WO2001082410A1 - Antena avanzada multinivel para vehiculos a motor - Google Patents

Antena avanzada multinivel para vehiculos a motor Download PDF

Info

Publication number
WO2001082410A1
WO2001082410A1 PCT/ES2000/000148 ES0000148W WO0182410A1 WO 2001082410 A1 WO2001082410 A1 WO 2001082410A1 ES 0000148 W ES0000148 W ES 0000148W WO 0182410 A1 WO0182410 A1 WO 0182410A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
multilevel structure
motor vehicle
conductive plate
vehicle according
Prior art date
Application number
PCT/ES2000/000148
Other languages
English (en)
French (fr)
Inventor
Carles Puente Baliarda
Edouard-Jean-Louis Rozan
Original Assignee
Advanced Automotive Antennas, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Automotive Antennas, S.L. filed Critical Advanced Automotive Antennas, S.L.
Priority to AU41210/00A priority Critical patent/AU4121000A/en
Priority to PCT/ES2000/000148 priority patent/WO2001082410A1/es
Priority to AT00920754T priority patent/ATE378700T1/de
Priority to DE60037142T priority patent/DE60037142T2/de
Priority to EP00920754A priority patent/EP1313166B1/en
Priority to JP2001579394A priority patent/JP2004501543A/ja
Publication of WO2001082410A1 publication Critical patent/WO2001082410A1/es
Priority to US10/274,853 priority patent/US6809692B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/12Resonant antennas
    • H01Q11/14Resonant antennas with parts bent, folded, shaped or screened or with phasing impedances, to obtain desired phase relation of radiation from selected sections of the antenna or to obtain desired polarisation effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3283Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle side-mounted antennas, e.g. bumper-mounted, door-mounted
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • This invention refers to an advanced multiservice antenna, formed by a set of polygonal elements, supported by a transparent conductive layer covered on the transparent window of a motor vehicle.
  • the particular shape and design of the polygonal elements preferably triangular or square, improves the behavior of the antenna to operate simultaneously in several bands.
  • the multi-service antenna will be connected to the most important of the main equipment present in a motor vehicle, such as a radio receiver (AM / FM), Digital Audio and Video Broadcasting (DAB and DVB), tire pressure control , opening of the car without cables, Channel dedicated by terrestrial radio (TETRA), mobile telephony (GSM 900 - GSM 1800 - UMTS), Global Positioning System (GPS), access to bluetooth LAN and access without cables.
  • a radio receiver AM / FM
  • DVB and DVB Digital Audio and Video Broadcasting
  • TETRA Time Division Multiple Access
  • GSM 900 - GSM 1800 - UMTS mobile telephony
  • GPS Global Positioning System
  • the integration of the antenna is becoming more and more necessary as we witness a profound change in telecommunications habits.
  • the Internet has caused an information age in which people around the world wait, ask and receive information. Car drivers hope to drive safely while handling email and answering phone calls and obtaining addresses, schedules and other information accessible from WWW.
  • Telematic devices can be used to automatically notify the authorities of an accident, and to guide rescue services to the car, track stolen vehicles, provide navigation assistance to drivers, emergency roadside assistance calls and remote diagnostics of engine functions.
  • the antennas are essentially narrowband devices. Its behavior is highly dependent on the size of the antenna in relation to the operating wavelength.
  • the use of multiband climbing antennas was first proposed in 1995 (patent number 9501019).
  • the main advantages presented by these antennas were a multi-frequency behavior, that is, that the antennas had similar parameters (input impedance, radiation diagram) in several bands maintaining their operation, compared to conventional antennas. Also, the scaled shapes allow to obtain a small antenna compared to other conventional antenna designs.
  • multilevel antennas (PCT / ES / 00296) solved some practical problems encountered with the practical applications of scaled antennas.
  • Self-similar scaled objects are, in a strict mathematical sense, composed of an infinite number of scaled iterations, impossible to achieve in practice. Also, for practical applications, the scale factor between each iteration, and the spacing between the bands does not have to correspond to the same number.
  • the multilevel antennas introduced a higher flexibility to design multiservice antennas for real applications, extending the theoretical capabilities of the ideal scaled antennas to the practical commercial antennas.
  • the present invention relates to an antenna for a motor vehicle with the following parts and features: a) A transparent window covered with an optically transparent conductive plate on at least one side of any of the window material plates. b) A multilevel structure printed on this conductive plate. This multilevel structure is composed of a set of polygonal elements of the same class, preferably triangles or squares. c) A two-conductor feeder transmission line. d) A similar impedance at the supply point and a similar horizontal radiation pattern in at least three frequencies within three bands, where two of the mentioned three frequencies are selected from the following: FM, DAB, pressure control of tires, opening of vehicle without cables, Tetra,
  • the typical frequency bands of the different applications are the following: FM (80MHz ⁇ 110MHz) DAB (205MHz ⁇ 230MHz) Tetra (350MHz ⁇ 450MHz)
  • the main advantage of the invention is the multiband and multiservice antenna behavior. This allows a convenient and easy connection to a simple antenna for most vehicle communication systems.
  • This multiband behavior is obtained by a multilevel structure composed of a set of polygonal elements of the same class (the same number of sides), electromagnetically coupled by means of either an ohmic contact, or by means of a capacitive coupling mechanism. or inductive
  • the contact region between each of the elements must be, in at least 75% of the elements, always shorter than a 50% of the perimeters of these polygonal structures.
  • the other main advantage of the invention lies in the use of a plate transparent conductive as support for this antenna. Being transparent, this antenna can be covered on the windshield screen of a motor vehicle. Other possible positions are the side windows or the rear windows.
  • This optically transparent and conductive plate is commonly used on the windshield screen of the vehicle to reflect most of the IR radiation.
  • the most commonly used material is ITO (Indian tin oxide), although other materials (such as TiO 2 , SnO or ZnO) can be used, by means of a splashing vacuum deposition process.
  • An additional passive layer can be added to protect said conductive layer from external aggressions.
  • the materials for this passive layer are made of, for example, SiO 2 , or any other material used for passivity obtained by vacuum deposition, or also a polymeric coating (resin) sprayed on the structure.
  • a mask can be placed on the substrate material to obtain the desired multiband antenna shape.
  • This mask is normally made of special conductive steel without tinctures or copper for these purposes, or a photosensitive conductive material to create the mask through photochemical processes.
  • This transparent conductive layer can also be connected to a heat source to remove frost from the window in the presence of moisture or ice.
  • Another advantage of the multiband antenna is to reduce the total weight of the antenna compared to the classic rod antenna. Together with the costs, reducing the weight of the components is one of the highest priorities in the automotive sector. Reductions in cost and weight are also improved by using a simple cable to power the multi-service antenna.
  • This transparent conductive layer could also be deposited on a support other than a transparent windshield or other vehicle windows.
  • a suitable position could be the roof of the vehicle to ensure optimal reception of satellite signals for example.
  • the antenna structure is based on a multilevel structure with triangular elements in this particular example, but other polygonal structures can also be used.
  • Figures 2 and 7 describe possible configurations for the multilevel antenna whose support is an optically transparent conductive plate. These configurations are: Figure 2: a triangular multilevel structure (10) fed as a monopole and with the transparent conductive plate (4) filling the interior area of the polygonal elements and where the rest of the window surface (11) does not It is covered with said conductive plate.
  • Figure 3 a triangular multilevel structure (10) fed as a monopole and where the transparent conductive plate (4) only defines the perimeter of the polygonal elements of the characteristic multilevel structure, and where the rest of the window surface (11) is not covered with said conductive plate.
  • Figure 4 a triangular multilevel structure (10) fed as an opening antenna, and wherein the transparent conductive plate (4) covers most of the transparent window support (11) except the solid multilevel structure except the interior area of the several polygons that make up this multilevel structure.
  • Figure 5 a triangular multilevel structure (10) defined by the perimeter of the polygonal elements, fed as an opening antenna, wherein the transparent conductive plate (4) covers most of the transparent window support (11) except a structure slotted multilevel.
  • Figure 6 a triangular multilevel structure (10), wherein a first solid multilevel structure, connected to the power line, is printed on the surface of a first transparent support (4) and a second complementary multilevel structure is printed on a second parallel surface of the transparent support of the window (11), such as the set of the two structures that effectively block the incoming IR radiation from outside the vehicle.
  • Figure 7 An example of how several multi-level structures (10) can be printed at the same time using the same procedure and scheme described in any of the above configurations ( Figures 2 to 6) or a combination of them, to form or an array of antennas, or a scheme for spatial diversity or polarization diversity.
  • Figures 8 to 14 describe other possible examples of multilevel structures (10) in various configurations that can be used following the object and spirit of the present invention.
  • the essence of the invention lies in the combination of the multilevel structure that provides multiband behavior, with the effectively invisible assembly of the aforementioned structure on the window of a vehicle, and those several combinations of polygonal elements can be used following the same essential scheme as those described herein.
  • Figure 8 another example of a triangular multilevel structure (10), said multilevel structure approaching an ideal Sierpinski triangle, presented in the configurations described in Figures 2 to 7.
  • Figure 9 a triangular multilevel structure (10), approaching a Sierpinski triangle, and where the angle of the lower vertex is changed to adjust the antenna to different impedances characteristic of the two-conductor power transmission line such as for example 300 ohms (for example, for a Siamese cable transmission line), a 50 ohm transmission line or a 75 ohm transmission line.
  • Figure 10 a triangular multilevel structure (10), which approximates a Sierpinski triangle and where although the polygons are all of the same class (triangles), these do not retain the same size, scale or aspect ratio, to tune the resonant frequencies to the different operating bands.
  • Figure 11 Another example of multi-service antenna configurations where the basic polygon of the multilevel structure is a triangle.
  • Figure 12 Another example of multi-service antenna configurations where the basic polygon of the multilevel structure is a triangle.
  • Figure 13 Another example of multi-service antenna configurations where the basic polygon of the multilevel structure is a square.
  • Figure 14 Another example of multi-service antenna configurations where the basic polygon of the multilevel structure is a square.
  • Figure 15 Another example of multi-service antenna configurations where the basic polygon of the multilevel structure is a square.
  • the present invention describes a multiservice antenna including at least one multilevel structure (10).
  • a multilevel structure is composed of a set of polygonal elements, all of them of the same class (the same number of similar sides), where the aforementioned polygonal elements are coupled electromagnetically either by means of an ohmic contact or by means of a mechanism of capacitive or inductive coupling.
  • Said multilevel structure can be composed of any kind of polygonal element (triangle, square, pentagon, hexagon or even a circle or an ellipse in the limit case of infinite number of sides) provided they are of the same class.
  • preference is given to triangular or square elements, these structures being more efficient to obtain an omnidirectional diagram in the horizontal plane or a diversity in polarization orthogonal from the same antenna.
  • a multilevel structure differs in a conventional way, mainly by the interconnection and coupling of the different elements, which produces a particular geometry, where most of the various elements that make up the structure can be detected individually by means of a simple inspection visual.
  • the contact region between each element must be, in at least 75% of the elements, always shorter than 50% of the perimeters of said structures. polygonal
  • the multilevel structure is easily identifiable and distinguishable from a conventional structure by identifying the majority of the elements that constitute it.
  • the multilevel structure can optionally be defined by the external perimeter of its polygonal elements alone.
  • the behavior of such an antenna is not very different from that made up of solid polygonal elements as long as said elements are small compared to the shorter operating wavelength, since the interconnection of the elements generally forces distribution of current to follow the external perimeter of said polygonal elements.
  • a multilevel cable structure could be stamped on a transparent open window and could be used as a heating structure to remove frost.
  • Figure 2 describes a preferred embodiment of a multi-service antenna (solid embodiment).
  • This configuration is composed of a set of triangular elements (10), scaled by a factor of 1/2. Seven scales of triangles are used and the antenna is characterized by a similar behavior in seven different frequency bands, each being approximately twice as large as the one immediately before. The lowest frequency is related to the perimeter dimensions of the outer triangle, approximately a quarter of the wavelength at the edge of the triangle.
  • This configuration is fed with a double conductor structure such as a coaxial cable (13), with one of the conductors connected to the lower vertex of the multilevel structure, and the other conductor connected to the metal structure of the car.
  • the Contact can be made directly, or using a capacitive or inductive coupling mechanism to adjust the input impedance of the antenna.
  • the triangular elements are printed on an optically transparent conductive plate supported by a transparent substrate such as the windshield screen (11) or the window of a motor vehicle.
  • the ground plane is partially made by the hood of the vehicle.
  • the windshield screen, or any of the windows of the vehicle in general, is a suitable position to place this antenna element.
  • the polarization of this antenna is linear vertical in the plane orthogonal to the plane of the window and containing the axis of symmetry of the structure. In other azimuthal angles, the polarization of the antenna is inclined, which is useful for detecting the signals that in a typical multipath propagation environment characterize a majority of unpredictable polarization states.
  • FIG 3 another preferred embodiment is presented (grid or cable embodiment).
  • This configuration is similar to the previous ones, where the way to feed the antenna is by the lower vertex as a quarter wavelength monopole.
  • the triangular elements are defined only by their external perimeter. Their behavior is similar to the previous models, since, in the configuration of Figure 2, the current distribution is mainly concentrated in the external perimeter of the triangular elements due to the reduced ohmic contact between them. This configuration requires depositing less material on the transparent support.
  • the embodiment of the configuration of Figure 4, offers an additional advantage to the multi-service antenna.
  • the entire transparent substrate is covered by a transparent conductive layer such as the windshield of a car (11).
  • This conductive layer usually composed of a material such as (Indian Tin Oxide) ITO reduces the heating effect due to IR radiation.
  • the multilevel antenna is defined by means of triangular elements where the layer Conductive has been trimmed.
  • This antenna configuration corresponds to a multilevel aperture antenna.
  • This formation is constructed, for example, by interposing a suitable mask during the splashing process of the transparent conductive layer.
  • the feeding scheme can be one of the techniques generally used in conventional opening antennas.
  • the inner coaxial cable (13) is connected directly to the lower triangular element and the outer connector to the rest of the conductive layer, which can optionally be connected to the metal body of the car.
  • This configuration combines the advantages of a multi-service antenna together with an IR protection.
  • the IR protection inside the vehicle can be improved with the antenna configuration presented in Figure 5 (slot embodiment).
  • the antenna remains similar to the previous one, in a configuration of an opening antenna.
  • the multilevel antenna is defined only at the outer perimeter of the triangular element where the conductive plate has been trimmed.
  • Such a configuration, where an arbitrary antenna geometry has been grooved on a metal surface, is also commonly known as a slot antenna.
  • the feeding mechanism proposed in this embodiment connects the inner coaxial cable (13) directly to the lower triangular element and the outer connector to the rest of the conductive plate, which can optionally be connected to the metal body of the car.
  • the present embodiment presented in Figure 6 offers maximum protection from IR radiation.
  • two transparent conductive layers are used to support the covered transparent multiservice antenna.
  • a multi-service antenna corresponding to the configuration of Figure 4 is manufactured on the first layer. Any other configuration presented above could also be used.
  • the second parallel surface of the transparent window support is covered with the complementary structure of the first multilevel structure, such that the shape discovered on the first surface is covered on the second surface, and the shape covered on the first surface becomes be discovered on the second parallel surface.
  • the parallel coaxial cable (13) connects directly to the lower triangular element of the first layer and to the outer connector to the second parallel conductive layer. This embodiment is useful for blocking infrared radiation coming from outside the vehicle.
  • the reception system can be easily improved using spatial diversity or polarization diversity techniques. Because of multiple propagation paths, destructive interference can cancel the signal at the antenna reception. This will be particularly true in an area of high urban density.
  • Two or several multiservice antennas, using a configuration like the one described in the previous models, are presented in Figure 7.
  • the advantage of using the techniques described in the present invention is that printing several antennas on the same transparent window holder does not affect much at the cost of the final solution with respect to that of a single multi-service antenna, so that the diversity scheme can be included at a low cost.
  • the antenna presented in Figure 8 approximates the shape of a triangle of
  • Sierpinski As five levels of scale are included in this example, this configuration ensures similar antenna behavior in five frequency bands.
  • the band spacing will be approximately one octave due to the reduction of the scale factor of two present among the various substructures of the antenna.
  • the vertex Triangular lower antenna can be different from 60 ° and can be decreased or increased to adjust the input impedance of the antenna with the power line.
  • the different applications (FM, DAB, Wireless Car Opening, tire pressure control, DVB, GSM900 / AMPS, GSM1800 / DCS / PCS / DEC, UMTS, Bluetooth, GPS, or WLAN) characterized by a multi-service antenna they necessarily have a constant relationship factor of two.
  • the reduction factor is different from 2 as an example of a method of tuning the antenna to different frequency bands.

