WO2001077008A1 - Mikromechanisches bauelement und entsprechendes herstellungsverfahren - Google Patents

Mikromechanisches bauelement und entsprechendes herstellungsverfahren Download PDF

Info

Publication number
WO2001077008A1
WO2001077008A1 PCT/DE2001/001116 DE0101116W WO0177008A1 WO 2001077008 A1 WO2001077008 A1 WO 2001077008A1 DE 0101116 W DE0101116 W DE 0101116W WO 0177008 A1 WO0177008 A1 WO 0177008A1
Authority
WO
WIPO (PCT)
Prior art keywords
micromechanical
level
region
polycrystalline
monocrystalline
Prior art date
Application number
PCT/DE2001/001116
Other languages
English (en)
French (fr)
Inventor
Michael Offenberg
Markus Lutz
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US10/018,180 priority Critical patent/US7259436B2/en
Priority to EP01929254.9A priority patent/EP1274647B1/de
Priority to JP2001575491A priority patent/JP5026653B2/ja
Publication of WO2001077008A1 publication Critical patent/WO2001077008A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00222Integrating an electronic processing unit with a micromechanical structure
    • B81C1/00246Monolithic integration, i.e. micromechanical structure and electronic processing unit are integrated on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/07Integrating an electronic processing unit with a micromechanical structure
    • B81C2203/0707Monolithic integration, i.e. the electronic processing unit is formed on or in the same substrate as the micromechanical structure
    • B81C2203/0735Post-CMOS, i.e. forming the micromechanical structure after the CMOS circuit

Definitions

  • the present invention relates to a micromechanical component with a substrate, a micromechanical functional level provided on the substrate, a covering level provided on the micromechanical functional level, and a conductor track level provided on the covering level.
  • the present invention also relates to a corresponding manufacturing method.
  • any active function e.g. a sensor function, or passive function, e.g. a trace function can be understood.
  • OMM surface micromechanics
  • analog devices Monolithically integrated inertial sensors in surface micromechanics
  • This problem can be avoided by a sensor with the evaluation circuit on a separate chip, e.g. the OMM structures are covered by a second cap wafer.
  • This type of packaging causes a high proportion of the cost of an OMM acceleration sensor. These costs result from the high surface area of the sealing surface between the cap wafer and the sensor wafer and from the complex structuring (2-3 masks, bulk ikromechanics) of the cap wafer.
  • the evaluation circuit is implemented on a second chip and connected to the sensor element by means of a wire base. This in turn creates the need to select the sensor elements so large that the parasitic effects caused by the parasites in the feed lines and bonding wires are negligible so that they no longer have a dominant influence on the sensor function. In addition, flip-chip techniques are prohibited due to parasitic effects.
  • Such sensors could make do with much less area for micromechanics if the evaluation circuit were on the same Si chip and the sensitive ones Electrodes with only small parasites can be connected.
  • the micromechanical component according to the invention with the features of claim 1 and the manufacturing method according to claim 9 have the following advantages.
  • a monolithic integration of the evaluation circuit and the sensor element on one chip is possible.
  • Elaborate bond wires between the sensor element and the evaluation circuit can be eliminated.
  • a reduction in the size of the sensor elements is possible because fewer parasitic effects occur in the contact. Only one chip has to be installed.
  • the process builds on the OMM process known from P4318466.9, which delivers epitaxial polysilicon with a thickness of at least 10 ⁇ m.
  • the OMM process is simplified because the structures can be contacted from above.
  • the buried polysilicon can be eliminated.
  • the integration of the component is largely independent of the process of the evaluation circuit, which simplifies adaptation to new IC processes.
  • the component can be reduced to the size of the previously required bond pads on the IC for contacting, as a result of which the cost of the IC does not increase due to additional area.
  • the invention it is possible to flip the sensor chip using the so-called flip-chip method, ie upside down with eutectic or connect gold bumps instead of with bond wires, as the parasitic influences compared to the two-chip solution are greatly reduced.
  • This technology can also be used to display sensors with CSP (chip scale package), in which the packaging is no more than 20% larger than the chip. A CSP-packed chip can be pre-measured and compared before assembly.
  • the essence of the invention is the combination of single-crystalline and polycrystalline growth during the deposition of the cover layer in the epi-reactor.
  • Single-crystal silicon requires a single-crystal surface as the starting layer, polycrystalline silicon a polycrystalline starting layer, which is preferably deposited by LPCVD.
  • a first layer with the micromechanical functional level has a monocrystalline region which has grown epitaxially on an underlying monocrystalline region, and a polycrystalline region which has also grown epitaxially on an underlying polycrystalline starting layer. This means that the same epitaxial step is applied twice in two different levels.
  • a first layer with the micromechanical functional level has a monocrystalline region which is formed with the substrate via an insulator layer in SOI form. This has the advantage that the buried polysilicon layer can be omitted and an epitaxial step is omitted.
  • Single-crystalline, highly doped and mechanically stress-free base material is preferably used as silicon.
  • the monocrystalline region contains a second layer, which is deposited over the first layer, with one or more integrated circuit elements of an evaluation circuit or wiring elements.
  • a so-called onolithically integrated one-chip solution can thus be achieved.
  • the polycrystalline region of the micromechanical functional level has a movable sensor structure.
  • the micromechanical functional level has a buried polysilicon layer below the movable sensor structure.
  • one or more flip-chip connection elements are provided in the conductor track level.
  • the component can be produced using silicon surface micro-mechanics.
  • FIG. 1 shows a schematic cross-sectional view of a micromechanical component according to a first embodiment of the present invention
  • FIG. 2a, b show a schematic cross-sectional view of the manufacturing steps of the micromechanical component according to FIG. 1;
  • FIG. 3 shows a schematic cross-sectional view of a micromechanical component according to a second embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a micromechanical component according to a first embodiment of the present invention.
  • 1 denotes a silicon substrate wafer, 2 a lower oxide, 3 buried polysilicon, 4 a contact hole in the sacrificial oxide 5, 5 a sacrificial oxide, ⁇ a first starting polysilicon, 7 a first single-crystal silicon from epitaxy, 8 a first epitaxy Polysilicon, 9 an isolation trench, 10 a movable sensor structure, 11 a first refill oxide, 12 a.
  • 100 denotes a micromechanical functional level with the movable sensor structure 10 - here an acceleration sensor -, 200 a covering level for the hermetic sealing of the movable sensor structure 10 and 300 a conductor track level.
  • the covering plane 200 has the monocrystalline region 14, which has grown epitaxially on the monocrystalline region 7 below.
  • the covering plane 200 has the polycrystalline region 15, which at the same time has grown epitaxially on the underlying polycrystalline starting layer 13. In other words, monocrystalline and polycrystalline silicon are grown side by side in one process step.
  • the monocrystalline region 14 of the covering level 200 contains integrated circuit elements of an evaluation circuit.
  • a CMOS transistor 23 is illustrated as an example.
  • the micromechanical functional level 100 has the monocrystalline region 7, which has grown epitaxially on the underlying monocrystalline substrate region 1, and the polycrystalline region 8, which at the same time has grown epitaxially on the underlying polycrystalline starting layer 6.
  • This process step of the Si which grows simultaneously in single and polycrystalline form is therefore carried out both for the sensor structure 10 and for the covering plane 200.
  • the micromechanical functional level 100 has the buried polysilicon layer 3 below the movable sensor structure 10 as a wiring level.
  • 2a, b show a schematic cross-sectional view of the manufacturing steps of the micromechanical component according to FIG. 1.
  • Si substrate 1 as a starting material for the process. This applies both to processes with analog components that require an epitaxially deposited single-crystal Si layer and to pure CMOS processes that do not require epitaxy.
  • a single-crystal Si wafer is used as the substrate 1.
  • the substrate 1 is oxidized to form the lower oxide 2.
  • the buried polysilicon 3 is deposited and structured as the lower conductor track region.
  • the sacrificial oxide 5 is deposited and structured. This is followed by a deposition and structuring of the first starting polysilicon 6, in particular a removal of the starting polysilicon and the lower oxide 2 at locations where single-crystal silicon (region 7 in FIG. 2a) is to grow on the substrate 1 in the later epitaxial step.
  • the epitaxy step in which the monocrystalline silicon region 7 is grown together with the polycrystalline silicon region 8 of the micromechanical functional level 100.
  • Another step is an optional planarization of the resulting structure for equal to slight differences in height due to the substructure, which lies between the substrate 1 and the polycrystalline silicon region 8.
  • refill oxide 11 is then refilled and refill oxide 11 is structured to form contact holes 12.
  • the second starting polysilicon layer 13 is deposited and structured together with the first refill oxide 11, in particular the second one Start polysilicon 13 and the refill oxide 11 are removed where monocrystalline silicon (region 14 in FIG. 2 b) is to grow on region 7.
  • the second epitaxial process follows, in which monocrystalline silicon in the region 14 and polycrystalline silicon in the region 15 are deposited at the same time.
  • the resultant top layer is pianized to compensate for the substructure between the polysilicon region 8 and the polysilicon region 15.
  • the trench trenches 17 are formed in the second epitaxial polysilicon 15, which are used for isolation and as etching holes for removing the first refill oxide 11.
  • the etching profile of the trench trenches 17 can be selected such that they also widen downwards, as indicated in FIG. 2b.
  • the upper opening diameter should be chosen to be minimal so that the deposition of the second refill oxide 18 can be accomplished more quickly, and without a substantial amount of the second refill oxide 18 in the movable sensor structure 10 arrives. Anisotropic oxide deposition is therefore desirable, if possible only on the surface.
  • the free etching of the movable sensor structure 10 is carried out by removing the lower oxide 2, the sacrificial oxide 5 and the first refill oxide 11 through the etching trenches 17.
  • the free etching could also be divided into two steps, in which prior to the deposition of the first refill oxide 11, the lower oxides 2 and 5 are removed and only then the first refill oxide 11 is deposited.
  • a key advantage of this process is that electronic sacrificial layers and aluminum are not yet available in sacrificial layer etching, which is currently done with HF steam, which can only be protected with great difficulty and complexity in the back-end processes.
  • the second refill oxide 18 is deposited and structured, a predetermined pressure and a predetermined gas atmosphere are set when the cavities are finally closed by the second refill oxide 18, which thus determines the properties of the enclosed gas, among other things, the damping of the mechanical sensor structure 10.
  • the IC process for example a CMOS or BiCMOS process, for producing the evaluation circuit in the monocrystalline silicon region 14 can now take place. Then there is a Deposition and structuring of the conductor track level 300, in particular of the oxide 19 and the conductor track aluminum 21. To complete the component, the chips are usually sawn and assembled as in the case of the standard IC components.
  • Fig. 3 is a schematic cross-sectional view of a micromechanical component according to a second embodiment of the present invention.
  • FIG. 3 in addition to the reference symbols 24 that have already been introduced, they denote an SOI (Silicon on Insulator) layer and 25 an insulator (Insulator) layer.
  • SOI Silicon on Insulator
  • Insulator Insulator
  • the substrate 1, the insulator layer 25 and the monocrystalline silicon layer 24 form an SOI structure known per se.
  • any micromechanical base materials such as Germanium, and not just the exemplary silicon substrate.
  • Any sensor structures can also be formed, and not just the illustrated acceleration sensor.
  • the region 15 does not necessarily have to be polycrystalline, but can be recrystallized or the like.

