 2 to 17% by weight.
  • additives such as inorganic salts, inorganic oxides, finely divided organic substances or stabilizers can be added to this solution.
  • the cellulose solution thus obtained is then the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions in the form of powder, powder suspension or in liquid Form, as an extract or suspension, added continuously or discontinuously.
  • the material can be made from marine plants and / or shells from marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions, even after or during the continuous comminution of the dry cellulose, for example in Form of algae material of original size, as a powder or highly concentrated powder suspension can be added.
  • the powder suspension can be prepared in water or any solvent in the concentration desired and required for the process.
  • the material can be made from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions with simultaneous comminution or a refiner supply.
  • the pulping can be carried out either in water, in alkalis or in the solvent which is later required to dissolve the cellulose.
  • the material can be made from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions in solid, powdered, suspension form or also in liquid form Form are added.
  • the polymer composition enriched with the material from marine plants and / or shells of marine animals or at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions can be present in the presence of a derivatizing agent and / or one for the dissolving process known solvents can be converted into a deformable extrusion compound.
  • Another possibility of adding the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions is the addition during a continuously carried out dissolution process, such as in EP 356419 and U.S. Patents 5,049,690 and 5,330,567.
  • the addition can be carried out batchwise to obtain a master batch of the cellulose solution.
  • the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions are preferably added continuously.
  • the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions can be added at any other stage in the production process for the shaped body.
  • it can be fed into a pipeline system with appropriate mixing by means of static mixer elements or stirring elements, such as known inline refiners or homogenizers, for example Ultra Turrax devices.
  • static mixer elements or stirring elements such as known inline refiners or homogenizers, for example Ultra Turrax devices.
  • the process is carried out in continuous batch operation, for example via a cascade of stirred tanks, the algae material can be introduced in solid, powdered, suspension or liquid form at the most optimal point for the process.
  • the fine distribution can be achieved with known stirring elements matched to the method.
  • the incorporated extrusion or spinning mass formed can be filtered before or after incorporation. Due to the fineness of the product used, there is also no need for filtration in spinning processes with large nozzle diameters.
  • the material can be supplied in a suitable form directly in front of the spinneret or the extrusion tool via an injection point.
  • a further possibility is, if the algae material or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions are in liquid form, to feed them to the continuously spun thread during the spinning process.
  • the cellulose solution obtained in this way is spun by conventional processes, such as the dry-jet-wet, the wet-spinning, the melt-blown process, centrifugal spinning, funnel spinning or the dry spinning process.
  • the family of threads in the air gap between the nozzle in the precipitation bath can also be cooled by blowing.
  • An air gap of 10-50 mm has proven to be suitable; the parameters for the cooling air are preferably air temperatures of 5-35 ° C. with a relative humidity of up to 100%.
  • the patents US 5,589,125 and 5,939,000 as well as EP 0574870 B1 and WO 98/07911 describe spinning processes for the production of cellulose fibers by the NMMO process.
  • the shaped bodies formed are subjected to the conventional chemical fiber aftertreatment processes for filaments or staple fibers.
  • a cellulose fiber according to the invention with a material from sea plants and / or shells of sea animals or with at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions, preferably at least three components, particularly preferably at least get four components.
  • the spinning process there are also extrusion processes for the production of flat films, round films, skins (sausage skins) and membranes.
  • the viscose process can be carried out as follows. Here, pulp is treated with approximately 90 to 92% by weight cellulose with aqueous NaOH. The cellulose is then converted into cellulose xanthate by reaction with carbon disulphide and a viscose solution is obtained by adding aqueous NaOH with constant stirring. This viscose solution contains approximately 6% by weight of cellulose, 6% by weight of NaOH and 32% by weight of carbon disulphide, based on the cellulose content. After the suspension has been stirred, the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions, either as powder or liquid extract, added. If desired, conventional additives such as surfactants, dispersants or stabilizers can be added.
  • the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions can in turn alternatively be added in each step of the process.
  • cellulose carbamate is produced from cellulose with about 92 to 95% by weight of ⁇ -cellulose, as described, for example, in US Pat. No. 5,906,926 or DE-PS-196 35 707.
  • Alkali cellulose is produced from the pulp used by treatment with aqueous NaOH. After defibrating, the alkali cellulose is ripened and then the sodium hydroxide solution is washed out. The cellulose activated in this way is mixed with urea and water and introduced into a solvent in a reactor. The mixture thus obtained is heated.
  • the carbamate formed is separated off and a carbamate spinning solution is prepared therefrom, as described in DE-PS-197 57 958. This spinning solution becomes the material from marine plants and / or Shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions are added.
  • the spinning solution thus obtained is spun into fibers by known processes, and cellulose fibers according to the invention are obtained.
  • the cellulose fibers according to the invention despite the addition of an additive, have the same outstanding properties as cellulose fibers without an additive, with regard to their fineness, tear strength, tear strength variation, elongation, wet elongation, fineness-related tear strength, fineness-related wet tear strength, fineness-related loop tear strength, wet scrubbing Fracture, wet abrasion variation and wet modulus and at the same time show the positive properties imparted by the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions ,
  • additives to spinning masses made of cellulose, NMMNO and water has the disadvantage that they change color at the temperature of use, are not stable in storage and introduce impurities into the cellulosic end products.
  • the ionic constituents incorporated with the material remain in the fiber composite even through the shaping process with an aqueous bath liquid and do not get into the spinning bath during the short spinning time.
  • the pH value of the staple fiber produced was determined in accordance with DIN Method 54275. Compared to a fiber not incorporated with marine plants and / or shells of marine animals, the incorporated fiber showed a pH increase, which indicates the removal of ionic constituents of the fiber. This property, combined with body moisture, can have a positive effect on the health of the skin when wearing clothing. Furthermore, it has been shown that by adding the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions, the fibrillation of the fibers , produced by the Lyocell process, is reduced.
  • the fiber according to the invention for example a cellulose fiber incorporated with algae, can thus be better used in the textile postprocessing of the fiber.
  • Another advantage imparted to the shaped bodies according to the invention by the addition of material from sea plants and / or shells of sea animals or from at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions is the uniform incorporation of the active ingredients in the fiber matrix with differently producible fiber cross sections. Processing as monofilament or continuous filament yarn is also possible. This results in a particularly good use of technical articles.
  • the molded body according to the invention is produced from a polymer composition which contains only biodegradable material, its complete biodegradability is advantageous.
  • the moldings according to the invention can be used as packaging material, fiber material, non-wovens, textile composites, fiber composites, non-woven fabrics, needle felts, upholstery wadding, fabrics, knitted fabrics, as home textiles, such as bed linen, as a filler, flocking material, hospital textiles, such as underlays, diapers or mattresses, as a material for thermal blanket " shoe inserts and wound dressings can be used. Further possible uses are described in the lexicon of textile interior design, book and media publisher Buurmann KG, ISBN 3-98047-440-2.
  • a fabric is produced from the molded body according to the invention in the form of fibers, then this can either consist exclusively of this fiber or contain an additional component.
  • This additional component can be selected from the group consisting of cotton, lyocell, rayon, carbacell, polyester, polyamide, cellulose acetate, acrylate, polypropylene or mixtures thereof.
  • the fibers with a material of marine plants and / or shells of marine animals are preferably present in the fabric in an amount of up to about 70% by weight.
  • the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions are preferably present in the tissue in an amount of 1 to 10% by weight. present.
  • the molded body according to the invention is in the form of a fiber material or fabric, it can be used to produce articles of clothing, such as pullovers, jackets, dresses, suits, T-shirts, underwear or the like.
  • the articles of clothing produced from the fibers or fabrics according to the invention are very comfortable to wear and generally improve the health of the individual wearing this article of clothing.
  • the health-improving effect of material from marine plants is described, for example, in JP 1228916. Due to the high proportion of negative ions in the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of proteins, amino acids, vitamins and metal ions, this has a positive effect on the pH of the skin in that it provides alkaline and therefore healthy conditions on the skin.
  • the temperature of the skin rises more when wearing the garments according to the invention than when wearing a garment made of fibers without the material from marine plants and / or shells of marine animals or the at least two components selected from the group consisting of saccharides and their derivatives, proteins , Amino acids, vitamins and metal ions, which has a positive effect on the blood circulation in the skin.
  • the fiber according to the invention passes the active substances on to the body via the liquid present when worn, due to the body moisture. Because of the cellulosic material, breathable clothing can be made. In addition, as usual in cosmetics or thalassotherapy, the active ingredients can be supplied to the skin in a targeted manner. Due to the incorporation, the active ingredients are present in the fiber or in the fabric for a long time, even after frequent washing.
  • the trace elements and vitamins supplied via the tissue consisting of the fibers according to the invention can support the body through the remineralizing, stimulating and warming effect.
  • the fiber according to the invention is in the form of staple fibers or comminuted filaments
  • these surfaces can be used to flock carriers, such as fabrics or foils.
  • the surface of the carrier to be flocked is treated with an adhesive and then the staple fibers or comminuted filaments are applied to it.
  • Nozzle filter 19200 M / cm 2
  • the fibers were cut to a length of 40 mm, washed solvent-free and equipped with a 10 g / l softener (50% Leomin OR-50% Leomin WG (nitrogen-containing fatty acid polyglycol ester from Clariant GmbH)) at 45 ° C. or the fat coating better fiber processing applied and dried at 105 ° C. After drying, a fiber moisture of 11% was set. An additional bleaching process before drying was not carried out in this case.
  • a spinning solution was prepared analogously to Comparative Example 1.
  • the spinning solution was spun into fibers, in contrast to Comparative Example 1, the temperature of the spinning block was set to 95 ° C. and the temperature of the nozzle to 105 ° C. In the air gap between the nozzle and the precipitation bath, the thread sheet was blown with moist air (temperature: 20 ° C., humidity: 70%). The experiment was otherwise carried out as in Comparative Example 1.
  • Example 1 Analogously to Example 1, 2,951 g NMMNO (60.84%), 305 g MoDo, DP 500, dry content 94%, 1.8 g propyl gallate (0.63% based on the cellulose content) and 17.5 g of the in Example 1 used mixture (in total 6.1% based on the cellulose content) mixed and heated to 94 ° C. A spinning solution with a solids content of 12.9% and a viscosity of 7,801 Pa • s was obtained. The spinning solution thus prepared was spun into fibers as in Comparative Example 1. Table 6: Fiber data example! 2
  • Example 2 Analogously to Example 1, 2,750 g of NMMNO (60.3% strength), 305 g of MoDo, DP 500, dry matter content 94%, 1.7 g of propyl gallate (0.63% based on the cellulose content) and 11.2 g of a powder - Shown in Table 2.2 - (4.1% in total based on the cellulose content) mixed and heated to 94 ° C. A spinning solution with a solids content of 13% and a viscosity of 6,352 Pa • s was obtained. The spinning solution thus prepared was spun into fibers as in Comparative Example 1.
  • Example 3 Analogously to Example 3, 3,345 g of NMMNO (59.5%), 318 g of MoDo, DP 500, dry content 94%, 1.9 g of propyl gallate (0.63% based on the cellulose content) and 23.6 g of a mixture , mixed similarly to the mixture used in Example 3 (in total 7.9% based on the cellulose content) and heated to 94 ° C.
  • the mixture used in this example differs from that used in example 3 primarily by a higher potassium content and a lower calcium content ( ⁇ 12.6% to -35%).
  • a spinning solution with a solids content of 12.4% and a viscosity of 7,218 Pa • s was obtained.
  • the spinning solution thus prepared was spun into fibers as in Comparative Example 1.
  • the fibers were cut to a length of 40 mm, washed solvent-free and equipped with a 10 g / l softener (50% Leomin OR-50% Leomin WG (nitrogen-containing fatty acid polyglycol ester from Clariant GmbH)) at 45 ° C. or the fat coating for better fiber processing applied and dried at 105 ° C. Following drying, a fiber moisture of 10% was set. An additional bleaching process before drying was not carried out in this case
  • FIG. 2 also shows that a spinning solution with 8.5% Laminaria digitata is stable to thermal decomposition up to approximately 200 ° C.
  • the fibers thus obtained were spun into a yarn.
  • the spinning was carried out under the conditions of 63% relative atmospheric humidity and 20 ° C. by means of carding, stretching and spinning with a rotor spinning machine to 75 g of yarn with about 20 tex. It can be seen from FIG. 3 that the spinning solution with 1% Laminaria digitata, based on the cellulose content, is stable up to a temperature of approximately 200.degree.
  • a cellulose xanthate was produced from a mixture of 33% by weight of cellulose, 17% by weight of sodium hydroxide solution and 50% by weight of water by adding 32% carbon disulfide based on cellulose.
  • the xanthate was then converted into a spinning solution containing 6% by weight of cellulose, 6% by weight of NaOH and essentially water and reaction products as a result of the xanthate preparation by stirring for 2 hours by adding dilute sodium hydroxide solution. 0.9% by weight of material from brown algae was added to the spinning solution to the viscose solution thus obtained.
  • the viscose solution was left under vacuum for about 6 hours for degassing and then filtered.
  • the viscose solution thus obtained had a degree of maturity of 10 ° Hottenroth and was spun into fibers.
  • the spinning conditions were:
  • Rayon fibers were produced according to Example 7, except that 0.1% by weight of brown algae material was added to the spinning solution instead of 0.9% by weight.
  • a viscose fiber was produced according to Example 7, except that no brown algae material was added.
  • an alkali cellulose was first made from a chemical cellulose 92-95% alpha content (Ketchikan). The sodium hydroxide solution was washed out with water from the ripened alkali cellulose (35% by weight of cell; 15% by weight of NaOH; 50% by weight of water). After pressing off the activated cellulose (70% by weight of water), 10 kg of the pressed-out activated cellulose were mixed with urea (1.5 kg) in a kneader. The urea dissolves in the water in the cellulose and is evenly distributed in the cellulose. This pulp was transferred to a reactor equipped with a stirrer and reflux condenser and in which o-xylene (30 kg) had been placed. The contents of the reactor were then heated at 145 ° C. for about 2 hours and then filtered off.
  • Ketchikan chemical cellulose 92-95% alpha content
  • a spinning mass (5 kg) was produced from the cooled starch solution by adding 1.55 kg of cooled sodium hydroxide solution (3.03% by weight) at a temperature of 0.degree.
  • the cooled spinning mass was through a filter with finenesses of 10-40 ⁇ m. filtered and spun.
  • Carbacei, r® fibers were produced as described in Example 9, except that 0.1% by weight of the spinning mass was added instead of 0.6% by weight of brown algae flour.
  • Carbacel'1® fibers were made as described in Example 9, except that no brown algae meal was added.
  • Lyocell cellulose fibers were produced continuously in accordance with Example 5, the respective amounts, the conditions of the continuous process and the physical properties of the fibers obtained being listed in Table 18 below.
  • cryogenic fractures were produced in liquid nitrogen. Of these, pictures were taken using a field emission scanning electron microscope (Joel 6330 F) after sputtering the fibers with platinum.
  • the fiber produced according to comparative example 1 or 2 according to the standard process shows a splintered fracture, the fibrillar structure can be clearly recognized on the fracture surface.
  • the strong orientation of the fibrils can be seen in the emerging longitudinal grooves and in the strongly jagged structure along the longitudinal axis.
  • the strongly reduced longitudinal orientation shows that the use according to the invention of material from marine plants and / or shells of marine animals or of at least two components selected from the group consisting of saccharides and their derivatives, proteins, amino acids, vitamins and metal ions in the production of cellulose fibers leads to less fibrillation of the fibers.