Abstract

La presente invención se refiere a una antena para un vehículo a motor con las siguientes partes y características: a) una ventana transparente cubierta con una placa conductiva ópticamente transparente sobre al menos un lado de cualquiera de las placas de material de ventana; b) una estructura multinivel impresa sobre esta placa conductiva. Esta estructura multinivel está compuesta por un conjunto de elementos poligonales de la misma clase, preferiblemente triángulos o cuadrados; c) una línea de transmisión alimentadora de dos conductores; d) una impedancia similar en el punto de alimentación y un diagrama de radiación horizontal similar en al menos tres frecuencias dentro de tres bandas, en donde dos de las mencionadas tres frecuencias se seleccionan de entre las siguientes: FM, DAB, control de la presión de neumáticos, apertura de vehículo sin cables, Tetra, DVB, GSM900/AMPS, GSM1800 / DCS / PCS / DECT, UMTS, GPS, Bluetooth y WLAN. Las bandas de frecuencia típicas de las diferentes aplicaciones son las siguientes: FM (80MHz∩110MHz); DAB (205MHz∩230MHz); Tetra (350MHz∩450MHz); Apertura del vehículo sin cables (433MHz∩868MHz); Control de presión de los neumáticos (433MHz); DVB (470MHz∩862MHz); GSM900/AMPS (820MHz∩970MHz); GSM1800 / DCS / PCS / DECT (1700MHz∩1950MHz); UMTS (1920MHz∩2200MHz); Bluetooth (2400MHz∩2500MHz); WLAN (4.5GHz∩6GHz). La principal ventaja de la invención es el comportamiento multibanda y multiservicio de la antena. Esto permite una conexión conveniente y fácil a una antena simple para la mayoría de los sistemas de comunicación del vehículo.