Abstract

Die Erfindung schafft ein mikromechanisches Bauelement mit einem Substrat (1); einer auf dem Substrat vorgesehenen mikromechanischen Funktionsebene (100); einer auf der mikromechanischen Funktionsebene (100) vorgesehenen Abdeckebene (200); und einer auf der Abdeckebene (200) vorgesehenen Leiterbahnebene (300). Die Abdeckebene (200) weist einen monokristallinen Bereich (14) auf, der epitaktisch auf einem darunterliegenden monokristallinen Bereich (7; 24) aufgewachsen ist, und die Abdeckebene (200) weist einen polykristallinen Bereich (15) auf, der gleichzeitig epitaktisch auf einer darunterliegenden polykristallinen Startschicht (13) aufgewachsen ist.

Description

Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
STAND DER TECHNIK
Die vorliegende Erfindung betrifft ein mikromechanisches Bauelement mit einem Substrat, einer auf dem Substrat vorgesehenen mikromechanischen Funktionsebene, einer auf der mikromechanischen Funktionsebene vorgesehenen Abdeckebene, und einer auf der Abdeckebene vorgesehenen Leiterbahnebene. Die vorliegende Erfindung betrifft ebenfalls ein entspre- chendes Herstellungsverfahren.
Unter mikromechanische Funktion soll eine beliebige aktive Funktion, z.B. eine Sensorfunktion, oder passive Funktion, z.B. eine Leiterbahnfunktion, verstanden werden.
Obwohl auf beliebige mikromechanische Bauelemente und Strukturen, insbesondere Sensoren und Aktuatoren, anwendbar, werden die vorliegende Erfindung sowie die ihr zugrundeliegende Problematik in bezug auf ein in der Technologie der Silizium-Oberflächenmikromechanik herstellbares mikromechanisches Bauelement, z.B. einen Beschleunigungssensor, erläutert. Allgemein bekannt sind monolithisch integrierte inertiale Sensoren in Oberflächenmikromechanik (OMM) , bei denen die empfindlichen beweglichen Strukturen ungeschützt auf dem Chip aufgebracht sind (Analog Devices). Dadurch entsteht ein erhöhter Aufwand beim Handling und bei der Verpackung.
Umgehen kann man dieses Problem durch einen Sensor mit der Auswerteschaltung auf einem separaten Chip, z.B. werden dabei die OMM-Strukturen mittels einem zweiten Kappenwafer abgedeckt. Diese Art der Verpackung verursacht einen hohen Anteil der Kosten eines OMM-Beschleunigungssensors . Diese Kosten entstehen durch den hohen Flächenbedarf der Dichtfläche zwischen Kappenwafer und Sensorwafer und aufgrund der aufwendigen Strukturierung (2-3 Masken, Bulk ikromecha- nik) des Kappenwafers .
Die Auswerteschaltung wird auf einem zweiten Chip realisiert und mittels Drahtboden mit dem Sensorelement verbunden. Dadurch entsteht wiederum die Notwendigkeit die Sen- sorelemente so groß zu wählen, daß die parasitären Effekte, die durch die Parasiten in den Zuleitungen und Bondrähten entstehen, vernachlässigbar sind, daß sie keinen dominanten Einfluß auf die Sensorfunktion mehr haben. Außerdem verbieten sich wegen parasitärer Effekte Flipchiptechniken.
Solche Sensoren könnten mit wesentlich weniger Fläche für die Mikromechanik auskommen, wenn die Auswerteschaltung sich auf demselben Si-Chip befände und die empfindlichen Elektroden mit nur geringen Parasitäten angeschlossen werden können.
In der DE 195 37 814 AI werden der Aufbau eines funktiona- len Schichtsystems und ein Verfahren zur hermetischen Ver- kappung von Sensoren in Oberflächenmikromechanik beschrieben. Hierbei wird die Herstellung der Sensorstruktur mit bekannten technologischen Verfahren erläutert. Die besagte hermetische Verkappung erfolgt mit einem separaten Kappen- Wafer aus Silizium, der mit aufwendigen Strukturierungspro- zessen, wie beispielsweise KHO-Ätzen, strukturiert wird. Der Kappen-Wafer wird mit einem Glas-Lot (Seal-Glas) auf dem Substrat mit dem Sensor (Sensor- afer) aufgebracht. Hierfür ist um jeden Sensorchip ein breiter Bond-Rahmen notwendig, um eine ausreichende Haftung und Dichtheit der Kappe zu gewährleisten. Dies begrenzt die Anzahl der Sensor-Chips pro Sensor-Wafer erheblich. Auf Grund des großen Platzbedarfs und der aufwendigen Herstellung des Kappen- Wafers entfallen erhebliche Kosten auf die Sensor- Verkappung.
Die DE 43 41 271 AI offenbart einen mikromechanischen Beschleunigungssensor, dessen Bestandteile zum Teil aus monokristallinem Material und zum Teil aus polykristallinem Ma- terial bestehen. Zur Herstellung dieses bekannten mikromechanischen Beschleunigungssensors wird ein Epitaxie-Reaktor verwendet. Eine Startschicht aus LPCVD-Polysilizium dient zur Festlegung der Bereiche, wo beim Epitaxie-Prozeß polykristallines Silizium aufwachsen soll. VORTEILE DER ERFINDUNG
Das erfindungsgemäße mikromechanische Bauelement mit den Merkmalen des Anspruchs 1 bzw. das Herstellungsverfahren nach Anspruch 9 weisen folgende Vorteile auf. Eine monolithische Integration der Auswerteschaltung und des Sensorelements auf einem Chip ist möglich. Fehlerträchtige aufwendige Bonddrähte zwischen Sensorelement und Auswerteschaltung können entfallen. Eine Reduktion der Größe der Sensiεrele- mente ist möglich, da weniger parasitäre Effekte in der Kontaktierung auftreten. Es muß nur noch ein Chip montiert werden. Der Prozeß baut auf den aus der P4318466.9 bekannten OMM-Prozeß auf, der Epitaxie-Polysilizium mit minde- stens 10 μm Dicke liefert. Es ergibt sich eine Vereinfachung des OMM-Prozesses, da die Strukturen von oben kontaktiert werden können. Ein Entfallen des vergrabenen Polysi- liziums ist möglich.
Die Integration des Bauelementes ist weitestgehend unabhängig vom Prozeß der Auswerteschaltung, wodurch eine Anpassung an neue IC-Prozesse vereinfacht wird. Das Bauelement kann je nach Sensorprinzip auf die Größe der bisher benötigten Bondpads auf dem IC zur Kontaktierung reduziert wer- den, wodurch die Kosten des IC s aufgrund von zusätzlicher Fläche nicht steigen.
Nach der Erfindung ist es möglich, den Sensorchip im sogenannten Flip-Chipverfahren, also kopfüber mit eutektischen oder Goldbumps anstelle mit Bonddrähten anzuschließen, da die parasitären Einflüsse gegenüber der Zwei-Chip-Lösung stark reduziert werden. Mit dieser Technik lassen sich auch Sensoren mit CSP (chip scale package) darstellen, bei denen die Verpackung nicht mehr als 20% größer als der Chip ist. Ein CSP-verpackter Chip kann vor der Montage vorgemessen und abgeglichen werden.