Abstract

Die Erfindung betrifft eine Polymerzusammensetzung, umfassend ein biologisch abbaubares Polymer und ein Material aus Meerespflanzen und/oder Schalen von Meerestieren oder mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen. Die Erfindung betrifft weiterhin einen Formkörper, der diese Polymerzusammensetzung umfasst. Dieser Formkörper kann als Verpackungsmaterial oder Fasermaterial, in Form von Fasermaterial als Mischungskomponente zur Herstellung von Garnen sowie in Form von Fasermaterial zur Herstellung von Vliesstoffen oder Geweben verwendet werden.

Description

Polymerzusammensetzunq und daraus hergestellter Formkörper
Die Erfindung betrifft eine Poiymerzusammensetzung, die ein biologisch abbaubares Polymer umfasst, sowie deren Verwendung zur Herstellung eines Formkörpers, den aus der Polymerzusammensetzung hergestellten Formkörper, ein Verfahren zu dessen Herstellung und dessen Verwendung und ein Kleidungsstück, das den Formkörper in Form von Fasern umfasst.
Polymerzusammensetzungen mit verschiedenen Additiven zur Herstellung von Formkörpern sind bekannt.
In der US-PS-5,766,746 ist ein Vlies aus Cellu losefasern beschrieben, die eine flammwidrige, phosphorhaltige Komponente beinhalten.
Die US-PS-5, 565,007 beschreibt modifizierte Rayonfasern mit einem Modifiziermittel zur Verbesserung der Färbeeigenschaften der Fasern.
Aus der US-PS-4,055,702 sind schmelzgesponnene, kaltgezogene Fasern aus einem synthetischen, organischen Polymer mit Additiven bekannt. Diese Additive können Rezeptoren, flammwidrigmachende Mittel, Antistatikmittel, Stabilisatoren, Mehltauinhibitoren oder Antioxidationsmittel sein.
Aus „Lenzinger Berichte", 76/97, Seite 126 ist außerdem eine Lyocellfaser bekannt, die aus einer Celluloselösung in N-Methylmorpholin-N-Oxid (im nachstehenden „NMMNO") gesponnen wurde, der 0,5 bis 5 Gew.-%, bezogen auf das Gewicht der Cellulose, an Vernetzern zur Verbesserung des Nassscheuerwerts einverleibt werden können. Außerdem ist beschrieben, Lyocellfasem Carboxymethylchitin, Carboxymethylchitosan oder Polyethylenimin zur Verbesserung der fungiziden Eigenschaften, Polyethylenimin zur Metallionenadsorption und Farbstoffaufnahme, Hyaluronsäure zur Verbesserung der Bacterizideneigenschaften, Xanthan, Guaran, Carubin, Bassorin oder Stärke zur Verbesserung der Hydrophilie, der Wasseraufnahme und der Wasserdampfdurchlässigkeit oder Stärke zur beschleunigten enzymatischen Hydrolyse einzuverleiben. Die WO 98/58015 beschreibt eine Zusammensetzung, welche feine Feststoffteilchen enthält zur Zumischung zu einer formbaren Lösung von Cellulose in einem wässrigen tertiären Aminoxid. Die Zusammensetzung besteht aus festen Teilchen, tertiärem Amin- oxid, Wasser und mindestens einem weiteren Stoff. Dieser weitere Stoff kann ein Stabilisator oder ein Dispergiermittel sein. Die festen Teilchen können Pigmente sein.
Außerdem ist bekannt, dass hohe Konzentrationen an Eisen und Übergangsmetallen die Stabilität einer Spinnmasse aus Cellulose, NMMNO und Wasser beeinträchtigen. Hohe Konzentrationen an Eisen erniedrigen die Zersetzungstemperatur der Lösung so stark, dass explosionsartig verlaufende Zersetzungsreaktionen der Lösung auftreten können. In „Das Papier", F. A. Buitenhuijs 40. Jahrgang, Heft 12, 1986 ist die Zersetzung und Stabilisierung von Cellulose, gelöst in NMMNO, beschrieben. Dabei wird auch der Einfluß von Eisen - Fe(lll) auf diese Celluloselösungen dargelegt. Bei einem Zusatz von 500 ppm an Fe(lll) wurden über 40% des NMMNO in das Zersetzungsprodukt N- Methylmorpholin („NMM") übergeführt. Wobei auch die Zugabe von Cu +2 die Lösungsstabilität vermindert. Die Zersetzungstemperatur (T onset °C) wurde bei Zugabe von Kupfer zu einer NMMO- Celluloselösung ohne Kupfer von 175 °C auf 114 °C bei Anwesenheit von 900 mg Kupfer/kg Masse gesenkt. Weiterhin ist der positive Effekt von Stabilisatoren, wie Propylgallate und Ellagsäure, beschrieben.
Beim Zusatz von Additiven zu Fasern ergeben sich außerdem Schwierigkeiten, die Eigenschaften der Fasern, wie mechanische Festigkeiten, Faserdehnungen, Schiingenfestigkeiten, Scheuereigenschaft, Anfärbbarkeiten zu erhalten.
In JP 1228916 ist eine Folie aus zwei Schichten aus gewebtem Material oder Vlies beschrieben, zwischen die mittels Klebstoffen oder durch Wärmeverschweißen feine Flocken aus Algenmaterial, wie aus Rhodophyceae, gefüllt sind. Dadurch wird eine Folie erhalten, die bei Verwendung die Gesundheit verbessert.
Diese Folie hat jedoch den Nachteil, dass das feinzerkleinerte Algenmaterial in Hohlräumen zwischen den beiden Schichten anwesend ist, wodurch das Algenmaterial bei einem Reißen der Folie austritt und durch die Schichten von der Umgebung getrennt ist. In den US-Psen 4,421 ,583 und 4,562,110 ist ein Verfahren beschrieben, bei dem Fasermaterial aus Alginat hergestellt wird. Dazu wird Alginat aus den Meerespflanzen durch Extraktionsverfahren gewonnen und das so erhaltene lösliche Alginat direkt zu Fasern versponnen.
In der DE 19544097 ist ein Verfahren zu Herstellung von Formkörpern aus Polysaccha- ridmischungen durch Auflösen von Cellulose und eines Zweitpolysaccharids in einem organischen, mit Wasser mischbaren Polysaccharidlösungsmittel, das auch ein Zweitlösungsmittel enthalten kann, Verformen der Lösung unter Druck durch eine Düse zu Formkörpern und Verfestigung der Formkörper durch Koagulation in einem Fällbad beschrieben. Als Zweitpolysaccharide, neben Cellulose, sind Hexosen mit glycosidischer 1 ,4 und 1 ,6 Verknüpfung, Uronsäuren und Stärke, insbesondere Pullulan, Carubin, Bua- ran, Hyaluronsäure, Pektin, Algin, Carrageenan oderXanthan angeführt. Weiters ist beschrieben, dass neben einem Zweitpolysaccharid auch ein Drittpolysaccharid, vorzugsweise Chitin, Chitosan bzw. ein entsprechendes Derivat eingesetzt werden kann. Die nach diesem Verfahren erhaltenen Formkörper werden als Mittel für die Wasser- und/ oder Schwermetallbindung, als Faser mit bakteriziden und/oder fungiziden Eigenschaften oder als Garn mit erhöhter Abbaugeschwindigkeit im Wiederkäuermagen eingesetzt.
Die Verwendung von Nukleierungsmitteln bei der Herstellung von Formkörpern aus thermoplastischen Hochpolymeren, insbesondere α-olefinischen Polymeren wird in US- PS 3,367,926 beschrieben. Als Nukleierungsmittel werden u.a. Aminosäuren, deren Salze und Proteine genannt.
Zur Reduzierung der Fibrillierungstendenz ist cellulosischen Formkörpern ist es bekannt, in einem Nachbehandlungsschritt an der frisch versponnenen oder getrockneten Faser Defibrillierungsmittel aufzubringen. Alle bisher bekannten Defibrillierungsmittel sind Vernetzungsmittel.
So werden gemäß der EP-A-0 538 977 Cellulose-Fasern in alkalischem Milieu mit einem chemischen Reagenz, das 2 bis 6 funktionelle Gruppen aufweist, welche mit Cellulose reagieren können, zur Verringerung der Fibrillierungsneigung behandelt. Ein weiteres Verfahren zur Reduzierung der Fibrillierungstendenz von cellulosischen Formkörpern mittels eines Textilhilfsmittels ist in der WO 99/19555 beschrieben. Bisher wurde noch keine Lösung zur Verringerung der Fibrillierung der Cellulosefasern während des Spinnprozesses gefunden.
Daher liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Polymerzusammensetzung, die ein Additiv enthält, mit einer guten Stabilität und Verarbeitbarkeit sowie einen daraus hergestellten Formkörper, der eine geringe Fibrillierungsneigung aufweist, und ein Verfahren zu dessen Herstellung zur Verfügung zu stellen.
Die Lösung dieser Aufgabe ist eine Polymerzusammensetzung, die ein biologisch abbaubares Polymer und ein Material aus Meerespflanzen und/oder Schalen von Meerestieren umfasst, ein daraus hergestellter Formkörper sowie ein Verfahren zu dessen Herstellung gemäß den Ansprüchen 1 bis 6 und 12 bis 25.
Eine weitere Lösung dieser Aufgabe ist eine Polymerzusammensetzung, die ein biologisch abbaubares Polymer und mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen umfasst, ein daraus hergestellter Formkörper sowie ein Verfahren zu dessen Herstellung gemäß den Ansprüchen 7 bis 25.
Das biologisch abbaubare Polymer wird vorzugsweise ausgewählt aus der Gruppe, bestehend aus Cellulose, modifizierter Cellulose, Latex, Eiweiß pflanzlicher sowie tierischer Herkunft, insbesondere Cellulose, und Gemischen davon. Polyamide, Polyurethane und Gemische davon können ebenfalls verwendet werden, soweit diese biologisch abbaubar sind. Bevorzugt enthalten die erfindungsgemäße Polymerzusammensetzung und der daraus hergestellte Formkörper keine nicht biologisch abbaubaren Polymere oder Gemische davon.
Die erfindungsgemäßen Polymerzusammensetzungen können auch nicht biologisch abbaubare Polymere enthalten. Bestimmte Polymerlösungsmittel wie z.B. DMAc, DMSO oder DMF etc. können auch synthetische Polymere, wie aromatische Polyamide (Arami- de), Polyacrylnitril (PACN) oder Polyvinylalkohole (PVA) lösen, die wiederum in Kombi- nation mit bekannten Celluloselösungsmittel wie z.B. LiCI/ DMAc, DMSO/ PF, tertiäre Aminoxide/ Wasser zu Polymerzusammensetzungen kombiniert werden können.
Beispiele für modifizierte Cellulose beinhalten Carboxyethylcellulose, Methylcellulose, Nitratcellulose, Kupfercellulose, Viskosexanthogenat, Cellulosecarbamat und Cellulose- acetat. Beispiele für Fasern aus Polykondensations- und Polymerisationsprodukten sind Polyamide, die mit Methyl-, Hydroxy- oder Benzylgruppen substituiert sind. Beispiele für Polyurethane sind solche, die auf der Basis von Polyesterpolyolen aufgebaut sind.
Das Material aus Meerespflanzen ist vorzugsweise ausgewählt aus der Gruppe, bestehend aus Algen, Kelp und Seegras, insbesondere Algen. Beispiele für Algen beinhalten Braunalgen, Grünalgen, Rotalgen, Blaualgen oder Gemische davon. Beispiele für Braunalgen sind Ascophyllum spp., Ascophyllum nodosum, Alaria esculenta, Fucus ser- ratus, Fucus spiralis, Fucus vesiculosus, Laminaria saccharina, Laminaria hyperborea, Laminaria digitata, Laminaria echroleuca und Gemische davon. Beispiele für Rotalgen beinhalten Asparagopsis armata, Chondrus cripus, Maerl beaches, Mastocarpus stella- tus, Palmaria palmata und Gemische davon. Beispiele für Grünalgen sind Enteromorpha compressa, Ulva rigida und Gemische davon. Beispiele für Blaualgen sind Dermocarpa , Nostoc, Hapalosiphon, Hormogoneae, Porchlorone. Eine Klassifiaktion der Algen ist dem Lehrbuch der Botanik für Hochschulen E. Strasburger; F.Noll; H. Schenk; A.F.W. Schimper; 33. Auflage Gustav Fischer Verlag, Stuttgart-Jena-New York; 1991 zu entnehmen.
Das Material aus Meerespflanzen kann auf verschiedene Art und Weise gewonnen werden. Zunächst wird es geerntet, wobei es drei verschiedene Ernteverfahren gibt:
1. das Material aus Meerespflanzen, das an den Strand gewaschen wurde, wird gesammelt,
2. die Meerespflanzen werden von den Steinen geschnitten oder
3. die Meerespflanzen werden von Tauchern im Meer geerntet. Das nach dem letzten Verfahren erhaltene Material aus Meerespflanzen hat die höchste Qualität und ist reich an Vitaminen, Mineralstoffen, Spurenelementen und Polysacchari- den. Für die Zwecke der vorliegenden Erfindung wird vorzugsweise nach diesem Verfahren geerntetes Material aus Meerespflanzen verwendet.
Das geerntete Material kann auf verschiedene Weisen weiterverarbeitet werden. Das Material aus Meerespflanzen kann bei Temperaturen bis zu 450°C getrocknet und unter Verwendung von Ultraschall, Nasskugelmühlen, Stiftmühlen oder gegenläufigen Mühlen zerkleinert werden, wodurch ein Pulver erhalten wird, welches gegebenenfalls auch noch zur Klassierung über eine Zyklonstufe geführt werden kann. Ein so erhaltenes Pulver kann erfindungsgemäß verwendet werden.
Außerdem kann dieses Pulver ein Material aus Meerespflanzen zusätzlich einem Extraktionsverfahren, beispielsweise mit Dampf, Wasser oder einem Alkohol, wie Ethanol, unterworfen werden, wodurch ein flüssiger Extrakt erhalten wird. Dieser Extrakt ist ebenfalls erfindungsgemäß verwendbar.
Das geerntete Material aus Meerespflanzen kann außerdem einer Cryo-Zerkleinerung unterworfen werden. Dabei wird es bei -50°C in Partikel mit ca. 100 μm zerkleinert. Falls es erwünscht ist, kann das so erhaltene Material weiter zerkleinert werden, wobei Partikel mit einer Größe von ca. 6 bis ca. 10 μm erhalten werden.
Das Material aus der äußeren Schale von Meerestieren wird vorzugsweise ausgewählt aus Meeressedimenten, zerkleinerten Schalen von Krabben oder Muscheln, Hummern, Krebsen, Garnelen, Korallen.
Eine typische Zusammensetzung eines Gemisches natürlichen Ursprungs zeigt Tabelle 1. Tabelle 1
Figure imgf000008_0001
