WO2001067498A1 - Method for producing a field effect transistor with side wall oxidation - Google Patents

Method for producing a field effect transistor with side wall oxidation Download PDF

Info

Publication number
WO2001067498A1
WO2001067498A1 PCT/DE2001/000628 DE0100628W WO0167498A1 WO 2001067498 A1 WO2001067498 A1 WO 2001067498A1 DE 0100628 W DE0100628 W DE 0100628W WO 0167498 A1 WO0167498 A1 WO 0167498A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulation layer
gate
semiconductor substrate
layer
effect transistor
Prior art date
Application number
PCT/DE2001/000628
Other languages
German (de)
French (fr)
Inventor
Wolfram Langheinrich
Helmut Wurzer
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2001067498A1 publication Critical patent/WO2001067498A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • H01L21/2652Through-implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Definitions

  • a gate insulation layer 2 and a gate layer 3 are stacked on a semiconductor substrate 1, a gate insulation layer 2 and a gate layer 3 are stacked. Source and drain regions S and D formed in the semiconductor substrate 1 and approaching the gate insulation layer 2 thus result in a field effect transistor as used, for example, in DRAM, flash, etc. memory cells. So-called spacers or auxiliary layers SP are usually used on the side walls of the gate insulation layer 2 and the gate layer 3 for lateral insulation or for forming heavily doped source and drain regions.
  • the disadvantage of such a conventional field effect transistor is, in particular, the sharp edge or corner of the gate layer 3 that occurs in the gate insulation layer 2.
  • FIG. 2 shows a simplified sectional view of such a conventional field effect transistor with side wall oxidation.
  • reference numeral 1 again designates a semiconductor substrate, reference numeral 2 a gate insulation layer and reference numeral 3 a gate layer.
  • source and drain regions S and D there are in turn source and drain regions S and D.
  • the invention is therefore based on the object of providing a method for producing a field-effect transistor with sidewall oxidation, in which field-effect transistors with excellent charge-holding properties can be formed in a simple and inexpensive manner.
  • N, N 2 or a nitride is preferably incorporated as an insulation layer growth inhibitor into the surface of the semiconductor substrate or of the gate stack. Since such implant materials are already implemented in standard processes, the manufacturing process can be implemented without additional effort.
  • the implantation of the insulation layer growth inhibitor is preferably carried out perpendicular to the surface of the semiconductor substrate, as a result of which a uniformly thick insulation layer is obtained on the side walls of the gate stack. In this way, so-called bird beaks or birds peaks are formed both on the source and on the drain side, as a result of which the electric field strengths can be significantly reduced or standardized.
  • the insulation layer growth inhibitors can also be implanted obliquely to the surface of the semiconductor substrate, as a result of which only one side wall of the gate stack is exposed to strong side wall oxidation and the other side wall undergoes relatively little oxidation. In this way, a leakage current that occurs only on the source or drain side can be selectively reduced.
  • a gate insulation layer can only be partially removed and remain as a residual insulation layer on the semiconductor substrate surface, which in turn results in an optimal adaptation to existing manufacturing processes and in particular enables the implementation of a so-called embedded or embedded process.
  • Figure 1 is a simplified sectional view of a
  • Figure 2 is a simplified sectional view of a
  • FIGS. 3A to 3G simplified sectional views to illustrate the individual process steps for producing the field effect transistor according to the invention with sidewall oxidation according to a first exemplary embodiment
  • FIGS. 4A and 4B show simplified sectional views to illustrate essential method steps for producing the field effect transistor according to the invention with sidewall oxidation according to a second exemplary embodiment.
  • FIGS. 3A to 3G show simplified sectional views to illustrate the respective manufacturing steps of the field effect transistor according to the invention with side wall oxidation according to a first exemplary embodiment, the same reference numerals representing the same or similar elements or layers as in FIGS. 1 and 2 and a detailed description being omitted below.
  • a semiconductor substrate 1 is first prepared, which can preferably consist of silicon, SiGe, SiC, SOI, GaAs or another III-V semiconductor.
  • a gate insulation layer 2 is formed over the entire surface of the semiconductor substrate 1, thermal oxidation of the semiconductor substrate 1 or a chemical deposition method (CVD) preferably being used.
  • the gate insulation layer 2 preferably consists of an SiO 2 layer, which can also be used as a tunnel oxide layer, in particular when realizing FLASH memories.
  • an electrically conductive gate layer 3 is formed over the entire area on the gate insulation layer 2 in a subsequent method step and covered with a mask layer 4.
  • the mask layer 4 preferably consists LO LO to t HH
  • Scattering oxide SO which is essentially determined by the vertical thickness d v of the thermal insulation layer 5. Particularly in modern MOS transistor circuits with very small structure sizes, such thin and adjustable scattering oxides are of great importance even after a gate stack has been formed.
  • the thermal formation of the thermal insulation layer 5 is preferably carried out using a conventional thermal oxidation process, a polysilicon of the gate layer 3 preferably being converted into SiO 2 of the thermal insulation layer 5. Accordingly, in the preferred exemplary embodiment according to FIG. 3, the gate insulation layer 2, the mask layer 4 and the thermal insulation layer 5 consist of SiO 2 .
  • FIGS. 4A and 4B show simplified sectional views to illustrate the essential production steps of the field effect transistor according to a second exemplary embodiment according to the invention, reference numerals again representing the same or similar elements or layers as in FIGS. 3A to 3G and a repeated description being omitted below.
  • FIGS. 4A and 4B only the process steps essential for the invention of the implantation of insulation layer growth inhibitors x and the thermal formation of the thermal insulation layer 5 are shown, as they correspond to FIGS. 3D and 3F, but further process steps as in FIGS. 3A to 3C , 3E and 3D are to be used analogously.