Kern der Erfindung ist die Kombination des einkristallinen und polykristallinen Wachstums während der Abscheidung der Abdeckschicht im Epi-Reaktor. Einkristallines Silizium benötigt dabei eine einkristalline Oberfläche als Ausgangsschicht, polykristallines Silizium eine polykristalline Startschicht, welche vorzugsweise durch LPCVD abgeschieden wird.
In den Unteransprüchen finden sich vorteilhafte Weiterbildungen und Verbesserungen des jeweiligen Gegenstandes der Erfindung.
Gemäß einer bevorzugten Weiterbildung weist eine erste Schicht mit der mikromechanischen Funktionsebene einen monokristallinen Bereich auf, der epitaktisch auf einem darunterliegenden monokristallinen Bereich aufgewachsen ist, sowie einen polykristallinen Bereich, der gleichzeitig epitaktisch auf einer darunterliegenden polykristallinen Startschicht aufgewachsen ist. Damit wird zweimal derselbe Epitaxieschritt in zwei verschiedenen Ebenen angewendet. Gemäß einer weiteren bevorzugten Weiterbildung weist eine erste Schicht mit der mikromechanischen Funktionsebene einen monokristallinen Bereich auf, der über eine Isolatorschicht in SOI-Form mit dem Substrat gebildet ist. Dies hat den Vorteil, daß die vergrabene Polysiliziumschicht weggelassen werden kann und ein Epitaxieschritt entfällt. Als Silizium wird vorzugsweise einkristallines, hochdotiertes und mechanisch spannungsfreies Grundmaterial verwendet.
Gemäß einer weiteren bevorzugten Weiterbildung enthält der monokristalline Bereich eine zweite Schicht, die über der ersten Schicht abgeschieden wird, mit ein oder mehreren integrierte Schaltungselementen einer Auswerteschaltung oder Verdrahtungselemente. Damit läßt sich eine sogenannte ono- lithisch integrierte Ein-Chip-Lösung erreichen.
Gemäß einer weiteren bevorzugten Weiterbildung weist der polykristalline Bereich der mikromechanischen Funktionsebene eine bewegliche Sensorstruktur auf.
Gemäß einer weiteren bevorzugten Weiterbildung weist die mikromechanische Funktionsebene eine vergrabene Polysiliziumschicht unterhalb der beweglichen Sensorstruktur auf.
Gemäß einer weiteren bevorzugten Weiterbildung sind in der Leiterbahnebene ein oder mehrere Flip-Chip-Anschlußelemente, vorzugsweise Gold-Bumps, vorgesehen. Dies ist eine robuste Art der Kontaktierung, die durch die im wesentlichen planare Oberfläche möglich wird. Gemäß einer weiteren bevorzugten Weiterbildung ist das Bauelement in Silizium-Oberflächenmikro echanik herstellbar.
ZEICHNUNGEN
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Es zeigen:
Fig. 1 eine schematische Querschnittsansicht eines mikromechanischen Bauelements gemäß einer ersten Ausführungsform der vorliegenden Erfindung;
Fig. 2a, b eine schematische Querschnittsansicht der Herstellungschritte des mikromechanischen Bauelements gemäß Fig. 1; und
Fig. 3 eine schematische Querschnittsansicht eines mikromechanischen Bauelements gemäß einer zweiten Ausführungsform der vorliegenden Erfindung.
BESCHREIBUNG DER AUSFÜHRUNGSBEISPIELE
In den Figuren bezeichnen gleiche Bezugszeichen gleiche oder funktionsgleiche Komponenten. Fig. 1 ist eine schematische Querschnittsansicht eines mikromechanischen Bauelements gemäß einer ersten Ausführungsform der vorliegenden Erfindung.
In Fig. 1 bezeichnen 1 einen Silizium-Substratwafer, 2 ein unteres Oxid, 3 vergrabenes Polysilizium, 4 ein Kontaktloch im Opferoxid 5, 5 ein Opferoxid, β ein erstes Start- Polysilizium, 7 ein erstes einkristallines Silizium aus Epitaxie, 8 ein erstes Epitaxie-Polysilizium, 9 einen Iso- lationsgraben, 10 eine bewegliche Sensorstruktur, 11 ein erstes Refilloxid, 12 ein . Kontaktloch im Refifilloxid 11, 13 ein zweites Start-Polysilizium, 14 ein zweites einkristallines Silizium aus Epitaxie, 15 ein zweites Epitaxie- Polysilizium, 16 ein elektrisches und/oder mechanisches Verbindungselement zwischen erstem und zweiten Epitaxie- Polysilizium, 17 einen Trenchgraben, 18 ein zweites Refilloxid, 19 ein Oxid zur Isolation der Leiterbahnen, 20 eine Überkreuzverbindung, 21 eine Leiterbahn, 22 ein Kontaktloch in der Leiterbahn 21 und dem Refilloxid 18 und 23 ein elek- tronisches Bauelement der Auswerteschaltung.
100 bezeichnet eine mikromechanische Funktionsebene mit der beweglichen Sensorstruktur 10 - hier ein Beschleunigungssensor -, 200 eine Abdeckebene zur hermetischen Versiege- lung der beweglichen Sensorstruktur 10 und 300 eine Leiterbahnebene .
Bei dieser ersten Ausführungsform, die in an sich bekannter Silizium-Oberflächenmikromechanik herstellbar ist, weist einerseits die Abdeckebene 200 den monokristallinen Bereich 14 aufweist, der epitaktisch auf dem darunterliegenden monokristallinen Bereich 7 aufgewachsen ist. Andererseits weist die Abdeckebene 200 den polykristallinen Bereich 15 aufweist, der gleichzeitig epitaktisch auf der darunterliegenden polykristallinen Startschicht 13 aufgewachsen ist. Mit anderen Worten werden in einem Prozeßschritt monokristallines und polykristallines Silizium nebeneinander aufgewachsen.
Der monokristalline Bereich 14 der Abdeckebene 200 enthält integrierte Schaltungselemente einer Auswerteschaltung. Illustriert ist als Beispiel ein CMOS-Transistor 23.
Analog dazu weist die mikromechanische Funktionsebene 100 den monokristallinen Bereich 7 aufweist, der epitaktisch auf dem darunterliegenden monokristallinen Substratbereich 1 aufgewachsen ist, sowie den polykristallinen Bereich 8, der gleichzeitig epitaktisch auf der darunterliegenden po- lykristallinen Startschicht 6 aufgewachsen ist. Dieser Prozeßschritt des simultan ein- und polykristallin aufwachsenden Si wird also sowohl für die Sensorstruktur 10 als auch für die Abdeckebene 200 durchgeführt.
Die mikromechanische Funktionsebene 100 weist die vergrabene Polysiliziumschicht 3 unterhalb der beweglichen Sensorstruktur 10 als Verdrahtungsebene auf. Fig. 2a, b zeigen eine schematische Querschnittsansicht der Herstellungschritte des mikromechanischen Bauelements gemäß Fig. 1.