Mineralien eines Gemisches natürlichen Ursprungs nach Tabelle 1 zeigt Tabelle 2.1.
Tabelle 2.1
Figure imgf000008_0002
Mineralien eines Gemisches (Feuchte 94,9%, Glührückstand 90%) natürlichen Ursprungs zeigt Tabelle 2.2. Tabelle 2.2
Figure imgf000009_0001
Das Material aus Schalen von Meerestieren kann, im Falle von Meeressedimenten, direkt eingesetzt werden. Falls Material aus den Schalen von Krabben oder Muscheln, Hummern, Krebsen, Garnelen verwendet wird, wird dieses zerkleinert.
Es können auch Gemische aus Material aus Meerespflanzen und Schalen von Meerestieren sowie deren Extraktionsprodukte eingesetzt werden. Das Mengenverhältnis von Material aus Meerespflanzen und Schalen von Meerestieren ist vorzugsweise 50 Gew.- % zu 50 Gew.-%. Vorzugsweise wird Material aus Meerespflanzen erfindungsgemäß verwendet.
Das Material aus Meerespflanzen und/oder Schalen von Meerestieren kann in der Polymerzusammensetzung und dem daraus hergestellten Formkörper in einer Menge von 0,1 bis 30 Gew.-%, vorzugsweise 0,1 bis 15 Gew.-%, bevorzugter 1 bis 8 Gew.-%, insbesondere 1 bis 4 Gew.-%, bezogen auf das Gewichts des biologisch abbaubaren Polymers, anwesend sein. Insbesondere, wenn der Formkörper in Form einer Faser vorliegt, ist die Menge an Material aus Meerespflanzen und/oder Schalen von Meerestieren vorzugsweise 0,1 bis 15 Gew.-%, insbesondere 1 bis 5 Gew.-%.
Ein Beispiel für ein erfindungsgemäß verwendbares Material aus Meerespflanzen ist ein Pulver aus Ascophyllum nodosum mit einer Partikelgröße von 95 % < 40 μm, das 5,7 Gew.-% Protein, 2,6 Gew.-% Fett, 7,0 Gew.-% fasrige Bestandteile, 10,7 Gew.-% Feuchtigkeit, 15,4 Gew.-% Asche und 58,6 Gew.-% Kohlenwasserstoffe enthält. Außerdem enthält es Vitamine und Spurenelemente, wie Ascorbinsäure, Tocopherole, Carotin, Barium, Niacin, Vitamin K, Riboflavin, Nickel, Vanadium, Thiamin, Folsäure, Folinsäure, Biotin und Vitamin Bι2. Zusätzlich enthält es Aminosäuren, wie Alanin, Arginin, Aspara- ginsäure, Glutaminsäure, Glycin, Leucin, Lysin, Serin, Threonin, Tyrosin, Valin und Methionin.
In einer weiteren Ausführungsform umfasst die Polymerzusammensetzung ein bioab- baubares Polymer und mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen. Die Komponenten können synthetischer Natur oder eines natürlichen Ursprungs sein. Diese Komponenten können in getrockneter Form oder mit einer Feuchte, die bevorzugt in einem Bereich zwischen 5 und 15% liegt, eingesetzt werden.
In einer bevorzugten Ausführungsform umfasst die Polymerzusammensetzung ein bio- abbaubares Polymer und mindestens drei Komponenten, insbesondere bevorzugt mindestens vier Komponenten ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen.
Besonders bevorzugt umfasst die Polymerzusammensetzung ein bioabbaubares Polymer und mindestens zwei Komponenten gewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten und Aminosäuren.
Die mindestens zwei Komponenten ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen können in der Polymerzusammensetzung und dem daraus hergestellten Formkörper in einer Menge von 0,1 bis 30 Gew.-%, bevorzugt 0,1 bis 15 Gew.-%, insbesondere in einer Menge von 4 bis 10 Gew.-% bezogen auf das Gewicht des bioabbaubaren Polymers, anwesend sein.
Die Saccharide können in Mengen von 0,05 bis 9 Gew.-%, bevorzugt in Mengen von 2 bis 6 Gew.-%, die Vitamine in Mengen von 0,00007 bis 0,04 Gew.-%, bevorzugt in Mengen von 0,003 bis 0,03 Gew.-%, die Proteine und/oder Aminosäuren in Mengen von 0,005 bis 4 Gew.-%, bevorzugt in Mengen von 0,2 bis 0,7 Gew.-% und die Metallionen und deren Gegenionen in Mengen von 0,01 bis 9 Gew.-%, bevorzugt in Mengen von 0,5 bis 1 ,6 Gew.-% bezogen auf das Gewicht des bioabbaubaren Polymers verwendet werden.
Das biologisch abbaubare Polymer wird vorzugsweise aus der gleichen Gruppe ausgewählt wie in der vorstehenden Ausführungsform.
Die verwendeten Saccharide oder deren Derivate können ausgewählt werden aus der Gruppe, bestehend aus Monosacchariden, Oligosacchariden und Polysacchariden. Bevorzugt eingesetzt werden Mischungen, die Alginsäure, Laminarin, Mannitol und Me- thylpentosanen enthalten.
Die verwendeten Proteine enthalten vorzugsweise Alanin, Arginin, Asparaginsäure, Glutaminsäure, Glycin, Leucin, Lysin, Serin, Threonin, Tyrosin, Valin und Methionin.
Die Aminosäuren sind vorzugsweise die gleichen, die in den verwendeten Proteinen enthalten sind.
Ferner können die eingesetzten Vitamine ausgewählt werden aus der Gruppe, bestehend aus Ascorbinsäure, Tocopherol, Carotin, Niacin (Vitamin B3), Phytomenadion (Vitamin K), Riboflavin, Thiamin, Folsäure, Folinsäure, Biotin, Retinol (Vitamin A), Pyridoxin (Vitamin B6) und Cyanocobalamin (Vitamin B12).
Die Metallionen können ausgewählt werden aus der Gruppe, bestehend aus Aluminium, Antimon, Barium, Bor, Calcium, Chrom, Eisen, Germanium, Gold, Kalium, Kobalt, Kupfer, Lanthan, Lithium, Magnesium, Mangan, Molybdän, Natrium, Rubidium, Selen, Silici- um, Thallium, Titan, Vanadium, Wolfram, Zink und Zinn.
Die Gegenionen der Metallionen können z.B. Fluorid, Chlorid, Bromid, lodid, Nitrat, Phosphat, Carbonat und Sulfat sein. Der Anteil der Metallionen bzw. der zugehörigen Gegenionen wird so eingestellt, dass sich bei Veraschung der mindestens zwei Komponenten bzw. Polymerzusammensetzung ein Aschegehalt im Bereich von 5-95%, bevorzugt ein Bereich von 10-60% ergibt. Für die erfindungsgemäßen Zwecke können Partikel des Materials aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen im Körngrößenbereich von 200 bis 400 μm, vorzugsweise 150 bis 300 μm, eingesetzt werden. Es können auch Partikel mit kleinen Korngrößen verwendet werden, wie 1 bis 100 μm, bevorzugt 0,1 bis 10 μm, bevorzugter 0,1 bis 7 μm, insbesondere 1 bis 5 μm (Meßmethode: Laserbeugung - Gerät: Sympatec Rhodos). Es können auch Korngrößengemische einheitlichen Materials bzw. unterschiedlichen Algenmaterials eingesetzt werden.
Um das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten in dieser Feinheit zu erhalten, kann das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten mit z.B. kommerziell erhältlichen Stiftmühlen zerkleinert werden und dann mit entsprechenden Sichtern die Feinfraktion abgetrennt werden. Ein solches Sichtverfahren von Toner für die Entwicklung elektrostatischer Bilder ist in der DE 19803107 beschrieben, wobei eine Feinfraktion mit ca. 5 μm aus dem Produkt ausgesichtet wird.
Bei diesem Verfahren kann jedoch nur der Feinanteil gewonnen werden und die Hauptfraktion wird dadurch nicht in der erfindungsgemäßen Polymerzusammensetzung eingesetzt.
Eine weitere Möglichkeit, das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten in der erforderlichen Korngröße zu erhalten, ist, das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten mittels Strahlmühlen mit statischen oder rotierenden, internen oder externen Sichtern zu zerkleinern. Strahlmühlen weisen üblicherweise eine flache zylindrische Mahlkammer auf, um die mehrere über den Umfang verteilte Strahldüsen angeordnet sind. Die Zerkleinerung beruht im wesentlichen auf einem gegenseitigen Austausch von kinetischer Energie. Im Anschluss an die durch Teilchenstoß erzielte Zerkleinerung schließt zur Mahlkammermitte eine Sichtzone an, wobei die Feinfraktion mittels statischen oder rotierenden, internen oder externen Sichtern ausgetragen wird. Die Grobfraktion verbleibt durch die Zentrifugalkräfte im Mahlraum und wird weiter zerkleinert. Ein Teil der schwer mahlbaren Komponenten kann durch geeignete Öffnungen aus dem Mahlraum ausgetragen werden. Entsprechende Strahlmühlen sind z.B. in US 1,935,344, EP 888818, EP 603602, DE 3620440 beschrieben.
Eine typische Partikelgrößenverteilung ist in Figur 1 wiedergegeben.
Die erfindungsgemäßen Formkörper können mit herkömmlichen Verfahren aus der erfindungsgemäßen Polymerzusammensetzung hergestellt werden, wobei das biologisch abbaubare Polymer und das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen zur Herstellung der Polymerzusammensetzung zunächst gemischt und sodann der Formkörper hergestellt wird.
Das kontinuierliche oder diskontinuierliches Mischen des biologisch abbaubaren Polymers und des Materials aus Meerespflanzen und/oder Schalen von Meerestieren oder der mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen, kann mit Apparaten und Verfahren erfolgen, wie in WO 96/33221 , US 5,626,810 und WO 96/33934 beschrieben.
Insbesondere bevorzugt liegt der erfindungsgemäße Formkörper in Form von Fasern, am bevorzugtesten in Form von Cellulosefasern vor. Der erfindungsgemäße Formkörper kann auch als Endlosfilament oder Membran oder in Form eines Schlauchs oder einer Flachfolie vorliegen.
Verfahren zur Herstellung der erfindungsgemäßen Cellulosefasern sind bekannt, wie das Lyocell oder NMMO -, Rayon- oder Viskose- oder das Carbamat-Verfahren.
Das Lyocell-Verfahren kann wie nachstehend beschrieben durchgeführt werden. Zur Herstellung einer verformbaren Masse sowie der erfindungsgemäßen Cellulosefasern wird eine Lösung aus Cellulose, NMMNO und Wasser dadurch hergestellt, dass zunächst eine Suspension aus Cellulose, NMMNO und Wasser gebildet wird und diese Suspension unter reduziertem Druck in einer 1 bis 20 mm dicken Schicht kontinuierlich über eine Wärmeaustauschfläche durch rotierende Elemente transportiert wird. Wäh- rend dieses Vorgangs wird solange Wasser verdampft, bis eine homogene Celluloselö- sung entstanden ist. Die so erhaltenen Celluloselösungen können eine Menge an Cellulose von 2 bis 30 Gew.-%, an NMMNO von 68 bis 82 Gew.-% und an Wasser von 2 bis 17 Gew.-% enthalten. Falls es erwünscht ist, können dieser Lösung Additive, wie anorganische Salze, anorganische Oxide, feinverteilte organische Substanzen oder Stabilisatoren, zugesetzt werden.
Der so erhaltenen Celluloselösung wird sodann das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen in Form von Pulver, Pulversuspension oder in flüssiger Form, als Extrakt oder Suspension, kontinuierlich oder diskontinuierlich zugegeben.
Verfahrensbedingt kann das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen auch nach oder während der kontinuierlichen Zerkleinerung der trockenen Cellulose, beispielsweise in Form von Algenmaterial ursprünglicher Größe, als Pulver oder hochkonzentrierte Pulversuspension zugegeben werden. Die Pulversuspension kann in Wasser oder jedem beliebigen Lösungsmittel in der gewünschten und für das Verfahren benötigten Konzentration hergestellt werden.
Des weiteren besteht auch die Möglichkeit, das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen einem Pulpprozess mit gleichzeitiger Zerkleinerung oder einem Refiner zuzuführen. Das Pulpen kann entweder in Wasser, in Laugen oder aber in dem späteren zur Auflösung der Cellulose notwendigen Lösungsmittel durchgeführt werden. Auch hier kann das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen in fester, pulverförmiger, suspensionsförmiger Art oder aber auch in flüssiger Form zugegeben werden. Die mit dem Material aus Meerespflanzen und/oder Schalen von Meerestieren oder mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen angereicherte Polymerzusammensetzung kann unter Anwesenheit eines Derivatisierungsmittels und /oder eines für den Löseprozeß bekannten Lösemittels in eine verformbare Extrusi- onsmasse übergeführt werden.
Eine weitere Möglichkeit der Zugabe des Materials aus Meerespflanzen und/oder Schalen von Meerestieren oder der mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen ist die Zugabe während eines kontinuierlich geführten Lösevorganges, wie in EP 356419 und US-PSen 5,049,690 und 5,330,567 beschrieben.
Alternativ kann die Zugabe diskontinuierlich unter Erhalt eines Master-Batch der Cellulo- selösung durchgeführt werden. Vorzugsweise wird das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen kontinuierlich zugegeben.
Das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen können in jeder anderen Stufe des Herstellungsverfahrens des Formkörpers zugesetzt werden. Beispielsweise kann es in ein Rohrleitungssystem mit entsprechender Vermischung durch darin angebrachte Statikmischerelemente bzw. Rührorganen, wie bekannte Inline Refiner oder Homogenisatoren, z.B. Geräte der Ultra Turrax, eingespeist werden. Wird das Verfahren im kontinuierlichen batch Betrieb, z.B. über eine Rührkesselkaskade, durchgeführt, so kann an der für das Verfahren optimalsten Stelle das Algenmaterial in fester, pulverförmiger, suspensionsförmiger oder flüssiger Form eingebracht werden. Die Feinverteilung kann mit bekannten auf das Verfahren abgestimmten Rührelementen erreicht werden. Je nach eingesetzter Partikelgröße kann die gebildete inkorporierte Extrusions- oder Spinnmasse vor oder nach der Inkorporation filtriert werden. Bedingt durch die Feinheit des eingesetzten Produktes kann bei Spinnverfahren mit großen Düsendurchmessern auch auf eine Filtration verzichtet werden.