Abstract

The invention relates to a method for producing a field effect transistor with side wall oxidation. According to said method, isolation layers (dh, dv) of differing thicknesses are formed, in particular by the implantation of isolation layer growth-inhibitors (x) and by the subsequent thermal formation of a thermal isolation layer (5) on the surface of a semiconductor substrate (1) and on the side walls of a gate stack (GS). In particular, the reliability of a gate isolation layer (2) and a retention characteristic of the field effect transistor are substantially improved by said method.

Description

> ) t t P> P1 > ) tt P> P 1
U1 o in σ cn σ (JlU1 o in σ cn σ (Jl
to ω rr er rr M rr rrto ω rr er rr M rr rr
Ω P- Φ Φ Φ P- P- Φ ff Ω to P P P 0 PΩ P- Φ Φ Φ P- P- Φ ff Ω to P P P 0 P
P> P" Ω φ P c rr ff < < CD 0-P> P "Ω φ P c rr ff <<CD 0-
P- 0 O ≤ Φ Φ p- α> Ω P P φ P CD o P- tr P- Φ ff P rr ff ^ rr P >fl ro 0 Φ Φ IQ Φ π n tr ρ> P P-P- 0 O ≤ Φ Φ p- α> Ω P P φ P CD o P- tr P- Φ ff P rr ff ^ rr P> fl ro 0 Φ Φ IQ Φ π n tr ρ> P P-
P- Φ f Φ Φ D- ff Φ P Φ P ΦP- Φ f Φ Φ D- ff Φ P Φ P Φ
Φ ro IQ Mi c H,Φ ro IQ Mi c H,
P- p Φ •fl Hi P HiP- p Φ • fl Hi P Hi
P P Φ Φ cn φ Φ ro 0= • X Pf ri vPP Φ Φ cn φ Φ ro 0 = • X Pf ri v
4 3 D- rr Ω cn rr4 3 D- rr Ω cn rr
3 ^ CQ rr ff Ω rr α. P- rr P φ P4 P ro P- IQ JDs PJ P) 3 ^ CQ rr ff Ω rr α. P- rr P φ P 4 P ro P- IQ JDs PJ P )
H Ω 0 P P Hl Φ PH Ω 0 P P Hl Φ P
P) ff P cn P= Ω cnP ) ff P cn P = Ω cn
H Φ Φ P- p P- rr P H P cn rr cnH Φ Φ P- p P- rr P H P cn rr cn
P- rr Q. Φ rr ua •n N P> 0 P- H O fD α> Φ P P φ rr PP- rr Q. Φ rr and others • n N P> 0 P- H O fD α> Φ P P φ rr P
P P1 P- φ . cnPP 1 P- φ. cn
P^ IQ CL P LQP ^ IQ CL P LQ
**1 ro rr Φ φ P) ro Hi P " P P tr Hi Φ P> P- Hi p* ro H- M P P tQ ro ; P Ω P LQ P** 1 ro rr Φ φ P ) ro Hi P "PP tr Hi Φ P> P- Hi p * ro H- MPP tQ ro; P Ω P LQ P
P rr Φ " φ PP rr Φ "φ P
0 rt Φ tr P P0 rt Φ tr P P
P P < P Φ cn J Φ P- fP P <P Φ cn J Φ P- f
PJ P P er ra PJ o CD Φ N TJ Φ tr P- P- S P- P p ro ω P • Φ PPJ P P er ra PJ o CD Φ N TJ Φ tr P- P- S P- P p ro ω P • Φ P
• rr Hi (- IQ Φ• rr Hi (- IQ Φ
0 ) « cn cn p0 ) «cn cn p
M P Ω P» ≤ tr tM P Ω P »≤ tr t
P cn ff P Φ P> 0= rr rr P- trP cn ff P Φ P> 0 = rr rr P- tr
*n N Φ Φ co rr rr* n N Φ Φ co rr rr
P- 0 P φ Φ Φ Q P CO Φ PP- 0 P φ Φ Φ Q P CO Φ P
0 Ω Φ P- H-0 Ω Φ P- H-
P < ff P- 3 IQ HP <ff P- 3 IQ H
CD P P Φ 3CD P P Φ 3
P P- Φ > P OP P- Φ> P O
PJ rr P P co t-1 PJ rr PP co t- 1
P- P rr Hi Ω P) cn P) Ω rr tr P rr P P) H J rr φ Hi P) P- P rr Hi Ω P ) cn P) Ω rr tr P rr PP ) HJ rr φ Hi P )
1
Figure imgf000003_0001
1
Figure imgf000003_0001
auf einem Halbleitersubstrat 1 eine Gate-Isolationsschicht 2 und eine Gateschicht 3 stapeiförmig ausgebildet. Im Halbleitersubstrat 1 ausgebildete und an die Gate-Isolationsschicht 2 heranreichende Source- und Draingebiete S und D ergeben so- mit einen Feldeffektransistor, wie er beispielsweise in DRAM- , Flash-, usw. Speicherzellen eingesetzt wird. Zur seitlichen Isolierung bzw. zum Ausbilden von stark dotierten Source- und Draingebieten werden üblicherweise an den Seitenwänden der Gate-Isolationsschicht 2 und der Gateschicht 3 sogenannte Spacer bzw. Hilfsschichten SP verwendet. Nachteilig ist jedoch bei einem derartigen herkömmlichen Feldeffekttransistor insbesondere die bei der Gate-Isolationsschicht 2 auftretende scharfe Kante bzw. Ecke der Gateschicht 3. Genauer gesagt werden beim Anlegen von üblichen Betriebsspannungen, wie sie beispielsweise in einer Speichermatrix zum Auswählen von Zeilen und Spalten verwendet werden, aufgrund der scharfkantigen Form sehr hohe Feldstärken E zwischen der Gateschicht 3 und den Source- und Draingebieten S und D ausgebildet, wodurch sich Leckströme im Feldeffekttransistor ergeben und somit die Ladungshaltezeiten von Speicherzellen verschlechtert werden. Insbesondere ein sogenannter GIDL-Leckstrom (gate induced drain leakage) wird dadurch verursacht.on a semiconductor substrate 1, a gate insulation layer 2 and a gate layer 3 are stacked. Source and drain regions S and D formed in the semiconductor substrate 1 and approaching the gate insulation layer 2 thus result in a field effect transistor as used, for example, in DRAM, flash, etc. memory cells. So-called spacers or auxiliary layers SP are usually used on the side walls of the gate insulation layer 2 and the gate layer 3 for lateral insulation or for forming heavily doped source and drain regions. However, the disadvantage of such a conventional field effect transistor is, in particular, the sharp edge or corner of the gate layer 3 that occurs in the gate insulation layer 2. More specifically, when applying normal operating voltages, such as those used in a memory matrix for selecting rows and columns, Due to the sharp-edged shape, very high field strengths E are formed between the gate layer 3 and the source and drain regions S and D, as a result of which leakage currents result in the field effect transistor and thus the charge holding times of memory cells are deteriorated. In particular, this causes a so-called GIDL leakage current (gate induced drain leakage).