IC-Prozesse benötigen im allgemeinen ein einkristallines
Si-Substrat 1 als Ausgangsmaterial für den Prozeß. Das gilt sowohl für Prozesse mit analogen Bauelementen, die eine epitaktisch abgeschiedene einkristalline Si-Schicht benötigen, als auch für reine CMOS-Prozesse, die keine Epitaxie benötigen. Also wird bei diesem Beispiel mit einem einkristallinen Si-Wafer als Substrat 1 gestartet.
In einem ersten Schritt erfolgt eine Oxidation des Substrats 1 zur Bildung des unteren Oxids 2. Anschließend er- folgt eine Abscheidung und Strukturierung des vergrabenen Polysiliziums 3 als unterer Leiterbahnbereich. In einem folgenden Schritt wird das Opferoxid 5 abgeschieden und strukturiert. Danach erfolgt eine Abscheidung und Strukturierung des ersten Start-Polysiliziums 6, insbesondere ein entfernen des Start-Polysiliziums und des unteren Oxids 2 an Stellen, wo im späteren Epitaxieschritt einkristallines Silizium (Bereich 7 in Fig. 2a) auf dem Substrat 1 aufwachsen soll.
Danach erfolgt der Epitaxie-Schritt, in dem der monokristalline Siliziumbereich 7 zusammen mit dem polykristallinen Siliziumbereich 8 der mikromechanischen Funktionsebene 100 aufgewachsen werden. Ein weiterer Schritt ist eine optionale Planarisierung der resultierenden Struktur zum Aus- gleich von geringfügigen Höhenunterschieden aufgrund des Unterbaus, der zwischen dem Substrat 1 und dem polykristallinen Siliziumbereich 8 liegt.
Wie in Figur 2b illustriert, erfolgt dann ein Refill mit dem Refilloxid 11 und eine Strukturierung des Refilloxids 11 zur Bildung von Kontaktlöchern 12. Als nächstes wird die zweite Start-Polysiliziu schicht 13 abgeschieden und zusammen mit dem ersten Refilloxid 11 strukturiert, insbesondere werden das zweite Start-Polysilizium 13 und das Refilloxid 11 dort entfernt, wo einkristallines Silizium (Bereich 14 in Fig. 2b) auf dem Bereich 7 aufwachsen soll. In einem darauffolgenden Prozeßschritt folgt der zweite Epitaxiepro- zess, in dem gleichzeitig monokristallines Silizium im Be- reich 14 und polykristallines Silizium im Bereich 15 abgeschieden werden. Wiederum optional folgt eine Pianarisie- rung der resultierenden Deckschicht zum Ausgleich des Unterbaus zwischen dem Polysiliziu bereich 8 und dem Polysi- liziumbereich 15.
Als nächstes werden die Trenchgräben 17 im zweiten Epitaxie-Polysilizium 15 gebildet, welche zur Isolation und als Ätzlöcher zum Entfernen des ersten Refilloxids 11 dienen. Das Ätzprofil der Trenchgräben 17 kann so gewählt werden, daß sie sich nach unten hin auch aufweiten, wie in Figur 2b angedeutet. Der obere Öffnungsdurchmesser sollte minimal gewählt werden, damit die Abscheidung des zweiten Refilloxids 18 schneller bewerkstelligt werden kann, und zwar ohne daß eine wesentliche Menge des zweiten Refilloxids 18 in die bewegliche Sensorstruktur 10 gelangt. Gewünscht ist also eine anisotrope Oxidabscheidung, und zwar möglichst nur auf der Oberfläche.
In einem folgenden Prozeßschritt erfolgt das Freiätzen der beweglichen Sensorstruktur 10 durch Entfernen des unteren Oxids 2, des Opferoxids 5 und des ersten Refilloxids 11 durch die Ätzgräben 17. Man könnte das Freiätzen zur besseren Kontrolle auch in zwei Schritte aufteilen, in dem man vor der Abscheidung des ersten Refilloxids 11 die unteren Oxide 2 und 5 entfernt und dann erst das erste Refilloxid 11 abscheidet. Ein wesentlicher Vorteil dieses Prozesses liegt darin, das beim Opferschichtätzen, was derzeit mit HF-Dampf erfolgt, noch keine elektronische Schaltung und Aluminium vorhanden sind, was bei dem Back-End-Prozessen nur sehr schwer und aufwendig geschützt werden kann.
Im nächsten Schritt erfolgt eine Abscheidung und Strukturierung des zweiten Refilloxids 18, die Einstellung eines vorbestimmten Drucks und einer vorbestimmten Gasatmosphäre beim entgültigen Verschließen der Hohlräume durch das zweite Refilloxid 18, was die Eigenschaften des eingeschlossenen Gases somit unter anderem die Dämpfung der mechanischen Sensorstruktur 10 bestimmt.
Nachdem das mikromechanische Bauelement fertiggestellt ist, kann nunmehr der IC-Prozeß, z.B. ein CMOS- oder BiCMOS- Prozess, zur Herstellung der Auswerteschaltung im monokristallinen Siliziumbereich 14 erfolgen. Danach erfolgt eine Abscheidung und Strukturierung der Leiterbahnebene 300 , insbesondere des Oxids 19 und des Leiterbahn-Aluminiums 21 . Zur Fertigstellung des Bauelements erfolgt üblicherweise ein Zersägen der Chips und eine Montage wie bei den Stan- dard-IC-Bauele-menten .
Fig . 3 ist eine schematische Querschnittsansicht eines mikromechanischen Bauelements gemäß einer zweiten Ausfüh- rungsform der vorliegenden Erfindung .
In Fig. 3 bezeichnen zusätzlich zu den bereits eingeführten Bezugszeichen 24 eine SOI (Silicon on Insulator) -Schicht und 25 eine Isolator (Insulator) -Schich . Bei dieser zweiten Ausführungsform bilden also das Substrat 1, die Isolator- schicht 25 und die monokristalline Siliziumschicht 24 eine an sich bekannte SOI-Struktur.
Bei dem derart aufgebauten Bauelement sind das untere Oxid 2, das vergrabene Polysilizium 3, das Kontaktloch 4 im Op- feroxid 5, das Opferoxid 5, das erste Start-Polysilizium 6, das erste einkristalline Silizium aus Epitaxie 7 und das erste Epitaxie-Polysilizium 8 weggelassen.
Benutzt man ein also solch einen SOI-Wafer als Ausgangsma- terial, entfallen also zahlreiche Prozeßschritte, da dann die mechanisch aktive Struktur aus dem SOI-Material 24 gebildet wird. Die gesamte Verdrahtung wird also bei dieser zweiten Ausführungsform in die Leiterbahnebene 300 verlegt. Obwohl die vorliegende Erfindung vorstehend anhand eines bevorzugten Ausführungsbeispiels beschrieben wurde, ist sie darauf nicht beschränkt, sondern auf vielfältige Weise modifizierbar.
Es können insbesondere beliebige mikromechanische Grundmaterialien, wie z.B. Germanium, verwendet werden, und nicht nur das exemplarisch angeführte Siliziumsubstrat.
Auch können beliebige Sensorstrukturen gebildet werden, und nicht nur der illustrierte Beschleunigungssensor.
Der Bereich 15 muß nicht unbedingt polykristallin sein, sondern kann rekristallisiert sein o.a..