Handelt es sich um sehr sensitive Spinnmassen, kann über eine Injektionsstelle das Material in geeigneter Form direkt vor der Spinndüse oder dem Extrusionswerkzeug zugeführt werden.
Eine weitere Möglichkeit ist es, falls das Algenmaterial oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen in flüssiger Form vorliegen, diese während des Spinnvorganges dem kontinuierlich gesponnenen Faden zuzuführen.
Die so erhaltene Celluloselösung wird nach herkömmlichen Verfahren, wie dem dry-jet- wet-, dem wet- spinning-, dem melt-blown-Verfahren, dem Zentrifugenspinnen, dem Trichterspinnen oder dem Trockenspinnverfahren versponnen. Bei einer Verspinnung nach dem dry-jet-wet spinning-Verfahren kann die Fadenschar im Luftspalt zwischen Düse im Fällbad auch durch Anblasung gekühlt werden. Als geeignet hat sich ein Luftspalt von 10-50 mm erwiesen, die Parameter für die Kühlluft sind vorzugsweise Lufttemperaturen von 5-35 °C mit einer relativen Feuchte bis zu 100%. Die Patentschriften US 5,589,125 und 5,939,000 sowie EP 0574870 B1 und WO 98/07911 beschreiben Spinnverfahren zur Herstellung von Cellulosefasern nach dem NMMO-Verfahren.
Gegebenenfalls werden die gebildeten Formkörper den herkömmlichen Chemiefasernachbehandlungsverfahren für Filamente oder Stapelfasern unterworfen.
Es wird eine erfindungsgemäße Cellulosefaser mit einem Material aus Meerespflanzen und/oder Schalen von Meerestieren oder mit mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen, bevorzugt mindestens drei Komponenten, insbesondere bevorzugt mindestens vier Komponenten erhalten. Neben den Spinnverfahren bieten sich auch noch Extrusionsverfahren zur Herstellung von Flachfolien, Rundfolien , Häuten (Wursthäuten) sowie Membranen an.
Das Viskose-Verfahren kann folgendermaßen durchgeführt werden. Dabei wird Zellstoff mit ca. 90 bis 92 Gew.-% -Cellulose mit wässriger NaOH behandelt. Danach wird die Cellulose durch Umsetzen mit Schwefelkohlenstoff in Cellulosexanthogenat umgewandelt und eine Viskoselösung durch Zusatz von wässriger NaOH unter ständigem Rühren erhalten. Diese Viskoselösung enthält ca. 6 Gew.-% Cellulose, 6 Gew.-% NaOH und 32 Gew.-% Schwefelkohlenstoff, bezogen auf den Cellulosegehalt. Nachdem die Suspension gerührt wurde, wird das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen, entweder als Pulver oder flüssigen Extrakt, zugesetzt. Falls es erwünscht ist, können übliche Additive, wie Tenside, Dispergiermittel oder Stabilisatoren, zugegeben werden.
Das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen können wiederum alternativ in jeder Stufe des Verfahrens zugegeben werden.
Sodann wird die so erhaltene Lösung zu Fasern gesponnen, wie beispielsweise in der US-PS-4, 144,097 beschrieben.
Das Carbamat-Verfahren kann wie nachstehend beschrieben durchgeführt werden. Dazu wird aus Zellstoff mit ca. 92 bis 95 Gew.-% α-Cellulose Cellulose-Carbamat hergestellt, wie beispielsweise in der US-PS-5,906,926 oder der DE-PS-196 35 707 beschrieben. Dabei wird Alkalicellulose aus dem eingesetzten Zellstoff durch Behandeln mit wässriger NaOH hergestellt. Nach dem Zerfasern wird die Alkalicellulose einer Reife unterworfen, und sodann wird die Natronlauge ausgewaschen. Die so aktivierte Cellulose wird mit Harnstoff und Wasser vermischt und in einen Reaktor in ein Lösungsmittel eingebracht. Das so erhaltene Gemisch wird erwärmt. Das entstandene Carbamat wird abgetrennt und daraus eine Carbamatspinnlösung hergestellt, wie in der DE-PS-197 57 958 beschrieben. Dieser Spinnlösung wird das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen zugesetzt.
Die so erhaltene Spinnlösung wird nach bekannten Verfahren zu Fasern gesponnen, und es werden erfindungsgemäße Cellulosefasern erhalten.
Es hat sich überraschend herausgestellt, dass die erfindungsgemäßen Cellulosefasern trotz des Zusatzes eines Additivs dieselben hervorragenden Eigenschaften zeigen, wie Cellulosefasern ohne Additiv, bezüglich ihrer Feinheit, Reißkraft, Reißkraftvariation, Dehnung, Nassdehnung, feinheitsbezogenen Reißkraft, feinheitsbezogenen Nassreiß- kraft, feinheitsbezogenen Schlingenreißkraft, Nassscheuerung bei Bruch, Nassscheue- rungsvariation und Nassmodul und gleichzeitig die durch das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen verliehenen positiven Eigenschaften zeigen. Dies ist insbesondere überraschend, da der Zusatz von Additiven zu Spinnmassen aus Cellulose, NMMNO und Wasser den Nachteil hat, dass sich diese bei der Verwendungstemperatur verfärben, nicht lagerstabil sind und Verunreinigungen in die cellulosischen Endprodukte einbringen.
Weiters konnte überraschend nachgewiesen werden, dass auch durch das Formgebungsverfahren mit einer wässrigen Badflüssigkeit die mit dem Material eingebauten ionischen Bestandteile im Faserverbund bleiben und während der kurzen Spinndauer nicht in das Spinnbad gelangen.
Im Anschluß an das Spinnverfahren wurde von der hergestellten Stapelfaser der pH- Wert nach der DIN Methode 54275 bestimmt. Im Vergleich zu einer nicht mit Meerespflanzen und/oder Schalen von Meerestieren inkorporierten Faser kam es bei der inkorporierten Faser zu einem pH-Wert Anstieg, was auf das Herauslösen von ionischen Bestandteilen der Faser hindeutet. Durch diese Eigenschaft, verbunden mit der Körperfeuchtigkeit, kann die Bioaktivität der Haut beim Tragen von Kleidungsstücken positiv gesundheitsfördernd beeinflusst werden. Des weiteren hat sich gezeigt, dass durch die Zugabe des Materials aus Meerespflanzen und/oder Schalen von Meerestieren oder der mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen, die Fibrillierung der Fasern, hergestellt nach dem Lyocell Verfahren, reduziert wird. Somit kann die erfindungsgemäße Faser, beispielweise eine mit Algen inkorporierte Cellulosefaser, besser in der textilen Nachverarbeitung der Faser eingesetzt werden.
Trotz des Einverleibens eines Materials aus Meerespflanzen und/oder Schalen von Meerestieren oder der mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen, das im ersten Fall als Meerespflanze reich an Eisen- und Metallkonzentrationen ist, wird vorteilhafterweise keine Zersetzung einer Spinnlösung aus Cellulose, NMMNO und Wasser beobachtet. Es hat sich im Gegenteil herausgestellt, dass sich die Zersetzungstemperatur einer solchen Spinnlösung beim Zusatz von Material aus Meerespflanzen und/oder Schalen von Meerestieren sogar erhöhte. Das bedeutet, dass trotz Anwesenheit von Metallionen keine Beeinträchtigung der Stabilität der Spinnmasse beobachtet werden konnte.
Durch die Inkorporation des Materials aus Meerespflanzen und der damit verbundenen Inkorporation von Metallen können daher auch chemische Reaktionen an dem Fasermaterial durchgeführt werden, wie lonenaustauschvorgänge durch die inkorporierten Metallionen(z.B. Erhöhung der Wasserstoffionenkonzentration im Fasermaterial) oder die Deactetylierung von Chitin.
Ein weiterer, den erfindungsgemäßen Formkörpern durch die Zugabe von Material aus Meerespflanzen und/oder Schalen von Meerestieren oder von mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen verliehener Vorteil ist der gleichmäßige Einbau der Wirkstoffe in die Fasermatrix bei unterschiedlich herstellbaren Faserquerschnitten. Weiterhin ist die Verarbeitung als Monofilament oder Endlosfilament- garn möglich. Dadurch ergibt sich ein besonders guter Einsatz von technischen Artikeln. Insbesondere, wenn der erfindungsgemäße Formkörper aus einer Polymerzusammensetzung hergestellt ist, die ausschließlich biologisch abbaubares Material enthält, ist dessen vollständige biologische Abbaubarkeit vorteilhaft.
Die erfindungsgemäßen Formkörper können als Verpackungsmaterial, Fasermaterial, non wovens , Textilverbundstoffe, Faserverbundstoffe, Faservliese, Nadelfilze, Polsterwatte, Gewebe, Gestricke, als Heimtextilien, wie Bettwäsche, als Füllstoff, Beflockungs- stoff, Krankenhaustextilien, wie Unterlagen, Windel oder Matratzen, als Stoff für Wär- medeckeήt"Schuheinlagen, sowie Wundverbände verwendet werden. Weitere Verwen- dungsmöglichkeiten sind in dem Lexikon der textilen Raumausstattung, Buch und Medien Verlag Buurmann KG, ISBN 3-98047-440-2 beschrieben.
Wenn aus dem erfindungsgemäßen Formkörper in Form von Fasern ein Gewebe hergestellt wird, dann kann dieses entweder ausschließlich aus diesen Faser bestehen oder eine zusätzliche Komponente enthalten. Diese zusätzliche Komponente kann aus der Gruppe bestehend aus Baumwolle, Lyocell, Rayon, Carbacell, Polyester, Polyamid, Celluloseacetat, Acrylat, Polypropylen oder Gemischen davon ausgewählt sein. Die Fasern mit einem Material aus Meerespflanzen und/oder Schalen von Meerestieren sind in dem Gewebe vorzugsweise in einer Menge von bis zu etwa 70 Gew.-% anwesend. Das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder die mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen sind im Gewebe vorzugsweise in einer Menge von 1 bis 10 Gew.-% anwesend.
Wenn der erfindungsgemäße Formkörper als Fasermaterial oder Gewebe vorliegt, können daraus Kleidungsstücke hergestellt werden, wie Pullis, Jacken, Kleider, Anzüge, T- Shirts, Unterwäsche oder ähnliches.
Die aus den erfindungsgemäßen Fasern oder Geweben hergestellten Kleidungsstücke haben einen hohen Tragekomfort und verbessern allgemein den gesundheitlichen Zustand des dieses Kleidungsstück tragenden Individuums. Die gesundheitsverbessernde Wirkung von Material aus Meerespflanzen ist beispielsweise in JP 1228916 beschrieben. Durch den hohen Anteil an negativen Ionen in dem Material aus Meerespflanzen und/oder Schalen von Meerestieren oder den mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Proteinen, Aminosäuren, Vitaminen und Metallionen beeinflusst dieses den pH-Wert der Haut insofern positiv, als es für alkalische und damit gesunde Bedingungen auf der Haut sorgt. Außerdem erhöht sich die Temperatur der Haut beim Tragen der erfindungsgemäßen Kleidungsstücke mehr als beim Tragen eines Kleidungsstücks aus Fasern ohne das Material aus Meerespflanzen und/oder Schalen von Meerestieren oder den mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen, wodurch eine positive Wirkung auf die Durchblutung der Haut ausgeübt wird.
Die erfindungsgemäße Faser gibt aufgrund der inkorporierten Elemente über die beim Tragen, bedingt durch die Körperfeuchtigkeit, vorhandene Flüssigkeit die Wirkstoffe an den Körper weiter. Wegen des cellulosischen Materials können so atmungsaktive Kleidungsstücke hergestellt werden. Außerdem können die Wirkstoffe, wie in der Kosmetik oder Thalassotherapie üblich, der Haut gezielt zugeführt werden. Durch die Inkorporation sind die Wirkstoffe lange in der Faser oder im Gewebe sogar auch nach häufigem Waschen vorhanden.
Die über das aus den erfindungsgemäßen Fasern bestehende Gewebe zugeführten Spurenelemente sowie Vitamine können den Körper durch die remineralisierende, stimulierende sowie wärmende Wirkung unterstützen.
Wenn die erfindungsgemäßen Faser in Form von Stapelfasern oder zerkleinerten Fila- menten vorliegt, können mit diesen Oberflächen von Trägern, wie Geweben oder Folien, beflockt werden. Dazu wird die Oberfläche des zu beflockenden Trägers mit einem Klebstoff behandelt und sodann werden die Stapelfasern oder zerkleinerten Filamente darauf aufgebracht.
Nachstehend wird die Erfindung anhand von Beispielen erläutert. Verqleichsbeispiel 1 (ohne Zumischung)
3.086 g NMMNO (59,8 %ig), 308 g MoDo, DP 500, Trocken-Gehalt 94%, 1 ,8 g Propyl- gallat (0,63% bezogen auf den Cellulosegehalt) wurden gemischt und das so erhaltene Gemisch auf 94°C erwärmt. Es wurde eine diskontinuierlich hergestellte Spinnlösung mit einem Cellulosegehalt von 11 ,8 % und einer Viskosität von 4.765 Pa • s erhalten. Die so erhaltene Spinnlösung wurde zu Fasern versponnen, wobei die folgenden Spinnbedingungen eingehalten wurden:
Temperatur des Vorratsbehälters = 90°C
Temperaturspinnblock, Düse = 80°C
Spinnbad = 4°C
Spinnbadkonzentration (Anfang) = 0 % (destilliertes Wasser)
Spinnbadkonzentration (Ende) = 5 % NMMNO
Spinnpumpe = 20,0 cirrVmin.
Düsenfilter = 19200 M/cm2
Spinn-Düse = 495 Loch 70 μm; Au/Pt
Endabzug = 25 m/min.