Description

ANTENA AVANZADA MULTINIVEL PARA VEHÍCULOS A MOTOR
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
Esta invención hace referencia a una antena avanzada multiservicio, formada por un conjunto de elementos poligonales, soportados por una capa conductiva transparente cubierta sobre la ventana transparente de un vehículo a motor.
La forma y el diseño particular de los elementos poligonales, preferiblemente triangular o cuadrada, mejora el comportamiento de la antena para funcionar de manera simultánea en varias bandas.
La antena multiservicio se conectará al más importante de entre los equipos principales presentes en un vehículo de motor, tal como un receptor de radio (AM/FM), Radiodifusión de Audio y Vídeo Digital (DAB y DVB), control de presión de los neumáticos, apertura del coche sin cables, Canal dedicado por radio terrestre (TETRA), telefonía móvil (GSM 900 - GSM 1800 - UMTS), Sistema Global de Posicionamiento (GPS), acceso a LAN bluetooth y acceso sin cables.
FUNDAMENTO DE LA INVENCIÓN
Hasta hace poco tiempo, los sistemas de telecomunicación presentes en un automóvil estaban limitados a unos pocos sistemas, principalmente la recepción de radio analógica (bandas de AM/FM). La solución más común para estos sistemas es la típica antena de varilla montada en el techo del coche. La tendencia actual en el sector de la automoción es reducir el impacto estético y aerodinámico debidos a estas antenas, mediante la incorporación de estas antenas a la estructura del vehículo. También, una integración mayor de los servicios de telecomunicación en una sola antena ayudaría a reducir los costes de fabricación de los desperfectos debidos al vandalismo y a los equipos de lavado de coches.
La integración de la antena se está convirtiendo en algo cada vez más y más necesario a medida que asistimos a un profundo cambio en los hábitos de las telecomunicaciones. Internet ha provocado una era de la información en la que la gente de todo el mundo espera, pide y recibe información. Los conductores de coches esperan poder conducir de forma segura mientras manejan el correo electrónico y atienden a las llamadas de teléfono y obtener direcciones, programaciones y otras informaciones accesibles desde la WWW.
Los dispositivos telemáticos se pueden usar para notificar automáticamente a las autoridades de un accidente, y para guiar a los servicios de rescate al coche, seguir la pista a vehículos robados, proporcionar asistencia a la navegación a los conductores, asistencia de llamadas de emergencia en carretera y diagnósticos a distancia de las funciones del motor.
Los equipos y servicios de alto nivel han estado disponibles en algunos coches durante muy pocos años. El coste del servicio de alto nivel y equipo los limitaba inicialmente a coches de lujo. Sin embargo, la rápida caída en ambos precios, tanto en el de los equipos como en el de los servicios han hecho que los productos telemáticos se vayan incorporando a los automóviles de precio medio. La introducción masiva de nuevos sistemas generará una proliferación de nuevas antenas de coche, en contradicción con los requisitos estéticos y aerodinámicos de las antenas integradas.
Las antenas son esencialmente dispositivos de banda estrecha. Su comportamiento es altamente dependiente del tamaño de la antena en relación con la longitud de onda de funcionamiento. El uso de antenas multibanda con forma escalada se propuso por primera vez en 1995 (patente número 9501019). Las principales ventajas presentadas por estas antenas eran un comportamiento multifrecuencia, esto es, que las antenas presentaban parámetros similares (impedancia de entrada, diagrama de radiación) en varias bandas manteniendo su funcionamiento, comparado con antenas convencionales. También, las formas escaladas permiten obtener una antena de dimensiones reducidas comparada con otros diseños de antenas convencionales.
En 1999, las antenas multinivel (PCT/ES/00296) resolvieron algunos problemas prácticos encontrados con las aplicaciones prácticas de las antenas escaladas. Los objetos escalados auto-semejantes están, en un sentido matemático estricto, compuestos por un número infinito de iteraciones escaladas, imposibles de conseguir en la práctica. También, para aplicaciones prácticas, el factor de escala entre cada iteración, y el espaciado entre las bandas no se tiene que corresponder con el mismo número. Las antenas multinivel introdujeron una flexibilidad más alta para diseñar antenas multiservicio para aplicaciones reales, extendiendo las capacidades teóricas de las antenas escaladas ideales a las antenas comerciales prácticas.
Se han propuesto varias soluciones para integrar la antena AM/FM en la estructura del vehículo. Una posible configuración es usar la rejilla térmica del parabrisas trasero (patente número WO95/11530). Sin embargo, esta configuración requiere una costosa red de adaptación electrónica, incluyendo amplificadores y filtros de RF para discriminar las señales de radio de la fuente de DC. Por otra parte, para reducir los costes, la antena de la banda de AM a menudo viene aparte de la rejilla calentadora limitando el área de la rejilla calentadora.
Otras configuraciones están basadas en la utilización de una placa conductiva transparente. Esta capa esta cubierta sobre el parabrisas del vehículo se introduce para evitar un calentamiento excesivo del interior del vehículo debido a las reflexiones de las radiaciones infrarrojas IR.
La utilización de esta capa como antena de recepción para las bandas de AM y FM se ha propuesto ya con varias formas de antenas. La patente japonesa JP/UM-49-1562 se cita a menudo como una de las primeras para proponer la utilización de capas conductivas transparentes como antenas de recepción. La patente número US 445884 propuso el uso de la placa conductiva del parabrisas al completo como adaptadora de impedancias para la banda de FM bastante más grande que elemento de antena horizontal. Otras configuraciones propusieron dejar una apertura de ranura entre el borde de la pantalla del parabrisas y la placa conductiva transparente (Patente US número 5355144) o para impresionar sobre el cristal múltiples monopolos impares de longitud de onda mitad (Patente US número 5255002).
Obviamente, todas estas configuraciones de antena pueden funcionar solamente a una determinada banda de frecuencia por razón de la dependencia de frecuencia del parámetro de antena, y no son adecuadas para la operación multiservicio. Una de las principales innovaciones sustanciales introducidas por la presente invención, consiste en usar un solo elemento de antena, manteniendo el mismo comportamiento para varias aplicaciones, y para conservar la protección de IR. Las ventajas residen en la integración de una antena completa sin impacto estético o aerodinámico, una protección completa contra el vandalismo y una reducción de los costes de fabricación.
RESUMEN DE LA INVENCIÓN
La presente invención se refiere a una antena para un vehículo a motor con las siguientes partes y características: a) Una ventana transparente cubierta con una placa conductiva ópticamente transparente sobre al menos un lado de cualquiera de las placas de material de ventana. b) Una estructura multinivel impresa sobre esta placa conductiva. Esta estructura multinivel está compuesta por un conjunto de elementos poligonales de la misma clase, preferiblemente triángulos o cuadrados. c) Una línea de transmisión alimentadora de dos conductores. d) Una impedancia similar en el punto de alimentación y un diagrama de radiación horizontal similar en al menos tres frecuencias dentro de tres bandas, en donde dos de las mencionadas tres frecuencias se seleccionan de entre las siguientes: FM, DAB, control de la presión de neumáticos, apertura de vehículo sin cables, Tetra,
DVB, GSM900/AMPS, GSM1800 / DCS / PCS / DECT, UMTS, GPS, Bluetooth y WLAN.
Las bandas de frecuencia típicas de las diferentes aplicaciones son las siguientes: FM (80MHz~110MHz) DAB (205MHz~230MHz) Tetra (350MHz~450MHz)
Apertura del vehículo sin cables (433MHz~868MHz) Control de presión de los neumáticos (433MHz) DVB (470MHz~862MHz) GSM900/AMPS (820MHz~970MHz) GSM1800 / DCS / PCS / DECT (1700MHz~1950MHz) UMTS (1920MHz~2200MHz) Bluetooth (2400MHz~2500MHz) WLAN (4.5GHz~6GHz)
La principal ventaja de la invención es el comportamiento multibanda y multiservicio de la antena. Esto permite una conexión conveniente y fácil a una antena simple para la mayoría de los sistemas de comunicación del vehículo.
Este comportamiento multibanda se obtiene por una estructura multinivel compuesta por un conjunto de elementos poligonales de la misma clase (el mismo número de lados), acoplados electromagnéticamente por medio de, o bien un contacto óhmico, o bien por medio de un mecanismo de acople capacitivo o inductivo. Sin embargo, se da preferencia a los elementos triangulares o cuadrados, siendo estas estructuras más eficientes para obtener un diagrama omnidireccional en el plano horizontal. Para asegurar una fácil identificación de cada elemento de los que componen la estructura completa y el comportamiento multibanda apropiado, la región de contacto entre cada uno de los elementos tiene que ser, en al menos el 75% de los elementos, siempre más corta que un 50% de los perímetros de dichas estructuras poligonales.
La otra ventaja principal de la invención reside en la utilización de una placa conductiva transparente como soporte para esta antena. Siendo transparente, esta antena puede cubrirse en la pantalla del parabrisas de un vehículo de motor. Otras posiciones posibles son las ventanas laterales o las ventanas traseras.
Esta placa ópticamente transparente y conductora se usa habitualmente en la pantalla del parabrisas del vehículo para reflejar la mayor parte de las radiaciones IR. El material más comúnmente usado es el ITO (indio estaño óxido), aunque se pueden usar otros materiales, (como por ejemplo, TiO2, SnO o ZnO), por medio de un proceso de deposición en vacío por salpicadura. Se puede añadir una capa adicional pasiva para proteger la mencionada capa conductora de agresiones externas. Los materiales para esta capa pasiva están fabricados de, por ejemplo, SiO2, o cualquier otro material usado para pasividad obtenido por deposición en vacío, o también una recubierta polimérica (resina) rociada sobre la estructura. Durante el proceso de salpicadura, se puede colocar una máscara sobre el material del sustrato para obtener la forma de la antena multibanda deseada. Esta máscara, normalmente esta hecha de acero conductor especial sin tinturas o de cobre para estos propósitos, o un material conductor fotosensible para crear la máscara mediante unos procesos fotoquímicos. Esta capa conductiva transparente también se puede conectar a una fuente de calor para eliminar la escarcha de la ventana en presencia de humedad o de hielo.
Otra ventaja de la antena multibanda es reducir el peso total de la antena en comparación con la clásica antena de varilla. Junto con los costes, la reducción del peso de los componentes es una de las prioridades mayores en el sector de la automoción. Las reducciones en el coste y en el peso son mejoradas también mediante la utilización de un simple cable para alimentar a la antena multiservicio.
Esta capa conductora transparente podría también ser depositada sobre un soporte diferente a un parabrisas transparente u otras ventanas del vehículo. Una posición adecuada podría ser el techo del vehículo para asegurar una recepción óptima de señales de satélites por ejemplo.
BREVE DESCRIPCIÓN DE LOS DD3UJOS La figura 1 describe un ejemplo general de la posición de la antena impresa sobre la pantalla del parabrisas. La estructura de la antena se basa en una estructura multinivel con elementos triangulares es este ejemplo en particular, pero se pueden usar también otras estructuras poligonales.
Las figuras 2 y 7 describen configuraciones posibles para la antena multinivel cuyo soporte es una placa conductiva ópticamente transparente. Estas configuraciones son: La figura 2: una estructura multinivel triangular (10) alimentada como un monopolo y con la placa conductora transparente (4) rellenando el área interior de los elementos poligonales y en donde el resto de la superficie de ventana (11) no está cubierto con dicha placa conductiva.
La figura 3: una estructura multinivel triangular (10) alimentada como un monopolo y en donde la placa conductora transparente (4) sólo define el perímetro de los elementos poligonales de la estructura multinivel característica, y en donde el resto de la superficie de la ventana (11) no está cubierta con dicha placa conductora.
La figura 4: una estructura multinivel triangular (10) alimentada como una antena de apertura, y en donde la placa conductora transparente (4) cubre la mayoría del soporte transparente de ventana (11) excepto la estructura multinivel sólida excepto el área interior de los varios polígonos que componen dicha estructura multinivel.
La figura 5: una estructura multinivel triangular (10) definida por el perímetro de los elementos poligonales, alimentada como una antena de apertura, en donde la placa conductora transparente (4) cubre la mayoría del soporte de ventana transparente (11) excepto una estructura multinivel ranurada.
La figura 6: una estructura multinivel triangular (10), en donde una primera estructura multinivel sólida, conectada a la línea de alimentación, es impresa sobre la superficie de un primer soporte transparente (4) y una segunda estructura multinivel complementaria es impresa sobre una segunda superficie paralela del soporte transparente de la ventana (11), tal como el conjunto de las dos estructuras que bloquean de manera efectiva las radiaciones entrantes de IR desde el exterior del vehículo.
La figura 7: Un ejemplo de cómo pueden imprimirse al mismo tiempo varias estructuras multinivel (10) usando el mismo procedimiento y esquema descrito en cualquiera de las configuraciones anteriores (figuras 2 a 6) o una combinación de ellas, para formar o un array de antenas, o un esquema para diversidad espacial o diversidad en polarización.
Por claridad, pero sin un propósito de limitación, las figuras 8 a 14 describen otros posibles ejemplos de estructuras multinivel (10) en varias configuraciones que pueden usarse siguiendo el objeto y el espíritu de la presente invención. Como se ha visto enseguida por aquéllos expertos en la materia, la esencia de la invención reside en la combinación de la estructura multinivel que proporciona un comportamiento multibanda, con el montaje efectivamente invisible de la mencionada estructura sobre la ventana de un vehículo, y esas varias combinaciones de elementos poligonales pueden usarse siguiendo el mismo esquema esencial de aquéllos descritos en el presente documento.