Claims

PATENTANSPRÜCHE
1. Mikromechanisches Bauelement mit:
einem Substrat (1);
einer auf dem Substrat vorgesehenen mikromechanischen Funktionsebene (100);
einer auf der mikromechanischen Funktionsebene (100) vorgesehenen Abdeckebene (200) ; und
einer auf der Abdeckebene (200) vorgesehenen Leiterbahnebe- ne (300);
wobei
die Abdeckebene (200) einen monokristallinen Bereich (14) aufweist, der epitaktisch auf einem darunterliegenden monokristallinen Bereich (7; 24) aufgewachsen ist; und
die Abdeckebene (200) einen vorzugsweise polykristallinen Bereich (15) aufweist, der gleichzeitig epitaktisch auf ei- ner darunterliegenden polykristallinen Startschicht (13) aufgewachsen ist.
2. Mikromechanisches Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß die mikromechanische Funktionsebene
(100) einen monokristallinen Bereich (7) aufweist, der epitaktisch auf einem darunterliegenden monokristallinen Bereich (1) aufgewachsen ist, sowie einen polykristallinen Bereich (8) aufweist, der gleichzeitig epitaktisch auf ei- ner darunterliegenden polykristallinen Startschicht (6) aufgewachsen ist.
3. Mikromechanisches Bauelement nach Anspruch 1, dadurch gekennzeichnet, daß die mikromechanische Funktionsebene (100) einen monokristallinen Bereich (24) aufweist, der über eine Isolatorschicht (25) in SOI-Form mit dem Substrat (1) gebildet ist.
4. Mikromechanisches Bauelement nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß der monokristalline Bereich
(14) der Abdeckebene (200) ein oder mehrere integrierte Schaltungselemente (23) einer Auswerteschaltung oder Verdrahtungselemente enthält.
5. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der polykristalline Bereich (8) der mikromechanischen Funktionsebene (100) eine bewegliche Sensorstruktur (10) aufweist.
6. Mikromechanisches Bauelement Anspruch 5, dadurch gekennzeichnet, daß die mikromechanische Funktionsebene (100! eine vergrabene Polysiliziumschicht (3) unterhalb der beweglichen Sensorstruktur (10) aufweist.
7. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß in der Leiterbahnebene (300) ein oder mehrere Flip-Chip-Ansc luß- elemente, vorzugsweise Gold-Bumps, vorgesehen sind.
8. Mikromechanisches Bauelement nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß es in Sili- zium-Oberflächenmikromechanik herstellbar ist.
9. Verfahren zur Herstellung eines mikromechanischen Bauelementes mit den Schritten:
Bereitstellen eines Substrats (1) ;
Vorsehen einer mikromechanischen Funktionsebene (100) auf dem Substrat (1) ;
Vorsehen einer Abdeckebene (200) auf der mikromechanischen Funktionsebene (100);
bereichsweises Vorsehen eine Polysilizium-Startschicht (13) auf der mikromechanischen Funktionsebene (100) und bereichsweises Freilassen von einem monokristallinen Bereich (7, 24) der mikromechanischen Funktionsebene (100); epitaktisches Abscheiden eines monokristallinen Bereichs (14) auf dem freigelassenen monokristallinen Bereich (7, 24) und gleichzeitiges epitaktisches Abscheiden eines poly- kristallinen Bereichs (15) auf der polykristallinen Startschicht (13) ; und
Vorsehen einer Leiterbahnebene (300) auf der Abdeckebene (200) .
PCT/DE2001/001116 2000-04-11 2001-03-22 Mikromechanisches bauelement und entsprechendes herstellungsverfahren WO2001077008A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/018,180 US7259436B2 (en) 2000-04-11 2001-03-22 Micromechanical component and corresponding production method
EP01929254.9A EP1274647B1 (de) 2000-04-11 2001-03-22 Mikromechanisches bauelement und entsprechendes herstellungsverfahren
JP2001575491A JP5026653B2 (ja) 2000-04-11 2001-03-22 マイクロメカニカル構成素子及び相応する製造法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10017976A DE10017976A1 (de) 2000-04-11 2000-04-11 Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
DE10017976.2 2000-04-11