Die Fasern wurden auf 40 mm Stapellänge geschnitten, lösungsmittelfrei gewaschen und mit einer 10 g/l Avivage (50 % Leomin OR-50 % Leomin WG (stickstoffhaltiger Fett- säurepolyglykolester Fa. Clariant GmbH)) bei 45°C ausgerüstet bzw. die Fettauflage zur besseren Faserweiterverarbeitung aufgebracht und bei 105°C getrocknet . Im Anschluss an das Trocknen wurde eine Faserfeuchtigkeit von 11 % eingestellt. Ein zusätzlicher Bleichvorgang vor dem Trocknen wurde in diesem Fall nicht durchgeführt.
Das Spinnverhalten der gemäß diesem Beispiel erhaltenen Spinnlösung war gut. Tabelle 3: Faserdaten Vergleichsbeispiel 1
Figure imgf000023_0001
Vergleichsbeispiel 2 fohne Zumischunq: Behandlung der Filamente im Luftspalt)
Analog zu Vergleichsbeispiel 1 wurde eine Spinnlösung hergestellt. Die Spinnlösung wurde zu Fasern versponnen, wobei abweichend zu Vergleichsbeispiel 1 die Temperatur des Spinnblocks auf 95°C eingestellt wurde, sowie die Temperatur der Düse auf 105°C. Im Luftspalt zwischen Düse und Fällbad wurde die Fadenschar mit feuchter Luft (Temperatur: 20°C, Feuchte: 70%) beblasen. Die Versuchsdurchführung erfolgte ansonsten wie in Vergleichsbeispiel 1.
Tabelle 4: Faserdaten Vergleichsbeispiel 2
Figure imgf000023_0002
Beispiel 1
3.156 g NMMNO (61,4 %ig), 315 g MoDo, DP 500, Trockengehalt 94%, 1,9 g Propyl- gallat (0,63% bezogen auf den Cellulosegehalt) sowie 11 ,6 g eines Pulvers - dargestellt in Tabelle 1 - (in Summe 3,9% bezogen auf den Cellulosegehalt) wurden gemischt und auf 94°C erwärmt. Es wurde eine Spinnlösung mit einem Feststoffgehalt von 12,4 % und einer Viskosität von 6.424 Pa • s erhalten. Die so hergestellte Spinnlösung wurde wie in Vergleichsbeispiel 1 zu Fasern versponnen.
Tabelle 5: Faserdaten Beispiel 1
Figure imgf000024_0001
Beispiel 2
Analog Beispiel 1 wurden 2.951 g NMMNO (60,84 %ig), 305 g MoDo, DP 500, Trocken- Gehalt 94%, 1 ,8 g Propylgallat (0,63% bezogen auf den Cellulosegehalt) sowie 17,5 g des in Beispiel 1 verwendeten Gemisches (in Summe 6,1 % bezogen auf den Cellulosegehalt) gemischt und auf 94°C erwärmt. Es wurde eine Spinnlösung mit einem Feststoffgehalt von 12,9 % und einer Viskosität von 7.801 Pa • s erhalten. Die so hergestellte Spinnlösung wurde wie in Vergleichsbeispiel 1 zu Fasern versponnen. Tabelle 6: Faserdaten Beispie! 2
Figure imgf000025_0001
Beispiel 3
Analog Beispiel 1 wurden 2.750 g NMMNO (60,3 %ig), 305 g MoDo, DP 500, Trocken- Gehalt 94%, 1 ,7 g Propylgallat (0,63% bezogen auf den Cellulosegehalt) sowie 11,2 g eines Pulvers - dargestellt in Tabelle 2.2 - (in Summe 4,1 % bezogen auf den Cellulosegehalt) gemischt und auf 94°C erwärmt. Es wurde eine Spinnlösung mit einem Feststoffgehalt von 13 % und einer Viskosität von 6.352 Pa • s erhalten. Die so hergestellte Spinnlösung wurde wie in Vergleichsbeispiel 1 zu Fasern versponnen.
Tabelle 7: Faserdaten Beispiel 3
Figure imgf000025_0002
Beispiel 4
Analog Beispiel 3 wurden 3.345 g NMMNO (59,5 %ig), 318 g MoDo, DP 500, Trocken- Gehalt 94%, 1 ,9 g Propylgallat (0,63% bezogen auf den Cellulosegehalt) sowie 23,6 g eines Gemisches, ähnlich dem in Beispiel 3 verwendeten Gemisches (in Summe 7,9% bezogen auf den Cellulosegehalt) gemischt und auf 94°C erwärmt. Das in diesem Beispiel verwendete Gemisch unterscheidet sich zu dem in Beispiel 3 eingesetzten vor allem durch einen höheren Kaliumgehalt sowie einen geringeren Caiciumgehalt (~ 12,6% zu -35%). Es wurde eine Spinnlösung mit einem Feststoffgehalt von 12,4 % und einer Viskosität von 7.218 Pa • s erhalten. Die so hergestellte Spinnlösung wurde wie in Vergleichsbeispiel 1 zu Fasern versponnen.
Tabelle 8: Faserdaten Beispiel 4
Figure imgf000026_0001
Beispiel 5
3.204 g NMMNO (59,5 %ig), 318 g MoDo, DP 500, Trocken-Gehalt 94,4 %, 1,9 g Propylgallat (0,63 % bezogen auf den Cellulosegehalt) und 25,4 g Braunalgen (8,5 % bezogen auf den Cellulosegehalt) Type Laminaria wurden gemischt und das so erhaltene Gemisch auf 94°C erwärmt. Es wurde eine diskontinuierlich hergestellte Spinnlösung mit einem Cellulosegehalt von 13,24 % und einer Viskosität von 6.565 Pa • s erhalten. Die so erhaltene Spinnlösung wurde zu Fasern versponnen, wobei die folgenden Spinnbedingungen eingehalten wurden: Temperatur des Vorratsbehälters 90°C
Temperaturspinnblock, Düse 80°C
Spinnbad 4°C
Spinnbadkonzentration (Anfang) 0 % (destilliertes Wasser)
Spinnbadkonzentration (Ende) 7 % NMMNO
Spinnpumpe 20,0 cιm3/min.
Düsenfilter 19200 M/cm2
Spinn-Düse 495 Loch 70 μm; Au/Pt
Endabzug 30 m/min.
Die Fasern wurden auf 40 mm Stapellänge geschnitten lösungsmittelfreigewaschen und mit einer 10 g/l Avivage (50 % Leomin OR-50 % Leomin WG (stickstoffhaltiger Fettsäu- repolyglykolester Fa. Clariant GmbH)) bei 45°C ausgerüstet bzw. die Fettauflage zur besseren Faserweiterverarbeitung aufgebracht und bei 105°C getrocknet . Im Anschluß an das Trocknen wurde eine Faserfeuchtigkeit von 10% eingestellt. Ein zusätzlicher Bleichvorgang vor dem Trocknen wurde in diesem Fall nicht durchgeführt
Das Spinnverhalten der gemäß diesem Beispiel erhaltenen Spinnlösung war gut
Der nachstehenden Tabelle 9 sind die physikalischen Eigenschaften der so erhaltenen
Cellulosefasern zu entnehmen.
Tabelle 9
Figure imgf000028_0001
Die Elementaranalysen des eingesetzten Materials aus Meerespflanzen, Braunalgen Laminaria digitata und der Faserprobe mit inkorporierter Braunalge ist in der nachstehenden Tabelle 10 enthalten:
Tabelle 10
Figure imgf000029_0001
Der Figur 2 ist außerdem zu entnehmen, dass eine Spinnlösung mit 8,5 % Laminaria digitata gegenüber thermischer Zersetzung bis ca. 200°C stabil ist
Beispiel 6
3.687 g NMMNO (62 %ig), 381 g MoDo, DP 500, Trockengehalt 94,4 %, 2,27 g Propylgallat (0,63 % bezogen auf den Cellulosegehalt) und 3,6 g Braunalgenmehl Laminaria digitata (1 % bezogen aus den Cellulosegehalt) wurden gemischt und auf 94°C erwärmt. Es wurde eine Spinnlösung mit einem Cellulosegehalt von 12,78 % und einer Viskosität von 8.424 Pa • s erhalten. Die so hergestellte Spinnlösung wurde wie in Vergleichsbeispiel 1 zu Fasern versponnen.
Die physikalischen Eigenschaften der so erhaltenen Cellulosefasern sind in der nachstehenden Tabelle 11 enthalten. Tabelle n
Figure imgf000030_0001
Die so erhaltenen Fasern wurden zu einem Garn versponnen. Die Verspinnung wurde unter den Bedingungen 63% relative Luftfeuchtigkeit und 20°C mittels kardieren, strecken und verspinnen mit einer Rotorspinnmaschine zu 75 g Garn mit ca. 20 tex durchgeführt. Der Figur 3 ist zu entnehmen, dass die Spinnlösung mit 1% Laminaria digitata, bezogen auf den Cellulosegehalt bis zu einer Temperatur von ca. 200°C stabil ist .
Beispiel 7
Aus einem Gemisch aus 33 Gew.-% Cellulose, 17 Gew.-% Natronlauge und 50 Gew.-% Wasser wurde durch Zugabe von 32 % Schwefelkohlenstoff bezogen auf Cellulose ein Cellulosexanthogenat hergestellt. Im Ansdhluss wurde das Xanthogenat durch Zugabe von verdünnter Natronlauge in eine Spinnlösung mit 6 Gew.-% Cellulose, 6 Gew.-% NaOH und im wesentlichen Wasser und Reaktionsprodukte in Folge der Xanthatherstellung durch 2-stündiges Rühren übergeführt. Zu der so erhaltenen Viskoselösung wurden der Spinnlösung 0,9 Gew.-% Material aus Braunalgen zugegeben. Die Viskoselösung wurde ca. 6 Stunden unter Vakuum zum Entgasen stehengelassen und sodann filtriert. Die so erhaltene Viskoselösung hatte einen Reifegrad von 10° Hotten- roth und wurde zu Fasern versponnen. Die Spinnbedingungen waren:
Figure imgf000031_0001
Die physikalischen Eigenschaften der so erhaltenen Rayon-Fasern sind in der nachstehenden Tabelle 12 enthalten.
Tabelle 12
Figure imgf000031_0002
Beispiel 8
Es wurden gemäß Beispiel 7 Rayonfasern hergestellt, außer, dass statt 0,9 Gew.-% 0,1 Gew.-% Braunalgenmaterial der Spinnlösung zugesetzt wurden.
Die physikalischen Eigenschaften der so erhaltenen Viskose- oder Rayon-Fasern sind in Tabelle 13 enthalten. Tabelle 13
Figure imgf000032_0001
Vergleichsbeispiel 3
Als Vergleich wurde eine Viskosefaser gemäß Beispiel 7 hergestellt außer, dass kein Braunalgenmaterial zugesetzt wurde.
Die physikalischen Eigenschaften dieser Viskosefaser ist in der Tabelle 14 enthalten.
Tabelle 14
Figure imgf000032_0002
Beispiel 9
Zur Herstellung von Cellulosecarbamat wurde zuerst eine Alkalicellulose aus einem Chemiezellstoff 92- 95% Alpha-Gehalt (Fa.Ketchikan) hergestellt. Aus der gereiften Alkalicellulose (35 Gew.-% Cell; 15 Gew.-% NaOH; 50 Gew.-% Wasser) wurde die Natronlauge mit Wasser ausgewaschen. Nach dem Abpressen der so aktivierte Cellulose (70 Gew.-% Wasser) wurden 10 kg der abgepreßten aktivierten Cellulose in einem Kneter mit Harnstoff (1,5 kg) vermischt. Dabei löst sich der Harnstoff in dem in der Cellulose vorhandenen Wasser und verteilt sich gleichmäßig in der Cellulose. Diese Zellstoffpulpe wurde in einen Reaktor, der mit Rührer und Rückflußkühler ausgestattet war, und in dem o-Xylol (30 kg) vorgelegt worden ist, überführt. Der Reaktorinhalt wurde sodann ca. 2 h bei 145 °C erwärmt und daraufhin abfiltriert.
Der so erhaltene Rückstand wurde wieder in den Reaktor zurückgeführt, in dem ca. 25 kg Wasser vorgelegt wurden. Das noch am Carbamat anhaftende Xylol wurde bei 88 °C abgestrippt. Nach der Filtration wurde das Carbamat mit heißem (50 °C) und kaltem Wasser ausgewaschen. Danach wurde das Carbamat abgepreßt.
Aus 1 ,02 kg diese Carbamats wurden mit 1 ,1 kg Natronlauge (30 Gew.-%ig), 1,30 kg Wasser und mit der entsprechenden Menge Braunalgen (0,03 kg) 3,45 kg Starklösung hergestellt. Sämtliche Reaktionsteilnehmer waren vorgekühlt, die Reaktion selbst fand bei einer Temperatur von 0 °C statt. (Zusammensetzung der Starklauge: 11 ,0 Gew.-% Cell, 9,5 Gew.-% NaOH)
Aus der gekühlten Starklösung wurde durch Zugabe von 1 ,55 kg gekühlter Natronlauge (3,03 Gew.-%ig) bei einer Temperatur von 0 °C Spinnmasse (5 kg) hergestellt. Die gekühlte Spinnmasse wurde durch einen Filter mit Feinheiten von 10-40 μm. filtriert und versponnen.
Die folgenden Spinnbedingungen wurden eingehalten:
Figure imgf000034_0001
Die physikalischen Eigenschaften der so erhaltenen Carbacell -Fasern sind der Tabelle 15 zu entnehmen.
Tabelle 15
Figure imgf000034_0002
Beispiel 10
Es wurden Carbacei ,r® -Fasern wie in Beispiel 9 beschrieben, hergestellt, außer, dass statt 0,6 Gew.-% Braunalgenmehl 0,1 Gew.-% der Spinnmasse zugesetzt wurden.
Die physikalischen Eigenschaften der so erhaltenen Carbacel IIl® -Fasern sind der nachstehenden Tabelle 16 zu entnehmen. Tabelle 16
Figure imgf000035_0001
Verqleichsbeispiel 4
Es wurden Carbacel „l® -Fasern , wie in Beispiel 9 beschrieben, hergestellt, außer, dass kein Braunalgenmehl zugesetzt wurde.
Die physikalischen Eigenschaften der so erhaltenen Fasern sind der Tabelle 17 zu entnehmen.
Tabelle 17
Figure imgf000035_0002
Beispiele 11 bis 15
Es wurden Lyocell - Cellulosefasern kontinuierlich gemäß Beispiel 5 hergestellt, wobei die jeweiligen Mengen, die Bedingungen des kontinuierlich geführten Verfahrens und die physikalischen Eigenschaften der erhaltenen Fasern in der nachstehenden Tabelle 18 aufgeführt sind.
Tabelle 18
Figure imgf000037_0001
Fortsetzung Tabelle 18
Figure imgf000038_0001
Beispiel 16
Von den nach Vergleichsbeispiel 1 und 2 und nach Beispiel 1 bis 4 hergestellten Fasern wurden Kryobrüche in flüssigem Stickstoff hergestellt. Davon wurden Aufnahmen mittels eines Feldemissions-Rasterelektronenmikroskops (Joel 6330 F) nach Besputtern der Fasern mit Platin gemacht.
Die gemäß Vergleichsbeispiel 1 oder 2 nach dem Standard-Verfahren hergestellte Faser zeigt einen splittrigen Bruch, die fibrilläre Struktur ist deutlich an der Bruchfläche zu erkennen. Die starke Orientierung der Fibrillen ist an den sich abzeichnenden Längsriefen und an der stark zerklüfteten Struktur entlang der Längsachse zu sehen.
Die Aufnahmen der Fasern aus den Beispielen 1 bis 4 zeigen ein ganz anderes Bild. Deutlich zu erkennen sind die teilweise stumpfen und sauberen Bruchflächen. Weiters ist erkennbar, dass die bei der Faser des Vergleichsbeispiels 1 ausgeprägte hohe Längsorientierung bei den Beispielen 1 bis 4 weit weniger ausgeprägt ist.
Anhand der REM-Aufnahmen wurden markante Unterschiede in der Faserstruktur festgestellt. Vor allem die stark zurückgedrängte Längsorientierung zeigt, dass die erfindungsgemäße Verwendung von Material aus Meerespflanzen und/oder Schalen von Meerestieren oder von mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen bei der Herstellung von Cellulosefasern zu einer geringeren Fibrillierung der Fasern führt.
Besonders interessant und unerwartet war, dass Gemische mit unterschiedlichen Inhaltsstoffen diesen Effekt zeigen, da alle bisher bekannten Defibrillierungsmittel Vernetzungsmittel sind. Die geringere Fibrillierung ist vermutlich auf eine Veränderung der Kristallisationseigenschaften der Cellulose während des Extrudierens zurückzuführen.