La figura 8: otro ejemplo de una estructura multinivel triangular (10), aproximándose la mencionada estructura multinivel a un triángulo ideal de Sierpinski, presentada en las configuraciones descritas en las figuras 2 a 7.
La figura 9: una estructura multinivel triangular (10), aproximándose a un triángulo de Sierpinski, y donde el ángulo del vértice inferior es cambiado para ajustar la antena a diferentes impedancias características de la línea de transmisión de alimentación de dos conductores tal como por ejemplo 300 ohmios (por ejemplo, para una línea de transmisión de cable siamés), una línea de transmisión de 50 ohmios o una línea de transmisión de 75 ohmios.
La figura 10: una estructura multinivel triangular (10), que se aproxima a un triángulo de Sierpinski y en donde aunque los polígonos son todos de la misma clase (triángulos), éstos no conservan el mismo tamaño, escala o relación de aspecto, para sintonizar las frecuencias resonantes a las distintas bandas de funcionamiento.
La figura 11: otro ejemplo de configuraciones de antena multiservicio en donde el polígono básico de la estructura multinivel es un triángulo.
La figura 12: otro ejemplo de configuraciones de antena multiservicio en donde el polígono básico de la estructura multinivel es un triángulo.
La figura 13: otro ejemplo de configuraciones de antena multiservicio en donde el polígono básico de la estructura multinivel es un cuadrado.
La figura 14: otro ejemplo de configuraciones de antena multiservicio en donde el polígono básico de la estructura multinivel es un cuadrado.
La figura 15: Otro ejemplo de configuraciones de antena multiservicio en donde el polígono básico de la estructura multinivel es un cuadrado.
DESCRIPCIÓN DETALLADA DE LAS REALIZACIONES PREFERIDAS
La presente invención describe una antena multiservicio incluyendo al menos una estructura multinivel (10). Una estructura multinivel está compuesta por un conjunto de elementos poligonales, todos ellos de la misma clase (el mismo número de lados semejantes), en donde los mencionados elementos poligonales se acoplan electromagnéticamente o bien por medio de un contacto óhmico o bien por medio de mecanismo de acoplamiento capacitivo o inductivo. Dicha estructura multinivel puede estar compuesta por cualquier clase de elemento poligonal (triángulo, cuadrado, pentágono, hexágono o incluso un círculo o una elipse en el caso límite de infinito número de lados) siempre que sean de la misma clase. Sin embargo, se da preferencia a los elementos triangulares o cuadrados, siendo estas estructuras más eficientes para obtener un diagrama omnidireccional en el plano horizontal o una diversidad en polarización ortogonal desde la misma antena. Una estructura multinivel difiere de una forma convencional, principalmente por la interconexión y acoplamiento de los diferentes elementos, lo que produce una geometría particular, en donde la mayoría de los varios elementos que componen la estructura pueden detectarse de manera individual por medio de una simple inspección visual. Para asegurar una fácil identificación de cada elemento de los que componen la estructura completa, la región de contacto entre cada elemento tiene que ser, en al menos el 75% de los elementos, siempre más corta que un 50% de los perímetros de dichas estructuras poligonales. La estructura multinivel es fácilmente identificable y distinguible de una estructura convencional mediante la identificación de la mayoría de los elementos que la constituyen.
En la construcción física de una antena multinivel, la estructura multinivel puede definirse opcionalmente por el perímetro externo de sus elementos poligonales solos. El comportamiento de tal antena, no es muy diferente de aquélla compuesta por elementos poligonales sólidos con tal de que dichos elementos sean pequeños en comparación con la longitud de onda de funcionamiento más corta, ya que la interconexión de los elementos, generalmente fuerza a la distribución de corriente a seguir el perímetro externo de dichos elementos poligonales. Una estructura multinivel de cable podría ser estampada sobre una ventana abierta transparente y podría usarse como estructura calentadora para quitar la escarcha.
La figura 2 describe una realización preferida de una antena multiservicio (realización sólida). Esta configuración está compuesta por un conjunto de elementos triangulares (10), escalados por un factor de 1/2. Se usan siete escalas de triángulos y la antena se caracteriza por un comportamiento similar en siete bandas de frecuencia diferentes, siendo cada una aproximadamente dos veces mayor que la inmediatamente anterior. La frecuencia más baja está relacionada con las dimensiones del perímetro del triángulo exterior, aproximadamente un cuarto de la longitud de onda en el borde del triángulo. Esta configuración se alimenta con una estructura de doble conductor tal como un cable coaxial (13), con uno de los conductores conectado al vértice inferior de la estructura multinivel, y el otro conductor conectado a la estructura metálica del coche. El contacto se puede hacer directamente, o usando un mecanismo de acoplamiento capacitivo o inductivo para ajustar la impedancia de entrada de la antena. En esta configuración particular, los elementos triangulares son impresos sobre una placa conductiva ópticamente transparente soportada por un sustrato transparente como la pantalla del parabrisas (11) o la ventana de un vehículo a motor. El plano de tierra se realiza parcialmente por el capó del vehículo. La pantalla del parabrisas, o cualquiera de las ventanas del vehículo en general, es una posición adecuada para colocar este elemento de antena. Usando la pantalla del parabrisas, ofreciendo un área abierta mucho mayor, el resto del cuerpo del vehículo tendrá un efecto reducido sobre el diagrama de radiación, haciendo esta antena útil para la amplia gama de telecomunicaciones para vehículos de motor, en donde se necesita un diagrama omnidireccional justo. La polarización de esta antena es lineal vertical en el plano ortogonal al plano de la ventana y conteniendo el eje de simetría de la estructura. En otros ángulos azimutales, la polarización de la antena es inclinada, lo que es útil para detectar las señales provenientes que en un entorno de una propagación típica multitrayecto caracterizan una mayoría de estados de polarización impredecibles.
En la figura 3 se presenta otra realización preferida (realización de rejilla o cable). Esta configuración es similar a las anteriores, en donde la forma de alimentar la antena es por el vértice inferior como un monopolo en cuarto de longitud de onda. En esta antena multtnivel, los elementos triangulares están definidos únicamente por su perímetro externo. Su comportamiento es similar a los modelos anteriores, ya que, en la configuración de la figura 2, la distribución de corriente está concentrada principalmente en el perímetro externo de los elementos triangulares debido al contacto óhmico reducido entre ellos. Esta configuración requiere depositar menos material sobre el soporte transparente.
La realización de la configuración de la figura 4, (realización de apertura), ofrece una ventaja adicional ala antena multiservicio. En este caso, todo el sustrato transparente es cubierto por una capa conductiva transparente como por ejemplo, el parabrisas de un coche (11). Esta capa conductiva, compuesta generalmente por un material tal como (Indio Estaño Óxido) ITO reduce el efecto de calentamiento debido a las radiaciones de IR. La antena multinivel se define por medio de elementos triangulares en donde la capa conductiva ha sido recortada. Esta configuración de antena se corresponde con una antena de apertura multinivel. Esta formación se construye por ejemplo mediante la interposición de una máscara adecuada durante el proceso de salpicadura de la capa conductora transparente. El esquema de alimentación puede ser una de las técnicas usadas generalmente en antenas de apertura convencionales. En la figura descrita, el cable coaxial interior (13) se conecta directamente al elemento triangular inferior y el conector exterior al resto de la capa conductiva, que puede conectarse opcionalmente al cuerpo metálico del coche. Esta configuración combina las ventajas de una antena multiservicio junto con una protección IR.
La protección IR en el interior del vehículo se puede mejorar con la configuración de antena presentada en la figura 5 (realización de ranura). La antena permanece similar a la anterior, en una configuración de una antena de apertura. En este caso, la antena multinivel está definida sólo en el perímetro externo del elemento triangular en donde la placa conductiva ha sido recortada. Dicha configuración, en donde una geometría de antena arbitraria ha sido ranurada sobre una superficie metálica, se conoce comúnmente también como una antena de ranura. El mecanismo de alimentación propuesto en esta realización conecta el cable coaxial interior (13) directamente al elemento triangular inferior y el conector exterior al resto de la placa conductiva, que puede conectarse opcionalmente al cuerpo metálico del coche.
La presente realización presentada en la figura 6 (realización combinada) ofrece la protección máxima de las radiaciones IR. En este caso, se usan dos capas conductivas transparentes para soportar la antena multiservicio transparente cubierta. Una antena multiservicio que se corresponda con la configuración de la figura 4 se fabrica sobre la primera capa. Cualquier otra configuración presentada anteriormente podría usarse también. La segunda superficie paralela del soporte transparente de la ventana es cubierta con la estructura complementaria de la primera estructura multinivel, de forma tal que la forma descubierta en la primera superficie se cubre en la segunda superficie, y la forma cubierta en la primera superficie pasa a estar descubierta en la segunda superficie paralela. El cable coaxial paralelo (13) se conecta directamente al elemento triangular inferior de la primera capa y al conector exterior a la segunda capa conductiva paralela. Esta realización es útil para bloquear la radiación infrarroja que viene desde el exterior del vehículo.
Basado en cualquiera de las configuraciones de antena propuestas en las figuras 2 a 6, el sistema de recepción puede ser mejorado fácilmente usando técnicas de diversidad espacial o diversidad en polarización. En razón de múltiples trayectorias de propagación, las interferencias destructivas pueden cancelar la señal en la recepción de la antena. Esto será particularmente cierto en un área de alta densidad urbana. Dos o varias antenas multiservicio, usando una configuración como la descrita en los modelos previos, se presentan en la figura 7. La ventaja de usar las técnicas descritas en la presente invención es que imprimir varias antenas en el mismo soporte de la ventana transparente no afecta mucho al coste de la solución final con respecto a aquélla de una única antena multiservicio, de forma que el esquema de diversidad puede incluirse a un bajo coste.
De las figuras 8 a 12, se presentan otras realizaciones preferidas de antenas multiservicio definidas por elementos triangulares. El esquema de alimentación y el proceso de construcción para estas realizaciones adicionales son los mismos como los descritos anteriormente. Como puede apreciarse por aquéllos expertos en la materia, se pueden usar otras configuraciones de antenas multinivel también dentro del mismo objeto y espíritu de la presente invención, lo que da confianza en combinar la característica multibanda de una estructura de una antena multinivel con el soporte conductor transparente de una ventana de un vehículo para obtener un funcionamiento ventajoso multiservicio virtualmente sin impacto estético o aerodinámico sobre el coche. En cada figura, la antena se representa en cada una de las diferentes configuraciones descritas previamente, (sólida, rejilla, apertura, ranura o configuración combinada).
La antena presentada en la figura 8 se aproxima a la forma de un triángulo de
Sierpinski. Como en este ejemplo están incluidos cinco niveles de escala, esta configuración asegura un comportamiento de antena similar en cinco bandas de frecuencia. El espaciado de bandas será aproximadamente de una octava debido a la reducción del factor de escala de dos presentes de entre las varias subestructuras de la antena. El vértice triangular inferior de la antena puede ser diferente de 60° y puede decrementarse o incrementarse para ajustar la impedancia de entrada de la antena con la línea de alimentación.
En la figura 9 se presentan diferentes configuraciones de antena con un ángulo de triángulo modificado. Los tres ejemplos presentados no suponen una limitación en la elección del ángulo triangular. Estas antenas se pueden usar en cualquiera de las configuraciones presentadas en las figuras anteriores y se apreciará por aquéllos expertos en la materia que se puede aplicar la misma clase de transformación sobre los ángulos de apertura a cualquier otra estructura multinivel.
Las diferentes aplicaciones (FM, DAB, Apertura del coche sin Cables, control de presión de los neumáticos, DVB, GSM900/AMPS, GSM1800 / DCS / PCS /DEC, UMTS, Bluetooth, GPS, o WLAN) caracterizadas por una antena multiservicio no tienen necesariamente un factor de relación constante dos. En la configuración presentada en la figura 10, el factor de reducción es diferente de 2 como un ejemplo de un método de sintonizar la antena a diferentes bandas de frecuencia.
Otra realización preferida se presenta en la figura 11 y 12 en donde el elemento constitutivo es triangular.
De las figuras 13 a 15, se presentan otras antenas multiservicio definidas por elementos cuadrados. En cada una de las figuras, la antena está representada en las diferentes configuraciones presentadas descritas anteriormente. La estructura multinivel basada en cuadrados puede ser elegida como una alternativa a las formas triangulares siempre que los esquemas de diversidad en polarización vayan a ser introducidos para compensar el desvanecimiento de señal debido a un entorno rápidamente cambiante de propagación multitrayecto.
Habiendo ilustrado y descrito los principios de nuestra invención en varias realizaciones preferidas de ésta, debería ser rápidamente aparente para aquéllos expertos en la materia que la invención puede ser modificada en el montaje y detalle sin salirse de tales principios. Solicitamos que todas las modificaciones que vengan dentro del espíritu y del objeto de las reivindicaciones que acompañan.