Publications (1)

Publication Number Publication Date
WO2001077008A1 true WO2001077008A1 (de) 2001-10-18

Family

ID=7638360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001116 WO2001077008A1 (de) 2000-04-11 2001-03-22 Mikromechanisches bauelement und entsprechendes herstellungsverfahren

Country Status (5)

Country Link
US (1) US7259436B2 (de)
EP (1) EP1274647B1 (de)
JP (1) JP5026653B2 (de)
DE (1) DE10017976A1 (de)
WO (1) WO2001077008A1 (de)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304189A (ja) * 2003-03-31 2004-10-28 Robert Bosch Gmbh 積層パッケージングを使用して包囲されたセンサ構造体を保護する方法
WO2004108585A2 (en) 2003-06-04 2004-12-16 Robert Bosch Gmbh Microelectromechanical systems having trench isolated contacts, and methods for fabricating same
WO2004109769A2 (en) 2003-06-04 2004-12-16 Robert Bosch Gmbh Microelectromechanical systems and methods for encapsulating
WO2005081702A2 (en) 2004-02-12 2005-09-09 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
WO2005096495A1 (en) 2004-03-04 2005-10-13 Robert Bosch Gmbh Temperture controlled mems resonator and method for controlling resonator frequency
US7172917B2 (en) 2003-04-17 2007-02-06 Robert Bosch Gmbh Method of making a nanogap for variable capacitive elements, and device having a nanogap
WO2007021396A2 (en) * 2005-08-16 2007-02-22 Robert Bosch Gmbh Microelectromechanical devices and fabrication methods
WO2008006641A1 (de) * 2006-07-12 2008-01-17 Robert Bosch Gmbh Verfahren zur herstellung von mems-strukturen
US7456042B2 (en) 2006-06-04 2008-11-25 Robert Bosch Gmbh Microelectromechanical systems having stored charge and methods for fabricating and using same
FR2924421A1 (fr) * 2007-12-04 2009-06-05 Commissariat Energie Atomique Dispositif a circuit integre et n/mems encapsule et procede de realisation.
WO2010107619A2 (en) 2009-03-19 2010-09-23 Robert Bosch Gmbh Substrate with multiple encapsulated pressures
US7824943B2 (en) 2006-06-04 2010-11-02 Akustica, Inc. Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same
US8871551B2 (en) 2006-01-20 2014-10-28 Sitime Corporation Wafer encapsulated microelectromechanical structure and method of manufacturing same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939809B2 (en) 2002-12-30 2005-09-06 Robert Bosch Gmbh Method for release of surface micromachined structures in an epitaxial reactor
US6808953B2 (en) 2002-12-31 2004-10-26 Robert Bosch Gmbh Gap tuning for surface micromachined structures in an epitaxial reactor
US6952041B2 (en) * 2003-07-25 2005-10-04 Robert Bosch Gmbh Anchors for microelectromechanical systems having an SOI substrate, and method of fabricating same
US6930368B2 (en) * 2003-07-31 2005-08-16 Hewlett-Packard Development Company, L.P. MEMS having a three-wafer structure
DE10348908B4 (de) * 2003-10-21 2014-03-20 Robert Bosch Gmbh Verfahren zur Herstellung eines Mikrosystems mit integrierter Schaltung und mikromechanischem Bauteil
US7102467B2 (en) * 2004-04-28 2006-09-05 Robert Bosch Gmbh Method for adjusting the frequency of a MEMS resonator
JP4569322B2 (ja) * 2005-03-02 2010-10-27 株式会社デンソー 可動センサ素子
FI119729B (fi) * 2005-11-23 2009-02-27 Vti Technologies Oy Menetelmä mikroelektromekaanisen komponentin valmistamiseksi ja mikroelektromekaaninen komponentti
FI119728B (fi) 2005-11-23 2009-02-27 Vti Technologies Oy Menetelmä mikroelektromekaanisen komponentin valmistamiseksi ja mikroelektromekaaninen komponentti
DE102006011545B4 (de) * 2006-03-14 2016-03-17 Robert Bosch Gmbh Mikromechanisches Kombi-Bauelement und entsprechendes Herstellungsverfahren
JP2008256495A (ja) * 2007-04-04 2008-10-23 Denso Corp センサ装置
DE102007062707A1 (de) 2007-12-27 2009-07-02 Robert Bosch Gmbh Mikromechanisches Bauelement und Verfahren zur Herstellung eines mikromechanischen Bauelements
EP2263971A1 (de) * 2009-06-09 2010-12-22 Nivarox-FAR S.A. Mikromechanisches Verbundbauteil und sein Herstellungsverfahren
DE102013204475A1 (de) * 2013-03-14 2014-09-18 Robert Bosch Gmbh Herstellungsverfahren für ein mikromechanisches Bauelement und entsprechendes mikromechanisches Bauelement
JP6314568B2 (ja) * 2014-03-18 2018-04-25 セイコーエプソン株式会社 Memsデバイス及びその製造方法
JP2015182158A (ja) * 2014-03-24 2015-10-22 セイコーエプソン株式会社 Memsデバイス
DE102016200489A1 (de) 2016-01-15 2017-07-20 Robert Bosch Gmbh Mikromechanisches Bauelement
DE102017218883A1 (de) * 2017-10-23 2019-04-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikroelektromechanisches Bauteil sowie ein Verfahren zu seiner Herstellung
US11793109B2 (en) 2020-02-13 2023-10-24 Techtronic Cordless Gp Lawnmowers with safety features and methods associated therewith
DE102020123160B3 (de) 2020-09-04 2021-10-14 Infineon Technologies Dresden GmbH & Co. KG Halbleiterdie mit Druck- und Beschleunigungssensorelement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004319A1 (de) * 1995-07-21 1997-02-06 Robert Bosch Gmbh Verfahren zur herstellung von beschleunigungssensoren
WO1998023934A1 (de) * 1996-11-22 1998-06-04 Siemens Aktiengesellschaft Mikromechanischer sensor
DE19700290A1 (de) * 1997-01-03 1998-07-16 Siemens Ag Mikromechanische Halbleiteranordnung und Verfahren zur Herstellung einer mikromechanischen Halbleiteranordnung
EP0890998A1 (de) * 1997-07-07 1999-01-13 STMicroelectronics S.r.l. Herstellungsverfahren und integrierter piezoresistiver Drucksensor mit einem Diaphragma aus polykristallinem Halbleitermaterial
EP0895090A1 (de) * 1997-07-31 1999-02-03 STMicroelectronics S.r.l. Verfahren zum Herstellen hochempfindlicher integrierter Beschleunigungs- und Gyroskopsensoren und Sensoren, die derartig hergestellt werden