Claims

Patentansprüche
1. Polymerzusammensetzung, umfassend ein biologisch abbaubares Polymer und ein Material aus Meerespflanzen und/oder Schalen von Meerestieren.
2. Polymerzusammensetzung nach Anspruch 1 , wobei das Material aus Meerespflanzen ausgewählt ist aus der Gruppe, bestehend aus Algen, Kelp, Seegras und Gemischen davon.
3. Polymerzusammensetzung nach Anspruch 2, wobei das Material aus Meerespflanzen ausgewählt ist aus der Gruppe, bestehend aus Braunalgen, Grünalgen, Rotalgen, Blaualgen und Gemischen davon.
4. Polymerzusammensetzung nach einem der vorstehenden Ansprüche, wobei das Material aus Schalen von Meerestieren ausgewählt ist aus der Gruppe, bestehend aus Meeressedimenten und zerkleinerten Schalen von Krabben, Hummern, Krebsen und Muscheln und Gemischen davon.
5. Polymerzusammensetzung nach einem der vorstehenden Ansprüche, wobei das Material aus Meerespflanzen und/oder Schalen von Meerestieren in einer Menge von 0,1 bis 30 Gew.-%, bezogen auf das Gewicht des biologisch abbaubaren Polymers, vorliegt.
6. Polymerzusammensetzung nach einem der vorstehenden Ansprüche, wobei das biologisch abbaubare Polymer Cellulose ist und das Material aus Meerespflanzen Algen sind.
7. Polymerzusammensetzung, umfassend ein biologisch abbaubares Polymer und mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen.
8. Polymerzusammensetzung nach Anspruch 7, wobei mindestens drei Komponenten anwesend sind.
9. Polymerzusammensetzung nach Anspruch 7, wobei mindestens vier Komponenten anwesend sind.
10. Polymerzusammensetzung nach einem der Ansprüche 7 bis 9, wobei die mindestens zwei Komponenten in einer Menge von 0,1 bis 30 Gew.-%, bezogen auf das Gewicht des biologisch abbaubaren Polymers, vorliegen.
11. Polymerzusammensetzung nach einem der Ansprüche 7 bis 10, wobei die mindestens zwei Komponenten ausgewählt sind aus der Gruppe, bestehend aus Sacchariden und deren Derivaten und Aminosäuren.
12. Polymerzusammensetzung nach einem der vorstehenden Ansprüche, wobei das biologisch abbaubare Polymer ausgewählt ist aus der Gruppe, bestehend aus Cellulose, modifizierter Cellulose, Latex, Eiweiß pflanzlicher sowie tierischer Herkunft, und Gemischen davon.
13. Formkörper, umfassend eine Polymerzusammensetzung nach einem der vorstehenden Ansprüche.
14. Formkörper nach Anspruch 13, wobei der Formkörper ausgewählt ist aus der Gruppe, bestehend aus Behältern, Folien, Membranen, Geweben und Fasern.
15. Formkörper nach Anspruch 14, wobei die Fasern Stapelfasern, Mono- oder End- losfilamente sind.
16. Verwendung des Formkörpers nach einem der Ansprüche 13 bis 15 als Verpackungsmaterial oder Fasermaterial.
17. Verwendung des Formkörpers nach einem der Ansprüche 13 bis 15 in Form von Fasermaterial als Mischungskomponente zur Herstellung von Garnen.
18. Verwendung des Formkörpers nach einem der Ansprüche 13 bis 15 in Form von Fasermaterial zur Herstellung von Vliesstoffen oder Geweben.
19. Verwendung des Formkörpers nach einem der Ansprüche 13 bis 15 in Form von Fasermaterial zur Herstellung von Vliesstoffen oder Geweben, wobei in dem Vliesstoff oder Gewebe zusätzlich eine Komponente ausgewählt aus der Gruppe, bestehend aus Baumwolle, Lyocell, Rayon, Carbacell, Polyester, Polyamid, Cel- luloseacetat, Acrylat, Polypropylen oder Gemischen davon anwesend ist.
20. Verwendung des Formkörpers nach Anspruch 19, wobei 0,1 bis 30 Gew.-% der zusätzlichen Komponente enthalten sind.
21. Gewebe, umfassend einen Formkörper nach einem der Ansprüche 13 bis 15.
22. Vliesstoff, umfassend einen Formkörper nach einem der Ansprüche 13 bis 15.
23. Kleidungsstück, umfassend einen Formkörper nach einem der Ansprüche 13 oder 15.
24. Verfahren zur Herstellung eines Formkörpers nach einem der Ansprüche 13 bis 15, umfassend die folgenden Schritte:
(A) kontinuierliches oder diskontinuierliches Mischen des biologisch abbaubaren Polymers und des Materials aus Meerespflanzen und/oder Schalen von Meerestieren oder der mindestens zwei Komponenten, ausgewählt aus der Gruppe, bestehend aus Sacchariden und deren Derivaten, Proteinen, Aminosäuren, Vitaminen und Metallionen
(B) Herstellen einer verformbaren Masse,
(C) Verarbeiten der in (B) erhaltenen Masse zu einem Formkörper, und
(D) Nachbehandeln des hergestellten Formkörpers.
25. Verfahren nach Anspruch 24, wobei ein Formkörper nach einem der Ansprüche 13 bis 15 hergestellt wird.
PCT/EP2001/000132 2000-02-21 2001-01-08 Polymerzusammensetzung und daraus hergestellter formkörper WO2001062844A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CA002399954A CA2399954C (en) 2000-02-21 2001-01-08 Polymer composition and molded articles produced therefrom
EP01953632A EP1259564B1 (de) 2000-02-21 2001-01-08 Polymerzusammensetzung und daraus hergestellter formkörper
AU2001272079A AU2001272079A1 (en) 2000-02-21 2001-01-08 Polymer compositions and moulded bodies made therefrom
BR0108585-9A BR0108585A (pt) 2000-02-21 2001-01-08 Composição de polìmero e artigos moldados produzidos a partir da mesma
DE50104685T DE50104685D1 (de) 2000-02-21 2001-01-08 Polymerzusammensetzung und daraus hergestellter formkörper
AT01953632T ATE283897T1 (de) 2000-02-21 2001-01-08 Polymerzusammensetzung und daraus hergestellter formkörper
AU42426/01A AU4242601A (en) 2000-02-21 2001-02-20 Cellulose shaped body and method for the production thereof
EP01915282A EP1257598A1 (de) 2000-02-21 2001-02-20 Celluloseformkörper und verfahren zu dessen herstellung
PCT/EP2001/001906 WO2001062845A1 (de) 2000-02-21 2001-02-20 Celluloseformkörper und verfahren zu dessen herstellung
NO20023945A NO330413B1 (no) 2000-02-21 2002-08-20 Polymersammensetninger og stopte artikler fremstilt derav
US11/567,021 US7951237B2 (en) 2000-02-21 2006-12-05 Polymer composition and molded articles produced therefrom
US13/049,468 US8496748B2 (en) 2000-02-21 2011-03-16 Polymer composition and molded articles produced therefrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10007794.3 2000-02-21
DE10007794A DE10007794A1 (de) 2000-02-21 2000-02-21 Polymerzusammensetzung und daraus hergestellter Formkörper