Claims

R E I V I N D I C A C I O N E S
1.- Una antena para un vehículo de motor comprendiendo: a) una ventana transparente cubierta con una placa conductora ópticamente transparente en al menos un lado de las placas que componen la ventana transparente, b) al menos una estructura multinivel soportada por dicha capa conductora, estando la mencionada estructura multinivel compuesta por un conjunto de elementos poligonales de la misma clase (el mismo número de lados), preferiblemente triángulos o cuadrados, estando tales elementos poligonales electromagnéticamente acoplados o bien por medio de un contacto óhmico o bien por medio de un mecanismo de acoplamiento capacitivo o inductivo, en donde la región de contacto entre al menos el 75% de los mencionados elementos poligonales es siempre más corta que un 50% de los perímetros de dichas estructuras poligonales, c) una línea de transmisión de alimentación de dos conductores, en donde al menos uno de los conductores de dicha línea de transmisión está acoplado a la placa conductora interna encerrado en uno de los elementos poligonales que componen dicha estructura multinivel, por medio de o bien un contacto óhmico, o bien un mecanismo de acoplamiento capacitivo o inductivo, y en donde la antena se caracteriza por una impedancia similar en el punto de alimentación y un diagrama de radiación horizontal similar en al menos tres frecuencias dentro de tres bandas, en donde al menos dos de las mencionadas tres frecuencias son seleccionadas de entre las siguientes: FM (80MHz~110MHz), DAB (205MHz~230MHz), Tetra (350MHz~450MHz), DVB (470MHz~862MHz), GSM900/AMPS (820MHz~970MHz), GSM1800 /DCS /PCS /DECT (1700MHz~1950MHz), UMTS (1920MHz~2200MHz), Bluetooth (2500MHz) y WLAN (4.5GHz~6GHz), de forma que dicha antena pueda funcionar de manera simultánea en cualquiera de los servicios de telecomunicación dentro de dichas bandas.
2.- Una antena para un vehículo a motor según la reivindicación 1, en donde la estructura multinivel característica es una estructura de forma sólida con la capa conductora transparente rellenando el área interior de los elementos poligonales de la mencionada estructura multinivel y en donde el resto de la superficie de la ventana no está cubierta con la mencionada placa conductora.
3.- Una antena para un vehículo a motor según la reivindicación 1, en donde la placa conductora transparente sólo define una rejilla compuesta por el perímetro de los elementos poligonales de la estructura multinivel característica, y en donde el resto de la superficie de ventana no está cubierta con dicha placa conductora.
4.- Una antena para un vehículo a motor según la reivindicación 1, en donde la placa conductora transparente cubre la mayoría del soporte de la ventana transparente excepto una estructura multinivel sólida impresa sobre dicha placa conductora transparente, y en donde el borde de la ventana puede permanecer opcionalmente descubierto.
5.- Una antena para un vehículo a motor según la reivindicación 1, en donde el perímetro de los elementos poligonales de la mencionada estructura multinivel definen una antena de ranura impresa sobre dicha placa conductora transparente, en donde la mencionada placa conductora transparente puede usarse opcionalmente para proteger el interior del vehículo de calentamiento por la radiación infrarroja entrante.
6.- Una antena para un vehículo a motor según la reivindicación 1, en donde una primera superficie del soporte transparente de la ventana es cubierta por una placa conductora transparente excepto una estructura multinivel sólida impresa sobre la mencionada placa conductora transparente como se solicitó en la reivindicación 4, en donde una segunda superficie paralela del soporte transparente de la ventana está cubierta con la estructura complementaria de dicha estructura multinivel, de forma tal que la forma descubierta en la mencionada primera superficie se hace cubierta en la segunda superficie, y la forma cubierta en la mencionada primera superficie se convierte en descubierta en dicha segunda superficie paralela, en donde las mencionadas primera y segunda superficies pueden ser cualquiera de las superficies de una estructura de ventana multicapa, y en donde la mencionada capa conductora transparente que yacía sobre la primera y la segunda superficies puede usarse de manera opcional para proteger el interior del vehículo de las radiaciones de IR entrantes que provocan calentamiento.
7.- Un conjunto de al menos dos antenas impresas sobre al menos la ventana de un vehículo a motor de acuerdo con las reivindicaciones 1, 2, 3, 4, 5 ó 6 en donde las mencionadas antenas se usan para diversidad espacial o diversidad en polarización o una combinación de ambos mecanismos de diversidad para al menos uno de los servicios de telecomunicación que operan con la antena.
8.- Una antena para un vehículo a motor según las reivindicaciones 1, 2, 3, 4, 5, 6 ó
7 en donde la estructura multinivel se aproxima a un triángulo ideal de Sierpinski con al menos tres niveles de escala, siendo los varios niveles de escala de la estructura sintonizados al menos a tres frecuencias dentro de las tres bandas seleccionadas de entre las siguientes: FM (80MHz~110MHz), DAB (205MHz~230MHz), Tetra (350MHz~450MHz), DVB (470MHz~862MHz), GSM900/AMPS (820MHz~970MHz), GSM1800 / DCS / PCS / DECT (1700MHz~1950MHz), UMTS (1920MHz~2200MHz), Bluetooth (2500MHz) y WLAN (4.5GHz~6GHz), de forma tal que dicha antena pueda funcionar simultáneamente en cualquiera de los servicios de telecomunicación dentro de las mencionadas bandas.
9.- Una antena para un vehículo a motor según la reivindicación 8, en donde la estructura multinivel contiene al menos seis niveles de escala sintonizados para funcionar al menos en las seis bandas siguientes: FM (80MHz~110MHz), DAB (205MHz~230MHz), Tetra (350MHz~450MHz), GSM900/AMPS (820MHz~970MHz), GSMl 800 / DCS / PCS / DECT (1700MHz~l 950MHz), Bluetooth (2500MHz) y UMTS (1920MHz~2200MHz).
10.- Una antena para un vehículo a motor según las reivindicaciones 1, 2, 3, 4, 5, 6, 7,
8 ó 9 en donde la estructura multinivel es cargada con una estructura reactiva impresa sobre la misma capa conductora transparente como la estructura multinivel.
11.- Una antena para un vehículo a motor según las reivindicaciones 1, 2, 3, 4, 5, 6, 7, 8, 9 ó 10 en donde el mencionado material conductivo y transparente es o bien ZnO, ITO, SnO2 o cualquier combinación de ellos.
12.- Una antena para un vehículo a motor según la reivindicación 1, en donde la placa conductora sólo define una rejilla compuesta por el perímetro de los elementos poligonales de la estructura multinivel característica, y en donde el mencionado cable de perímetro externo se usa como estructura calentadora para eliminar la escarcha.
13.- Una antena para un vehículo a motor según las reivindicaciones 1, 2, 3, 4, 5 ó 6 en donde la antena incluye una estructura multinivel compuesta por elementos en forma cuadrada, en donde dicha geometría se usa para obtener diversidad en polarización dentro de la misma antena por medio de la alimentación de la mencionada antena con al menos dos puertos, estando los mencionados puertos definidos por dos conductores, y en donde las mitades de los puertos están situadas en un punto del eje de simetría de la estructura y las otras mitades de los puertos están situadas en un punto del otro eje de simetría ortogonal.
PCT/ES2000/000148 2000-04-19 2000-04-19 Antena avanzada multinivel para vehiculos a motor WO2001082410A1 (es)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU41210/00A AU4121000A (en) 2000-04-19 2000-04-19 Multilevel advanced antenna for motor vehicles
PCT/ES2000/000148 WO2001082410A1 (es) 2000-04-19 2000-04-19 Antena avanzada multinivel para vehiculos a motor
AT00920754T ATE378700T1 (de) 2000-04-19 2000-04-19 Fortschrittliche mehrebenenantenne fuer kraftfahrzeuge
DE60037142T DE60037142T2 (de) 2000-04-19 2000-04-19 Fortschrittliche mehrebenenantenne fuer kraftfahrzeuge
EP00920754A EP1313166B1 (en) 2000-04-19 2000-04-19 Multilevel advanced antenna for motor vehicles
JP2001579394A JP2004501543A (ja) 2000-04-19 2000-04-19 改良された自動車用マルチレベルアンテナ
US10/274,853 US6809692B2 (en) 2000-04-19 2002-10-17 Advanced multilevel antenna for motor vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2000/000148 WO2001082410A1 (es) 2000-04-19 2000-04-19 Antena avanzada multinivel para vehiculos a motor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/274,853 Continuation US6809692B2 (en) 2000-04-19 2002-10-17 Advanced multilevel antenna for motor vehicles

Publications (1)

Publication Number Publication Date
WO2001082410A1 true WO2001082410A1 (es) 2001-11-01

Family

ID=8244228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2000/000148 WO2001082410A1 (es) 2000-04-19 2000-04-19 Antena avanzada multinivel para vehiculos a motor

Country Status (7)