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075253A (en) * 1989-04-12 1991-12-24 Advanced Micro Devices, Inc. Method of coplanar integration of semiconductor IC devices
DE4318466B4 (de) 1993-06-03 2004-12-09 Robert Bosch Gmbh Verfahren zur Herstellung eines mikromechanischen Sensors
US6328794B1 (en) * 1993-06-26 2001-12-11 International Business Machines Corporation Method of controlling stress in a film
DE4341271B4 (de) 1993-12-03 2005-11-03 Robert Bosch Gmbh Beschleunigungssensor aus kristallinem Material und Verfahren zur Herstellung dieses Beschleunigungssensors
DE19537814B4 (de) 1995-10-11 2009-11-19 Robert Bosch Gmbh Sensor und Verfahren zur Herstellung eines Sensors
US5992233A (en) * 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope
DE69632950T2 (de) * 1996-07-31 2005-08-25 Stmicroelectronics S.R.L., Agrate Brianza Integrierte Mikrostrukturen aus Halbleitermaterial und ein Verfahren zu deren Herstellung
EP0911606A1 (de) * 1997-10-23 1999-04-28 STMicroelectronics S.r.l. Integrierter Winkelgeschwindigkeitssensor und Verfahren zu seiner Herstellung
KR100300002B1 (ko) * 1998-04-01 2001-11-22 조동일 (111)단결정실리콘을이용한마이크로머시닝제조방법
US6689694B1 (en) * 1998-04-01 2004-02-10 Dong-II Cho Micromechanical system fabrication method using (111) single crystalline silicon
DE19817311B4 (de) * 1998-04-18 2007-03-22 Robert Bosch Gmbh Herstellungsverfahren für mikromechanisches Bauelement
US5929497A (en) * 1998-06-11 1999-07-27 Delco Electronics Corporation Batch processed multi-lead vacuum packaging for integrated sensors and circuits
EP1039529B1 (de) * 1999-03-22 2006-12-13 STMicroelectronics S.r.l. Verfahren zur Herstellung einer mikrointegrierten Struktur mit vergrabener Verdrahtung, speziell eines Mikroaktuators für ein Festplattenlaufwerk
US7075160B2 (en) * 2003-06-04 2006-07-11 Robert Bosch Gmbh Microelectromechanical systems and devices having thin film encapsulated mechanical structures
US6936491B2 (en) * 2003-06-04 2005-08-30 Robert Bosch Gmbh Method of fabricating microelectromechanical systems and devices having trench isolated contacts
US6952041B2 (en) * 2003-07-25 2005-10-04 Robert Bosch Gmbh Anchors for microelectromechanical systems having an SOI substrate, and method of fabricating same
US7056757B2 (en) * 2003-11-25 2006-06-06 Georgia Tech Research Corporation Methods of forming oxide masks with submicron openings and microstructures formed thereby
US7068125B2 (en) * 2004-03-04 2006-06-27 Robert Bosch Gmbh Temperature controlled MEMS resonator and method for controlling resonator frequency
US7102467B2 (en) * 2004-04-28 2006-09-05 Robert Bosch Gmbh Method for adjusting the frequency of a MEMS resonator
JP2005342808A (ja) * 2004-05-31 2005-12-15 Oki Electric Ind Co Ltd Memsデバイスの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004319A1 (de) * 1995-07-21 1997-02-06 Robert Bosch Gmbh Verfahren zur herstellung von beschleunigungssensoren
WO1998023934A1 (de) * 1996-11-22 1998-06-04 Siemens Aktiengesellschaft Mikromechanischer sensor
DE19700290A1 (de) * 1997-01-03 1998-07-16 Siemens Ag Mikromechanische Halbleiteranordnung und Verfahren zur Herstellung einer mikromechanischen Halbleiteranordnung
EP0890998A1 (de) * 1997-07-07 1999-01-13 STMicroelectronics S.r.l. Herstellungsverfahren und integrierter piezoresistiver Drucksensor mit einem Diaphragma aus polykristallinem Halbleitermaterial
EP0895090A1 (de) * 1997-07-31 1999-02-03 STMicroelectronics S.r.l. Verfahren zum Herstellen hochempfindlicher integrierter Beschleunigungs- und Gyroskopsensoren und Sensoren, die derartig hergestellt werden