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10204108 A-371-Of-International 2001-01-08
US11/567,021 Division US7951237B2 (en) 2000-02-21 2006-12-05 Polymer composition and molded articles produced therefrom

Publications (1)

Publication Number Publication Date
WO2001062844A1 true WO2001062844A1 (de) 2001-08-30

Family

ID=7631672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/000132 WO2001062844A1 (de) 2000-02-21 2001-01-08 Polymerzusammensetzung und daraus hergestellter formkörper

Country Status (17)

Country Link
US (3) US20030186611A1 (de)
EP (1) EP1259564B1 (de)
KR (1) KR100524170B1 (de)
CN (2) CN100376625C (de)
AT (1) ATE283897T1 (de)
AU (1) AU2001272079A1 (de)
BR (1) BR0108585A (de)
CA (1) CA2399954C (de)
DE (2) DE10007794A1 (de)
ES (1) ES2228913T3 (de)
MY (1) MY124897A (de)
NO (1) NO330413B1 (de)
PT (1) PT1259564E (de)
RU (1) RU2255945C2 (de)
TW (1) TWI292416B (de)
WO (1) WO2001062844A1 (de)
ZA (1) ZA200206366B (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354914A1 (de) * 2002-04-12 2003-10-22 Stefan Zikeli Polymerzusammensetzung mit einem biologisch abbaubaren Polymer und Material, Extrakte(n) und/oder Inhaltstoffe(n) aus Kräutern der Familia Asteraceae
WO2017186725A1 (de) * 2016-04-28 2017-11-02 Lenzing Aktiengesellschaft Modifizierte viskosefaser
WO2021073779A1 (de) 2019-10-15 2021-04-22 Smartfiber Ag Verfahren zur herstellung einer cellulosischen funktionsfaser mit hoher ionenaustauschkapazität, cellulosische funktionsfaser, cellulosische funktionsfaser umfassendes textilerzeugnis, sowie cellulosische funktionsfaser oder textilerzeugnis umfassendes kleidungsstück oder möbelstück

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140772A1 (de) * 2001-08-20 2003-03-13 Zimmer Ag Verfahren zur Entfernung von Schwermetallen aus schwermetallhaltigen Medien unter Verwendung eines Lyocell-Formkörpers sowie Lyocell-Formkörper mit adsorbierten Schwermetallen und deren Verwendung
DE10223174A1 (de) * 2002-05-24 2003-12-11 Fraunhofer Ges Forschung Verfahren zur Herstellung von Cellulosecarbamatformkörpern
AT411769B (de) * 2002-07-12 2004-05-25 Chemiefaser Lenzing Ag Verfahren zur herstellung cellulosischer formkörper
US7459015B2 (en) * 2004-04-16 2008-12-02 Birla Research Institute For Applied Sciences Process for the preparation of a cellulose solution for spinning of fibres, filaments or films therefrom
KR100575378B1 (ko) * 2004-11-10 2006-05-02 주식회사 효성 셀룰로오스 섬유의 제조방법
DE102004061179A1 (de) * 2004-12-16 2006-06-22 Ofa Bamberg Gmbh Elastischer Faden mit Wirkstoffe enthaltendem Umwindungsfaden
MX2008014052A (es) * 2006-05-01 2009-01-28 Bnt Force Biodegradable Polyme Composición de polímero biodegradable novedosa, útil para la preparacion de plástico biodegradable y proceso para la preparación de dicha composición.
WO2008050945A1 (en) * 2006-10-24 2008-05-02 Korea Institute Of Energy Research Seaweed fiber-reinforced biocomposite and method for producing the same using high-temperature grinding
KR100891279B1 (ko) * 2007-08-29 2009-04-16 (주)유비티 코리아 이중표면구조의 다기능성 섬유
AT505787B1 (de) * 2007-09-18 2009-06-15 Chemiefaser Lenzing Ag Lyocellfaser
DE102007054702B4 (de) * 2007-11-14 2018-10-18 Smartpolymer Gmbh Verfahren zur Herstellung von cellulosischen Formkörpern, cellulosischer Formkörper und dessen Verwendung
AT506268B1 (de) 2008-01-11 2014-08-15 Chemiefaser Lenzing Ag Mikrofaser
AT506334B1 (de) 2008-01-22 2010-12-15 Chemiefaser Lenzing Ag Verfahren zur behandlung cellulosischer formkörper
CA2751352C (en) * 2008-09-11 2017-01-31 Albany International Corp. Permeable belt for the manufacture of tissue towel and nonwovens
AT507387A1 (de) * 2008-09-22 2010-04-15 Chemiefaser Lenzing Ag Verwendung von lyocellfasern sowie lyocellfasern enthaltenden artikeln
AT507386A1 (de) * 2008-09-22 2010-04-15 Chemiefaser Lenzing Ag Verfahren zur behandlung cellulosischer formkörper
JP2012511640A (ja) * 2008-12-10 2012-05-24 テイジン・アラミド・ゲーエムベーハー メリヤス生地
GB0907323D0 (en) * 2009-04-29 2009-06-10 Dynea Oy Composite material comprising crosslinkable resin of proteinous material
KR20130007581A (ko) 2010-03-25 2013-01-18 렌찡 악티엔게젤샤프트 셀룰로스 섬유의 용도
EP2556186B1 (de) * 2010-04-08 2017-01-04 LIST Holding AG Verfahren zur herstellung eines produktes
US9765205B2 (en) 2011-08-24 2017-09-19 Algix, Llc Macrophyte-based bioplastic
CN102532569B (zh) * 2012-01-20 2013-10-02 甘肃华羚生物技术研究中心 牦牛乳酪蛋白可食膜的制备方法
CN102643609B (zh) * 2012-05-04 2014-11-26 舟山市普陀丰达环保节能科技有限公司 海水环境中使用的水性防腐涂料
US8574400B1 (en) 2012-05-25 2013-11-05 Kimberly-Clark Worldwide, Inc. Tissue comprising macroalgae
US9499941B2 (en) 2012-05-25 2016-11-22 Kimberly-Clark Worldwide, Inc. High strength macroalgae pulps
JP6306589B2 (ja) * 2012-08-30 2018-04-04 ピーティーティー グローバル ケミカル パブリック カンパニー リミテッド バイオベースポリマー添加剤、バイオベースポリマー添加剤を調製するための方法、および前記バイオベースポリマー添加剤を含んでいる生分解性ポリマー組成物
CN103590124B (zh) * 2012-12-27 2015-07-15 青岛海芬海洋生物科技有限公司 浒苔再生纤维素纤维的制备方法
CN103628165B (zh) * 2012-12-27 2016-03-30 青岛海芬海洋生物科技有限公司 浒苔蛋白纤维的制备方法
AT514136A1 (de) 2013-04-05 2014-10-15 Lenzing Akiengesellschaft Polysaccharidfaser mit erhöhtem Fibrillationsvermögen und Verfahren zu ihrer Herstellung
AT514137A1 (de) 2013-04-05 2014-10-15 Lenzing Akiengesellschaft Polysaccharidfaser und Verfahren zu ihrer Herstellung
EP3008243A4 (de) 2013-06-10 2017-03-15 Kimberly-Clark Worldwide, Inc. Geschichtete gewebestrukturen mit makroalgen
AT514475B1 (de) * 2013-06-17 2016-11-15 Chemiefaser Lenzing Ag Polysaccharidfaser und Verfahren zu ihrer Herstellung
AT514468A1 (de) 2013-06-17 2015-01-15 Lenzing Akiengesellschaft Hochsaugfähige Polysaccharidfaser und ihre Verwendung
AT514474B1 (de) 2013-06-18 2016-02-15 Chemiefaser Lenzing Ag Polysaccharidfaser und Verfahren zu ihrer Herstellung
DE102014004258A1 (de) 2014-03-19 2015-09-24 Bauerfeind Ag Fasern und Garne mit Okklusionsfunktion
KR20170049559A (ko) * 2014-10-10 2017-05-10 더 프록터 앤드 갬블 캄파니 용해성 섬유질 구조체 및 이의 제조 방법
EP3034612A1 (de) 2014-12-16 2016-06-22 Greenaltech, S.L. Chitin- und Chitosanherstellungsverfahren
CL2015001932A1 (es) 2015-07-07 2015-11-20 Jose Zaldivar Larrain Francisco Material que comprende una mezcla de algas pardas, material celulósico y adhesivo, y proceso para su elaboración.
DE102015217382A1 (de) 2015-09-11 2017-03-16 Bauerfeind Ag Polymerzusammensetzungen, Fasern und Garne mit Petrolatum und/oder ölsäurehaltigen Ölen
WO2018115577A1 (en) * 2016-12-23 2018-06-28 Spinnova Oy A fibrous monofilament
US20200048794A1 (en) * 2017-02-15 2020-02-13 Ecco Sko A/S Method and apparatus for manufacturing a staple fiber based on natural protein fiber, a raw wool based on the staple fiber, a fibrous yarn made of the staple fiber, a non-woven material made of the staple fiber and an item comprising the staple fiber.
TWI611054B (zh) * 2017-03-28 2018-01-11 柯漢哲 酒糟與貝殼炭化粉粒複合纖維之製法
US11434347B2 (en) 2017-04-05 2022-09-06 Alterwaste Ltd Processing method and products produced thereby
CN108796646A (zh) * 2017-05-04 2018-11-13 杜邦兴达(无锡)单丝有限公司 包含水溶性活性成分的单丝
US20200277712A1 (en) * 2017-11-15 2020-09-03 Algalife Ltd Fibers comprising cultivated microalgae, method for manufacturing the same, and yarns, fabrics and garments comprising such fiber.
US10752772B1 (en) * 2018-03-28 2020-08-25 United States Of America As Represented By The Secretary Of The Navy Marine biodegradable composition for 3-D printing
CN109023712B (zh) * 2018-08-22 2021-12-14 深圳市鑫鸿佳科技有限公司 一种食品级无纺布及其制备方法
KR102141932B1 (ko) * 2018-11-16 2020-08-06 주식회사 마린이노베이션 해조류 펄프를 이용한 몰드 제조 방법
CN111253732A (zh) * 2018-11-30 2020-06-09 中科纺织研究院(青岛)有限公司 一种植物源聚酰胺母粒及其制备方法和应用
EP3990899A1 (de) * 2019-06-28 2022-05-04 Aalto University Foundation sr Quantitative raman-spektroskopie
EP3771755A1 (de) * 2019-08-02 2021-02-03 Lenzing Aktiengesellschaft Verfahren zur herstellung von lyocell-stapelfasern
CN110773004B (zh) * 2019-11-05 2023-01-13 万华化学集团股份有限公司 一种大通量反渗透膜及其制备方法和应用
KR102230774B1 (ko) * 2019-11-19 2021-03-23 주식회사 테코플러스 상온 복합분해 첨가제를 포함하는 발포플라스틱 조성물 및 이로부터 제조되는 발포플라스틱
US20210172095A1 (en) * 2019-12-10 2021-06-10 Inman Mills Flame Retardant Fiber with Preservative and Products Formed Therefrom
CN111621261A (zh) * 2019-12-13 2020-09-04 上栗县金山镇中心小学 一种蓝藻蛋白基环保胶黏剂及其制备方法
CN111690264A (zh) * 2020-07-22 2020-09-22 江苏悦达包装储运有限公司 一种可降解包装袋
IT202100024311A1 (it) * 2021-09-23 2023-03-23 De Ra Do S R L Metodo e relativo impianto finalizzato alla preparazione di contenitori per ittico e attrezzi da pesca in bioplastica ottenuta da materiale di scarto ittico

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269059A (ja) * 1990-03-19 1991-11-29 Sumitomo Metal Ind Ltd 重合体組成物
US5205863A (en) * 1991-11-14 1993-04-27 International Communications & Energy Agricultural biodegradable plastics
FR2685679A1 (fr) * 1991-12-31 1993-07-02 Troadec Jean Rene Composition filmogene pour l'elaboration d'un film essentiellement biodegradable.
DE19618271A1 (de) * 1996-05-07 1997-11-13 Edmund Zimmermann Verfahren zur Herstellung von Formkörpern aus fasrigen Pflanzenteilen und/oder Naturfasern und entsprechende Formkörper