Country Link
US (1) US6809692B2 (es)
EP (1) EP1313166B1 (es)
JP (1) JP2004501543A (es)
AT (1) ATE378700T1 (es)
AU (1) AU4121000A (es)
DE (1) DE60037142T2 (es)
WO (1) WO2001082410A1 (es)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1359640A1 (en) * 2002-04-30 2003-11-05 Roke Manor Research Limited A fractal antenna and method of design
WO2004095635A1 (en) * 2003-04-24 2004-11-04 Advanced Automotive Antennas, S.L. Antenna system for a motor vehicle
US7764239B2 (en) * 2002-09-17 2010-07-27 Pilkington Automotive Deutschland Gmbh Antenna pane including coating having strip-like segmented surface portion
US8896493B2 (en) 1999-10-26 2014-11-25 Fractus, S.A. Interlaced multiband antenna arrays
US8941541B2 (en) 1999-09-20 2015-01-27 Fractus, S.A. Multilevel antennae
US9099773B2 (en) 2006-07-18 2015-08-04 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US9331382B2 (en) 2000-01-19 2016-05-03 Fractus, S.A. Space-filling miniature antennas
US9755314B2 (en) 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
US10673121B2 (en) 2014-11-25 2020-06-02 View, Inc. Window antennas
US11054711B2 (en) 2014-11-25 2021-07-06 View, Inc. Electromagnetic-shielding electrochromic windows
US11114742B2 (en) 2014-11-25 2021-09-07 View, Inc. Window antennas
US11205926B2 (en) 2009-12-22 2021-12-21 View, Inc. Window antennas for emitting radio frequency signals
US11342791B2 (en) 2009-12-22 2022-05-24 View, Inc. Wirelessly powered and powering electrochromic windows
US11579571B2 (en) 2014-03-05 2023-02-14 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11630366B2 (en) 2009-12-22 2023-04-18 View, Inc. Window antennas for emitting radio frequency signals
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness
US11732527B2 (en) 2009-12-22 2023-08-22 View, Inc. Wirelessly powered and powering electrochromic windows
US11740529B2 (en) 2015-10-06 2023-08-29 View, Inc. Controllers for optically-switchable devices
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11796885B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231426A1 (en) * 2004-02-02 2005-10-20 Nathan Cohen Transparent wideband antenna system
US7295154B2 (en) * 2002-01-17 2007-11-13 The Ohio State University Vehicle obstacle warning radar
WO2004010532A1 (en) * 2002-07-15 2004-01-29 Fractus, S.A. Antenna with one or more holes
US6860081B2 (en) * 2002-12-04 2005-03-01 The Ohio State University Sidelobe controlled radio transmission region in metallic panel
US6922175B2 (en) * 2002-12-04 2005-07-26 The Ohio State University Radio transmission region in metallic panel
US7196657B2 (en) * 2003-01-31 2007-03-27 The Ohio State University Radar system using RF noise
DE102004032192A1 (de) * 2004-07-02 2006-01-19 Volkswagen Ag Antennenvorrichtung für ein Kraftfahrzeug und entsprechendes Kraftfahrzeug
US7075418B2 (en) * 2004-08-03 2006-07-11 R.A. Miller Industries, Inc. Multiband antenna system with tire pressure sensor
JP2008523671A (ja) 2004-12-09 2008-07-03 エースリー‐アドバンスド、オートモーティブ、アンテナズ 自動車用の小型アンテナ
US7659812B2 (en) * 2005-03-10 2010-02-09 Delphi Technologies, Inc. Tire pressure monitor with diversity antenna system and method
US7501947B2 (en) * 2005-05-04 2009-03-10 Tc License, Ltd. RFID tag with small aperture antenna
US7365693B2 (en) * 2005-09-29 2008-04-29 Matsushita Electric Industrial Co., Ltd. Antenna device, electronic apparatus and vehicle using the same antenna device
KR100763468B1 (ko) 2005-12-12 2007-10-04 알에프컨트롤스 주식회사 차량용 티디엠비신호 전송모듈
US7612727B2 (en) 2005-12-29 2009-11-03 Exatec, Llc Antenna for plastic window panel
US7567183B2 (en) 2006-01-06 2009-07-28 Exatec Llc Printable sensors for plastic glazing
US7830267B2 (en) 2006-01-10 2010-11-09 Guardian Industries Corp. Rain sensor embedded on printed circuit board
US10173579B2 (en) 2006-01-10 2019-01-08 Guardian Glass, LLC Multi-mode moisture sensor and/or defogger, and related methods
US7551095B2 (en) 2006-01-10 2009-06-23 Guardian Industries Corp. Rain sensor with selectively reconfigurable fractal based sensors/capacitors
US9371032B2 (en) 2006-01-10 2016-06-21 Guardian Industries Corp. Moisture sensor and/or defogger with Bayesian improvements, and related methods
US7504957B2 (en) 2006-01-10 2009-03-17 Guardian Industries Corp. Light sensor embedded on printed circuit board
US8634988B2 (en) 2006-01-10 2014-01-21 Guardian Industries Corp. Time, space, and/or wavelength multiplexed capacitive light sensor, and related methods
US20070194216A1 (en) * 2006-02-21 2007-08-23 Exatec, Llc Printable controls for a window assembly
FR2899388B1 (fr) * 2006-03-28 2008-12-05 Saint Gobain Substrat muni d'un element electroconducteur a fonction d'antenne
JP4888126B2 (ja) * 2007-01-12 2012-02-29 マツダ株式会社 Am/fm受信用アンテナ
EP1978791A3 (de) * 2007-04-04 2009-12-30 Hirschmann Car Communication GmbH Antenneneinrichtung für Fahrzeuge
US7746282B2 (en) * 2008-05-20 2010-06-29 Sensor Systems, Inc. Compact top-loaded, tunable fractal antenna systems for efficient ultrabroadband aircraft operation
US8436775B2 (en) * 2009-01-14 2013-05-07 Continental Automotive Systems, Inc. Fakra-compliant antenna
PT2380234T (pt) * 2009-01-16 2018-10-18 Saint Gobain Antena transparente plana adequada para e emissão e receção de ondas eletromagnéticas, processo para o seu fabrico e utilização
US8248696B2 (en) * 2009-06-25 2012-08-21 Moxtek, Inc. Nano fractal diffuser
US20220255351A1 (en) * 2009-12-22 2022-08-11 View, Inc. Wirelessly powered and powering electrochromic windows
US9385422B2 (en) 2010-05-19 2016-07-05 Saint-Gobain Glass France Antenna bandwidth-optimized by hybrid structure comprising planar and linear emitters
EP2400591A1 (de) 2010-06-14 2011-12-28 Saint-Gobain Glass France Antennenaufbau mit verbessertem Signal/Rauschverhältnis
TW201232014A (en) * 2010-08-09 2012-08-01 Univ King Abdullah Sci & Tech Gain enhanced LTCC system-on-package for UMRR applications
EP2649675B1 (en) * 2010-12-09 2020-07-22 AGC Automotive Americas R & D, Inc. Window assembly having a transparent layer with a slot for a wire antenna element
CN103636060B (zh) 2011-04-06 2016-03-23 法国圣戈班玻璃厂 用于天线结构的扁平导体连接元件
DE102012010694A1 (de) * 2012-05-30 2012-11-08 Daimler Ag Antennenanordnung für ein Fahrzeug und Fahrzeug mit zumindest einer solchen Antennenanordnung
PL2669083T3 (pl) 2012-06-02 2019-08-30 Saint-Gobain Glass France Sposób wytwarzania modułu przyłączeniowego korpusu płaskiego
EP2872013B1 (en) 2012-07-06 2019-10-09 Guardian Glass, LLC Method of removing condensation from a refrigerator/freezer door
WO2014008508A1 (en) 2012-07-06 2014-01-09 The Ohio State University Compact dual band gnss antenna design
WO2014008173A1 (en) 2012-07-06 2014-01-09 Guardian Industries Corp. Moisture sensor and/or defogger with bayesian improvements, and related methods
DE102012213582A1 (de) * 2012-08-01 2014-05-22 Bayerische Motoren Werke Aktiengesellschaft Fensterscheibe, die mindestens eine Beschichtung aufweist
WO2014149201A1 (en) 2013-03-15 2014-09-25 Agc Automotive Americas R& D, Inc. Window assembly with transparent regions having a perfoormance enhancing slit formed therein
US9413060B2 (en) * 2013-05-31 2016-08-09 Gary Gwoon Wong Stick-on multi-frequency Wi-Fi backpack and helmet antenna
US9348076B2 (en) 2013-10-24 2016-05-24 Moxtek, Inc. Polarizer with variable inter-wire distance
CN104486019B (zh) * 2014-12-11 2017-04-12 南京新联电子股份有限公司 控制无线专网通信系统用的多载波多调制数字基站的方法
BR112017012464A2 (pt) 2014-12-16 2018-04-10 Saint-Gobain Glass France vidraça de antena eletricamente aquecível, e método de produção da mesma
EP3281247B1 (de) 2015-04-08 2020-12-23 Saint-Gobain Glass France Fahrzeugantennenscheibe
KR101973311B1 (ko) 2015-04-08 2019-04-26 쌩-고벵 글래스 프랑스 안테나 유리판
US10320053B2 (en) * 2016-02-16 2019-06-11 GM Global Technology Operations LLC Wideband coplanar waveguide fed monopole applique antennas
DE102016009712A1 (de) * 2016-08-10 2018-02-15 Heinz Lindenmeier Aktive Antennenanordnung für den Rundfunkempfang im Ausschnitt einer elektrisch leitenden Fahrzeugkarosserie
JP6832658B2 (ja) * 2016-09-23 2021-02-24 スタンレー電気株式会社 光透過基板、表示装置、信号装置、および、照明装置
CN106785373A (zh) * 2017-01-10 2017-05-31 上海增信电子有限公司 一种双端口信号传送装置
US10355721B2 (en) * 2017-05-01 2019-07-16 Palo Alto Research Center Incorporated Multi-band radio frequency transparency window in conductive film
US11050167B2 (en) * 2018-04-19 2021-06-29 Samsung Electronics Co., Ltd. Antenna array and operation method of antenna array
US11693111B2 (en) * 2018-07-06 2023-07-04 Sony Corporation Distance measurement apparatus and windshield
MA55526A (fr) 2019-03-29 2022-02-09 Saint Gobain Vitre à antenne intégrée
US11095016B2 (en) * 2019-04-15 2021-08-17 Hyundai Motor Company Vehicle roof having conductive coating for wireless communication
DE202020005661U1 (de) 2019-08-21 2021-12-15 Saint-Gobain Glass France Antennenscheibe mit Antenne planarer Bauart
DE202021004050U1 (de) 2020-04-15 2022-07-07 Saint-Gobain Glass France Verglasung mit Sensorschaltfläche
CN111987408B (zh) * 2020-08-21 2021-10-19 福耀玻璃工业集团股份有限公司 天线结构、天线玻璃组件及交通工具
CN114845866A (zh) 2020-11-30 2022-08-02 法国圣戈班玻璃厂 用于制造具有功能层的弯曲玻璃板的方法
CN115803299A (zh) 2020-12-16 2023-03-14 法国圣戈班玻璃厂 具有基于金属的功能层的装配玻璃
WO2022136107A1 (de) 2020-12-21 2022-06-30 Saint-Gobain Glass France Verglasung mit lichtquelle
WO2022136164A1 (de) 2020-12-21 2022-06-30 Saint-Gobain Glass France Vorgefertigtes anschlusselement zur kontaktierung einer leitfähigen schicht auf einer scheibe
WO2022148667A1 (de) 2021-01-06 2022-07-14 Saint-Gobain Glass France Scheibe mit elektrischem anschlusselement
CN116076153A (zh) 2021-08-31 2023-05-05 法国圣戈班玻璃厂 具有复合片材和扁平带状线缆的联接组件
WO2023052100A1 (de) 2021-09-29 2023-04-06 Saint-Gobain Glass France Flachbandkabel zur brucherkennung, anschlussanordnung mit verbundscheibe, verfahren zur brucherkennung und verwendung des flachbandkabels
DE202021105230U1 (de) 2021-09-29 2021-11-17 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Anschlussanordnung mit Schutzgehäuse
WO2023052099A1 (de) 2021-09-29 2023-04-06 Saint-Gobain Glass France Anschlussanordnung mit verbundscheibe und flachbandkabel
CN114156637B (zh) * 2021-11-15 2023-09-29 之江实验室 一种基于石墨的宽频带全向可穿戴天线及其制备方法
WO2024012857A1 (de) 2022-07-14 2024-01-18 Saint-Gobain Glass France Flachbandkabel mit temperatursensor, anschlussanordnung und verfahren

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0297813A2 (en) * 1987-06-27 1989-01-04 Nippon Sheet Glass Co., Ltd. A vehicle receiving apparatus using a window antenna
US4849766A (en) * 1986-07-04 1989-07-18 Central Glass Company, Limited Vehicle window glass antenna using transparent conductive film
EP0358090A1 (en) * 1988-09-01 1990-03-14 Asahi Glass Company Ltd. Window glass for an automobile
WO1997006578A1 (en) * 1995-08-09 1997-02-20 Fractal Antenna Systems, Inc. Fractal antennas, resonators and loading elements
ES2112163A1 (es) * 1995-05-19 1998-03-16 Univ Catalunya Politecnica Antenas fractales o multifractales.
US5926141A (en) * 1996-08-16 1999-07-20 Fuba Automotive Gmbh Windowpane antenna with transparent conductive layer
ES2142280A1 (es) * 1998-05-06 2000-04-01 Univ Catalunya Politecnica Unas antenas multitriangulares duales para telefonia celular gsm y dcs