Zur Vermeidung von derartigen Leckströmen, die sich insbeson- dere aus den hohen Feldstärken E an den Kanten der Gateschicht 3 ergeben, wird üblicherweise eine sogenannte Seiten- wandoxidation durchgeführt, wodurch im wesentlichen die scharfen Kanten bzw. Ecken der Gateschicht 3 abgerundet werden und folglich die Feldstärken E vereinheitlicht bzw. ver- ringert werden.To avoid such leakage currents, which result in particular from the high field strengths E at the edges of the gate layer 3, a so-called sidewall oxidation is usually carried out, which essentially rounds off the sharp edges or corners of the gate layer 3 and consequently the Field strengths E are standardized or reduced.
Figur 2 zeigt eine vereinfachte Schnittansicht eines derartigen herkömmlichen Feldeffekttransistors mit Seitenwandoxida- tion. In Figur 2 bezeichnen wiederum die Bezugszeichen 1 ein Halbleitersubstrat, das Bezugszeichen 2 eine Gate-Isolationsschicht und das Bezugszeichen 3 eine Gateschicht. Im Halbleitersubstrat 1 sind wiederum Source- und Draingebiete S und D
Figure imgf000005_0001
cn ö tr P rr P CQ to > tr O 0 ^
FIG. 2 shows a simplified sectional view of such a conventional field effect transistor with side wall oxidation. In FIG. 2, reference numeral 1 again designates a semiconductor substrate, reference numeral 2 a gate insulation layer and reference numeral 3 a gate layer. In the semiconductor substrate 1 there are in turn source and drain regions S and D.
Figure imgf000005_0001
cn ö tr P rr P CQ to> tr O 0 ^
Ω O φ PJ= o Φ P Ω Φ P- P 0 tr tr rr P rr P Ch tr P- rr φ P P PΩ O φ PJ = o Φ P Ω Φ P- P 0 tr tr rr P rr P Ch tr P- rr φ P P P
H, P- 0 rt ξ ß P- rr Φ rr Ω Ω 0H, P- 0 rt ξ ß P- rr Φ rr Ω Ω 0
P- Φ 3 • Φ 0 Hi Ω Φ P ff tr 0 φ P P ff P= ff P P h LQ LQ er tQ Φ 2 α to tr rt Z J Φ P H trP- Φ 3 • Φ 0 Hi Ω Φ P ff tr 0 φ P P ff P = ff P P h LQ LQ er tQ Φ 2 α to tr rt Z J Φ P H tr
Φ Φ P- J P- rr P J rr cn Φ trΦ Φ P- J P- rr P J rr cn Φ tr
P tr P Ω LQ P rr cn P P- μ- p MP tr P Ω LQ P rr cn P P- μ- p M
Φ P- tr Φ P) - P- <! **i Hi 0 HiΦ P- tr Φ P ) - P- <! ** i Hi 0 Hi
P Φ Φ rr P rr ) 0 φ LQ P Hi rr P Φ 0 tr P- X Φ Φ LQ ΦP Φ Φ rr P rr ) 0 φ LQ P Hi rr P Φ 0 tr P- X Φ Φ LQ Φ
< Φ tr P- α er ω 3 P- P Qh r tr X<Φ tr P- α er ω 3 P- P Qh r tr X
Φ 0= p-1 P= Φ Ω ü P, rr φ P- rtΦ 0 = p- 1 P = Φ Ω ü P, rr φ P- rt
P < tr P- P P tr Pi Hi Hi φ H cn Φ rr LQ P Hi P> rr Φ Hi rr Hi <P <tr P- P P tr Pi Hi Hi φ H cn Φ rr LQ P Hi P> rr Φ Hi rr Hi <
Ω P Φ φ P- P P- P Φ φ Hi Φ ff D er P PJ= φ rr O P X Φ PΩ P Φ φ P- P P- P Φ φ Hi Φ ff T he P PJ = φ rr O P X Φ P
(- P) Φ n CΛ> P- P rr rt er X 0 φ P H P- c tr fD CD rt N rr P(- P ) Φ n CΛ> P- P rr rt er X 0 φ PH P- c tr fD CD rt N rr P
Ω Hi Φ P Φ P P Φ 3 P £ Φ cn ff Φ 3 P i rt P J PJ P P) rr P Ό μ- & rr P P ΩΩ Hi Φ P Φ PP Φ 3 P £ Φ cn ff Φ 3 P i rt PJ PJ PP ) rr P Ό μ- & rr PP Ω
Φ φ φ P φ u cn ω 3 ffΦ φ φ P φ u cn ω 3 ff
P P P CD Φ P P- P rr α P- P= Φ rr P P) φ Hi Ω P P P) PJ cn rr LQ PPPP CD Φ P P- P rr α P- P = Φ rr PP ) φ Hi Ω PPP ) PJ cn rr LQ P
Φ Pi rr 3 P- tr φ J P ff rr P- co •Φ Pi rr 3 P- tr φ J P ff rr P- co •
P P P - P Ch Φ 0 1 φ cn P 2 P- rr Hi Φ P P 13 P NP P P - P Ch Φ 0 1 φ cn P 2 P- rr Hi Φ P P 13 P N
3 O tr φ φ £ ff ff P cn P P3 O tr φ φ £ ff ff P cn P P
P 3 P tr P 0 Φ P- Φ P P Pi PP 3 P tr P 0 Φ P- Φ P P Pi P
P P- pi P rt P P P) ) Ω P) P P- pi P rt PPP )) Ω P )
N rr CQ CD Φ 0 3 Ch Ω P ff tr <Nrr CQ CD Φ 0 3 Ch Ω P ff tr <
X Φ rr P P P- & P- ff cn φ Φ ) £ rr P Ω cn P- Ω rt LQ l P PX Φ rr PP P- & P- ff cn φ Φ ) £ rr P Ω cn P- Ω rt LQ l PP
P P- ~ Hi H ff Ω φ X P Φ tr 3P P- ~ Hi H ff Ω φ X P Φ tr 3
P> φ Φ CD ff Φ i: tr P φ ΦP> φ Φ CD ff Φ i: tr P φ Φ
Pi er P O 3 φ co LQ P- 0 P P- φ Φ Φ Ό ) 0 t-3 \→ P rr αPi er PO 3 φ co LQ P- 0 P P- φ Φ Φ Ό ) 0 t-3 \ → P rr α
P- P P- P p) P O 0 ff P- LQ € P Q 0 o rr X P Φ Ω φ ff Φ a φ 3 N P- P. P- Ω P tr rr 1 i LQP- P P- P p ) PO 0 ff P- LQ € PQ 0 o rr XP Φ Ω φ ff Φ a φ 3 N P- P. P- Ω P tr rr 1 i LQ
P φ O P- p. Φ 3 Ω ΦP φ O P- p. Φ 3 Ω Φ
CD Pi 3 ta P φ fl) O C Φ P <;CD Pi 3 ta P φ fl ) OC Φ P <;
Ω P- tn rr P- Φ ff 0 tr Φ P- P- CQ Hi P- P φ P P- CD PΩ P- tn rr P- Φ ff 0 tr Φ P- P- CQ Hi P- P φ P P- CD P
PJ P cn Ω P= O P cn Pi φPJ P cn Ω P = O P cn Pi φ
Hi oHi o