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GENNISSEN P T J ET AL: "Bipolar-compatible epitaxial poly for smart sensors: Stress minimization and applications", SENSORS AND ACTUATORS A,CH,ELSEVIER SEQUOIA S.A., LAUSANNE, vol. 62, no. 1-3, 1 July 1997 (1997-07-01), pages 636 - 645, XP004119702, ISSN: 0924-4247 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004304189A (ja) * 2003-03-31 2004-10-28 Robert Bosch Gmbh 積層パッケージングを使用して包囲されたセンサ構造体を保護する方法
US7172917B2 (en) 2003-04-17 2007-02-06 Robert Bosch Gmbh Method of making a nanogap for variable capacitive elements, and device having a nanogap
JP2006526509A (ja) * 2003-06-04 2006-11-24 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング マイクロ電気機械的装置及びその封緘方法及び製造方法
WO2004109769A2 (en) 2003-06-04 2004-12-16 Robert Bosch Gmbh Microelectromechanical systems and methods for encapsulating
EP3527529A1 (de) 2003-06-04 2019-08-21 Robert Bosch GmbH Mikroelektromechanische systeme mit grabenisolierten kontakten und verfahren zu deren herstellung
WO2004108585A2 (en) 2003-06-04 2004-12-16 Robert Bosch Gmbh Microelectromechanical systems having trench isolated contacts, and methods for fabricating same
EP3498662A1 (de) 2003-06-04 2019-06-19 Robert Bosch GmbH Mikroelektromechanische systeme und verfahren zur verkapselung und herstellung davon
JP4908202B2 (ja) * 2003-06-04 2012-04-04 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング マイクロ電気機械的装置及びその封緘方法及び製造方法
WO2005081702A2 (en) 2004-02-12 2005-09-09 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
US7115436B2 (en) 2004-02-12 2006-10-03 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
US7923278B2 (en) 2004-02-12 2011-04-12 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
US8980668B2 (en) 2004-02-12 2015-03-17 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
US8372676B2 (en) 2004-02-12 2013-02-12 Robert Bosch Gmbh Integrated getter area for wafer level encapsulated microelectromechanical systems
WO2005096495A1 (en) 2004-03-04 2005-10-13 Robert Bosch Gmbh Temperture controlled mems resonator and method for controlling resonator frequency
WO2007021396A3 (en) * 2005-08-16 2007-06-28 Bosch Gmbh Robert Microelectromechanical devices and fabrication methods
US7956428B2 (en) 2005-08-16 2011-06-07 Robert Bosch Gmbh Microelectromechanical devices and fabrication methods
WO2007021396A2 (en) * 2005-08-16 2007-02-22 Robert Bosch Gmbh Microelectromechanical devices and fabrication methods
US9758371B2 (en) 2006-01-20 2017-09-12 Sitime Corporation Encapsulated microelectromechanical structure
US8871551B2 (en) 2006-01-20 2014-10-28 Sitime Corporation Wafer encapsulated microelectromechanical structure and method of manufacturing same
US11685650B2 (en) 2006-01-20 2023-06-27 Sitime Corporation Microelectromechanical structure with bonded cover
US10766768B2 (en) 2006-01-20 2020-09-08 Sitime Corporation Encapsulated microelectromechanical structure
US10450190B2 (en) 2006-01-20 2019-10-22 Sitime Corporation Encapsulated microelectromechanical structure
US10099917B2 (en) 2006-01-20 2018-10-16 Sitime Corporation Encapsulated microelectromechanical structure
US9440845B2 (en) 2006-01-20 2016-09-13 Sitime Corporation Encapsulated microelectromechanical structure
US9434608B2 (en) 2006-01-20 2016-09-06 Sitime Corporation Wafer encapsulated microelectromechanical structure
US7767482B1 (en) 2006-06-04 2010-08-03 Robert Bosch Gmbh Microelectromechanical systems having stored charge and methods for fabricating and using same
US8766706B2 (en) 2006-06-04 2014-07-01 Robert Bosch Gmbh Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same
US7456042B2 (en) 2006-06-04 2008-11-25 Robert Bosch Gmbh Microelectromechanical systems having stored charge and methods for fabricating and using same
US8343790B2 (en) 2006-06-04 2013-01-01 Robert Bosch Gmbh Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same
US7824943B2 (en) 2006-06-04 2010-11-02 Akustica, Inc. Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same
WO2008006641A1 (de) * 2006-07-12 2008-01-17 Robert Bosch Gmbh Verfahren zur herstellung von mems-strukturen
FR2924421A1 (fr) * 2007-12-04 2009-06-05 Commissariat Energie Atomique Dispositif a circuit integre et n/mems encapsule et procede de realisation.
US8183078B2 (en) 2007-12-04 2012-05-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device with integrated circuit and encapsulated N/MEMS and method for production
WO2009071595A2 (fr) * 2007-12-04 2009-06-11 Commissariat A L'energie Atomique Dispositif a circuit integre et n/mems encapsule et procede de realisation
WO2009071595A3 (fr) * 2007-12-04 2009-11-05 Commissariat A L'energie Atomique Dispositif a circuit integre et n/mems encapsule et procede de realisation
US7875482B2 (en) 2009-03-19 2011-01-25 Robert Bosch Gmbh Substrate with multiple encapsulated pressures
WO2010107619A2 (en) 2009-03-19 2010-09-23 Robert Bosch Gmbh Substrate with multiple encapsulated pressures

Also Published As

Publication number Publication date
EP1274647B1 (de) 2014-01-08
US20030049878A1 (en) 2003-03-13
DE10017976A1 (de) 2001-10-18
US7259436B2 (en) 2007-08-21
JP5026653B2 (ja) 2012-09-12
EP1274647A1 (de) 2003-01-15
JP2003530233A (ja) 2003-10-14

Similar Documents

Publication Publication Date Title
EP1274647B1 (de) Mikromechanisches bauelement und entsprechendes herstellungsverfahren
EP1274648B1 (de) Mikromechanisches bauelement und entsprechendes herstellungsverfahren
DE102010039057B4 (de) Sensormodul
DE102015116556B4 (de) Spannungsisolierungsplattform für MEMS-Bauelemente
DE102018124826B4 (de) Auf waferebene integriertes mems-bauelement, das mit einer siliziumsäule und einer intelligenten kappe ermöglicht wird
DE10063991B4 (de) Verfahren zur Herstellung von mikromechanischen Bauelementen
DE60315749T2 (de) MEMS Verpackung auf Waferebene
DE102009029180A1 (de) Mikrosystem
EP1419534A2 (de) Verfahren zum kontaktieren und gehäusen von integrierten schaltungen
DE102007038169A1 (de) Verfahren zum Verpacken auf Waferebene unter Verwendung von Waferdurchgangslöchern mit geringem Aspektverhältnis
WO2006105924A1 (de) Mikromechanisches bauteil sowie verfahren zur herstellung eines mikromechanischen bauteils
DE10005555A1 (de) Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
EP2307308B1 (de) Verfahren zum verkappen eines mems-wafers
DE102014202808A1 (de) Verfahren zum eutektischen Bonden zweier Trägereinrichtungen
EP1389307B1 (de) Sensoranordnung, insbesondere mikromechanische sensoranordnung
DE102013209266A1 (de) Bauelement mit einem Hohlraum
DE102006007729A1 (de) Verfahren zur Herstellung eines MEMS-Substrats, entsprechendes MEMS-Substrat und MEMS-Prozess unter Verwendung des MEMS-Substrats
DE19820816A1 (de) Bondpadstruktur und entsprechendes Herstellungsverfahren
DE102012213313B4 (de) Mikromechanische Struktur
DE10324421B4 (de) Halbleiterbauelement mit Metallisierungsfläche und Verfahren zur Herstellung desselben
EP1296886B1 (de) Herstellungsverfahren für ein mikromechanisches bauelement
WO2012069078A1 (de) Eutektische bondung von dünnchips auf einem trägersubstrat
EP2150488B1 (de) Verfahren zur herstellung eines mikromechanischen bauelements mit auffüllschicht und maskenschicht
DE10348908B4 (de) Verfahren zur Herstellung eines Mikrosystems mit integrierter Schaltung und mikromechanischem Bauteil
DE19710324A1 (de) Verfahren zur Herstellung von mikromechanische Strukturen aufweisenden Halbleiterbauelemente

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001929254

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 575491

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10018180

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001929254

Country of ref document: EP