Family Cites Families (137)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US109633A (en) * 1870-11-29 Improvement in electro-plating iron and steel with silver
US4471358A (en) 1963-04-01 1984-09-11 Raytheon Company Re-entry chaff dart
US3521284A (en) 1968-01-12 1970-07-21 John Paul Shelton Jr Antenna with pattern directivity control
US3622890A (en) 1968-01-31 1971-11-23 Matsushita Electric Ind Co Ltd Folded integrated antenna and amplifier
US3599214A (en) 1969-03-10 1971-08-10 New Tronics Corp Automobile windshield antenna
US3683376A (en) 1970-10-12 1972-08-08 Joseph J O Pronovost Radar antenna mount
US3818490A (en) 1972-08-04 1974-06-18 Westinghouse Electric Corp Dual frequency array
ES443806A1 (es) 1974-12-25 1977-08-16 Matsushita Electric Ind Co Ltd Perfeccionamientos introducidos en un aparato de antena paraun receptor de television o similar.
US3967276A (en) 1975-01-09 1976-06-29 Beam Guidance Inc. Antenna structures having reactance at free end
US3969730A (en) 1975-02-12 1976-07-13 The United States Of America As Represented By The Secretary Of Transportation Cross slot omnidirectional antenna
US4131893A (en) 1977-04-01 1978-12-26 Ball Corporation Microstrip radiator with folded resonant cavity
US4141016A (en) 1977-04-25 1979-02-20 Antenna, Incorporated AM-FM-CB Disguised antenna system
HU182355B (en) 1981-07-10 1983-12-28 Budapesti Radiotechnikai Gyar Aerial array for handy radio transceiver
DE3222584A1 (de) 1982-06-16 1983-12-22 Diehl GmbH & Co, 8500 Nürnberg Dipol-anordnung in einer huelse
US4471493A (en) 1982-12-16 1984-09-11 Gte Automatic Electric Inc. Wireless telephone extension unit with self-contained dipole antenna
US4504834A (en) 1982-12-22 1985-03-12 Motorola, Inc. Coaxial dipole antenna with extended effective aperture
DE3302876A1 (de) 1983-01-28 1984-08-02 Robert Bosch Gmbh, 7000 Stuttgart Dipolantenne fuer tragbare funkgeraete
IT8321342V0 (it) 1983-04-01 1983-04-01 Icma Spa Antenna per autoradio.
US4584709A (en) 1983-07-06 1986-04-22 Motorola, Inc. Homotropic antenna system for portable radio
US4839660A (en) 1983-09-23 1989-06-13 Orion Industries, Inc. Cellular mobile communication antenna
DE3337941A1 (de) 1983-10-19 1985-05-09 Bayer Ag, 5090 Leverkusen Passive radarreflektoren
US4571595A (en) 1983-12-05 1986-02-18 Motorola, Inc. Dual band transceiver antenna
US4623894A (en) 1984-06-22 1986-11-18 Hughes Aircraft Company Interleaved waveguide and dipole dual band array antenna
US4730195A (en) 1985-07-01 1988-03-08 Motorola, Inc. Shortened wideband decoupled sleeve dipole antenna
US5619205A (en) 1985-09-25 1997-04-08 The United States Of America As Represented By The Secretary Of The Army Microarc chaff
US4673948A (en) 1985-12-02 1987-06-16 Gte Government Systems Corporation Foreshortened dipole antenna with triangular radiators
GB8617076D0 (en) 1986-07-14 1986-08-20 British Broadcasting Corp Video scanning systems
JPS63173934U (es) 1987-04-30 1988-11-11
US4894663A (en) 1987-11-16 1990-01-16 Motorola, Inc. Ultra thin radio housing with integral antenna
GB2215136A (en) 1988-02-10 1989-09-13 Ronald Cecil Hutchins Broadsword anti-radar foil
US4857939A (en) 1988-06-03 1989-08-15 Alliance Research Corporation Mobile communications antenna
US5227804A (en) 1988-07-05 1993-07-13 Nec Corporation Antenna structure used in portable radio device
US4847629A (en) 1988-08-03 1989-07-11 Alliance Research Corporation Retractable cellular antenna
JP2737942B2 (ja) 1988-08-22 1998-04-08 ソニー株式会社 受信機
KR920002439B1 (ko) 1988-08-31 1992-03-24 삼성전자 주식회사 휴대용 무선전화기의 슬로트 안테나 장치
US4912481A (en) 1989-01-03 1990-03-27 Westinghouse Electric Corp. Compact multi-frequency antenna array
US5248988A (en) 1989-12-12 1993-09-28 Nippon Antenna Co., Ltd. Antenna used for a plurality of frequencies in common
CA2030963C (en) 1989-12-14 1995-08-15 Robert Michael Sorbello Orthogonally polarized dual-band printed circuit antenna employing radiating elements capacitively coupled to feedlines
US5495261A (en) 1990-04-02 1996-02-27 Information Station Specialists Antenna ground system
US5218370A (en) 1990-12-10 1993-06-08 Blaese Herbert R Knuckle swivel antenna for portable telephone
WO1992013372A1 (en) 1991-01-24 1992-08-06 Rdi Electronics, Inc. Broadband antenna
GB9103737D0 (en) 1991-02-22 1991-04-10 Pilkington Plc Antenna for vehicle window
JPH0567912A (ja) 1991-04-24 1993-03-19 Matsushita Electric Works Ltd 平面アンテナ
US5200756A (en) 1991-05-03 1993-04-06 Novatel Communications Ltd. Three dimensional microstrip patch antenna
US5227808A (en) 1991-05-31 1993-07-13 The United States Of America As Represented By The Secretary Of The Air Force Wide-band L-band corporate fed antenna for space based radars
GB2257838B (en) 1991-07-13 1995-06-14 Technophone Ltd Retractable antenna
US5138328A (en) 1991-08-22 1992-08-11 Motorola, Inc. Integral diversity antenna for a laptop computer
US5168472A (en) 1991-11-13 1992-12-01 The United States Of America As Represented By The Secretary Of The Navy Dual-frequency receiving array using randomized element positions
JPH05335826A (ja) 1991-11-18 1993-12-17 Motorola Inc 通信装置用の内蔵アンテナ
US5347291A (en) 1991-12-05 1994-09-13 Moore Richard L Capacitive-type, electrically short, broadband antenna and coupling systems
US5172084A (en) 1991-12-18 1992-12-15 Space Systems/Loral, Inc. Miniature planar filters based on dual mode resonators of circular symmetry
US5355144A (en) 1992-03-16 1994-10-11 The Ohio State University Transparent window antenna
US5373300A (en) 1992-05-21 1994-12-13 International Business Machines Corporation Mobile data terminal with external antenna
US5214434A (en) 1992-05-15 1993-05-25 Hsu Wan C Mobile phone antenna with improved impedance-matching circuit
FR2691818B1 (fr) * 1992-06-02 1997-01-03 Alsthom Cge Alcatel Procede de fabrication d'un objet fractal par stereolithographie et objet fractal obtenu par un tel procede.
JPH0697713A (ja) 1992-07-28 1994-04-08 Mitsubishi Electric Corp アンテナ
US5451968A (en) 1992-11-19 1995-09-19 Solar Conversion Corp. Capacitively coupled high frequency, broad-band antenna
US5402134A (en) 1993-03-01 1995-03-28 R. A. Miller Industries, Inc. Flat plate antenna module
US5493702A (en) 1993-04-05 1996-02-20 Crowley; Robert J. Antenna transmission coupling arrangement
DE4313397A1 (de) 1993-04-23 1994-11-10 Hirschmann Richard Gmbh Co Planarantenne
GB9309368D0 (en) 1993-05-06 1993-06-16 Ncr Int Inc Antenna apparatus
US5422651A (en) 1993-10-13 1995-06-06 Chang; Chin-Kang Pivotal structure for cordless telephone antenna
US5471224A (en) 1993-11-12 1995-11-28 Space Systems/Loral Inc. Frequency selective surface with repeating pattern of concentric closed conductor paths, and antenna having the surface
US5594455A (en) 1994-06-13 1997-01-14 Nippon Telegraph & Telephone Corporation Bidirectional printed antenna
US5537367A (en) 1994-10-20 1996-07-16 Lockwood; Geoffrey R. Sparse array structures
JP3302849B2 (ja) 1994-11-28 2002-07-15 本田技研工業株式会社 車載用レーダーモジュール
US5841403A (en) 1995-04-25 1998-11-24 Norand Corporation Antenna means for hand-held radio devices
US6127977A (en) * 1996-11-08 2000-10-03 Cohen; Nathan Microstrip patch antenna with fractal structure
US6476766B1 (en) 1997-11-07 2002-11-05 Nathan Cohen Fractal antenna ground counterpoise, ground planes, and loading elements and microstrip patch antennas with fractal structure
US6452553B1 (en) 1995-08-09 2002-09-17 Fractal Antenna Systems, Inc. Fractal antennas and fractal resonators
US6104349A (en) 1995-08-09 2000-08-15 Cohen; Nathan Tuning fractal antennas and fractal resonators
JP3289572B2 (ja) 1995-09-19 2002-06-10 株式会社村田製作所 チップアンテナ
US5872546A (en) 1995-09-27 1999-02-16 Ntt Mobile Communications Network Inc. Broadband antenna using a semicircular radiator
US5986610A (en) 1995-10-11 1999-11-16 Miron; Douglas B. Volume-loaded short dipole antenna
USH1631H (en) 1995-10-27 1997-02-04 United States Of America Method of fabricating radar chaff
JP3166589B2 (ja) 1995-12-06 2001-05-14 株式会社村田製作所 チップアンテナ
US5898404A (en) 1995-12-22 1999-04-27 Industrial Technology Research Institute Non-coplanar resonant element printed circuit board antenna
JP3319268B2 (ja) 1996-02-13 2002-08-26 株式会社村田製作所 表面実装型アンテナおよびこれを用いた通信機
US5684672A (en) 1996-02-20 1997-11-04 International Business Machines Corporation Laptop computer with an integrated multi-mode antenna
US6078294A (en) 1996-03-01 2000-06-20 Toyota Jidosha Kabushiki Kaisha Antenna device for vehicles
US5821907A (en) 1996-03-05 1998-10-13 Research In Motion Limited Antenna for a radio telecommunications device
DE59708915D1 (de) 1996-03-13 2003-01-23 Ascom Systec Ag Maegenwil Flache dreidimensionale Antenne
SE507077C2 (sv) 1996-05-17 1998-03-23 Allgon Ab Antennanordning för en portabel radiokommunikationsanordning
US5990838A (en) 1996-06-12 1999-11-23 3Com Corporation Dual orthogonal monopole antenna system
EP0814536A3 (en) 1996-06-20 1999-10-13 Kabushiki Kaisha Yokowo Antenna and radio apparatus using same
US5966098A (en) 1996-09-18 1999-10-12 Research In Motion Limited Antenna system for an RF data communications device
JPH1098322A (ja) 1996-09-20 1998-04-14 Murata Mfg Co Ltd チップアンテナ及びアンテナ装置
DE19740254A1 (de) 1996-10-16 1998-04-23 Lindenmeier Heinz Funkantennen-Anordnung und Patchantenne auf der Fensterscheibe eines Kraftfahrzeuges
US5798688A (en) 1997-02-07 1998-08-25 Donnelly Corporation Interior vehicle mirror assembly having communication module
SE508356C2 (sv) 1997-02-24 1998-09-28 Ericsson Telefon Ab L M Antennanordningar
DE19806834A1 (de) 1997-03-22 1998-09-24 Lindenmeier Heinz Antennenanlage für den Hör- und Fernsehrundfunkempfang in Kraftfahrzeugen
FI113212B (fi) 1997-07-08 2004-03-15 Nokia Corp Usean taajuusalueen kaksoisresonanssiantennirakenne
GB2330951B (en) 1997-11-04 2002-09-18 Nokia Mobile Phones Ltd Antenna
SE511131C2 (sv) 1997-11-06 1999-08-09 Ericsson Telefon Ab L M Portabel elektronisk kommunikationsanordning med flerbandigt antennsystem
US6445352B1 (en) 1997-11-22 2002-09-03 Fractal Antenna Systems, Inc. Cylindrical conformable antenna on a planar substrate
JP3296276B2 (ja) 1997-12-11 2002-06-24 株式会社村田製作所 チップアンテナ
GB2332780A (en) 1997-12-22 1999-06-30 Nokia Mobile Phones Ltd Flat plate antenna
FI113213B (fi) 1998-01-21 2004-03-15 Filtronic Lk Oy Tasoantenni
US6131042A (en) 1998-05-04 2000-10-10 Lee; Chang Combination cellular telephone radio receiver and recorder mechanism for vehicles
US6031499A (en) 1998-05-22 2000-02-29 Intel Corporation Multi-purpose vehicle antenna
SE512524C2 (sv) 1998-06-24 2000-03-27 Allgon Ab En antennanordning, en metod för framställning av en antennenordning och en radiokommunikationsanordning inkluderande en antennanordning
US6031505A (en) 1998-06-26 2000-02-29 Research In Motion Limited Dual embedded antenna for an RF data communications device
US6211889B1 (en) 1998-06-30 2001-04-03 Sun Microsystems, Inc. Method and apparatus for visualizing locality within an address space
CN1249546A (zh) 1998-09-08 2000-04-05 西门子公司 用于无线操作的通信终端设备的天线
GB9820622D0 (en) 1998-09-23 1998-11-18 Britax Geco Sa Vehicle exterior mirror with antenna
FI105061B (fi) 1998-10-30 2000-05-31 Lk Products Oy Kahden resonanssitaajuuden tasoantenni
US6097345A (en) * 1998-11-03 2000-08-01 The Ohio State University Dual band antenna for vehicles
JP3061782B2 (ja) 1998-12-07 2000-07-10 三菱電機株式会社 Etc車載器
EP1018777B1 (en) 1998-12-22 2007-01-24 Nokia Corporation Dual band antenna for a hand portable telephone and a corresponding hand portable telephone
FI105421B (fi) 1999-01-05 2000-08-15 Filtronic Lk Oy Tasomainen kahden taajuuden antenni ja tasoantennilla varustettu radiolaite
US6211824B1 (en) 1999-05-06 2001-04-03 Raytheon Company Microstrip patch antenna
DE19925127C1 (de) 1999-06-02 2000-11-02 Daimler Chrysler Ag Antennenanordnung in Kraftfahrzeugen
US6266023B1 (en) 1999-06-24 2001-07-24 Delphi Technologies, Inc. Automotive radio frequency antenna system
FI112982B (fi) 1999-08-25 2004-02-13 Filtronic Lk Oy Tasoantennirakenne
FI114587B (fi) 1999-09-10 2004-11-15 Filtronic Lk Oy Tasoantennirakenne
GB2355116B (en) 1999-10-08 2003-10-08 Nokia Mobile Phones Ltd An antenna assembly and method of construction
FI112984B (fi) 1999-10-20 2004-02-13 Filtronic Lk Oy Laitteen sisäinen antenni
FI114586B (fi) 1999-11-01 2004-11-15 Filtronic Lk Oy Tasoantenni
US6496154B2 (en) 2000-01-10 2002-12-17 Charles M. Gyenes Frequency adjustable mobile antenna and method of making
US6218992B1 (en) 2000-02-24 2001-04-17 Ericsson Inc. Compact, broadband inverted-F antennas with conductive elements and wireless communicators incorporating same
WO2001069710A1 (fr) 2000-03-15 2001-09-20 Matsushita Electric Industrial Co., Ltd. Composant electronique multicouche, duplexeur d'antenne multicouche, et appareil de communication
US6329951B1 (en) 2000-04-05 2001-12-11 Research In Motion Limited Electrically connected multi-feed antenna system
US6329954B1 (en) 2000-04-14 2001-12-11 Receptec L.L.C. Dual-antenna system for single-frequency band
WO2001080354A1 (en) 2000-04-14 2001-10-25 Rangestar Wireless, Inc. Compact dual frequency antenna with multiple polarization
KR100349422B1 (ko) 2000-04-17 2002-08-22 (주) 코산아이엔티 마이크로스트립 안테나
US6452549B1 (en) 2000-05-02 2002-09-17 Bae Systems Information And Electronic Systems Integration Inc Stacked, multi-band look-through antenna
FR2808929B1 (fr) 2000-05-15 2002-07-19 Valeo Electronique Antenne pour vehicule automobile
US6525691B2 (en) * 2000-06-28 2003-02-25 The Penn State Research Foundation Miniaturized conformal wideband fractal antennas on high dielectric substrates and chiral layers
EP1198027B1 (en) 2000-10-12 2006-05-31 The Furukawa Electric Co., Ltd. Small antenna
WO2002058189A1 (en) 2000-10-20 2002-07-25 Donnelly Corporation Exterior mirror with antenna
DE10100812B4 (de) 2001-01-10 2011-09-29 Heinz Lindenmeier Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie
US6367939B1 (en) 2001-01-25 2002-04-09 Gentex Corporation Rearview mirror adapted for communication devices
DE10108859A1 (de) 2001-02-14 2003-05-22 Siemens Ag Antenne und Verfahren zu deren Herstellung
US20020109633A1 (en) 2001-02-14 2002-08-15 Steven Ow Low cost microstrip antenna
DE60200738T2 (de) 2001-05-25 2005-07-21 Nokia Corp. Antenne für mobiles Telefon
US6431712B1 (en) 2001-07-27 2002-08-13 Gentex Corporation Automotive rearview mirror assembly including a helical antenna with a non-circular cross-section
US6552690B2 (en) * 2001-08-14 2003-04-22 Guardian Industries Corp. Vehicle windshield with fractal antenna(s)