< CQ rr ff P P P- O Ξ φ rr LQ er α o tr P- P): P Φ Φ Φ<CQ rr ff P P P- O Ξ φ rr LQ er α o tr P- P): P Φ Φ Φ
Φ P CD ι_J. n o. P- α OJ ff . P PΦ P CD ι_J. n o. P- α OJ ff. P P
P tr CD φ ff fD fD P rr P P- PJ P) φ O i rr P P PJ P- Φ 3 P PP tr CD φ ff fD fD P rr P P- PJ P ) φ O i rr PP PJ P- Φ 3 PP
< P P O Φ P- O P P rr<P P O Φ P- O P P rr
Φ P. Ω P ^ X P P P. rr P-Φ P. Ω P ^ X P P P. rr P-
P er φ tr P P) LQ tn J Φ LQP er φ tr PP ) LQ tn J Φ LQ
0 Φ P fü o P" φ Ch P Φ0 Φ P for o P "φ Ch P Φ
P l φ s P N tr tr Φ P) PP l φ s PN tr tr Φ P ) P
1 P- 1 φ > P- P P1 & p. Φ CΛ) Φ φ LQ rr1 P- 1 φ> P- PP 1 & p. Φ CΛ ) Φ φ LQ rr
P- P- rr Φ P- φ Φ
Figure imgf000005_0002
P- P- rr Φ P- φ Φ
Figure imgf000005_0002
sacht werden. Ferner ist ein derartiger herkömmlicher Her- stellungsprozess außerordentlich aufwendig.become gentle. Furthermore, such a conventional manufacturing process is extremely complex.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Herstellung eines Feldeffekttransistors mit Seitenwand- oxidation zu schaffen, bei dem auf einfache und kostengünstige Weise Feldeffekttransistoren mit hervorragenden Ladungs- halteeigenschaften ausgebildet werden können.The invention is therefore based on the object of providing a method for producing a field-effect transistor with sidewall oxidation, in which field-effect transistors with excellent charge-holding properties can be formed in a simple and inexpensive manner.
Erfindungsgemäß wird diese Aufgabe durch die Maßnahmen des Patentanspruchs 1 gelöst.According to the invention, this object is achieved by the measures of claim 1.
Insbesondere durch das Implantieren von Isolationsschicht- Wachstumshemmern in die Oberfläche des Halbleitersubstrats bzw. des Gate-Stapels und ein nachfolgendes thermisches Ausbilden einer Thermo-Isolationsschicht , erhält man einen selbstjustierenden Prozeß, bei dem auf besonders einfache und kostengünstige Weise eine starke Seitenwandoxidation sowie eine schwache Oxidation der Halbleitersubstratoberfläche er- folgt.In particular, by implanting insulation layer growth inhibitors into the surface of the semiconductor substrate or the gate stack and subsequently thermally forming a thermal insulation layer, a self-adjusting process is obtained in which strong side wall oxidation and weak oxidation are carried out in a particularly simple and inexpensive manner of the semiconductor substrate surface takes place.
Vorzugsweise wird als Isolationsschicht-Wachstumshemmer N, N2 oder ein Nitrid in die Oberfläche des Halbleitersubstrats bzw. des Gate-Stapels eingebaut. Da derartige Implantations- Stoffe bereits in Standardprozessen implementiert sind, kann das Herstellungsverfahren ohne zusätzlichen Mehraufwand realisiert werden.N, N 2 or a nitride is preferably incorporated as an insulation layer growth inhibitor into the surface of the semiconductor substrate or of the gate stack. Since such implant materials are already implemented in standard processes, the manufacturing process can be implemented without additional effort.
Das Implantieren der Isolationsschicht-Wachstumshemmer wird vorzugsweise senkrecht zur Oberfläche des Halbleitersubstrats durchgeführt, wodurch man eine gleichmäßig dicke Isolationsschicht an den Seitenwänden des Gate-Stapels erhält. Auf diese Weise werden sowohl source- als auch drainseitig sogenannte Vogelschnäbel bzw. birds peaks ausgebildet, wodurch sich die elektrischen Feldstärken wesentlich verringern bzw. vereinheitlichen lassen. Das Implantieren der Isolationsschicht-Wachstumshemmer kann jedoch auch schräg zur Oberfläche des Halbleitersubstrats erfolgen, wodurch lediglich eine Seitenwand des Gate-Stapels einer starken Seitenwandoxidation ausgesetzt ist und die wei- tere Seitenwand eine relativ geringe Oxidation erfährt. Auf diese Weise kann selektiv ein lediglich auf Source- oder Drainseite auftretender Leckstrom gezielt verringert werden.The implantation of the insulation layer growth inhibitor is preferably carried out perpendicular to the surface of the semiconductor substrate, as a result of which a uniformly thick insulation layer is obtained on the side walls of the gate stack. In this way, so-called bird beaks or birds peaks are formed both on the source and on the drain side, as a result of which the electric field strengths can be significantly reduced or standardized. However, the insulation layer growth inhibitors can also be implanted obliquely to the surface of the semiconductor substrate, as a result of which only one side wall of the gate stack is exposed to strong side wall oxidation and the other side wall undergoes relatively little oxidation. In this way, a leakage current that occurs only on the source or drain side can be selectively reduced.