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1935344A (en) * 1931-06-16 1933-11-14 American Pulverizing Corp Camd Impact pulverizer
NL302327A (de) * 1963-02-20 1900-01-01
US3367926A (en) * 1964-03-25 1968-02-06 Dow Chemical Co Modification of crystalline structure of crystallizable high polymers
US4055702A (en) * 1974-03-29 1977-10-25 M & T Chemicals Inc. Additive-containing fibers
US4246221A (en) * 1979-03-02 1981-01-20 Akzona Incorporated Process for shaped cellulose article prepared from a solution containing cellulose dissolved in a tertiary amine N-oxide solvent
US4144097A (en) * 1978-04-19 1979-03-13 Atlantic Richfield Company Luminescent solar collector
US4333484A (en) * 1978-08-02 1982-06-08 Philip Morris Incorporated Modified cellulosic smoking material and method for its preparation
IE49193B1 (en) * 1979-04-18 1985-08-21 Courtaulds Ltd Process for making a non-woven alginate fabric useful as a wound dressing
AU546556B2 (en) * 1981-08-18 1985-09-05 Courtaulds Plc Alginate fibre material and process
US5059654A (en) * 1983-02-14 1991-10-22 Cuno Inc. Affinity matrices of modified polysaccharide supports
US4663163A (en) * 1983-02-14 1987-05-05 Hou Kenneth C Modified polysaccharide supports
US4791063A (en) * 1983-02-14 1988-12-13 Cuno Incorporated Polyionene transformed modified polysaccharide supports
US4606824A (en) * 1984-10-26 1986-08-19 Chaokang Chu Modified cellulose separation matrix
DE3620440A1 (de) 1986-06-18 1987-12-23 Indutec Industrietechnik Gmbh Zweistufiges unter druck betriebenes gegenstrahl-zerkleinerungsverfahren zur vergroesserung der oberflaeche feinkoerniger bis koerniger schuettgueter
JPH0761239B1 (de) * 1986-10-22 1995-07-05
JPH01228916A (ja) 1988-03-09 1989-09-12 Satomitsu Kitamura 海藻入シート
AT392972B (de) 1988-08-16 1991-07-25 Chemiefaser Lenzing Ag Verfahren zur herstellung von loesungen von cellulose sowie einrichtung zur durchfuehrung des verfahrens
US5330567A (en) * 1988-08-16 1994-07-19 Lenzing Aktiengesellschaft Process and arrangement for preparing a solution of cellulose
US4908137A (en) * 1989-04-11 1990-03-13 Cuno, Incorporated Heavy metal removal process
US5045210A (en) * 1989-04-11 1991-09-03 Cuno, Incorporated Heavy metal removal process
DE3925356A1 (de) * 1989-07-31 1991-02-07 Degussa N,n'-disubstituierte und n,n,n'-/n,n',n'-trisubstituierte thioharnstoffe und verfahren zur herstellung (ii)
US5219646A (en) * 1990-05-11 1993-06-15 E. I. Du Pont De Nemours And Company Polyester blends and their use in compostable products such as disposable diapers
DE4027786A1 (de) 1990-09-04 1992-04-09 Marcel Huder Thermoplastisch verarbeitbare komponentengemische zur herstellung von nutzungs-, gebrauchs- und verpackungsgegenstaenden
GB9122318D0 (en) 1991-10-21 1991-12-04 Courtaulds Plc Treatment of elongate members
ATA53792A (de) * 1992-03-17 1995-02-15 Chemiefaser Lenzing Ag Verfahren zur herstellung cellulosischer formkörper, vorrichtung zur durchführung des verfahrens sowie verwendung einer spinnvorrichtung
IT1262021B (it) * 1992-04-16 1996-06-18 Favini Cartiera Spa Procedimento per la produzione di carta da alghe marine e carta cosi' ottenuta
DE4308524C1 (de) 1992-06-16 1994-09-22 Thueringisches Inst Textil Verfahren zur Herstellung von Cellulosefasern und -filamenten nach dem Trocken-Naßextrusionsverfahren
CN1027599C (zh) 1992-07-14 1995-02-08 纺织工业部纺织科学研究院 生体功能性医用无纺布的制法及其制品
US5244945A (en) * 1992-07-20 1993-09-14 International Communications & Energy Synthesis of plastics from recycled paper and sugar cane
JP3082886B2 (ja) 1992-11-16 2000-08-28 日本電信電話株式会社 蓄電型温度差電池発電システム
DE4243438C2 (de) 1992-12-22 1996-06-05 Hosokawa Alpine Ag Verfahren und Vorrichtung zur Fließbett-Strahlmahlung
ZA943387B (en) * 1993-05-24 1995-02-17 Courtaulds Fibres Holdings Ltd Spinning cell
US5288318A (en) * 1993-07-01 1994-02-22 The United States Of America As Represented By The Secretary Of The Army Cellulose acetate and starch based biodegradable injection molded plastics compositions and methods of manufacture
AT400581B (de) * 1993-10-19 1996-01-25 Chemiefaser Lenzing Ag Verfahren zur herstellung von lösungen von cellulose
FR2716887B1 (fr) * 1994-03-01 1996-04-26 Atochem Elf Sa Polymères renforcés de microfibrilles de cellulose, latex, poudres, films, joncs correspondants, et leurs applications.
EP0683251B1 (de) * 1994-05-17 1998-07-08 DyStar Textilfarben GmbH &amp; Co. Deutschland KG Aminierung von cellulosischen Synthesefasern
JP2555545B2 (ja) 1994-06-22 1996-11-20 工業技術院長 セルロース・キトサン系成形品の製造方法
DE4422118A1 (de) 1994-06-24 1996-01-04 Merck Patent Gmbh Präparationen von monodispersen kugelförmigen Oxidpartikeln
US5766746A (en) * 1994-11-07 1998-06-16 Lenzing Aktiengesellschaft Flame retardant non-woven textile article
US5759569A (en) * 1995-01-10 1998-06-02 The Procter & Gamble Company Biodegradable articles made from certain trans-polymers and blends thereof with other biodegradable components
AT402410B (de) 1995-04-19 1997-05-26 Chemiefaser Lenzing Ag Verfahren zur herstellung einer cellulosesuspension
AT409130B (de) 1995-04-25 2002-05-27 Chemiefaser Lenzing Ag Verwendung einer vorrichtung zum halten und abgeben einer homogenen cellulosesuspension
DE19544097C1 (de) 1995-11-27 1997-07-10 Thueringisches Inst Textil Verfahren zur Herstellung von Formkörpern aus Polysaccharidmischungen, daraus hergestellte Formkörper sowie deren Verwendung
JP3696327B2 (ja) * 1996-03-22 2005-09-14 パイオニア株式会社 情報記録装置及び方法並びに情報再生装置及び方法
CA2264180C (en) 1996-08-23 2009-09-01 Mengkui Luo Lyocell fibers and process for their preparation
DE19635707C1 (de) 1996-09-03 1998-04-02 Inst Textil & Faserforschung Verfahren zur Herstellung von Cellulosecarbamat
DE19803107A1 (de) 1998-01-28 1999-07-29 Hosokawa Alpine Ag Verfahren zur Windsichtung von Toner
FR2757173A1 (fr) 1996-12-17 1998-06-19 Warner Lambert Co Compositions polymeres d'origine non-animale pour la formation de films
JPH10231241A (ja) * 1997-02-19 1998-09-02 T T S Gijutsu Kenkyusho:Kk 服用に水を必要としない錠剤、並びにドライエマルションおよびその製造方法
DE19715617A1 (de) * 1997-04-15 1998-10-22 Zimmer Ag Verfahren für die modifizierte Herstellung von Cellulosecarbamat
AU7456098A (en) * 1997-05-13 1998-12-08 Young Keun Hong Aqueous cellulose solution and rayon fiber produced from the same
AT404846B (de) 1997-06-16 1999-03-25 Chemiefaser Lenzing Ag Zusammensetzung enthaltend feine feststoffteilchen
DE19728382C2 (de) 1997-07-03 2003-03-13 Hosokawa Alpine Ag & Co Verfahren und Vorrichtung zur Fließbett-Strahlmahlung
AT2256U1 (de) 1997-10-15 1998-07-27 Chemiefaser Lenzing Ag Verfahren zur behandlung von cellulosischen formkörpern
DE19757958A1 (de) 1997-12-24 1999-07-01 Lurgi Zimmer Ag Verfahren zur Herstellung einer Cellulosecarbamatlösung
DE19849185C2 (de) 1998-10-26 2000-08-17 Buna Sow Leuna Olefinverb Gmbh Verfahren zur Herstellung von kompostierbaren Stärkeschaumstoffteilen mit erhöhter Feuchtebeständigkeit
JP2002069475A (ja) 2000-08-24 2002-03-08 Ikeda Shokken Kk ドコサヘキサエン酸高含有油脂の製造方法
US20040109853A1 (en) * 2002-09-09 2004-06-10 Reactive Surfaces, Ltd. Biological active coating components, coatings, and coated surfaces
US7123280B2 (en) * 2003-09-29 2006-10-17 Konica Minolta Photo Imaging, Inc. Thermal transfer image receiving sheet and image forming method using the same
US7651715B2 (en) * 2004-05-03 2010-01-26 Leprino Foods Company Blended cheeses and methods for making such cheeses
US7579033B2 (en) * 2004-05-03 2009-08-25 Leprino Foods Company Methods for making soft or firm/semi-hard ripened and unripened cheese and cheeses prepared by such methods
US7585537B2 (en) * 2004-05-03 2009-09-08 Leprino Foods Company Cheese and methods of making such cheese

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03269059A (ja) * 1990-03-19 1991-11-29 Sumitomo Metal Ind Ltd 重合体組成物
US5205863A (en) * 1991-11-14 1993-04-27 International Communications & Energy Agricultural biodegradable plastics
FR2685679A1 (fr) * 1991-12-31 1993-07-02 Troadec Jean Rene Composition filmogene pour l'elaboration d'un film essentiellement biodegradable.
DE19618271A1 (de) * 1996-05-07 1997-11-13 Edmund Zimmermann Verfahren zur Herstellung von Formkörpern aus fasrigen Pflanzenteilen und/oder Naturfasern und entsprechende Formkörper

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 076 (C - 0914) 25 February 1992 (1992-02-25) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1354914A1 (de) * 2002-04-12 2003-10-22 Stefan Zikeli Polymerzusammensetzung mit einem biologisch abbaubaren Polymer und Material, Extrakte(n) und/oder Inhaltstoffe(n) aus Kräutern der Familia Asteraceae
WO2017186725A1 (de) * 2016-04-28 2017-11-02 Lenzing Aktiengesellschaft Modifizierte viskosefaser
WO2021073779A1 (de) 2019-10-15 2021-04-22 Smartfiber Ag Verfahren zur herstellung einer cellulosischen funktionsfaser mit hoher ionenaustauschkapazität, cellulosische funktionsfaser, cellulosische funktionsfaser umfassendes textilerzeugnis, sowie cellulosische funktionsfaser oder textilerzeugnis umfassendes kleidungsstück oder möbelstück

Also Published As

Publication number Publication date
ES2228913T3 (es) 2005-04-16
KR100524170B1 (ko) 2005-10-25
NO20023945D0 (no) 2002-08-20
AU2001272079A1 (en) 2001-09-03
EP1259564B1 (de) 2004-12-01
US20110200776A1 (en) 2011-08-18
CN1246374C (zh) 2006-03-22
ATE283897T1 (de) 2004-12-15
CN1404504A (zh) 2003-03-19
US20030186611A1 (en) 2003-10-02
US20070161311A1 (en) 2007-07-12
DE10007794A1 (de) 2001-06-28
US7951237B2 (en) 2011-05-31
MY124897A (en) 2006-07-31
CN100376625C (zh) 2008-03-26
ZA200206366B (en) 2005-02-23
RU2255945C2 (ru) 2005-07-10
TWI292416B (en) 2008-01-11
CN1660926A (zh) 2005-08-31
US8496748B2 (en) 2013-07-30
PT1259564E (pt) 2005-04-29
BR0108585A (pt) 2003-04-29
RU2002125112A (ru) 2004-01-10
CA2399954C (en) 2007-10-16
DE50104685D1 (de) 2005-01-05
EP1259564A1 (de) 2002-11-27
CA2399954A1 (en) 2001-08-30
NO20023945L (no) 2002-10-21
KR20020087403A (ko) 2002-11-22
NO330413B1 (no) 2011-04-11

Similar Documents

Publication Publication Date Title
EP1259564B1 (de) Polymerzusammensetzung und daraus hergestellter formkörper
US8741197B2 (en) Antimicrobial, antifungal and antiviral rayon fibers
DE10140772A1 (de) Verfahren zur Entfernung von Schwermetallen aus schwermetallhaltigen Medien unter Verwendung eines Lyocell-Formkörpers sowie Lyocell-Formkörper mit adsorbierten Schwermetallen und deren Verwendung
DD142898A5 (de) Geformter zelluloseartikel,hergestellt aus einer zellulosehaltigen loesung
EP2191046A1 (de) Lyocellfaser
EP3740605A1 (de) Verfahren zum wiederverwerten von cellulose aufweisendem textilmaterial
EP0789790A1 (de) Formkörper aus regenerierter cellulose und verfahren zu seiner herstellung
EP1537261B1 (de) Verfahren zur herstellung cellulosischer formkorper
CN1099477C (zh) 含甲壳质及其衍生物的抗菌纤维及制造方法
DE10037983B4 (de) Polymerzusammensetzung und daraus hergestellter Formkörper mit einem Gehalt an Alkaloid
WO2019138092A1 (de) Wiederverwendung von nichtlöslichen partikeln aus einem cellulose aufweisenden ausgangsstoff
DE10216273A1 (de) Polymerzusammensetzung mit einem biologisch abbaubaren Polymer und einem Material aus Kräutern der Familia Asteraceae und/oder dessen Extrakten und/oder einem oder mehrerer Inhaltsstoffe davon
AT10525U1 (de) Verfahren zur herstellung von cellulosischen formkörpern unter verwendung von bambuszellstoff und formkörper aus diesem verfahren
DE102004045063A1 (de) Polymerzusammensetzung und daraus hergestellter Formkörper
AT502766A1 (de) Polymerzusammensetzung und daraus hergestellter formkörper
EP3868929A1 (de) Formkörper der in cellulose inkorporiertes elastan aufweist und herstellungsverfahren
EP3511447A1 (de) Funktionalisierung von fremdstoffen in lyocell-verfahren
WO2021074319A1 (de) Verfahren zur herstellung einer cellulosischen funktionsfaser mit hoher ionenaustauschkapazität, cellulosische funktionsfaser, cellulosische funktionsfaser umfassendes textilerzeugnis, sowie cellulosische funktionsfaser oder textilerzeugnis umfassendes kleidungsstück oder möbelstück
EP1257598A1 (de) Celluloseformkörper und verfahren zu dessen herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002/06366

Country of ref document: ZA

Ref document number: 200206366

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2399954

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/1264/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001953632

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018054234

Country of ref document: CN

Ref document number: 1020027010884

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2002 2002125112

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020027010884

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10204108

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001953632

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2001953632

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020027010884

Country of ref document: KR