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4849766A (en) * 1986-07-04 1989-07-18 Central Glass Company, Limited Vehicle window glass antenna using transparent conductive film
EP0297813A2 (en) * 1987-06-27 1989-01-04 Nippon Sheet Glass Co., Ltd. A vehicle receiving apparatus using a window antenna
EP0358090A1 (en) * 1988-09-01 1990-03-14 Asahi Glass Company Ltd. Window glass for an automobile
ES2112163A1 (es) * 1995-05-19 1998-03-16 Univ Catalunya Politecnica Antenas fractales o multifractales.
WO1997006578A1 (en) * 1995-08-09 1997-02-20 Fractal Antenna Systems, Inc. Fractal antennas, resonators and loading elements
US5926141A (en) * 1996-08-16 1999-07-20 Fuba Automotive Gmbh Windowpane antenna with transparent conductive layer
ES2142280A1 (es) * 1998-05-06 2000-04-01 Univ Catalunya Politecnica Unas antenas multitriangulares duales para telefonia celular gsm y dcs

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10056682B2 (en) 1999-09-20 2018-08-21 Fractus, S.A. Multilevel antennae
US8941541B2 (en) 1999-09-20 2015-01-27 Fractus, S.A. Multilevel antennae
US8976069B2 (en) 1999-09-20 2015-03-10 Fractus, S.A. Multilevel antennae
US9000985B2 (en) 1999-09-20 2015-04-07 Fractus, S.A. Multilevel antennae
US9054421B2 (en) 1999-09-20 2015-06-09 Fractus, S.A. Multilevel antennae
US9761934B2 (en) 1999-09-20 2017-09-12 Fractus, S.A. Multilevel antennae
US9240632B2 (en) 1999-09-20 2016-01-19 Fractus, S.A. Multilevel antennae
US9362617B2 (en) 1999-09-20 2016-06-07 Fractus, S.A. Multilevel antennae
US9905940B2 (en) 1999-10-26 2018-02-27 Fractus, S.A. Interlaced multiband antenna arrays
US8896493B2 (en) 1999-10-26 2014-11-25 Fractus, S.A. Interlaced multiband antenna arrays
US10355346B2 (en) 2000-01-19 2019-07-16 Fractus, S.A. Space-filling miniature antennas
US9331382B2 (en) 2000-01-19 2016-05-03 Fractus, S.A. Space-filling miniature antennas
US9755314B2 (en) 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
EP1359640A1 (en) * 2002-04-30 2003-11-05 Roke Manor Research Limited A fractal antenna and method of design
US7764239B2 (en) * 2002-09-17 2010-07-27 Pilkington Automotive Deutschland Gmbh Antenna pane including coating having strip-like segmented surface portion
WO2004095635A1 (en) * 2003-04-24 2004-11-04 Advanced Automotive Antennas, S.L. Antenna system for a motor vehicle
US10644380B2 (en) 2006-07-18 2020-05-05 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US9099773B2 (en) 2006-07-18 2015-08-04 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US11735810B2 (en) 2006-07-18 2023-08-22 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US11031677B2 (en) 2006-07-18 2021-06-08 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US9899727B2 (en) 2006-07-18 2018-02-20 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US11349200B2 (en) 2006-07-18 2022-05-31 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
US11732527B2 (en) 2009-12-22 2023-08-22 View, Inc. Wirelessly powered and powering electrochromic windows
US11205926B2 (en) 2009-12-22 2021-12-21 View, Inc. Window antennas for emitting radio frequency signals
US11342791B2 (en) 2009-12-22 2022-05-24 View, Inc. Wirelessly powered and powering electrochromic windows
US11630366B2 (en) 2009-12-22 2023-04-18 View, Inc. Window antennas for emitting radio frequency signals
US11796885B2 (en) 2012-04-17 2023-10-24 View, Inc. Controller for optically-switchable windows
US11579571B2 (en) 2014-03-05 2023-02-14 View, Inc. Monitoring sites containing switchable optical devices and controllers
US11054711B2 (en) 2014-11-25 2021-07-06 View, Inc. Electromagnetic-shielding electrochromic windows
US11462814B2 (en) 2014-11-25 2022-10-04 View, Inc. Window antennas
US11670833B2 (en) 2014-11-25 2023-06-06 View, Inc. Window antennas
US11114742B2 (en) 2014-11-25 2021-09-07 View, Inc. Window antennas
US10797373B2 (en) 2014-11-25 2020-10-06 View, Inc. Window antennas
US10673121B2 (en) 2014-11-25 2020-06-02 View, Inc. Window antennas
US11799187B2 (en) 2014-11-25 2023-10-24 View, Inc. Window antennas
US11740529B2 (en) 2015-10-06 2023-08-29 View, Inc. Controllers for optically-switchable devices
US11750594B2 (en) 2020-03-26 2023-09-05 View, Inc. Access and messaging in a multi client network
US11882111B2 (en) 2020-03-26 2024-01-23 View, Inc. Access and messaging in a multi client network
US11631493B2 (en) 2020-05-27 2023-04-18 View Operating Corporation Systems and methods for managing building wellness

Also Published As

Publication number Publication date
DE60037142T2 (de) 2008-09-18
US20030112190A1 (en) 2003-06-19
AU4121000A (en) 2001-11-07
US6809692B2 (en) 2004-10-26
EP1313166B1 (en) 2007-11-14
EP1313166A1 (en) 2003-05-21
DE60037142D1 (de) 2007-12-27
ATE378700T1 (de) 2007-11-15
JP2004501543A (ja) 2004-01-15

Similar Documents

Publication Publication Date Title
WO2001082410A1 (es) Antena avanzada multinivel para vehiculos a motor
EP1616368B1 (en) Antenna system for a motor vehicle
KR100871233B1 (ko) 일체형 다목적 서비스 차량 안테나
KR102243381B1 (ko) 안테나 장치
US7742006B2 (en) Multi-band loop antenna
TWI446621B (zh) Glass antenna
US10290932B2 (en) Glass antenna and vehicle window glass provided with glass antenna
JP5115359B2 (ja) 車両用ガラスアンテナ及び車両用窓ガラス板
US20210175628A1 (en) Multilayer glass patch antenna
JP5003627B2 (ja) 車両用ガラスアンテナ及び車両用窓ガラス
KR100712969B1 (ko) 자동차용의 다중레벨 고급 안테나
JP5560607B2 (ja) ガラスアンテナ
JP2004242153A (ja) 車載アンテナ
JP3233377B2 (ja) 窓ガラスアンテナ
Westrick Compact wire antenna array for dedicated short-range communications: vehicle to vehicle and vehicle to infrastructure communications
CN116454601A (zh) 玻璃天线、车辆玻璃和车辆
Yacoub Innovative Designs for Low Profile Antenna Systems for MIMO 5G/V2X and GNSS Communications
JPH04134904A (ja) 車両用ガラスアンテナ
JPH0410802A (ja) 車両用ガラスアンテナ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10274853

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020027014008

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 579394

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000920754

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027014008

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000920754

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000920754

Country of ref document: EP