Ferner kann eine schwach dotierte Source- und Drainimplanta- tion vor oder nach der Implantation der Isolationsschicht -Furthermore, a weakly doped source and drain implantation before or after the implantation of the insulation layer -
Wachstumshemmer durchgeführt werden, wodurch sich eine optimale Anpassung an einen jeweiligen Prozeß ergibt. In gleicher Weise kann eine Gate-Isolationsschicht nur zum Teil entfernt werden und als Rest-Isolationsschicht auf der Halbleitersub- stratoberflache verbleiben, wodurch sich wiederum eine optimale Anpassung an bereits existierende Herstellungsprozesse ergibt und insbesondere die Realisierung eines sogenannten eingebetteten bzw. embedded Prozesses ermöglicht wird.Growth inhibitors are carried out, which results in an optimal adaptation to a particular process. In the same way, a gate insulation layer can only be partially removed and remain as a residual insulation layer on the semiconductor substrate surface, which in turn results in an optimal adaptation to existing manufacturing processes and in particular enables the implementation of a so-called embedded or embedded process.
In den weiteren Unteransprüchen sind weitere vorteilhafte Ausgestaltungen der Erfindung gekennzeichnet.Further advantageous refinements of the invention are characterized in the further subclaims.
Die Erfindung wird nachstehend anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnung näher beschrieben.The invention is described below using exemplary embodiments with reference to the drawing.
Es zeigen:Show it:
Figur 1 eine vereinfachte Schnittansicht einesFigure 1 is a simplified sectional view of a
Feldeffekttransistors gemäß dem Stand der Technik;Field effect transistor according to the prior art;
Figur 2 eine vereinfachte Schnittansicht einesFigure 2 is a simplified sectional view of a
Feldeffekttransistors mit Seitenwandoxidation gemäß dem Stand der Technik;Field effect transistor with sidewall oxidation according to the prior art;
Figuren 3A bis 3G vereinfachte Schnittansichten zur Veranschaulichung der einzelnen Verfahrens- schritte zur Herstellung des erfindungs- gemäßen Feldeffekttransistors mit Seiten- wandoxidation gemäß einem ersten Ausführungsbeispiel; undFIGS. 3A to 3G simplified sectional views to illustrate the individual process steps for producing the field effect transistor according to the invention with sidewall oxidation according to a first exemplary embodiment; and
Figuren 4A und 4B vereinfachte Schnittansichten zur Veranschaulichung von wesentlichen Verfahrens- schritten zur Herstellung des erfindungs- gemäßen Feldeffekttransistors mit Seiten- wandoxidation gemäß einem zweiten Ausführungsbeispiel .FIGS. 4A and 4B show simplified sectional views to illustrate essential method steps for producing the field effect transistor according to the invention with sidewall oxidation according to a second exemplary embodiment.
Figuren 3A bis 3G zeigen vereinfachte Schnittansichten zur Veranschaulichung von jeweiligen Herstellungsschritten des erfindungsgemäßen Feldeffekttransistors mit Seitenwandoxidation gemäß einem ersten Ausführungsbeispiel, wobei gleiche Bezugszeichen gleiche oder ähnliche Elemente bzw. Schichten wie in den Figuren 1 und 2 darstellen und auf eine detaillierte Beschreibung nachfolgend verzichtet wird.FIGS. 3A to 3G show simplified sectional views to illustrate the respective manufacturing steps of the field effect transistor according to the invention with side wall oxidation according to a first exemplary embodiment, the same reference numerals representing the same or similar elements or layers as in FIGS. 1 and 2 and a detailed description being omitted below.
Gemäß Figur 3A wird zunächst ein Halbleitersubstrat 1 vorbereitet, das vorzugsweise aus Silizium, SiGe, SiC, SOI, GaAs oder einem sonstigen III-V-Halbleiter bestehen kann.According to FIG. 3A, a semiconductor substrate 1 is first prepared, which can preferably consist of silicon, SiGe, SiC, SOI, GaAs or another III-V semiconductor.
Gemäß Figur 3B wird in einem nachfolgenden Verfahrensschritt eine Gate-Isolationsschicht 2 ganzflächig auf dem Halbleitersubstrat 1 ausgebildet, wobei vorzugsweise eine thermische Oxidation des Halbleitersubstrats 1 oder ein chemisches Abscheideverfahren (CVD) verwendet wird. Vorzugsweise besteht die Gate-Isolationsschicht 2 aus einer Si02-Schicht , die insbesondere bei der Realisierung von FLASH-Speichern auch als Tunneloxidschicht verwendet werden kann.According to FIG. 3B, in a subsequent method step, a gate insulation layer 2 is formed over the entire surface of the semiconductor substrate 1, thermal oxidation of the semiconductor substrate 1 or a chemical deposition method (CVD) preferably being used. The gate insulation layer 2 preferably consists of an SiO 2 layer, which can also be used as a tunnel oxide layer, in particular when realizing FLASH memories.
Gemäß Figur 3C wird in einem nachfolgenden Verfahrensschritt eine elektrisch leitende Gateschicht 3 ganzflächig auf der Gate-Isolationsschicht 2 ausgebildet und mit einer Maskenschicht 4 bedeckt. Die Maskenschicht 4 besteht vorzugsweise LO LO to t H HAccording to FIG. 3C, an electrically conductive gate layer 3 is formed over the entire area on the gate insulation layer 2 in a subsequent method step and covered with a mask layer 4. The mask layer 4 preferably consists LO LO to t HH
LΠ O LΠ o LΠ σ LΠLΠ O LΠ o LΠ σ LΠ
Figure imgf000009_0001
Figure imgf000009_0001
L LO to to H HL LO to to H H
LΠ O LΠ o LΠ O LΠLΠ O LΠ o LΠ O LΠ
Figure imgf000010_0001
Figure imgf000010_0001
Figure imgf000010_0002
Figure imgf000010_0002
t t μ> Ht t μ> H
Lπ o LΠ LΠ O LΠLπ o LΠ LΠ O LΠ
Figure imgf000011_0001
Figure imgf000011_0001
ten Source- und Draingebiete S und D im Halbleitersubstrat 1 ergeben.ten source and drain regions S and D in the semiconductor substrate 1 result.
Wesentlich für die vorliegende Erfindung ist jedoch nunmehr die selektiv einstellbare Größe eines dafür notwendigenWhat is essential for the present invention, however, is the selectively adjustable size of a necessary one
Streuoxids SO, das im wesentlichen durch die vertikale Dicke dv der Thermo-Isolationsschicht 5 bestimmt wird. Insbesondere in modernen MOS-Transistorschaltungen mit sehr geringen Strukturgrößen sind derartige dünne und einstellbare Streu- oxide auch nach einer Gate-Stapel-Ausbildung von großer Bedeutung.Scattering oxide SO, which is essentially determined by the vertical thickness d v of the thermal insulation layer 5. Particularly in modern MOS transistor circuits with very small structure sizes, such thin and adjustable scattering oxides are of great importance even after a gate stack has been formed.
Vorzugsweise wird das thermische Ausbilden der Thermo-Isolationsschicht 5 mit einem herkömmlichen thermischen Oxidati- onsverfahren durchgeführt, wobei vorzugsweise ein Polysilizi- um der Gateschicht 3 in Si02 der Thermo-Isolationsschicht 5 umgewandelt wird. Demzufolge bestehen im bevorzugten Ausführungsbeispiel gemäß Figur 3 die Gate-Isolationsschicht 2, die Maskenschicht 4 und die Thermo-Isolationsschicht 5 aus Si02.The thermal formation of the thermal insulation layer 5 is preferably carried out using a conventional thermal oxidation process, a polysilicon of the gate layer 3 preferably being converted into SiO 2 of the thermal insulation layer 5. Accordingly, in the preferred exemplary embodiment according to FIG. 3, the gate insulation layer 2, the mask layer 4 and the thermal insulation layer 5 consist of SiO 2 .
Figuren 4A und 4B zeigen vereinfachte Schnittansichten zur Veranschaulichung von wesentlichen Herstellungsschritten des Feldeffekttransistors gemäß einem zweiten erfindungsgemäßen Ausführungsbeispiel, wobei wiederum gleich Bezugszeichen gleiche oder ähnliche Elemente bzw. Schichten wie in Figur 3A bis 3G darstellen und auf eine wiederholte Beschreibung nachfolgend verzichtet wird.FIGS. 4A and 4B show simplified sectional views to illustrate the essential production steps of the field effect transistor according to a second exemplary embodiment according to the invention, reference numerals again representing the same or similar elements or layers as in FIGS. 3A to 3G and a repeated description being omitted below.
Gemäß Figuren 4A und 4B sind lediglich die für die Erfindung wesentlichen Verfahrensschritte der Implantation von Isolationsschicht-Wachstumshemmern x und dem thermischen Ausbilden der Thermo-Isolationsschicht 5 dargestellt, wie sie den Figuren 3D und 3F entsprechen, wobei jedoch weitere Verfahrensschritte wie in Figuren 3A bis 3C, 3E und 3D analog anzuwen- den sind. t t H HAccording to FIGS. 4A and 4B, only the process steps essential for the invention of the implantation of insulation layer growth inhibitors x and the thermal formation of the thermal insulation layer 5 are shown, as they correspond to FIGS. 3D and 3F, but further process steps as in FIGS. 3A to 3C , 3E and 3D are to be used analogously. tt HH
LΠ o LΠ O LΠ o LΠLΠ o LΠ O LΠ o LΠ
Figure imgf000013_0001
Figure imgf000013_0001
t to H Ht to H H
LΠ o LΠ o LΠ o LΠLΠ o LΠ o LΠ o LΠ
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000014_0002
Figure imgf000014_0002

Claims

Patentansprüche claims
1. Verfahren zur Herstellung eines Feldeffekttransistors mit Seitenwandoxidation bestehend aus den Schritten: a) Ausbilden einer Gate-Isoiationsschicht (2) auf einem Halbleitersubstrat (1) ; b) Ausbilden einer Gateschicht (3) auf der Gate-Isolationsschicht (2) ; c) Strukturieren der Gateschicht (3) und der Gate-Isola- tionsschicht (2) zum Ausbilden eines Gate-Stapels (GS) ; d) Implantieren von Isolationsschicht-Wachstumshemmern (x) ; e) Ausbilden einer Thermo-Isolationsschicht (5) an der 0- berflache des Halbleitersubstrats (1) und des Gate-Stapels1. A method for producing a field effect transistor with sidewall oxidation, comprising the steps of: a) forming a gate insulation layer (2) on a semiconductor substrate (1); b) forming a gate layer (3) on the gate insulation layer (2); c) structuring the gate layer (3) and the gate insulation layer (2) to form a gate stack (GS); d) implanting isolation layer growth inhibitors (x); e) Forming a thermal insulation layer (5) on the 0- surface of the semiconductor substrate (1) and the gate stack
(GS) ; und f) Ausbilden von Source- und Draingebieten (S, D) im Halbleitersubstrat (1) .(GS); and f) forming source and drain regions (S, D) in the semiconductor substrate (1).
2. Verfahren nach Patentanspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die im Schritt d) implantierten Isolationsschicht-Wachstumshemmer (x) N, N2 oder Nitride aufweisen.2. The method as claimed in claim 1, that the insulation layer growth inhibitors (x) implanted in step d) have N, N2 or nitrides.
3. Verfahren nach Patentanspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass das Im- plantieren der Isolationsschicht-Wachstumshemmer (x) in3. The method according to claim 1 or 2, which also means that the implantation of the insulating layer growth inhibitor (x) in
Schritt d) senkrecht zur Oberfläche des Halbleitersubstrats (1) erfolgt.Step d) is carried out perpendicular to the surface of the semiconductor substrate (1).
4. Verfahren nach Patentanspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass das Implantieren der Isolationsschicht-Wachstumshemmer (x) in Schritt d) schräg zur Oberfläche des Halbleitersubstrats (1) erfolgt .4. The method according to claim 1 or 2, so that the insulation layer growth inhibitor (x) is implanted in step d) obliquely to the surface of the semiconductor substrate (1).
5. Verfahren nach einem der Patentansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, dass das Implantieren der Isolationsschicht-Wachstumshemmer (x) in Schritt d) unmittelbar in das Halbleitersubstrat (1) und/oder in eine Rest-Isolationsschicht (RI) der Gate- Isolationsschicht (2) erfolgt.5. The method according to any one of claims 1 to 4, characterized in that the implantation of the insulation layer growth inhibitor (x) in Step d) takes place directly in the semiconductor substrate (1) and / or in a residual insulation layer (RI) of the gate insulation layer (2).
6. Verfahren- nach einem der Patentansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, dass das Ausbilden der Thermo-Isolationsschicht (5) in Schritt e) eine thermische Seitenwandoxidation darstellt.6. The method according to one of the claims 1 to 5, that the formation of the thermal insulation layer (5) in step e) represents a thermal sidewall oxidation.
7. Verfahren nach einem der Patentansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, dass das Ausbilden der Source- und Draingebiete (S, D) in Schritt f) einen Schritt zum Ausbilden von stark und schwach dotierten Source- und Draingebieten aufweist, wobei das Ausbilden der schwach dotierten Source- und Draingebiete (S, D) vor oder nach dem Implantieren der Isolationsschicht-Wachstumshemmer (x) in Schritt d) erfolgt.7. The method according to any one of claims 1 to 6, characterized in that the formation of the source and drain regions (S, D) in step f) comprises a step for forming heavily and weakly doped source and drain regions, the formation of the weak doped source and drain regions (S, D) before or after the implantation of the insulation layer growth inhibitor (x) in step d).
8. Verfahren nach einem der Patentansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, dass das Strukturieren der Gateschicht (3) in Schritt c) unter Verwendung einer Hartmaske (4) erfolgt.8. The method according to any one of claims 1 to 7, that the structuring of the gate layer (3) in step c) takes place using a hard mask (4).
9. Verfahren nach einem der Patentansprüche 1 bis 8 d a d u r c h g e k e n n z e i c h n e t, dass das Halbleitersubstrat (1) Si aufweist.9. The method according to any one of claims 1 to 8 d a d u r c h g e k e n n z e i c h n e t that the semiconductor substrate (1) has Si.
10. Verfahren nach einem der Patentansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t, dass die Gate- Schicht (3) Poiysilizium aufweist.10. The method according to any one of claims 1 to 9, d a d u r c h g e k e n n z e i c h n e t that the gate layer (3) has polysilicon.
11. Verfahren nach einem der Patentansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t, dass die Gate-, Rest- und Thermo-Isolationsschicht (2, RI, 5) sowie die Hart- maske (4) eine Siliziumoxidschicht aufweisen. 11. The method according to any one of claims 1 to 10, that the gate, residual and thermal insulation layer (2, RI, 5) and the hard mask (4) have a silicon oxide layer.
PCT/DE2001/000628 2000-03-07 2001-02-16 Method for producing a field effect transistor with side wall oxidation WO2001067498A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000111885 DE10011885C2 (en) 2000-03-07 2000-03-07 Process for the production of a field effect transistor with sidewall oxidation
DE10011885.2 2000-03-07

Publications (1)

Publication Number Publication Date
WO2001067498A1 true WO2001067498A1 (en) 2001-09-13

Family

ID=7634339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000628 WO2001067498A1 (en) 2000-03-07 2001-02-16 Method for producing a field effect transistor with side wall oxidation

Country Status (2)

Country Link
DE (1) DE10011885C2 (en)
WO (1) WO2001067498A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10029287A1 (en) 2000-06-14 2002-01-03 Infineon Technologies Ag Method for producing a field effect transistor with a floating gate
DE10226914B4 (en) * 2002-06-17 2006-03-02 Infineon Technologies Ag Process for producing a spacer structure
US6794256B1 (en) * 2003-08-04 2004-09-21 Advanced Micro Devices Inc. Method for asymmetric spacer formation
DE10338503B3 (en) * 2003-08-21 2005-05-25 Infineon Technologies Ag Producing hard mask for semiconductor structure involves providing structured mask layer on hard mask layer, ion implantation, removing structured layer, structuring hard mask layer by selectively etching non-implanted or implanted region
DE10351030B4 (en) * 2003-10-31 2008-05-29 Qimonda Ag Memory cell, DRAM and method for producing a transistor structure in a semiconductor substrate
DE102005009023B4 (en) * 2005-02-28 2011-01-27 Advanced Micro Devices, Inc., Sunnyvale A method of fabricating a gate electrode structure having asymmetric spacers and gate structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261879A (en) * 1987-04-20 1988-10-28 Matsushita Electronics Corp Manufacture of semiconductor device
US5516707A (en) * 1995-06-12 1996-05-14 Vlsi Technology, Inc. Large-tilted-angle nitrogen implant into dielectric regions overlaying source/drain regions of a transistor
US5684317A (en) * 1994-07-30 1997-11-04 L.G. Electronics Inc. MOS transistor and method of manufacturing thereof
JPH10189952A (en) * 1996-12-26 1998-07-21 Sony Corp Semiconductor device and manufacture thereof
US5920782A (en) * 1997-07-18 1999-07-06 United Microelectronics Corp. Method for improving hot carrier degradation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1079506A (en) * 1996-02-07 1998-03-24 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
US5923983A (en) * 1996-12-23 1999-07-13 Advanced Micro Devices, Inc. Integrated circuit gate conductor having a gate dielectric which is substantially resistant to hot carrier effects

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261879A (en) * 1987-04-20 1988-10-28 Matsushita Electronics Corp Manufacture of semiconductor device
US5684317A (en) * 1994-07-30 1997-11-04 L.G. Electronics Inc. MOS transistor and method of manufacturing thereof
US5516707A (en) * 1995-06-12 1996-05-14 Vlsi Technology, Inc. Large-tilted-angle nitrogen implant into dielectric regions overlaying source/drain regions of a transistor
JPH10189952A (en) * 1996-12-26 1998-07-21 Sony Corp Semiconductor device and manufacture thereof
US5920782A (en) * 1997-07-18 1999-07-06 United Microelectronics Corp. Method for improving hot carrier degradation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 081 (E - 719) 23 February 1989 (1989-02-23) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 12 31 October 1998 (1998-10-31) *
SHIMIZU S ET AL: "IMPACT OF SURFACE PROXIMITY GETTERING AND NITRIDED OXIDE SIDE-WALL SPACER BY NITROGEN IMPLANTATION ON SUB-QUARTER MICRON CMOS LDD FETS", TECHNICAL DIGEST OF THE INTERNATIONAL ELECTRON DEVICES MEETING. (IEDM),US,NEW YORK, IEEE, 10 December 1995 (1995-12-10), pages 859 - 862, XP000624809, ISBN: 0-7803-2701-2 *

Also Published As

Publication number Publication date
DE10011885A1 (en) 2001-11-15
DE10011885C2 (en) 2002-10-24

Similar Documents

Publication Publication Date Title
DE10339920B4 (en) Method of manufacturing an integrated circuit field effect transistor
EP2657961B1 (en) Method of production of a field effect transistor with local source/drain insulation
DE102005046711B4 (en) Method of fabricating a vertical thin-film MOS semiconductor device with deep vertical sections
EP0018501B1 (en) Method of manufacturing high-density vertical fets and a matrix of cells produced thereby
DE2512373A1 (en) BARRIER LAYER SURFACE FIELD EFFECT TRANSISTOR
DE3326534A1 (en) SCHOTTKYBARRIER MOS COMPONENTS
DE10050357A1 (en) Trench insulating structure used in the production of a semiconductor device comprises a trench formed in the non-active zones of a semiconductor substrate, an inner wall oxide film
EP0968527A1 (en) Method for producing a vertical mos-transistor
DE10330070A1 (en) Semiconductor device and method of manufacturing the same
DE60034265T2 (en) Semiconductor device with SOI structure and its manufacturing method
DE10134444A1 (en) Semiconductor device for reducing junction leakage current and narrow width effect comprises channel stop impurity region self-aligned by spacer and locally formed only at lower portion of isolation region
DE10012112C2 (en) Bridge field effect transistor and method for producing a bridge field effect transistor
DE19941401C1 (en) Method of making a DRAM cell array
EP0810673A1 (en) Semiconductor device with compensation implantation and method of manufacture
WO2001067498A1 (en) Method for producing a field effect transistor with side wall oxidation
DE19543859A1 (en) Transistor and transistor manufacturing process
DE102004063025B4 (en) Memory device and method for producing the same
DE10361272B4 (en) A method of forming a DRAM memory cell having a buried strap with limited diffusion
DE10162578A1 (en) Layer arrangement, memory cell, memory cell arrangement and method for producing a layer arrangement
DE10215365B4 (en) Transistor structure using epitaxial layers and method of making the same
WO2003107416A1 (en) Method for the production of an nrom memory cell arrangement
DE4411851A1 (en) Semiconductor device having trench isolation structure and production method therefor
EP1512179A1 (en) Method for producing nrom-memory cells with trench transistors
DE102007014115B3 (en) Integrated circuit and method for its manufacture
EP0838089B1 (en) Integrated circuit arrangement with at least two components insulated from one another and a process for producing the said circuit arrangement

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP